

(19) DANMARK

(10) DK/EP 2416044 T3

(12)

Oversættelse af
europæisk patentskrift

Patent- og
Varemærkestyrelsen

(51) Int.Cl.: **F 16 L 9/17 (2006.01)** **B 32 B 3/30 (2006.01)** **F 16 L 59/02 (2006.01)**
F 16 L 59/14 (2006.01)

(45) Oversættelsen bekendtgjort den: **2018-10-29**

(80) Dato for Den Europæiske Patentmyndigheds
bekendtgørelse om meddelelse af patentet: **2018-07-18**

(86) Europæisk ansøgning nr.: **11187763.5**

(86) Europæisk indleveringsdag: **2007-09-28**

(87) Den europæiske ansøgnings publiceringsdag: **2012-02-08**

(30) Prioritet: **2006-09-29 GB 0619178** **2007-06-11 GB 0711224**

(62) Stamansøgningsnr: **07823953.0**

(84) Designerede stater: **AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR**

(73) Patenthaver: **Khansaheb Industries Owned By Khansaheb Investment One Person CO L.L.C., Plot No. TP070609**, **National Industries Park, Dubai, Forenede Arabiske Emirater**

(72) Opfinder: **Dudley, Peter, 42 Hackamore, Thundersley, Essex SS7 3DU, Storbritannien**
Merrien, Peter, Unit 3, The Capstan Centre, Thurrock Park Way, Tilbury, Essex RM18 7HH, Storbritannien
Sewell, Kevin, 50 Stanley Road, Peacehaven, East Sussex BN10 7SP, Storbritannien

(74) Fuldmægtig i Danmark: **Budde Schou A/S, Hausergade 3, 1128 København K, Danmark**

(54) Benævnelse: **Isolerede kanalsystemprodukter**

(56) Fremdragne publikationer:
GB-A- 1 137 121
US-A- 5 421 938
US-A- 6 000 437
US-A- 6 110 310
US-A1- 2003 098 586
US-B1- 6 322 111

DK/EP 2416044 T3

DESCRIPTION

Field of the Invention

[0001] This invention relates to insulated ductwork products and, in particular, to an intermediate insulating product from which can be formed a derivative insulated ductwork product.

Background of the invention

[0002] Pre-formed insulated ductwork products for carrying gasses in, for example, air conditioning systems and are used throughout the building and construction industry particularly due to their relatively fast speed of erection and relatively low cost compared to metal or plastic pipe work that must be subsequently lagged. An example of such pre-formed insulated ductwork is shown in UK Patent Publication number GB1,137,121 to Lo-Dense Fixings (Rugby) Limited which discloses providing longitudinal channels in a plastics foam material with a backing material which can be folded into a square or a circular cross sectioned insulated ducting. Other examples are shown in US Patent Number 6,148,867 which also discloses providing longitudinal channels in a fibrous and/or cellular foam insulation material with a moisture facing outer material which can be folded into a circular cross sectioned insulated ducting. Other broadly similar systems are disclosed in International Patent Publication number WO8504922 and Dutch Patent Publication number NL7502320.

[0003] However, such conventional systems suffer from the disadvantage that they cannot be used for ducting liquid as the liquid can ruin the insulating material. Furthermore, the open nature of the insulation material to the airflow passing through the ducting can mean that bugs/diseases etc. are more likely to be able to survive and colonise in the shelter of the insulation joints, thus causing an increased health risk. Moreover, the open nature of the insulation material can also mean that dust from the insulation material could become airborne into the air passing along the throughbore, again causing an increased health risk.

Brief summary of the invention

[0004] In accordance with a first aspect of the present invention, there is provided an intermediate insulating product according to claim 1. The present invention provides a planar intermediate insulating product which can be formed into a non-planar, derivative insulated ductwork product. The derivative insulated ductwork product is typically of sufficient strength such that it can be installed to provide a fluid conduit such as an air conditioning conduit of itself and thereby obviates the time consuming and expensive conventional requirement for metal ductwork to be applied with insulation such as that shown in US Patent Number

6,000,437.

[0005] Importantly, the taper enables up to the substantial entirety of the sides of the channels (as existing in the intermediate insulating product) to contact each other when formed into the derivative insulated product, thereby ensuring integrity of the insulation in the derivative insulation product.

[0006] Typically, a continuous protective layer is provided on the bottom side of the insulating layer.

[0007] Typically, a protective layer is provided on the top side of the planar insulating layer prior to forming the channels, said protective layer adapted to reduce flaking or chipping of the planar insulating layer.

[0008] The channels are preferably formed by routing and optionally, the channels may be at least partially filled with a sealant and/or an adhesive.

[0009] The cumulative internal angles of the channels are typically arranged such that it is possible to bend the intermediate insulating product so as to form the derivative insulated ductwork product with a complete polygon cross-section. According to the invention, the sealing means comprises a flap member provided at one end of the vapour proof layer and which is arranged to overlap the other end of the vapour proof layer when the intermediate insulating product has been bent to form the non-planar, derivative insulated product such that the vapour proof layer extends greater than 360 degrees around the inner throughbore. Moreover, the vapour proof layer is preferably substantially the same width as the resulting innermost surface of the planar insulating layer to which it is applied, and has a longer length than the resulting innermost surface of the planar insulating layer such that the flap member projects past one end of the planar insulating layer. Typically, the flap member is integral with and forms an extension of the rest of the vapour proof layer.

[0010] The vapour proof layer preferably comprises a laminated vapour proof barrier and more preferably comprises a laminated foil vapour proof barrier formed from a number of layered sheets.

[0011] Typically, the vapour proof layer comprises a securing means formed on its resulting outermost surface and which is adapted to secure the vapour proof layer to the said resulting innermost surface of the planar insulating layer. Preferably, the securing means comprises a self adhesive formed on the resulting innermost surface of the vapour proof layer and more preferably the self adhesive comprises a pressure sensitive adhesive pre-applied to the resulting outermost surface of the vapour proof layer.

[0012] Preferably, a further vapour proof layer is applied to the bottom surface of the planar insulating layer such that the said further vapour proof layer forms an outer vapour proof protective barrier to the derivative insulated product. Preferably, a further securing means is

provided between the further vapour proof layer and the said bottom surface, and the said further securing means preferably comprises an adhesive means initially provided on the inner most surface of the further vapour proof layer.

[0013] The planar insulating layer comprises a substantially rigid material, and more preferably comprises a rigid phenolic foam.

[0014] According to a second aspect of the present invention there is also provided a derivative insulated ductwork product formed from an intermediate insulating product according to the first aspect of the present invention by mechanical manipulation of the intermediate insulating product thereof to bend it in regions adjacent the bottom of the channels, thereby causing the channels to close to form the non-planar, derivative insulated ductwork product.

[0015] Typically, a complete polygon cross-section is formed from an intermediate insulating product with cumulative internal angles of the channels such that it was possible to bend the intermediate insulating product so as to form a complete polygonal cross-section.

[0016] Preferably, the derivative insulated ductwork product is secured along a joining edge by a strip of adhesive tape applied along the joining edges of what was the intermediate insulation product.

[0017] According to a third aspect of the present invention there is also provided a section of ductwork product formed from an intermediate insulating product according to the first aspect of the present invention by mechanical manipulation of the intermediate insulating product thereof to bend it in regions adjacent the bottom of the channels, thereby causing the channels to close to form the non-planar, derivative insulated ductwork product.

[0018] According to a fourth aspect of the present invention there is also provided a connecting means for connecting a first section of ductwork in accordance with the third aspect of the present invention to a second section of ductwork in accordance with the third aspect of the present invention, the connecting means comprising:-

a first fitting member having an open end for accepting an end of the first section of ductwork;

wherein the other end of the first fitting member is connected to a side of a flange member which projects outwardly from the first fitting member; and

a second fitting member having an open end for accepting an end of the second section of ductwork; wherein

the other end of the second fitting member is connected to a side of a flange member which projects outwardly from the second fitting member;

and an internal throughbore which provides a sealed passageway for fluid to travel from a throughbore of the first ductwork, through said internal throughbore and into a throughbore of

the second ductwork.

[0019] According to a fifth aspect of the present invention there is also provided a ductwork system comprising two or more sections of ductwork in accordance with the third aspect of the present invention and one or more connecting devices, the connecting devices comprising:-

a first fitting member having an open end for accepting an end of the first section of ductwork; wherein the other end of the first fitting member is connected to a side of a first flange member which projects outwardly from the first fitting member; and

a second fitting member having an open end for accepting an end of the second section of ductwork; wherein

the other end of the second fitting member is connected to a side of a second flange member which projects outwardly from the second fitting member;

and an internal throughbore which provides a sealed passageway for fluid to travel from a throughbore of the first ductwork, through said internal throughbore and into a throughbore of the second ductwork.

[0020] Preferably, the first and second fitting members comprise respective first and second annular rings.

[0021] Typically, the first and second annular rings each comprise a substantially constant inner diameter and a substantially constant outer diameter.

[0022] Preferably, the said flange member(s) project radially outwardly from the respective first and second fitting members.

[0023] The outer diameter of the respective first and second fitting member preferably contacts the inner diameter of the respective ductwork and the said one face of the flange member is arranged into butting contact with the end of the respective ductwork.

[0024] The first and second fitting members preferably further comprise a securing means which acts between the fitting members and the respective ductwork to prevent separation of the ductwork from the fitting member in a direction away from the flange member.

[0025] The securing means preferably comprise one or more barb member(s) which point in a direction toward the respective flange member.

[0026] The first and second fitting members may each comprise the same outer diameter.

Alternatively, the first and second fitting members may each comprise different outer diameters.

[0027] Preferably, the flange member projects outwardly from the first and second fitting member by a distance substantially equal to the sidewall thickness of the ducting.

Brief description of the drawings

[0028]

Figs. 1A to 1F are sections illustrating the formation of a derivative insulated product from an intermediate insulation product, in accordance with the first, second and third aspects of the present invention;

Figs. 2A and 2B are sections illustrating alternative channel cross-sections of an intermediate insulation product in accordance with the first, second and third aspects of the present invention; and

Fig. 3A is a side view of a connector in accordance with a fourth aspect of the present invention for connecting two derivative insulated ductwork products in accordance with the first, second and third aspects of the present invention where both ductworks have the same internal diameter;

Fig. 3B is a cross sectional side view through one half of the connector of Fig. 3A;

Fig. 3C is a perspective view of the connector at Fig. 3A;

Fig. 4A is a side view of another embodiment of a connector in accordance with the fourth aspect of the present invention for connecting two ductworks having the same internal diameter together but at a 45° angle to one another in order to create a 45° bend;

Fig. 4B is a perspective view of the connector at Fig. 4A;

Fig. 5A is a side view of another embodiment of a connector in accordance with the fourth aspect of the present invention for connecting two ductworks having the same internal diameter together but at a 30° angle to one another in order to create a 30° bend;

Fig. 5B is a perspective view of the connector at Fig. 5A;

Fig. 6A is a side view of a connector in accordance with the fourth aspect of the present invention for connecting one ductwork having a larger internal diameter to another ductwork having a smaller internal diameter;

Fig. 6B is a cross sectional view through the lower half of the connector at Fig. 6A;

Fig. 6C is a side view of a slightly different embodiment of the connector shown in Fig. 6A;

Fig. 6D is a first perspective side view of the connector shown in Fig. 6C;

Fig. 6E is another perspective side view of the connector shown in Fig. 6C;

Fig. 7A is a side view of a connector in accordance with the fourth aspect of the present invention to break into a square section of ductwork to provide a branch of another section of ductwork;

Fig. 7B is an end view of the connector shown in Fig. 7A;

Fig. 8A is another embodiment of a connector in accordance with a fourth aspect of the present invention for connecting a relatively large circular ductwork to a relatively small diameter circular ductwork;

Fig. 8B is a perspective view of the connector shown in Fig. 8A; and

Fig. 9 is a side view of a connector in accordance with the fourth aspect of the present invention to break into a circular section of ductwork to provide a branch of another section of ductwork.

Detailed description of the invention

[0029] Fig. 1A is a section through a planar slab of insulating product 10. The product 10 has a "sandwich" construction with a core 11 of rigid phenolic insulating foam having a topside protective layer 12 and a bottomside protective layer 13, both layers 12 and 13 being in the form of an aluminium foil or fibre glass scrim layer 12, 13. Such a product 10 may be commercially sourced, for example, such foam slabs are, at the time of writing, available from Kingspan Insulation Limited of Herefordshire in the UK in standard sizes of 1200 mm x 2950 mm and 1000 mm x 2950 mm and are typically either 22mm or 33mm thick. Alternative core insulating material 11 could also be used such as a polyisocyanurate or a polyurethane.

[0030] Referring to Fig. 1B, the planer slab 10 is formed into an intermediate insulation product 20 according to the first aspect of the present invention by firstly providing the slab 10 with a series of parallel, "V" shaped channels 14 formed therein and with the edges of slab chamfered 15, 15' at the same angle as the sides of the channels 14.

[0031] Such channels 14 and chamfers 15, 15' may be formed in the slab 10 by a CNC router with a V shaped router bit. Where this is the case, the protective layer of material 12 may offer some protection to the core 11 against chipping or flaking during the routing, especially where the core 11 is made of a brittle insulator.

[0032] The cumulative sums of the internal angles of the all channels and the angle subtended between both chamfers 15, 15', is approximately 360°. Fig. 1B shows the

intermediate insulation product 20 with optional adhesive sealant 16 deposited in the bases of the channels 14.

[0033] The next step in forming an intermediate insulating product in accordance with the first aspect of the present invention is to apply a vapour barrier 18, having a securing means in the form of self adhesive 18A provided on its underside, to the upper and interrupted surface of the product 10 such that the adhesive 18A secures the vapour barrier 18 to the upper surface 12 of the core 11 such that the vapour barrier 18 spans across all of the channels 14. The vapour barrier 18 is preferably a laminated foil vapour barrier 18 and the adhesive 18A is preferably a pressure sensitive adhesive, which is pre-applied to the underside of the laminated foil barrier 18. Such a self-adhesive vapour barrier 18 can be commercially sourced. For example, the preferred vapour barrier 18 is a five ply laminated aluminium foil vapour barrier available from Venture Tape (®) of Northants, UK sold under the trade name VentureClad 1577CW ®. Alternative vapour barriers could also be used such as polythene and a suitable example of such a polythene is Duponts' chlorosulfonated polyethylene products marketed as Hypalon®.

[0034] Optionally, where the ductwork 30 is to be used in external applications (e.g. on the outside of buildings, factories, oil rigs etc.), a further outer layer (not shown) is preferably attached to the bottomside on the outer surface of the aluminium foil surface 13. Preferably, such a further outer layer is also vapour proof to enable the ductwork 30 to be weather proof. The vapour outer layer is preferably again a laminated foil vapour barrier provided with a pre-applied pressure sensitive adhesive and such a self-adhesive vapour barrier can be commercially sourced and is more preferably a five ply laminated aluminium foil vapour barrier available from Venture Tape (®) of Northants, UK sold under the trade name VentureClad 1577CW ®.

[0035] This results in the formation of the intermediate insulating product 20.

[0036] Thereafter and as illustrated in Figs. 1D, 1E and 1F, the intermediate insulation product 20 (with optional adhesive sealant 16) may be rolled up with appropriate mechanical manipulation or by hand whereupon the continuous areas 17 of core 11 deform, enabling the channels 14 to close and a polygonal shaped insulated product 30 to be formed as shown in Fig. 1E. Thus, a derivative insulated product 30 is then formed which can be used as a ductwork 30 to carry fluid such as air in for example an air conditioning system for a building.

[0037] The adhesive sealant 16 if present ensures a tight and permanent seal between the edges of the channels 14. Surplus adhesive sealant if present, egresses from the closed channels 14 and solidifies at the internal edge of the join between the channels 14.

[0038] Moreover, and as can be best seen in Fig. 1F, when the intermediate insulating product 20 with vapour barrier 18 attached is rolled up, the section of the inner lining 18C which bridges the channels 14 will naturally be moved into the channels 14 and thereby form a seal over the channels 14. The width of the vapour barrier 18 typically equals the width of the

intermediate insulating product 20 although as can be seen in Fig. 1C the length of the vapour barrier 18 is greater than the length of the intermediate insulating product 20 such that a flap member 18' is provided at one end of the intermediate insulating product 20. Furthermore, when the intermediate insulating product 20 has been fully rolled up to form the ductwork 30, the entire inner throughbore 40 of the ductwork 30 can be sealed with respect to the outside of the ductwork 30 by pressing the inner lining flap 18' (as seen in Fig. 1C as being provided at one end of the vapour barrier 18) with a suitable smooth edged hand tool or machine tool to seal the flap 18' against the other end of the vapour barrier 18. Accordingly, the flap 18' (which is integral with the rest of the vapour barrier 18) provides an overlap with the other end of the vapour barrier 18 when the intermediate insulating product has been bent to form the ductwork 30 such that the vapour barrier 18 extends greater than 360 degrees around the inner throughbore.

[0039] Consequently, the ductwork 30 can be used to carry liquids and/or provides a sealed throughbore 40 such that the risk of any air born bugs/diseases finding shelter to grow is substantially reduced.

[0040] Alternatively, and/or additionally, the vapour barrier 18 can be provided with a self cleaning and/or anti-bacterial surface coating and such a surface coating is commercially available from Cytack UK Limited and/or the vapour barrier 18 can be formed of a vinyl base with such an anti-bacterial and/or self cleaning layer applied.

[0041] Alternatively and preferably, the vapour barrier 18 may be pressed into the channels 14 (when it is applied to the upper surface of the planer product 10 to form the intermediate product 20) by a suitable tool such as a "V" shaped smooth edged hand tool (not shown) such that in the region of 5mm of vapour barrier 18 is stuck to each channel 14.

[0042] The longitudinal edges of the intermediate insulation product 20 which have been pushed together are held in place by an adhesive strip 19 of laminated foil vapour barrier. Ideally, this strip 19 is the same material as the laminated foil vapour barrier 13 already applied to the underside of the core slab 10 as illustrated in figure 1A and now on the periphery of the formed polygon shaped derivative insulated product or ductwork 30 as illustrated in figure 1E.

[0043] Optionally and additionally bands such as bands of tape or aluminium or plastic bands could be provided around the outer circumference of the derivative insulating product/ductwork 30 to provide additional strength in order to keep the edges (of the intermediate insulation product 20) together and thereby the polygon shape of the ductwork 30..

[0044] The channels are shown in figures 1A to 1C as perfect V shaped channels. However, embodiments of the present invention are much more preferably provided with the alternative channel cross-sections illustrated in figures 2A and 2B. In Fig. 2A, the base of a channel 14 is shown with a small, flat section 120 and in Fig. 2B, it is curved 121. Also, the depth of the channels 14 could be varied depending on the strength of the insulating product core 11 and/or the thickness of the material and/or the elasticity of the bottomside protective layer 13 should it

need to expand to accommodate deformation for the insulating product core 11. Conceivably, the base of the channel 14 could extend to the bottomside protective layer 13 where there would then be no deformation of the insulating core 11 as such, just flexing of the supporting bottomside protective layer 13.

[0045] In the above example, it is stated that the cumulative sums of the internal angles of the channels 14 and the angle subtended between both chamfers 15, 15' is approximately 360°. However, because the adhesive sealant 18 may partially fill the channel 14 such that the edges of the channel do not fully meet, a complete and structurally sound polygon 30 can be created when the cumulative sum of angles of the channels 14 and the angle subtended between both chamfers 15, 15' exceeds 360°. Conversely, the edges of the channels 14, may deform when pushed together, enabling a complete polygon 30 to be created when the cumulative sum of angles of the channels 14 and the angle subtended between both chamfers 15, 15' is less than 360°.

[0046] In the above example, the taper of the channels 14 is uniform. This need not be the case and indeed appropriate selection of tapers could be used, for example, to provide a polygon shaped derivative insulated ducting product 30 with a degree of eccentricity (e.g. approximating an ellipse). For example, the resulting insulating product/ductwork 30 need not be circular but could be, for example, an oval shape having flattened sides to provide a flat oval ductwork (not shown) by leaving the upper and lower flat sections of the ductwork 30 without channels 14.

[0047] Also in the above example, the insulating core 11 is shown with two initial protective layers 12, 13. However, the principle of the present invention applies equally to insulator cores 11 with a single protective layer 13 or indeed no protective layer.

[0048] Furthermore, whilst the shape of the derivative insulated product 30 described is polygonal, the more channels 14 used to form a polygon, the more it will approximate a circle, especially if the deformation of the core 11 at the base 17 of the channel 14 smoothes the periphery of the polygon.

[0049] Typically, the ductwork 30 would be supplied to its site of installation (e.g. a building site) from a factory pre-rolled and as shown in Fig. 1E such that it is ready to be installed on site. In order to aid installation on site and also to ensure that individual ductwork 30 sections can be joined together in a sealed manner, a number of connectors in accordance with the fourth aspect of the present invention are also provided and are shown in Figs. 3 -8.

[0050] The first embodiment of a connector 200 is shown in Fig. 3A, 3B and 3C. The connector 200 comprises an annular ring 210 having a constant inner diameter and being provided with an outwardly extending flange shoulder 220 which projects radially outwardly from the mid point of the annular ring 210. An outwardly and rearwardly projecting gripping means in the form of a pointed rib or barb 230L, 230R is also provided on each side of the flange ring 220 where the barb 230L, 230R has a sharpened outer point which is pointed in the

direction of the flange ring 220. The connector 200 is preferably formed of a rigid plastic material such as a Class O (fire resistant) plastic material but it could be formed from other suitable materials and this could be a metal such as galvanised sheet, aluminium sheet, stainless steel, aluminised steel etc., depending upon the end use of the ductwork 30.

[0051] In use, a left hand section of ductwork 30 is pushed on to the left hand part 210L of the annular ring 210 where the outer diameter of the annular ring 210 is chosen such that it is a close fit with the inner diameter of the ductwork 30. The ductwork 30 is pushed on to the connector 200 until the end of the ductwork 30 butts against the left hand face of the flange should 220 and the barb 230L projects into and thereby grips the inner diameter of the ductwork 30. The angle of the barb 230L is such that it prevents the ductwork 30 from backing off the connector 200. An end of an other ductwork 30 is pushed on to the other end 210R of the connector 200 and the radius of the flange 220 is chosen such that it has the same diameter as the outer surface of both sections of ductwork 30 such that a flushed outer joint is provided between the two ends of the ductworks 30 and the flange 220. A suitable adhesive, such as a mastic, can be applied between the connector 200 and the inner circumference of the ductwork 30 if desired, in order to increase the connection between the two. The two ductworks 30 can then be sealed together by applying tape around the outer circumference of the joint such that the tape seals over the joint created between the flange 220 and the two ends of the ductwork 30.

[0052] The ductwork 30 can be cut on site to suit the length required.

[0053] Various other connectors are shown in the drawings. Fig. 4A shows a connector broadly similar to the connector 200 but formed with a 45° bend between the left hand 310L and right hand 310R sides of the annular ring 310. Bards 330L and 330R are also provided and point towards the flange ring 320 and serve the same purpose as the barbs 230L, 230R and flange ring 220 as described for the connector 200. Moreover, two connectors 300 can be used with a short length of ducting 30 there between to form a 90° bend in a long length of duct tape 30.

[0054] Fig. 5A shows another embodiment of connector which is broadly similar to the connector 300 of Fig. 4A and B where like components in the connector 500 have been indicated with a numeral prefix 5 instead of numeral pre-fix 3. The main difference between the connector 300 and 500 is that the connector 500 has a 30° angle between the two sides 510L and 510R and thus three connectors 500 could be used together with short lengths of ductwork 30 between them in order to make a 90° bend in a long length of a plurality of ductwork sections 30 connected in series.

[0055] Figs. 6A and 6B show a broadly similar connector 600 to the connector 200 of Fig. 3A to 3C where like components have been marked with the reference numeral prefix 6 instead of the reference numeral prefix 2.

[0056] However, there is a difference in the connector 600 in that the right hand side annual

ring 610 R is smaller in diameter than the left hand side annular 610R in order that the connector 600 can be used to connect two ductworks 30 having different diameters together.

[0057] Figs. 6C, 6D and 6E show a very similar connector 600 to that of Figs. 6A and 6B where the only difference between them is that the connector 600 in Figs. 6C and 6E has two barbs 630L and 630L' on the left hand annular ring 610L and also has two barbs 630R, 630R' on the right hand annular ring 610R in order to increase the gripping force between the connector 600 and the ductworks 30.

[0058] The connector 800 shown in Fig. 8A is broadly similar to the connector 700 and like components have the prefix 8 instead of the prefix 7. However, the connector 800 has a circular cross section at each end 810L and 810R but which are again separated by a tapered transitional diameter section 810M.

[0059] The connector 900 in Fig. 9 is somewhat different from the other connectors in that the left hand side 910L comprises a concave end face and is intended to be inserted into an aperture cut into the side wall of a length of circular ductwork 30 such that the end 910L provides the ability to cut into longitudinal lengths of circular ductwork 30. Figs. 7A and 7B show another form of connector 700 which is broadly similar to the connector 900 shown in Fig. 9 where like components have the prefix 7 instead of the prefix 9. However, the connector 700 has a left hand annular ring 710L which has a flat end face and is oval in cross section, and the right hand side of the flange ring 720L is connected to a tapered transitional diameter section 710M which reduces in diameter from the left hand to the right hand side until it joins the left hand side of the flange ring 720R. The flat end face of the left hand annular ring 710L is arranged to be inserted into a like-shaped aperture cut into the planar sidewall of a rectangular section of ductwork 30.

[0060] In all cases, tape is wound around the joints created by the connectors such that the connectors are sealed with respect to the ductwork lengths 30, and a preferred tape will match the external coating of the ductwork 30. For example, if the ductwork 30 is supplied with the additional vapour proof outer layer, the tape 18 can comprise the same material as the additional layer (since it is preferably self adhesive). However, if the ductwork 30 is supplied without the additional vapour proof outer layer, the tape 18 can comprise any other suitable tape such as reinforced Aluminium foil tape available from Kingspan Insulation Limited of Herefordshire in the UK under product number 1524.

[0061] Modifications and improvements to the embodiments of the present inventions described herein may be made by those persons skilled in the relevant art without departing from the scope of the invention.

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- GB1137121A [0002]
- US6148867A [0002]
- WO8504922A [0002]
- NL7502320 [0002]
- US6000437A [0004]

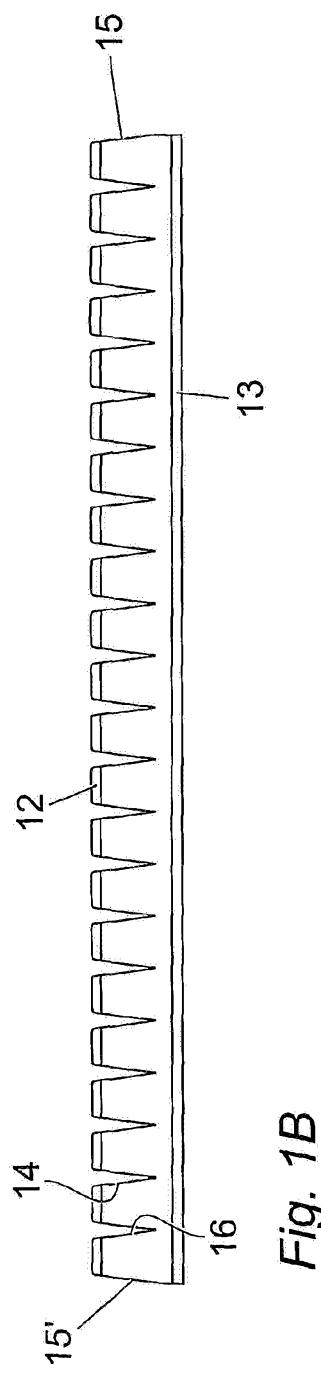
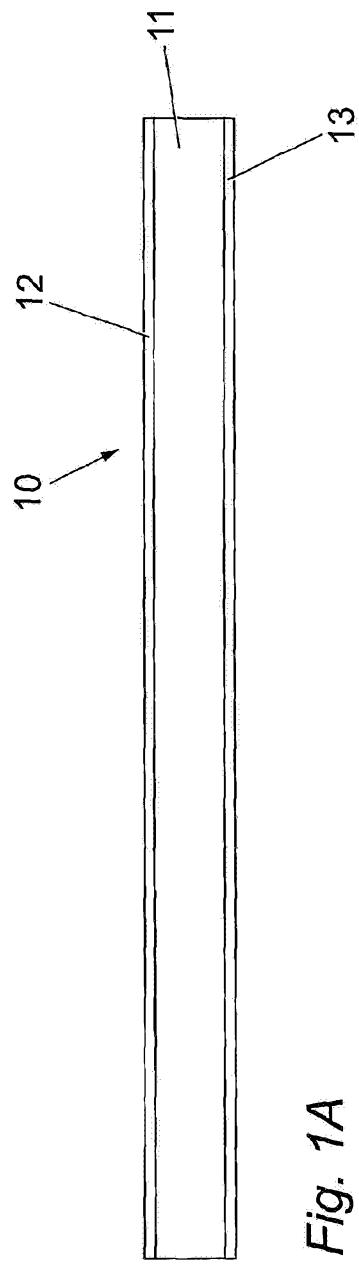
PATENTKRAV

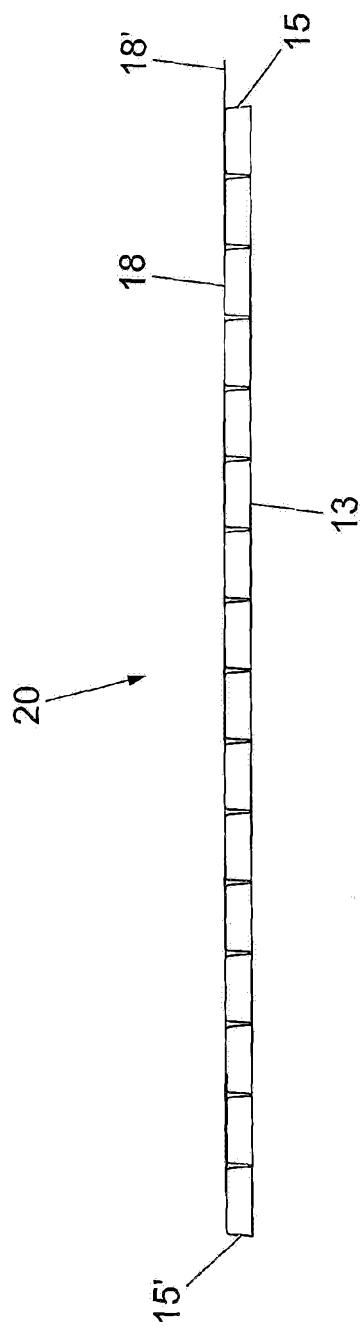
1. Isolerende mellemprodukt (20) indrettet til at danne ikke-plane, afledte isolerede kanalsystemer (30), hvor det isolerende mellemprodukt (20) omfatter et plant isolerende lag (11) med en resulterende inderste overflade, i hvilken der er dannet adskillige parallelle kanaler (14);
 5 hvor kanalerne (14) har tværsnit med tilspidsede sider;
 yderligere omfattende et damptæt lag (18) påført den resulterende inderste overflade således, at det damptætte lag (18) danner bro over de adskillige parallelle kanaler (14);
 10 hvor, med efterfølgende mekanisk manipulation, det isolerende mellemprodukt (20) kan bukkes i områder i tilstødning til bunden af kanalerne (14), hvorved det forårsages at kanalerne (14) i det væsentlige lukker for dannelsen af ikke-plane, afledte isolerede kanalsystemer (30) med en indvendig gennemgående boring og det damptætte lag (18) danner en damptæt indvendig foring (18) på det afledte isolerende kanalsystem (30);
 15 det damptætte lag (18) omfatter en tætningsindretning til i det væsentlige at tætte den indvendige gennemgående boring i forhold til ydersiden af det afledte isolerede kanalsystem (30), **kendetegnet ved, at** tætningsindretningen omfatter et flapelement til-vejebragt ved én ende af det damptætte lag (18) og som er indrettet til at overlappe den anden ende af det damptætte lag (18), når det isolerende mellemprodukt (20) er bukket
 20 til dannelsen af det ikke-plane, afledte isolerede kanalsystem (30), således at det damp-tætte lag (18) strækker sig over mere end 360° omkring den indvendige gennemgående boring.

 2. Isolerende mellemprodukt (20) ifølge krav 1, hvor et kontinuert beskyttelseslag er
 25 tilvejebragt på en resulterende yderste overflade af det isolerende lag, og/eller eventuelt, hvor et beskyttelseslag er tilvejebragt på den resulterende inderste overflade af det plane isolerende lag før dannelsen af kanalerne (14), hvilket beskyttelseslag er indrettet til at reducere afskalning eller splintning af det plane isolerende lag, eller eventuelt, hvor kanalerne (14) er dannede ved fræsning.
 30
 3. Isolerende mellemprodukt (20) ifølge ethvert af de foregående krav, hvor kanalerne (14) er i det mindste delvis fyldt med et tætningsmiddel og/eller et klæbemiddel, og/eller eventuelt, hvor de kumulative indvendige vinkler i kanalerne (14) er således, at det er muligt at bukke det isolerende mellemprodukt (20) til dannelsen af det afledte isolerede
 35 kanalsystem (30) med et fuldstændigt polygont tværsnit.

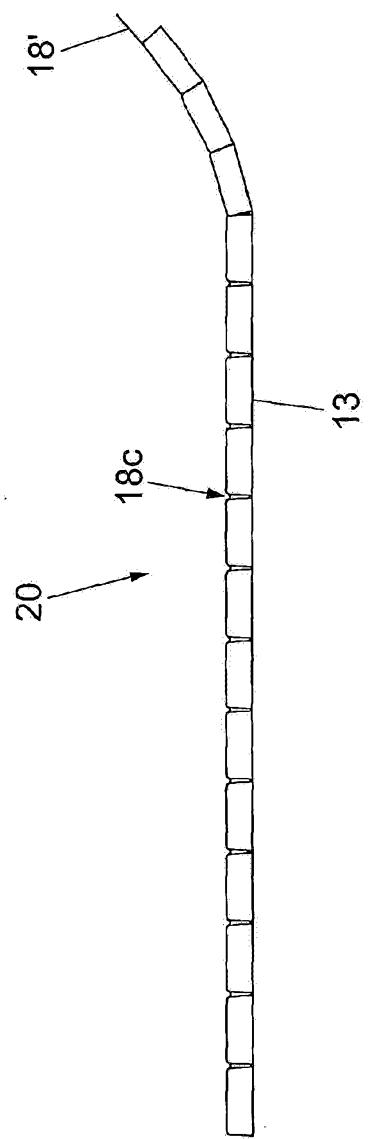
4. Isolerende mellemprodukt (20) ifølge ethvert af de foregående krav, hvor det plane isolerende lag omfatter et i det væsentlige stift materiale og eventuelt, hvor det i det væsentlige stive materiale omfatter stift phenolskum.
5. Isolerende mellemprodukt (20) ifølge ethvert af de foregående krav, hvor flapelementet er integreret med og danner en forlængelse af resten af det damptætte lag (18).
6. Isolerende mellemprodukt (20) ifølge ethvert af de foregående krav, hvor det 10 damptætte lag (18) har i det væsentlige samme bredde som den resulterende inderste overflade af det plane isolerende lag, som det er påført, og har en længere længde end den resulterende inderste overflade af det plane isolerende lag således, at flapelementet stikker forbi en ende af det plane isolerende lag og/eller eventuelt, hvor det damptætte lag (18) omfatter en lamineret damptæt barriere, og eventuelt, hvor den damptætte 15 barriere omfatter en lamineret folie-damptæt barriere dannet af et antal flerlags folier.
7. Isolerende mellemprodukt (20) ifølge ethvert af de foregående krav, hvor det damp 20 tætte lag (18) omfatter en fastgørelsесindretning dannet på dets resulterende yderste overflade og som er indrettet til at fastgøre det damptætte lag (18) til den resulterende inderste overflade af det plane isolerende lag, og eventuelt, hvor fastgørelsесindretningen omfatter et selvklæbende materiale udformet på den resulterende inderste overflade af det damptætte lag (18), og eventuelt, hvor det selvklæbende materiale omfatter en trykfølsom klæber, som på forhånd er påført den resulterende yderste overflade af det damptætte lag (18).
- 25 8. Isolerende mellemprodukt (20) ifølge ethvert af de foregående krav, hvor et yderligere damptæt lag (18) er påført en resulterende yderste overflade af det plane isolerende lag således, at det yderligere damptætte lag (18) danner en udvendig damptæt beskyt 30 telsesbarriere på det afledte isolerede kanalsystem (30), og eventuelt, hvor en yderligere fastgørelsесindretning er tilvejebragt imellem det yderligere damptætte lag (18) og den yderste overflade, og eventuelt, hvor den nævnte yderligere fastgørelsесindretning omfatter en klæbeindretning indledningsvis tilvejebragt på den inderste overflade af det yderligere damptætte lag (18).
- 35 9. Afledt isoleret kanalsystem (30) dannet af et isolerende mellemprodukt (20) ifølge ethvert af kravene 1 til 8 ved mekanisk manipulation af det isolerende mellemprodukt

(20) til bøjning i områder i tilstødning til bunden af kanalerne (14), hvorved det forår-sages at kanalerne (14) lukkes, for dannelsen af det plane, afledte isolerede kanalsystem (30), og eventuelt hvor det afledte isolerede kanalsystem (30) har et komplet polygon tværsnit, som er dannet af et isolerende mellemprodukt (20) med kumulative indvendige
 5
 10
 15
 20
 25
 30
 35
 40
 45
 50
 55
 60
 65
 70
 75
 80
 85
 90
 95
 100
 105
 110
 115
 120
 125
 130
 135
 140
 145
 150
 155
 160
 165
 170
 175
 180
 185
 190
 195
 200
 205
 210
 215
 220
 225
 230
 235
 240
 245
 250
 255
 260
 265
 270
 275
 280
 285
 290
 295
 300
 305
 310
 315
 320
 325
 330
 335
 340
 345
 350
 355
 360
 365
 370
 375
 380
 385
 390
 395
 400
 405
 410
 415
 420
 425
 430
 435
 440
 445
 450
 455
 460
 465
 470
 475
 480
 485
 490
 495
 500
 505
 510
 515
 520
 525
 530
 535
 540
 545
 550
 555
 560
 565
 570
 575
 580
 585
 590
 595
 600
 605
 610
 615
 620
 625
 630
 635
 640
 645
 650
 655
 660
 665
 670
 675
 680
 685
 690
 695
 700
 705
 710
 715
 720
 725
 730
 735
 740
 745
 750
 755
 760
 765
 770
 775
 780
 785
 790
 795
 800
 805
 810
 815
 820
 825
 830
 835
 840
 845
 850
 855
 860
 865
 870
 875
 880
 885
 890
 895
 900
 905
 910
 915
 920
 925
 930
 935
 940
 945
 950
 955
 960
 965
 970
 975
 980
 985
 990
 995
 1000
 1005
 1010
 1015
 1020
 1025
 1030
 1035
 1040
 1045
 1050
 1055
 1060
 1065
 1070
 1075
 1080
 1085
 1090
 1095
 1100
 1105
 1110
 1115
 1120
 1125
 1130
 1135
 1140
 1145
 1150
 1155
 1160
 1165
 1170
 1175
 1180
 1185
 1190
 1195
 1200
 1205
 1210
 1215
 1220
 1225
 1230
 1235
 1240
 1245
 1250
 1255
 1260
 1265
 1270
 1275
 1280
 1285
 1290
 1295
 1300
 1305
 1310
 1315
 1320
 1325
 1330
 1335
 1340
 1345
 1350
 1355
 1360
 1365
 1370
 1375
 1380
 1385
 1390
 1395
 1400
 1405
 1410
 1415
 1420
 1425
 1430
 1435
 1440
 1445
 1450
 1455
 1460
 1465
 1470
 1475
 1480
 1485
 1490
 1495
 1500
 1505
 1510
 1515
 1520
 1525
 1530
 1535
 1540
 1545
 1550
 1555
 1560
 1565
 1570
 1575
 1580
 1585
 1590
 1595
 1600
 1605
 1610
 1615
 1620
 1625
 1630
 1635
 1640
 1645
 1650
 1655
 1660
 1665
 1670
 1675
 1680
 1685
 1690
 1695
 1700
 1705
 1710
 1715
 1720
 1725
 1730
 1735
 1740
 1745
 1750
 1755
 1760
 1765
 1770
 1775
 1780
 1785
 1790
 1795
 1800
 1805
 1810
 1815
 1820
 1825
 1830
 1835
 1840
 1845
 1850
 1855
 1860
 1865
 1870
 1875
 1880
 1885
 1890
 1895
 1900
 1905
 1910
 1915
 1920
 1925
 1930
 1935
 1940
 1945
 1950
 1955
 1960
 1965
 1970
 1975
 1980
 1985
 1990
 1995
 2000
 2005
 2010
 2015
 2020
 2025
 2030
 2035
 2040
 2045
 2050
 2055
 2060
 2065
 2070
 2075
 2080
 2085
 2090
 2095
 2100
 2105
 2110
 2115
 2120
 2125
 2130
 2135
 2140
 2145
 2150
 2155
 2160
 2165
 2170
 2175
 2180
 2185
 2190
 2195
 2200
 2205
 2210
 2215
 2220
 2225
 2230
 2235
 2240
 2245
 2250
 2255
 2260
 2265
 2270
 2275
 2280
 2285
 2290
 2295
 2300
 2305
 2310
 2315
 2320
 2325
 2330
 2335
 2340
 2345
 2350
 2355
 2360
 2365
 2370
 2375
 2380
 2385
 2390
 2395
 2400
 2405
 2410
 2415
 2420
 2425
 2430
 2435
 2440
 2445
 2450
 2455
 2460
 2465
 2470
 2475
 2480
 2485
 2490
 2495
 2500
 2505
 2510
 2515
 2520
 2525
 2530
 2535
 2540
 2545
 2550
 2555
 2560
 2565
 2570
 2575
 2580
 2585
 2590
 2595
 2600
 2605
 2610
 2615
 2620
 2625
 2630
 2635
 2640
 2645
 2650
 2655
 2660
 2665
 2670
 2675
 2680
 2685
 2690
 2695
 2700
 2705
 2710
 2715
 2720
 2725
 2730
 2735
 2740
 2745
 2750
 2755
 2760
 2765
 2770
 2775
 2780
 2785
 2790
 2795
 2800
 2805
 2810
 2815
 2820
 2825
 2830
 2835
 2840
 2845
 2850
 2855
 2860
 2865
 2870
 2875
 2880
 2885
 2890
 2895
 2900
 2905
 2910
 2915
 2920
 2925
 2930
 2935
 2940
 2945
 2950
 2955
 2960
 2965
 2970
 2975
 2980
 2985
 2990
 2995
 3000
 3005
 3010
 3015
 3020
 3025
 3030
 3035
 3040
 3045
 3050
 3055
 3060
 3065
 3070
 3075
 3080
 3085
 3090
 3095
 3100
 3105
 3110
 3115
 3120
 3125
 3130
 3135
 3140
 3145
 3150
 3155
 3160
 3165
 3170
 3175
 3180
 3185
 3190
 3195
 3200
 3205
 3210
 3215
 3220
 3225
 3230
 3235
 3240
 3245
 3250
 3255
 3260
 3265
 3270
 3275
 3280
 3285
 3290
 3295
 3300
 3305
 3310
 3315
 3320
 3325
 3330
 3335
 3340
 3345
 3350
 3355
 3360
 3365
 3370
 3375
 3380
 3385
 3390
 3395
 3400
 3405
 3410
 3415
 3420
 3425
 3430
 3435
 3440
 3445
 3450
 3455
 3460
 3465
 3470
 3475
 3480
 3485
 3490
 3495
 3500
 3505
 3510
 3515
 3520
 3525
 3530
 3535
 3540
 3545
 3550
 3555
 3560
 3565
 3570
 3575
 3580
 3585
 3590
 3595
 3600
 3605
 3610
 3615
 3620
 3625
 3630
 3635
 3640
 3645
 3650
 3655
 3660
 3665
 3670
 3675
 3680
 3685
 3690
 3695
 3700
 3705
 3710
 3715
 3720
 3725
 3730
 3735
 3740
 3745
 3750
 3755
 3760
 3765
 3770
 3775
 3780
 3785
 3790
 3795
 3800
 3805
 3810
 3815
 3820
 3825
 3830
 3835
 3840
 3845
 3850
 3855
 3860
 3865
 3870
 3875
 3880
 3885
 3890
 3895
 3900
 3905
 3910
 3915
 3920
 3925
 3930
 3935
 3940
 3945
 3950
 3955
 3960
 3965
 3970
 3975
 3980
 3985
 3990
 3995
 4000
 4005
 4010
 4015
 4020
 4025
 4030
 4035
 4040
 4045
 4050
 4055
 4060
 4065
 4070
 4075
 4080
 4085
 4090
 4095
 4100
 4105
 4110
 4115
 4120
 4125
 4130
 4135
 4140
 4145
 4150
 4155
 4160
 4165
 4170
 4175
 4180
 4185
 4190
 4195
 4200
 4205
 4210
 4215
 4220
 4225
 4230
 4235
 4240
 4245
 4250
 4255
 4260
 4265
 4270
 4275
 4280
 4285
 4290
 4295
 4300
 4305
 4310
 4315
 4320
 4325
 4330
 4335
 4340
 4345
 4350
 4355
 4360
 4365
 4370
 4375
 4380
 4385
 4390
 4395
 4400
 4405
 4410
 4415
 4420
 4425
 4430
 4435
 4440
 4445
 4450
 4455
 4460
 4465
 4470
 4475
 4480
 4485
 4490
 4495
 4500
 4505
 4510
 4515
 4520
 4525
 4530
 4535
 4540
 4545
 4550
 4555
 4560
 4565
 4570
 4575
 4580
 4585
 4590
 4595
 4600
 4605
 4610
 4615
 4620
 4625
 4630
 4635
 4640
 4645
 4650
 4655
 4660
 4665
 4670
 4675
 4680
 4685
 4690
 4695
 4700
 4705
 4710
 4715
 4720
 4725
 4730
 4735
 4740
 4745
 4750
 4755
 4760
 4765
 4770
 4775
 4780
 4785
 4790
 4795
 4800
 4805
 4810
 4815
 4820
 4825
 4830
 4835
 4840
 4845
 4850
 4855
 4860
 4865
 4870
 4875
 4880
 4885
 4890
 4895
 4900
 4905
 4910
 4915
 4920
 4925
 4930
 4935
 4940
 4945
 4950
 4955
 4960
 4965
 4970
 4975
 4980
 4985
 4990
 4995
 5000
 5005
 5010
 5015
 5020
 5025
 5030
 5035
 5040
 5045
 5050
 5055
 5060
 5065
 5070
 5075
 5080
 5085
 5090
 5095
 5100
 5105
 5110
 5115
 5120
 5125
 5130
 5135
 5140
 5145
 5150
 5155
 5160
 5165
 5170
 5175
 5180
 5185
 5190
 5195
 5200
 5205
 5210
 5215
 5220
 5225
 5230
 5235
 5240
 5245
 5250
 5255
 5260
 5265
 5270
 5275
 5280
 5285
 5290
 5295
 5300
 5305
 5310
 5315
 5320
 5325
 5330
 5335
 5340
 5345
 5350
 5355
 5360
 5365
 5370
 5375
 5380
 5385
 5390
 5395
 5400
 5405
 5410
 5415
 5420
 5425
 5430
 5435
 5440
 5445
 5450
 5455
 5460
 5465
 5470
 5475
 5480
 5485
 5490
 5495
 5500
 5505
 5510
 5515
 5520
 5525
 5530
 5535
 5540
 5545
 5550
 5555
 5560
 5565
 5570
 5575
 5580
 5585
 5590
 5595
 5600
 5605
 5610
 5615
 5620
 5625
 5630
 5635
 5640
 5645
 5650
 5655
 5660
 5665
 5670
 5675
 5680
 5685
 5690
 5695
 5700
 5705
 5710
 5715
 5720
 5725
 5730
 5735
 5740
 5745
 5750
 5755
 5760
 5765
 5770
 5775
 5780
 5785
 5790
 5795
 5800
 5805
 5810
 5815
 5820
 5825
 5830
 5835
 5840
 5845
 5850
 5855
 5860
 5865
 5870
 5875
 5880
 5885
 5890
 5895
 5900
 5905
 5910
 5915
 5920
 5925
 5930
 5935
 5940
 5945
 5950
 5955
 5960
 5965
 5970
 5975
 5980
 5985
 5990
 5995
 6000
 6005
 6010
 6015
 6020
 6025
 6030
 6035
 6040
 6045
 6050
 6055
 6060
 6065
 6070
 6075
 6080
 6085
 6090
 6095
 6100
 6105
 6110
 6115
 6120
 6125
 6130
 6135
 6140
 6145
 6150
 6155
 6160
 6165
 6170
 6175
 6180
 6185
 6190
 6195
 6200
 6205
 6210
 6215
 6220
 6225
 6230
 6235
 6240
 6245
 6250
 6255
 6260
 6265
 6270
 6275
 6280
 6285
 6290
 6295
 6300
 6305
 6310
 6315
 6320
 6325
 6330
 6335
 6340
 6345
 6350
 6355
 6360
 6365
 6370
 6375
 6380
 6385
 6390
 6395
 6400
 6405
 6410
 6415
 6420
 6425
 6430
 6435
 6440
 6445
 6450
 6455
 6460
 6465
 6470
 6475
 6480
 6485
 6490
 6495
 6500
 6505
 6510
 6515
 6520
 6525
 6530
 6535
 6540
 6545
 6550
 6555
 6560
 6565
 6570
 6575
 6580
 6585
 6590
 6595
 6600
 6605
 6610
 6615
 6620
 6625
 6630
 6635
 6640
 6645
 6650
 6655
 6660
 6665
 6670
 6675
 6680
 6685
 6690
 6695
 6700
 6705
 6710
 6715
 6720
 6725
 6730
 6735
 6740
 6745
 6750
 6755
 6760
 6765
 6770
 6775
 6780
 6785
 6790
 6795
 6800
 6805
 6810
 6815
 6820
 6825
 6830
 6835
 6840
 6845
 6850
 6855
 6860
 6865
 6870
 6875
 6880
 6885
 6890
 6895
 6900
 6905
 6910
 6915
 6920
 6925
 6930
 6935
 6940
 6945
 6950
 6955
 6960
 6965
 6970
 6975
 6980
 6985
 6990
 6995
 7000
 7005

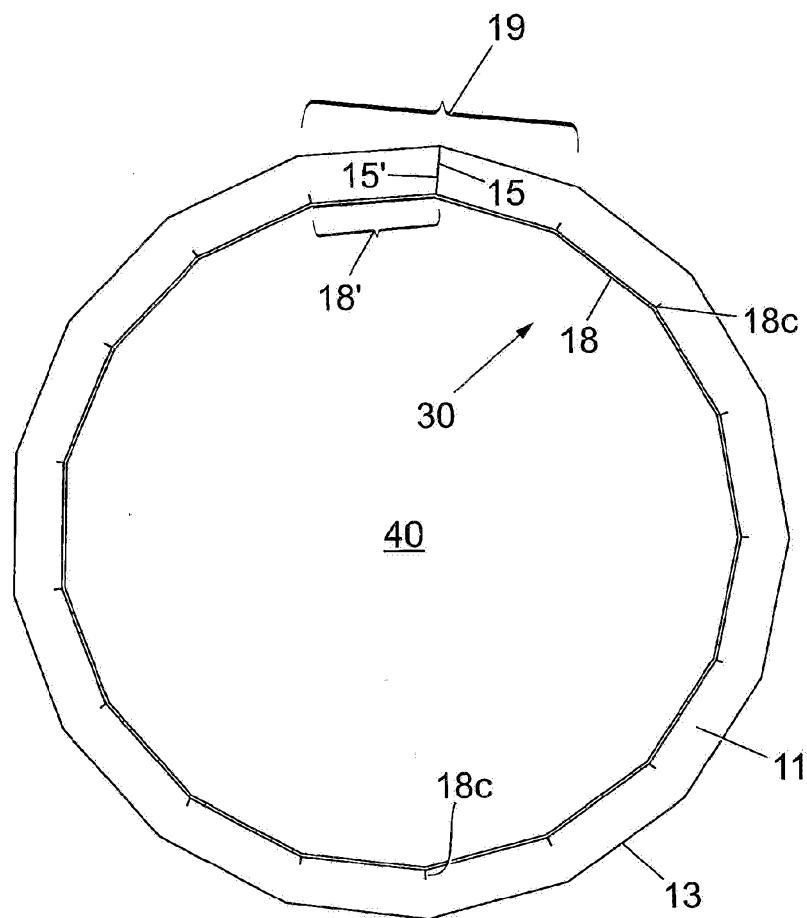


13. Kanalsystemforbindelsesindretning ifølge krav 11 eller krav 12, hvor den eller de nævnte flangeelementer i forbindelsesindretningen stikker radialt ud fra det respektive første og andet forbindelseselement, og/eller eventuelt, hvor den udvendige diameter af det respektive første og andet forbindelseselement kontakter den indvendige diameter

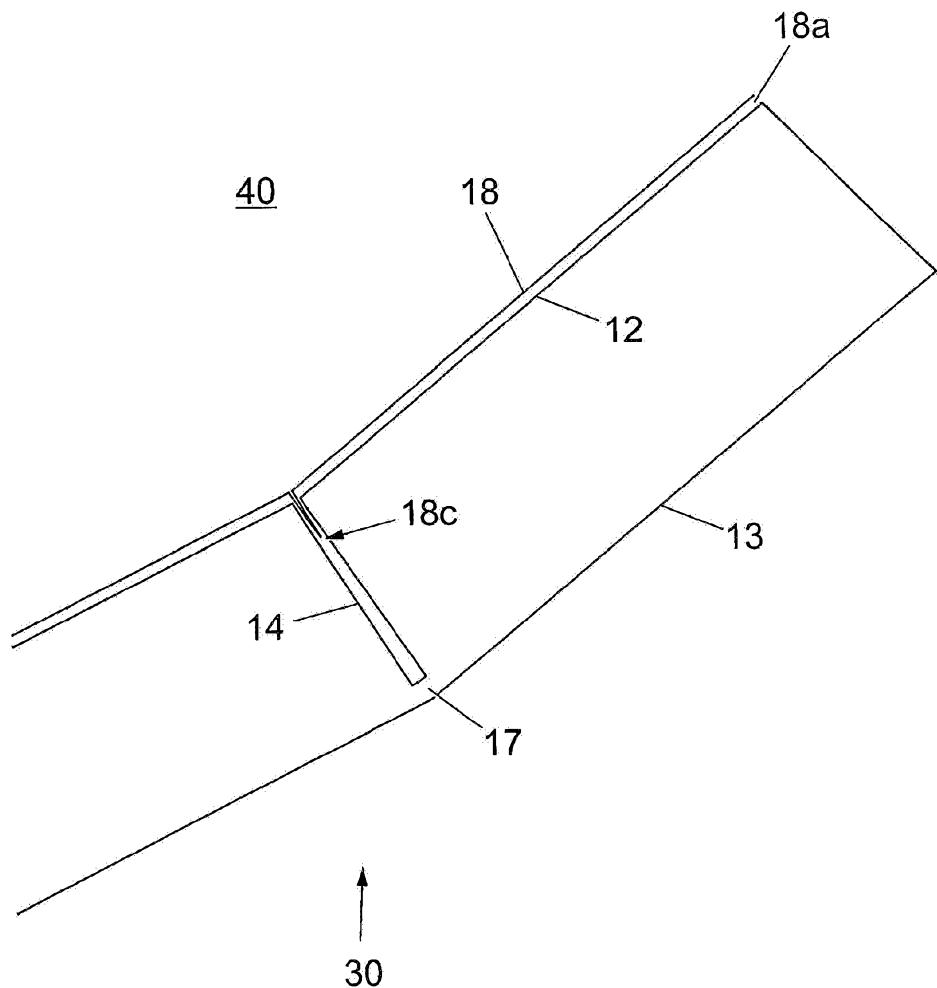

5 af den respektive kanalsystemsektion og den nævnte respektive side af flangeelementet er anbragt i anlægskontakt med enden af den respektive kanalsystemsektion og/eller eventuelt, hvor det første og andet forbindelseselement yderligere omfatter en fastgørelsesindretning, som virker imellem forbindelseselementerne og den respektive kanalsystemsektion for at forhindre adskillelse af kanalsystemsektionen fra forbindel-

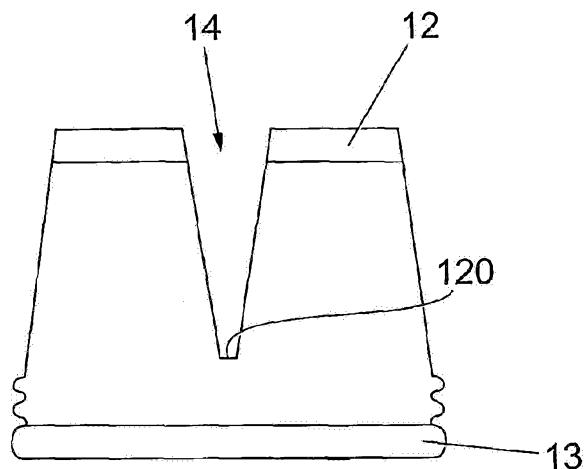
10 seselementet i en retning bort fra flangeelementet, og eventuelt, hvor fastgørels- indretningen omfatter ét eller flere modhageelementer, som peger i en retning imod det respektive flangeelement.

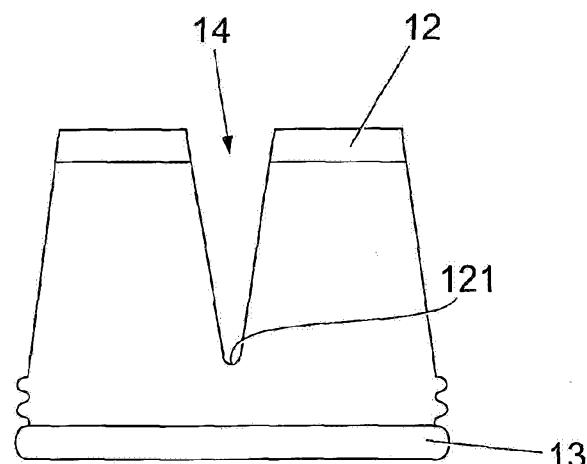

14. Kanalsystemforbindelsesindretning ifølge ethvert af kravene 11 til 13, hvor det første og andet forbindelseselement hver især omfatter den samme udvendige diameter eller eventuelt, hvor det første og andet forbindelseselement hver især omfatter forskellige udvendige diametre og/eller eventuelt hvor det første og andet flangeelement stikker ud fra det første og andet forbindelseselement med en afstand, som i det væsentlige er lig med sidevægstykkelsen for kanalsystemsektionen og/eller eventuelt, hvor det første og 20 andet flangeelement omfatter modstående flader af den samme flange, eller eventuelt, hvor det første og andet flangeelement omfatter et par langsgående i afstand placerede flanger.

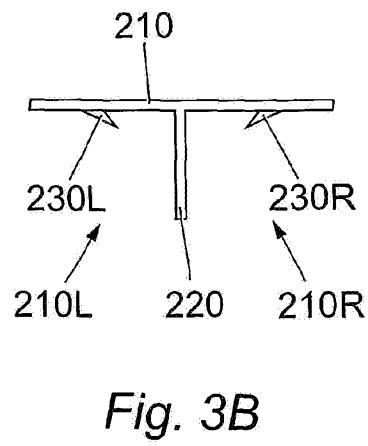
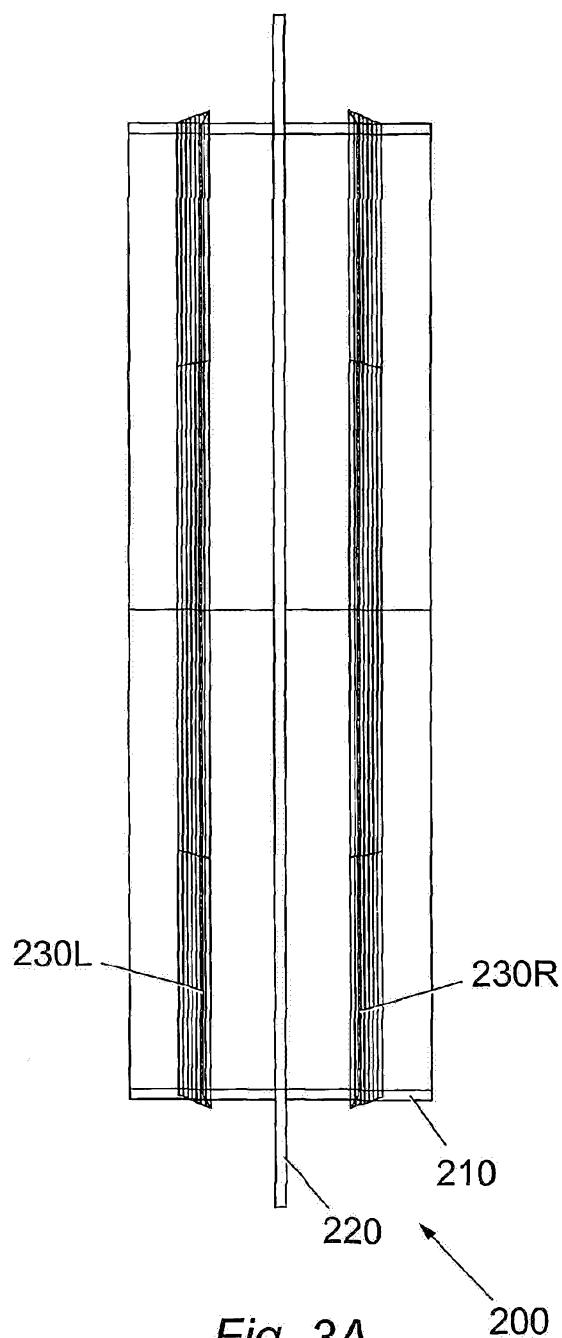
DRAWINGS




Fig. 1C


Fig. 1D


Fig. 1E



Fig. 1F

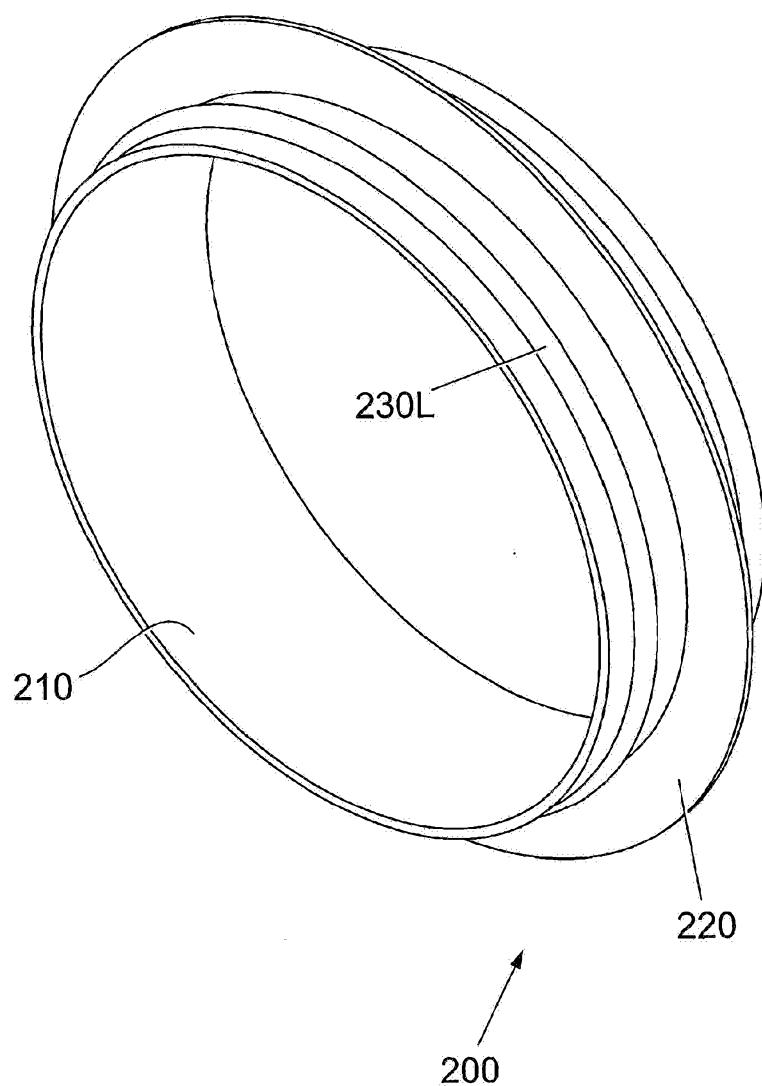


Fig. 2A

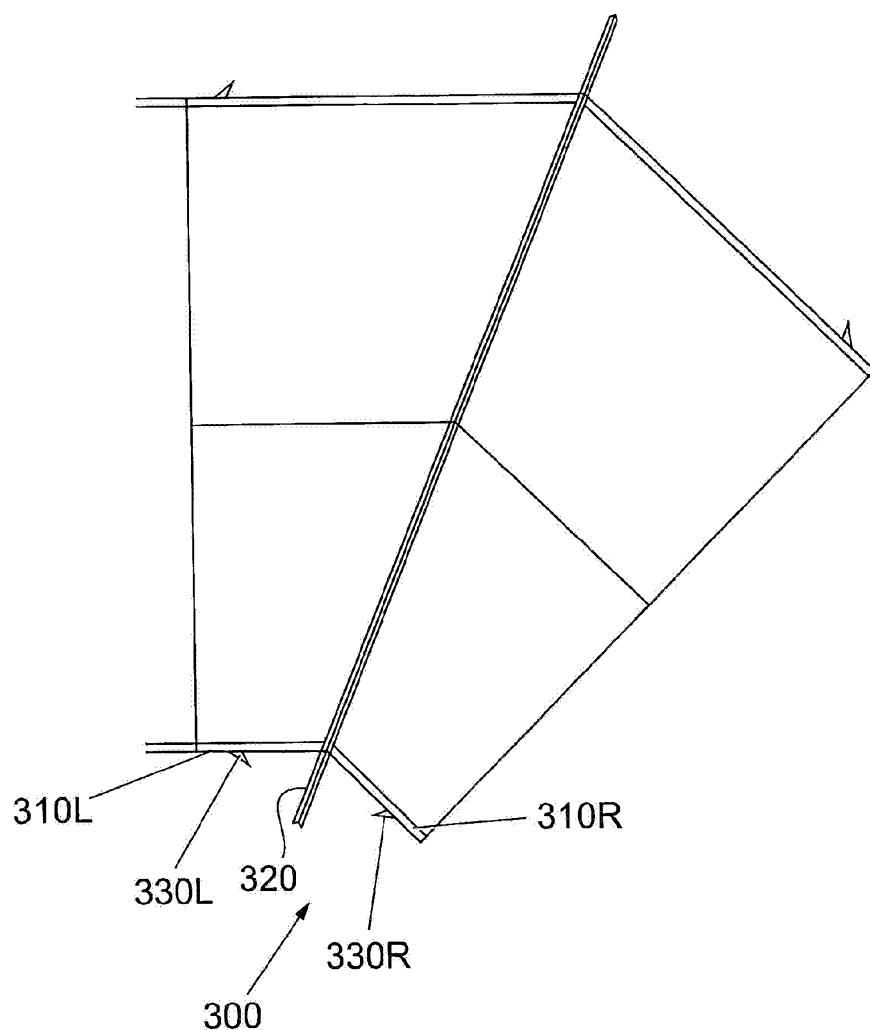
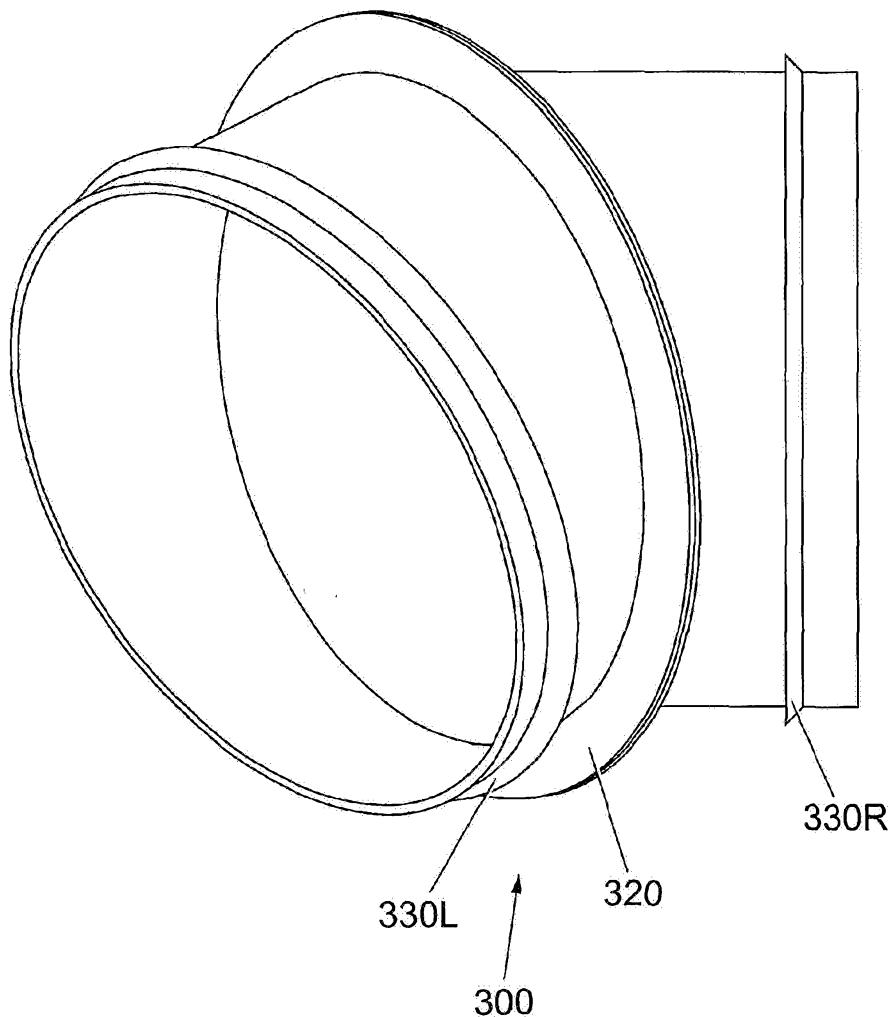
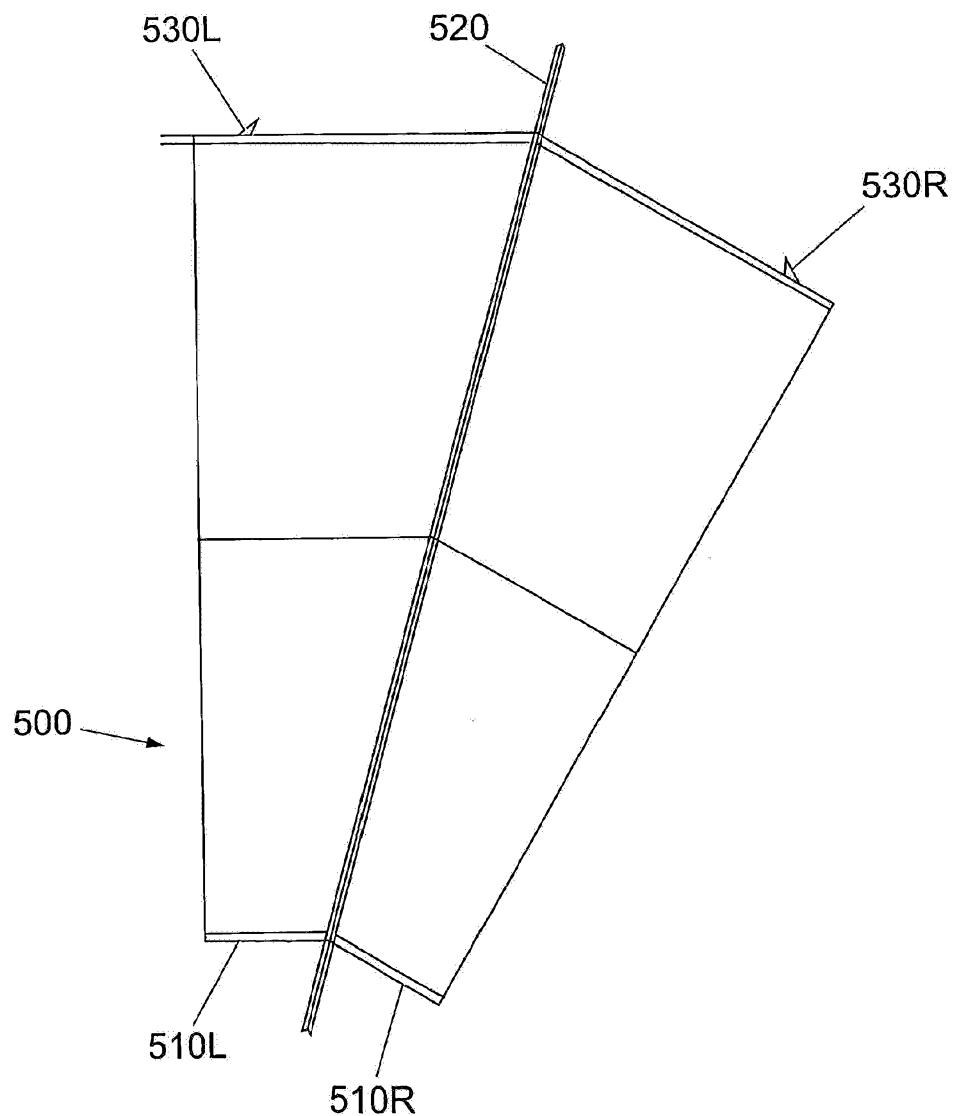
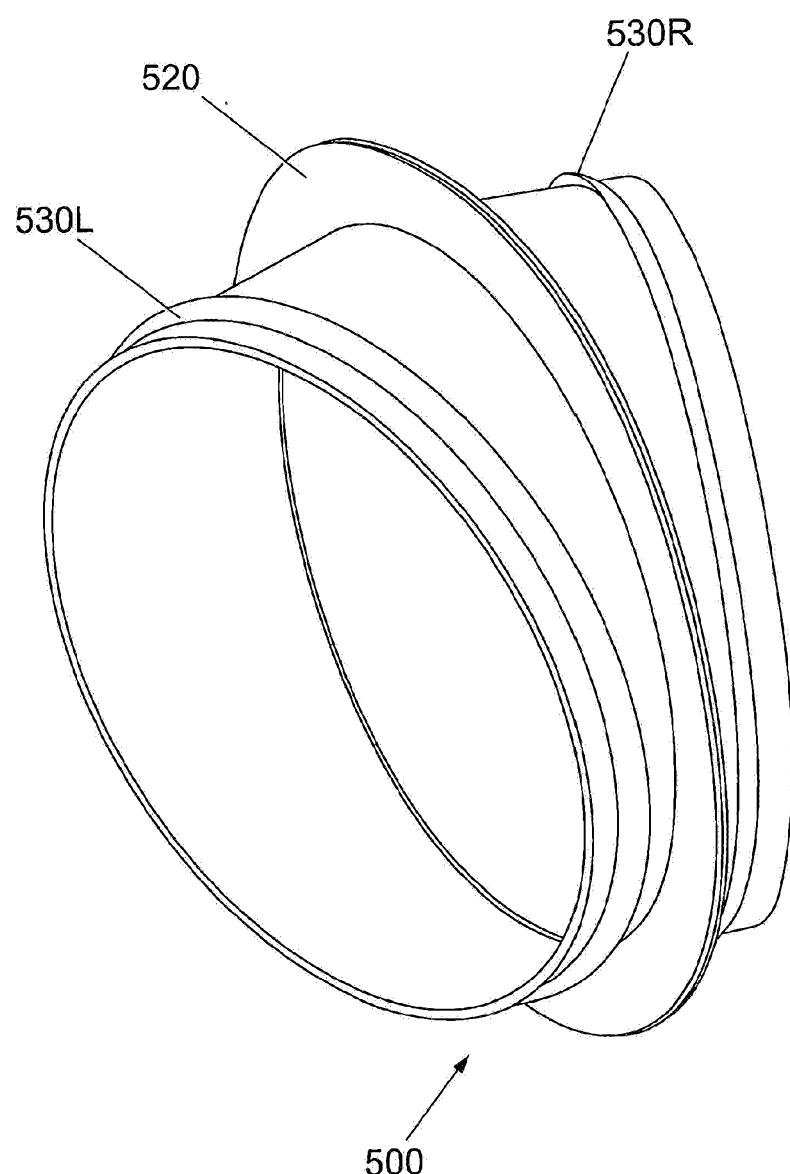
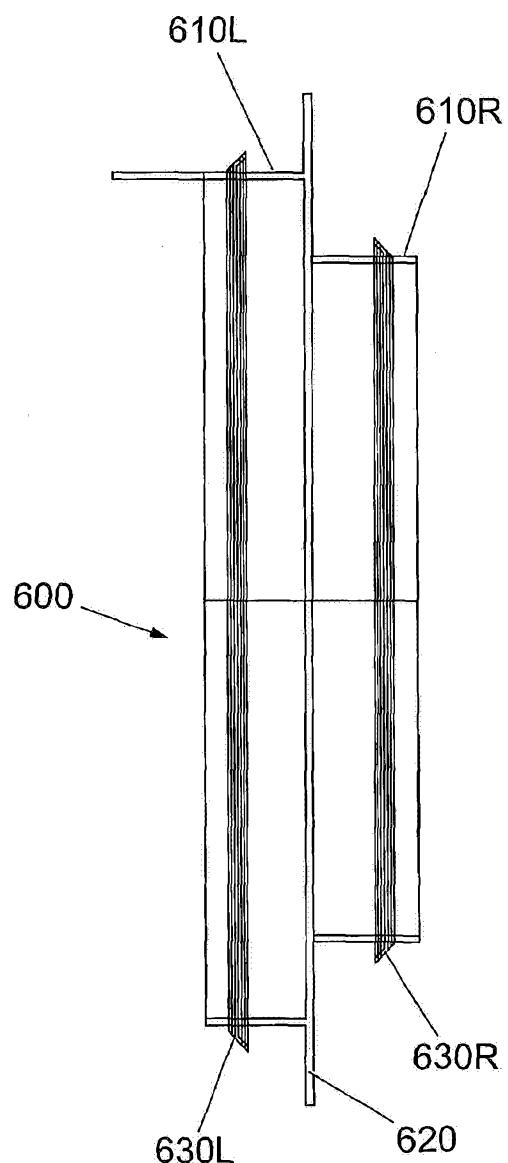


Fig. 2B




Fig. 3C


Fig. 4A


Fig. 4B

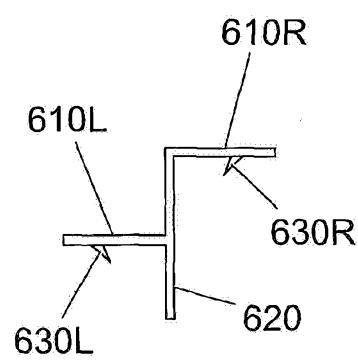

Fig. 5A

Fig. 5B

Fig. 6A

Fig. 6B

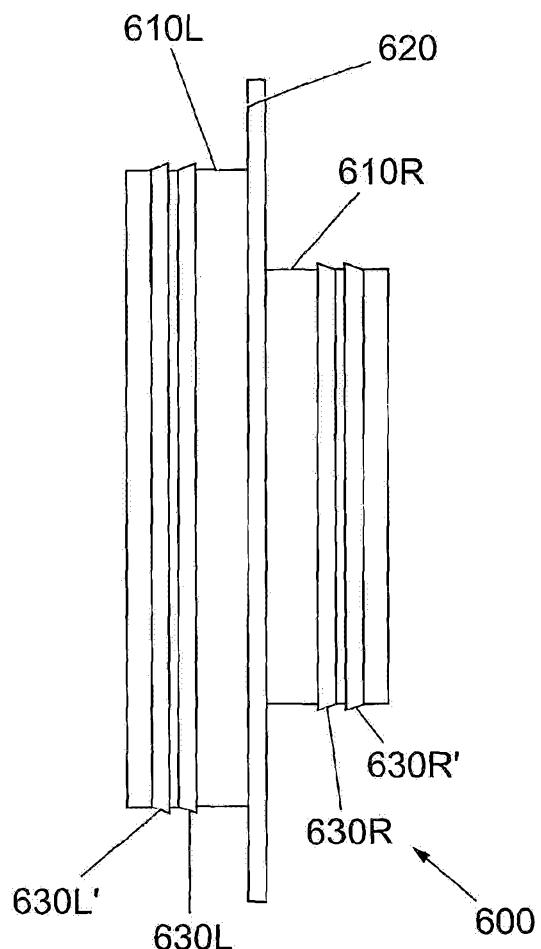
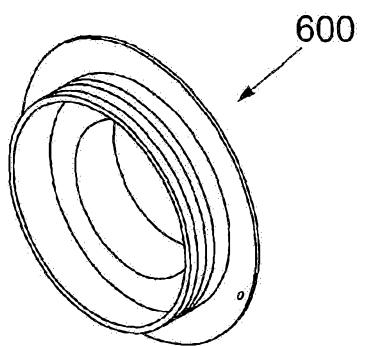
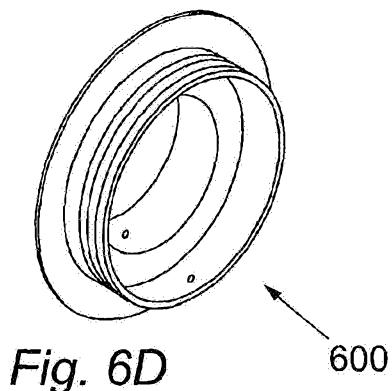




Fig. 6C

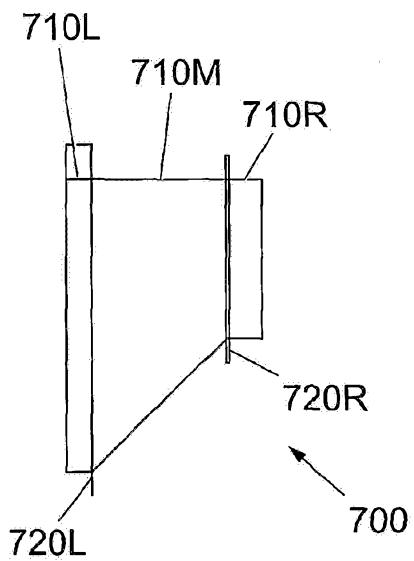


Fig. 7A

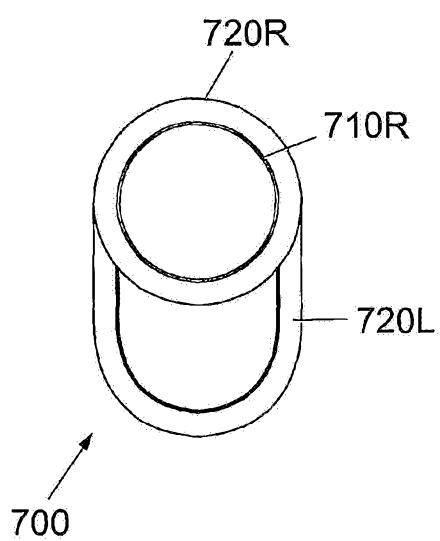


Fig. 7B

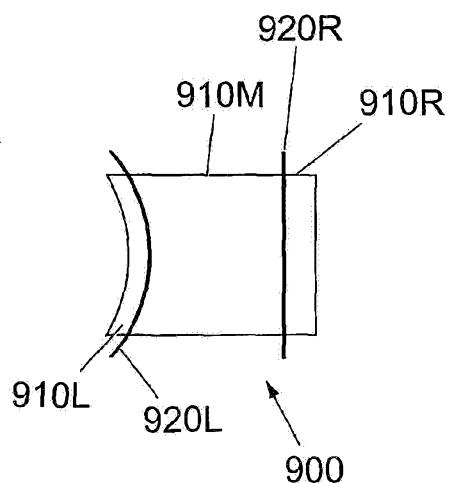
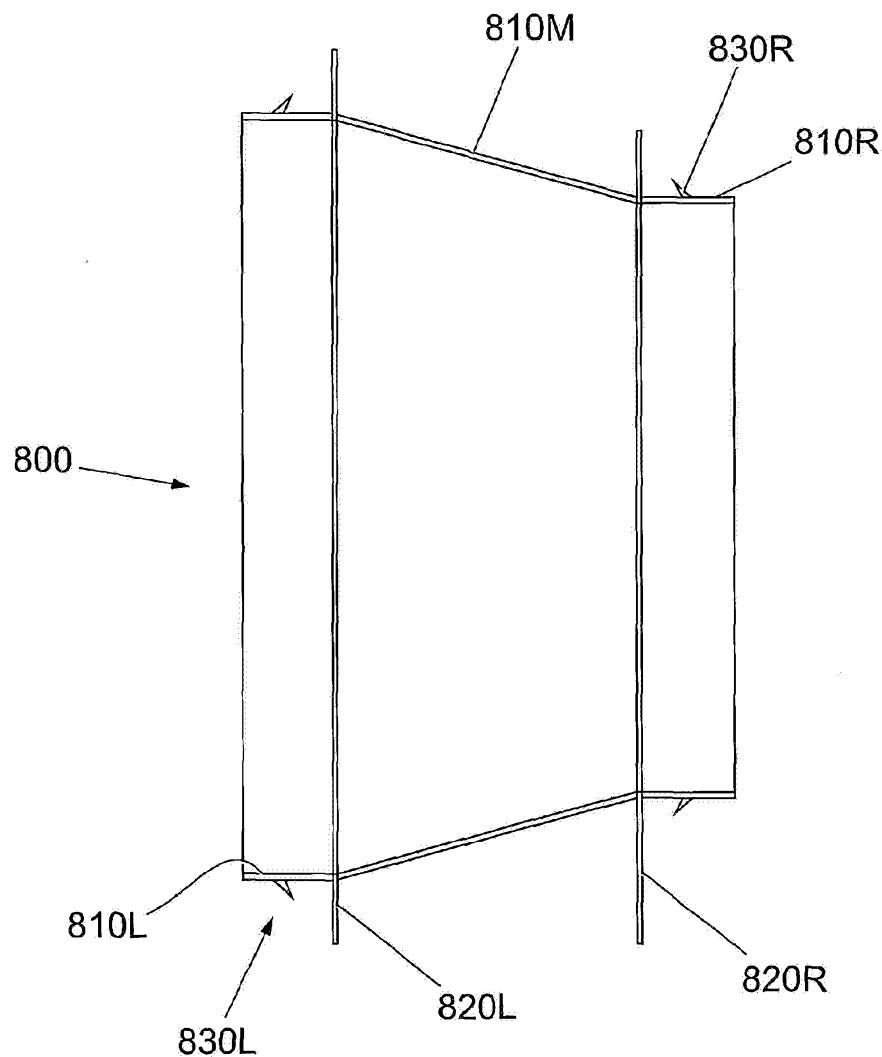
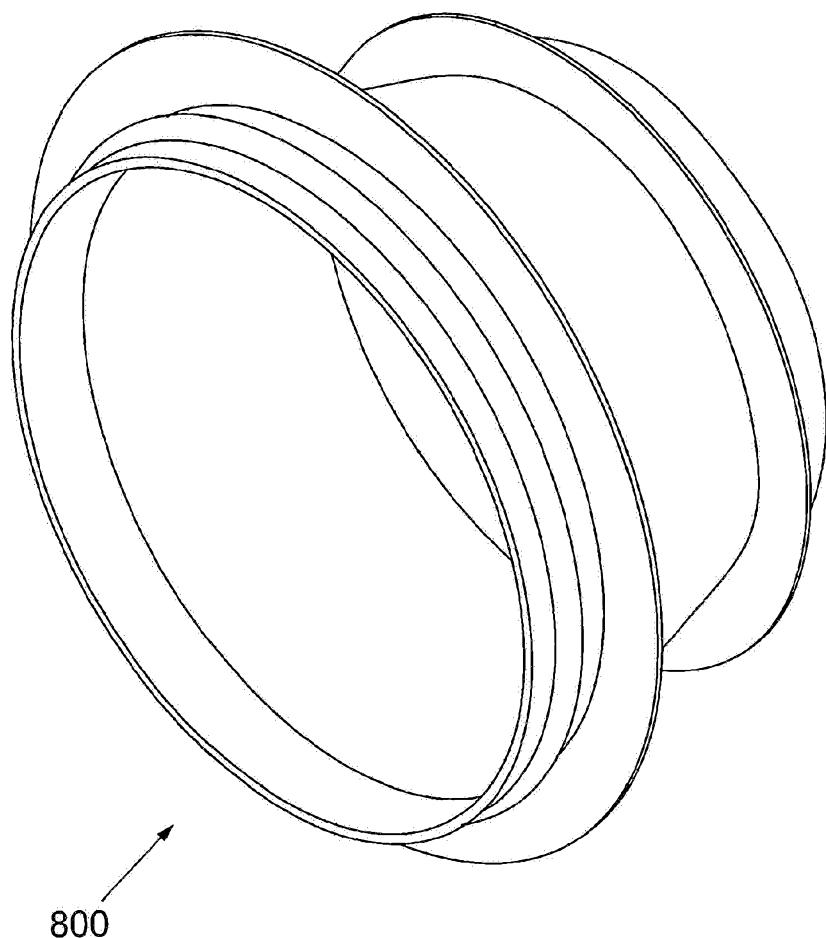




Fig. 9

Fig. 8A

Fig. 8B