Abstract: This disclosure provides combination therapy for treating a subject, such as a subject afflicted with a lung cancer, comprising administering to the subject an anti-fucosyl-GM1 antibody and an anti-CD137 antibody, or antigen-binding portions of either or both.
COMBINATION THERAPY USING AN ANTI-FUCOSYL-GMI ANTIBODY AND AN ANTI-CD 137 ANTIBODY

FIELD OF THE INVENTION

[0001] The present invention relates to improved methods of treating cancer using a combination of therapeutic monoclonal antibodies.

BACKGROUND OF THE INVENTION

[0002] Fucosyl-GMI is a sphingolipid monosialoganglioside composed of a ceramide lipid component, which anchors the molecule in the cell membrane, and a carbohydrate component that is exposed at the cell surface. Carbohydrate antigens are the most abundantly expressed antigens on the cell surface of cancers (Feizi T. (1985) Nature 314:53-7). In some tumor types, such as small cell lung cancer (SCLC), initial responses to chemotherapy are impressive, but chemo-refractory relapses rapidly follows. Intervention with novel immunotherapeutics may succeed in overcoming drug resistant relapse (Johnson DH. (1995) Lung Cancer 12 Suppl 3:S71-5). Several carbohydrate antigens, such as gangliosides GD3 and GD2, have been shown to function as effective targets for passive immunotherapy with mAbs (Irie RF and Morton DL. (1986) PNAS 83:8694-8698; Houghton AN et al. (1985) PNAS 82:1242-1246). Ganglioside antigens have also been demonstrated to be effective targets for active immunotherapy with vaccines in clinical trials (Krug LM et al. (2004) Clinical Cancer Research 10:6094-6100; Dickler MN et al. (1999) Clinical Cancer Research 5:2773-2779; Livingston PO et al. (1994) J. Clin. Oncol. 12:1036-44). Indeed, serum derived from SCLC patients who developed antibody titers to fucosyl-GMI following vaccination with KLH conjugated antigen, demonstrated specific binding to tumor cells and tumor specific complement dependent cytotoxicity (CDC). Anti-fucosyl-GMI titer associated toxicities were mild and transient and three patients with limited-stage SCLC were relapse-free at 18, 24, and 30 months (Krug et al, supra; Dickler et al, supra).

[0003] Fucosyl-GMI expression has been shown in a high percentage of SCLC cases and unlike other ganglioside antigens, fucosyl-GMI has little or no expression in normal tissues (Nilsson et al. (1984) Glycoconjugate J. 1:43-9; Krug et al, supra; Brezicka et al.

[0004] An antibody that recognizes fucosyl-GM1 on cancer cells and directs their destruction, anti-fucosyl GM1 mAb BMS-986012, has entered clinical trials for the treatment of subjects with relapsed/refractory small cell lung cancer (NCT02247349). See Molckovsky & Siu (2008) J. Hematol. Oncol. 1:20. BMS-986012 is a non-fucosylated antibody and thus exhibits enhanced ADCC compared to an antibody with typical mammalian glycosylation. Although effective as a single agent, there exists a need for even more effective cancer therapy based on targeting of fucosyl GM1-expressing cancer cells.

SUMMARY OF THE INVENTION

[0005] The present invention provides methods for treating a subject afflicted with cancer, such as a lung cancer, including small cell lung cancer (SCLC), comprising administering to the subject a therapeutically effective combination of agents, such as monoclonal antibodies or an antigen-binding portions thereof, that specifically bind to fucosyl-GM1 and CD137. In one embodiment the anti-fucosyl-GM1 antibody is hypofucosylated or non-fucosylated.

[0006] In some embodiments, the anti-fucosyl-GM1 mAb competes with BMS-986012, comprises the same CDRs as BMS-986012, comprises the same heavy and light chain variable domains as BMS-986012, comprises the same heavy and light chains as BMS-986012, is BMS-986012, or is an antibody drug conjugate of BMS-986012. In one embodiment, the anti-CD137 mAb competes with BMS-6635 13, comprises the same CDRs
as BMS-663513, comprises the same heavy and light chain variable domains as BMS-663513, or is BMS-663513.

[0007] In one aspect, the invention provides methods of combination therapy with anti-fucosyl GMI and anti-CD137 agents comprising administration of the anti-fucosyl GMI agent, such as BMS-986012, concurrently with administration of the anti-CD137 agent.

[0008] In a distinct aspect, the invention provides methods of combination therapy with anti-fucosyl GMI and anti-CD137 agents comprising administration of the anti-fucosyl GMI agent, such as BMS-986012, prior to, rather than concurrently with, the anti-CD137 agent, such as BMS-663513. In various embodiments, the anti-fucosyl GMI agent is first administered 0.5, 1, 2, 4, and 7 days prior to first administration of the anti-CD137 agent. In various other embodiments, the anti-fucosyl GMI agent is administered at days 1, 22, 43, 64 and 85 and the anti-CD137 agent is administered at days 2, 23, 44, 65 and 86.

[0009] In some embodiments, the combination therapy of the present invention is administered to a subject (e.g. a human subject) who suffers from small cell lung cancer (SCLC). In one embodiment, the subject has previously received an initial anti-cancer therapy. In another embodiment, the lung cancer is an advanced, metastatic, relapsed, and/or refractory lung cancer.

[0010] In certain embodiments, the anti-fucosyl-GMI mAb is administered at a dose ranging from 10 to 2000 mg once every 1, 2, 3 or 4 weeks. In one embodiment, the anti-fucosyl-GMI mAb is administered at a dose ranging from 400 to 1000 mg once every 3 weeks, with administration of anti-CD137 mAb at a dose ranging from 1 to 10 mg, e.g. 3 to 8 mg, one day after each dose of anti-fucosyl-GMI mAb. In various embodiments, the dose of the anti-fucosyl GMI mAb is 2-, 10-, 30- or 1000-fold higher than the dose of anti-CD137 mAb on a weight basis.

[0011] In various embodiments, the method comprises one, two, three or four treatments, or is continued for as long as clinical benefit is observed or until unmanageable toxicity or disease progression occurs.

[0012] In one embodiment, one or both of the antibodies are formulated for intravenous administration. The efficacy of the treatment methods provided herein can be assessed using any suitable means, such as reduction in size of the cancer, reduction in number of metastatic lesions over time, complete response, partial response, and stable disease.
[0013] Other features and advantages of the instant invention will be apparent from the following detailed description and examples, which should not be construed as limiting. The contents of all cited references, including scientific articles, newspaper reports, GenBank entries, patents and patent applications cited throughout this application are expressly incorporated herein by reference in their entireties.

BRIEF DESCRIPTION OF THE DRAWINGS

[0014] FIG. 1 shows tumor growth in the mouse DMS79 tumor model as a function of treatment with anti-fucosyl GMI BMS-986012 and/or anti-muCD137 antibodies. Median tumor volumes are presented for groups of 8 mice at each data point. See Example 1.

[0015] FIG. 2 shows tumor growth in the mouse DMS79 tumor model as a function of treatment with anti-fucosyl GMI BMS-986012 and/or cisplatin. Median tumor volumes are presented for groups of 8 mice at each data point. See Example 2.

[0016] FIG. 3 shows tumor growth in the mouse DMS79 tumor model as a function of treatment with anti-fucosyl GMI BMS-986012 and/or etoposide. Median tumor volumes are presented for groups of 8 mice at each data point. Combination therapy is significantly more effective than either monotherapy. See Example 3.

DETAILED DESCRIPTION OF THE INVENTION

[0017] BMS-986012 is a first-in-class fully human monoclonal antibody (mAb) that specifically binds to the fucosyl-GMI (fuc-GMI) ganglioside. BMS-986012 exhibits high-affinity and dose-dependent saturable binding to fuc-GMI and shows no detectable antigen-specific binding to closely related molecule GMI. Because fucosyl GMI is preferentially found on the surface of lung cancer cells, BMS-986012 is particularly well suited to treating lung cancer, such as small cell lung cancer (SCLC). BMS-986012, as used herein, always refers to a non-fucosylated antibody whether or not that is expressly stated.

[0018] BMS-986012 is non-fucosylated (lacking fucosylation on the Fc domain). The absence of the fucosyl group in BMS-986012 confers higher affinity for Fc receptors resulting in enhanced antibody-dependent cellular cytotoxicity (ADCC). Furthermore, the antibody was shown to mediate potent complement dependent cytotoxicity (CDC) as well
as antibody-dependent cellular phagocytosis (ADCP). See, e.g., WO 2007/067992, the content of which is expressly incorporated herein by reference in its entirety.

[0019] Although BMS-986012 is effective as monotherapy in treatment of lung cancer, improved methods of treatment are always desired.

[0021] Applicants observed that administration of anti-fucosyl GM1 antibody to a mixture of DMS-79 (fucosyl GM1-expressing) tumor cells and NK cells in vitro induced a dose-dependent enhancement in CD137 expression on the NK cells, increasing the percentage of CD137+ NK cells from less than 4% to over 35% at the highest doses (data not shown). See also Kohrt et al. (2011) Blood 117:2423 (disclosing a similar effect with anti-CD20); Lin et al. (2008) Blood 112:699. Without intending to be limited by theory, it is possible that BMS-986012 bound to fucosyl GM1 on tumor cells also binds to Fc receptors on NK cells, and that this interaction with the NK cell Fc receptor is what triggers increased CD137 expression. Because CD137 is an activator of NK cells, CD137 agonism might be helpful in enhancing NK cell-mediated anti-tumor effects. See U.S. Pat. No. 7,288,638; Melero et al. (2007) Nat. Rev. Cancer 7:95; Takeda et al. (2010) J. Immunol. 184:5493; Murillo et al. (2008) Clin. Cancer Res. 14:6895. Combination therapy methods of present invention are based on increasing CD137 signaling, for example using an agonist anti-CD137 antibody, and the enhancement of this effect by prior or concurrent administration of anti-fucosyl GM1 antibodies to increase CD137 expression on NK cells,
thus maximizing the effect of anti-CD 137 therapy. Equivalently, the invention may be viewed as augmenting the anti-tumor (cell killing) effect of anti-fucosyl GMI antibody by administering an agonist anti-CD137 antibody that enhances the NK cell-mediated anti-tumor effects.

[0022] The specific combination of anti-fucosyl GMI antibody with anti-CD137 antibody is particularly beneficial because treatment with anti-fucosyl GMI antibody enhances CD137 expression on NK cells, maximizing the effect of the agonist anti-CD137 antibody. One benefit of such combination therapy is that it may preferentially direct the effects of agonist anti-CD137 therapy toward the desired target cells (fucosyl GMI-expressing lung cancer cells) by enhancing their CD 137 expression, and away from general systemic NK cell stimulation that may give rise to immune-mediated side effects. Kohrt et al. (2011) Blood 117:2423. Such targeting may allow for lower dosing of agonist CD137 antibodies, thus minimizing undesired toxicities.

[0023] In some embodiments of the present invention, the anti-fucosyl GMI antibody is administered prior to administration of anti-CD137 antibody. Without intending to be limited by theory, such pre-treatment with anti-fucosyl GMI antibody allows binding to fucosyl GMI on target tumor cells, ligation of the Fc region of the anti-fucosyl GMI antibody to Fc receptors on NK cells, and most importantly upregulation of CD137 on NK cells, prior to administration of anti-CD137. As a consequence, at the (subsequent) time of dosing with anti-CD137 there exists in the subject a pre-existing population of NK cells in proximity to the target tumor cells and with elevated CD137 expression, such that binding (and effects) of anti-CD137 will be preferentially directed to the target tumor cells.

1. Definitions

[0024] In order that the present disclosure may be more readily understood, certain terms are first defined. As used in this application, except as otherwise expressly provided herein, each of the following terms shall have the meaning set forth below. Additional definitions are set forth throughout the application.

[0025] "BMS-986012," as used herein, refers to a non-fucosylated anti-fucosyl GMI mAb comprising heavy chains of SEQ ID NO: 3 and light chains of SEQ ID NO: 4. BMS-986012 also comprises heavy chain variable domains of SEQ ID NO: 1 and light chain variable domains of SEQ ID NO: 2. BMS-986012 also comprises CDR sequences of SEQ
I D NO: 5 (CDRH1), SEQ I D NO: 6 (CDRH2), SEQ I D NO: 7 (CDRH3), SEQ I D NO: 8 (CDRL1), SEQ I D NO: 9 (CDRL2), SEQ I D NO: 10 (CDRL3).

[0026] "BMS-6633513," as used herein, refers to an anti-CD137 mAb comprising heavy chains of SEQ ID NO: 13 and light chains of SEQ ID NO: 14, also known as urelumab. BMS-6633513 also comprises heavy chain variable domains of SEQ ID NO: 11 and light chain variable domains of SEQ ID NO: 12. BMS-6633513 also comprises CDR sequences of SEQ ID NO: 15 (CDRH1), SEQ ID NO: 16 (CDRH2), SEQ ID NO: 17 (CDRH3), SEQ ID NO: 18 (CDRL1), SEQ ID NO: 19 (CDRL2), SEQ ID NO: 20 (CDRL3).

[0027] Target proteins referenced herein (also referred to as antigens), such as CD137, are intended to refer to their human orthologs (e.g. huCD137; NP_001552; GenelD 3604) unless otherwise indicated or clear from the context.

[0028] "Administering" refers to the physical introduction of a composition comprising a therapeutic agent to a subject, using any of the various methods and delivery systems known to those skilled in the art. Preferred routes of administration for the anti-fucosyl-GMI antibody include intravenous, intramuscular, subcutaneous, intraperitoneal, spinal or other parenteral routes of administration, for example by injection or infusion. The phrase "parenteral administration" as used herein means modes of administration other than enteral and topical administration, usually by injection, and includes, without limitation, intravenous, intramuscular, intraarterial, intrathecal, intralymphatic, intraleisonal, intracapsular, intraorbital, intracardiac, intradermal, intraperitoneal, transtracheal, subcutaneous, subcuticular, intraarticular, subcapsular, subarachnoid, intraspinal, epidural and intrasternal injection and infusion, as well as in vivo electroporation. The TKI is typically administered via a non-parenteral route, preferably orally. Other non-parenteral routes include a topical, epidermal or mucosal route of administration, for example, intranasally, vaginally, rectally, sublingually or topically. Administering can also be performed, for example, once, a plurality of times, and/or over one or more extended periods. Dose intervals denominated in "days" are intended to represent approximately 24 hour intervals, but may vary slightly due to scheduling difficulties or other delays in administration.

[0029] "Concurrent" administration refers to dosing of two distinct agents, such as anti-fucosyl GMI and anti-CD137 antibodies, at or around the same time rather than
intentionally delaying administration of one of the agents. As such, concurrent administration includes simultaneous administration, e.g. when the agents are co-formulated or mixed prior to administration, and also includes administration of the two drugs within a convenient interval, typically during the same visit to a health care facility. Typically concurrent administration is performed on the same day, and excludes administration at separate visits to a health care facility.

[0030] An "adverse event" (AE) as used herein is any unfavorable and generally unintended or undesirable sign (including an abnormal laboratory finding), symptom, or disease associated with the use of a medical treatment. A medical treatment may have one or more associated AEs and each AE may have the same or different level of severity. Reference to methods capable of "altering adverse events" means a treatment regime that decreases the incidence and/or severity of one or more AEs associated with the use of a different treatment regime.

[0031] An "antibody" (Ab) shall include, without limitation, a glycoprotein immunoglobulin that binds specifically to an antigen and comprises at least two heavy (H) chains and two light (L) chains interconnected by disulfide bonds, or an antigen-binding portion thereof. Each H chain comprises a heavy chain variable region (abbreviated herein as V_H) and a heavy chain constant region. The heavy chain constant region comprises three constant domains, Cm, Cm and Cm. Each light chain comprises a light chain variable region (abbreviated herein as V_L) and a light chain constant region. The light chain constant region is comprises one constant domain, CL. The V_H and V_L regions can be further subdivided into regions of hypervariability, termed complementarity determining regions (CDRs), interspersed with regions that are more conserved, termed framework regions (FR). Each V_H and V_L comprises three CDRs and four FRs, arranged from amino-terminus to carboxy-terminus in the following order: FR1, CDR1, FR2, CDR2, FR3, CDR3, FR4. The variable regions of the heavy and light chains contain a binding domain that interacts with an antigen. The constant regions of the Abs may mediate the binding of the immunoglobulin to host tissues or factors, including various cells of the immune system (e.g., effector cells) and the first component (Clq) of the classical complement system. Sequences of antibody heavy chains herein may comprise a C-terminal lysine (K) residue but that residue may be clipped off during manufacture, entirely or partially, or it may be removed from the genetic construct used to produce the antibody so as to avoid potential
heterogeneity arising from the aforementioned clipping. Both heavy chain sequences
provided herein (SEQ ID NOs: 3 and 13) do not include C-terminal lysine residues.

[0032] An immunoglobulin may derive from any of the commonly known isotypes,
including but not limited to IgA, secretory IgA, IgG and IgM. IgG subclasses are also well
known to those in the art and include but are not limited to human IgGl, IgG2, IgG3 and
IgG4. "Isotype" refers to the Ab class or subclass (e.g., IgM or IgGl) that is encoded by
the heavy chain constant region genes. The term "antibody" includes, by way of example,
both naturally occurring and non-naturally occurring Abs; monoclonal and polyclonal Abs;
chimeric and humanized Abs; human or nonhuman Abs; wholly synthetic Abs; and single
chain Abs. A nonhuman Ab may be humanized by recombinant methods to reduce its
immunogenicity in man. Where not expressly stated, and unless the context indicates
otherwise, the term "antibody" also includes an antigen-binding fragment or an antigen-
binding portion of any of the aforementioned immunoglobulins, and includes a monovalent
and a divalent fragment or portion, and a single chain Ab.

[0033] An "isolated antibody" refers to an Ab that is substantially free of other Abs
having different antigenic specificities (e.g., an isolated Ab that binds specifically to
fucosyl-GM1 is substantially free of Abs that bind specifically to antigens other than
fucosyl-GM1). Moreover, an isolated Ab may be substantially free of other cellular
material and/or chemicals.

[0034] The term "monoclonal antibody" ("mAb") refers to a non-naturally occurring
preparation of Ab molecules of single molecular composition, i.e., Ab molecules whose
primary sequences are essentially identical, and which exhibits a single binding specificity
and affinity for a particular epitope. A mAb is an example of an isolated Ab. MAbs may
be produced by hybridoma, recombinant, transgenic or other techniques known to those
skilled in the art.

[0035] A "human" antibody (HuMAb) refers to an Ab having variable regions in which
both the framework and CDR regions are derived from human germline immunoglobulin
sequences. Furthermore, if the Ab contains a constant region, the constant region also is
derived from human germline immunoglobulin sequences. The human Abs of the
invention may include amino acid residues not encoded by human germline
immunoglobulin sequences (e.g., mutations introduced by random or site-specific
mutagenesis in vitro or by somatic mutation in vivo). However, the term "human antibody,"
as used herein, is not intended to include Abs in which CDR sequences derived from the germline of another mammalian species, such as a mouse, have been grafted onto human framework sequences. The terms "human" Abs and "fully human" Abs and are used synonymously.

[0036] A "humanized antibody" refers to an Ab in which some, most or all of the amino acids outside the CDR domains of a non-human Ab are replaced with corresponding amino acids derived from human immunoglobulins. In one embodiment of a humanized form of an Ab, some, most or all of the amino acids outside the CDR domains have been replaced with amino acids from human immunoglobulins, whereas some, most or all amino acids within one or more CDR regions are unchanged. Small additions, deletions, insertions, substitutions or modifications of amino acids are permissible as long as they do not abrogate the ability of the Ab to bind to a particular antigen. A "humanized" Ab retains an antigenic specificity similar to that of the original Ab.

[0037] A "chimeric antibody" refers to an Ab in which the variable regions are derived from one species and the constant regions are derived from another species, such as an Ab in which the variable regions are derived from a mouse Ab and the constant regions are derived from a human Ab.

[0038] An "anti-antigen" Ab refers to an Ab that binds specifically to the antigen. For example, an anti- fucosyl-GMI Ab binds specifically to fucosyl-GMI.

[0039] An "antigen-binding portion" of an Ab (also called an "antigen-binding fragment") refers to one or more fragments of an Ab that retain the ability to bind specifically to the same antigen bound by the whole Ab.

[0040] A "cancer" refers a broad group of various diseases characterized by the uncontrolled growth of abnormal cells in the body. Unregulated cell division and growth divide and grow results in the formation of malignant tumors that invade neighboring tissues and may also metastasize to distant parts of the body through the lymphatic system or bloodstream. The terms, "cancer," "tumor," and "neoplasm," are used interchangeably herein.

[0041] A "subject" includes any human or nonhuman animal. The term "nonhuman animal" includes, but is not limited to, vertebrates such as nonhuman primates, sheep, dogs, and rodents such as mice, rats and guinea pigs. In preferred embodiments, the subject is a human. The terms, "subject" and "patient" are used interchangeably herein.
A "therapeutically effective amount" or "therapeutically effective dosage" of a drug or therapeutic agent is any amount of the drug that, when used alone or in combination with another therapeutic agent, protects a subject against the onset of a disease or promotes disease regression evidenced by a decrease in severity of disease symptoms, an increase in frequency and duration of disease symptom-free periods, or a prevention of impairment or disability due to the disease affliction. The ability of a therapeutic agent to promote disease regression can be evaluated using a variety of methods known to the skilled practitioner, such as in human subjects during clinical trials, in animal model systems predictive of efficacy in humans, or by assaying the activity of the agent in in vitro assays.

By way of example, an "anti-cancer agent" promotes cancer regression in a subject. In preferred embodiments, a therapeutically effective amount of the drug promotes cancer regression to the point of eliminating the cancer. "Promoting cancer regression" means that administering an effective amount of the drug, alone or in combination with an anti-neoplastic agent, results in a reduction in tumor growth or size, necrosis of the tumor, a decrease in severity of at least one disease symptom, an increase in frequency and duration of disease symptom-free periods, or a prevention of impairment or disability due to the disease affliction. In addition, the terms "effective" and "effectiveness" with regard to a treatment includes both pharmacological effectiveness and physiological safety. Pharmacological effectiveness refers to the ability of the drug to promote cancer regression in the patient. Physiological safety refers to the level of toxicity, or other adverse physiological effects at the cellular, organ and/or organism level (adverse effects) resulting from administration of the drug.

By way of example for the treatment of tumors, a therapeutically effective amount of an anti-cancer agent preferably inhibits cell growth or tumor growth by at least about 20%, more preferably by at least about 40%, even more preferably by at least about 60%, and still more preferably by at least about 80% relative to untreated subjects. In other preferred embodiments of the invention, tumor regression may be observed and continue for a period of at least about 20 days, more preferably at least about 40 days, or even more preferably at least about 60 days. Notwithstanding these ultimate measurements of therapeutic effectiveness, evaluation of immunotherapeutic drugs must also make allowance for "immune-related" response patterns.
A therapeutically effective amount of a drug includes a "prophylactically effective amount," which is any amount of the drug that, when administered alone or in combination with an anti-neoplastic agent to a subject at risk of developing a cancer (e.g., a subject having a pre-malignant condition) or of suffering a recurrence of cancer, inhibits the development or recurrence of the cancer. In preferred embodiments, the prophylactically effective amount prevents the development or recurrence of the cancer entirely. "Inhibiting" the development or recurrence of a cancer means either lessening the likelihood of the cancer’s development or recurrence, or preventing the development or recurrence of the cancer entirely.

The use of the alternative (e.g., "or") should be understood to mean either one, both, or any combination thereof of the alternatives. As used herein, the indefinite articles "a" or "an" should be understood to refer to "one or more" of any recited or enumerated component.

The terms "about" or "comprising essentially of" refer to a value or composition that is within an acceptable error range for the particular value or composition as determined by one of ordinary skill in the art, which will depend in part on how the value or composition is measured or determined, i.e., the limitations of the measurement system. For example, "about" or "comprising essentially of" can mean within 1 or more than 1 standard deviation per the practice in the art. Alternatively, "about" or "comprising essentially of" can mean a range of up to 20%. Furthermore, particularly with respect to biological systems or processes, the terms can mean up to an order of magnitude or up to 5-fold of a value. When particular values or compositions are provided in the application and claims, unless otherwise stated, the meaning of "about" or "comprising essentially of" should be assumed to be within an acceptable error range for that particular value or composition.

As described herein, any concentration range, percentage range, ratio range or integer range is to be understood to include the value of any integer within the recited range and, when appropriate, fractions thereof (such as one tenth and one hundredth of an integer), unless otherwise indicated. Such ranges further include the values as the boundaries of the ranges.

Various aspects of the invention are described in further detail in the following subsections.
II. Anti-Fucosyl-GM1 Antibodies

[0050] HuMAbs that bind specifically to fucosyl-GM1 with high affinity have been disclosed in U.S. Patent No. 8,383,118 and WO 2007/067992 (e.g., human monoclonal antibodies 5B1, 5Bla, 7D4, 7E4, 13B8 and 18D5). Each of the HuMAbs disclosed in U.S. Patent No. 8,383,118 has been demonstrated to exhibit one or more desirable functional properties: (1) specifically binds to fucosyl-GM1; (2) binds to fucosyl-GM1 with high affinity (for example with a KD of 1 x 10^{-7} M or less); (3) binds to the human small cell lung cancer cell line DMS-79 (Human SCLC ATCC # CRL-2049); and (d) inhibit growth of tumor cells in vitro or in vivo. Preferably, the antibody binds to fucosyl-GM1 with a KD of 5 x 10^{-8} M or less, binds to fucosyl-GM1 with a KD of 1 x 10^{-8} M or less, binds to fucosyl-GM1 with a KD of 5 x 10^{-9} M or less, or binds to fucosyl-GM1 with a KD of between 1 x 10^{-8} M and 1 x 10^{-10} M or less. Standard assays to evaluate the binding ability of the antibodies toward fucosyl-GM1 are known in the art, including for example, ELISAs, Western blots and RIAs. The binding kinetics (e.g., binding affinity) of the antibodies also can be assessed by standard assays known in the art, such as by ELISA, Scatchard and Biacore analysis.

[0051] A preferred anti-fucosyl-GM1 Ab is BMS-986012 (also referred to as MDX-1110 or 7E4).

[0052] Anti-fucosyl-GM1 Abs usable in the disclosed methods also include isolated Abs that bind specifically to fucosyl-GM1 and compete for binding to fucosyl-GM1 with BMS-986012 (see, e.g., U.S. Patent No. 8,383,118; WO 2007/067992). The ability of Abs to compete for binding to an antigen indicates that these Abs bind to the same epitope region of the antigen and sterically hinder the binding of other competing Abs to that particular epitope region. These competing Abs are expected to have functional properties very similar those of BMS-986012 by virtue of their binding to the same epitope region of fucosyl-GM1. Competing Abs can be readily identified based on their ability to compete with BMS-986012 in standard fucosyl-GM1 binding assays such as Biacore analysis, ELISA assays or flow cytometry (see, e.g., WO 2013/173223).

[0053] For administration to human subjects, these Abs are preferably chimeric Abs, or more preferably humanized or human Abs. Such chimeric, humanized or human mAbs can be prepared and isolated by methods well known in the art. Anti-fucosyl-GM1 Abs usable in the methods of the disclosed invention also include antigen-binding portions of
the above Abs. It has been amply demonstrated that the antigen-binding function of an Ab can be performed by fragments of a full-length Ab. Examples of binding fragments encompassed within the term "antigen-binding portion" of an Ab include (i) a Fab fragment, a monovalent fragment consisting of the \(Y_L \), \(Y_H \), \(C_L \) and \(C_{H1} \) domains; (ii) a F(ab')2 fragment, a bivalent fragment comprising two Fab fragments linked by a disulfide bridge at the hinge region; (iii) a Fd fragment consisting of the \(Y_H \) and Cm domains; and (iv) a Fv fragment consisting of the VL and \(Y_H \) domains of a single arm of an Ab. Anti-fucosyl-GMI antibodies (or VH and/or VL domains derived therefrom) suitable for use in the invention can be generated using methods well known in the art.

[0054] An exemplary anti-fucosyl-GMI antibody is BMS-986012 comprising heavy and light chains comprising the sequences shown in SEQ ID NOs: 3 and 4, respectively, or antigen binding fragments and variants thereof.

[0055] In other embodiments, the antibody has heavy and light chain CDRs or variable regions of BMS-986012. Accordingly, in one embodiment, the antibody comprises CDR1, CDR2, and CDR3 domains of the VH of BMS-986012 having the sequence set forth in SEQ ID NO: 1, and CDR1, CDR2 and CDR3 domains of the VL of BMS-986012 having the sequence set forth in SEQ ID NO: 2. In another embodiment, the antibody comprises the heavy chain CDR1, CDR2 and CDR3 domains comprising the sequences set forth in SEQ ID NOs: 5, 6, and 7, respectively, and the light chain CDR1, CDR2 and CDR3 domains comprising the sequences set forth in SEQ ID NOs: 8, 9, and 10, respectively. In another embodiment, the antibody comprises VH and VL regions comprising the amino acid sequences set forth in SEQ ID NO: 1 and SEQ ID NO: 2, respectively. In another embodiment, the antibody competes for binding with and/or binds to the same epitope on fucosyl-GMI as the above-mentioned antibodies. In another embodiment, the antibody has at least about 90% variable region amino acid sequence identity with the above-mentioned antibodies (e.g., at least about 90%, 95% or 99% variable region identity with SEQ ID NO: 1 or SEQ ID NO: 2).

III. Non-fucosylation and hypofucosylation

[0056] The interaction of antibodies with FcγRs can be enhanced by modifying the glycan moiety attached to each Fc fragment at the N297 residue. In particular, the absence of branching fucose residues strongly enhances ADCC via improved binding of IgG to

Modification of antibody glycosylation can be accomplished by, for example, expressing the antibody in a host cell with altered glycosylation machinery. Antibodies with reduced or eliminated fucosylation, which exhibit enhanced ADCC, are particularly useful in the methods of the present invention. Cells with altered glycosylation machinery have been described in the art and can be used as host cells in which to express recombinant antibodies of this disclosure to thereby produce an antibody with altered glycosylation. For example, the cell lines Ms704, Ms705, and Ms709 lack the fucosyltransferase gene, FUT8 (a-(1,6) fucosyltransferase /see U.S. Pat. App. Publication No. 20040110704; Yamane-Ohnuki et al. (2004) Biotechnol. Bioeng. 87: 614), such that antibodies expressed in these cell lines lack fucose on their carbohydrates. As another example, EP 1176195 also describes a cell line with a functionally disrupted FUT8 gene as well as cell lines that have little or no activity for adding fucose to the N-acetylgalcosamine that binds to the Fc region of the antibody, for example, the rat myeloma cell line YB2/0 (ATCC CRL 1662). PCT Publication WO 03/035835 describes a variant CHO cell line, Lec13, with reduced ability to attach fucose to Asn(297)-linked carbohydrates, also resulting in hypofucosylation of antibodies expressed in that host cell. See also Shields et al. (2002) J. Biol. Chem. 277:26733. Antibodies with a modified glycosylation profile can also be produced in chicken eggs, as described in PCT Publication No. WO 2006/089231. Alternatively, antibodies with a modified glycosylation profile can be produced in plant cells, such as Lemna. See e.g. U.S. Publication No. 2012/0276086. PCT Publication No. WO 99/54342 describes cell lines engineered to express glycoprotein-modifying glycosyl transferases /e.g., beta(1,4)-N-acetylglucosaminyltransferase III (GnTIII)) such that antibodies expressed in the engineered cell lines exhibit increased bisecting GlcNac structures which results in increased ADCC activity of the antibodies. See also Umana et al. (1999) Nat. Biotech. 17: 176. Alternatively, the fucose residues of the antibody may be cleaved off using a fucosidase enzyme. For example, the enzyme alpha-L-fucosidase removes fucosyl residues from antibodies. Tarentino et al. (1975) Biochem. 14:5516. Antibodies with reduced fucosylation may also be produced in cells harboring a recombinant gene encoding
an enzyme that uses GDP-6-deoxy-D-lyxo-4-hexylose as a substrate, such as GDP-6-deoxy-D-lyxo-4-hexylose reductase (RMD), as described at U.S. Pat. No. 8,642,292. Alternatively, cells may be grown in medium containing fucose analogs that block the addition of fucose residues to the N-linked glycan or a glycoprotein, such as antibody, produced by cells grown in the medium. U.S. Pat. No. 8,163,551; WO 09/135181.

IV. Anti-CD137 Antibodies

[0058] HuM Abs that bind specifically to human CD137 with high affinity have been disclosed and claimed in U.S. Patent No. 7,288,638 (human monoclonal antibodies human 4-1BB, also known as CD137). The sequences of anti-huCD137 mAb BMS-663513 are provided herein at SEQ ID NOs: 11-20.

[0059] Anti-huCD137 antibody BMS-663513 is a powerful CD137 agonist driving immune response and as a consequence must be administered at a relatively low dose to avoid immune-mediated side effects. In specific embodiments of monotherapy using BMS-663513, the antibody is administered at a flat doses between 1 mg and 10 mg, e.g. 3 mg or 8 mg, at intervals of every 4 or 8 weeks. See WO 2016/029073. In other embodiments BMS-663513 can be administered at between 0.05 and 1 mg/kg, e.g. 0.1 or 0.3 mg/kg.

[0060] Anti-huCD137 Abs usable in the disclosed methods also include isolated Abs that bind specifically to CD137 and compete for binding to CD137 with BMS-663513. The ability of Abs to compete for binding to an antigen indicates that these Abs bind to the same epitope region of the antigen and sterically hinder the binding of other competing Abs to that particular epitope region. These competing Abs are expected to have functional properties very similar those of BMS-663513 by virtue of their binding to the same epitope region of CD137. Competing Abs can be readily identified based on their ability to compete with BMS-663513 in standard binding assays such as Biacore analysis, ELISA assays or flow cytometry.

[0061] For administration to human subjects, these Abs are preferably chimeric Abs, or more preferably humanized or human Abs. Such chimeric, humanized or human mAbs can be prepared and isolated by methods well known in the art. Anti-huCD137 Abs usable in the methods of the disclosed invention also include antigen-binding portions of the above Abs. Examples of binding fragments encompassed within the term "antigen-binding
portion" of an Ab include (i) a Fab fragment, a monovalent fragment consisting of the Y_L, YH, CL and C_{H1} domains; (ii) a F(ab')2 fragment, a bivalent fragment comprising two Fab fragments linked by a disulfide bridge at the hinge region; (iii) a Fd fragment consisting of the YH and Cm domains; and (iv) a Fv fragment consisting of the YL and VH domains of a single arm of an Ab.

V. Antibodies that compete with reference antibodies

Antibodies that compete with anti-fucosyl GM1 mAb BMS-986012 or anti-CD137 mAb BMS-663513 and for binding to their respective antigens may be determined using methods well known in the art, for example in an enzyme linked immunosorbent assay (ELISA) or by fluorescence-activated cell sorting (FACS).

An exemplary competition experiment to determine whether a test antibody "competes with" a reference antibody (BMS-986012 or BMS-663513) may be conducted as follows: cells expressing the antigen (fucosyl-GM1 or CD137) are seeded at 10^5 cells per sample well in a 96 well plate. The plate is set on ice followed by the addition of unconjugated test antibody at concentrations ranging from 0 to 50 μg/mL (three-fold titration starting from a highest concentration of 50 μg/mL). An unrelated IgG may be used as an isotype control for the first antibody and added at the same concentrations (three-fold titration starting from a highest concentration of 50 μg/mL). A sample pre-incubated with 50 μg/mL unlabeled reference antibody may be included as a positive control for complete blocking (100% inhibition) and a sample without antibody in the primary incubation may be used as a negative control (no competition; 0% inhibition). After 30 minutes of incubation, labeled, e.g., biotinylated, reference antibody is added at a concentration of 2 μg/mL per well without washing. Samples are incubated for another 30 minutes on ice. Unbound antibodies are removed by washing the cells with FACS buffer. Cell-bound labeled reference antibody is detected with an agent that detects the label, e.g., PE conjugated streptavidin (Invitrogen, catalog#S21388) for detecting biotin. The samples are acquired on a FACS Calibur Flow Cytometer (BD, San Jose) and analyzed with Flowjo software (Tree Star, Inc., Ashland, OR). The results may be represented as % inhibition.

Unless otherwise indicated, an antibody will be considered to compete with a reference antibody (BMS-986012 or BMS-663513) if it reduces binding of the selected antibody to its respective antigen by at least 20% when used at a roughly equal molar
concentration with the reference antibody, as measured in a competition ELISA as outlined in the preceding paragraph.

VI. Pharmaceutical Compositions

[0065] Therapeutic agents (e.g., anti-fucosyl-GMI antibodies and/or anti-CD137 antibodies, or antigen binding fragments thereof) of the present invention may be constituted in a composition, e.g., a pharmaceutical composition containing and a pharmaceutically acceptable carrier. Pharmaceutical compositions of the present invention include both individual antibodies and co-formulations.

[0066] As used herein, a "pharmaceutically acceptable carrier" includes any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like that are physiologically compatible. "Pharmaceutically acceptable" means approved by a government regulatory agency or listed in the U.S. Pharmacopeia or another generally recognized pharmacopeia for use in animals, particularly in humans. The term "carrier" refers to a diluent, adjuvant, excipient, or vehicle with which the compound is administered. Such pharmaceutical carriers can be sterile liquids, such as water and oils, including those of petroleum, animal, vegetable or synthetic origin, such as peanut oil, soybean oil, mineral oil, sesame oil, glycerol polyethylene glycol ricinoleate, and the like. Water or aqueous solution saline and aqueous dextrose and glycerol solutions may be employed as carriers, particularly for injectable solutions (e.g., comprising an anti-fucosyl-GMI antibody). Preferably, the carrier for a composition containing an Ab is suitable for intravenous, intramuscular, subcutaneous, parenteral, spinal or epidermal administration (e.g., by injection or infusion). A pharmaceutical composition of the invention may include one or more pharmaceutically acceptable salts, anti-oxidant, aqueous and non-aqueous carriers, and/or adjuvants such as preservatives, wetting agents, emulsifying agents and dispersing agents.

[0067] Liquid compositions for parenteral administration can be formulated for administration by injection or continuous infusion. Routes of administration by injection or infusion include intravenous, intraperitoneal, intramuscular, intrathecal and subcutaneous. In one embodiment, the anti-fucosyl-GMI antibody is administered intravenously.
VII. Methods of Treatment

[0068] Provided herein are clinical methods for treating a lung cancer (e.g., small cell lung cancer) in a subject (e.g., a human subject), comprising administering to the subject a therapeutically effective amounts of an anti-fucosyl-GMI antibody, or an antigen-binding portion thereof and an anti-huCD137 antibody, or an antigen-binding portion thereof. In one embodiment, the subject has previously received an initial anti-cancer therapy. In another embodiment, the lung cancer is an advanced, metastatic, relapsed, and/or refractory lung cancer.

[0069] In a particular embodiment, the anti-fucosyl-GMI antibody is BMS-986012. In some embodiments, the anti-huCD137 antibody is BMS-663513. In another embodiment, dosage regimens are adjusted to provide the optimum desired response (e.g., an effective response).

[0070] In another embodiment, the antibody is administered as a first line of treatment (e.g., the initial or first treatment). In another embodiment, the antibody is administered as a second line of treatment (e.g., after the initial or first treatment, including after relapse and/or where the first treatment has failed).

[0071] In certain embodiments, the anti-fucosyl-GMI antibody is administered at a dose ranging from 10 to 2000 mg once every 1, 2, 3 or 4 weeks. For example, the antibody is administered at a dose ranging from 20 to 1000 mg once every 3 weeks. Optionally, the method comprises at least one treatment cycle of three weeks. For example, the method comprises at least four treatment cycles of three weeks. To illustrate, the antibody is administered on Days 1, 22, 43, and 64.

[0072] In certain specific embodiments, the antibody is administered according to at least one of the following dosing regimens: (a) about 20 mg of the antibody every 3 weeks; (b) about 70 mg of the antibody every 3 weeks; (c) about 160 mg of the antibody every 3 weeks; (d) about 400 mg of the antibody every 3 weeks; and (e) about 1000 mg of the antibody every 3 weeks. In one embodiment antibody is administered at a dose between 400 and 1000 mg, inclusive. Whether stated or not, any dose range recited herein is intended to be inclusive, i.e. it the doses recited as the boundaries of the ranges are included within the recited dosing range. Preferably, administration of the antibody induces a durable clinical response in the subject. Optionally, administration of the antibody is continued for as long as clinical benefit is observed or until unmanageable toxicity or
disease progression occurs. The efficacy of the treatment methods provided herein can be assessed using any suitable means. In one embodiment, the treatment produces at least one therapeutic effect selected from the group consisting of reduction in size of the cancer, reduction in number of metastatic lesions over time, complete response, partial response, and stable disease.

[0073] Patients treated according to the methods disclosed herein preferably experience improvement in at least one sign of cancer. In one embodiment, improvement is measured by a reduction in the quantity and/or size of measurable tumor lesions. In another embodiment, lesions can be measured on chest x-rays or CT or MRI films. In another embodiment, cytology or histology can be used to evaluate responsiveness to a therapy.

[0074] In one embodiment, the patient treated exhibits a complete response (CR), a partial response (PR), or stable disease (SD). In another embodiment, the patient treated experiences tumor shrinkage and/or decrease in growth rate, i.e., suppression of tumor growth. In another embodiment, unwanted cell proliferation is reduced or inhibited. In yet another embodiment, one or more of the following can occur: the number of cancer cells can be reduced; tumor size can be reduced; cancer cell infiltration into peripheral organs can be inhibited, retarded, slowed, or stopped; tumor metastasis can be slowed or inhibited; tumor growth can be inhibited; recurrence of tumor can be prevented or delayed; one or more of the symptoms associated with cancer can be relieved to some extent.

VIII. Kits and Unit Dosage Forms

[0075] Also provided herein are kits that include a pharmaceutical composition containing an anti-fucosyl-GMI antibody (such as BMS-986012) and/or an anti-huCD137 antibody (BMS-663513), and a pharmaceutically acceptable carrier, in a therapeutically effective amount adapted for use in the preceding methods.

[0076] The kits optionally can also include instructions, e.g., comprising administration schedules, to allow a practitioner (e.g., a physician, nurse, or patient) to administer the composition contained therein to administer the composition to a patient having a cancer (e.g., a lung cancer). The kit can also include a syringe.

[0077] Optionally, the kits include multiple packages of the single-dose pharmaceutical compositions each containing an effective amount of the antibody for a single administration in accordance with the methods provided above. Instruments or devices necessary for administering the pharmaceutical composition(s) also may be included in the
kits. For instance, a kit may provide one or more pre-filled syringes containing an amount of the antibody.

[0078] The following examples are merely illustrative and should not be construed as limiting the scope of this disclosure in any way as many variations and equivalents will become apparent to those skilled in the art upon reading the present disclosure.

[0079] The contents of all references, GenBank entries, patents and published patent applications cited throughout this application are expressly incorporated herein by reference.

EXAMPLE 1

Combination Therapy – Anti-Fucosyl GMI & Anti-CD 137

[0080] A combination therapy method of the present invention involving antibodies to fucosyl GMI and CD137 was tested in the DMS-79 (ATCC CRL-2049) SCLC tumor model in mice. Bepler et al. (1989) Oncogene 4:45; Pettengill (1980) Cancer 45: 906; Pettengill et al. (1980) Exp. Cell Biol. 48:279. Briefly, DMS79 cells were cultured in RPMI with 10% fetal bovine serum (FBS), 2 mM L-glutamine, 15 mg/L sodium bicarbonate, 4.5 g/L glucose, 10 mM HEPES, and 10 μM NaPyr prior to subcutaneous implantation in the right flanks of male C.B17 SCID mice (5 million cells in 0.1 mL phosphate-buffered saline (PBS) and 0.1 mL MATRIGEL® gelatinous protein mixture per flank). When tumors reached a mean or median size of 80-155 mm³ estimated by LxWxH/2 using a digital calipers, mice were randomized into treatment groups (N=8 mice per group).

[0081] Anti-fucosyl GMI antibody BMS-986012 was administered at 3 mg/kg i.p. to mice on days 6, 10, 13, 17 and 20 post-implantation to assess its effectiveness as monotherapy. Because fucosyl GMI is a ganglioside rather than a protein, and is the same in mice as in humans, there was no need to use a "mouse surrogate" for mouse studies. Anti-muCD137 antibody (a mouse surrogate for BMS-663513) was administered to mice at 1 mg/kg i.p. on days 7, 11, 14, 18 and 21 post implantation to assess its effectiveness as monotherapy.

[0082] Combination therapy involved administration of both antibodies according to the same schedule, i.e. anti-CD137 (either 0.1 or 0.3 mg/kg) was administered one day after each dose of anti-fucosyl GMI (3 mg/kg). A vehicle only control was included. Results are provided at FIG. 1. Anti-CD137 monotherapy was ineffective, while anti-fucosyl GMI
monotherapy significantly reduced tumor growth. Combination therapy, in contrast, virtually eliminated tumor growth at both doses of anti-CD137 tested, demonstrating the synergistic effect of the two antibodies.

EXAMPLE 2

Combination Therapy – Anti-Fucosyl GM1 & Cisplatin

[0083] A combination therapy method of the present invention involving antibody to fucosyl GM1 and cisplatin was tested in the DMS-79 SCLC tumor model in mice (N=9 mice per group), essentially as described in Example 1. Anti-fucosyl GM1 antibody BMS-986012 was administered at 0.3 mg/kg i.p. to mice on days 7, 10, 13, 17 and 21 post implantation, and cisplatin was administered at 3 mg/kg on days 7, 14, 21 and 28. Cisplatin was administered in combination with BMS-986012 and with an isotype control antibody at 3mg/kg as a control. Additional controls included the isotype control antibody alone and a vehicle control. Results are provided at FIG. 2. While both anti-fucosyl GM1 antibody treatment and cisplatin treatment are effective as monotherapy to reduce tumor growth, the combination is significantly more effective - almost stopping tumor growth entirely.

EXAMPLE 3

Combination Therapy – Anti-Fucosyl GM1 & Etoposide

[0084] A combination therapy method of the present invention involving antibody to fucosyl GM1 and etoposide was tested in the DMS-79 SCLC tumor model in mice (N=9 mice per group), essentially as described in Example 1. Anti-fucosyl GM1 antibody BMS-986012 was administered at 3 mg/kg i.p. to mice on days 7, 11, 15, 18 and 21 post-implantation, and etoposide was administered at 15 mg/kg i.p. on days 7, 9 and 11. Etoposide was administered in combination with BMS-986012 and with an isotype control antibody at 3mg/kg as a control. Additional controls included the isotype control antibody alone and a vehicle control. Results are provided at FIG. 3. While both anti-fucosyl GM1 antibody treatment and etoposide treatment are somewhat effective as monotherapy to reduce tumor growth, the combination is more effective.
<table>
<thead>
<tr>
<th>SEQ ID NO.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Anti-FucGM1 Heavy Chain Variable Domain</td>
</tr>
<tr>
<td>2</td>
<td>Anti-FucGM1 Light Chain Variable Domain</td>
</tr>
<tr>
<td>3</td>
<td>Anti-FucGM1 Heavy Chain</td>
</tr>
<tr>
<td>4</td>
<td>Anti-FucGM1 Light Chain</td>
</tr>
<tr>
<td>5</td>
<td>Anti-FucGM1 CDRH1</td>
</tr>
<tr>
<td>6</td>
<td>Anti-FucGM1 CDRH2</td>
</tr>
<tr>
<td>7</td>
<td>Anti-FucGM1 CDRH3</td>
</tr>
<tr>
<td>8</td>
<td>Anti-FucGM1 CDRL1</td>
</tr>
<tr>
<td>9</td>
<td>Anti-FucGM1 CDRL2</td>
</tr>
<tr>
<td>10</td>
<td>Anti-FucGM1 CDRL3</td>
</tr>
<tr>
<td>11</td>
<td>Anti-CD137 Heavy Chain Variable Domain</td>
</tr>
<tr>
<td>12</td>
<td>Anti-CD137 Light Chain Variable Domain</td>
</tr>
<tr>
<td>13</td>
<td>Anti-CD137 Heavy Chain</td>
</tr>
<tr>
<td>14</td>
<td>Anti-CD137 Light Chain</td>
</tr>
<tr>
<td>15</td>
<td>Anti-CD137 CDRH1</td>
</tr>
<tr>
<td>16</td>
<td>Anti-CD137 CDRH2</td>
</tr>
<tr>
<td>17</td>
<td>Anti-CD137 CDRH3</td>
</tr>
<tr>
<td>18</td>
<td>Anti-CD137 CDRL1</td>
</tr>
<tr>
<td>19</td>
<td>Anti-CD137 CDRL2</td>
</tr>
<tr>
<td>20</td>
<td>Anti-CD137 CDRL3</td>
</tr>
<tr>
<td>21</td>
<td>huCD137 - NP_001552</td>
</tr>
</tbody>
</table>

[0085] Antibody sequences in the Sequence Listing include the sequences of the mature variable regions of the heavy and light chains, *i.e.* the sequences do not include signal peptides.

[0086] Equivalents: Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents of the specific embodiments disclosed herein. Such equivalents are intended to be encompassed by the following claims.
What is claimed is:

1. A method for treating a subject afflicted with cancer, comprising administering to the subject a therapeutically effective combination of:
 a. an anti-fucosyl GM1 antibody, or an antigen-binding portion thereof; and
 b. an anti-CD 137 antibody, or an antigen-binding portion thereof.

2. The method of Claim 1, wherein the anti-fucosyl GM1 antibody is hypofucosylated or non-fucosylated.

3. The method of Claim 2, wherein the cancer is lung cancer.

4. The method of Claim 3, wherein the lung cancer is small cell lung cancer (SCLC).

5. The method of Claim 1, wherein the anti-fucosyl GM1 antibody competes with BMS-986012 for binding to fucosyl-GM1, and further wherein BMS-986012 comprises heavy and light chains comprising the sequences of SEQ ID NOs: 3 and 4, respectively.

6. The method of Claim 5, wherein the anti-fucosyl GM1 antibody, or antigen-binding fragment thereof, comprises:
 a. a heavy chain comprising:
 i. CDRH1 comprising the sequence of SEQ ID NO: 5;
 ii. CDRH2 comprising the sequence of SEQ ID NO: 6; and
 iii. CDRH3 comprising the sequence of SEQ ID NO: 7;
 and
 b. a light chain comprising:
 i. CDRL1 comprising the sequence of SEQ ID NO: 8;
 ii. CDRL2 comprising the sequence of SEQ ID NO: 9; and
 iii. CDRL3 comprising the sequence of SEQ ID NO: 10.

7. The method of Claim 6, wherein the anti-fucosyl GM1 antibody, or antigen-binding fragment thereof, comprises:
a. a heavy chain variable region comprising the sequence of SEQ ID NO: 1; and
b. a light chain variable region comprising the sequence of SEQ ID NO: 2.

8. The method of Claim 7, wherein the anti-fucosyl GM1 antibody is non-fucosylated.

9. The method of Claim 8, wherein the anti-fucosyl GM1 antibody is BMS-986012,
wherein BMS-986012 comprises heavy and light chains comprising the sequences of SEQ ID NOs: 3 and 4, respectively.

10. The method of Claim 7, wherein the anti-fucosyl GM1 antibody is an antibody-drug conjugate.

11. The method of Claim 1 or Claim 5, wherein the anti-huCD137 antibody competes
with BMS-663513 for binding to human CD137, and further wherein BMS-663513 comprises heavy and light chains comprising the sequences of SEQ ID NOs: 13 and 14, respectively.

12. The method of Claim 11, wherein the anti-huCD137 antibody, or antigen-binding
fragment thereof, comprises:
 a. a heavy chain comprising:
 i. CDRH1 comprising the sequence of SEQ ID NO: 15;
 ii. CDRH2 comprising the sequence of SEQ ID NO: 16; and
 iii. CDRH3 comprising the sequence of SEQ ID NO: 17;
 and
 b. a light chain comprising:
 i. CDRL1 comprising the sequence of SEQ ID NO: 18;
 ii. CDRL2 comprising the sequence of SEQ ID NO: 19; and
 iii. CDRL3 comprising the sequence of SEQ ID NO: 20.

13. The method of Claim 12, wherein the anti-huCD137 antibody, or antigen-binding
fragment thereof, comprises:
 a. a heavy chain variable region comprising the sequence of SEQ ID NO: 11; and
b. a light chain variable region comprising the sequence of SEQ ID NO: 12.

14. The method of Claim 13, wherein the anti-huCD137 antibody is BMS-663513, wherein BMS-663513 comprises heavy and light chains comprising the sequences set forth in SEQ ID NOs: 13 and 14, respectively.

15. The method of Claim 14, wherein the anti-fucosyl GM1 antibody is BMS-986012, wherein BMS-986012 comprises heavy and light chains comprising the sequences of SEQ ID NOs: 3 and 4, respectively.

16. The method of Claim 1, wherein the anti-fucosyl GM1 antibody, or antigen-binding portion thereof, is administered at a dose between 400 and 1000 mg.

17. The method of Claim 1, wherein the anti-huCD137 GM1 antibody, or antigen-binding portion thereof, is administered at a dose between 3 and 8 mg.

18. The method of Claim 1, wherein the anti-fucosyl GM1 antibody, or antigen-binding portion thereof, is administered concurrently with administration of the anti-CD137 antibody, or antigen-binding portion thereof.

19. The method of Claim 1, wherein the anti-fucosyl GM1 antibody, or antigen-binding portion thereof, is administered prior to administration of the anti-CD137 antibody, or antigen-binding portion thereof.

20. The method of Claim 19 wherein the anti-fucosyl GM1 antibody, or antigen-binding portion thereof, is administered approximately one day prior to administration of the anti-CD137 antibody, or antigen-binding portion thereof.
FIG. 1

DMS79 model
(median, n=8)

- Vehicle
- BMS-986012, 3 mg/kg
- CD137 mAb, 1 mg/kg
- BMS-986012 + CD137, 3+0.1
- BMS-986012 + CD137, 3+0.3

Days Post Implantation

Tumor volume (mm³)
FIG. 2
FIG. 3
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. A61K39/395 C07K16/30

ADD.

According to International Patent Classification (IPC) onto both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

A61K C07K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, BIOSIS, EMBASE, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

Further documents are listed in the continuation of Box C. [X] See patent family annex.

* Special categories of cited documents:

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier application or patent but published on or after the international filing date

"L" document which may throw doubts on priority claim(s) one which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"Z" document member of the same patent family

Date of the actual completion of the international search: 18 August 2017

Date of mailing of the international search report: 28/08/2017

Name and mailing address of the ISA:

European Patent Office, P.B. 5818 Patentlaan 2
NL-2280 HV RIJSWIJK
Tel. (+31-70) 340-2040
Fax: (+31-70) 340-3016

Nauche, Stephane

Form PCT/ISA/210 (second sheet) (April 2005)
Box No. I Nucleotide and/or amino acid sequence(s) (Continuation of item 1.c of the first sheet)

1. With regard to any nucleotide and/or amino acid sequence disclosed in the international application, the international search was carried out on the basis of a sequence listing:
 a. **X** forming part of the international application as filed:
 - □ in the form of an Annex C/ST.25 text file.
 - □ on paper or in the form of an image file.
 b. □ furnished together with the international application under PCT Rule 13fer1 (a) for the purposes of international search only in the form of an Annex C/ST.25 text file.
 c. □ furnished subsequent to the international filing date for the purposes of international search only:
 - □ in the form of an Annex C/ST.25 text file (Rule 13fer1 (a)).
 - □ on paper or in the form of an image file (Rule 13fer1 (b) and Administrative Instructions, Section 7 13).

2. □ In addition, in the case that more than one version or copy of a sequence listing has been filed or furnished, the required statements that the information in the subsequent or additional copies is identical to that forming part of the application as filed or does not go beyond the application as filed, as appropriate, were furnished.

3. Additional comments:

Form PCT/ISA/21 0 (continuation of first sheet (1)) (January 2015)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>WO 2016049256 A1</td>
<td>31-03-2016</td>
<td>EP 3197918 A1</td>
<td>02-08-2017</td>
</tr>
<tr>
<td>WO 2016049256 A1</td>
<td>31-03-2016</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>