
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2015/0032729 A1

Nachnani et al.

US 2015.0032729A1

(43) Pub. Date: Jan. 29, 2015

(54)

(71)

(72)

(21)

(22)

(60)

MATCHING SNPPETS OF SEARCH
RESULTS TO CLUSTERS OF OBJECTS

Applicant: salesforce.com, inc., San Francisco, CA
(US)

Inventors: Pawan Nachnani, Union City, CA (US);
Arun Kumar Jagota, Sunnyvale, CA
(US)

Appl. No.: 14/337,352

Filed: Jul. 22, 2014

Related U.S. Application Data
Provisional application No. 61/857,325, filed on Jul.
23, 2013, provisional application No. 61/862,873,
filed on Aug. 6, 2013.

e

ea

- Data snippet includes data that matches - -
112 a a

- - - object in other cluster of objects? - - -
e

Yes - - - - - No s

102

104

105
Yes

Add data snippet to
108 cluster of objects

s al

A.

114 Combine cluster of
Nobjects with other

cluster of objects

Search for information based on objects incluster of objects

Extract data snippet from search results

Data snippet includes data that matches
object in cluster of objects?

Publication Classification

(51) Int. Cl.
G06F 7/30 (2006.01)

(52) U.S. Cl.
CPC. G06F 17/30554 (2013.01); G06F 17/30598

(2013.01)
USPC .. 707/722

(57) ABSTRACT
Systems and methods are provided for matching Snippets of
search results to clusters of objects. A system searches infor
mation based on objects in a cluster of objects. The system
extracts a data Snippet from the search results. The system
determines whether the data snippet includes data that
matches at least one of the objects in the cluster of objects.
The system adds the data snippet to the cluster of objects if the
data Snippet includes data that matches at least one of the
objects in the cluster of objects.

100

1.

Store data snippet
for matching with 110 subsequent clusters fobjects

s
is

es

116 Calculate confidence score for add based on recency, job title, email address, and/or
s phone number associated with data snippet

se

118 - - Confidence score is sufficiently high for add to - -
ve - Jbe stored in customer accessible database? - - S

s

Store add in
120 N Customer

accessible databas
m) m ms am m) m

s

- - No
a

Generate notice for
122 N review

- - - - - -

Patent Application Publication Jan. 29, 2015 Sheet 1 of 4 US 2015/0032729 A1

100

1.

Search for information based on objects in cluster of objects

Extract data snippet from search results

106 Data snippet includes data that matches
object in cluster of objects?

104

No
se Store data snippet

for matching with 110 g
subsequent clusters
L of objects

Add data snippet to
108 cluster of objects

s ea s ear

- Data snippet includes data that matches N N
- - - object in other cluster of objects? - -

- se sa e
s s

Yes is a NO

112 e

- -
Combine cluster of

N objects with other
cluster of objects

114

Calculate confidence score for add based on recency, job title, email address, and/or 116
phone number associated with data snippet

- - Confidence score is sufficiently high for add to N 118
N Jbe stored in customer accessible databasel a

Yes T - J. - - No
s

Store add in \ Generate notice for
120 customer, FIG. 1 122 review

accessible databas sm am am am:
sis is a

US 2015/0032729 A1

OOZ

Patent Application Publication

Patent Application Publication Jan. 29, 2015 Sheet 3 of 4 US 2015/0032729 A1

Tenant Data Program
Storage Code

322 326

Processor Process
System

Application
Platform
318 317

Network
Interface

320 Environment
310

FIG. 3

Patent Application Publication Jan. 29, 2015 Sheet 4 of 4 US 2015/0032729 A1

322

323

324 Tenant DB

414
Tenant Data C 416

Application Meta Data

Application Tenant Management System
Setup Process Process

Mechanism 4.38 410 402

Save Routines Tenant 1 Tenant 2 Tenant N

436 Process Process Process

404 404 404

Appl,

Server
400

Environment
310

Processor
System
312A

US 2015/003 2729 A1

MATCHING SNPPETS OF SEARCH
RESULTS TO CLUSTERS OF OBJECTS

CLAIM OF PRIORITY

0001. This application claims the benefit of U.S. Provi
sional Patent Application No. 61/857,325 entitled, SYSTEM
AND METHOD FOR MATCHING SNIPPETS OF
SEARCH RESULTS TO CLUSTERS OF OBJECTS, by
Nachnani, et al., filed Jul. 23, 2013, and U.S. Provisional
Patent Application No. 61/862,873 entitled SYSTEMAND
METHOD FOR CONFIDENTLY MERGING SNIPPETS
OF SEARCH RESULTS WITHCLUSTERS OF OBJECTS,
by Nachnani, et al., filed Aug. 6, 2013, the entire contents of
which are incorporated herein by reference.

COPYRIGHT NOTICE

0002. A portion of the disclosure of this patent document
contains material which is subject to copyright protection.
The copyright owner has no objection to the facsimile repro
duction by anyone of the patent document or the patent dis
closure, as it appears in the Patent and Trademark Office
patent file or records, but otherwise reserves all copyright
rights whatsoever.

BACKGROUND

0003. The subject matter discussed in the background sec
tion should not be assumed to be prior art merely as a result of
its mention in the background section. Similarly, a problem
mentioned in the background section or associated with the
subject matter of the background section should not be
assumed to have been previously recognized in the prior art.
The Subject matter in the background section merely repre
sents different approaches, which in and of themselves may
also be inventions.
0004 Companies are often overwhelmed with customer
data. Names, titles, billing addresses, shipping addresses,
email addresses, phone numbers, household data, affiliated
companies, and associated parties are examples of customer
data fields. Managing customer data can become extremely
complex and dynamic due to the many changes individual
customers go through over time. Multiply all of these cus
tomer data fields by the millions of customer data records
which a company may have in its data sources, and factor in
how quickly and how often this customer data changes, and
the result is that many companies have a significant data
management challenge.
0005. Some customer data providers attempt to address

this challenge by using a crowd-sourced platform to build a
contact database which is sourced and updated by sales and
marketing professionals. However, the customer data pro
vided by customer data providers often has a variety prob
lems, such as invalid email addresses or invalid phone num
bers, a contact record with incorrect information from a name
spelled wrong to a bad address, incomplete or inaccurate
records for company names, job titles, and phone numbers,
non-current data, wrong company information or wrong con
tact data, duplicate contacts with inconsistent information,
fields that are empty due to poor data capture techniques or
contain other inaccurate information, completed fields that
contain nonsense data such as “TBA” or “TBD, and outdated
information, Such as a contact that no longer works at the
contacts former company. Customer data providers may
have these problems because community update models treat

Jan. 29, 2015

every add request or update request as an absolute fact, which
can potentially lead to bad updates. Such as incorrectly inac
tivating high-profile executives or fraudulently adding bogus
contacts. While some issues may be alleviated by adding
carrot-and-stick safeguards such as penalties for bad updates,
rewards for good updates, and reputation-based updates, only
a few ill-intentioned users can undermine the quality of cus
tomer data. Furthermore, the potential for bad data still exists
when millions of records enter a customer data provider sys
tem from other sources, such that users or partners may end up
adding bad data unknowingly from outdated lists and data
bases.

BRIEF SUMMARY

0006. In accordance with embodiments, there are pro
vided systems and methods for matching and confidently
adding Snippets of search results to clusters of objects. Infor
mation is searched based on objects in a cluster of objects. A
data Snippet is extracted from the search results. The data
snippet is added to the cluster of objects if the data snippet
includes data that matches at least one of the objects in the
cluster of objects. A confidence score may be calculated for
adding the data Snippet to the cluster of objects based on the
recency, a job title, an email address, and/or a phone number
associated with the data Snippet. The data Snippet may be
added to the cluster of objects in a customer accessible data
base if the confidence score is sufficiently high, and a notice
for review may be generated if the confidence score is not
sufficiently high.

0007 For example, a database system searches a business
database for information about a business contact stored in a
contact database, wherein the contact database includes
objects stored in a cluster of objects that correspond to a given
name "Gregory, a family name “Jones, a company “Inter
national Business Machines, a title “V.P for sales, a location
“New York City,” and an email address for a specific business
contact. The database system extracts data that includes a
given name "Greg. a family name “Jones, a company
“IBM, and a mobile phone number from the information in
one of the search results. The database system determines
whether the data snippet extracted from the information in the
search results includes data that matches any of the objects
stored in the cluster of objects in the contact database corre
sponding to the business contact named Gregory Jones. The
database system adds the extracted data Snippet, including the
mobile phone number, to the objects stored in the cluster of
objects in the customer accessible database that correspond to
the business contact named Gregory Jones because the cal
culated confidence score is sufficiently high since both the
data Snippet and the objects in the cluster of objects include
the uncommon family name “Jones. In this example, a sales
person planning on contacting Greg Jones at IBM now has
Jones’s mobile phone number that the sales person did not
have previously.
0008. The database system builds, manages and sustains a
high-quality person data object by bringing in data from
multiple sources, normalizing, enriching, matching, and
merging data to provide a 'golden record,” or a best version of
the data, for a person and the person’s various business profile
attributes. The database system leverages free web data
Sources such as news feeds, blogs and search results to mine
attributes such as titles, social handles, etc., to further

US 2015/003 2729 A1

improve the quality of contact, company, and location data
objects, and uses this additional data to build, validate and
enrich person profiles.
0009 While one or more implementations and techniques
are described with reference to an embodiment in which
matching and confidently adding Snippets of search results to
clusters of objects is implemented in a system having an
application server providing a front end for an on-demand
database service capable of Supporting multiple tenants, the
one or more implementations and techniques are not limited
to multi-tenant databases nor deployment on application
servers. Embodiments may be practiced using other database
architectures, i.e., ORACLE(R), DB2(R) by IBM and the like
without departing from the scope of the embodiments
claimed.
0010. Any of the above embodiments may be used alone
or together with one another in any combination. The one or
more implementations encompassed within this specification
may also include embodiments that are only partially men
tioned or alluded to or are not mentioned or alluded to at all in
this brief summary or in the abstract. Although various
embodiments may have been motivated by various deficien
cies with the prior art, which may be discussed or alluded to
in one or more places in the specification, the embodiments
do not necessarily address any of these deficiencies. In other
words, different embodiments may address different defi
ciencies that may be discussed in the specification. Some
embodiments may only partially address Some deficiencies or
just one deficiency that may be discussed in the specification,
and some embodiments may not address any of these defi
ciencies.

BRIEF DESCRIPTION OF THE DRAWINGS

0011. In the following drawings like reference numbers
are used to refer to like elements. Although the following
figures depict various examples, the one or more implemen
tations are not limited to the examples depicted in the figures.
0012 FIG. 1 is an operational flow diagram illustrating a
high level overview of a method for matching and confidently
adding Snippets of search results to clusters of objects in an
embodiment;
0013 FIG. 2 is a block diagram of a system for matching
and confidently adding Snippets of search results to clusters of
objects in an embodiment;
0014 FIG. 3 illustrates a block diagram of an example of
an environment wherein an on-demand database service
might be used; and
0015 FIG. 4 illustrates a block diagram of an embodiment
of elements of FIG.3 and various possible interconnections
between these elements.

DETAILED DESCRIPTION

General Overview

0016 Systems and methods are provided for matching and
confidently adding Snippets of search results to clusters of
objects. As used herein, the term multi-tenant database sys
tem refers to those systems in which various elements of
hardware and software of the database system may be shared
by one or more customers. For example, a given application
server may simultaneously process requests for a great num
ber of customers, and a given database table may store rows
for a potentially much greater number of customers. As used

Jan. 29, 2015

herein, the term query plan refers to a set of steps used to
access information in a database system. Next, mechanisms
and methods for matching and confidently adding Snippets of
search results to clusters of objects will be described with
reference to example embodiments. The following detailed
description will first describe a method for matching and
confidently adding Snippets of search results to clusters of
objects. Next, a block diagram of an example system for
matching and confidently adding Snippets of search results to
clusters of objects is described.
0017. A lot of customer data makes up a database of con
tact records. The primary Source for this customer data could
be a website where users add and update business card infor
mation by adding or updating contact information one record
at a time through a web form or by uploading comma sepa
rated value files that contain contact information. Users may
also occasionally Submit bounce email reports that contain
error codes for invalid emails that they receive from their mail
providers as part of their email marketing campaigns. A data
base system can receive and process millions of data records
to provide new or updated data to customers in a timely
manner. The database system cleans the data from the record,
normalizes the data into a standard set of values that might be
used for matching, enriches the data, and attempts to match
the data with previously stored data to create a “golden
record for a person identified by the incoming data and/or
previously stored data. False matches can result in the loss of
good data and missed matches may reduce the value of pre
viously stored data. The matching process also helps in iden
tifying duplicates and decreases the possibilities that dupli
cate records are created for the same person. After the
matching process returns a Suitable list of matching person
candidates, the database system adds the incoming data to a
cluster of data objects that contains data values that matches
data objects for the person identified by the incoming data.
Alternatively, the database system creates a new cluster of
data objects for the person if the database system does not
already include any cluster of data objects that match data
objects for the person identified by the incoming data. Then
the database system determines whether to store the added
data in a customer accessible database.

0018. A significant majority of bad and erroneous opera
tions may be prevented, thereby resulting in much higher
quality of customer data, if a database system treats every add
or update contribution as a claim and takes into account the
reputation of the user/partner who makes the claim. In addi
tion, bad and erroneous operations may be prevented if a
database system takes into account the type of the claim, the
date and time of the claim, and further validates the claim with
data from the free web and other sources with additional
levels of data stewardship. Claims from trusted users can be
treated as sources of truth and valuable enough to overwrite
almost all existing information. Claims from average mem
bers and the free web may be treated as good as any other
information. The more consistent points identified will pre
Vail. Such as if three people evaluate Some data as good and
one person evaluates the same data as bad, the evaluations as
good prevail.
0019. The database system weighs a claim on a graded
scale and calculates various scores to generate a confidence
score that is then used to determine the type of actions that are
needed before the claim is fully processed and applied to
generate a 'golden record for a person. The database system
determines the quality of each and every individual attribute

US 2015/003 2729 A1

Such as names, titles, emails, phones, social handles etc. Each
and every attribute of data in the claim is scored and weighed
against similar attributes from other claims and golden
records in case they already exist. If the data in an attribute of
a new claim is of better quality than an existing attribute and
the confidence score of the new claim is above a certain
threshold, the database system uses the incoming attribute in
a data Snippet to replace the existing data for that attribute in
the golden record. The attribute in the data snippet is linked to
a person record, where data from multiple contacts is com
bined to create/update work profiles for the person record,
allowing tracking of the lifecycle and work profile of con
tacts. If the attribute in the data Snippet is conflicting or
additional details are needed, the database system generates
an additional task/alert to data stewards for additional review
based on the importance of the data record and the attribute in
question. If the attribute in the data Snippet is of poor quality,
then the database system rejects the claim and the state of the
attribute and golden record remains unaffected. If there is not
enough information to make a decision, there is not enough
authority to change the state, or no new information is
detected, then no decision is made, re-affirming the current
state of the data.
0020 FIG. 1 is an operational flow diagram illustrating a
high level overview of a method 100 for matching and con
fidently adding Snippets of search results to clusters of
objects. As shown in FIG. 1, a database system may match
and confidently add Snippets of search results to clusters of
objects.
0021. A database system searches information based on
objects in a cluster of objects, block 102. For example and
without limitation, this can include the database system
searching a business database for information about a busi
ness contact stored in a contact database, wherein the contact
database includes objects stored in a cluster of objects that
correspond to a given name “Gregory, a family name
“Jones, a company “International Business Machines,” a
title “V.P for sales, a location “New York City, and an email
address for a specific business contact. After receiving search
results based on objects in a cluster of objects, the database
system extracts a data Snippet from the search results, block
104. By way of example and without limitation, this can
include the database system extracting data that includes a
given name "Greg. a family name “Jones, a company
“IBM, and a mobile phone number from the information in
one of the search results.

0022. Having extracted the data snippet from the search
results, the database system determines whether the data Snip
pet includes data that matches at least one of the objects in the
cluster of objects, block 106. In embodiments, this can
include the database system determining whether the data
snippet extracted from the information in the search result
includes data that matches any of the objects stored in the
cluster of objects in the contact database corresponding to the
business contact named Gregory Jones. Whether the data
Snippet includes data that matches at least one of the objects
in the cluster of objects may include matching based on first
name aliases and/or acronym expansion.
0023 For example, “Greg' is a given name alias that
matches the given name “Gregory' and “IBM is an acronym
that can be expanded to match “International Business
Machines.” If the data snippet includes data that matches at
least one of the objects in the cluster of objects, the method
continues to block 108. If the data snippet does not include

Jan. 29, 2015

data that matches at least one of the objects in the cluster of
objects, the method proceeds to block 110. If the data snippet
includes data that matches at least one of the objects in the
cluster of objects, the database system adds the data Snippetto
the cluster of objects, block 108. For example and without
limitation, this can include the database system adding the
extracted data Snippet, including the mobile phone number, to
the objects stored in the cluster of objects in the contact
database that correspond to the business contact named Gre
gory Jones because both the data Snippet and the objects in the
cluster of objects include the uncommon family name
“Jones.

(0024. The method 100 then proceeds to block 112. If the
data Snippet does not include data that matches at least one of
the objects in the cluster of objects, the database system
optionally stores the data Snippet for matching with Subse
quent clusters of objects, block 110. By way of example and
without limitation, this can include the database system Stor
ing the data Snippet for matching with Subsequent clusters of
objects if the data Snippet does not include data that matches
at least one of the objects in the cluster of objects, as the
contact database may be later Supplemented with an addi
tional contact that includes an object which matches some of
the data in the extracted data snippet. Then the method 100
either terminates or begins again at block 102.
0025 Having determined that the data snippet includes
data which matches objects in a cluster of objects, the data
base system can also determine whether the data Snippet
includes data that matches objects in another cluster of
objects, block 112. In embodiments, this can include the
database system determining that the extracted data Snippet
that includes “Greg,” “Jones, and the mobile phone number
also matches an object in another cluster of objects that
includes “Greg,” “Jones, and a company “Microsoft. If the
data Snippet includes data that matches at least one of the
objects in another cluster of objects, the method continues to
block 114. If the data snippet does not include data that
matches at least one of the objects in another cluster of
objects, the method proceeds to block 116. If the data snippet
includes data that matches at least one object in the other
cluster of objects, the database system may combine the
cluster of objects with the other cluster of objects, block 114.
For example and without limitation, this can include the data
base system combining the clusters of objects for the two
business contacts named "Jones' whose objects include
“International Business Machines' and “Microsoft.” Such a
combination of clusters of objects for business contact
objects could be useful for a sales person planning on con
tacting Greg Jones at IBM if the sales person knows some
business contacts who worked at Microsoft at the time when
Greg Jones worked at Microsoft.
0026. After adding a data snippet to a cluster of objects,
the database system optionally calculates a confidence score
for adding the data Snippet to the cluster of objects based on
the recency, a job title, an email address, and/or a phone
number associated with the data snippet, block 116. By way
of example and without limitation, this can include the data
base system calculating a confidence score based on how
recent the data objects from the search result were stored in
the business database, with the today's date of storage
equated with the highest recency score.
0027. In another example, the database system calculates
a confidence score based on a job title from the search result,
with hierarchically higher job titles equated with a higher title

US 2015/003 2729 A1

rank score, and with job titles known to be used by the busi
ness contacts claimed company equated with a higher title
quality Score. In yet another example, the database system
calculates a confidence score based on an email address from
the search result, with the email score based on how well the
email address matches the pattern of other email addresses for
business contacts for the business contacts claimed company
and how well the email address matches the first name and the
last name of the business contact. In a further example, the
database system calculates a confidence score based on a
phone number from the search result, where the phone num
ber score is based on the consistency between the claimed
phone number and the area code associated with the claimed
geographic location for the business contact. The confidence
score may be based on any weighted combination of the
recency, the job title, the email address, and the phone number
from the data Snippet.
0028. The database system optionally determines whether
a confidence score is Sufficiently high for adding the data
Snippet to the cluster of objects stored in a customer acces
sible database, block 118. In embodiments, this can include
the database system determining that a confidence score is
sufficiently high for a new mobile phone number to be added
to the cluster of data objects for Greg Jones in a customer
accessible database. If a confidence score is sufficiently high
for adding the data Snippet to the cluster of objects stored in a
customer accessible database, the method 100 continues to
block 120. If a confidence score is not sufficiently high for
adding the data snippet to the cluster of objects stored in a
customer accessible database, the method 100 proceeds to
block 122. If the confidence score is sufficiently high for
adding the data Snippet to the cluster of objects stored in the
customer accessible database, the database system optionally
adds the data snippet to the cluster of objects stored in the
customer accessible database, block 120.
0029. For example and without limitation, this can include
the database system storing the new mobile phone number in
the contact database that is accessible by a sales person plan
ning on contacting Greg Jones, who now has Jones' mobile
phone number that the salesman did not have previously.
Then the method 100 either terminates or begins again at
block 102. Although this example describes the database
system using a confidence score to determine whether to add
a data Snippet to a cluster of objects in a customer accessible
database, the database system may also use a confidence
score to determine whether to combine the cluster of objects
with the other cluster of objects. The database system may
also use a confidence score to determine whether to combine
the cluster of objects with the other cluster of objects in a
customer accessible database. If the confidence score is not
sufficiently high for adding the data snippet to the cluster of
objects stored in the customer accessible database, the data
base system optionally generates a notice for review, block
122.

0030. By way of example and without limitation, the
notice for review can include the database system generating
a notice for reviewing the adding of the data Snippet to the
cluster of objects because the mobile phone number in the
search results is not associated with New York City, the
claimed office location for Jones in the search results, and the
title “VP in the search results is too generic and does not
match any titles known to be used by IBM, the claimed
company for Jones in the search results. Then the method 100
either terminates or begins again at block 102. Accordingly,

Jan. 29, 2015

systems and methods are provided which enable a database
system for matching and confidently adding Snippets of
search results to clusters of objects.
0031. The method 100 may be repeated as desired.
Although this disclosure describes the blocks 102-122
executing in a particular order, the blocks 102-122 may be
executed in a different order. In other implementations, each
of the blocks 102-122 may also be executed in combination
with other blocks and/or some blocks may be divided into a
different set of blocks.
0032 FIG. 2 illustrates a block diagram of an example
system for matching and confidently adding Snippets of
search results to clusters of objects, under an embodiment. As
shown in FIG. 2, the system 200 may illustrate a cloud com
puting environment in which data, applications, services, and
other resources are stored and delivered through shared data
centers and appear as a single point of access for the users.
The system 200 may also represent any other type of distrib
uted computer network environment in which servers control
the storage and distribution of resources and services for
different client users.
0033. One example of a system that can implement match
ing and confidently adding data Snippets to clusters of objects
is the popular open-source framework from Twitter R called
Storm, which is a real time, open Source data streaming
framework that functions entirely in memory. Storm con
structs a processing graph, called a “topology. that feeds data
from input sources through processing nodes. The input data
sources are called "spouts, and the processing nodes are
called “bolts.” The data model consists of tuples, which flow
from spouts to the bolts, which execute user code. Besides
simply being locations where data is transformed or accumu
lated, bolts may also join streams of data and branch streams
of data. Storm is designed to be run on several machines to
provided parallelism. Storm processes streams of tuples. A
stream is defined to be an unlimited ordered sequence of
tuples, and each tuple is a one dimensional array of objects.
0034. The system 200 acts as a central data processing
hub, or clearing house, that brings in multiple data sources
and free web data together to generate the “golden record for
core data assets around accounts and persons. The following
describes the key components of the system 200 as part of a
storm topology to implement the data processing pipeline. As
part of the system initialization, before the Storm topology is
activated to process any incoming claims, all the existing
claims, reference data and golden person records are loaded
into an in-memory key-value data store. The system 200
generates a set of specialized keys for each person record and
claims that enable fast lookups for the purpose of matching
and retrieval. Indices are created for each company, person
and location object in the cache, and these indices are used for
person matching, company matching and location matching.
A spout is a source of data streams in a Storm topology.
Generally spouts will read tuples from an external source and
emit them into the topology.
0035. The business directory spout 202 reads data from
the business directory database and emits tuples, which are
treated as claims, into the topology, Such as contact added,
contact updated, contact invalid phone, contact invalid email,
and contact not at company. Each of these claim types has an
associated contributor identifier that is the identity of the user
who performed the action. The business directory spout 202 is
an unbounded stream and keeps emitting data till there is no
more data to be read. The tuples that are emitted out of the

US 2015/003 2729 A1

business directory spout 202 may be distributed randomly
(shuffle grouping) to a normalize bolt 204 which is the first
bolt in the pipeline. This data can also sent to a search engine
bolt 206 which executes free web search queries and tries to
find additional data around this contact, Such as titles and
Social handles.
0036. The partial records spout 208 provides partial
records from disparate sources. The partial records spout 208
reads contact data from a partial records database where files
that are uploaded by users on the website are stored in raw
format before partial records processing. The key difference
here is that unlike the business directory spout 202, the partial
records spout 208 emits tuples based on partial databased on
the data in the uploaded files. Also, the tuples that come out of
the partial records spout 208 will often contain very poorly
normalized data. Similar to the business directory spout 202,
the tuples that are emitted out of the partial records spout 208
may be distributed randomly (shuffle grouping) to the nor
malize bolt 204 which is the first bolt in the pipeline. This data
can also sent to the search engine bolt 206 which executes free
web search queries and tries to find additional data around this
contact, Such as titles and social handles. Examples of claims
emitted by the partial records spout 208 include contact added
and contact added for new company.
0037. The bounce email spout 210 reads bounce email
error codes, which may be from comma separated value files
that are uploaded by website administrators and website
users. Examples of claims emitted by the bounce email spout
include contact email and contact message. The bounce file
message that the bounce email spout 210 receives for an email
is typically unstructured text, such as records that are comma
separated with the email in the first column and the second
column containing the bounce message as unstructured text.
In order for the bounce email spout 210 to emit the objects
properly, an automatic column mapping algorithm may ini
tially process the first few lines of the file. The algorithm does
not need to rely on the names of the column headers, but
rather the algorithm can tokenize the bounce file. The field
separator may be determined from the file by tokenizing on
each kind of separator and computing how consistent the
number of tokens the algorithm creates for the entire file.
After determining the field separator, the algorithm can deter
mine which column contains the email and which column
contains the message. The algorithm may split out the record,
remove the email, and concatenate the rest of the record to
create the contact message claim. The emitted contact mes
sage claim is typically an unstructured Snippet of text.
0038. The social handle spout 212 reads contact data and
Social handles from a social handle repository and Submits
claims such as contact social handle.

0039. The crawler spout 214 emits contacts found on the
web from crawling websites for their management pages. The
crawler spout 214 may start with a number of seed companies
that the system 200 currently has and use it as the starting
point for crawling. Examples of claims emitted by the crawler
spout 214 include contact added and contact updated.
0040 Processing in a Storm topology is generally done in

bolts. Bolts may do anything from filtering, functions, aggre
gations, joins, talking to databases, and more. The normalize
bolt 204 processes all the tuples that come to it through a
series of data normalization routines. The normalizerbolt 204
may standardize addresses, titles, phone numbers, and prop
erly classify contact records by department and level. The
following are some of the key normalizations. An address

Jan. 29, 2015

normalizer can include a list of abbreviations. Such as E to
East, W to West, Blvd to Boulevard; only allows letters,
numbers, and special characters; and remove any space if
there are any spaces around the special characters. A title
normalizer may include a list of misspellings and abbrevia
tions. A name normalizer can allow letters and special char
acters, not allow special characters at the beginning and the
end of a name, capitalize the first letter and add a space after
each name, capitalize the next letter if a name starts with
“Mc, and capitalize all Roman numerals. A city normalizer
may only allow letters and special characters, and only keep
the last non-space special character if there are a sequence of
special characters. A base normalizer can return the correct
country normalizer based on the country abbreviation. A
phone normalizer may normalize phone patterns based on
each country having its own phone pattern. A Zip normalizer
can normalize Zip code patterns based on each country having
its own zip code pattern. A state normalizer may normalize
states based on countries having its own State requirements, if
there are any. Once the data is normalized, the normalizer bolt
204 can pass the data to the next stage in the pipeline, which
is an enrich bolt 216.

0041. The enrich bolt 216 uses external data services for
email verification, for phone verification and social append
services for Social handles, and appends a set of meta-at
tributes to all the new contact claims that enter the pipeline.
After enrichment, the tuple may contain additional metadata
around emails, phones and Social handles that is useful for
matching and merging purposes. The enrich bolt 216 passes
this data to the matchbolt 218that tries to match the incoming
contact claims with other existing claims and facts in the
system 200.
0042. The match bolt 218 is based on the system 200
modeling a specific data model of a person object. For
example, to allow matching on the probe (title=CEO,
company=Google), the system 200 creates a suitable index
(title(a)company or title rank(a)company). A probe is a (par
tial) person record. Such as some attribute: value pairs of a
person with at least the person name present. For example
(first name Shabd, last name Vaid, company=Responsys)
should match the person Shabd Vaid because this name is
uncommon and in the past he has worked at Responsys. The
working data model of person object attributes may include:
first name, last name, linkedin handle, twitter handle, other
Social handles, links to contact objects, work history, photos,
education, and Snippets, which are unstructured short pieces
of text such as search result Snippets, tweets, etc., and others
containing person-identifying content.
0043 A person object is composed of contact objects in a
one-too-many relationship. That is, a person may have many
contact objects, but a contact object belongs to only one
person object. So if the probe matches a contact object, the
system 200 can infer that the contact object matches the
associated person object. If a probe does not match any con
tact object, yet it does match a person object, the probe con
tains some person-level attributes (such as Social handles)
which match a person object, or the probe contains some
attributes of a person which cross contact boundaries. For
example, the probe may be person name:"shabd Vaid”,
company="iStorez, company="Responsys”. This probe
should match the Shabd Vaid person because his name is
uncommon and he worked at both companies.
0044 P denotes a person object and p.work history.com
pany names denotes the names of companies p has worked

US 2015/003 2729 A1

at, p.work history.cities denotes the set of all cities p has
worked in, p.work history.titles denotes the set of job titles
that the person has held, and similar notations exist for work
emails, work phones, work States, work countries, and social
handles. The formats of the objects of different types of social
handles (linkedin, twitter, etc.) is quite different, so it may not
be necessary to have a different index type for a different type
of social handle because there is no risk of a collision.

0045. A final check models the probability that a match is
a chance event. Let M denote this match. Specifically, assume
a universe of objects (here, persons) that has size n, and
assume a uniform probability model on this universe, that is,
all objects are equally likely. The system 200 can estimate the
upper bound on the expected number E(M) of objects in the
universe that have the properties of the match M, under the
universe probability model. If this upper bound estimate is
below a certain threshold (1 may be a sensible choice) the
system 200 accepts this match, otherwise the system 200
rejects the match. One way to estimate a suitable upper bound
on E(M) is to model the probabilities of various attribute:
value pairs under the universe probability model, then assume
the independence of attributes in the match and multiply out
these probabilities, then finally multiply this by n. To formally
describe this, let M={a:vla is an attribute and v is its value}.
For example, M={person name: “john Smith', company
name: "ibm". This means that the person name matched in
M is John Smith, and the company name matched in M is
ibm. Now E(M)=n-product {a:v in MP(av) (EUB 1. Mod
eling the probabilities of all attribute: value pairs in the uni
verse is probably too complex, so the database system may
begin by modeling the probabilities of certain key attributes
and their value, drop all attributes other than these from Mand
still use (EUB 1. The result is still an estimate of the upper
bound on E(M). For concreteness, suppose the system 200
has modeled the probability of person names in the universe,
and of company names. For example M-person name:
john Smith', company name: "ibm". The estimated upper
bound on E(M) is P(person name: “john Smith')*P(com
pany name: "ibm")*n-P(person name: “john Smith')
*#contacts in company(company name: "ibm")
0046. The result-set size based estimate may not general
ize as well as explicit modeling. For example, the P(person
name) explicit model which assumes independence of first
and last names does not generalize well. An alternative to an
explicit estimate is a result-set size based estimate. In this
version, the system 200 runs the matcher to find all true
positive matches. Here, true positive may not include 'mod
eling chance matches. If there are at least two distinct objects
in the result set, the system 200 deems that the probe being
matched is not matched uniquely. This approach has the ben
efit that the P(a:V) probabilities are not explicitly modeled.
The result set will carry the information to judge whether a
match is unique or not, even in complex cases. This approach
has the limitation that it does not model the real world; only
the current, actual universe of (golden) data objects. Another
issue is that to implement this approach, the system 200 may
need to do this computation after all the true positives have
been generated. Furthermore, the system 200 can match
within the result set to check whether there are indeed at least
two different objects or not.
0047. The search engine bolt 206 takes partial data (aka
seed) and tries to find more publically available information
via a search engine 220, such as Yahoo(R Boss, because find
ing titles and Social handles is useful. The data thus obtained

Jan. 29, 2015

is passed through a search results bolt 222 to extract vital
information and enrich a data record to build a full person
profile, Such as by passing the data to a handle extractor bolt
224.

0048. The search results bolt 222 uses search result snip
pets having attractive properties that Suggest they be made
first-class “objects' in a person database 226 and/or contact
data model and matching engines. Snippets are consumed
without running afoul of terms of use restrictions. For the
most part, Snippets contain information about a single
entity—a person, company or contact. Snippets might be
matched to a different type of suitable object, such as person,
company, or contact. Some Snippets contain information
about multiple companies at which a person has worked, so
Snippets could be used to connect together multiple contacts
of the same person Such a matching is of mostly unstructured
text (the Snippet) to structured data (a particular contact
object): This matching does not require entity extraction from
the Snippet. This matching could be algorithmically relatively
easy to do. Once a Snippet has been matched to a suitable
object with a sufficiently high confidence score, certain “nug
gets' might be extracted from the Snippet and the matching
object enriched. For example, if the Snippet contains a Linke
dIn handle and the Snippet matches a particular contact Suf
ficiently well, this handle is then be attached to that contact. A
Snippet may tie together multiple contacts of the same person
because the Snippet contains the names of multiple compa
nies at which the person has worked.
0049 Contact initiated snippets generation and matching
may work as follows. Start with a contact J. Let C denote the
cluster of the person database 226 containing J. Generate a
suitable query Q to the search engine 220 from J. For each
snippet S in the top search results on Q, if S matches C with a
sufficiently high confidence, add S to C, otherwise add S to a
collection of unmatched Snippets. If the person name in J is
Sufficiently uncommon, set Q to person-name(J), else set Q to
person-name(J)+company-name(J). Two examples are
Pawan Nachnani and John Smith ibm. Note that there is no
data quality risk by setting a query too broad, Such as a
common person name, because the resulting Snippets will be
deeply matched with C. An overly broad query does not yield
good recall because none of the Snippets in its result set
deeply match C. Recall may be less important than precision
because if the system 200 makes up for low recall by pound
ing away at the search engine 220. So long as the system 200
is not constrained overly by search volume limits. Also, if the
system 200 uses a mechanism to consume unmatched Snip
pets, this mitigates the recall limitation a lot. C denotes the
data of a single person. A Snippet may contain data of this
person spread across multiple contacts, which is why the
database system matches S to C and not merely to J.
0050. The process described in the previous section can
produce a lot of snippets that remain unmatched. Accumulat
ing these even over a short period of time may yield millions
of Snippets. Many of these Snippets could contain useful
information about contacts or persons that are not even yet in
the database. In short, these snippets collectively have a lot of
value. These Snippets might be matched to contact or person
objects and placed in the suitable cluster, then be available for
merge. One major challenge in this regard is that of indexing
a snippet for efficient matching. A person name may be a good
index for Snippets from person queries. The person name can
be found from a Snippet by light-weight entity recognition.
Therefore, the match bolt 218 includes bolts such as a handle

US 2015/003 2729 A1

bolt 228, an email bolt 230, a name(a)company bolt 232, a
name(a)phone bolt 234, and a name(alocation bolt 236 to
match Snippets to clusters of objects in the person database
226.

0051. A cluster bolt 238 clusters all matching claims
together into a common cluster. A merge bolt 240 merges all
claims and existing contact records (partial and/or complete)
from a cluster into a single composite record (the merged
record) and computes a confidence score for the merged
record. If the merged record is incomplete, the merge bolt 240
enriches the record when possible with information available
in the cache. If the record is complete, the merge bolt 240
marks the record as canonicalized. At this point, the record is
ready to be persisted in the person database 226, provided its
confidence score is sufficiently high. The merge bolt 240 also
updates the merge time of the incoming claim.
0052. Ifriday is today, then this score may have the value
1, and the score can reduce to 0 for a long time (many, many
days) in the past. Score(rrank)—based on r,title. c-level titles
may get a score of 1 and the rank score can monotonically
decay for lower rank titles. Score(r,title quality)—High rank
titles, e.g. Vice President, do not necessarily have high qual
ity. Title quality may score this separate dimension. A title
might be deemed to have high quality if it has a known rank
and has a known department and is not in an explicit list of
poor titles. The quality may decrease depending on which
(and how many) of the tests in the above sentence are violated.
Score(r.domain)—might only be defined when r S company
has been matched to company c. Score(r,d) itemails in
domain d/#contacts in company je. Score(r.pattern do
main)—How well (r.first name.r.last name.remail) fits the
email pattern of the domain of remail Let p(r)=(r.first name,
r.lastname.remail) be the pattern in r. For example, p first.
last for (john.doe.john.doe(axyZ.com), p-flast for (john doe,
jdoe(axyZ.com) Score(r.pattern domain) Hemails in
domain of remail having pattern p(r) divided by Hemails in
domain of remail
0053. The intent is that updates algorithmically deemed
risky may be logged for review by a data steward or commu
nity. Feedback from the review can be used to assess the
accuracy of this scoring/detection mechanism, and tuning of
it if it is deemed useful enough. An update is risky if a
contacts last name is changed. A title change with more than
one level increase in rank, such as Software engineer to ceo, is
also risky. A score version of this may make the risk score
depend on the number of skipped levels. A title change which
changes departments to another incompatible department,
Such as. Vp Sales to Vp engineering is also risky. Updating or
adding a C-level contact in a large company is risky, but easy
to generalize in a scoring setting the higher the rank of the
contact and the larger the company size, the higher the risk
score may be. Also, different update actions might possibly
have differing risks, such as a title change is generally more
risky than a last name change for a female. A fortune 1000
headquarters address change is also risky, but scoring may
generalize this to important company combined with
attribute-specific change score=> overall risk score)
0054 The join bolt 242 takes all the merged claims from
the merge bolt 240 and construct person objects. A person
object may be a collection of major profiles, such as a person
profile, a work profile, and a social profile. The data from each
merged claim can update one or many attributes across all the
three profiles of a person. In some cases, a merge claim may
end up creating new profile objects as new claims become

Jan. 29, 2015

available. Each attribute in a profile ends up with a confidence
score that may ultimately determine the level of “gold for
that particular profile object. While most of the attributes
might be permanent, some of the attributes could be transient
and need to re-computed over time due to privacy and legal
CaSOS.

0055. A persist bolt 244 may save all the resultant person
records and the underlying claims to the person database 246
once all the processing is completed by the join bolt 242.
0056. The bounce email processing bolt is a reaper bolt
246 that aggregates multiple facts with a current claim and
comes up with a score and a disposition about that score. The
reaperbolt 246 may determine ifa fact is a duplicate. The fact
disposition can determine if the computed score warrants a
graveyard or ungraveyard of the underlying contact. The
score of the current claim could be computed as follows: Take
all claims and scored facts for the same email. For each fact,
get the base score determined by the response category of the
email. From the description from the bounce email spout 210,
the contact message is typically unstructured data. The reaper
bolt 246 may address this by using a trie-based approach to
find tokens specified in a list of vendor dictionaries. Each
Vendor dictionary can specify the token with a classified
response category. Response categories for email may be
hard error, heavy error, Soft error, email received,
unknown. Once the score is computed, depending on the live
contact and graveyard thresholds, the reaper bolt 246 may
determine if the contact is to be made live orgraveyarded. The
reaper bolt 246 can automatically graveyard records from
bounce reports and phone campaigns, or float these records to
a community for task resolution.
0057 The crawler spout 214 looks at free web (sites
approved by a legal department for acceptable terms of Ser
vice) and finds publically available information/claims. Since
most of the open web sources of data are un-structured; the
publicly available information typically requires Sophisti
cated natural language processing techniques to extract
meaningful information from it. Therefore, the crawler spout
214 feeds Snippets of information to a natural language pro
cessing bolt 248, which applies natural language processing
and machine learning techniques to extract relevant data/facts
to emit the following types of claims: contact added, contact
updated, contact graveyarded, and Social handles.
0.058 A natural, human person may be represented as a
graph of p:Person entities (nodes, or vertices) interconnected
by links (edges). Each node can represent a different facet of
the user (person). Each of these facets may be held in a
separate (graph) container called a context. Each person
entity node can be a set of attributes and objects. These
attributes might be simple literals (such as the user's first
name) or they could be other entities (called complex
attributes). These latter attributes might be links to other
entity nodes. Typically each node in the person graph is
located in its own context. The root node may lie in a special
context (for each user) called the root context.
0059. Once the golden records are curated, the system 200
delivers this data to the person database 226 that is customer
accessible. This golden data may also be propagated back to
the original Source systems and other partner systems and
help keep the data clean in their respective source databases.
0060. The system 200 provides a complete 360 degrees
feedback loop and reduces the chances that bad or fraudulent
data may ever make it into customer's customer relationship
management systems or any other system where a consoli

US 2015/003 2729 A1

dated view of an account and person data is required. The core
person and account repository also continues to grow over
time as new pieces of data are found on the free web and other
Sources. Additional sources of data may also be on-boarded
quickly into the system 200 by adding and configuring new
spouts and corresponding bolts into the Storm topology. For
example, a de-duplication bolt detects duplicates and auto
matically merges the duplicates or float Suspected duplicates
to a community for task resolution. In another example, a
pingerbolt pings hypertext transfer protocol and simple mail
transfer protocol domains for validity, automatically grave
yarding when a domain is deemed invalid.
0061 The system 200 may create indices for each com
pany, person, and location object for matching purposes.
Examples of person indices include record identifier, social
handle, email direct phone number, company, city, Zip, state,
and country. Examples of location indices include record
identifier, Zip, city, and country. Examples of company indi
ces include record identifier, domain, corporate phone, com
pany prefix, Stock ticker, company name and city, domain and
city.
0062. The system may build an inverted index from a
Snippet, and use the index to map words in the Snippet to their
positions. The positions for a given word could be in increas
ing order. An inverted index is illustrated in an example
below.

Snippet=

Shabd VaidLinkedIn

0063 www.linkedin.com/in/shabdvaid Cached
Shabd Vaid. Experience: Co-founder, Vice President Engi
neering & Operations, iStoreZ Inc.; Director of Engineering,
Responsys; Senior Software Engineer, Newgen
Inverted Index: (only some key-value pairs shown).
shabd-><0.5>, vaid-><1,6>, vice-><9>, president-><10>,
0064. The system 200 detects acronyms (if any) in the
Snippet, expands out these acronyms, tokenizes the expansion
and incorporates these expansions into the inverted index, as
illustrated in the example below.
IBM News room Virginia M. Rometty Chairman, Presi
dent and
www-03.ibm.com/press/us/en/biography/10069.wiss Cached
IBM Press Room Ginni Rometti Biography ... Full biog
raphy. Ginni Rometty is Chairman, President and Chief
Executive Officer of IBM.
0065. Before acronymization, the inverted index contains
the entry ibm=> <0,i,j) where i and denote the word posi
tions of the 2nd and 3rd occurrence of IBM in the snippet.
After recognizing the acronym ibm->"international business
machines', the database system adds the entries international
=> i.0. business=> i.1, and machines=> i.2 to the
inverted index. Acronym-expansion entries in a Snippets
inverted index could be useful for matching titles or company
names to the Snippet.

Jan. 29, 2015

0066. The system 200 may represent an attribute: value
pair as an ordered tree. The order can capture the order of the
words in the value, and also in acronym expansions. The
ordered tree may capture choices, which include aliases, and
acronym expansions. Table 1 below shows various examples.
Ordered trees can be depicted as nested arrays, and con
structed via attribute-specific constructors. For example, per
son name objects are expanded to include first name aliases,
and acronyms in company names and titles are detected and
expanded, such as depicted in table 1. Ordered trees may have
alternating levels of ordered ANDs and unordered ORs. For
visual convenience, an AND-node is encapsulated in . . .
and an OR-node in (...).

Table 1, Ordered Trees of Attribute:Value Pairs:

0067

attribute value ordered tree

(first name = bob,
last name = Smith)

person name (bob, robert), Smith

title chairman and ceo chairman, and, (ceo, chief,
executive, officer)

company ibm corp (ibm,
international, business,
machines), corp

0068. As an example, chairman, and, (ceo, chief execu
tive, officer) is read as "chairman AND (ceo OR (chief AND
executive AND officer)). Representing the snippet as an
inverted index combined with representing attribute: value
pairs as ordered trees may lead to a very fast matching algo
rithm, as described below. The system 200 has attribute
specific matchers to match a value of a field to a Snippet,
which is unstructured text. The attribute-specific matchers
could be instances of the following generic matcher.
0069
0070 Build ordered tree, attribute value ordered tree,
from attribute: value pair.

0071 Build hits, which populates a copy of the ordered
tree with positions of words in the snippet that match (these
replace the words in the original ordered tree). hits uses
Snippet inverted index and attribute value ordered tree
as arguments.

match(attribute, value, Snippet inverted index)

0072 Analyze hits to score the match.
0073 end match
0074 Building hits could be attribute-independent. Ana
lyzing hits might be done “on-the-fly” with building hits,
however the algorithm is easier to understand when the two
steps are separated out. Table 2 below shows some examples.
A post-list in hits is represented by < ... D.
Table 2, Hits from attribute value ordered tree and snippet
inverted index:

Row attribute value ordered tree Snippet inverted index hits

1 shabd, vaid

2 vice, president

US 2015/003 2729 A1

-continued

Row attribute value ordered tree Snippet inverted index hits

3 (vp, vice, president)

4 (bob, robert), Smith

5 chairman, and, (ceo, chief,
executive, officer)

officer -> <4-, ..., ceo
-> <8>}

6 (ibm, {ibm -> <0>}
international, business, nil
machines), corp

0075 Enumerating individual hits may be described based
on the hits data structure in the last column of Table 2. Indi
vidual hits can reveal exactly what tokens in the query
matched what positions in the snippet. Each hit could be
individually scored. The overall score for the match of the
attribute: value pair in the snippet might be defined as the
aggregation of these individual scores. A hit could be a pair
(tokenspositions), where tokens might be an array of tokens
in attribute value ordered tree and positions could be an
array of positions in the Snippet at which these tokens match,
Such as the examples below.
0076 A one-level hits tree is simply an array of post-lists.
In Table 2, hits of rows 1 and 2 form one-level trees. The
system 200 may use a k-merge like algorithm to enumerate all
the hits of such a tree to a Snippet. This algorithm can “merge”
k post-lists, as illustrated below. Below is an illustration on
the hits <0.5>, <1,6>
<0.5>, <16>|->(shabd.vaid,0... 1)
<0.5>, <16>|->(shabd. Vaid,5 . . . 6)
0077. The underlined entries depict the locations of the
pointers in the various post-lists. In step 1, the pointers are at
the start positions. Since 1 minus 0 equals 1, the system 200
generates a hit, O... 1, and advances both pointers. In step 2.
since 6 minus 5 equals 1, the system 200 enumerates a hit, 5
... 6, and advances both pointers.
0078 Enumerating hits of a multi-level tree may be done
by Suitably generalizing the k-merge operation. The gener
alization can be a little complex, and may be well described
by building up inductively from different types of multi-level
tree examples.
0079. Example 1 is based on the hits of row 3 in Table 2:
(nil.<9>, <10>) and corresponds to a 3-level tree. The
system 200 processes this example as follows.
(nil, <9>, <10>)

<9>, <10>|->(vice-president).9 ... 10)
0080 First, the system 200 goes down one level since the
top level is a singleton-AND. Next, the system 200 skips the
nil. Finally, the system 200 produces the hit 9... 10 from
<9>, <10> and annotates it with vice, president.
0081 Example 2 is based on the hits of row 4 in Table 2:
(nil.<8>).<9>

Attribute

person

Jan. 29, 2015

(<0>, nil, nil, nil),

(nil.<8>).<9>|->(robert, Smith,8. . .9)
I0082 In step 1, the system 200 tries to 2-merge (nil.<8>)
with <9>. Recognizing that the first argument is an OR, the
system 200 goes down one level into the OR and effectively
does the 2-merge of <8>, <9> in step 2.
I0083. Example 3 is based on the hits in row 5 of Table 2:
<0>, <1>, (<8>, <2>, <3>, <4-)
<0>, <1>, (<8>, <2>, <3>, <4-)
<0>, <1>, (<8>, <2>, <3>, <4>)->(chairman.and.ceo.(0
... 1.8))
<0>, <1>. (<8>, <2>. <3>, <
4>)->(chairman,and,chief executive.officer.0 . . . 4)
I0084. In step 1, the system 200 recognizes that the need of
a 3-merge at the top level. The system 200 places the pointers
at the correct locations of the first two entries. The third entry
is an OR, so the system 200 descends into the third entry and
then places the pointer on the first entry in the first post-list in
the OR choices. (This entry is 8.) The system 200 then outputs
the hit (0... 1.8) off to the scorer. Next, in step 3, the system
200 moves over to the second choice in this OR. This is itself
an AND of three choices. So the system 200 needs a 3-merge,
of<2>, <3>, <4>). This 3-merge produces the hit 2 . . . 4.
which gets appended to 0 . . . 1 to yield 0 . . . 4.
I0085. Example 4: is based on the hits row 6 of Table 2:
(<0>. nil.nilnil).nil
(<0>, nil, nil.nil).nil
(<0>. nil.nilnil).nil->(ibm.corp.O.nil)
I0086. In step 1, the system 200 recognizes that the need of
a 2-merge at the top level. The system 200 notices that the first
entry is an OR, so the system 200 descends into the first entry
and then places the pointer on the first entry in the first
post-list in the OR choices. The system 200 notes that the
second entry of the top-level AND is nil, so the system 200
outputs 0.nil as one hit. Next, the system 200 advances the
first pointer to the second choice in the OR (<0>, nil, nil.nil)
and notices that it is nil. nil. nil. So the system 200 stops; such
that no new hits are generated.
I0087. The hit scorer may take two arguments: argument
name and hit. Table 3 shows a number of examples explaining
the scoring. Table 3, Scoring individual hits:

Hit Scoring Explanation

(shabd, Vaid, O... 1) Very high score since 1-0 = 1

US 2015/003 2729 A1

Attribute

title
title

title

company
l8le

company
l8le

company
l8le

person
l8le

person
l8le

title

-continued

Hit

(vice, president, 9... 10)
(chairman, and, ceo, (O... 1, 8))

(chairman, and, chief,
executive, officer, O... 4)
(ibm, corp, O. nil)

(jigsaw, data, corp., 5, nil, nil)

(data, corp. nil, 3)

(john, Smith, 3, 9)

(john, Smith, 3, 5)

(director, of, engineering, 6, nil, 5)

10

Scoring Explanation

Very high score since 10-9 = 1
Moderate score since 8 is far
from O... 1
Very high score because of
O. .. 4
High score because the
unmatched corp is a
company stop word
Moderately high because the
unmatched corp is a
company stop word and the
unmatched data is not the
first word
Low score because the
unmatched data is first word
in company name
Low score because the
distance between the two
matches, i.e. 9-3, is too high.
Moderately high score
because the distance 5-3 is
Small (2) though not ideal (1).
Moderately high score
because 5-6 = 1 and title
matches should be looser on

Jan. 29, 2015

word order.

0088. The system 200 brings together various algorithms,
processes and techniques that are particularly Suited for find
ing inaccurate data and piecing together rapidly changing
pieces of data and claims to generate golden records at a
massive scale. The system 200 provides a complete frame
work to efficiently evaluate data and to improve the complete
ness and accuracy of data. The system 200 provides a solid
foundation for linking external data sources to core data
assets in a reliable and scalable way that will enable custom
ers to gain additional insights into their customers.

System Overview

0089 FIG.3 illustrates a block diagram of an environment
310 wherein an on-demand database service might be used.
The environment 310 may include user systems 312, a net
work 314, a system 316, a processor system 317, an applica
tion platform 318, a network interface 320, a tenant data
storage 322, a system data storage 324, program code 326,
and a process space 328. In other embodiments, the environ
ment 310 may not have all of the components listed and/or
may have other elements instead of, or in addition to, those
listed above.

0090. The environment 310 is an environment in which an
on-demand database service exists. A user system 312 may be
any machine or system that is used by a user to access a
database user system. For example, any of the user systems
312 may be a handheld computing device, a mobile phone, a
laptop computer, a work station, and/or a network of comput
ing devices. As illustrated in FIG.3 (and in more detail in FIG.
4) the user systems 312 might interact via the network 314
with an on-demand database service, which is the system316.
0091 An on-demand database service, such as the system
316, is a database system that is made available to outside
users that do not need to necessarily be concerned with build
ing and/or maintaining the database system, but instead may
be available for their use when the users need the database
system (e.g., on the demand of the users). Some on-demand

database services may store information from one or more
tenants stored into tables of a common database image to
form a multi-tenant database system (MTS). Accordingly, the
“on-demand database service 316' and the “system316' will
be used interchangeably herein. A database image may
include one or more database objects. A relational database
management system (RDMS) or the equivalent may execute
storage and retrieval of information against the database
object(s). The application platform 318 may be a framework
that allows the applications of the system 316 to run, such as
the hardware and/or software, e.g., the operating system. In
an embodiment, the on-demand database service 316 may
include the application platform 318 which enables creation,
managing and executing one or more applications developed
by the provider of the on-demand database service, users
accessing the on-demand database service via user systems
312, or third party application developers accessing the on
demand database service via the user systems 312.
0092. The users of the user systems 312 may differ in their
respective capacities, and the capacity of a particular user
system 312 might be entirely determined by permissions
(permission levels) for the current user. For example, where a
salesperson is using a particular user system 312 to interact
with the system 316, that user system 312 has the capacities
allotted to that salesperson. However, while an administrator
is using that user system 312 to interact with the system 316,
that user system 312 has the capacities allotted to that admin
istrator. In systems with a hierarchical role model, users at one
permission level may have access to applications, data, and
database information accessible by a lower permission level
user, but may not have access to certain applications, database
information, and data accessible by a user at a higher permis
sion level. Thus, different users will have different capabili
ties with regard to accessing and modifying application and
database information, depending on a user's security or per
mission level.

US 2015/003 2729 A1

0093. The network 314 is any network or combination of
networks of devices that communicate with one another. For
example, the network314 may be any one or any combination
of a LAN (local area network), WAN (wide area network),
telephone network, wireless network, point-to-point net
work, star network, token ring network, hub network, or other
appropriate configuration. As the most common type of com
puter network in current use is a TCP/IP (Transfer Control
Protocol and Internet Protocol) network, such as the global
internetwork of networks often referred to as the “Internet'
with a capital “I” that network will be used in many of the
examples herein. However, it should be understood that the
networks that the one or more implementations might use are
not so limited, although TCP/IP is a frequently implemented
protocol.
0094. The user systems 312 might communicate with the
system 316 using TCP/IP and, at a higher network level, use
other common Internet protocols to communicate, such as
HTTP, FTP, AFS, WAP, etc. In an example where HTTP is
used, the user systems 312 might include an HTTP client
commonly referred to as a “browser for sending and receiv
ing HTTP messages to and from an HTTP server at the system
316. Such an HTTP server might be implemented as the sole
network interface between the system 316 and the network
314, but other techniques might be used as well or instead. In
some implementations, the interface between the system 316
and the network314 includes load sharing functionality, Such
as round-robin HTTP request distributors to balance loads
and distribute incoming HTTP requests evenly over a plural
ity of servers. At least as for the users that are accessing that
server, each of the plurality of servers has access to the MTS
data; however, other alternative configurations may be used
instead.

0095. In one embodiment, the system 316, shown in FIG.
3, implements a web-based customer relationship manage
ment (CRM) system. For example, in one embodiment, the
system 316 includes application servers configured to imple
ment and execute CRM software applications as well as pro
vide related data, code, forms, webpages and other informa
tion to and from the user systems 312 and to store to, and
retrieve from, a database system related data, objects, and
Webpage content. With a multi-tenant system, data for mul
tiple tenants may be stored in the same physical database
object, however, tenant data typically is arranged so that data
of one tenant is kept logically separate from that of other
tenants so that one tenant does not have access to another
tenant's data, unless Such data is expressly shared. In certain
embodiments, the system 316 implements applications other
than, or in addition to, a CRM application. For example, the
system 316 may provide tenant access to multiple hosted
(standard and custom) applications, including a CRM appli
cation. User (or third party developer) applications, which
may or may not include CRM, may be supported by the
application platform 318, which manages creation, storage of
the applications into one or more database objects and execut
ing of the applications in a virtual machine in the process
space of the system 316.
0096. One arrangement for elements of the system 316 is
shown in FIG. 3, including the network interface 320, the
application platform 318, the tenant data storage 322 for
tenant data 323, the system data storage 324 for system data
325 accessible to the system 316 and possibly multiple ten
ants, the program code 326 for implementing various func
tions of the system316, and the process space 328 for execut

Jan. 29, 2015

ing MTS system processes and tenant-specific processes,
Such as running applications as part of an application hosting
service. Additional processes that may execute on the system
316 include database indexing processes.
(0097. Several elements in the system shown in FIG. 3
include conventional, well-known elements that are
explained only briefly here. For example, each of the user
systems 312 could include a desktop personal computer,
workstation, laptop, PDA, cellphone, or any wireless access
protocol (WAP) enabled device or any other computing
device capable of interfacing directly or indirectly to the
Internet or other network connection. Each of the user sys
tems 312 typically runs an HTTP client, e.g., a browsing
program, such as Microsoft's Internet Explorer browser,
Netscape's Navigator browser, Opera's browser, or a WAP
enabled browser in the case of a cell phone, PDA or other
wireless device, or the like, allowing a user (e.g., Subscriber of
the multi-tenant database system) of the user systems 312 to
access, process and view information, pages and applications
available to it from the system316 over the network314. Each
of the user systems 312 also typically includes one or more
user interface devices, such as a keyboard, amouse, trackball,
touchpad, touch screen, pen or the like, for interacting with a
graphical user interface (GUI) provided by the browser on a
display (e.g., a monitor Screen, LCD display, etc.) in conjunc
tion with pages, forms, applications and other information
provided by the system 316 or other systems or servers. For
example, the user interface device may be used to access data
and applications hosted by the system 316, and to perform
searches on stored data, and otherwise allow a user to interact
with various GUI pages that may be presented to a user. As
discussed above, embodiments are suitable for use with the
Internet, which refers to a specific global internetwork of
networks. However, it should be understood that other net
works can be used instead of the Internet, Such as an intranet,
an extranet, a virtual private network (VPN), a non-TCP/IP
based network, any LAN or WAN or the like.
0098. According to one embodiment, each of the user
systems 312 and all of its components are operator config
urable using applications, such as a browser, including com
puter code run using a central processing unit Such as an Intel
Pentium(R) processor or the like. Similarly, the system 316
(and additional instances of an MTS, where more than one is
present) and all of their components might be operator con
figurable using application(s) including computer code to run
using a central processing unit such as the processor system
317, which may include an Intel Pentium(R) processor or the
like, and/or multiple processor units. A computer program
product embodiment includes a machine-readable storage
medium (media) having instructions stored thereon/in which
can be used to program a computer to perform any of the
processes of the embodiments described herein. Computer
code for operating and configuring the system 316 to inter
communicate and to process webpages, applications and
other data and media content as described herein are prefer
ably downloaded and stored on a hard disk, but the entire
program code, or portions thereof, may also be stored in any
other volatile or non-volatile memory medium or device as is
well known, such as a ROM or RAM, or provided on any
media capable of storing program code, Such as any type of
rotating media including floppy disks, optical discs, digital
versatile disk (DVD), compact disk (CD), microdrive, and
magneto-optical disks, and magnetic or optical cards, nano
systems (including molecular memory ICs), or any type of

US 2015/003 2729 A1

media or device Suitable for storing instructions and/or data.
Additionally, the entire program code, or portions thereof,
may be transmitted and downloaded from a software source
over a transmission medium, e.g., over the Internet, or from
another server, as is well known, or transmitted over any other
conventional network connection as is well known (e.g.,
extranet, VPN, LAN, etc.) using any communication medium
and protocols (e.g., TCP/IP, HTTP, HTTPS, Ethernet, etc.) as
are well known. It will also be appreciated that computer code
for implementing embodiments can be implemented in any
programming language that can be executed on a client sys
tem and/or server or server system Such as, for example, C.
C++, HTML, any other markup language, JavaTM, JavaScript,
ActiveX, any other Scripting language, such as VBScript, and
many other programming languages as are well known may
be used. (JavaTM is a trademark of Sun Microsystems, Inc.).
0099. According to one embodiment, the system 316 is
configured to provide webpages, forms, applications, data
and media content to the user (client) systems 312 to Support
the access by the user systems 312 as tenants of the system
316. As such, the system 316 provides security mechanisms
to keep each tenants data separate unless the data is shared.
If more than one MTS is used, they may be located in close
proximity to one another (e.g., in a server farm located in a
single building or campus), or they may be distributed at
locations remote from one another (e.g., one or more servers
located in city A and one or more servers located in city B). As
used herein, each MTS could include one or more logically
and/or physically connected servers distributed locally or
across one or more geographic locations. Additionally, the
term 'server” is meant to include a computer system, includ
ing processing hardware and process space(s), and an asso
ciated storage system and database application (e.g.,
OODBMS or RDBMS) as is well known in the art. It should
also be understood that “server system” and “server' are often
used interchangeably herein. Similarly, the database object
described herein can be implemented as single databases, a
distributed database, a collection of distributed databases, a
database with redundant online or offline backups or other
redundancies, etc., and might include a distributed database
or storage network and associated processing intelligence.
0100 FIG. 4 also illustrates the environment 310. How
ever, in FIG. 4 elements of the system 316 and various inter
connections in an embodiment are further illustrated. FIG. 4
shows that the each of the user systems 312 may include a
processor System 312A, a memory system 312B, an input
system 312C, and an output system 312D. FIG. 4 shows the
network 314 and the system 316. FIG. 4 also shows that the
system 316 may include the tenant data storage 322, the
tenant data 323, the system data storage 324, the system data
325, a User Interface (UI) 430, an Application Program Inter
face (API) 432, a PL/SOOL 434, save routines 436, an appli
cation setup mechanism 438, applications servers 400-400
a system process space 402, tenant process spaces 404, a
tenant management process space 410, a tenant storage area
412, a user storage 414, and application metadata 416. In
other embodiments, the environment 310 may not have the
same elements as those listed above and/or may have other
elements instead of, or in addition to, those listed above.
0101 The user systems 312, the network 314, the system
316, the tenant data storage 322, and the system data storage
324 were discussed above in FIG. 3. Regarding the user
systems 312, the processor system 312A may be any combi
nation of one or more processors. The memory system 312B

Jan. 29, 2015

may be any combination of one or more memory devices,
short term, and/or long term memory. The input system 312C
may be any combination of input devices. Such as one or more
keyboards, mice, trackballs, Scanners, cameras, and/or inter
faces to networks. The output system 312D may be any com
bination of output devices, such as one or more monitors,
printers, and/or interfaces to networks. As shown by FIG. 4,
the system 316 may include the network interface 320 (of
FIG. 3) implemented as a set of HTTP application servers
400, the application platform 318, the tenant data storage 322,
and the system data storage 324. Also shown is the system
process space 402, including individual tenant process spaces
404 and the tenant management process space 410. Each
application server 400 may be configured to access tenant
data storage 322 and the tenant data 323 therein, and the
system data storage 324 and the system data 325 therein to
serve requests of the user systems 312. The tenant data 323
might be divided into individual tenant storage areas 412,
which can be either a physical arrangement and/or a logical
arrangement of data. Within each tenant storage area 412, the
user storage 414 and the application metadata 416 might be
similarly allocated for each user. For example, a copy of a
user's most recently used (MRU) items might be stored to the
user storage 414. Similarly, a copy of MRU items for an entire
organization that is a tenant might be stored to the tenant
storage area 412. The UI 430 provides a user interface and the
API 432 provides an application programmer interface to the
system 316 resident processes to users and/or developers at
the user systems 312. The tenant data and the system data may
be stored in various databases, such as one or more OracleTM
databases.

0102 The application platform 318 includes the applica
tion setup mechanism 438 that Supports application develop
ers creation and management of applications, which may be
saved as metadata into the tenant data storage 322 by the save
routines 436 for execution by subscribers as one or more
tenant process spaces 404 managed by the tenant manage
ment process 410 for example. Invocations to such applica
tions may be coded using the PL/SOOL 34 that provides a
programming language style interface extension to the API
432. A detailed description of some PL/SOOL language
embodiments is discussed in commonly owned U.S. Pat. No.
7,730,478 entitled, METHOD AND SYSTEM FOR
ALLOWING ACCESS TO DEVELOPED APPLICATIONS
VIAA MULTI-TENANT ON-DEMAND DATABASE SER
VICE, by Craig Weissman, filed Sep. 21, 2007, which is
incorporated in its entirety herein for all purposes. Invoca
tions to applications may be detected by one or more system
processes, which manages retrieving the application meta
data 416 for the subscriber making the invocation and execut
ing the metadata as an application in a virtual machine.
0103) Each application server 400 may be communicably
coupled to database systems, e.g., having access to the system
data 325 and the tenant data 323, via a different network
connection. For example, one application server 400 might
be coupled via the network 314 (e.g., the Internet), another
application server 400 might be coupled via a direct net
work link, and another application server 400 might be
coupled by yet a different network connection. Transfer Con
trol Protocol and Internet Protocol (TCP/IP) are typical pro
tocols for communicating between application servers 400
and the database system. However, it will be apparent to one

US 2015/003 2729 A1

skilled in the art that other transport protocols may be used to
optimize the system depending on the network interconnect
used.

0104. In certain embodiments, each application server 400
is configured to handle requests for any user associated with
any organization that is a tenant. Because it is desirable to be
able to add and remove application servers from the server
pool at any time for any reason, there is preferably no server
affinity for a user and/or organization to a specific application
server 400. In one embodiment, therefore, an interface system
implementing a load balancing function (e.g., an F5 Big-IP
load balancer) is communicably coupled between the appli
cation servers 400 and the user systems 312 to distribute
requests to the application servers 400. In one embodiment,
the load balancer uses a least connections algorithm to route
user requests to the application servers 400. Other examples
of load balancing algorithms, such as round robin and
observed response time, also can be used. For example, in
certain embodiments, three consecutive requests from the
same user could hit three different application servers 400,
and three requests from different users could hit the same
application server 400. In this manner, the system 316 is
multi-tenant, wherein the system 316 handles storage of, and
access to, different objects, data and applications across dis
parate users and organizations.
0105. As an example of storage, one tenant might be a
company that employs a sales force where each salesperson
uses the system 316 to manage their sales process. Thus, a
user might maintain contact data, leads data, customer fol
low-up data, performance data, goals and progress data, etc.,
all applicable to that user's personal sales process (e.g., in the
tenant data storage 322). In an example of a MTS arrange
ment, since all of the data and the applications to access, view,
modify, report, transmit, calculate, etc., can be maintained
and accessed by a user system having nothing more than
network access, the user can manage his or her sales efforts
and cycles from any of many different user systems. For
example, if a salesperson is visiting a customer and the cus
tomer has Internet access in their lobby, the salesperson can
obtain critical updates as to that customer while waiting for
the customer to arrive in the lobby.
0106 While each user's data might be separate from other
users’ data regardless of the employers of each user, some
data might be organization-wide data shared or accessible by
a plurality of users or all of the users for a given organization
that is a tenant. Thus, there might be some data structures
managed by the system 316 that are allocated at the tenant
level while other data structures might be managed at the user
level. Because an MTS might support multiple tenants
including possible competitors, the MTS should have secu
rity protocols that keep data, applications, and application use
separate. Also, because many tenants may opt for access to an
MTS rather than maintain their own system, redundancy,
up-time, and backup are additional functions that may be
implemented in the MTS. In addition to user-specific data and
tenant specific data, the system 316 might also maintain sys
tem level data usable by multiple tenants or other data. Such
system level data might include industry reports, news, post
ings, and the like that are sharable among tenants.
0107. In certain embodiments, the user systems 312
(which may be client systems) communicate with the appli
cation servers 400 to request and update system-level and
tenant-level data from the system 316 that may require send
ing one or more queries to the tenant data storage 322 and/or

Jan. 29, 2015

the system data storage 324. The system 316 (e.g., an appli
cation server 400 in the system 316) automatically generates
one or more SQL statements (e.g., one or more SQL queries)
that are designed to access the desired information. The sys
tem data storage 324 may generate query plans to access the
requested data from the database.
0108. Each database can generally be viewed as a collec
tion of objects, such as a set of logical tables, containing data
fitted into predefined categories. A “table' is one representa
tion of a data object, and may be used herein to simplify the
conceptual description of objects and custom objects. It
should be understood that “table' and “object may be used
interchangeably herein. Each table generally contains one or
more data categories logically arranged as columns or fields
in a viewable schema. Each row or record of a table contains
an instance of data for each category defined by the fields. For
example, a CRM database may include a table that describes
a customer with fields for basic contact information Such as
name, address, phone number, fax number, etc. Another table
might describe a purchase order, including fields for informa
tion Such as customer, product, sale price, date, etc. In some
multi-tenant database systems, standard entity tables might
be provided for use by all tenants. For CRM database appli
cations. Such standard entities might include tables for
Account, Contact, Lead, and Opportunity data, each contain
ing pre-defined fields. It should be understood that the word
“entity” may also be used interchangeably herein with
“object” and “table'.
0109. In some multi-tenant database systems, tenants may
be allowed to create and store custom objects, or they may be
allowed to customize standard entities or objects, for example
by creating custom fields for standard objects, including cus
tom index fields. U.S. Pat. No. 7,779,039, filed Apr. 2, 2004,
entitled “Custom Entities and Fields in a Multi-Tenant Data
base System', which is hereby incorporated herein by refer
ence, teaches systems and methods for creating custom
objects as well as customizing standard objects in a multi
tenant database system. In certain embodiments, for example,
all custom entity data rows are stored in a single multi-tenant
physical table, which may contain multiple logical tables per
organization. It is transparent to customers that their multiple
“tables' are in fact stored in one large table or that their data
may be stored in the same table as the data of other customers.
0110. While one or more implementations have been
described by way of example and in terms of the specific
embodiments, it is to be understood that one or more imple
mentations are not limited to the disclosed embodiments. To
the contrary, it is intended to cover various modifications and
similar arrangements as would be apparent to those skilled in
the art. Therefore, the scope of the appended claims should be
accorded the broadest interpretation so as to encompass all
Such modifications and similar arrangements.

1. A system for matching Snippets of search results to
clusters of objects, the system comprising:

one or more processors; and
a non-transitory computer readable medium storing a plu

rality of instructions, which when executed, cause the
one or more processors to:
search for information based on objects in a cluster of

objects;
extract a data Snippet from the search results;
determine whether the data snippet includes data that

matches at least one of the objects in the cluster of
objects; and

US 2015/003 2729 A1

add the data Snippet to the cluster of objects in response
to a determination that the data Snippet includes data
that matches at least one of the objects in the cluster of
objects.

2. The system of claim 1, further comprising the step of
storing the data Snippet for matching with Subsequent clusters
of objects in response to a determination that the data Snippet
does not include data that matches at least one of the objects
in the cluster of objects.

3. The system of claim 1, wherein the objects comprise at
least one of a personal name, a company name, a geolocation,
a job title, and contact information.

4. The system of claim 1, wherein determining whether the
data Snippet includes data that matches at least one of the
objects in the cluster of objects comprises matching based on
at least one of a first name alias and acronym expansion.

5. The system of claim 1, further comprising the steps of:
determining whether the data Snippet includes data that

matches at least one object in a second cluster of objects;
and

combining the cluster of objects with the second cluster of
objects in response to a determination that the data Snip
pet includes data that matches at least one object in the
second cluster of objects.

6. A computer program product comprising computer
readable program code to be executed by one or more pro
cessors when retrieved from a non-transitory computer-read
able medium, the program code including instructions to:

search for information based on objects in a cluster of
objects;

extract a data Snippet from the search results;
determine whether the data snippet includes data that

matches at least one of the objects in the cluster of
objects; and

add the data Snippet to the cluster of objects in response to
a determination that the data Snippet includes data that
matches at least one of the objects in the cluster of
objects.

7. The computer program product of claim 6, the program
code further including instructions to store the data Snippet
for matching with Subsequent clusters of objects in response
to a determination that the data Snippet does not include data
that matches at least one of the objects in the cluster of
objects.

8. The computer program product of claim 6, wherein the
objects comprise at least one of a personal name, a company
name, a geolocation, a job title, and contact information.

9. The computer program product of claim 6, wherein
determining whether the data Snippet includes data that
matches at least one of the objects in the cluster of objects
comprises matching based on at least one of a first name alias
and acronym expansion.

10. The computer program product of claim 6, the program
code further including instructions to:

determine whether the data snippet includes data that
matches at least one object in a second cluster of objects;
and

combine the cluster of objects with the second cluster of
objects in response to a determination that the data Snip
pet includes data that matches at least one object in the
second cluster of objects.

11. A method for matching Snippets of search results to
clusters of objects, the method comprising:

Jan. 29, 2015

searching for information based on objects in a cluster of
objects;

extracting a data Snippet from the search results;
determining whether the data Snippet includes data that
matches at least one of the objects in the cluster of objects:
and

adding the data Snippet to the cluster of objects in response
to a determination that the data Snippet includes data that
matches at least one of the objects in the cluster of
objects.

12. The method of claim 11, the method further comprising
storing the data Snippet for matching with Subsequent clusters
of objects in response to a determination that the data Snippet
does not include data that matches at least one of the objects
in the cluster of objects.

13. The method of claim 11, wherein the objects comprise
at least one of a personal name, a company name, a geoloca
tion, a job title, and contact information.

14. The method of claim 11, wherein determining whether
the data Snippet includes data that matches at least one of the
objects in the cluster of objects comprises matching based on
at least one of a first name alias and acronym expansion.

15. The method of claim 11, the method further compris
ing:

determining whether the data Snippet includes data that
matches at least one object in a second cluster of objects;
and

combining the cluster of objects with the second cluster of
objects in response to a determination that the data snip
pet includes data that matches at least one object in the
second cluster of objects.

16. A method for transmitting code for matching Snippets
of search results to clusters of objects, the method compris
ing:

transmitting code to search for information based on
objects in a cluster of objects;

transmitting code to extract a data Snippet from the search
results;

transmitting code to determine whether the data Snippet
includes data that matches at least one of the objects in
the cluster of objects; and

transmitting code to add the data Snippet to the cluster of
objects in response to a determination that the data Snip
pet includes data that matches at least one of the objects
in the cluster of objects.

17. The method for transmitting code of claim 16, the
method further comprising storing the data Snippet for match
ing with Subsequent clusters of objects in response to a deter
mination that the data Snippet does not include data that
matches at least one of the objects in the cluster of objects.

18. The method for transmitting code of claim 16, wherein
the objects comprise at least one of a personal name, a com
pany name, a geolocation, a job title, and contact information.

19. The method for transmitting code of claim 16, wherein
determining whether the data Snippet includes data that
matches at least one of the objects in the cluster of objects
comprises matching based on at least one of a first name alias
and acronym expansion.

20. The method for transmitting code of claim 16, the
method further comprising:

determining whether the data Snippet includes data that
matches at least one object in a second cluster of objects;
and

US 2015/003 2729 A1 Jan. 29, 2015
15

combining the cluster of objects with the second cluster of
objects in response to a determination that the data Snip
pet includes data that matches at least one object in the
second cluster of objects.

k k k k k

