
(19) United States 
US 2006O112260A1 

(12) Patent Application Publication (10) Pub. No.: US 2006/0112260 A1 
Ganapathy et al. (43) Pub. Date: May 25, 2006 

(54) METHOD AND APPARATUS OF 
INSTRUCTION EXECUTION FOR SIGNAL 
PROCESSORS 

(76) Inventors: Kumar Ganapathy, Mountain View, 
CA (US); Ruban Kanapathipillai, 
Fremont, CA (US) 

Correspondence Address: 
BLAKELY SOKOLOFFTAYLOR & ZAFMAN 
124OO WILSHIRE BOULEVARD 
SEVENTH FLOOR 
LOS ANGELES, CA 90025-1030 (US) 

(21) Appl. No.: 11/323,253 

(22) Filed: Dec. 30, 2005 

Related U.S. Application Data 

(62) Division of application No. 10/211,387, filed on Aug. 
2, 2002, now Pat. No. 6,988,184, which is a division 
of application No. 09/494,608, filed on Jan. 31, 2000, 
now Pat. No. 6,446,195. 

NCRO 
Corte Ouver 

Publication Classification 

(51) Int. Cl. 
G06F 9/30 (2006.01) 

(52) U.S. Cl. .............................................................. 712/213 
(57) ABSTRACT 
An instruction set architecture (ISA) for application specific 
signal processor (ASSP) is tailored to digital signal process 
ing applications. The instruction set architecture imple 
mented with the ASSP, is adapted to DSP algorithmic 
structures. The instruction word of the ISA is typically 20 
bits but can be expanded to 40-bits to control two instruc 
tions to be executed in series or parallel. All DSP instruc 
tions of the ISA are dyadic DSP instructions performing two 
operations with one instruction in one cycle. The DSP 
instructions or operations in the preferred embodiment 
include a multiply instruction (MULT), an addition instruc 
tion (ADD), a minimize/maximize instruction (MIN/MAX) 
also referred to as an extremainstruction, and a no operation 
instruction (NOP) each having an associated operation code 
(“opcode'). The present invention efficiently executes DSP 
instructions by means of the instruction set architecture and 
the hardware architecture of the application specific signal 
processor. 

15O 
/ 

NTE rufi 
loan ?oley 

  



Patent Application Publication May 25, 2006 Sheet 1 of 12 US 2006/0112260 A1 

& 

  



US 2006/0112260 A1 Patent Application Publication May 25, 2006 Sheet 2 of 12 

N OS | 

Seogweo. ooegioU law/ 
m 
N 

  

  



Patent Application Publication May 25, 2006 Sheet 3 of 12 US 2006/0112260 A1 

Q 
SQN 

s 

  



US 2006/0112260 A1 

ae 

Patent Application Publication May 25, 2006 Sheet 4 of 12 
  



Patent Application Publication May 25, 2006 Sheet 5 of 12 US 2006/0112260 A1 

S 3s x Y ?ie 

SOA 

O 

CoMPR esse? 
9 De 

W 

M 

fwg 5.29 
ADoe2 fra 

4725 

  



Patent Application Publication May 25, 2006 Sheet 6 of 12 US 2006/0112260 A1 

e los Clo instruction -n/N-N 
instruction e 6 2. 

20t oute Le - ) ~60+ Ma?oe sliot 
1.602 instruction MULT NOP 

Inner Loop: ADD MIN/MAX 
instruction MIN/MAX ADD 

arts h too 6 tra- (2Es 

O Sub da = +/-(mx'sa) - my 
3938 34 221 
1 Iolo LPS IS" sk SY MSSAIDAH Add da = +1-(mx'sa) + my 

10 Min das min(+/-mx'sa, my) 

Fr G.D 

  



US 2006/0112260 A1 Patent Application Publication May 25, 2006 Sheet 7 of 12 

  

  

  

    

  

  



Patent Application Publication May 25, 2006 Sheet 8 of 12 

celtistered Electressee n cello asses s SE 55 s ge 
EE See :Tere: 

o is EEE Essee; 
e 3. e--- 
Ms. o EEEEEEEEEEEE a. s --- s sole 
E FF X - 

s g i 
celle-eeeeeeers electe-eeeeeeee--------------a selects EEEEEEEEEEEEE e E---|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|-E a s 
. . . . . . . . . . . . . . . . . f. iii. is is is is is is siggii is 

US 2006/0112260A1 

i 
    

  



US 2006/0112260 A1 Patent Application Publication May 25, 2006 Sheet 9 of 12 

  



US 2006/0112260 A1 Patent Application Publication May 25, 2006 Sheet 10 of 12 

||9 913 ETITETETETTITETITETITITETETTIËTEITETETTIIBETETTIIaeffrae?##:equipº?uu?, 
  

  

  

  

  

  

  



Patent Application Publication May 25, 2006 Sheet 11 of 12 US 2006/0112260A1 

Y 

S. 

  



Patent Application Publication May 25, 2006 Sheet 12 of 12 US 2006/0112260 A1 

Q s 
S, N 
N. n 

R . 

o () 

X 
s 

S. 

r 
Q 
n 
N 

s s 

r 



US 2006/0112260 A1 

METHOD AND APPARATUS OF INSTRUCTION 
EXECUTION FOR SIGNAL PROCESSORS 

FIELD OF THE INVENTION 

0001. This invention relates generally to the instruction 
set architectures (ISA) of processors. More particularly, the 
invention relates to instruction set architectures for the 
execution of operations within a signal processing integrated 
circuit. 

BACKGROUND OF THE INVENTION 

0002 Single chip digital signal processing devices (DSP) 
are relatively well known. DSPs generally are distinguished 
from general purpose microprocessors in that DSPs typically 
Support accelerated arithmetic operations by including a 
dedicated multiplier and accumulator (MAC) for performing 
multiplication of digital numbers. The instruction set for a 
typical DSP device usually includes a MAC instruction for 
performing multiplication of new operands and addition 
with a prior accumulated value stored within an accumulator 
register. A MAC instruction is typically the only instruction 
provided in prior art digital signal processors where two 
DSP operations, multiply followed by add, are performed by 
the execution of one instruction. However, when performing 
signal processing functions on data it is often desirable to 
perform other DSP operations in varying combinations. 
0003) An area where DSPs may be utilized is in telecom 
munication systems. One use of DSPs in telecommunication 
systems is digital filtering. In this case a DSP is typically 
programmed with instructions to implement some filter 
function in the digital or time domain. The mathematical 
algorithm for a typical finite impulse response (FIR) filter 
may look like the equation Y=hox+h X+h)x+ . . . 
+h\{N where h, are fixed filter coefficients numbering from 
1 to N and X are the data samples. The equation Y may be 
evaluated by using a software program. However in some 
applications, it is necessary that the equation be evaluated as 
fast as possible. One way to do this is to perform the 
computations using hardware components such as a DSP 
device programmed to compute the equation Y. In order to 
further speed the process, it is desirable to vectorize the 
equation and distribute the computation amongst multiple 
DSPs such that the final result is obtained more quickly. The 
multiple DSPs operate in parallel to speed the computation 
process. In this case, the multiplication of terms is spread 
across the multipliers of the DSPs equally for simultaneous 
computations of terms. The adding of terms is similarly 
spread equally across the adders of the DSPs for simulta 
neous computations. In vectorized processing, the order of 
processing terms is unimportant since the combination is 
associative. If the processing order of the terms is altered, it 
has no effect on the final result expected in a vectorized 
processing of a function. 
0004. In typical micro processors, a MAC operation 
would require a multiply instruction and an add instruction 
to perform both multiplication and addition. To perform 
these two instructions would require two processing cycles. 
Additionally, a program written for the typical micro pro 
cessor would require a larger program memory in order to 
store the extra instructions necessary to perform the MAC 
operation. In prior art DSP devices, if a DSP operation other 
than a MAC DSP instruction need be performed, the opera 

May 25, 2006 

tion requires separate arithmetic instructions programmed 
into program memory. These separate arithmetic instruc 
tions in prior art DSPs similarly require increased program 
memory space and processing cycles to perform the opera 
tion when compared to a single MAC instruction. It is 
desirable to reduce the number of processing cycles when 
performing DSP operations. It is desirable to reduce pro 
gram memory requirements as well. 

0005 DSPs are often programmed in a loop to continu 
ously perform accelerated arithmetic functions including a 
MAC instruction using different operands. Often times, 
multiple arithmetic instructions are programmed in a loop to 
operate on the same data set. The same arithmetic instruction 
is often executed over and over in a loop using different 
operands. Additionally, each time one instruction is com 
pleted, another instruction is fetched from the program 
stored in memory during a fetch cycle. Fetch cycles require 
one or more cycle times to access a memory before instruc 
tion execution occurs. Because circuits change state during 
a fetch cycle, power is consumed and thus it is desirable to 
reduce the number of fetch cycles. Typically, approximately 
twenty percent of power consumption may be utilized in the 
set up and clean up operations of a loop in order to execute 
DSP instructions. Typically, the loop execution where signal 
processing of data is performed consumes approximately 
eighty percent of power consumption with a significant 
portion being due to instruction fetching. Additionally, 
because data sets that a DSP device process are usually 
large, it is also desirable to speed instruction execution by 
avoiding frequent fetch cycles to memory. 

0006 Additionally, the quality of service over a tele 
phone system often relates to the processing speed of 
signals. That is particularly the case when a DSP is to 
provide Voice processing, such as voice compression, voice 
decompression, and echo cancellation for multiple channels. 
More recently, processing speed has become even more 
important because of the desire to transmit voice aggregated 
with data in a packetized form for communication over 
packetized networks. Delays in processing the packetized 
Voice signal tend to result in the degradation of signal quality 
on receiving ends. 
0007. It is desirable to provide improved processing of 
Voice and data signals to enhance the quality of voice and 
data communication over packetized networks. It is desir 
able to improve the efficiency of using computing resources 
when performing signal processing functions. 

BRIEF SUMMARY OF THE INVENTION 

0008 Briefly, the present invention includes a method, 
apparatus and system as described in the claims. Multiple 
application specific signal processor (ASSP) having the 
instruction set architecture of the present invention, includ 
ing the dyadic DSP instructions, are provided within gate 
ways in communication systems to provide improved voice 
and data communication over a packetized network. Each 
ASSP includes a serial interface, a buffer memory, and four 
core processors for each to simultaneously process multiple 
channels of voice or data. Each core processor preferably 
includes a reduced instruction set computer (RISC) proces 
sor and four signal processing units (SPs). Each SP includes 
multiple arithmetic blocks to simultaneously process mul 
tiple Voice and data communication signal samples for 



US 2006/0112260 A1 

communication over IP, ATM, Frame Relay or other pack 
etized network. The four signal processing units can execute 
the digital signal processing algorithms in parallel. Each 
ASSP is flexible and can be programmed to perform many 
network functions or data/voice processing functions, 
including Voice and data compression/decompression in 
telecommunications systems (such as CODECs) particularly 
packetized telecommunication networks, simply by altering 
the Software program controlling the commands executed by 
the ASSP. 

0009. An instruction set architecture for the ASSP is 
tailored to digital signal processing applications including 
audio and speech processing Such as compression/decom 
pression and echo cancellation. The instruction set architec 
ture implemented with the ASSP, is adapted to DSP algo 
rithmic structures. This adaptation of the ISA of the present 
invention to DSP algorithmic structures balances the ease of 
implementation, processing efficiency, and programmability 
of DSP algorithms. The instruction set architecture may be 
viewed as being two component parts, one (RISC ISA) 
corresponding to the RISC control unit and another (DSP 
ISA) to the DSP datapaths of the signal processing units 300. 
The RISC ISA is a register based architecture including 
16-registers within the register file 413, while the DSP ISA 
is a memory based architecture with efficient digital signal 
processing instructions. The instruction word for the ASSP 
is typically 20 bits but can be expanded to 40-bits to control 
two instructions to be executed in series or parallel, such as 
two RISC control instructions and extended DSP instruc 
tions. The instruction set architecture of the ASSP has four 
distinct types of instructions to optimize the DSP operational 
mix. These are (1) a 20-bit DSP instruction that uses mode 
bits in control registers (i.e. mode registers), (2) a 40-bit DSP 
instruction having control extensions that can override mode 
registers, (3) a 20-bit dyadic DSP instruction, and (4) a 40 
bit dyadic DSP instruction. These instructions are for accel 
erating calculations within the core processor of the type 
where D=(A op1 B) op2 C and each of “op1 and “op2 
can be a multiply, add, extremum (min/max) or other primi 
tive DSP class of operation on the three operands A, B, and 
C. The ISA of the ASSP which accelerates these calculations 
allows efficient chaining of different combinations of opera 
tions. All DSP instructions of the instruction set architecture 
of the ASSP are dyadic DSP instructions to execute two 
operations in one instruction with one cycle throughput. A 
dyadic DSP instruction is a combination of two basic DSP 
operations in one instruction and includes a main DSP 
operation (MAIN OP) and a sub DSP operation (SUBOP). 
Generally, the instruction set architecture of the present 
invention can be generalized to combining any pair of basic 
DSP operations to provide very powerful dyadic instruction 
combinations. The DSP arithmetic instructions or operations 
in the preferred embodiment include a multiply instruction 
(MULT), an addition instruction (ADD), a minimize/maxi 
mize instruction (MIN/MAX) also referred to as an extrema 
instruction, and a no operation instruction (NOP) each 
having an associated operation code (“opcode'). The present 
invention efficiently executes these dyadic DSP instructions 
by means of the instruction set architecture and the hardware 
architecture of the application specific signal processor. For 
example, the DSP instructions can process vector data or 
Scalar data automatically using a single instruction and 
provide the appropriate vector or scalar output results. 

May 25, 2006 

BRIEF DESCRIPTIONS OF THE DRAWINGS 

0010 FIG. 1A is a block diagram of a system utilizing 
the present invention. 
0011 FIG. 1B is a block diagram of a printed circuit 
board utilizing the present invention within the gateways of 
the system in FIG. 1A. 
0012 FIG. 2 is a block diagram of the Application 
Specific Signal Processor (ASSP) of the present invention. 

0013 FIG. 3 is a block diagram of an instance of the core 
processors within the ASSP of the present invention. 
0014 FIG. 4 is a block diagram of the RISC processing 
unit within the core processors of FIG. 3. 
0015 FIG. 5A is a block diagram of an instance of the 
signal processing units within the core processors of FIG. 3. 

0016 FIG. 5B is a more detailed block diagram of FIG. 
5A illustrating the bus structure of the signal processing unit. 

0017 FIG. 6A is an exemplary instruction sequence 
illustrating a program model for DSP algorithms employing 
the instruction set architecture of the present invention. 
0018 FIG. 6B is a chart illustrating the permutations of 
the dyadic DSP instructions. 

0019 FIG. 6G is an exemplary bitmap for a control 
extended dyadic DSP instruction. 
0020 FIG. 6D is an exemplary bitmap for a non-ex 
tended dyadic DSP instruction. 

0021 FIG. 6E and 6F list the set of 20-bit instructions 
for the ISA of the present invention. 

0022 FIG. 6G lists the set of extended control instruc 
tions for the ISA of the present invention. 

0023 FIG. 6H lists the set of 40-bit DSP instructions for 
the ISA of the present invention. 

0024 FIG. 6I lists the set of addressing instructions for 
the ISA of the present invention. 

0025 FIG. 7 is a block diagram illustrating the instruc 
tion decoding and configuration of the functional blocks of 
the signal processing units. 

0026. Like reference numbers and designations in the 
drawings indicate like elements providing similar function 
ality. A letter after a reference designator number represents 
an instance of an element having the reference designator 
number. 

DETAILED DESCRIPTION OF THE 
PREFERRED EMBODIMENT 

0027. In the following detailed description of the present 
invention, numerous specific details are set forth in order to 
provide a thorough understanding of the present invention. 
However, it will be obvious to one skilled in the art that the 
present invention may be practiced without these specific 
details. In other instances well known methods, procedures, 
components, and circuits have not been described in detail 
So as not to unnecessarily obscure aspects of the present 
invention. Furthermore, the present invention will be 



US 2006/0112260 A1 

described in particular embodiments but may be imple 
mented in hardware, Software, firmware or a combination 
thereof 

0028 Multiple application specific signal processors 
(ASSPs) having the instruction set architecture of the 
present invention, including dyadic DSP instructions, are 
provided within gateways in communication systems to 
provide improved Voice and data communication over a 
packetized network. Each ASSP includes a serial interface, 
a buffer memory and four core processors in order to 
simultaneously process multiple channels of Voice or data. 
Each core processor preferably includes a reduced instruc 
tion set computer (RISC) processor and four signal process 
ing units (SPs). Each SP includes multiple arithmetic blocks 
to simultaneously process multiple voice and data commu 
nication signal samples for communication over IP, ATM, 
Frame Relay, or other packetized network. The four signal 
processing units can execute digital signal processing algo 
rithms in parallel. Each ASSP is flexible and can be pro 
grammed to perform many network functions or data/voice 
processing functions, including Voice and data compression/ 
decompression in telecommunication systems (such as 
CODECs), particularly packetized telecommunication net 
works, simply by altering the Software program controlling 
the commands executed by the ASSP. 
0029. An instruction set architecture for the ASSP is 
tailored to digital signal processing applications including 
audio and speech processing such as compression/decom 
pression and echo cancellation. The instruction set architec 
ture implemented with the ASSP, is adapted to DSP algo 
rithmic structures. This adaptation of the ISA of the present 
invention to DSP algorithmic structures balances the ease of 
implementation, processing efficiency, and programmability 
of DSP algorithms. The instruction set architecture may be 
viewed as being two component parts, one (RISC ISA) 
corresponding to the RISC control unit and another (DSP 
ISA) to the DSP datapaths of the signal processing units 300. 
The RISC ISA is a register based architecture including 
16-registers within the register file 413, while the DSP ISA 
is a memory based architecture with efficient digital signal 
processing instructions. The instruction word for the ASSP 
is typically 20 bits but can be expanded to 40-bits to control 
two instructions to the executed in series or parallel. Such as 
two RISC control instruction and extended DSP instructions. 
The instruction set architecture of the ASSP has four distinct 
types of instructions to optimize the DSP operational mix. 
These are (1) a 20-bit DSP instruction that uses mode bits in 
control registers (i.e. mode registers), (2) a 40-bit DSP 
instruction having control extensions that can override mode 
registers, (3) a 20-bit dyadic DSP instruction, and (4) a 40 
bit dyadic DSP instruction. These instructions are for accel 
erating calculations within the core processor of the type 
where D=(A op1 B) op2 C and each of “op 1 and “op2 
can be a multiply, add or extremum (min/max) class of 
operation on the three operands A, B, and C. The ISA of the 
ASSP which accelerates these calculations allows efficient 
chaining of different combinations of operations. 

0030 All DSP instructions of the instruction set archi 
tecture of the ASSP are dyadic DSP instructions to execute 
two operations in one instruction with one cycle throughput. 
A dyadic DSP instruction is a combination of two DSP 
instructions or operations in one instruction and includes a 
main DSP operation (MAIN OP) and a sub DSP operation 

May 25, 2006 

(SUBOP). Generally, the instruction set architecture of the 
present invention can be generalized to combining any pair 
of basic DSP operations to provide very powerful dyadic 
instruction combinations. The DSP arithmetic operations in 
the preferred embodiment include a multiply instruction 
(MULT), an addition instruction (ADD), a minimize/maxi 
mize instruction (MIN/MAX) also referred to as an extrema 
instruction, and a no operation instruction (NOP) each 
having an associated operation code (“opcode'). 
0031. The present invention efficiently executes these 
dyadic DSP instructions by means of the instruction set 
architecture and the hardware architecture of the application 
specific signal processor. 

0032 Referring now to FIG. 1A, a voice and data 
communication system 100 is illustrated. The system 100 
includes a network 101 which is a packetized or packet 
switched network, such as IP, ATM, or frame relay. The 
network 101 allows the communication of voice/speech and 
data between endpoints in the system 100, using packets. 
Data may be of any type including audio, video, email, and 
other generic forms of data. At each end of the system 100, 
the voice or data requires packetization when transceived 
across the network 101. The system 100 includes gateways 
104A, 104B, and 104C in order to packetize the information 
received for transmission across the network 101. Agateway 
is a device for connecting multiple networks and devices 
that use different protocols. Voice and data information may 
be provided to a gateway 104 from a number of different 
Sources in a variety of digital formats. In system 100, analog 
voice signals are transceived by a telephone 108. In system 
100, digital voice signals are transceived at public branch 
exchanges (PBX) 112A and 112B which are coupled to 
multiple telephones, fax machines, or data modems. Digital 
voice signals are transceived between PBX 112A and PBX 
112B with gateways 104A and 104C, respectively. Digital 
data signals may also be transceived directly between a 
digital modem 114 and a gateway 104A. Digital modem 114 
may be a Digital Subscriber Line (DSL) modem or a cable 
modem. Data signals may also be coupled into system 100 
by a wireless communication system by means of a mobile 
unit 118 transceiving digital signals or analog signals wire 
lessly to a base station 116. Base station 116 converts analog 
signals into digital signals or directly passes the digital 
signals to gateway 104B. Data may be transceived by means 
of modem signals over the plain old telephone system 
(POTS) 107B using a modem 110. Modem signals commu 
nicated over POTS 107B are traditionally analog in nature 
and are coupled into a switch 106B of the public switched 
telephone network (PSTN). At the switch 106B, analog 
signals from the POTS 107B are digitized and transceived to 
the gateway 104B by time division multiplexing (TDM) 
with each time slot representing a channel and one DSO 
input to gateway 104B. At each of the gateways 104A, 104B 
and 104C, incoming signals are packetized for transmission 
across the network 101. Signals received by the gateways 
104A, 104B and 104C from the network 101 are depack 
etized and transcoded for distribution to the appropriate 
destination. 

0033 Referring now to FIG. 1B, a network interface card 
(NIC) 130 of a gateway 104 is illustrated. The NIC 130 
includes one or more application-specific signal processors 
(ASSPs) 150A-150N. The number of ASSPs within a gate 
way is expandable to handle additional channels. Line 



US 2006/0112260 A1 

interface devices 131 of NIC 130 provide interfaces to 
various devices connected to the gateway, including the 
network 101. In interfacing to the network 101, the line 
interface devices packetize data for transmission out on the 
network 101 and depacketize data which is to be received by 
the ASSP devices. Line interface devices 131 process infor 
mation received by the gateway on the receive bus 134 and 
provides it to the ASSP devices. Information from the ASSP 
devices 150 is communicated on the transmit bus 132 for 
transmission out of the gateway. A traditional line interface 
device is a multi-channel serial interface or a UTOPIA 
device. The NIC 130 couples to a gateway backplane/ 
network interface bus 136 within the gateway 104. Bridge 
logic 138 transceives information between bus 136 and NIC 
130. Bridge logic 138 transceives signals between the NIC 
130 and the backplane/network interface bus 136 onto the 
hostbus 139 for communication to either one or more of the 
ASSP devices 150A-150N, a host processor 140, or a host 
memory 142. Optionally coupled to each of the one or more 
ASSP devices 150A through 150N (generally referred to as 
ASSP 150) are optional local memory 145A through 145N 
(generally referred to as optional local memory 145), respec 
tively. Digital data on the receive bus 134 and transmit bus 
132 is preferably communicated in bit wide fashion. While 
internal memory within each ASSP may be sufficiently large 
to be used as a scratchpad memory, optional local memory 
145 may be used by each of the ASSPs 150 if additional 
memory space is necessary. 
0034). Each of the ASSPs 150 provide signal processing 
capability for the gateway. The type of signal processing 
provided is flexible because each ASSP may execute differ 
ing signal processing programs. Typical signal processing 
and related voice packetization functions for an ASSP 
include (a) echo cancellation; (b) Video, audio, and Voice/ 
speech compression/decompression (voice/speech coding 
and decoding); (c) delay handling (packets, frames); (d) loss 
handling; (e) connectivity (LAN and WAN): (f) security 
(encryption/decryption), (g) telephone connectivity: (h) pro 
tocol processing (reservation and transport protocols, RSVP 
TCP/IP, RTP, UDP for IP, and AAL2, AAL1, AAL5 for 
ATM); (i) filtering; () Silence Suppression; (k) length han 
dling (frames, packets); and other digital signal processing 
functions associated with the communication of Voice and 
data over a communication system. Each ASSP 150 can 
perform other functions in order to transmit Voice and data 
to the various endpoints of the system 100 within a packet 
data stream over a packetized network. 
0035) Referring now to FIG. 2, a block diagram of the 
ASSP 150 is illustrated. At the heart of the ASSP 150 are 
four core processors 200A-200D. Each of the core proces 
sors 200A-200D is respectively coupled to a data memory 
202A-202D and a program memory 204A-204D. Each of 
the core processors 200A-200D communicates with outside 
channels through the multi-channel serial interface 206, the 
multi-channel memory movement engine 208, buffer 
memory 210, and data memory 202A-202D. The ASSP 150 
further includes an external memory interface 212 to couple 
to the external optional local memory 145. The ASSP 150 
includes an external host interface 214 for interfacing to the 
external host processor 140 of FIG. 1B. Further included 
within the ASSP 150 are timers 216, clock generators and a 
phase-lock loop 218, miscellaneous control logic 220, and a 
Joint Test Action Group (JTAG) test access port 222 for 
boundary scan testing. The multi-channel serial interface 

May 25, 2006 

206 may be replaced with a UTOPIA parallel interface for 
some applications such as ATM. The ASSP 150 further 
includes a microcontroller 223 to perform process schedul 
ing for the core processors 200A-200D and the coordination 
of the data movement within the ASSP as well as an interrupt 
controller 224 to assist in interrupt handling and the control 
of the ASSP 150. 

0036 Referring now to FIG. 3, a block diagram of the 
core processor 200 is illustrated coupled to its respective 
data memory 202 and program memory 204. Core processor 
200 is the block diagram for each of the core processors 
200A-200D. Data memory 202 and program memory 204 
refers to a respective instance of data memory 202A-202D 
and program memory 204A-204D, respectively. The core 
processor 200 includes four signal processing units 
SP0300A, SP1300B, SP2300C and SP3300D. The core 
processor 200 further includes a reduced instruction set 
computer (RISC) control unit 302 and a pipeline control unit 
304. The signal processing units 300A-300D perform the 
signal processing tasks on data while the RISC control unit 
302 and the pipeline control unit 304 perform control tasks 
related to the signal processing function performed by the 
SPs 300A-300D. The control provided by the RISC control 
unit 302 is coupled with the SPs 300A-300D at the pipeline 
level to yield a tightly integrated core processor 200 that 
keeps the utilization of the signal processing units 300 at a 
very high level. 
0037. The signal processing tasks are performed on the 
datapaths within the signal processing units 300A-300D. 
The nature of the DSP algorithms are such that they are 
inherently vector operations on streams of data, that have 
minimal temporal locality (data reuse). Hence, a data cache 
with demand paging is not used because it would not 
function well and would degrade operational performance. 
Therefore, the signal processing units 300A-300D are 
allowed to access vector elements (the operands) directly 
from data memory 202 without the overhead of issuing a 
number of load and store instructions into memory resulting, 
in very efficient data processing. Thus, the instruction set 
architecture of the present invention having a 20 bit instruc 
tion word which can be expanded to a 40 bit instruction 
word, achieves better efficiencies than VLIW architectures 
using 256-bits or higher instruction widths by adapting the 
ISA to DSP algorithmic structures. The adapted ISA leads to 
very compact and low-power hardware that can scale to 
higher computational requirements. The operands that the 
ASSP can accommodate are varied in data type and data 
size. The data type may be real or complex, an integer value 
or a fractional value, with vectors having multiple elements 
of different sizes. The data size in the preferred embodiment 
is 64 bits but larger data sizes can be accommodated with 
proper instruction coding. 
0038 Referring now to FIG. 4, a detailed block diagram 
of the RISC control unit 302 is illustrated. RISC control unit 
302 includes a data aligner and formatter 402, a memory 
address generator 404, three adders 406A-406C, an arith 
metic logic unit (ALU) 408, a multiplier 410, a barrel shifter 
412, and a register file 413. The register file 413 points to a 
starting memory location from which memory address gen 
erator 404 can generate addresses into data memory 202. 
The RISC control unit 302 is responsible for supplying 
addresses to data memory so that the proper data stream is 
fed to the signal processing units 300A-300D. The RISC 



US 2006/0112260 A1 

control unit 302 is a register to register organization with 
load and store instructions to move data to and from data 
memory 202. Data memory addressing is performed by 
RISC control unit using a 32-bit register as a pointer that 
specifies the address, post-modification offset, and type and 
permute fields. The type field allows a variety of natural DSP 
data to be supported as a “first class citizen' in the archi 
tecture. For instance, the complex type allows direct opera 
tions on complex data stored in memory removing a number 
of bookkeeping instructions. This is useful in Supporting 
QAM demodulators in data modems very efficiently. 
0039) Referring now to FIG. 5A, a block diagram of a 
signal processing unit 300 is illustrated which represents an 
instance of the SPs 300A-300D. Each of the signal process 
ing units 300 includes a data typer and aligner 502, a first 
multiplier M1504A, a compressor 506, a first adder 
A1510A, a second adder A2510B, an accumulator register 
512, a third adder A3510C, and a second multiplier 
M2504B. Adders 510A-510C are similar in Structure and are 
generally referred to as adder 510. Multipliers 504A and 
504B are similar in structure and generally referred to as 
multiplier 504. Each of the multipliers 504A and 504B have 
a multiplexer 514A and 514B respectively at its input stage 
to multiplex different inputs from different busses into the 
multipliers. Each of the adders 510A, 510B, 510C also have 
a multiplexer 520A, 520B, and 520C respectively at its input 
stage to multiplex different inputs from different busses into 
the adders. These multiplexers and other control logic allow 
the adders, multipliers and other components within the 
signal processing units 300A-300C to be flexibly intercon 
nected by proper selection of multiplexers. In the preferred 
embodiment, multiplier M1504A, compressor 506, adder 
A1510A, adder A2510B and accumulator 512 can receive 
inputs directly from external data buses through the data 
typer and aligner 502. In the preferred embodiment, adder 
510C and multiplier M2504B receive inputs from the accu 
mulator 512 or the outputs from the execution units multi 
plier M1504A, compressor 506, adder A1510A, and adder 
A251OB. 

0040 Program memory 204 couples to the pipe control 
304 which includes an instruction buffer that acts as a local 
loop cache. The instruction buffer in the preferred embodi 
ment has the capability of holding four instructions. The 
instruction buffer of the pipe control 304 reduces the power 
consumed in accessing the main memories to fetch instruc 
tions during the execution of program loops. 
0041) Referring now to FIG. 5B, a more detailed block 
diagram of the functional blocks and the bus structure of the 
signal processing unit is illustrated. Dyadic DSP instructions 
are possible because of the structure and functionality pro 
vided in each signal processing unit. Output signals are 
coupled out of the signal processor 300 on the Z output bus 
532 through the data typer and aligner 502. Input signals are 
coupled into the signal processor 300 on the X input bus 531 
and Y input bus 533 through the data typer and aligner 502. 
Internally, the data typer and aligner 502 has a different data 
bus to couple to each of multiplier M1504A, compressor 
506, adder A1510A, adder A2510B, and accumulator reg 
ister AR 512. While the data typer and aligner 502 could 
have data busses coupling to the adder A3510C and the 
multiplier M2504B, in the preferred embodiment it does not 
in order to avoid extra data lines and conserve area usage of 
an integrated circuit. Output data is coupled from the accu 

May 25, 2006 

mulator register AR 512 into the data typer and aligner 502. 
Multiplier M1504A has buses to couple its output into the 
inputs of the compressor 506, adder A1510A, adder 
A2510B, and the accumulator registers AR 512. Compressor 
506 has buses to couple its output into the inputs of adder 
A1510A and adder A2510B. Adder A1510A has a bus to 
couple its output into the accumulator registers 512. Adder 
A2510B has buses to couple its output into the accumulator 
registers 512. Accumulator registers 512 has buses to couple 
its output into multiplier M2504B, adder A3510C, and data 
typer and aligner 502. Adder A3510C has buses to couple its 
output into the multiplier M2504B and the accumulator 
registers 512. Multiplier M2504B has buses to couple its 
output into the inputs of the adder A3510C and the accu 
mulator registers AR 512. 

Instruction Set Architecture 

0042. The instruction set architecture of the ASSP 150 is 
tailored to digital signal processing applications including 
audio and speech processing Such as compression/decom 
pression and echo cancellation. In essence, the instruction 
set architecture implemented with the ASSP 150, is adapted 
to DSP algorithmic structures. The adaptation of the ISA of 
the present invention to DSP algorithmic structures is a 
balance between ease of implementation, processing effi 
ciency, and programmability of DSP algorithms. The ISA of 
the present invention provides for data movement opera 
tions, DSP/arithmetic/logical operations, program control 
operations (such as function calls/returns, unconditional/ 
conditional jumps and branches), and system operations 
(such as privilege, interrupt/trap/hazard handling and 
memory management control). 

0043 Referring now to FIG. 6A, an exemplary instruc 
tion sequence 600 is illustrated for a DSP algorithm program 
model employing the instruction set architecture of the 
present invention. The instruction sequence 600 has an outer 
loop 601 and an inner loop 602. Because DSP algorithms 
tend to perform repetitive computations, instructions 60S 
within the inner loop 602 are executed more often than 
others. Instructions 603 are typically parameter setup code 
to set the memory pointers, provide for the setup of the outer 
loop 601, and other 2x20 control instructions. Instructions 
607 are typically context save and function return instruc 
tions or other 2x20 control instructions. Instructions 603 and 
607 are often considered overhead instructions which are 
typically infrequently executed. Instructions 604 are typi 
cally to provide the setup for the inner loop 602, other 
control through 2x20 control instructions, or offset exten 
sions for pointer backup. Instructions 606 typically provide 
tear down of the inner loop 602, other control through 2x20 
control instructions, and combining of datapath results 
within the signal processing units. Instructions 605 within 
the inner loop 602 typically provide inner loop execution of 
DSP operations, control of the four signal processing units 
300 in a single instruction multiple data execution mode, 
memory access for operands, dyadic DSP operations, and 
other DSP functionality through the 20/40 bit DSP instruc 
tions of the ISA of the present invention. Because instruc 
tions 605 are so often repeated, significant improvement in 
operational efficiency may be had by providing the DSP 
instructions, including general dyadic instructions and 
dyadic DSP instructions, within the ISA of the present 
invention. 



US 2006/0112260 A1 

0044) The instruction set architecture of the ASSP 150 
can be viewed as being two component parts, one (RISC 
ISA) corresponding to the RISC control unit and another 
(DSP ISA) to the DSP datapaths of the signal processing 
units 300. The RISC ISA is a register based architecture 
including sixteen registers within the register file 413, while 
the DSP ISA is a memory based architecture with efficient 
digital signal processing instructions. The instruction word 
for the ASSP is typically 20 bits but can be expanded to 
40-bits to control two RISC or DSP instructions to be 
executed in series or parallel, such as a RISC control 
instruction executed in parallel with a DSP instruction, or a 
40 bit extended RISC or DSP instruction. 

0045. The instruction set architecture of the ASSP 150 
has 4 distinct types of instructions to optimize the DSP 
operational mix. These are (1) a 20-bit DSP instruction that 
uses mode bits in control registers (i.e. mode registers), (2) 
a 40-bit DSP instruction having control extensions that can 
override mode registers, (3) a 20-bit dyadic DSP instruction, 
and (4) a 40 bit dyadic DSP instruction. These instructions 
are for accelerating calculations within the core processor 
200 of the type where D=(A op1 B) op2 C and each of 
“op1 and “op2 can be a multiply, add or extremum 
(min/max) class of operation on the three operands A, B, and 
C. The ISA of the ASSP 150 which accelerates these 
calculations allows efficient chaining of different combina 
tions of operations. Because these type of operations require 
three operands, they must be available to the processor. 
However, because the device size places limits on the bus 
structure, bandwidth is limited to two vector reads and one 
vector write each cycle into and out of data memory 202. 
Thus one of the operands, such as B or C. needs to come 
from another source within the core processor 200. The third 
operand can be placed into one of the registers of the 
accumulator 512 or the RISC register file 413. In order to 
accomplish this within the core processor 200 there are two 
subclasses of the 20-bit DSP instructions which are (1) A and 
B specified by a 4-bit specifier, and C and D by a 1-bit 
specifier and (2) A and C specified by a 4-bit specifier, and 
B and D by a 1 bit specifier. 
0046) Instructions for the ASSP are always fetched 
40-bits at a time from program memory with bit 39 and 19 
indicating the type of instruction. After fetching, the instruc 
tion is grouped into two sections of 20 bits each for 
execution of operations. In the case of 20-bit control instruc 
tions with parallel execution (bit 39=0, bit 19=0), the two 
20-bit sections are control instructions that are executed 
simultaneously. In the case of 20-bit control instructions for 
serial execution (bit 39=0, bit 19=1), the two 20-bit sections 
are control instructions that are executed serially. In the case 
of 20-bit DSP instructions for serial execution (bit 39=1, bit 
19=1), the two 20-bit sections are DSP instructions that are 
executed serially. In the case of 40-bit DSP instructions (bit 
39=1, bit 19=0), the two 20 bit sections form one extended 
DSP instruction which are executed simultaneously. 
0047. The ISA of the ASSP 150 is fully predicated 
providing for execution prediction. Within the 20-bit RISC 
control instruction word and the 40-bit extended DSP 
instruction word there are 2 bits of each instruction speci 
fying one of four predicate registers within the RISC control 
unit 302. Depending upon the condition of the predicate 
register, instruction execution can conditionally change base 
on its contents. 

May 25, 2006 

0048. In order to access operands within the data memory 
202 or registers within the accumulator 512 or register file 
413, a 6-bit specifier is used in the DSP extended instruc 
tions to access operands in memory and registers. Of the six 
bit specifier used in the extended DSP instructions, the MSB 
(Bit 5) indicates whether the access is a memory access or 
register access. In the preferred embodiment, if Bit 5 is set 
to logical one, it denotes a memory access for an operand. 
If Bit 5 is set to a logical Zero, it denotes a register access 
for an operand. If Bit 5 is set to 1, the contents of a specified 
register (rX where X: 0-7) are used to obtain the effective 
memory address and post-modify the pointer field by one of 
two possible offsets specified in one of the specified rX 
registers. If Bit 5 is set to 0, Bit 4 determines what register 
set has the contents of the desired operand. If Bit-4 is set to 
0, then the remaining specified bits 3:0 control access to the 
registers within the register file 413 or to registers within the 
signal processing units 300. 

DSP Instructions 

0049. There are four major classes of DSP instructions 
for the ASSP 150 these are 

0050. 1) Multiply (MULT): Controls the execution of the 
main multiplier connected to data buses from memory. 
Controls: Rounding, sign of multiply Operates on vector 
data specified through type field in address register 

0051) Second operation: Add, Sub, Min, Max in vector or 
Scalar mode 

0.052 2) Add (ADD): Controls the execution of the 
main-adder Controls: absolute value control of the inputs, 
limiting the result 

0053 Second operation: Add, add-sub, mult, mac, min, 
aX 

0054 3) Extremum (MIN/MAX): Controls the execution 
of the main-adder Controls: absolute value control of the 
inputs, Global or running max/min with T register, TR 
register recording control 

0055 Second operation: add, Sub, mult, mac, min, max 
0056 4) Misc: type-match and permute operations. 

0057 The ASSP 150 can execute these DSP arithmetic 
operations in vector or scalar fashion. In Scalar execution, a 
reduction or combining operation is performed on the vector 
results to yield a scalar result. It is common in DSP appli 
cations to perform Scalar operations, which are efficiently 
performed by the ASSP 150. 

0.058. The 20-bit DSP instruction words have 4-bit oper 
and specifiers that can directly access data memory using 8 
address registers (ro-r7) within the register file 413 of the 
RISC control unit 302. The method of addressing by the 20 
bit DSP instruction word is regular indirect with the address 
register specifying the pointer into memory, post-modifica 
tion value, type of data accessed and permutation of the data 
needed to execute the algorithm efficiently. All of the DSP 
instructions control the multipliers 504A-504B, adders 
510A-510C, compressor 506 and the accumulator 512, the 
functional units of each signal processing unit 300A-300D. 



US 2006/0112260 A1 

0059. In the 40 bit instruction word, the type of extension 
from the 20 bit instruction word falls into five categories: 
0060 1) Control and Specifier extensions that override 
the control bits in mode registers 
0061) 2) Type extensions that override the type specifier 
in address registers 
0062 3) Permute extensions that override the permute 
specifier for vector data in address registers 
0063 4) Offset extensions that can replace or extend the 
offsets specified in the address registers 
0064 5) DSP extensions that control the lower rows of 
functional units within a signal processing unit 300 to 
accelerate block processing. 
0065. The 40-bit control instructions with the 20 bit 
extensions further allow a large immediate value (16 to 20 
bits) to be specified in the instruction and powerful bit 
manipulation instructions. 
0.066 Efficient DSP execution is provided with 2x20-bit 
DSP instructions with the first 20-bits controlling the top 
functional units (adders 501A and 510B, multiplier 504A, 
compressor 506) that interface to data buses from memory 
and the second 20 bits controlling the bottom functional 
units (adder 510C and multiplier 504B) that use internal or 
local data as operands. The top functional units, also referred 
to as main units, reduce the inner loop cycles in the inner 
loop 602 by parallelizing across consecutive taps or sec 
tions. The bottom functional units cut the outer loop cycles 
in the outer loop 601 in half by parallelizing block DSP 
algorithms across consecutive samples. 
0067 Efficient DSP execution is also improved by the 
hardware architecture of the present invention. In this case, 
efficiency is improved in the manner that data is Supplied to 
and from data memory 202 to feed the four signal processing 
units 300 and the DSP functional units therein. The data 
highway is comprised of two buses, X bus 531 and Y bus 
533, for X and Y source operands, and one Z bus 532 for a 
result write. All buses, including X bus 531, Y bus 533, and 
Z bus 532, are preferably 64 bits wide. The buses are 
uni-directional to simplify the physical design and reduce 
transit times of data. In the preferred embodiment when in 
a 20 bit DSP mode, if the X and Y buses are both carrying 
operands read from memory for parallel execution in a 
signal processing unit 300, the parallel load field can only 
access registers within the register file 413 of the RISC 
control unit 302. Additionally, the four signal processing 
units 300A-300D in parallel provide four parallel MAC 
units (multiplier 504A, adder 510A, and accumulator 512) 
that can make simultaneous computations. This reduces the 
cycle count from 4 cycles ordinarily required to perform 
four MACs to only one cycle. 

Dyadic DSP Instructions 

0068 All DSP instructions of the instruction set archi 
tecture of the ASSP 150 are dyadic DSP instructions within 
the 20 bit or 40 bit instruction word. A dyadic DSP instruc 
tion informs the ASSP in one instruction and one cycle to 
perform two operations. Referring now to FIG. 6B is a chart 
illustrating the permutations of the dyadic DSP instructions. 
The dyadic DSP instruction 610 includes a main DSP 
operation 611 (MAIN OP) and a sub DSP operation 612 

May 25, 2006 

(SUBOP), a combination of two DSP instructions or opera 
tions in one dyadic instruction. Generally, the instruction set 
architecture of the present invention can be generalized to 
combining any pair of basic DSP operations to provide very 
powerful dyadic instruction combinations. Compound DSP 
operational instructions can provide uniform acceleration 
for a wide variety of DSP algorithms not just multiply 
accumulate intensive filters. The DSP instructions or opera 
tions in the preferred embodiment include a multiply 
instruction (MULT), an addition instruction (ADD), a mini 
mize/maximize instruction (MIN/MAX) also referred to as 
an extremainstruction, and a no operation instruction (NOP) 
each having an associated operation code (“opcode'). Any 
two DSP instructions can be combined together to form a 
dyadic DSP instruction. The NOP instruction is used for the 
MAIN OP or SUBOP when a single DSP operation is 
desired to be executed by the dyadic DSP instruction. There 
are variations of the general DSP instructions such as vector 
and Scalar operations of multiplication or addition, positive 
or negative multiplication, and positive or negative addition 
(i.e. Subtraction) 
0069. Referring now to FIG. 6C and FIG. 6D, bitmap 
syntax for an exemplary dyadic DSP instruction is illus 
trated. FIG. 6C illustrates bitmap syntax for a control 
extended dyadic DSP instruction while FIG. 6D illustrates 
bitmap syntax for a non-extended dyadic DSP instruction. In 
the non-extended bitmap syntax the instruction word is the 
twenty most significant bits of a forty bit word while the 
extended bitmap syntax has an instruction word offorty bits. 
The three most significant bits (MSBs), bits numbered 37 
through 39, in each indicate the MAIN OP instruction type 
while the SUB OP is located near the middle or end of the 
instruction bits at bits numbered 20 through 22. In the 
preferred embodiment, the MAIN OP instruction codes are 
000 for NOP. 101 for ADD, 110 for MIN/MAX, and 100 for 
MULT. The SUB OP code for the given DSP instruction 
varies according to what MAIN OP code is selected. In the 
case of MULT as the MAIN OP, the SUBOPs are 000 for 
NOP 001 or 010 for ADD, 100 or 011 for a negative ADD 
or subtraction, 101 or 110 for MIN, and 111 for MAX. In the 
preferred embodiment, the MAIN OP and the SUBOP are 
not the same DSP instruction although alterations to the 
hardware functional blocks could accommodate it. The 
lower twenty bits of the control extended dyadic DSP 
instruction, the extended bits, control the signal processing 
unit to perform rounding, limiting, absolute value of inputs 
for SUBOP or a global MIN/MAX operation with a register 
value. 

0070 The bitmap syntax of the dyadic DSP instruction 
can be converted into text syntax for program coding. Using 
the multiplication or MULT non-extended instruction as an 
example, its text syntax for multiplication or MULT is 

(Vmulvmuln).(vaddvSubvmaxsaddsSubSmax) da, 
SX, sa, sy,(ps0)|ps1) 

The “vmulvmuln” field refers to either positive vector 
multiplication or negative vector multiplication being 
selected as the MAIN OP. The next field, 
“vadd vsubvmax saddssubismax”, refers to either vector 
add, Vector Subtract, vector maximum, Scalar add, Scalar 
subtraction, or scalar maximum being selected as the SUB 
OP. The next field, “da', refers to selecting one of the 
registers within the accumulator for storage of results. The 
field “SX' refers to selecting a register within the RISC 



US 2006/0112260 A1 

register file 413 which points to a memory location in 
memory as one of the sources of operands. The field “sa' 
refers to selecting the contents of a register within the 
accumulator as one of the Sources of operands. The field 
“sy” refers to selecting a register within the RISC register 
file 413 which points to a memory location in memory as 
another one of the sources of operands. The field of 
".(ps0)ps1) refers to pair selection of keyword PS0 or 
PS1 specifying which are the source-destination pairs of a 
parallel-store control register. Referring now to FIG. 6E 
and 6F, lists of the set of 20-bit DSP and control instructions 
for the ISA of the present invention is illustrated. FIG. 6G 
lists the set of extended control instructions for the ISA of 
the present invention. FIG. 6H lists the set of 40-bit DSP 
instructions for the ISA of the present invention. FIG. 6 
lists the set of addressing instructions for the ISA of the 
present invention. 
0071 Referring now to FIG. 7, a block diagram illus 
trates the instruction decoding for configuring the blocks of 
the signal processing unit 300. The signal processor 300 
includes the final decoders 704A through 704N, and multi 
plexers 720A through 720N. The multiplexers 720A through 
720N are representative of the multiplexers 514, 516, 520, 
and 522 in FIG. 5B. The predecoding 702 is provided by the 
RISC control unit 302 and the pipe control 304. An instruc 
tion is provided to the predecoding 702 such as a dyadic DSP 
instruction 600. The predecoding 702 provides preliminary 
signals to the appropriate final decoders 704A through 704N 
on how the multiplexers 720A through 720N are to be 
selected for the given instruction. Referring back to FIG. 
5B, in a dyadic DSP instruction the MAIN OP generally, if 
not a NOP, is performed by the blocks of the multiplier 
M1504A, compressor 506, adder A1510A, and adder 
A2510B. The result is stored in one of the registers within 
the accumulator register AR 512. In the dyadic DSP instruc 
tion the SUBOP generally, if not a NOP, is performed by the 
blocks of the adder A3510C and the multiplier M2504B. For 
example, if the dyadic DSP instruction is to perform is an 
ADD and MULT, then the ADD operation of the MAIN OP 
is performed by the adder A1510A and the SUB OP is 
performed by the multiplier M1504A. The predecoding 720 
and the final decoders 704A through 704N appropriately 
select the respective multiplexers 720A through 720B to 
select the MAIN OP to be performed by the adder A1510A 
and the SUBOP to be performed by the multiplier M2504B. 
In the exemplary case, multiplexer 520A selects inputs from 
the data typer and aligner 502 in order for adder A1510A to 
perform the ADD operation, multiplexer 522 selects the 
output from adder 510A for accumulation in the accumulator 
512, and multiplexer 514B selects outputs from the accu 
mulator 512 as its inputs to perform the MULTSUBOP. The 
MAIN OP and SUBOP can be either executed sequentially 
(i.e. serial execution on parallel words) or in parallel (i.e. 
parallel execution on parallel words). If implemented 
sequentially, the result of the MAIN OP may be an operand 
of the SUB OP. The final decoders 704A through 704N have 
their own control logic to properly time the sequence of 
multiplexer selection for each element of the signal proces 
sor 300 to match the pipeline execution of how the MAIN 
OP and SUB OP are executed, including sequential or 
parallel execution. The RISC control unit 302 and the pipe 
control 304 in conjunction with the final decoders 704A 
through 704N pipelines instruction execution by pipelining 
the instruction itself and by providing pipelined control 

May 25, 2006 

signals. This allows for the data path to be reconfigured by 
the Software instructions each cycle. 
0072. As those of ordinary skill will recognize, the 
present invention has many advantages. One advantage of 
the present invention is that the ISA is adapted to DSP 
algorithmic structures providing compact hardware to con 
Sume low-power which can be scaled to higher computa 
tional requirements. Another advantage of the present inven 
tion is that the signal processing units have direct access to 
operands in memory to reduce processing overhead associ 
ated with load and store instructions. 

0073. Another advantage of the present invention is that 
pipelined instruction execution is provided so that instruc 
tions may be issued every cycle. Another advantage of the 
present invention is that the signal processing units can be 
configured cycle by cycle. 
0074 The preferred embodiments of the present inven 
tion are thus described. While the present invention has been 
described in particular embodiments, it may be implemented 
in hardware, software, firmware or a combination thereof 
and utilized in Systems, Subsystems, components or Sub 
components thereof. When implemented in software, the 
elements of the present invention are essentially the code 
segments to perform the necessary tasks. The program or 
code segments can be stored in a processor readable medium 
or transmitted by a computer data signal embodied in a 
carrier wave over a transmission medium or communication 
link. The “processor readable medium may include any 
medium that can store or transfer information. Examples of 
the processor readable medium include an electronic circuit, 
a semiconductor memory device, a ROM, a flash memory, 
an erasable ROM (EROM), a floppy diskette, a CD-ROM, 
an optical disk, a hard disk, a fiber optic medium, a radio 
frequency (RF) link, etc. The computer data signal may 
include any signal that can propagate over a transmission 
medium Such as electronic network channels, optical fibers, 
air, electromagnetic, RF links, etc. The code segments may 
be downloaded via computer networks such as the Internet, 
Intranet, etc. In any case, the present invention should not be 
construed as limited by Such embodiments, but rather con 
strued according to the claims that follow below. 

1-20. (canceled) 
21. A method of instruction execution for a signal pro 

cessor, the method comprising: 
writing a dyadic DSP instruction having a main operation 

and a Sub operation into a memory; 

reading the dyadic DSP instruction from the memory to 
begin execution of the main operation and the Sub 
operation; and 

addressing at least three operands for execution with the 
main operation and the Sub operation. 

22. The method of claim 21, further comprising: 
executing the main operation and the Sub operation using 

the at least three operands. 
23. The method of claim 22, further comprising: 

storing the results of the execution of the dyadic DSP 
instruction. 



US 2006/0112260 A1 

24. The method of claim 21, wherein, 
the addressing addresses a register for one source of one 

of the at least three operands. 
25. The method of claim 21, wherein, 
the addressing addresses a register that contains a pointer 

to an address into the memory for one source of one of 
the at least three operands. 

26. The method of claim 21, wherein, 
the addressing addresses the memory for one source of 

one of the at least three operands. 
27. The method of claim 21, wherein, 
the main operation and the Sub operation are two opera 

tions selected from the set of multiplication, addition, 
comparison with a minimum or maximum value, and 
no operation. 

28. A method in a signal processor, the method compris 
ing: in response to a dyadic DSP instruction, 

Selecting input and output data paths between a plurality 
of DSP functional blocks; 

executing a main operation of the dyadic DSP instruction 
on a first pair of operands using the plurality of DSP 
functional blocks; 

executing a sub operation of the dyadic DSP instruction 
on a second pair of operands using the plurality of DSP 
functional blocks; and 

May 25, 2006 

storing the results of the execution of the main operation 
and the sub operation of the dyadic DSP instruction. 

29. The method of claim 28, further comprising: 

prior to the executing, addressing at least three operands 
for execution with the main operation and the sub 
operation. 

30. The method of claim 29, wherein, 

one of the at least three operands for execution is a result 
of the execution of the main operation or the sub 
operation. 

31. The method of claim 28, wherein, 

the execution of the main operation and the Sub operation 
are performed in parallel during the same cycle. 

32. The method of claim 28, wherein, 

the execution of the main operation and the Sub operation 
are performed sequentially during different cycles. 

33. The method of claim 28, wherein, 

the main operation and the Sub operation are two opera 
tions selected from the set of multiplication, addition, 
comparison with a minimum or maximum value, and 
no operation. 


