ANTI-RORI ANTIBODIES AND USES THEREOF

Figure 1

Abstract: The invention relates to antibodies for inducing cell death by the specific binding of RORI, domains thereof or nucleotide molecules encoding RORI. There are also provided methods involving and uses of the antibodies of the invention.
ANTIROR1 ANTIBODIES AND USES THEREOF

The present invention relates to antibodies that inhibit ROR1 and are capable of inducing cell death by the specific binding of ROR1, domains thereof or nucleotide molecules encoding ROR1.

The work leading to this invention has received funding from the European Community's Seventh Framework Programme FP7/2007-2013/ under grant agreement No HEALTH-F5-2008-200755.

Chronic lymphocytic leukaemia (CLL) is a white blood cell cancer that is characterised by an abnormal neoplastic proliferation of B lymphocyte cells (B cells). The B cells of CLL differ from normal B cells in their activation and maturation stage and are in particular derived from antigen experienced B cells with different immunoglobulin heavy chain variable (IgVH) gene mutations (Chiorazzi N et al., N Engl J Med 2005;352:804-15). CLL patients with mutated IgVH genes have a better prognosis compared to patients with unmutated genes (Damle RN et al., Blood 1999;94:1840-7; Hamblin TJ et al., Blood 1999;94:1848-54).

Gene expression profiling studies have shown a 43.8 fold increase of the orphan receptor tyrosine kinase (RTK) ROR1 in CLL cells (Klein U et al., J Exp Med 2001;194:1625-38). Ror1 is a member of the RTK family of orphan receptors related to muscle specific kinase (MUSK) and Trk neurotrophin receptors (Glass DJ, et al., Cell 1996;85:513-23; Masiakowski P et al., J Biol Chem 1992;267:26181-90; Valenzuela DM et al., Neuron 1995;15:573-84).

Ror receptors are cell surface receptors participating in signal transduction, cell-cell interaction, regulation of cell proliferation, differentiation, cell metabolism and survival (Masiakowski P et al., Biol Chem 1992;267:26181-90; Yoda A et al., J
Recept Signal Transduct Res 2003;23:1-15). They are evolutionarily highly conserved between different species e.g. human, mouse, Drosophila, and C. elegans.

The human **ROR1** gene has a coding region of 2814 bp with a predicted 937 amino acids sequence and 105 kDa protein size including an Ig-like domain, cysteine-rich domain, kringle domain, tyrosine kinase domain, and proline-rich domain (Figure 1) (Yoda A et al., J Recept Signal Transduct Res 2003;23:1-15).

ROR1 is located on chromosomal region 1p31.3 (http://www.ensembl.org), a region where chromosomal aberrations are not frequently seen in haematological malignancies (Fig 2). The human **ROR1** is expressed in heart, lung, and kidney but less in placenta, pancreas and skeletal muscles (Reddy UR et al., Oncogene 1996;13:1555-9). **ROR1** was originally cloned from a neuroblastoma cell line (Masiakowski P et al., J Biol Chem 1992;267:26181-90) and subsequently a shorter form lacking the entire extracellular domain but containing the transmembrane domain was isolated from a foetal brain library. Truncated Ror1(t-Ror1) gene has been reported in foetal and adult human central nervous system, in human leukaemias, lymphoma cell lines, and in a variety of human cancers derived from neuroectoderm (Reddy U Ret al., Oncogene 1996;13:1555-9). A shorter transcript from exons 1-7 including a short part of intron 7 has also been described with a predicted length of 393 amino acids and a molecular weight of 44 kDa (Ensembl ID; ENSG0000001 85483).

In a first aspect of the invention there is provided anti-ROR1 antibody capable of inducing cell death in a cell expressing ROR1. The anti-ROR antibodies may
induce cell death directly or via different effector mechanisms, such as, antibody
dependent cell cytotoxicity (ADCC), complement dependent cytotoxicity (CDC) or
antibody dependent cellular phagocytosis (ADCP).

The antibody may act to reduce the amount of or action of ROR1. For example, the antibody may act directly by binding to ROR1 or a nucleotide sequence encoding ROR1. The antibody may alternatively act by preventing ROR1 interacting with molecules that it normally interacts with e.g. by blocking receptors, sequestering molecules that bind to or associate with ROR1, preventing insertion of ROR1 or its binders from inserting into a membrane, such as the cell membrane.

Preferably, the antibody binds specifically to either an extracellular domain of ROR1, an intracellular domain of ROR1 or to a nucleotide sequence encoding ROR1.

By antibody we mean complete antibodies and antigen binding fragments thereof. Such fragments are defined below.

Antibodies comprise two identical polypeptides of M, 50,000-70,000 (termed “heavy chains”) that are linked together by a disulphide bond, each of which is linked to one of an identical pair of polypeptides of M, 25,000 (termed “light chains”). There is considerable sequence variability between individual N-termini of heavy chains of different antibody molecules and between individual light chains of different antibody molecules and these regions have hence been termed “variable domains”. Conversely, there is considerable sequence similarity between individual C-termini of heavy chains of different antibody molecules and between individual light chains of different antibody molecules and these regions have hence been termed “constant domains”.

In general, an antibody molecule obtained from humans relates to any of the classes IgG, IgM, IgA, IgE and IgD, which differ from one another by the nature of the heavy chain present in the molecule. Certain classes have subclasses as well, such as IgG₁, IgG₂, and others. Furthermore, in humans, the light chain may
be a kappa chain or a lambda chain. Reference herein to antibodies includes a reference to all such classes, subclasses and types of human antibody species.

The antigen-binding site is formed from hyper-variable regions in the variable domains of a pair of heavy and light chains. The hyper-variable regions are also known as complementarity-determining regions (CDRs) and determine the specificity of the antibody for a ligand. The variable domains of the heavy chain (V_H) and light chain (V_L) typically comprise three CDRs, each of which is flanked by sequence with less variation, which are known as framework regions (FRs).

The variable heavy (V_H) and variable light (V_L) domains of the antibody are involved in antigen recognition, a fact first recognised by early protease digestion experiments. Further confirmation was found by "humanisation" of rodent antibodies. Variable domains of rodent origin may be fused to constant domains of human origin such that the resultant antibody retains the antigenic specificity of the rodent parented antibody (Morrison et al., 1984, Proc. Natl. Acad. Sci. USA, 81, 6851-6855).

That antigenic specificity is conferred by variable domains and is independent of the constant domains is known from experiments involving the bacterial expression of antibody fragments, all containing one or more variable domains. These molecules include Fab-like molecules (Better et al., 1988, Science, 240:1041). Fv molecules (Skerra et al., 1988, Science, 240, 1038); single-chain Fv (ScFv) molecules where the V_H and V_L partner domains are linked via a flexible oligopeptide (Bird et al., 1988, Science 242:423; Huston et al., 1988, Proc. Natl. Acad. Sci. USA, 85:5879) and single domain antibodies (dAbs) comprising isolated V domains (Ward et al., 1989 Nature 341, 544). A general review of the techniques involved in the synthesis of antibody fragments which retain their specific binding sites is to be found in Winter et al., 1991, Nature, 349, 293-299.

For the production of polyclonal antibodies, various suitable host animals (e.g., rabbit, goat, mouse or other mammal) may be immunized by one or more injections with the native protein, a synthetic variant thereof, or a derivative of the foregoing. An appropriate immunogenic preparation can contain, for example, the naturally occurring immunogenic protein, a chemically synthesized
polypeptide representing the immunogenic protein, or a recombinantly expressed immunogenic protein. Furthermore, the protein may be conjugated to a second protein known to be immunogenic in the mammal being immunized. Examples of such immunogenic proteins include but are not limited to keyhole limpet hemocyanin, serum albumin, bovine thyroglobulin, and soybean trypsin inhibitor. The preparation can further include an adjuvant. Various adjuvants used to increase the immunological response include, but are not limited to, Freund's (complete and incomplete), mineral gels (e.g., aluminum hydroxide), surface-active substances (e.g., lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, dinitrophenol, etc.), adjuvants usable in humans such as Bacille Calmette-Guerin and Corynebacterium parvum, or similar immunostimulatory agents. Additional examples of adjuvants that can be employed include MPL-TDM adjuvant (monophosphoryl Lipid A, synthetic trehalose dicorynomycolate).

The polyclonal antibody molecules directed against the immunogenic protein can be isolated from the mammal (e.g., from the blood) and further purified by well known techniques, such as affinity chromatography using protein A or protein G, which provide primarily the IgG fraction of immune serum. Subsequently, or alternatively, the specific antigen which is the target of the immunoglobulin sought, or an epitope thereof, may be immobilized on a column to purify the immune specific antibody by immunoaffinity chromatography. Purification of immunoglobulins is discussed, for example, by D. Wilkinson (The Scientist, published by The Scientist, Inc., Philadelphia Pa., Vol. 14, No. 8 (Apr. 17, 2000), pp. 25-28).

The term "monoclonal antibody" (mAb) or "monoclonal antibody composition", as used herein, refers to a population of antibody molecules that contain only one molecular species of antibody molecule consisting of a unique light chain gene product and a unique heavy chain gene product. In particular, the complementarity determining regions (CDRs) of the monoclonal antibody are identical in all the molecules of the population. MAbs thus contain an antigen-binding site capable of immunoreacting with a particular epitope of the antigen characterized by a unique binding affinity for it.
The antibody may be a human or humanised antibody or fragment thereof. The antibody may be a fragment including scFv molecules or Fab molecules.

By "ScFv molecules" we mean molecules wherein the V_H and V_L partner domains are linked via a flexible oligopeptide.

The advantages of using antibody fragments which have antigen-binding activity, rather than whole antibodies, are several-fold. The smaller size of the fragments may lead to improved pharmacological properties, such as better penetration of solid tissue. Effector functions of whole antibodies, such as complement binding, are removed. Fab, Fv, ScFv and dAb antibody fragments can all be expressed in and secreted from *Escherichia coli* (E. coli), thus allowing the facile production of large amounts of the said fragments.

Whole antibodies, and F(ab')2 fragments are "bivalent". By "bivalent" we mean that the said antibodies and F(ab')2 fragments have two antigen combining sites. In contrast, Fab, Fv, ScFv and dAb fragments are monovalent, having only one antigen combining site.

Methods for generating, isolating and using antibodies for a desired antigen or epitope are well known to those skilled in the relevant art. For example, an antibody may be raised in a suitable host animal (such as, for example, a mouse, rabbit or goat) using standard methods known in the art and either used as crude antisera or purified, for example by affinity purification. An antibody of desired specificity may alternatively be generated using well-known molecular biology methods, including selection from a molecular library of recombinant antibodies, or grafting or shuffling of complementarity-determining regions (CDRs) onto appropriate framework regions. Human antibodies may be selected from recombinant libraries and/or generated by grafting CDRs from non-human antibodies onto human framework regions using well-known molecular biology techniques.

The antibodies may be modified in a number of ways in order to enhance their properties either by improving binding affinity or specificity, or to carry effector molecules or detectable moieties. The antibodies may also be humanized
wherein such antibodies are suitable for administration to humans without engendering an immune response by the human against the administered immunoglobulin. Humanized forms of antibodies are chimeric immunoglobulins, immunoglobulin chains or fragments thereof (such as Fv, Fab, Fab’, F(ab’)2 or other antigen-binding subsequences of antibodies) that are principally comprised of the sequence of a human immunoglobulin, and contain minimal sequence derived from a non-human immunoglobulin. Humanization can be performed following the method of Winter and co-workers (Jones et al., Nature, 321:522-525 (1986); Riechmann et al., Nature, 332:323-327 (1988); Verhoeyen et al., Science, 239:1534-1536 (1988)), by substituting CDRs from another source into a human antibody.

Antibodies of one embodiment of the invention may possess the VH and VL amino acid sequences shown in figures 4 to 16. In particular, the antibodies may comprise the VH and VL sequence combinations of one of:

- ROR1-007-B03-VH
 ROR1-007-B03-VL
 (Figure 4)

- ROR1-007-C08-VH
 ROR1-007-C08-VL
 (Figure 5)

- ROR1-007-E06-VH
 ROR1-007-E06-VL
 (Figure 6)

- ROR1-007-H03-VH
 ROR1-007-H03-VL
 (Figure 7)

- ROR1-008-A03-VH
 ROR1-008-A03-VL
 (Figure 8)
The antibodies of the invention may also comprise the combination of a VH and VL chain each from a different pairs described in figures 4 to 16, by way of example (but not limiting to) VH from figure 4 and VL from figure 5.
The antibodies of the invention can alternatively be described as comprising at least one CDR selected from the CDRs shown in the VH and VL chains of figures 4 to 16, i.e. at least one of CDRH1, CDRH2, CDRH3, CDRL1, CDRL2, or CDRL3.

Preferably, there is 1, 2, 3, 4, 5, or 6 of the CDRs shown (highlighted) in figures 4 to 16. Where there is more than one CDR present, it is preferred that the CDRs are different and are selected separately from CDRH1, CDRH2, CDRH3, CDRL1, CDRL2, or CDRL3.

Antibodies of the invention also include those that compete against the antibodies having the sequences of figures 4 to 16, for binding of the same epitope of ROR1. Competing antibodies can be detected by any standard method including FACS or ELISA based methods of detecting competitive binding (see examples).

By epitope we mean the specific region of ROR1 to which the antibody binds.

By specific binding or specifically binding or specific for we mean that the variable regions of the antibodies of the invention recognize and bind polypeptides of the invention exclusively (i.e., able to distinguish the polypeptide of the invention from other similar polypeptides despite sequence identity, homology, or similarity found in the family of polypeptides)

The antibodies may also comprise the constant regions (CH and CL) shown in figure 3.

By extracellular domain we mean the part of a biological molecule that extends beyond the membrane surface of the cell, where said biological molecule is integrated in/embedded in the cell membrane. An example of such a biological molecule is a receptor which possess an extracellular portion to which ligands bind. If the polypeptide chain of the receptor crosses the bilayer several times, the external domain can comprise several "loops" sticking out of the membrane. Any one or combination of which may form a binding site for a ligand.
In one embodiment the extracellular domain to which the antibody binds has the amino acid sequence WNISSELNKDSYLTL.

Alternatively the intracellular domain to which the antibody binds has the amino acid sequence NKSQPYKIDSKQAS.

Identification of target domains and the production of biological inhibitors to such domains is described in more detail in DaneshManesh (2008) Int J. Cancer 123 p1190-1195.

Conveniently the antibody induces cell death in a cell expressing ROR1 upon specific binding of the antibody to an ROR1 molecule or domain thereof.

Preferably the antibody causes death of a cell expressing ROR1. By cell death we include all forms of cell death, including, but not limited to, apoptosis, necrosis, pyroptosis and autophagic cell death. Furthermore, cell death may occur via FcyR dependent mechanisms or through activation of the complement cascade.

Apoptosis (programmed cell death, type I), is the process by which cells deliberately destroy themselves by systematically dismantling their contents which are then taken up by surrounding cells.

Autophagic cell death (also know as cytoplasmic or programmed cell death, type II) is characterised by characterized by the formation of large vacuoles which eat away organelles in a specific sequence prior to the nucleus being destroyed.

Pyroptosis is a cell death pathway resulting from caspase-1 activity leading to membrane breakdown and proinflammatory cytokine processing and release.

Necrosis is premature cell death that occurs without the controlled systematic dismantling of the cell and its constituent parts. Typically necrosis is characterised by rupturing of organelles and leakage of enzymatic compounds such as lysozymes which then damage and cause necrosis of neighbouring cells.
FcyR mediated mechanisms include antibody dependent cell cytotoxicity (ADCC), resulting in lysis of target cells, and antibody dependent cellular phagocytosis (ADCP) resulting in the uptake and subsequent killing of the target cells by phagocytes.

Activation of the complement cascade results in disruption of cell membrane integrity and subsequent cell lysis, this is commonly known as complement dependent cytotoxicity (CDC).

Antibodies may be used in therapy - for example, a medicament comprising therapeutic antibodies may be introduced into a subject to modulate the immune response of that subject. For example, a therapeutic antibody specific for an antigen in the subject will stimulate an immune response to that antigen, thereby inducing and/or promoting an immune response and aiding recovery. Methods for administering therapeutic antibodies to a patient in need thereof are well known in the art.

In a second aspect of the invention there is provided a nucleotide sequence encoding an antibody of the first aspect.

The terms “nucleotide sequence” or “nucleic acid” or “polynucleotide” or “oligonucleotide” are used interchangeably and refer to a heteropolymer of nucleotides or the sequence of these nucleotides. These phrases also refer to DNA or RNA of genomic or synthetic origin which may be single-stranded or double-stranded and may represent the sense or the antisense strand, to peptide nucleic acid (PNA) or to any DNA-like or RNA-like material. In the sequences herein A is adenine, C is cytosine, T is thymine, G is guanine and N is A, C, G or T (U). It is contemplated that where the polynucleotide is RNA, the T (thymine) in the sequences provided herein is substituted with U (uracil). Generally, nucleic acid segments provided by this invention may be assembled from fragments of the genome and short oligonucleotide linkers, or from a series of oligonucleotides, or from individual nucleotides, to provide a synthetic nucleic acid which is capable of being expressed in a recombinant transcriptional unit comprising regulatory elements derived from a microbial or viral operon, or a eukaryotic gene.
Suitable nucleotide sequences are provided in figures 4 to 16:

ROR1-007-B03-VH
ROR1-007-B03-VL
(Figure 4)

ROR1-007-C08-VH
ROR1-007-C08-VL
(Figure 5)

ROR1-007-E06-VH
ROR1-007-E06-VL
(Figure 6)

ROR1-007-H03-VH
ROR1-007-H03-VL
(Figure 7)

ROR1-008-A03-VH
ROR1-008-A03-VL
(Figure 8)

ROR1-008-D04-VH
ROR1-008-D04-VL
(Figure 9)

ROR1-008-G04-VH
ROR1-008-G04-VL
(Figure 10)

ROR1-008-H06-VH
ROR1-008-H06-VL
(Figure 11)
Preferably the antibodies have an EC50 lower than 20 nM as measured in an ELISA based system measuring binding towards a recombinant protein.

In a third aspect of the invention there is provided an expression vector containing a nucleotide sequence as described in the second aspect of the invention, and which may be used to express an antibody of the invention.

Typical prokaryotic vector plasmids are: pUC18, pUC19, pBR322 and pBR329 available from Biorad Laboratories (Richmond, CA, USA); pTrc99A, pKK223-3, pKK233-3, pDR540 and pRIT5 available from Pharmacia (Piscataway, NJ, USA); pBS vectors, Phagescript vectors, Bluescript vectors, pNH8A, pNH16A, pNH18A, pNH46A available from Stratagene Cloning Systems (La Jolla, CA 92037, USA).

A typical mammalian cell vector plasmid is pSVL available from Pharmacia (Piscataway, NJ, USA). This vector uses the SV40 late promoter to drive expression of cloned genes, the highest level of expression being found in T antigen-producing
cells, such as COS-1 cells. An example of an inducible mammalian expression vector is pMSG, also available from Pharmacia (Piscataway, NJ, USA). This vector uses the glucocorticoid-inducible promoter of the mouse mammary tumour virus long terminal repeat to drive expression of the cloned gene.

Useful yeast plasmid vectors are pRS403-406 and pRS413-416 and are generally available from Stratagene Cloning Systems (La Jolla, CA 92037, USA). Plasmids pRS403, pRS404, pRS405 and pRS406 are Yeast Integrating plasmids (Yips) and incorporate the yeast selectable markers HIS3, TRP1, LEU2 and URA3. Plasmids pRS413-416 are Yeast Centromere plasmids (YCps).

Methods well known to those skilled in the art can be used to construct expression vectors containing the coding sequence and, for example appropriate transcriptional or translational controls. One such method involves ligation via homopolymer tails. Homopolymer polydA (or polydC) tails are added to exposed 3’ OH groups on the DNA fragment to be cloned by terminal deoxynucleotidyl transferases. The fragment is then capable of annealing to the polydT (or polydG) tails added to the ends of a linearised plasmid vector. Gaps left following annealing can be filled by DNA polymerase and the free ends joined by DNA ligase.

Another method involves ligation via cohesive ends. Compatible cohesive ends can be generated on the DNA fragment and vector by the action of suitable restriction enzymes. These ends will rapidly anneal through complementary base pairing and remaining nicks can be closed by the action of DNA ligase.

A further method uses synthetic molecules called linkers and adaptors. DNA fragments with blunt ends are generated by bacteriophage T4 DNA polymerase or E.coli DNA polymerase I which remove protruding 3’ termini and fill in recessed 3’ ends. Synthetic linkers, pieces of blunt-ended double-stranded DNA which contain recognition sequences for defined restriction enzymes, can be ligated to blunt-ended DNA fragments by T4 DNA ligase. They are subsequently digested with appropriate restriction enzymes to create cohesive ends and ligated to an expression vector with compatible termini. Adaptors are also chemically synthesised DNA fragments which contain one blunt end used for ligation but which also possess one preformed cohesive end.
Synthetic linkers containing a variety of restriction endonuclease sites are commercially available from a number of sources including International Biotechnologies Inc, New Haven, CN, USA.

A desirable way to modify the DNA encoding the polypeptide of the invention is to use the polymerase chain reaction as disclosed by Saiki et al (1988) Science 239, 487-491. In this method the DNA to be enzymatically amplified is flanked by two specific oligonucleotide primers which themselves become incorporated into the amplified DNA. The said specific primers may contain restriction endonuclease recognition sites which can be used for cloning into expression vectors using methods known in the art.

In a fourth aspect of the invention there is provided a host cell comprising a nucleotide sequence or expression vector as described in the second and third aspects of the invention.

The DNA is then expressed in a suitable host to produce a polypeptide comprising the compound of the invention. Thus, the DNA encoding the polypeptide constituting the compound of the invention may be used in accordance with known techniques, appropriately modified in view of the teachings contained herein, to construct an expression vector, which is then used to transform an appropriate host cell for the expression and production of the polypeptide of the invention. Such techniques include those disclosed in US Patent Nos. 4,440,859 issued 3 April 1984 to Rutter et al, 4,530,901 issued 23 July 1985 to Weissman, 4,582,800 issued 15 April 1986 to Crowl, 4,677,063 issued 30 June 1987 to Mark et al, 4,678,751 issued 7 July 1987 to Goeddel, 4,704,362 issued 3 November 1987 to Itakura et al, 4,710,463 issued 1 December 1987 to Murray, 4,757,006 issued 12 July 1988 to Toole, Jr. et al, 4,766,075 issued 23 August 1988 to Goeddel et al and 4,810,648 issued 7 March 1989 to Stalker, all of which are incorporated herein by reference.

The DNA encoding the polypeptide constituting the compound of the invention may be joined to a wide variety of other DNA sequences for introduction into an appropriate host. The companion DNA will depend upon the nature of the host, the
manner of the introduction of the DNA into the host, and whether episomal maintenance or integration is desired.

Generally, the DNA is inserted into an expression vector, such as a plasmid, in proper orientation and correct reading frame for expression. If necessary, the DNA may be linked to the appropriate transcriptional and translational regulatory control nucleotide sequences recognised by the desired host, although such controls are generally available in the expression vector. Thus, the DNA insert may be operatively linked to an appropriate promoter. Bacterial promoters include the E.coli lacI and lacZ promoters, the T3 and T7 promoters, the gpt promoter, the phage λ PR and PL promoters, the phoA promoter and the trp promoter. Eukaryotic promoters include the CMV immediate early promoter, the HSV thymidine kinase promoter, the early and late SV40 promoters and the promoters of retroviral LTRs. Other suitable promoters will be known to the skilled artisan. The expression constructs will desirably also contain sites for transcription initiation and termination, and in the transcribed region, a ribosome binding site for translation. (WO 98/16643)

The vector is then introduced into the host through standard techniques. Generally, not all of the hosts will be transformed by the vector and it will therefore be necessary to select for transformed host cells. One selection technique involves incorporating into the expression vector a DNA sequence marker, with any necessary control elements, that codes for a selectable trait in the transformed cell. These markers include dihydrofolate reductase, G418 or neomycin resistance for eukaryotic cell culture, and tetracyciin, kanamycin or ampicillin resistance genes for culturing in E.coli and other bacteria. Alternatively, the gene for such selectable trait can be on another vector, which is used to co-transform the desired host cell.

Host cells that have been transformed by the recombinant DNA of the invention are then cultured for a sufficient time and under appropriate conditions known to those skilled in the art in view of the teachings disclosed herein to permit the expression of the polypeptide, which can then be recovered.

The polypeptide of the invention can be recovered and purified from recombinant cell cultures by well-known methods including ammonium sulphate or ethanol precipitation, acid extraction, anion or cation exchange chromatography,
phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography and lectin chromatography. Most preferably, high performance liquid chromatography ("HPLC") is employed for purification.

Many expression systems are known, including (but not limited to) systems employing: bacteria (eg. E.coli and Bacillus subtilis) transformed with, for example, recombinant bacteriophage, plasmid or cosmid DNA expression vectors; yeasts (eg. Saccaromyces cerevisiae) transformed with, for example, yeast expression vectors; insect cell systems transformed with, for example, viral expression vectors (eg. baculovirus); plant cell systems transfected with, for example viral or bacterial expression vectors; animal cell systems transfected with, for example, adenovirus expression vectors.

The vectors can include a prokaryotic replicon, such as the Col E1 ori, for propagation in a prokaryote, even if the vector is to be used for expression in other, non-prokaryotic cell types. The vectors can also include an appropriate promoter such as a prokaryotic promoter capable of directing the expression (transcription and translation) of the genes in a bacterial host cell, such as E.coli, transformed therewith.

A promoter is an expression control element formed by a DNA sequence that permits binding of RNA polymerase and transcription to occur. Promoter sequences compatible with exemplary bacterial hosts are typically provided in plasmid vectors containing convenient restriction sites for insertion of a DNA segment of the present invention.

In a fifth aspect of the invention there is provided the use of an antibody as described in the first aspect of the invention in the induction of cell death.

In a sixth aspect of the invention there is provided a method of inducing cell death in one or more cells comprising exposing a cell expressing ROR1 to an antibody as described in the first aspect of the invention.
In a seventh aspect of the invention there is provided an antibody as described in the first aspect of the invention for use in medicine.

In an eighth aspect of the invention there is provided an antibody as described in the first aspect of the invention for treating Chronic Lymphocytic Leukaemia, Acute lymphocytic leukaemia, Acute myeloid leukaemia, non-Hodgkins lymphomas, chronic myeloid leukaemia, multiple myeloma, ovarian carcinoma, prostate cancer, breast cancer, melanoma, lung cancer, colorectal cancer, glioblastoma, pancreatic cancer, renal cell carcinoma, endometrial cancer, head and neck cancer and hepatocellular cancer.

By "treatment" we include the meanings that the number of cancer cells characterising the disease to be treated is reduced and/or further cancer cell growth is retarded and/or prevented and/or cancer cells are killed.

Chronic Lymphocytic Leukemia can be identified using the following criteria:

The World Health Organisation (WHO) Classification of Neoplasms of the Haematopoietic and Lymphoid Tissues (Harris NL et al., Histopathology 2000;36:69-86). The diagnosis of CLL (n-100) is based on immunophenotyping (CD5+/CD19+/CD23+/lgM+) and the presence of >5.0x10⁹/l lymphocytes in peripheral blood.

Patients with CLL are considered to have progressive disease according to a modification of the criteria of the NCI committee National Cancer Institute sponsored working group guidelines for chronic lymphocytic leukaemia: revised guidelines for diagnosis and treatment. Cheson B et al, Blood 87, 4990-4997, 1996, whereby if there was a progression during the preceding 3 months in disease-related anaemia (haemoglobin <10.0 g/dl), thrombocytopenia (<100x 10⁵/l) and/or an increase in spleen/liver/lymph-node size and/or more than a two-fold increase in the blood lymphocyte count. When these criteria are not fulfilled, the patients are considered as having non-progressive disease.

In a ninth aspect of the invention there is provided the use of an antibody as described in the first aspect of the invention in the manufacture of a medicament

The antibodies of the invention can be used to manufacture a pharmaceutical composition (medicament) that can be used to treat diseases such as Chronic Lymphocytic Leukaemia, Acute lymphocytic leukaemia, Acute myeloid leukaemia, non-Hodgkins lymphomas, chronic myeloid leukaemia, multiple myeloma, ovarian carcinoma, prostate cancer, breast cancer, melanoma, lung cancer, colorectal cancer, glioblastoma, pancreatic cancer and hepatocellular cancer.

In a tenth aspect of the invention there is provided a method of treating a disease comprising the step of administering to a subject an antibody as described in the first aspect of the invention, wherein the disease is selected from Chronic Lymphocytic Leukaemia, Acute lymphocytic leukaemia, Acute myeloid leukaemia, non-Hodgkins lymphomas, chronic myeloid leukaemia, multiple myeloma, ovarian carcinoma, prostate cancer, breast cancer, melanoma, lung cancer, colorectal cancer, glioblastoma, pancreatic cancer and hepatocellular cancer.

The term "subject" means all animals including humans. Examples of subjects include humans, cows, dogs, cats, goats, sheep, and pigs. The term "patient" means a subject having a disorder in need of treatment.

The disease to be treated may be progressive, i.e. that the disease worsens over time (i.e. is not stable or does not improve). In the case of CLL, patients are considered to have progressive disease if the following criteria were met: progression during the preceding 3 months in disease-related anaemia (haemoglobin <100 g/l), thrombocytopenia (<100 x 10⁹/l) and/or an increase in spleen/liver/lymph-node size and/or more than a 2-fold increase in the blood lymphocyte count, if not the patients were considered non-progressive.
In an eleventh aspect of the invention there is provided a pharmaceutical composition comprising an antibody as described in the first aspect of the invention and a pharmaceutically acceptable excipient, diluent or carrier.

The examples describe some methods of producing pharmaceutical formulations, however the skilled person will appreciate that the most appropriate formulation will depend on a number of factors including route of administration, patient type (e.g. patient age, weight/size).

Preferably the pharmaceutical composition induces cell death in a cell expressing ROR1.

In a twelfth aspect of the invention there is provided a kit of parts comprising:

(i) an antibody as described in the "first aspect of the invention or a pharmaceutical composition as described in the eleventh aspect of the invention;

(ii) apparatus for administering the antibody or pharmaceutical composition comprising the antibody; and

(iii) instructions for use.

EMBODIMENTS OF THE INVENTION

Embodiments of the invention are described in the following numbered paragraphs.

1. An anti-ROR1 antibody capable of inducing cell death in a cell expressing ROR1.

2. An antibody as described in paragraph 1 wherein the antibody binds specifically to either an extracellular domain of ROR1, an intracellular domain of ROR1 or to a nucleotide sequence encoding ROR1.
3. An antibody as described in paragraph 1 or 2 wherein the antibody is either a complete antibody or a fragment thereof.

4. An antibody as described in any previous paragraph wherein cell death is induced on specific binding of the antibody to ROR1 or the nucleotide sequence encoding ROR1.

5. An antibody as described in any of paragraphs 1 to 4 wherein the extracellular domain to which the antibody binds has the amino acid sequence WNISSELNKDSYLTL.

6. An antibody as described in any of paragraphs 1 to 4 wherein the intracellular domain to which the antibody binds has the amino acid sequence NKSQKPYKIDSKQAS.

7. An antibody as described in any previous paragraph comprising the combination of V_H and V_L region amino acid sequences shown in one of:

 - Figure 4 (ROR1-007-B03-VH and ROR1-007-B03-VL)
 - Figure 5 (ROR1-007-C08-VH and ROR1-007-C08-VL)
 - Figure 6 (ROR1-007-E06-VH and ROR1-007-E06-VL)
 - Figure 7 (ROR1-007-H03-VH and ROR1-007-H03-VL)
 - Figure 8 (ROR1-008-A03-VH and ROR1-008-A03-VL)
 - Figure 9 (ROR1-008-D04-VH and ROR1-008-D04-VL)
 - Figure 10 (ROR1-008-G04-VH and ROR1-008-G04-VL)
 - Figure 11 (ROR1-008-H06-VH and ROR1-008-H06-VL)
 - Figure 12 (ROR1-009-G03-VH and ROR1-009-G03-VL)
 - Figure 13 (ROR1-009-G1 1-VH and ROR1-009-G1 1-VL)
 - Figure 14 (ROR1-010-D05-VH and ROR1-010-D05-VL)
 - Figure 15 (ROR1-010-D06-VH and ROR1-010-D06-VL)
 - Figure 16 (ROR1-01 1-F01-VH and ROR1-01 1-F01-VL)
8. An antibody as described in any previous paragraph comprising the combination of all six CDR regions (CDRH1, CDRH2, CDRH3, CDRL1, CDRL2 and CDRL3) shown in one of:

 Figure 4 (ROR1-007-B03-VH and ROR1-007-B03-VL)
 Figure 5 (ROR1-007-C08-VH and ROR1-007-C08-VL)
 Figure 6 (ROR1-007-E06-VH and ROR1-007-E06-VL)
 Figure 7 (ROR1-007-H03-VH and ROR1-007-H03-VL)
 Figure 8 (ROR1-008-A03-VH and ROR1-008-A03-VL)
 Figure 9 (ROR1-008-D04-VH and ROR1-008-D04-VL)
 Figure 10 (ROR1-008-G04-VH and ROR1-008-G04-VL)
 Figure 11 (ROR1-008-H06-VH and ROR1-008-H06-VL)
 Figure 12 (ROR1-009-G03-VH and ROR1-009-G03-VL)
 Figure 13 (ROR1-009-G11-VH and ROR1-009-G11-VL)
 Figure 14 (ROR1-010-D05-VH and ROR1-010-D05-VL)
 Figure 15 (ROR1-010-D06-VH and ROR1-010-D06-VL)
 Figure 16 (ROR1-011-F01-VH and ROR1-011-F01-VL)

9. An antibody as described in any of paragraphs 1 to 8 comprising at least one, preferably 2, 3, 4, 5 or 6 of the CDR regions shown in figures 4 to 16:

 Figure 4 (ROR1-007-B03-VH and ROR1-007-B03-VL)
 Figure 5 (ROR1-007-C08-VH and ROR1-007-C08-VL)
 Figure 6 (ROR1-007-E06-VH and ROR1-007-E06-VL)
 Figure 7 (ROR1-007-H03-VH and ROR1-007-H03-VL)
 Figure 8 (ROR1-008-A03-VH and ROR1-008-A03-VL)
 Figure 9 (ROR1-008-D04-VH and ROR1-008-D04-VL)
10. An antibody as described in any of paragraphs 7 to 9 further comprising the constant regions C_H and C_L have the amino acid sequences as shown in figure 3.

11. An antibody as described in any previous paragraph having an EC50 lower than 20 nM as measured in an ELISA based system measuring binding towards a recombinant protein.

12. An antibody that competitively binds to the same epitope as the antibodies of paragraphs 1 to 11.

13. A nucleotide sequence encoding an antibody as described in any previous paragraph.

14. A nucleotide sequence as described in paragraph 13 wherein the nucleotide sequences are as shown in figures 4 to 16.

15. An expression vector containing a nucleotide sequence as described in paragraph 13 or 14.

16. A host cell comprising a nucleotide sequence or expression vector as described in paragraphs 13 to 15.
17. Use of an antibody as defined in paragraphs 1 to 12 in the induction of cell death of a cell.

18. A method of inducing cell death in one or more cells comprising exposing a cell expressing ROR1 to an antibody as defined in paragraphs 1 to 12.

19. An antibody as defined in paragraphs 1 to 12 for use in medicine.

22. A method of treating a disease comprising the step of administering to a subject an antibody as described in paragraphs 1 to 12, wherein the disease is selected from Chronic Lymphocytic Leukaemia, Acute lymphocytic leukaemia, Acute myeloid leukaemia, non-Hodgkin lymphomas, chronic myeloid, multiple myeloma, ovarian carcinoma, prostate cancer, breast cancer, melanoma, lung cancer, colorectal cancer, glioblastoma, pancreatic cancer, renal cell carcinoma, endometrial cancer, head and neck cancer and hepatocellular cancer and hepatocellular cancer.
23. An antibody, use or method as described in paragraphs 20 to 22 wherein
the disease is progressive.

24. An antibody, use or method as described in paragraphs 20 to 22 wherein
the disease is Chronic Lymphocytic Leukaemia.

25. A pharmaceutical composition comprising an antibody as defined in
paragraphs 1 to 12 and a pharmaceutically acceptable excipient, diluent
or carrier.

26. A pharmaceutical composition as described in Paragraph 25 which
induces cell death in a cell expressing ROR1.

27. A kit of parts comprising:

(i) an antibody as described in paragraphs 1 to 12 or a
pharmaceutical composition as described in paragraphs 25 or 26;

(ii) apparatus for administering the antibody or pharmaceutical
composition; and

(iii) instructions for use.

EXAMPLES

The following examples embody various aspects of the invention. It will be
appreciated that the specific antibodies and/or antigens used in the examples
serve to illustrate the principles of the invention and are not intended to limit its
scope.

The following examples are described with reference to the accompanying figures
in which:
Figure 1 - Schematic presentation of the ROR1 gene and the Ror1 protein.

The human ROR-1 gene has a coding region of 2814 bp which predicted 937 amino acids sequence and 105 kDa protein size including an Ig-like domain, cysteine-rich domain, kringle domain, tyrosine kinase domain, and proline-rich domain.

Positions of the antibody recognition site NKSQKPYKIDSQAS (Y) as well as the protein domains: Immunoglobulin like domain (Ig), cysteine rich domain (CRD), Kringle domain (Kr), transmembrane domain (TM), tyrosine kinase domain (TK), serine and threonine rich domain (S/T), and proline rich domain (P) are indicated.

Figure 2 - Map of human chromosome 1 indicating part of the genes overexpressed in B-CLL.

Figure 3 - Amino acid sequences of constant regions

Figures 4 to 16 - amino acid and nucleotide sequences encoding the variable regions of anti-ROR1 antibodies. CDR regions are highlighted in boxes (and labeled as CDRH1, CDRH2, CDRH3, CDRL1, CDRL2 or CDRL3), and mutations in the framework regions are also marked in bold.

Figure 4 - (ROR1-007-B03-VH and ROR1-007-B03-VL)
Figure 5 - (ROR1-007-C08-VH and ROR1-007-C08-VL)
Figure 6 - (ROR1-007-E06-VH and ROR1-007-E06-VL)
Figure 7 - (ROR1-007-H03-VH and ROR1-007-H03-VL)
Figure 8 - (ROR1-008-A03-VH and ROR1-008-A03-VL)
Figure 9 - (ROR1-008-D04-VH and ROR1-008-D04-VL)
Figure 10 - (ROR1-008-G04-VH and ROR1-008-G04-VL)
Figure 11 - (ROR1-008-H06-VH and ROR1-008-H06-VL)
Figure 12 - (ROR1-009-G03-VH and ROR1-009-G03-VL)
Figure 13 - (ROR1-009-G1 1-VH and ROR1-009-G1 1-VL)
Figure 14 - (ROR1-010-D05-VH and ROR1-010-D05-VL)
Figure 15 - (ROR1-010-D06-VH and ROR1-010-D06-VL)
Figure 16 - (ROR1-01-F01-VH and ROR1-01-F01-VL)

Figure 17. Antibodies of the invention specifically bind ROR1
The antibodies were shown to bind to ROR1 protein but not to control protein as assayed by ELISA.

Figure 18. ROR1 specific antibodies bind primary CLL cells
The antibodies bind CLL cells obtained from peripheral blood of two CLL patients as measured by FACS. Black lines show the geometric mean of the fluorescent signal and the grey line show the percentage of positively stained cells. Rituximab staining is used as positive control.

Figure 19. ROR1 specific antibodies do not bind primary PBMC’s from healthy volunteers
The antibodies do not bind PBMC’s cells obtained from peripheral blood of two healthy volunteers as measured by FACS. Black and white lines show the geometric mean of the fluorescent signal of the two different donors, and the grey lines show the percentage of positively stained cells.

Figure 20. ROR-1 specific antibodies induce apoptosis of primary CLL cells
The antibodies induce apoptosis of CLL cells obtained from peripheral blood of two CLL patients. The CLL cells are incubated in duplicates with ROR-1 specific antibodies at 1 μg/ml in the presence of crosslinking F(ab’)2 fragments for 16 h. Thereafter the cells are stained with AnnexinV, measuring early apoptotic cells, as well as SYTOX, measuring late apoptotic, necrotic or by other means cells with a leaky cell membrane. Unstained cells are thereby counted as viable. """" = p<0,001 , "" = p< 0,01 , " =p<0,05 as calculated by ANOVA using Bonferronis correction for multiple analyses. The cytotoxic agent Paclitaxel and the CD20 specific therapeutic anibody Rituximab are used as positive controls.
Figure 21. Examples of FACS pictures for determination of primary CLL cell
viability

Cells located in the lower left quadrant of each panel are viable. Cells in the lower right are early apoptotic, cells in the upper left have a permeabilized cell membrane and are therefore not viable, and cells in the upper right are considered as late apoptotic or necrotic.

Figure 22. ROR1 specific antibodies mediate NK dependent ADCC of primary patient CLL cells

Primary patient CLL cells were used as target cells and primary NK cells isolated from buffy coats as effector cells and used at an 1:40 ratio. Target cells are loaded with Calcein prior to the assay and released calcein in the media is used to measure NK cell mediated lysis. Figure shows data summarized from 3 different CLL patients and NK cells from in total 5 donors ± SEM.

Figure 23. ROR-1 specific antibodies deplete primary CLL cells transferred to immunodeficient mice.

Primary CLL cells isolated from patient 2 were transferred to immunodeficient NOD.SCID mice and treated with 10 mg/kg of the ROR-1 specific antibody 009-G03 on day 1 and 4 after transfer. At day 7, peritoneal fluid and spleens were collected and human CLL cells were quantified by triple staining for CD45, CD19 and CD5. The 009-G03 antibody significantly reduces the number of CLL cells in the peritoneal fluid. In addition, there is a very strong tendency to reduced numbers also in splenic tissue. N=4 mice / group *=p<0.05 as calculated by T test. Values in spleen are calculated using Mann-Whitney's test for non-parametric values (due to significant differences in variances).

Figure 24. ROR1 specific antibodies bind RPMI 8226 cells, a cell line for multiple myeloma.
The antibodies bind RPMI 8226 (ATCC Nr: CLL-155) cells as measured by FACS. Black lines show the geometric mean of the fluorescent signal and the grey line show the percentage of positively stained cells.

Figure 25. ROR-1 specific antibodies induce apoptosis of RPMI 8226 cells, a cell line representative of multiple myeloma.

The antibodies induce apoptosis of RPMI 8226 cells. The cell line is incubated in duplicates with two ROR-1 specific antibodies at 10 or 1 µg/ml in the presence of crosslinking F(ab')2 fragments for 16 h. Thereafter the cells are stained with AnnexinV, measuring early apoptotic cells, as well as SYTOX, measuring late apoptotic, necrotic or by other means cells with a leaky cell membrane. Unstained cells are thereby counted as viable. ** = p<0.001, * = p<0.01 as calculated by ANOVA using Bonferronis correction for multiple analyses. The cytotoxic agent Paclitaxel are used as positive control.

Figure 26. Examples of FACS pictures for determination of RPMI8226 cell viability.

Cells located in the lower left quadrant of each panel are viable. Cells in the lower right are early apoptotic, cells in the upper left have a permeabilized cell membrane and are therefore not viable, and cells in the upper right are considered as late apoptotic or necrotic.

Figure 27. ROR1 specific antibodies mediate NK dependent ADCC in MM cell line

The MM cell line RPMI-8226 was used as target cells and primary NK cells isolated from buffy coats as effector cells and used at an 1:40 ratio. Release of endogenous GADPH is used to measure lysis. Figure A and B shows data from triplicates ± STD using NK cells from two different donors respectively.

Figure 28. ROR1 specific antibodies bind A549 non-small cell lung cancer cells and DU145 prostate cancer cells and induce cell death.

Panel A. The antibodies bind A549 (ATCC Nr: CCL-185) and DU145 (ATCC Nr: HTB-81) cells as measured by FACS.
Panels B and C. Despite the rather weak binding, ROR1 specific antibodies induce significant cell death in the NSCLC and prostate cancer cell lines A549 and DU145 as measured by MultiTox-Glo Multiplex Cytotoxicity Assay suitable for adherent cells.

Figure 29. Affinity of 009-G03
Affinity (KD) of the 009-G03 antibody was determined to be 1.0 nM. Evaluation was done with a Scatchard plot of the 125I labelled ROR1 specific 009-G03 antibody binding to RPMI-8226. Figure A shows the saturated curve and figure B shows the scatchard plot.

Example 1 - Generation of Ror1 specific antibodies

Isolation of scFv antibody fragments

The n-CoDeR® scFv library (Biolinvent) was used to isolate scFv antibody fragments recognizing human ROR-1.

The phage library was used in a differential biopanning with CLL cells as target cells and an excess of B-cell depleted PBMC as competitor. After phage incubation, the cells were washed to remove unbound phages. Binding phages were eluted with trypsin and amplified in E.coli. Two consecutive bioppannings were performed and the resulting phage stock was either converted to scFv format or used in a third panning against recombinant human ROR-1 before conversion to scFv. E.coli was transformed with scFv bearing plasmids and individual scFv clones were expressed.

Identification of unique ROR-1 binding scFv

Converted scFv from the third panning run against recombinant human ROR-1 were assayed for binding to coated hROR-1 with murine IgG3 Fc tag but not to coated murine IgG3.
0.3 pmole/well of hROR or mlgG3 was coated to an ELISA plate and incubated overnight at +4°C. After washing, scFv supernatant was left to bind the coated plate for 1 h. Bound scFv was detected using alkaline phosphatase conjugated mouse anti-FLAG antibody (Sigma) followed by CDP star substrate (Tropix). ROR binding scFv were sequenced to identify unique clones using standard sequencing techniques and all unique clones were analyzed for cell binding as described below. All cell binding scFv clones were converted to IgG format.

Converted scFv from the second panning against CLL cells were assayed for binding to CLL cells but not to B-cell depleted PBMC. CLL cells or PBMC were blocked with human IgG purified from human serum (IVIG, Sigma) 0.2 µg/ml for 10 min at +4°C before addition of scFv supernatant for 1 h at +4°C.

After washing, scFv was detected using mouse anti-HIS (R&D Systems) followed by washing and detection with allophycocyanin conjugated anti-mouse F(ab)'2 antibody (Jackson Immunoresearch).

Finally, scFv binding was analyzed with flow cytometry. CLL binding scFv were sequenced to identify unique clones using standard sequencing techniques and all unique clones were analyzed for ROR binding in ELISA as described above.

IgG binding to ROR-1 in ELISA

Converted IgG clones were analysed for ROR binding in ELISA. Recombinant human ROR-1 with murine IgG3 Fc tag was used as target and mlgG3 as non-target. ROR-1 or mlgG3 was coated at 1 pmole/well in ELISA plates overnight at +4°C. IgG was serially diluted in PBS + 0.05% Tween and 0.45% Fish Gelatin (Sigma) from 50 pg/ml to 0.02 µg/ml (333 nM to 0.16 nM) or from 600 ng/ml to 0.3 ng/ml (4 nM to 0.002 nM) and added to the coated plate for 1 h at room temperature.

After washing with PBS + 0.05% Tween, bound IgG was detected with horseradish peroxidase conjugated anti human antibody (Jackson Immunoresearch) diluted to 50 ng/ml in PBS + 0.05% Tween and 0.45% Fish Gelatin.
Finally substrate; Supersingal pico (Pierce) was diluted 10 times in TRIS buffer, added to the washed plate and incubated for 10 min before luminescence reading using a plate reader (Tecan Ultra).

The antibodies were shown to bind to ROR1 protein but not to control protein as assayed by ELISA (see figure 17).

IgG binding to CLL cells in flow cytometry

Converted IgG clones were analyzed for binding to CLL cells but not to B-cell depleted PBMC in flow cytometry. IgG was labeled with Alexa flour 647 conjugated Fab fragments, Zenon, according to the manufacturer’s instructions (Invitrogen) and diluted to 10 µg/ml in PBS + 0.5% BSA. CLL cells or PBMC were blocked with human IgG purified from human serum (IVIG, Sigma) 0.2 µg/ml for 10 min at +4°C before incubation for 1 h at +4°C with the labeled IgG.

Finally the cells were washed and IgG binding detected in flow cytometer (BD FACS Calibur).

Example 2 - ROR1 specific mAb’s bind primary CLL cells but not PBMC isolated from healthy volunteers

CLL and PBMC cell isolation

CLL cells were isolated from peripheral blood of human CLL patient volunteers. PBMCs were isolated from buffy coats derived from healthy volunteer blood samples.

Briefly, whole blood (CLL) or buffy coats (normal PBMC) were diluted 1:2 in PBS and were loaded onto Ficoll-Paque Plus (Amersham) cushions. Samples were centrifuged at 400xgav for 40 min at 20°C.

The upper, plasma-containing phase was removed and mononuclear cells were isolated from the distinct white band at the plasma/Ficoll interphase. Platelets were removed from the mononuclear cell suspension by washing with 4x volume...
of PBS, centrifugation at 60xg, for 10 min at 20°C, and complete aspiration of the supernatant.

FACS analyses

Converted IgG clones were analysed for binding to CLL cells and PBMC's. IgG was labeled with Alexa flour 647 conjugated Fab fragments, Zenon, according to the manufacturer's instructions (Invitrogen) and diluted to 10 µg/ml in PBS + 0.5% BSA. CLL cells and PBMC's were blocked with human IgG 0.2 µg/ml for 10 min at +4°C before incubation for 1h at +4°C with the labeled IgG purified from human serum (IVIG, Sigma). Finally the cells were washed and IgG binding detected in flow cytometer (BD FACS Calibur).

The antibodies were shown to bind specifically to CLL cells but not to PBMC's cells obtained from peripheral blood of healthy volunteers as measured by FACS. (Figure 18 and 19)

Example 3 - Induction of CLL cell death by ROR1 mAb's

All the a-Ror-1 clones and the control antibody FITC-8GA was transiently expressed in HEK293 cells. All produced antibodies were analysed for endotoxin levels (<1U/mL) and binding to respective antigen was confirmed by flow cytometer and ELISA. (Figures 17 -19)

CLL cell isolation and culture

CLL cells were isolated as described above and were then suspended in RPMI 1640 medium (Invitrogen) supplemented with 10% FBS and 1% penicillin/streptomycin.

CLL cell apoptosis assay

CLL cells were seeded in 96-well culture plates at a density of 1x10⁶ cells/mL culture medium (100.000 cells/well). 1 µg/mL of an a-ROR-1 antibody or of isotype control antibody (anti-FITC-8) were added to the cells, in the presence or
absence of 3 µg/mL anti-human Fab (ab')² (Fey fragment specific, Jackson ImmunoResearch) for cross-linking. The cells were then incubated for 16 hours at 37°C in a humidified atmosphere of 5% CO₂.

Flow cytometry analysis of apoptosis induction and ROR-1 expression

The cells were harvested and stained for necrotic cells with the nuclei stain SYTOX green, and for apoptotic cells using Annexin V-647 (Invitrogen). Necrotic cells were identified by increased fluorescence in the FL-1 channel and apoptotic cells by increased signal in the FL-4 channel on a flow cytometer (FACSCalibur, BD Biosciences). (figures 20 and 21)

Example 5 - In vivo effects of ROR1 mAb

PBMCs were isolated from peripheral blood of a one CLL patient using the Ficoll Hypaque technique. The cells were stained for CD19-PE and CD5-APC (BD) to enumerate CLL cells, which was found to be 89.6% of the PBMCs (data not shown). In comparison, only 1.1% were T cells.

Thereafter, 150x10⁶ cells was injected i.p and i.v into NOD.SCID mice. The mice were treated i.p with 10 mg/kg of the ROR1 specific mAb 009-G03, or irrelevant negative control at day 1, and 4 after transfer. Mice were sacrificed day 7 and intra-peritoneal cells were collected using intra-peritoneal lavage of 8 ml PBS. Cells recovered from the peritoneum were stained for anti human CD45, ani CD3 (staining cells of human origin and human T cells respectively), anti CD19 and anti CD5 (staining CLL cells) (all antibodies from BD).

As compared with isotype control, the 009-G03 mAb significantly reduces the number of grafted CLL cells. This shows that treatment with anti-Ror1 specifically depletes primary human CLL cells in a xenograft in vivo model. (Figure 23)

Example 6. ROR1 specific antibodies bind and kill RPMI 8226 cells in vitro, a cell line for multiple myeloma.
RPMI 8226 cells were obtained from ATCC and cultured according to instructions. For binding, IgG was labeled with Alexa flour 647 conjugated Fab fragments, Zenon, according to the manufacturer's instructions (Invitrogen) and diluted to 10 µg/ml in PBS + 0.5% BSA. RPMI 8226 cells were blocked with human IgG 0.2 µg/ml for 10 min at +4°C before incubation for 1 h at +4°C with the labeled IgG. Finally the cells were washed and IgG binding detected in flow cytometer (BD FACS Calibur).

For cell death induction assays, RPMI 8226 cells were seeded in 96-well culture plates at a density of 1x10⁶ cells/mL culture medium (100.000 cells/well). 10 or 1 µg/mL of an a-ROR-1 antibody or of isotype control antibody (anti-FITC-8) were added to the cells, in the presence or absence of 30 or 3 µg/ml of anti-human Fab (ab')² (Fey fragment specific, Jackson ImmunoResearch) for cross-linking. The cells were then incubated for 16 hours at 37°C in a humidified atmosphere of 5% CO₂. (Figures 24, 25 and 26)

Example 7. ROR1 specific antibodies bind A549 non-small cell lung cancer cells and DU145 prostate cancer cells and induce cell death in vitro.

The cells were obtained from ATCC and cultured according to instructions. Cell lines A549 (ATCC Nr: CCL-185) and DU145 (ATCC Nr: HTB-81) were used.

For binding, cells were dissociated using enzyme-free dissociation buffer and thereafter stained with Zenon labelled antibodies as described above.

For cell death assays, cells were seeded in 96-well culture plates at a density of 1.4x10⁵ cells/mL culture medium (7000 cells/well). 10pg/nmL of an a-ROR-1 antibody or of an isotype control antibody (anti-FITC-8) were added to the cells, in the presence of 5M excess of anti-human Fab (ab')² (Fey fragment specific, Jackson ImmunoResearch) for cross-linking. Paclitaxel, a positive control for cell death was added at 5µg/mL. The cells were then incubated for 24 and 48 hours at 37°C in a humidified atmosphere of 5% CO₂.
The MultiTox-Glo Multiplex Cytotoxicity Assay (Promega) is a sequential-reagent-addition fluorescent and luminescent assay that measures the relative number of live and dead cells respectively in cell populations. The assay was performed as recommended by the manufacturer.

Figure 28, panels A to C show the results of FACS analysis. Panel A shows the antibodies bind A549 and DU145 cells (as measured by FACS). Panels B-C show that despite the rather weak binding, ROR1 specific antibodies induce significant cell death in the NSCLC and prostate cancer cell lines A549 and DU145.

Example 8 - Identifying competing antibodies

Methods of identifying antibodies which compete against those created and tested above are as follows:

Method 1 - FACS

To be performed preferably on primary CLL cells but if these are not available, RPMI 8226 cells might be used.

Labelled antibodies created above are added first (diluted to 20 µg/ml in FACS buffer) and allowed to bind to the cells by incubation for 20 min on ice, using a relevant isotype control antibody (typically IgG) as negative control. Wash the cells.

The antibody to be tested as to its competitive binding is added (and is labeled with a different color) and also allowed to incubate for 20 min on ice where after the cells are washed.

The signals are then quantified in a suitable FACS machine.

If the antibody to be tested binds to the same epitope, its signal is significantly inhibited by the above created antibodies compared to the negative control.
In addition, this can be further tested by performing the reversed experiment by adding the competitors antibody prior to the above created antibodies and quantify the signals.

Method 2 - ELISA

An ELISA plate is coated with ROR1 protein and incubated with the antibodies created above first (diluted to 20 μg/ml in suitable coating buffer). These are allowed to bind to the cells by incubation for 1 h in room temperature, using a relevant isotype control antibody (typically IgG) as negative control. Wash the plate.

Add antibody to be tested for competition, labeled with for example biotin or similar, and allow incubation for 1 h in room temperature where after the plates are washed. Add secondary detection and quantify the signals in a suitable ELISA reader.

If the antibody to be tested binds to the same epitope, it's signal is significantly inhibited by the above created antibodies compared to the negative control.

As with the FACs analysis this can be tested in the reverse experiment by adding in antibody to be tested before the above-created antibodies.

Example 9 Affinity determination and ADCC testing

Affinity determination

Antibody was labelled with \(^{125}\)I using free iodine and test tubes pre-coated with the oxidant reagent lodogen (1,3,4,6-tetrachloro-3a,6a-diphenylglycoluril, Thermo scientific), according to manufactures instruction. Briefly 200 μg of antibody was labeled for 10 minutes in PBS and free iodine were removed using a small disposable desalting columns (NAP 5,GE Healthcare Life science). Labeled antibody had a specific activity of approximately 2.5 uCi / μg antibody and contained less than 1 % free iodine as estimated with paper chromatography. 0.5x10^6 cells were incubated for 2.5 h on ice with different concentrations of \(^{125}\)I.
labelled 009-G03 antibody. Free nonbinding antibody (F) was separated from cell bound antibody (B) by centrifugation through a 40% Ficoll-cushion and samples were analysed in a gamma counter (Figure 29).

5

ADCC

\textit{aCella-TOX method}

Cell line RPM1-8226 were evaluated in ADCC reactions with n-CoDeR-derived anti-ROR1 IgG1 antibodies, using the \textit{aCella-TOX} kit (Cell Technology Inc).

The day before ADCC assay, effector NK cells were isolated from healthy human donor Buffy coats. Peripheral blood mononuclear cells were first extracted using Ficoll-Paque PLUS (GE Healthcare Life Sciences), followed by magnetic labeling and separation of NK cells according to standard protocol (Miltenyi Biotec). NK cells were kept in growth medium overnight at 4°C. Next day, target cells were collected, counted and prepared in 100 µl medium suspensions containing 250 000 cells. Anti-ROR1 antibodies, as well as isotype control were added to a final coating concentration of 5-10 µg/ml. After 1h incubation on ice the cell suspensions were diluted in medium to 50 000 cells/ml. Subsequently, 100 µl from respective solution were dispensed per well in 96-well (V-shaped) tissue culture plates, yielding 5000 cells/well. Next, isolated NK cells were re-suspended in medium and added (100 µl/well) to the culture plates at an excess of 40:1 compared to the used target cells. The cell reactions were incubated 4h at 37°C, followed by transfer of 100 µl/well of supernatant to flat-bottom, white reading plates. Finally, the level of released endogenous target cell GAPDH enzyme was assessed using the supplied \textit{aCella-TOX} reagents, as a measurement of specific antibody-dependent NK cell-mediated cytotoxicity.

See Figure 27 for results using ROR 009 G03, ROR 010 D06 and ROR 008 H06.

\textit{Calcein AM method}

38
Human effector NK cells were isolated a day before ADCC assay, as described above. Also, CLL cells were isolated with Ficoll-Paque PLUS on the same day and kept in DPBS + 10% heat-inactivated FBS (reagents from Invitrogen) at 4°C. On the day of the ADCC experiment, CLL cells were collected, counted and loaded with 10 µM Calcein AM fluorescent dye (BD Biosciences) in medium. After thorough washing in medium, suspensions containing 100 000 cells were therefore prepared and incubated with anti-ROR1 (and control) antibodies at 5 µg/ml for 30 min - 1h on ice. The samples were then diluted to 1 ml (in medium) and dispensed at 100 µl in tissue culture plates. Isolated NK cells were added as described above, and plates were incubated 4h at 37°C. Subsequently, 100 µl/well of supernatant was transferred to black, flat-bottom reading plates. The samples were then read for spectrofluorescence at 485/535 nm (excitation/emission), where the signal intensity of released Calcein corresponds to antibody-dependent NK cell-mediated cytotoxicity (Figure 22).

Example 10 - Preferred pharmaceutical formulations and modes and doses of administration.

The polypeptides, polynucleotides and antibodies of the present invention may be delivered using an injectable sustained-release drug delivery system. These are designed specifically to reduce the frequency of injections. An example of such a system is Nutropin Depot which encapsulates recombinant human growth hormone (rhGH) in biodegradable microspheres that, once injected, release rhGH slowly over a sustained period.

The polypeptides, polynucleotides and antibodies of the present invention can be administered by a surgically implanted device that releases the drug directly to the required site. For example, Vitrasert releases ganciclovir directly into the eye to treat CMV retinitis. The direct application of this toxic agent to the site of disease achieves effective therapy without the drug’s significant systemic side-effects.

Electroporation therapy (EPT) systems can also be employed for administration. A device which delivers a pulsed electric field to cells increases the permeability
of the cell membranes to the drug, resulting in a significant enhancement of intracellular drug delivery.

Polypeptides, polynucleotides and antibodies of the invention can also be delivered by electroincorporation (EI). EI occurs when small particles of up to 30 microns in diameter on the surface of the skin experience electrical pulses identical or similar to those used in electroporation. In EI, these particles are driven through the stratum corneum and into deeper layers of the skin. The particles can be loaded or coated with drugs or genes or can simply act as "bullets" that generate pores in the skin through which the drugs can enter.

An alternative method of administration is the ReGel injectable system that is thermosensitive. Below body temperature, ReGel is an injectable liquid while at body temperature it immediately forms a gel reservoir that slowly erodes and dissolves into known, safe, biodegradable polymers. The active drug is delivered over time as the biopolymers dissolve.

Polypeptides, polynucleotides and antibodies of the invention can be introduced to cells by "Trojan peptides". These are a class of polypeptides called penetratins which have translocating properties and are capable of carrying hydrophilic compounds across the plasma membrane. This system allows direct targeting of oligopeptides to the cytoplasm and nucleus, and may be non-cell type specific and highly efficient (Derossi et al., 1998, Trends Cell Biol., 8, 84-87).

Preferably, the pharmaceutical formulation of the present invention is a unit dosage containing a daily dose or unit, daily sub-dose or an appropriate fraction thereof, of the active ingredient.

The polypeptides, polynucleotides and antibodies of the invention can be administered by any parenteral route, in the form of a pharmaceutical formulation comprising the active ingredient, optionally in the form of a non-toxic organic, or inorganic, acid, or base, addition salt, in a pharmaceutically acceptable dosage form. Depending upon the disorder and patient to be treated, as well as the route of administration, the compositions may be administered at varying doses.
In human therapy, the polypeptides, polynucleotides and antibodies of the invention can be administered alone but will generally be administered in admixture with a suitable pharmaceutical exipient diluent or carrier selected with regard to the intended route of administration and standard pharmaceutical practice.

The polypeptides, polynucleotides and antibodies of the invention can also be administered parenterally, for example, intravenously, intra-arterially, intraperitoneally, intra-thecally, intraventricularly, intrasternally, intracranially, intra-muscularly or subcutaneously, or they may be administered by infusion techniques. They are best used in the form of a sterile aqueous solution which may contain other substances, for example, enough salts or glucose to make the solution isotonic with blood. The aqueous solutions should be suitably buffered (preferably to a pH of from 3 to 9), if necessary. The preparation of suitable parenteral formulations under sterile conditions is readily accomplished by standard pharmaceutical techniques well-known to those skilled in the art.

Formulations suitable for parenteral administration include aqueous and non-aqueous sterile injection solutions which may contain anti-oxidants, buffers, bacteriostats and solutes which render the formulation isotonic with the blood of the intended recipient; and aqueous and non-aqueous sterile suspensions which may include suspending agents and thickening agents. The formulations may be presented in unit-dose or multi-dose containers, for example sealed ampoules and vials, and may be stored in a freeze-dried (lyophilised) condition requiring only the addition of the sterile liquid carrier, for example water for injections, immediately prior to use. Extemporaneous injection solutions and suspensions may be prepared from sterile powders, granules and tablets of the kind previously described.

Generally, in humans, oral or parenteral administration of the polypeptides, polynucleotides and antibodies of the invention is the preferred route, being the most convenient.

For veterinary use, the polypeptides, polynucleotides and antibodies of the invention are administered as a suitably acceptable formulation in accordance with normal veterinary practice and the veterinary surgeon will determine the
dosing regimen and route of administration which will be most appropriate for a particular animal.

The formulations of the pharmaceutical compositions of the invention may conveniently be presented in unit dosage form and may be prepared by any of the methods well known in the art of pharmacy. Such methods include the step of bringing into association the active ingredient with the carrier which constitutes one or more accessory ingredients. In general the formulations are prepared by uniformly and intimately bringing into association the active ingredient with liquid carriers or finely divided solid carriers or both, and then, if necessary, shaping the product.

Preferred unit dosage formulations are those containing a daily dose or unit, daily sub-dose or an appropriate fraction thereof, of an active ingredient.

A preferred delivery system of the invention may comprise a hydrogel impregnated with a polypeptides, polynucleotides and antibodies of the invention, which is preferably carried on a tampon which can be inserted into the cervix and withdrawn once an appropriate cervical ripening or other desirable affect on the female reproductive system has been produced.

It should be understood that in addition to the ingredients particularly mentioned above the formulations of this invention may include other agents conventional in the art having regard to the type of formulation in question.

Example 11 - Exemplary pharmaceutical formulations

Whilst it is possible for polypeptides, polynucleotides and antibodies of the invention to be administered alone, it is preferable to present it as a pharmaceutical formulation, together with one or more acceptable carriers. The carrier(s) must be “acceptable” in the sense of being compatible with the compound of the invention and not deleterious to the recipients thereof. Typically, the carriers will be water or saline which will be sterile and pyrogen-free.
The following examples illustrate pharmaceutical formulations according to the invention in which the active ingredient is a polypeptides, polynucleotides and/or antibody of the invention.

Example 11A: Injectable Formulation

Active ingredient 0.200 g
Sterile, pyrogen free phosphate buffer (pH7.0) to 10 ml

The active ingredient is dissolved in most of the phosphate buffer (35-40°C), then made up to volume and filtered through a sterile micropore filter into a sterile 10 ml amber glass vial (type 1) and sealed with sterile closures and overseals.

Example 11B: Intramuscular injection

Active ingredient 0.20 g
Benzyl Alcohol 0.10 g
Glucofurol 75® 1.45 g
Water for Injection q.s. to 3.00 ml

The active ingredient is dissolved in the glycofurol. The benzyl alcohol is then added and dissolved, and water added to 3 ml. The mixture is then filtered through a sterile micropore filter and sealed in sterile 3 ml glass vials (type 1).
A an anti-ROR1 antibody capable of inducing cell death in a cell expressing ROR1.

2. An antibody as claimed in claim 1 wherein the antibody binds specifically to either an extracellular domain of ROR1, an intracellular domain of ROR1 or to a nucleotide sequence encoding ROR1.

3. An antibody as claimed in claim 1 or 2 wherein the antibody is either a complete antibody or a fragment thereof.

4. An antibody as claimed in any previous claim wherein cell death is induced on specific binding of the antibody to ROR1 or the nucleotide sequence encoding ROR1.

5. An antibody as claimed in any of claims 1 to 4 wherein the extracellular domain to which the antibody binds has the amino acid sequence WNISSELNKDSYLTL.

6. An antibody as claimed in any of claims 1 to 4 wherein the intracellular domain to which the antibody binds has the amino acid sequence NKSQKPYKIDSQAS.

7. An antibody as claimed in any previous claim comprising the combination of VH and VL region amino acid sequences shown in one of:

 - Figure 4 (ROR1-007-B03-VH and ROR1-007-B03-VL)
 - Figure 5 (ROR1-007-C08-VH and ROR1-007-C08-VL)
 - Figure 6 (ROR1-007-E06-VH and ROR1-007-E06-VL)
 - Figure 7 (ROR1-007-H03-VH and ROR1-007-H03-VL)
 - Figure 8 (ROR1-008-A03-VH and ROR1-008-A03-VL)
 - Figure 9 (ROR1-008-D04-VH and ROR1-008-D04-VL)
8. An antibody as claimed in any previous claim comprising the combination of all six CDR regions (CDRH1, CDRH2, CDRH3, CDRL1, CDRL2 and CDRL3) shown in one of:

- Figure 4 (ROR1-007-B03-VH and ROR1-007-B03-VL)
- Figure 5 (ROR1-007-C08-VH and ROR1-007-C08-VL)
- Figure 6 (ROR1-007-E06-VH and ROR1-007-E06-VL)
- Figure 7 (ROR1-007-H03-VH and ROR1-007-H03-VL)
- Figure 8 (ROR1-008-A03-VH and ROR1-008-A03-VL)
- Figure 9 (ROR1-008-D04-VH and ROR1-008-D04-VL)
- Figure 10 (ROR1-008-G04-VH and ROR1-008-G04-VL)
- Figure 11 (ROR1-008-H06-VH and ROR1-008-H06-VL)
- Figure 12 (ROR1-009-G03-VH and ROR1-009-G03-VL)
- Figure 13 (ROR1-009-G1 1-VH and ROR1-009-G1 1-VL)
- Figure 14 (ROR1-010-D05-VH and ROR1-010-D05-VL)
- Figure 15 (ROR1-010-D06-VH and ROR1-010-D06-VL)
- Figure 16 (ROR1-011-F01-VH and ROR1-011-F01-VL)

9. An antibody as claimed in any of claims 1 to 8 comprising at least one, preferably 2, 3, 4, 5 or 6 of the CDR regions shown in figures 4 to 16:
Figure 4 (ROR1-007-B03-VH and ROR1-007-B03-VL)

Figure 5 (ROR1-007-C08-VH and ROR1-007-C08-VL)

Figure 6 (ROR1-007-E06-VH and ROR1-007-E06-VL)

Figure 7 (ROR1-007-H03-VH and ROR1-007-H03-VL)

Figure 8 (ROR1-008-A03-VH and ROR1-008-A03-VL)

Figure 9 (ROR1-008-D04-VH and ROR1-008-D04-VL)

Figure 10 (ROR1-008-G04-VH and ROR1-008-G04-VL)

Figure 11 (ROR1-008-H06-VH and ROR1-008-H06-VL)

Figure 12 (ROR1-009-G03-VH and ROR1-009-G03-VL)

Figure 13 (ROR1-009-G11-VH and ROR1-009-G11-VL)

Figure 14 (ROR1-010-D05-VH and ROR1-010-D05-VL)

Figure 15 (ROR1-010-D06-VH and ROR1-010-D06-VL)

Figure 16 (ROR1-011-F01-VH and ROR1-011-F01-VL)

10. An antibody as claimed in any of claims 7 to 9 further comprising the constant regions C_H and C_L have the amino acid sequences as shown in figure 3.

11. An antibody as claimed in any previous claim having an EC50 lower than 20 nM as measured in an ELISA based system measuring binding towards a recombinant protein.

12. An antibody that competitively binds to the same epitope as the antibodies of claims 1 to 11.

13. A nucleotide sequence encoding an antibody as claimed in any previous claim.
14. A nucleotide sequence as claimed in claim 13 wherein the nucleotide sequences are as shown in figures 4 to 16.

15. An expression vector containing a nucleotide sequence as claimed in claim 13 or 14.

16. A host cell comprising a nucleotide sequence or expression vector as claimed in claims 13 to 15.

17. Use of an antibody as defined in claims 1 to 12 in the induction of cell death of a cell.

18. A method of inducing cell death in one or more cells comprising exposing a cell expressing ROR1 to an antibody as defined in claims 1 to 12.

19. An antibody as defined in claims 1 to 12 for use in medicine.

21. Use of an antibody as defined in claims 1 to 12 in the manufacture of a medicament for treating a disease selected from Chronic Lymphocytic Leukaemia, Acute lymphocytic leukaemia, Acute myeloid leukaemia, non-Hodgkin lymphomas, chronic myeloid, multiple myeloma, ovarian carcinoma, prostate cancer, breast cancer, melanoma, lung cancer, colorectal cancer, glioblastoma, pancreatic cancer, renal cell carcinoma, endometrial cancer, head and neck cancer and hepatocellular cancer.

22. A method of treating a disease comprising the step of administering to a subject an antibody as claimed in claims 1 to 12, wherein the disease is

23. An antibody, use or method as claimed in claims 20 to 22 wherein the disease is progressive.

24. An antibody, use or method as claimed in claims 20 to 22 wherein the disease is Chronic Lymphocytic Leukaemia.

25. A pharmaceutical composition comprising an antibody as defined in claims 1 to 12 and a pharmaceutically acceptable excipient, diluent or carrier.

27. A kit of parts comprising:

(i) an antibody as claimed in claims 1 to 12 or a pharmaceutical composition as claimed in claims 25 or 26;

(ii) apparatus for administering the antibody or pharmaceutical composition; and

(iii) instructions for use.

28. An antibody substantially as described herein with reference to the examples and figures.

29. A use of an antibody substantially as described herein with reference to the examples and figures.
30. A method using an antibody substantially as described herein with reference to the examples and figures.

31. A pharmaceutical composition substantially as described herein with reference to the examples and figures.

32. A kit of parts substantially as described herein with reference to the examples and figures.
IgG1-CH
ASTKGPSVFPLAPSSKSTSGGTAAALGCLVDYFPEPVTVSWNSGALTSGVHTFPAVL
QSSGLYSLSSVTVPSSSLGTQTYICNVNHKPSNTKVDKKEPKSCDHTCTCPCPA
PELLGGPSVLPFPPKPDTLMISRTPEVTCVVDVSHEDPEVKFNYVGDGEVHNAAK
TKPREEQYNSTYRVRVSVLTVLHQDVLNLGKEYKCKVSNKALPAPIEKTISKAKGQPRE
PQVYTLPPSRDELTKNQVLTCVLKGFYPSDIAVWESNGQPENNYKTTTPVLDSDG
SFFLYSKLTVDKSRWQGNNVFSVCSVMHEALHNHYTQKSLSLSPGK

λ-CL
QPKAAPSVTFLPSSSEELQANKATLVCISDFYPGAFTVAAWKADSSPVKVAGVETTTP
SKQSNKYYAASSYLSLTPETQWKSRSYSTCQVTPEGSTVKEVTAPTECS

Figure 3
Figure 4
ROR1-007-C08-VH

EVQLLESGGGLVQPGGLRLSCAASGFT\underline{FSSYDMAWVRQAPGK}\underline{KLEWFGSVSWNGSRTHYADSVK} CDRH1 FrH1 CDRH2 FrH2

\underline{GRFTISRDNSKNTLYLQMNLRAEDTAVYC\underline{ARQDQLSGWYGFPDYW}} CDRH3 FrH3 WGGQGLTVTSS FrH4

ROR1-007-C08-VL

\underline{QSVLTQPPSASGTPGQRVTSICSGSSSDMGNYAVSWYQQLPGTAPKLLIIYGNSNRPSGVPRFSGS} CDRL1 FrL1 CDRL2 FrL2

\underline{KSGTASASLAISSLRSEDEADYYCSSYTSSRTVTFFGGGTKLVLG} CDRL3 FrL3 CDRL4 FrL4

ROR1-007-C08-VH

GAGGTGCAGCTGTGGAGTCTCTGCTCCCTCTACACCGTGGGCTGCTGAGACTCTCTCTGTG
CAGCCTCTGGATACCACCTTTAGACGCTATGGAGATGGCTGGGCTCGCAAGCTCTCAAGGGCT
GGAGTGGGTATCGGCTGTTAGTTGAATGCGAGTAGGCAGATCACATGTCAAGCTCGCTGAAAGCCG
ATTCAACCAGTCCAGAACAATCCACGCGCTATCTGGAAATGACAGCAGTCGAGCCGA
GGACACGTGCGCTGATATTACTGTGCGAGATCAAGTACGAGCTGCTGACTCCGCGGTTACTTTCG
TACGTGGGCCAGGGTCACTGCGTACCCGCGTACGCTCA

ROR1-007-C08-VL

\underline{CAGTCTGTGCTGACCTACGCCACCTACGCTCAGGCTGGGACCCCGGGCGAGGGTCACCACATCTCTCTGTGCTGTGACACGCTACATGGGGAGATGCGGTATTCTGGGATACAGCAGCTCCAGAAACCGGCG
CCACAACGTATCCTACTATGTGAAACAGCAATCCGCTCCAGGGTGTCCTGCCTGCAAGCTCTCTGTGGCTCACA
GTCTGCGACCTACGCGCTCTCTTCGCTGAGCTGCGCTGGGAGATGCGGTATTACACGCT
AGCTCAGTATACAGCAGTCGAGCTCTGCTGATACGCTGCGGAGGAACAAACAGGTACGCGCAGTGCTAGGT}
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
ROR1-009-G11-VH

EVQLLESGGGLVQPGGLRLSCAASGFTR<SSYSMNWVRQAAPGG<KGLEW<SSISSSSSYIYYADSVKG<
FrH1 FrH2 CDRH1 CDRH2

FTISRDNKNTLYLQMNSLRAEDTAVYCCARRGTTFDYMGQQTLVTSS
FrH3 FrH4

ROR1-009-G11-VL

QSVLTQPSPASGTPGQRVTISCTGSNSNLGAPYDVH<RYQQLPGTAKLIIYSDNQPSGVDPFSGS<
FrL1 FrL2 CDRL1 CDRL2

KSGTASLASLGRLSEDEADYYGCTWDDLSLGWGFGGTKLTVLG
FrL3 FrL4

ROR1-009-G11-VH

GAGGTCAGCTGTTGGGAGGCTTGTACAGCCTGGGGGCTCCCTGAGACTCTCTCTGTGGAGCTCTGGGATCCTACCCCTGCATGATCGTATAAGCATGAACCTGTCGGCTCCAGCCAGCCAGGAGAGCTGGAGTTCTCAGCACCCGACACACGTGATCTCTGCAATTGAAAACACGCTGACTCTGTGCGGAGACGGGACGTACTGGGACGGTCAGCTGACTG

ROR1-009-G11-VL

CAGTCTGTGCTGACTCAGCCACCCCTCCGGCTCTGGGAACCCCGGGCAAGGGTCACCATCTCTCTGCACTGGGACCCCTCCGGCTCTGGGAACCCCGGGCAAGGGTCATCCAGCTCGCCAGCTCCAGCGGACGGTGACCCGACACACGCTGACTCTGTGCGGAGACGGGACGTACTGGGACGGTCAGCTGACTG

Figure 13
Figure 14
ROR1-010-D06-VH

EVQLLESGGGLVQPGSSLRLSCAASGVTFRDYGMHWRQQAPGKGLEWAISGGGSTFYADSVK
FrH1 CDRH1 FrH2 CDRH2

GRFTISRDNKNTLYLQMNSLRAEDTAVYYCAAGRSASMGMAGFDYNWGGQTLYTVSS
FrH3 CDRH3 FrH4

ROR1-010-D06-VL

QSVLTQQPSASGPQQRVTISCTGSSSNIGAGYDVHWYQLPGTPKLLYCNSSRPGVPDRFSGS
FrL1 CDRL1 FrL2 CDRL2

KSGTASLAISGLRSEDEADYYCAAWDDSLNGWVFGGGTKLTVLG
FrL3 CDRL3 FrL4

ROR1-010-D06-VH

GAGGTGCAGCTTGTTGGGAGGGCGTCTGGGTACAGGCTGGGGGCTGGCTGAGACTCTCTCTGG
CAGGCTCTGGATCCCTCAGAGACTAGGCACTGGTCCTGCCCCACGGTCAGGCTCAGGCTTGG
GGATTGGCTCTGGATCTAGTCCTGGGTAGCACTTCACTCAGACAGTTCAAGGGCGAAGC
TTACACTTACTTCCAGAGCAATTCCAAACAGCACCTGATCTGCAATGAACAGCTGAGAG
GACACTGCGCTGTTACTGTCGAGAGGGCCGTCGGCTGGTACATGGGCTACTTGGG
GCCAAGGCTACACTGGTGGCTACGGGCTA

ROR1-010-D06-VL

CAGTCTGTGGCTGACTCAGCGCACCCTTACCACGGTCTGGGACCCCGGGCAGAGGGTCAACATCTCCTGCA
CTGGGAGCAGCTCCAACATCGGGGAGGAGTTATGATGTACACTGTGATACGAGCTCCAGGAGAGG
CCCGAAGCTCTTACAGTACAGGATCGCCTCAGGCTGGGCTCCTGACCGATTCTCGGTCT
CAAGTCTTGGGACACTTACGCTCTGGGATCTGGGCTTCCGGGCTTCAAGGGAGGACTTACAC
TGGGACAGCTTGGGATCTGGGACTCTTGCTGGGTTCGGAGAGAGGCTTACACGTCGCTGGT

Figure 15
ROR1-011-F01-VH

EVQLLESGGLVQPGGLRLSCAASGFTRSDYYMSWRQRPGKLEWVAIISYDGNYENYYADSVKG
FrH1 CDRH1 FrH2 CDRH2

FTISRDKNTLYLQMNSLRAEDTAVYCAREDIDYADDAYDWGGTLVTVSS
FrH3 CDRH3 FrH4

ROR1-011-F01-VL

QSVLTQPPSAGTPGRQTVSCTGSSNIGAGYDVLWYQQLSGTPKLLYSNQRPSGVPRFGS
FrL1 CDRL1 FrL2 CDRL2

KSGTASLSLASEDEADYYCASWDDSSLPFGGGTKLTVGL
FrL3 CDRL3 FrL4

ROR1-011-F01-VH

GAGGTGCAGCTGGTGAGTGCTGCTGGGGAGGCTTGACTACCGCTGGGGTCCCTGAGACCTCTCTCTGTG
CAGCCTCTCGGTACAGTACGCAACTACATAGCTGCTGGCGCCAGGCTCAGGGAAAGGGCT
GGAGTGGCTCTCAACTCTGTAGTCTGGTGTGTTGTCAGCTCTACACAGACTCTCGTGAGGCGG
TCCACTTCCCAGAGACATCTTCCAAAGACACGCTGTATCTGCAATTAGAAGACAGCTGAGAGGCAG
GACACTGCGGTGTATTACTGTGCAGAGGCGCCAAGATGGGGCCAATTGACTACTCTGGGCGAAGGTACA
CTGGTACCCGCTGGCTCA

ROR1-011-F01-VL

CAGTCTGTGCAGCTGACACCTACACCTACACCTAGGAGGCCAGGAGGTCACCATCTCTCTGTGCA
CTGGGAGCGACCTGACCCACATGCACTGGGGAGGTTAGTAGTACTGCTCTGATACGACTCTACTTCGAGGACGGC
CCCGAACACCCCACTCACTCATATATTACTATAATACGCAGGGCCCTCAGGGGTCCCTGACCGATTTCTCTGCGTCC
AAGTCTGGCCACCTCAGCTCTCCTGGCCAGTACGGGCCTCCGGTCCAGGAGGTACTCTGGCTTACT
GTGCATCATGGAGTACACCGCTGAGTGGTCTGCTGGGTTCGAGCGAAGAACTACGCTGACGCTTAGGT

Figure 16
Figure 17
Figure 17 (con’t)
Figure 18
Figure 18 (con’t)
Figure 19

Binding to normal PBMC's

Mean Fluorescence Intensity

or % positivity stained cells

Donor A MFI
Donor A % Positive
Donor B MFI
Donor B % Positive

Isotype Ctrl

007 008 009 010 011 006 012 013 008 009 010 011 005 006 007 008 009 010 011 006 005 004 003 002 001
Figure 20

Cell Viability CLL Patient I

Cell Viability CLL Patient II
Figure 21
Figure 22
Figure 23
Figure 24
RPMI 8226, MM cell line

Figure 25
Figure 27
Figure 28
Figure 28 (con’t)
Figure 29
A. CLASSIFICATION OF SUBJECT MATTER

INV. C07K 16/28 A61K 39/02

ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

C07K A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, BIOSIS, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

X Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:

A document defining the general state of the art which is not considered to be of particular relevance

E earlier document but published on or after the international filing date

L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

O document referring to an oral disclosure, use, exhibition or other means

P document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered to be novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

Z document member of the same patent family

Date of the actual completion of the international search

23 November 2011

Date of mailing of the international search report

08/12/2011

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL-2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer

Bumb, Peter
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>FUKUDA TETSUYA ET AL: "Anti sera induced by infusion of autologous Ad-CD154-I eukemia B cells identify RORI as an oncofetal anti gen and receptor for Wnt5a"</td>
<td>1-16, 25-32</td>
</tr>
<tr>
<td>X</td>
<td>wo 2010/124188 AI (US OF AMERICA AS REPRESENTED BY RADER CHRISTOPH [US]; BASKAR SIVA) 28 October 2010 (2010-10-28) examples 1-2, 7</td>
<td>1-16, 25-32</td>
</tr>
<tr>
<td>X</td>
<td>BASKAR SIVASUBRAMANIAN ET AL: "Targeting 1-16, Human B Cell Chronic Lymphocytic Leukemia with a Monoclonal Antibody Specific for the Receptor Tyrosine Kinase ROR1"</td>
<td>1-16, 27-32</td>
</tr>
<tr>
<td></td>
<td>JOURNAL OF IMMUNOTHERAPY, LI PIPINCOTT WLLIAMS & WILKINS, HAGERSTOWN, MD, US, vol. 31, no. 9, 1 January 2008 (2008-01-01), page 969, ISSN: 1524-9557 page 969, right-hand column</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>ANI RUDDHA CHOUDHURY ET AL: "Silencing of ROR1 and FMOD with siRNA results in apoptosis of CLL cells"</td>
<td>1-32</td>
</tr>
<tr>
<td>Category</td>
<td>Citation of document, with indication, where appropriate, of the relevant passages</td>
<td>Relevant to claim No.</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>----------------------</td>
</tr>
<tr>
<td>X</td>
<td>wo 2010/008069 AI (UNIV NAGoya NAT UNIV CORP [JP]; TAKAHASHI TAKASHI [JP]; YAMAGUCHI TOMO) 21 January 2010 (2010-01-21) the whole document</td>
<td>1-16, 27-32</td>
</tr>
<tr>
<td>A</td>
<td>MACKEIGAN JEFFREY P ET AL: "Sensitized RNAi screen of human kinases and phosphatases identifies new regulators of apoptosis and chemoresistance", NATURE CELL BIOLOGY, NATURE PUBLISHING GROUP, GB, vol. 7, no. 6, 1 June 2005 (2005-06-01), pages 591-600, XP002425115, ISSN: 1465-7392, DOI: 10.1038/NCB1258 table 1 figure 1b</td>
<td>1-32</td>
</tr>
<tr>
<td>E</td>
<td>wo 2011/079902 A2 (BIOLNVENT INTERNAT AB [SE]; MELLSTEDT HAAKAN [SE]; RABBANI HODJATTALLA) 7 July 2011 (2011-07-07) the whole document</td>
<td>1-6, 11-32</td>
</tr>
<tr>
<td>L</td>
<td>the whole document</td>
<td>11-32</td>
</tr>
<tr>
<td>X,P</td>
<td>wo 2011/054007 AI (OXFORD BIOTHERAPEUTICS LTD [GB]; ROHLFF CHRISTIAN [GB]; STAMPS ALASDAI) 5 May 2011 (2011-05-05) examples 6-10</td>
<td>1-32</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>WO 2010124188 A1</td>
<td>28-10-2010</td>
<td>NONE</td>
</tr>
<tr>
<td>WO 2008076868 A2</td>
<td>26-06-2008</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2010008069 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2010008069 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2010062005 A1</td>
</tr>
<tr>
<td>WO 2011079902 A2</td>
<td>07-07-2011</td>
<td>NONE</td>
</tr>
<tr>
<td>WO 2011054007 A1</td>
<td>05-05-2011</td>
<td>NONE</td>
</tr>
</tbody>
</table>