Abstract:
The present invention provides novel triazole derivatives as ghrelin analogue ligands of growth hormone secretagogue receptors according to formula (I) that are useful in the treatment or prophylaxis of physiological and/or pathophysiological conditions in mammals, preferably humans, that are mediated by GHS receptors. The present invention further provides GHS receptor antagonists and agonists that can be used for modulation of these receptors and are useful for treating above conditions, in particular growth retardation, cachexia, short-, medium- and/or long term regulation of energy balance; short-, medium- and/or long term regulation (stimulation and/or inhibition) of food intake; adipogenesis, adiposity and/or obesity; body weight gain and/or reduction; diabetes, diabetes type I, diabetes type II, tumor cell proliferation; inflammatory, inflammatory effects, gastric postoperative ileus, postoperative ileus and/or gastrectomy (ghrelin replacement therapy).
Novel Triazole Derivatives as Ghrelin Analogue Ligands of Growth Hormone Secretagogue Receptors

Description

Technical field

The invention relates to novel triazole derivatives that act as ghrelin analogue ligands of growth hormone secretagogue receptors. These compounds are useful in modulating growth hormone plasma levels in mammals as well as in the treatment and/or regulation of various physiological and pathophysiological conditions, such as growth retardation, obesity, food intake, energy balance, tumor cell proliferation, wound/burn healing, metabolic disorders and inflammation.

Prior art

Ghrelin, a 28 amino acid peptide with a unique octanoyl modification on Ser-3 (Kojima M et al., Nature 1999, 402: 656-660), was identified as an endogenous ligand for the growth hormone secretagogue receptor type 1a (GHS-R 1a), a G-protein coupled receptor (Howard AD et al., Science 1996, 273: 974-977). Ghrelin is essentially produced in the upper intestinal tract/stomach but lower amounts were also detected in bowel, pancreas, kidney, the immune system, placenta, testes, pituitary, lung and in the hypothalamus (van der Lely AJ et al., Endocrine Rev. 2004, 25: 426-457; Cowley M et al., Neuron 2003, 37: 649-661).

Ghrelin is thought to participate in metabolism regulation and energy expenditure, so ghrelin expression and secretion into the general circulation from the stomach is expected to be influenced by metabolic hormones. In obese humans, plasma ghrelin
levels are reduced, suggesting that the elevated insulin or leptin levels of obese subjects lower ghrelin secretion (Tschop M et al, Diabetes 2001, 50: 707-709).

The release of growth hormone in humans and animals is believed to treat physiological or pathophysiological conditions characterized by a deficiency in growth hormone secretion as well as to treat those conditions which are improved by the anabolic effects of growth hormone.

GH, synthesized and stored in the pituitary gland, is released under the control of two known hypothalamic hormones: growth hormone releasing hormone (GHRH) and the inhibitory hormone somatostatin (SRIF). In most cases, GH deficiency is related to a hypothalamic defect and not to a pituitary deficiency in GH. Therefore, as an alternative treatment to rhGH, GH-deficient patients could also be treated with any compound that releases endogenous GH from the pituitary gland. This can either be performed with GHRH which stimulates GH release but also with synthetic growth hormone secretagogues (GHS).

Many synthetic, peptidyl and non-peptidyl GHS, such as GHRPs 1, 2 and 6, Hexarelin, MK-0677, EP-01572, were shown to specifically bind to the then orphan receptor "GHS receptor" - several of them long before ghrelin and ghrelin/GHS receptor were discovered (see "Camanni F et al., Front Neuroendochnol. 1998, 19: 47-72"; "Casanueva FF et al., Trends Endocrinol. Metab. 1999, 10: 30-38"; "van der Lely AJ et al., Endocrine Rev. 2004, 25: 426-457" for further references). GHS also show potent GH releasing action and have the same biological activities as mentioned above for ghrelin.

While the ghrelin/GHS induced GH secretion is mediated by the activation of the ghrelin/GHS receptor type 1a (GHS-R 1a), there is evidence so far that at least some of the other effects of ghrelin and GHS are also mediated by different receptors of the GHS receptor family or even different binding sites on a given GHS receptor.

Two GHS type 1 receptors have been identified, GHS-R 1a and GHS-R 1b, that in human are presumably expressed by a single gene and alternatively spliced (van der Lely AJ et al., Endocrine Rev. 2004, 25: 426-457; Howard AD et al., Science 1996, 273: 974-977; Smith RG et al., Endocr. Rev. 1997, 18: 621-645; Smith RG et al., Endocrine 2001, 14: 9-14; McKee KK et al., Mol. Endocrinol. 1997, 11: 415-423; Petersenn S, Minerva Endocrinol. 2002; 27: 243-256). Among mammalian species a high degree of sequence identity has been reported for GHS-R 1a (Petersenn S, Minerva Endocrinol. 2002; 27: 243-256: between 91.8% and 95.6%).

Motilin receptor, was discovered as a member of the GHS receptor family, having 52 % identity (Smith RG et al., Endocrine 2001, 14: 9-14; McKee KK et al., Genomics 1997, 46: 426-434). Gastrointestinal motilin receptor 1a and GHS-R 1a show a high similarity (Smith RG et al., Endocrine 2001, 14: 9-14; Feighner SD et al., Science 1999, 284: 2184-2188).

Other GHS receptor family members appear to be neurotensin receptor, TRH receptor, GPR38 (FM1), GPR39 (FM2) and FM3 (Smith RG et al., Endocr. Rev. 1997, 18: 621-645; Smith RG et al., Horm. Res. 1999, 51 (Suppl. 3): 1-8; Tan CP et al., Genomics 1998, 52: 223-229; Howard AD et al., Science 1996, 273: 974-977). Further GHS receptor subtypes appear to exist in a wide variety of central and peripheral tissues (van der Lely AJ et al., Endocrine Rev. 2004, 25: 426-457). For instance, a cardiac GHS-R has been reported (Bodart V et al., Circ. Res. 1999, 85: 796-802) with a predicted sequence similar to that of CD36, a multifunctional receptor known as glyco-
protein IV (Bodart V et al., Circ. Res. 2002, 90: 844-849). Cassoni et al. (J. Clin. Endocrinol. Metab. 2001, 86: 1738-1745) report the existence of GHS-R subtypes in neoplastic mammary cells that are activated by ligands binding to specific binding sites different from the classical GHS-R type 1. Furthermore, data gathered by these authors support the hypothesis that even different binding site subtypes do exist for GHS-R in peripheral organs, which are possibly due to their endocrine or non-endocrine, but also on their normal or neoplastic nature.

The ubiquity of GHS binding sites explains that independently from their strong growth hormone secretagogue properties, ghrelin as well as synthetic GHS are implicated in several important physiological and pathophysiological conditions.

Accordingly, potential clinical applications include among others

Expression of GHS-R1a has been shown on neurons of hypothalamus paraventricular nucleus. These neurons send efferents onto key hypothalamic circuits for the control of food intake, like the arcuate nucleus which produces the mediator NPY. It is thought that the stimulation of food intake by ghrelin and/or GHS is mediated by an increase of NPY in the arcuate nucleus (Willeesen MG et al., Neuroendocrin. 1999, 70: 306-316). Single administration (icv or ip) of anti-ghrelin IgG suppressed acute feeding in lean rats (Bagnasco M et al., Regul. Pept. 2003, 111: 161-167). Chronic twice-daily icv administration of anti-ghrelin IgG reduced body weight over a five-day period (Murakami N et al., J. Endocrinol. 2002, 174: 283-288).

A recent study using a peptidic GHS-R 1a antagonist, [D-Lys-3]-GHRP-6, showed a reduction of food intake and body weight gain in diet induced obese mice (Asakawa A et al., Gut, 2003, 52: 947-952). The fact that peptidyl compounds, initially characterized as growth hormone secretagogues, are able to stimulate selectively food intake in rats without inducing growth hormone secretion, suggests the existence of a GHS-R subtype different from GHS-R1a in the hypothalamus (Torsello A et al., Neuroendocrin. 2000, 72: 327-332; Torsello A et al., Eur. J. Pharmacol. 1998, 360: 123-129).

Chronic administration of ghrelin and/or GHS in freely feeding mice and rats results in increased body weight and decreased fat utilization (Tschop M et al., Nature 2000, 407: 908-913). Furthermore, it has been reported that ghrelin and des-octanoyl ghrelin promote adipogenesis in vivo (Thompson NM et al., Endocrinol. 2004, 145: 234-242) and inhibit isoproterenol-induced lipolysis in rat adipocytes via a non-type GHS-R 1a (Muccioli G et al., Eur. J. Pharmacol. 2004, 498: 27-35). On the other hand, there is also a report describing that the expression of the GHS-R1a in rat adipocytes increases with age and during adipogenesis (Choi K et al., Endocrinol. 2003, 144, 754-759).

c) Treatment of tumor cell proliferation

As in the case for other members of the hypothalamus-pituitary axis which regulates the secretion of growth hormone, evidence is emerging to indicate that ghrelin and GHS-receptors may play an important autocrine/paracrine role in some cancers (Jeffery PL et al., Cytokine Growth Factor Rev. 2003, 14: 113-122). Specific binding sites for ghrelin, peptidyl- and non-peptidyl GHS are present in tumoral tissues, like prostate cancer cell line PC3 (Jeffery PL et al., J. Endocrinology 2002, 172: R7-R11), thyroid tissue (Cassoni P et al., J. Endocrinol. 2000, 165: 139-146), lung carcinoma cells CALU-1 (Ghe C et al., Endocrinol. 2002, 143: 484-491) and breast carcinomas (Cassoni P et al., J. Clin. Endocrinol. Metab. 2001, 86: 1738-1745).

In the case of breast, the specific binding sites for GHS were found in tumoral tissue while the normal mammary parenchyma did not reveal such receptors. Synthetic GHS have been reported to inhibit the proliferation of lung carcinoma cells CALU-1 (Ghe C et al., Endocrinol. 2002, 143: 484-491) and that of breast carcinoma cell lines (Cassoni P et al., J. Clin. Endocrinol. Metab. 2001, 86: 1738-1745).

Both ghrelin and non-acylated ghrelin bind to tumoral tissues. Because non-acylated ghrelin is unable to bind the GHS-R1a, it is likely that the binding site of GHS to tumoral tissues is different from the GHS-R1a. From these data, one
can anticipate that the binding site in tumoral tissues recognizes ligands of the
GHS-R1a and in addition other not yet characterized chemical structures. Synthetic ligands of GHS-R1a may have therefore the potential to inhibit the proliferation of tumor cells expressing subtypes of GHS receptors.

d) Treatment of inflammation/anti-inflammatory effects

The anti-inflammatory effect of the ghrelin agonist growth hormone-releasing peptide-2 (GHRP-2) in chronic arthritis with clinical manifestations of hypermetabolism and cachexia was demonstrated (Granado M et al., Am. J. Physiol. Endocrinol. Metab. 2005, 288: E486-492). These data suggest that the anti-inflammatory action of GHRP-2 is mediated by activation of ghrelin receptors expressed by immune competent cells.

e) Treatment of cachexia

f) Treatment of gastrectomy (ghrelin replacement therapy)

The gastric hormone ghrelin was given to mice subjected to gastrectomy or sham operation (Domonville de la Cour C et al., Gut 2005, 54(7): 907-913). The results presented show that ghrelin replacement therapy at least partially reverse gastrectomy induced reduction in body weight and body fat.

g) Treatment of (gastric) postoperative ileus

The effect of ghrelin on the motor function of the gastrointestinal tract in rat was evaluated. It could be shown that ghrelin reverses the delayed gastric evacuation and is a strong prokinetic agent useful for the treatment/reversion of postoperative gastric ileus (Trudel L et al., Am J Physiol Gastrointest Liver Physiol 2002, 282(6): G948-G952).

h) Treatment of diabetes (diabetes type I and type II)

The effect of ablation of ghrelin in leptin-deficient mice was studied (Sun et al., Cell Metabolism 2006, 3: 379-386). The results show that deletion of ghrelin augments insulin secretion in response to glucose challenge indicating that in-
hibition of ghrelin or counteracting its activity may be a possible way for the
treatment of diabetes including its subtypes I and II (see also WO 03/051389).

Further fields of application comprise acceleration of recovery of patients having
undergone major surgery (e.g. US 6,194,578); accelerating the recovery of burn pa-
tients (e.g. US 6,194,578); attenuating protein catabolic response after a major opera-
tion (e.g. US 6,194,578); reducing cachexia and protein loss due to acute or chronic
illness (e.g. US 6,194,578); treating central nervous system disorders of patients un-
dergoing a medical procedure in combination with antidepressants (e.g.
US 2002/0002137 A1); acceleration of bone fracture repair and cartilage growth (e.g.
US 6,194,578); treatment or prevention of osteoporosis; stimulation of the immune sys-
tem; accelerating wound healing (e.g. US 6,194,578); treatment of growth retardation
associated with the Prader-Willi syndrome, Turner’s syndrome and obesity; treatment
of intrauterine growth retardation, skeletal dysplasia, hypercortisolism and Cushing’s
syndrome; treatment of osteochondrodysplasias, Noonan’s syndrome, schizophrenia,
depressions and Alzheimer’s disease; treatment of pulmonary dysfunction and ventila-
tor dependency; treatment of hyperinsulinemia including nesidioblastosis; adjuvant
treatment for ovulation induction; prevention of the age-related decline of thymic func-
tion; improvement in muscle strength and mobility (e.g. US 6,194,578); maintenance of
skin thickness (e.g. US 6,194,578); improvement of sleep quality (e.g. US 6,071,926);
prevention of congestive heart failure alone (e.g. US 6,329,342; US 6,194,578) and in
combination with corticotropin releasing factor antagonists (e.g. US 2001/0041673);
metabolic homeostasis or renal homeostasis (e.g. in the frail elderly)(e.g.
US 6,194,578); improving glycemic control (e.g. US 6,251,902); treatment of systemic
lupus erythematosus and inflammatory bowel disease (e.g. US 2002/0013320); treating
or preventing frailty associated with aging or obesity (e.g. US 6,194,578); as well as
stimulation of osteoblasts.

Animals were not forgotten in potential applications such as stimulation of food in-
take (Wren AM et al., Diabetes 2001, 50: 2540-2547), stimulation of the immune sys-
tern in companion animals and treatment of disorder of aging, growth promotion in live-
stock and stimulation of wool growth in sheep.

Compounds containing triazole moieties have been widely recognized in the me-
edicinal chemistry due to their various biological activities. The following patent families
are all directed to heterocyclic compounds that are said to show certain biological ac-
tion for use in different medicinal indications. Triazole moieties are implicitly or explicitly contained. However, neither of these patent families mentions ghrelin analogue ligands of the GHS receptor family nor modulation of these receptors nor GH secretagogue properties or the like.

WO 2004/1 11015 discloses modulators of the glucocorticoid receptor.

WO 2004/052280 describes anti-agiogenic compounds as inhibitors of tyrosine kinase activity of VEGF receptors and their use in cancer. WO 2004/096795 also discloses tyrosine kinase inhibitors, preferably C-FMS inhibitors. WO 03/01 1831 and WO 03/01 1210 both describe heteroarylheteroalkylamine derivatives as inhibitors of nitric oxide synthase. WO 02/00651 is directed to Factor XA inhibitors for use in thromboembolic disorders. WO 01/94318 and WO 01/94317 both describe chemical libraries of substituted azole derivatives and methods of their synthesis for use in drug discovery high-throughput screening. However, they fail to provide any biological activity or any medicinal use nor do they name specific compounds. WO 00/76971 and WO 00/76970 both claim serine protease inhibitors useful as antithrombotic agents.

WO 01/36395 discloses triazole derivatives as farnesyl transferase inhibitors.

WO 96/33176 and US 5,703,092 are directed to hydroxamic acid compounds as metalloprotease and TNF inhibitors. WO 93/09095 describes 2-heterocyclicethylamine derivatives and their use in neurological and neurodegenerative disorders.

Heterocyclic compounds that may be useful as GHS have also been described in the literature.

WO 00/54729, for instance, discloses heterocyclic aromatic compounds as GH secretagogues which are said to stimulate endogenous production and/or release of GH and can also contain triazole moieties. In addition, a method for increasing levels of endogenous GH or increasing the endogenous production or release of GH administering such GHS is described. Furthermore, a method is provided for preventing or treating osteoporosis (improving bone density and/or strength), or treating obesity, or increasing muscle mass and/or muscle strength and function in elderly humans, or reversal or prevention of frailty in elderly humans administering such GHS.
However, although claiming *in vivo* GH release WO 00/54729 fails to actually prove such effect. Neither *in vitro* nor *in vivo* data are contained that demonstrate any stimulation of or increase in endogenous production and/or release of GH.

Besides, WO 00/54729 fails to describe and show action of those claimed compounds on any biological target, i.e. claimed compounds are not shown/described to be ligands of one or more specific receptors, for instance of a receptor family, that bind to them and modulate their activity.

Furthermore, WO 00/54729 fails to describe and demonstrate inhibitory and/or antagonistic activity of claimed compounds. As a matter of fact, such compounds are not shown to decrease levels of endogenous GH and/or inhibit or decrease endogenous production and/or release of GH. Nor is an inhibitory action on any receptor mentioned nor made obvious.

US 6,525,203, US 6,518,292, US 6,660,760 are members of the same patent family as WO 00/54729 that, however, do not comprise triazole moieties as claimed subject matter any more. With regard to biological activity, the above stated facts as for WO 00/54729 apply.

WO 2004/021984 describes heterocyclic aromatic compounds GH secretagogues which are said to be useful in stimulating endogenous production or release of GH. However, claimed compounds consists of bi- to tetracyclic aromatic rings and do not contain triazoles.

Analogous to WO 00/54729 *in vivo* GH release is claimed, but neither *in vitro* nor *in vivo* data are contained that demonstrate any stimulation of or increase in endogenous production and/or release of GH. With regard to biological activity, the same stated facts as for WO 00/54729 apply.

WO 97/23508 claims compounds of peptide mimetic nature as GHS and are said to act directly on pituitary cells in *vivo* to release GH therefrom and show improved properties, such as improved resistance to proteolytic degradation and improved bioavailability. In addition, claimed compounds could also be administered in *vivo* to increase GH release. The compounds are peptide derivatives and do not explicitly contain triazole moieties.

However, once again and in analogy to above WO 00/54729 and WO 2004/021984, WO 97/23508 fails to exhibit any *in vitro* or *in vivo* data that demonstrate the claimed effects such as direct action on pituitary cells, GH release therefrom
and improved properties. Furthermore, with regard to biological targets and inhibitory/antagonistic activity, the above stated facts as for WO 00/54729 apply.

US 6,127,391, US 5,977,178 and US 6,555,570 are members of the same patent family as WO 97/23508. The facts as stated for WO 97/23508 do apply.

Description of the invention

The present invention has the object to provide novel compounds which can be employed for the treatment of physiological and/or pathophysiological conditions in mammals, in particular humans, that are mediated by GHS receptors. It is another object of the underlying invention to provide compounds for the above treatment where the treatment is achieved by modulation of GHS receptors. A further object of the present invention is to provide antagonists of GHS receptors for those treatments. It is yet another object of the underlying invention to provide agonists of GHS receptors for those treatments.

The object of the invention has been surprisingly solved in one aspect by providing compounds according to formula (I)

```
\[
\begin{align*}
R_4 & \quad \text{R}_5 \quad \text{N} \\
\text{N} & \quad \text{N} \quad \text{R}_2 \\
R_1 & \quad \text{R}_6 \\
\end{align*}
\]
```

wherein:

R1 and R2 are independently of one another selected from the group consisting of "hydrogen atom, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, alkylsulfonyl, arylsulfonyl, arylalkylsulfonyl" which are optionally substituted in the alkyl, cycloalkyl, cycloalkylalkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl and/or heterocyclylalkyl group by up to 3 substituents independently selected from the group consisting of "halogen, -F, -Cl, -Br, -I, -N_3, -CN, -NR_7R_8, -OH, -NO_2, alkyl, aryl, arylalkyl, -O-alkyl, -O-aryl, -O-arylalkyl"; and preferably are selected from the group con-
sisting of "alkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl" optionally being substituted by up to 3 substituents independently selected from the group consisting of "halogen, -F, -Cl, -Br, -I, -N_3, -CN, -NR7R8, -OH, -NO_2, alkyl, aryl, arylalkyl, -O-alkyl, -O-aryl, -O-arylalkyl";

one of radicals R3 and R4 is a hydrogen atom, whereas the other radical is selected from the group consisting of "hydrogen atom, alkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, -alkyl-O-aryl, -alkyl-O-heteroaryl, -alkyl-O-heteroarylalkyl, -alkyl-O-heterocyclylalkyl, -alkyl-CO-aryl, -alkyl-CO-arylalkyl, -alkyl-CO-heteroaryl, -alkyl-CO-heteroarylalkyl, -alkyl-CO-heterocyclylalkyl, -alkyl-C(O)(O)O-aryl, -alkyl-C(O)(O)O-arylalkyl, -alkyl-C(O)(O)O-heteroaryl, -alkyl-C(O)(O)O-heteroarylalkyl, -alkyl-C(O)(O)O-heterocyclylalkyl, -alkyl-C(O)-NH_2, alkylsulfonfyl, arylsulfonfyl, arylalkylsulfonfyl, alkyl—s—alkyl, alkyl-S-H" which are optionally substituted in the aryl, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl and/or heterocyclylalkyl group by up to 3 substituents independently selected from the group consisting of "halogen, -F, -Cl, -Br, -I, -N_3, -CN, -NR7R8, -OH, -NO_2, alkyl, aryl, arylalkyl, -O-alkyl, -O-aryl, -O-arylalkyl"; and preferably are selected from the group consisting of "arylalkyl, heteroarylalkyl, heterocyclylalkyl, -alkyl-O-aryl, -alkyl-O-arylalkyl, -alkyl-O-heteroaryl, -alkyl-O-heteroarylalkyl, -alkyl-O-heterocyclylalkyl, -alkyl-CO-aryl, -alkyl-CO-arylalkyl, -alkyl-CO-heteroaryl, -alkyl-CO-heteroarylalkyl, -alkyl-CO-heterocyclylalkyl, -alkyl-C(O)(O)O-aryl, -alkyl-C(O)(O)O-arylalkyl, -alkyl-C(O)(O)O-heteroaryl, -alkyl-C(O)(O)O-heteroarylalkyl, -alkyl-C(O)(O)O-heterocyclylalkyl, -alkyl-C(O)-NH_2, -alkyl-CO-OH, -alkyl-NH-C(NH)-NH_2, alkylsulfonfyl, arylsulfonfyl, arylalkylsulfonfyl, alkyl—s—alkyl, alkyl-S-H" optionally being substituted in the aryl, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl and/or heterocyclylalkyl group by up to 3 substituents independently selected from the group consisting of "halogen, -F, -Cl, -Br, -I, -N_3, -CN, -NR7R8, -OH, -NO_2, alkyl, aryl, arylalkyl, -O-alkyl, -O-aryl, -O-arylalkyl";

R5 is selected from the group consisting of "hydrogen atom, alkyl, cycloalkyl, cycloalkylalkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, -CO-aryl, -CO-cycloalkyl, -CO-cycloalkylalkyl, -CO-aryl, -CO-arylalkyl, -CO-heteroaryl, -CO-heteroarylalkyl, -CO-heterocyclylalkyl, -CO-C'(R9R1 0)-NH_2, -CO-CH_2'CO-C'(R9R1 0)-NH_2, -CO-C(RgRIO)-CH_2'NH_2, al-
kylsulfonyl, arylsulfonyl, arylalkylsulfonyl" which are optionally substituted by up to 3 substituents independently selected from the group consisting of "halogen, -F, -Cl, -Br, -I, -N₃, -CN, -OH, -NO₂, alkyl, aryl, arylalkyl, -O-alkyl, -O-aryl, -O-aryalkyl"; and preferably is selected from the group consisting of "hydrogen atom, -CO-alkyl, -CO-cycloalkyl, -CO-aryl, -CO-heteroaryl, -CO-arylsalicyl, -CO-heteroarylsalicyl, -CO-heterocyclylsalicyl, -CO-C*(R₉R₁₀)-NH₂, -CO-CH₂-C*(R₉R₁₀)-NH₂, optionally being substituted by up to 3 substituents independently selected from the group consisting of "halogen, -F, -Cl, -Br, -I, -N₃, -CN, -OH, -NO₂, alkyl, aryl, arylalkyl, -O-alkyl, -O-aryl, -O-aryalkyl";

R₆ is selected from the group consisting of "hydrogen atom, alkyl, cycloalkyl, cycloalkylalkyl" and preferably is a hydrogen atom;

R₇ and R₈ are independently of one another selected from the group consisting of "hydrogen atom, alkyl, cycloalkyl, cycloalkylalkyl" and preferably are a hydrogen atom;

R₉ and R₁₀ are independently of one another selected from the group consisting of "hydrogen atom, alkyl, natural alpha-amino acid side chain, unnatural alpha-amino acid side chain" and preferably are selected from the group consisting of "hydrogen atom, alkyl";

m is 0, 1 or 2 and preferably is 0; and

* means a carbon atom of R or S configuration when chiral;

that can be used for the manufacture of a medicament for the treatment or prophylaxis of physiological and/or pathophysiological conditions in mammals that are mediated by GHS receptors.

In a preferred embodiment compounds according to above formula (I) are provided, where

that can be used for the manufacture of a medicament for the treatment or prophylaxis of physiological and/or pathophysiological conditions in mammals that are mediated by GHS receptors.

In another preferred embodiment compounds according to above formula (I) are provided, where

R4 is a hydrogen atom;

R5 is selected from the group consisting of "hydrogen atom, alkyl, cycloalkyl, cycloalkylalkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, alkylsulfonyl, arylsulfonyl, arylalkylsulfonyl, -CO-cycloalkyl, -CO-cycloalkylalkyl, -CO-aryl, -CO-arylalkyl, -CO-heteroaryl, -CO-heteroarylalkyl, -CO-heterocyclyl, -CO-heterocyclylalkyl";

with the proviso that if R5 is "-CO-heteroarylalkyl", "heteroaryl" is not imidazole; and

with the proviso that if R5 is "-CO-heterocyclylalkyl" and "heterocyclyl" contains only nitrogen atoms as heteroatoms, that at least two nitrogen atoms are contained in "heterocyclyl"; and

with the proviso that if R5 is "-CO-heterocyclylalkyl" and "heterocyclyl" contains only nitrogen atoms as heteroatoms that in the case that one or two nitrogen atoms are contained in "heterocyclyl" no nitrogen atom is positioned at position 1 of "heterocyclyl" that is the atom directly linking "heterocyclyl" to the carbonyl group "-CO-";

where "alkyl, cycloalkyl, cycloalkylalkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, alkylsulfonyl, arylsulfonyl, arylalkylsulfonyl, -CO-cycloalkyl, -CO-cycloalkylalkyl, -CO-aryl, -CO-arylalkyl, -CO-heteroaryl, -CO-heteroarylalkyl, -CO-heterocyclyl, and/or -CO-heterocyclylalkyl" are optionally substituted by up to 3 substituents independently selected from the group consisting of "halogen, -F, -Cl, -Br, -I, -N3, -CN, -NR7R8, -OH, -NO2, alkyl, aryl, arylalkyl, -O-alkyl, -O-aryl, -O-arylalkyl";

with the proviso that if R5 is "-CO-cycloalkyl" or "-CO-cycloalkylalkyl", R5 is not substituted with NR7R8 at position 1 of "cycloalkyl", that is the C atom directly linking "cycloalkyl" to the carbonyl group "-CO-" in case of R5 = "-CO-cycloalkyl" or to the "alkyl" in case R5 = "-CO-cycloalkylalkyl"; and
with the proviso that if R5 is "-CO-aryl" or "-CO-arylalkyl" and "aryl" is phenyl/benzene and is only substituted with one substituent, this one substituent is not -NR7R8;

R6 is a hydrogen atom;

R7 and R8 are independently of one another selected from the group consisting of "hydrogen atom, alkyl, cycloalkyl, cycloalkylalkyl" and preferably are a hydrogen atom; and

m is 0, 1 or 2, and more preferably is 0;

that can be used for the manufacture of a medicament for the treatment or prophylaxis of physiological and/or pathophysiological conditions in mammals that are mediated by GHS receptors.

In a further aspect, the object of the invention has surprisingly been achieved by providing compounds according to formula (I), where

R1 is selected from the group consisting of "hydrogen, methyl, (2-methoxyphenyl)-methyl, (3-methoxyphenyl)-methyl, (4-methoxyphenyl)-methyl, (3-methoxyphenyl)-ethyl, (4-methoxyphenyl)-ethyl, phenyl, phenyl-methyl, phenyl-ethyl, (4-ethylphenyl)-methyl, (4-methylphenyl)-methyl, (4-fluorophenyl)-methyl, (4-bromophenyl)-methyl, (2,4-dimethoxyphenyl)-methyl, (3,5-dimethoxyphenyl)-methyl, 2,2-diphenyl-ethyl, naphthaline-1-yl-methyl, 1W-indole-3-yl-methyl, 2-(1AY-indole-3-yl)-ethyl, 3-(1H-indole-3-yl)-propyl, 4-methyl-phenyl, 4-ethyl-phenyl, n-hexyl, (3,4-dichlorophenyl)-methyl, (4-nitro-phenyl)-methyl, (pyridine-2-yl)-methyl, (pyridine-3-yl)-methyl, (pyridine-4-yl)-methyl, (thiophene-2-yl)-methyl, (thiophene-3-yl)-methyl, (furan-2-yl)-methyl, (furan-3-yl)-methyl";

R2 is selected from the group consisting of "methyl, 1AY-indole-3-yl-methyl, 2-(1H-indole-3-yl)-ethyl, 3-(1AY-indole-3-yl)-propyl, 2-phenyl-ethyl, 3-phenyl-propyl, 4-phenyl-butyl, 2-methoxy-phenylmethyl, 3-methoxy-phenylmethyl, 4-methoxy-phenylmethyl, 2-methoxy-phenylethyl, 3-methoxy-phenylethyl, 4-methoxy-phenylethyl";

R3 is selected from the group consisting of "hydrogen atom, methyl, propan-2-yl, 2-methyl-propan-1-yl, butan-2-yl, butan-1-yl, -CH₂S-SH, -(CH₂)₂S-CH₃, 1AY-indole-3-yl-methyl, phenyl-methyl, 2-phenyl-ethyl, -CHr-O-CHji-phenyl, -CH₂CO-CH₂ phenyl, -(CH₂)₂CO-CH₂ phenyl, -CH₂C(O)O-phenyl, -(CH₂)₂C(O)O-phenyl, \ldots\)
hydroxy-methyl, 1-hydroxy-ethan-1-yl, -CH\textsubscript{2}CO-NH\textsubscript{2}, -(CH\textsubscript{2})\textsubscript{2}CO-NH\textsubscript{2}, (1-hydroxy-benzene-4-yl)-methyl, -CH\textsubscript{2}CO-OH, -(CH\textsubscript{2})\textsubscript{2}CO-OH, -(CH\textsubscript{2})\textsubscript{4}NH\textsubscript{2}, (1H-imidazol-5-yl)-methyl, -(CH\textsubscript{2})\textsubscript{3}NH-C(NH)-NH\textsubscript{2}, -(CH\textsubscript{2})\textsubscript{3}NH-CO-NH\textsubscript{2}, and preferably is selected from the group consisting of "1H-indole-3-yl-methyl, -CH\textsubscript{2}CO-CH2phenyl, -(CH\textsubscript{2})\textsubscript{2}CO-CH2phenyl";

R\textsubscript{4} is a hydrogen atom;

R\textsubscript{5} is selected from the group consisting of "hydrogen atom, -CO-CH\textsubscript{2}2NH\textsubscript{2} (Gly residue), -CO-CH\textsubscript{2}2CH\textsubscript{2}NH\textsubscript{2} (beta-Ala residue), -CO-CH\textsubscript{2}CH\textsubscript{2}NH\textsubscript{2} (D- and/or L-alpha-Ala residue), -CO-(pyrrolidine-2-yl) (D- and/or L-Pro residue), 2-amino-2-carbonyl-propane (2-amino-isobutyric acid/Aib residue), 4-carbonyl-1H-piperidine, 3-carbonyl-1/-/piperidine, R-(3-carbonyl-1H-piperidine), S-(3-carbonyl-1H-piperidine), 2-carbonyl-1H-piperidine, R-(2-carbonyl-1H-piperidine), S-(2-carbonyl-1H-piperidine), 1-amino-2-carbonyl-benzene, carbonyl-cyclohexane, 2-acetylpyridine, 3-acetyl-pyridine, 4-acetyl-pyridine, 2-propionyl-pyridine, 3-propionyl-pyridine, 4-propionyl-pyridine, (R-1-amino)-2-carbonyl-cyclohexane, (S-1-amino)-2-carbonyl-cyclohexane, 2-carbonyl-4-hydroxy-1H-pyrrolidine, 4-carbonyl-1H,3H-diaza-cyclohexane, methylsulfonyl, phenylsulfonyl, 1-carbonyl-1-amino-2-phenylethane, phenylmethyl, 1-carbonyl-4-azide-benzene, 2-carbonyl-2,5-dihydro-1H-pyrrole, 2-carbonylpiperazine, 2-carbonyl-1H-pyrrolidine, 2-aminothene, carbonyl-benzene, 2-carbonyl-pyrazine, 3-carbonyl-pyrazine, 4-carbonyl-oxacyclohexane, 4-methylphenylsulfonyl, phenylmethyl-sulfonyl";

R\textsubscript{6} is a hydrogen atom; and

m is 0;

that can be used for the manufacture of a medicament for the treatment or prophylaxis of physiological and/or pathophysiological conditions in mammals that are mediated by GHS receptors.

In a preferred embodiment compounds according to above formula (I) are provided, where
R3 is selected from the group consisting of "-CHz-CO-CHz-phenyl, -(CHz)2-CO-CHz-phenyl, -CHVCO-NH2, -(CHz)2-CO-OH, -(CHz)3-NH-C(NH)-NH2, -CHz2-SH, -(CHz)2-S-CH3":

that can be used for the manufacture of a medicament for the treatment or prophylaxis of physiological and/or pathophysiological conditions in mammals that are mediated by GHS receptors.

In another preferred embodiment compounds according to above formula (I) are provided, where

R5 is selected from the group consisting of "hydrogen atom, methylsulfonyl, phenylsulfonyl, carbonyl-cyclohexane, (R-1-amino)-2-carbonyl-cyclohexane, (S-1-amino)-2-carbonyl-cyclohexane, 2-carbonyl-pyridine, 3-carbonyl-pyridine, 4-carbonyl-pyridine, 2-acetyl-pyridine, 3-acetyl-pyridine, 4-acetyl-pyridine, 2-propionyl-pyridine, 3-propionyl-pyridine, 4-propionyl-pyridine, 2-amino-3-carbonyl-pyridine, 2-carbonyl-1H-imidazole, 2-carbonyl-pyrazine, 4-carbonyl-1H,3H-diazacyclohexane":

that can be used for the manufacture of a medicament for the treatment or prophylaxis of physiological and/or pathophysiological conditions in mammals that are mediated by GHS receptors.

In a further aspect, the object of the invention has surprisingly been achieved by providing novel triazole compounds selected from the group consisting of:

compound 1 \((\text{H})\cdot N-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(2,4-dimethoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1/-/-indol-3-yl)ethyl)-2-amino-2-methylpropanamide, \)
compound 2 \((R)-N-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,\)

\[
\begin{array}{c}
\text{compound 3} \\
(R)-N-(1-(5-(3-(1H-indol-3-yl)propyl)-4-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,
\end{array}
\]

\[
\begin{array}{c}
\text{compound 4} \\
(?)-N-(1-(5-benzyl-4-(naphthalen-1-ylmethyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,
\end{array}
\]

\[
\begin{array}{c}
\text{compound 5} \\
(R)-N-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(naphthalen-1-ylmethyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,
\end{array}
\]
compound 6 \((R)-N-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(3-methoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,\)

compound 7 \((?)-N-(1-(4-(3-methoxybenzyl)-5-benzyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,\)

compound 8 \((?)-N-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-benzyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,\)
compound 9 (R)-N-(1-(5-(1H-indol-3-yl)propyl)-4-benzyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,

compound 10 (R)-N-(1-(5-(1H-indol-3-yl)propyl)-4-(3-methoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,

compound 11 (R)-N-(1-(5-(1H-indol-3-yl)propyl)-4-(naphthalen-1-ylmethyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,
compound 12 \(\text{(R)-N-(1-(5- \text{N-} \text{(2-} \text{H-indol-3-yl)} \text{ethyl}) \text{-} 4- \text{-(4-methoxybenzyl)-4W-1,2,4-}
\text{triazol-3-yl)-2-} \text{(1/-i} \text{πdol-3-yl)} \text{ethyl)-2-amino-2-methylpropanamide,} \)

compound 13 \(\text{(f/-)-N-(1-(4- \text{-} \text{-(4-methoxybenzyl)-5-benzyl-4} \text{H-1,2,4-triazol-3-yl)-2-}
\text{-(1fy-indol-3-yl)} \text{ethyl)-2-amino-2-methylpropanamide,} \)

compound 14 \(\text{(f/-)-N-(1-(5- \text{-} \text{(1A7-i} \text{πdol-3-yl)} \text{propyl)-4-(4-bromobenzyl)-4} \text{H-1,2,4-}
\text{triazol-3-yl)-2-} \text{(1/-i} \text{indol-3-yl)} \text{ethyl)-2-amino-2-methylpropanamide,} \)
compound 15
(R)-N(1-(5-(2-(1H-indol-3-yl)ethyl)-4-hexyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,

compound 16
(^®)^1-(5-(3-(1H-indol-3-yl)propyl)hexyl^-^...
(S)-Λ\/(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(2,4-dimethoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,

(R)-Λ\/(1-(4-(3-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,

(R)-Λ\/(1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,
compound 21 \((R)-\Lambda-\{(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(3,5-dimethoxybenzyl)-4W-1,2,4-triazol-3-yl)-2-(1/-/-indol-3-yl)ethyl)-2-amino-2-methylpropanamide\}

compound 22 \((\mp)-\Lambda-\{(1-(4-(4-methoxybenzyl)-5-(3-phenylpropyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide\}

compound 23 \((\mp)-\Lambda-\{(1-(5-(3-(1H-indol-3-yl)propyl)-4-(4-methoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide\}
compound 24 (R)-/V-(1-(4-(2-(1H-indol-3-yl)ethyl)-5-(3-(1H-indol-3-yl)propyl)-4W-
1,2,4-triazol-3-yl)-2-(1AV-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,

compound 25 (R)-Λ-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(2-methoxy)benzyl)-4H-1,2,4-
triazol-3-yl)-2-(1AV-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,

compound 26 (R)-(1-(4-(2-methoxybenzyl)-5-phenethyl-4H-1,2,4-
2-(1AV-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,
compound 27 \((\#7)\) \(-\Lambda-(2-(1H-indol-3-yl)-1-(4-(naphthalen-1-ylmethyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)ethyl)-2-amino-2-methylpropanamide,

compound 28 \((\mathcal{R})\) \(-\Lambda-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(3,4-dichlorobenzyl)-4H-1,2,4-triazol-3-yl)-2-(1/-/-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,

compound 29 \((\#7)\) \(-\Lambda-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(4-fluorobenzyl)-4A7-1,2,4-triazol-3-yl)-2-(1W-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,
compound 30 (K)-\(\text{V}-(1-(4-(4-	ext{fluorobenzyl})-5-	ext{benzy}-1,2,4-	ext{triazol-3-yl})-2-(1-	ext{H-}
\text{-indol-3-yl})\text{ethyl})-2-	ext{amino}-2-	ext{methylpropanamide},

compound 31 (R)-\(\text{N}-(1-(5-(2-(1-	ext{H-indol-3-yl})\text{ethyl})-4-	ext{(2,4-	ext{dimethoxybenzyl})-4-	ext{H-}
\text{-1,2,4-triazol-3-yl})-2-(1/-/-\text{-indol-3-yl})\text{ethyl)piperidine-4-carboxamide},

compound 32 (R)-\(\text{N}-(1-(5-(2-(1-	ext{H-indol-3-yl})\text{ethyl})-4-	ext{(2,4-	ext{dimethoxybenzyl})-4-	ext{H-
\text{i}^-\text{-triazol-3-yl}^-\text{-Cl} \quad -\text{H-indol-3-yOethyl)piperidine-3-carboxamide},

\text{H-indol-3-yOethyl)piperidine-3-carboxamide},\)
compound 3

\[(\pm)-\Lambda-(1-(4-(4-

methylbenzyl)-5-(3-

 phenylpropyl)-4H-1 \text{-} \text{triazol}-3-

 yl)-2-\text{(1AV-indol-3-yl)ethyl})-2-

amino-2-

methylpropanamide,\]

compound 34

\[(R)-\Lambda-(1-(5-\text{(2-\text{(1H-indol-3-yl)ethyl})-4-}

(4-

methylbenzyl)-4H-1 \text{-} \text{triazol}-3-

 yl)-2-\text{(1H-indol-3-yl)ethyl})-2-

amino-2-

methylpropanamide,\]

compound 36

\[(R)-\Lambda-(1-(5-\text{(2-\text{(1H-indol-3-yl)ethyl})-4-}

(2,4-

dimethoxy benzyl)-4H-

1,2,4\text{-triazol}-3-

 yl)-2-\text{(1H-indol-3-yl)ethyl})\text{piperidine-2-carboxamide,}\]
compound 37 \((R)-\text{N-(1-(4-(4-methylbenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide} \),

compound 38 \((2\,\text{H})-\text{N-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(2,4-dimethoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-aminobenzamide} \),

compound 39 \((2\,\text{H})-\text{N-(1-(5-benzyl-4-(pyridin-2-ylmethyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide} \),
compound 40 (2S,4f?)-N-((f?)-1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-4-hydroxypyrrolidine-2-carboxamide,

compound 41 (S)-N-((f?)-1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)piperidine-3-carboxamide,

compound 42 (R)-N-((f?)-1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)piperidine-3-carboxamide,
compound 43 (R)-N-(1-(4-(4-ethylbenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,

compound 44 (R)-N-(1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)piperidine-4-carboxamide,

compound 45 (R)-N-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(4-methoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)piperidine-4-carboxamide,
compound 46 (S)-N-((R)-1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)pyrrolidine-2-carboxamide,

compound 47 (f?)-N-((R)-1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1AV-indol-3-yl)ethyl)pyrrolidine-2-carboxamide,

compound 48 (S)-N-((f?)-1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1AV-indol-3-yl)ethyl)piperidine-2-carboxamide,
compound 49 (R)-V-((R)-1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)piperidine-2-carboxamide,

compound 50 (R)-V-(1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-aminoacetamide,

compound 51 (R)-N-(1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-(pyridin-2-yl)acetamide,
compound 52 \((R)-\text{N-(1-((4-(4-methoxybenzyl)-5-phenethyl-4/-/-1,2,4-triazol-3-yl)-2-(1\text{-H-indol-3-yl})ethyl)-2-(pyridin-4-yl)acetamide)}\),

5 compound 53 \((R)-\text{N-(1-((4-(4-methoxybenzyl)-5-phenethyl-4/-/-1,2,4-triazol-3-yl)-2-(1\text{-H-indol-3-yl})ethyl)cyclohexanecarboxamide)}\),

compound 54 \((R)-\text{N-(1-((5-(2-(1\text{-H-indol-3-yl})ethyl)-4-benzyl-4\text{H}-1,2,4-triazol-3-yl)-2-(1\text{-H-indol-3-yl})ethyl)piperidine-4-carboxamide)}\),
compound 55 (R)-\(\Lambda\)-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-benzyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)piperidine-3-carboxamide,

5 compound 56 (R)-\(\Lambda\)-(1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-3-aminopropanamide,

compound 57 (S)-\(\Lambda\)-((R)-1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-aminopropanamide,
compound 58 \(\text{(R)}-\text{N}-(1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-(pyridin-3-yl)acetamide, \)

compound 59 \(\text{(R)}-\text{N}-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-benzyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-3-(pyridin-3-yl)propanamide, \)

compound 60 \(\text{(R)}-\text{N}-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-benzyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-(pyridin-2-yl)acetamide, \)
compound 61
\((?)\)-\((?)\)-1-(5-(2-(1H-indol-3-yl)ethyl)-4-(2,4-dimethoxybenzyl)-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-(pyridin-2-yl)acetamide,

compound 62
\((?)\)-\((?)\)-1-(4-(2,4-dimethoxybenzyl)-5-phenethyl-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)piperidine-4-carboxamide,

compound 63
\((?)\)-\((?)\)-1-(4-(2,4-dimethoxybenzyl)-5-phenethyl-4fV-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)piperidine-2-carboxamide,
compound 64 \(\text{(f?)-N-(1-(4-(2,4-dimethoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)picolinamide,}\)

compound 65 \(\text{(R)-N-(1-(4-(2,4-dimethoxybenzyl)-5-phenethyl-4H-1,2,4-tria2 θl-3-yl)-2-(1 H-indol-3-yl)ethyl)isonicotinamide,}\)

compound 66 \(\text{(R)-N-(1-(4-(2,4-dimethoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1 H-indol-3-yl)ethyl)pyrazine-2-carboxamide,}\)
compound 67 (R)-Λ-1-{4-(2,4-dimethoxybenzyl)-5-phenethyl-4H-1 ,2,4-triazol-3-yl}-2-({1/-/-indol-3-yl}ethyl)piperazine-2-carboxamide,

compound 68 (S)-Λ-({f?-}1-{4-(2,4-dimethoxybenzyl)-5-phenethyl-4H-1 ,2,4-triazol-3-yl}-2-({1W-indol-3-yl}ethyl)pyrrolidine-2-carboxamide,

compound 69 (f?)-Λ-1-{5-({1Ay-indol-3-yl}ethyl)-4-(2,4-dimethoxybenzyl)-4AY-1,2,4-triazol-3-yl}-2-({1 /-/-indol-3-yl}ethyl)-2-aminoacetamide,
compound 70
(S)-N-((R)-1-(5-(2-(1H-indol-3-yl)ethyl)-4-(2,4-dimethoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)pyrrolidine-2-carboxamide.

compound 71
(±)-N-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(2,4-dimethoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)pyrazine-2-carboxamide.

compound 72
(±)-N-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(2,4-dimethoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)piperazine-2-carboxamide.
compound 73 \((R)-\text{V}-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(2,4-dimethoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1\text{A7-indol-3-yl})\text{ethyl})\text{picolinamide,}\)

compound 74 \((R)-1-(5-(2-(1H-indol-3-yl)ethyl)-4-(2,4-dimethoxybenzyl)-4W-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)\text{ethanamine,}\)

compound 75 \((R)-W-(1-(4-(2,4-dimethoxybenzyl)-5-phenethyl-4AY-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)\text{ethyl})\text{-2-aminoacetamide,}\)
compound 76 (f?)-/V-(1-(4-(4-methoxybenzyl)-5-phenethyl-4\textsubscript{H} 1,2,4-triazol-3-yl)-2-(1A7-indol-3-yl)ethyl)pyrazine-2-carboxamide,

compound 77 (f?)-\textsubscript{N}-(1-(4-(4-methoxybenzyl)-5-phenethyl-4\textsubscript{AV} 1,2,4-triazol-3-yl)-2-(1A7-indol-3-yl)ethyl)isonicotinamide,

compound 78 (f?)-\textsubscript{N}-1-(4-(4-methoxybenzyl)-5-phenethyl-4\textsubscript{H} 1,2,4-triazol-3-yl)2-(1/-/-indol-3-yl)ethyl)piperazine-2-carboxamide,
compound 79 \[R: \Lambda = 1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)picolinamide, \]

compound 80 \[(\mathcal{R}): \Lambda = 1-(5-(2-(1H-indol-3-yl)ethyl)-4-(4-methoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1/-/-indol-3-yl)ethyl)picolinamide, \]

compound 81 \[(\mathcal{S}): \Lambda = 1-(5-(2-(1H-indol-3-yl)ethyl)-4-(4-methoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)piperazine-2-carboxamide, \]
compound 82 \((R)-N-(1-(4-(4-ethylbenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-(pyridin-2-yl)acetamide,\)

compound 83 \((R)-V-(1-(4-(4-ethylbenzyl)-5-phenethyl-4H,1,2,4-triazol-3-yl)-2-(1fV-indol-3-yl)ethyl)piperidine-4-carboxamide,\)

compound 84 \((R)-V-1-(4-(4-ethylbenzyl)-5-phenethyl-4H,1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)piperazine-2-carboxamide,
compound 85 \((R)-\Lambda - \{1-(4-(4-ethylbenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl\}pyrazine-2-carboxamide, \)

compound 86 \((S)-\Lambda - \{1-(5-(2-(1H-indol-3-yl)ethyl)-4-(2,4-dimethoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1/-/-indol-3-yl)ethyl\}2-cis-aminocyclohexanecarboxamide, \)

compound 87 \((S)-\Lambda - \{1-(5-(2-(1H-indol-3-yl)ethyl)-4-(4-methoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1/-/-indol-3-yl)ethyl\}piperidine-3-carboxamide, \)
compound 8
(R)-\(\Lambda\)-2-(1H-indol-3-yl)ethyl)piperidine-2-carboxamide,

compound 9
(S)-\(\Lambda\)-((R)-1-(5-(2-(1H-indol-3-yl)ethyl)-4-(4-methoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)pyrrolidine-2-carboxamide,

compound 90
(R)-\(\Lambda\)-((R)-1-(5-(2-(1H-indol-3-yl)ethyl)-4-(4-methoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1/-/-indol-3-yl)ethyl)pyrrolidine-2-carboxamide,
compound 91 (R)-\text{N}-\text{(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(4-methoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-(pyridin-2-yl)acetamide},

5 compound 92 (R)-\text{N}-\text{(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(4-bromobenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide},

compound 93 (R)-\text{N}-\text{(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(4-methoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-phenylethyl)-2-amino-2-methylpropanamide},
compound 94 \((R)-N-(2-(1H-indol-3-yl)-1-(5-phenethyl-4-(thiophen-2-ylmethyl)-4H-1,2,4-triazol-3-yl)ethyl)piperidine-4-carboxamide\),

5 compound 95 \((?)-N-(1-(4-(2-(1H-indol-3-yl)ethyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide\),

compound 96 \((R)-N-(1-(5-(1H-indol-3-yl)methyl)-4-methyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide\),
compound 97 \((/?)-\Lambda-/-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-methyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-y1)ethyl)-2-amino-2-methylpropanamide,\)

\[\text{compound 98} \quad (+)/-(1-(5-(1H-indol-3-yl)methyl)-4-(2,4-dimethoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,\]

\[\text{compound 99} \quad (R)-\Lambda-(1-(5-((1AV-indol-3-y1)methyl)-4-(2,4-dimethoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-y1)ethyl)-2-amino-2-methylpropanamide,\]
compound 100 (f?)-Λ-{1-(4-(2,4-dimethoxybenzyl)-5-methyl-4/-/-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl}-2-amino-2-methylpropanamide,

compound 101 (R)-Λ-{1-(5-((1H-indol-3-yl)methyl)-4-(4-methoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl}-2-amino-2-methylpropanamide,

compound 102 (f?)-Λ-{1-(4-(2,4-dimethoxybenzyl)-5-benzyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl}-2-amino-2-methylpropanamide,
compound 103 (K)-\(N^-\)-(1-(5-(3-(1H-indol-3-yl)propyl)-4-(2,4-dimethoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,

compound 104 (f\(^\pm\))\(N^-\)-(1-(5-((1H-indol-3-yl)methyl)-4-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,

compound 105 (R\(^\pm\))-\(N^-\)-(1-(5-benzyl-4-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,
compound 106
(R)-/V-(1-(5-benzyl-4-(2,2-diphenylethyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,

compound 107
(±)-Λ-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(2,2-diphenylethyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,

compound 108
(±)-Α-(4-(3,5-dimethoxybenzyl)-5-benzyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,
compound 109 \((\text{fl})-N-(1-(4,5\text{-dibenzyl}-4\text{H}1,2,4\text{-triazol-3-yl})-2-(1\text{H}\text{-indol-3-yl})\text{ethyl})-2\text{-amino-2-methylpropanamide,}\)

compound 110 \((\text{K})-N-(1-(5\text{-benzyl}-4\text{H}1,2,4\text{-triazol-3-yl})-2-(1\text{H}\text{-indol-3-yl})\text{ethyl})-2\text{-amino-2-methylpropanamide,}\)

compound 111 \((\text{R})-N-(1-(4-(2-(1\text{H}\text{-indol-3-yl})\text{ethyl})-5\text{-benzyl}-4\text{H}1,2,4\text{-triazol-3-yl})-2-(1\text{H}\text{-indol-3-yl})\text{ethyl})-2\text{-amino-2-methylpropanamide,}\)
compound 112 (S)-N-(1-(4-(2,4-dimethoxybenzyl)-5-benzyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,

compound 113 (R)-N-(1-(4-(3,5-dimethoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,

compound 114 (R)-N-(1-(4-(4-bromobenzyl)-5-benzyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,
compound 115 \((\text{f?})-\Lambda-(1-(4-(2-methoxybenzyl)-5-benzyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,\)

compound 116 \((\text{S})-\Lambda-(1-(4-(2,4-dimethoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,\)

compound 117 \((\text{«})-\Lambda-(1-(4,5-diphenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,\)
compound 118 \((R)-\Lambda-(1-(4-(3,4-dichlorobenzyl)-5-benzyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,\)

compound 119 \((R)-1-(5-(2-(1H-indol-3-yl)ethyl)-4-(2,4-dimethoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethanamine,\)

compound 120 \((R)-N-(1-(4-(4-methoxybenzyl)-5-benzyl-4H-1,2,4-triazol-3-yl)-2-phenylethyl)-2-amino-2-methylpropanamide,\)
compound 121 \(\text{N}-(1-(4-(4-fluorobenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide, \)

compound 122 \(\text{N}-(1-(4-(3,4-dichlorobenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide, \)

compound 124 \(\text{N}-(1-(4-(4-methylbenzyl)-5-benzyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide, \)
compound 125 (S)-\(^{-}\)-N-(1-(4-(4-methoxybenzyl)-5-(3-phenylpropyl)-4\(\text{H}\)-1,2,4-triazol-3-yl)-2-(1\(\text{H}\)-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,

compound 126 (S)-\(^{-}\)-N-(1-(4-(4-methoxybenzyl)-5-benzyl-4\(\text{H}\)-1,2,4-triazol-3-yl)-2-(1\(\text{H}\)-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,

compound 128 N-(\(\text{f}\)?)-1-(4-(4-nitrobenzyl)-5-phenethyl-4\(\text{H}\)-1,2,4-triazol-3-yl)-2-(1\(\text{H}\)-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,
compound 129 (S)- N-(1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,

compound 130 (R)- N-(1-(4-(4-methoxyphenethyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,

compound 131 (f?)- N-(2-(1H-indol-3-yl)-1-(5-phenethyl-4-(thiophen-2-ylmethyl)-4H-1,2,4-triazol-3-yl)ethyl)-2-amino-2-methylpropanamide,
compound 132 \((R)-N-((2-(1H-indol-3-yl)-1-(5-phenethyl-4-(pyridin-2-ylmethyl)-4H-1,2,4-triazol-3-yl)ethyl)-2-amino-2-methylpropanamide,\)

compound 133 \((?)-N-((2-(1H-indol-3-yl)-1-(5-phenethyl-4-(pyridin-2-ylmethyl)-4H-1,2,4-triazol-3-yl)ethyl)piperidine-3-carboxamide,\)

compound 134 \((S)-N-((fl)-1-(4-(4-ethylbenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)pyrrolidine-2-carboxamide,\)
compound 135 1-(4-(4-ethylbenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-aminoacetamide,
compound 138 \[\text{\textit{N-}}(\text{(K)}-1-(4-(4-ethylbenzyl)-5-phenethyl-4,2,4-\text{triazol-3-yl})-2-(1H-indol-3-yl)ethyl)picolinamide},\]

compound 139 \[\text{\textit{N-}}(\text{(R)}-1-(4-(4-ethylbenzyl)-5-phenethyl-4H-1,2,4-\text{triazol-3-yl})-2-(1H-indol-3-yl)ethyl)-2-aminopyridine-3-carboxamide,\]

compound 140 \[\text{\textit{(2S)-}}N-(\text{(S)}-1-(4-(4-ethylbenzyl)-5-phenethyl-4,2,4-\text{triazol-3-yl})-2-(1H-indol-3-yl)ethyl)-2-aminopropanamide,\]
compound 141 \(N\)-((R)-1-(4-(4-ethylbenzyl)-5-phenethyl-4\(H\)-1,2,4-triazol-3-yl)-2-(1\(H\)-indol-3-yl)ethyl)isonicotinamide,

compound 142 \(N\)-((R)-2-(1\(H\)-indol-3-yl)-1-(5-phenethyl-4-phenyl-4\(H\)-1,2,4-triazol-3-yl)ethyl)piperidine-4-carboxamide,

compound 143 (2S)-N-((R)-2-(1\(H\)-indol-3-yl)-1-(5-phenethyl-4-phenyl-4\(H\)-1,2,4-triazol-3-yl)ethyl)pyrrolidine-2-carboxamide,
compound 144 \(N'-(R)-2-(1H-indol-3-yl)-1-(5-phenethyl-4-phenyl-4H-1,2,4-triazol-3-yl)ethyl)-2-aminoacetamide,

compound 145 \(N'-(R)-2-(1H-indol-3-yl)-1-(5-phenethyl-4-phenyl-4H-1,2,4-triazol-3-yl)ethyl)-2-(pyridin-2-yl)acetamide,

compound 146 \(N'-(R)-2-(1H-indol-3-yl)-1-(5-phenethyl-4-phenyl-4H-1,2,4-triazol-3-yl)ethyl)picolinamide,
compound 147 \(\Lambda\)-\((R)-1-(5-(2-(1H-indol-3-yl)ethyl)-4-(4-ethylphenyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)picolinamide,

compound 148 \(\Lambda\)-\((R)-1-(5-(2-(1H-indol-3-yl)ethyl)-4-(4-ethylphenyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-(pyridin-2-yl)acetamide,

compound 149 \(\Lambda\)-\((R)-1-(5-(2-(1H-indol-3-yl)ethyl)-4-(4-ethylphenyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-aminoacetamide,
compound 150 (2S)-\text{N-\{(R)-1-(5-(2-(1H-indol-3-yl)ethyl)-4-(4-ethylphenyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl\}pyrrolidine-2-carboxamide},

5 compound 152 \text{N-\{(f?)-1-(5-(2-(1H-indol-3-yl)ethyl)-4-(4-methoxybenzyl)-4AV-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl\}-2-aminoacetamide},

compound 153 \text{N-\{(R)-1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl\}-2-trans-aminocyclohexanecarboxamide},
compound 154 \(\Lambda^-((R)-1-(4-(4-ethylbenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)O\text{O}^-\text{Cpyridin-3-yOacetamide}, \)

\[
\text{compound 155} \quad \Lambda^-((R)-1-(4-(4-ethylbenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)\text{ethyl})\text{piperidine-3-carboxamide,}
\]

compound 156 \(\Lambda^-((R)-1-(4-(4-ethylbenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)\text{ethyl})\text{-2-aminobenzamide,} \)
compound 157 \((R)-1-((5-(2-(1H-indol-3-yl)ethyl)-4-phenyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)picolinamide, \)

5 compound 158 \((R)-1-((5-(2-(1H-indol-3-yl)ethyl)-4-phenyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)piperidine-4-carboxamide, \)

compound 159 \((R)-2-(1H-indol-3-yl)-1-(4-(2,4-dimethoxyphenyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)ethyl)picolinamide, \)
compound 160: \(\text{N'-(}(R)-2-(1\text{H}-\text{indol-3-yl})-1-(4-(2,4\text{-dimethoxyphenyl})-5\text{-phenethyl-}4\text{H-}1,2,4\text{-triazol-3-yl})\text{ethyl})-2-(pyridin-2-yl)acetamide,} \)

compound 161: \(\text{N'-(}(R)-2-(1\text{H}-\text{indol-3-yl})-1-(4-(2,4\text{-dimethoxyphenyl})-5\text{-phenethyl-}4\text{H-}1,2,4\text{-triazol-3-yl})\text{ethyl})\text{pyrazine-2-carboxamide,} \)

compound 162: \(\text{N'-(}(\text{R})-2-(1\text{H}-\text{indol-3-yl})-1-(4-(2,4\text{-dimethoxyphenyl})-5\text{-phenethyl-}4\text{H-}1,2,4\text{-triazol-3-yl})\text{ethyl})-2\text{-aminoacetamide,} \)
compound 163 \(N^-((f?)^-2-(1\ W\text{-indol-3-yl})-1-(4-(2,4\text{-dimethoxyphenyl})-5\text{-phenethyl}-4H-1,2,4\text{-triazol-3-yl})\text{ethyl})\text{piperidine-4-carboxamide}, \)

compound 164 \(N^-((f?)^-1-(5\text{-benzyl-4-(pyridin-2-yl)methyl})\text{-4H-1,2,4-triazol-3-yl})\text{-2-(1H\text{-indol-3-yl})ethyl})\text{picolinamide}, \)

compound 165 \(N^-((f?)^-1-(5\text{-benzyl-4-(pyridin-2-yl)methyl})\text{-4H-1,2,4-triazol-3-yl})\text{-2-(1H\text{-indol-3-yl})ethyl})\text{-2-amino-acetamide}, \)
compound 166
\[N'((R)-1-(5-benzyl-4-((pyridin-2-yl)methyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)piperidine-4-carboxamide, \]

compound 167
\[N'((R)-1-(5-benzyl-4-((pyridin-4-yl)methyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide, \]

compound 168
\[N'((R)-1-(5-(4-methoxybenzyl)-4-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide, \]
compound 169 \(N'-((R)-1-(5\text{-benzyl}-4\text{-((pyridin-4-yl)methyl})-4H-1,2,4\text{-triazol-3-yl})-2-(1H\text{-indol-3-yl})\text{ethyl})\text{picolinamide,} \)

compound 170 \(N'-((R)-1-(5\text{-benzyl}-4\text{-((pyridin-4-yl)methyl})-4W-1,2,4\text{-triazol-3-yl})-2-(1H\text{-indol-3-yl})\text{ethyl})2\text{-amino-acetamide,} \)

compound 171 \((R)\text{-benzyl-3-(2\text{-aminoisobutyramido})-3-(5-(2-(1H\text{-indol-3-yl})\text{ethyl})-4-(4\text{-methoxybenzyl})-4H-1,2,4\text{-triazol-3-yl})\text{-propanoate,} \)
compound 172 \(\textit{N}^-\text{((R)-1-(5-benzyl-4-((pyridin-3-yl)methyl)-4H-1,2,4-triazol-3-yl)-2-}\(1\text{H-indol-3-yl})\text{ethyl)-2-amino-2-methylpropanamide,} \)

compound 173 \(\textit{N}^-\text{((R)-1-(4-benzyl-5-phenethyl-4A7-1,2,4-triazol-3-yl)-2-(1\text{H-indol-3-yl})\text{ethyl)-2-amino-2-methylpropanamide,} \)

compound 174 \(\textit{N}^-\text{((R)-2-(1H-indol-3-yl)-1-(4-methyl-5-phenethyl-4H-1,2,4-triazol-3-yl)ethyl})\text{picolinamide,} \)
compound 175 \(N'\)-(R)-1-(5-(2-(1H-indol-3-yl)ethyl)-4-phenyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,

compound 176 \(N'\)-(R)-1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)benzamide,

compound 177 (R)-1-(4-(2,4-dimethoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)-N-phenylmethanesulfonylamine,
compound 178 (R)-1-(4-(2,4-dimethoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-
2-(1H-indol-3-yl)-N-tosylethanamine,

compound 179 V-(1-(4-(2,4-dimethoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,

compound 180 Λ-1-(R)-1-(4,4-dimethoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethane-1,2-diamine,

compound 181 Λ-(1R)-1-(4-((furan-2-yl)methyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,
compound 182 \(\Lambda^-((R)-1-(4-((\text{furan-2-yl})methyl)-5\text{-phenethyl}-4H-1,2,4\text{-triazol-3-yl})-2-(1H\text{-indol-3-yl})\text{ethyl})\text{picolinamide}, \)

compound 183 \(\nu^-((\text{fl})-1-(4-((\text{furan-2-yl})methyl)-5\text{-phenethyl}-4\text{-tetrazol-3-yl})-2-(1H\text{-indol-3-yl})\text{ethyl})\text{piperidine-4-carboxamide}, \)

compound 184 \(\Lambda^-((\text{fl})-1-(4-(4\text{-methoxybenzyl})-5\text{-phenethyl}-4\text{-H}-1,2,4\text{-triazol-3-yl})-2-(1H\text{-indol-3-yl})\text{ethyl})\text{tetrahydro-2}\text{-pyran-4-carboxamide} \)
compound 185
\[\text{V-}\{(R)-\text{1-(5-((1H-indol-3-yl)methyl)-4-(3-methoxybenzyl)-4tt-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide} \text{ \text{\zeta}} \text{,} \]

compound 186
\[\text{(2S)-\Lambda-}\{(R)-\text{1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-3-phenylpropanamide,} \]

compound 187
\[\text{(f?)-1-(5-(2-(1H-indol-3-yl)ethyl)-4-(2,4-dimethoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)-N-tosylethanam \text{ \text{\zeta}} \text{,}} \]
compound 188
\(\Lambda-((R)-1-(4-(2,4-dimethoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-4-azidobenzamide,\)

compound 189
\(\Lambda-((R)-1-(4-(2,4-climethoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-4-azidobenzamide,\)

compound 190
\((2S)-\Lambda-((R)-1-(5-(2-(1H-indol-3-yl)ethyl)-4-(4-methoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2,5-dihydro-1H-pyrrole-2-carboxamide,\)
For the avoidance of doubt, if chemical name and chemical structure of the above illustrated compounds do not correspond by mistake, the chemical structure is regarded to unambiguously define the compound.

In a preferred embodiment these compounds can be used for the manufacture of a medicament for the treatment or prophylaxis of physiological and/or pathophysiological conditions in mammals that are mediated by GHS receptors.

In a further preferred embodiment all triazole compounds as illustrated herein, i.e. generically (by above formula (I) and different R radicals) and explicitly, in the following referred to as the compounds of the (present) invention, can be used for the manufacture of a medicament for the treatment or prophylaxis of physiological and/or pathophysiological conditions in mammals that are mediated by GHS receptors and where the treatment is achieved by modulation of GHS receptors.

In yet another preferred embodiment all compounds of the invention are antagonists of GHS receptors.

More preferably, antagonists of GHS receptors are compounds selected from the group consisting of:

- compound 1, 3, 12, 13, 14, 18, 20, 22, 23, 33, 36, 37, 38, 41, 46, 47, 48, 49, 50, 51, 52, 53, 57, 58, 59, 60, 61, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 82, 85, 86, 87, 88, 89, 90, 91, 93, 101, 102, 109, 114, 116, 119, 134, 135, 136, 137, 138, 139, 140, 145, 146, 147, 148, 150, 152, 153, 154, 156, 157, 159, 160, 161, 164, 171, 174, 176, 178, 179, 182, 184, 186, 188 and/or compound 190.
In yet a further preferred embodiment all compounds of the invention are agonists of GHS receptors.

More preferably, agonists of GHS receptors are compounds selected from the group consisting of:

| Compound | 2, 4, 5, 6, 7, 8, 9, 10, 11, 15, 16, 17, 19, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 39, 40, 42, 43, 44, 45, 54, 55, 56, 62, 67, 78, 81, 83, 84, 87, 92, 94, 99, 103, 104, 105, 106, 107, 108, 110, 111, 115, 117, 118, 121, 122, 124, 130, 131, 142, 155, 158, 163, 173, 175, 180, 181, 183, 185 and/or compound 187. |

The terms indicated for explanation of the above compounds of formula (I) always, unless indicated otherwise in the description or in the claims, have the following meanings:

The term "substituted" means that the corresponding radical or group has one or more substituents. Where a radical has a plurality of substituents, and a selection of various substituents is specified, the substituents are selected independently of one another and need not be identical. The term "unsubstituted" means that the corresponding group has no substituent. The term "optionally substituted" means that the corresponding group is either unsubstituted or substituted by one or more substituents.

The term "substituted by up to 3 substituents" means that the corresponding radical or group is substituted either by one or by two or three substituents.

The term "alkyl" includes for the purposes of this invention acyclic saturated hydrocarbon chains having C1-C12 carbon atoms, which may be straight-chain or branched. The term "alkyl" preferably stands for alkyl chains of 1 to 8, particularly preferably 1 to 6, carbon atoms. Examples of suitable alkyl radicals are methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, tert-pentyl, 2- or 3-methyl-pentyl, n-hexyl, isohexyl, n-heptyl, n-octyl, n-nonyl, n-decyl, n-undecyl, n-dodecyl.

The term "cycloalkyl" stands for a saturated or partially unsaturated non-aromatic cyclic hydrocarbon group/radical, containing 1 to 3 rings, including monocyclic alkyl, bicyclic alkyl and tricyclic alkyl, and containing a total of 3 to 20 carbon atoms forming the rings, preferably 3 to 10, most preferably (C3-C8)-cycloalkyl. Examples of suitable cycloalkyl radicals are cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclodecyl, cyclohexenyl, cyclopentenyl, cyclooctadienyl.
The term "cycloalkylalkyl" refers to a radical in which the cycloalkyl group is linked via an alkyl group, where the alkyl and cycloalkyl groups have the meanings defined herein, preferably a (C3-C8)-cycloalkyl-(C1-C4)-alkyl radical. Examples thereof are cyclopropylmethyl, cyclohexylmethyl, cyclopentylethyl, cyclohexenylethyl.

The term "alkenyl" includes for the purposes of this invention acyclic unsaturated or partially unsaturated hydrocarbons having C2-C12 carbon atoms, which may be straight-chain or branched and contain one or more double bonds. The term "alkenyl" preferably stands for alkenyl chains of 2 to 8, particularly preferably 2 to 6, carbon atoms. Examples are vinyl, propenyl, butenyl, pentenyl, hexenyl, and octadienyl and the like.

The term "alkynyl" refers to acyclic unsaturated or partially unsaturated hydrocarbons having C2-C12 carbon atoms, which may be straight-chain or branched and contain one or more triple bonds. The term "alkynyl" preferably stands for alkylnyl chains of 2 to 8, particularly preferably 2 to 6, carbon atoms. Examples are propynyl, butynyl, pentynyl, hexynyl.

The term "aryl" refers to aromatic hydrocarbon systems having 3 to 14, preferably 5 to 14, carbon atoms, which may also be fused to further saturated, (partially) unsaturated or aromatic cyclic systems. Examples of "aryl" are inter alia phenyl, biphenyl, naphthyl and anthracenyl, but also indanyl, indenyl, or 1,2,3,4-tetrahydronaphthyl.

The term "heteroaryl" refers to a 5-, 6- or 7-membered cyclic aromatic radical which comprises at least 1, where appropriate also 2, 3, 4 or 5 heteroatoms, preferably nitrogen, oxygen and/or sulfur, where the heteroatoms are identical or different. The number of nitrogen atoms is preferably between 0 and 3, and that of the oxygen and sulfur atoms is between 0 and 1. The term "heteroaryl" also includes systems in which the aromatic cycle is part of a bi- or polycyclic system, such as were the aromatic cycle is fused to an aryl, cycloalkyl, heteroaryl or heterocyclyl group as defined herein via any desired and possible ring member of the heteroaryl radical. Examples of "heteroaryl" include pyrrolyl, thienyl, furyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, pyrazolyl, pyridinyl, pyrimidinyl, pyrazinyl, indolyl, quinolinyln, and isoquinolinyln.

The terms "arylklyl" and "heteroaryalkyl" refer to radicals in which the aryl or heteroaryl radical is linked via an alkyl group, where the alkyl, aryl and heteroaryl groups have the meanings defined herein. Preferred "arylklyl" groups are phenyl-(C1-C4)-alkyl radicals, preferably benzyl or phenylethyl radicals. Preferred "heteroaryalkyl" groups
are indolyl-(C₁-C₄)-alkyl radicals, preferably 1H-indole-3-yl-methyl or 2(1H-indole-3-yl)ethyl.

The term "heterocyclyl" refers to a mono- or polycyclic system of 3 to 14, preferably 5 or 6 to 14 ring atoms which may be exclusively carbon atoms. However, the cyclic system may also comprise 1, 2, 3, 4, or 5 heteroatoms, in particular nitrogen, oxygen and/or sulfur. The cyclic system may be saturated, mono- or polyunsaturated but may not be aromatic. In the case of a cyclic system consisting of at least two rings the rings may be fused or spiro- or otherwise connected. The "heterocyclyl" radical may be attached at any carbon or heteroatom which results in the creation of a stable structure.

Examples include pyrrolidinyl, thiapyrrolidinyl, piperidinyl, piperazinyl, oxapiperazinyl, oxapiperidinyl and oxadiazolyl.

The term "heterocyclylalkyl" refers to radicals in which the heterocyclyl group is linked via an alkyl group, where the alkyl and heterocyclyl groups have the meanings defined herein.

The terms "alkylsulfonyl", "arylsulfonyl" and "arylalkylsulfonyl" refer to radicals in which the alkyl, aryl or arylalkyl group is linked via a -SO₂ group, where the alkyl, aryl and arylalkyl groups have the meanings defined herein. Examples are methylsulfonyl and phenylsulfonyl.

The term "halogen", "halogen atom" or "halogen substituent" (Hal-) refers to one, where appropriate, a plurality of fluorine (F, fluoro), bromine (Br, bromo), chlorine (Cl, chloro), or iodine (I, iodo) atoms. The designations "dihalogen", "trihalogen" and "perhalogen" refer respectively to two, three and four substituents, where each substituent can be selected independently from the group consisting of fluorine, chlorine, bromine and iodine. "Halogen" preferably means a fluorine, chlorine or bromine atom.

The term "natural alpha-amino acid side chain" for the purpose of the present invention refers to all side chains of the known 20 proteinogenic alpha-amino acids as well as to side chains of naturally occurring (i.e. in any biological systems) alpha-amino acids, such as for instance selenocysteine, pyrrolysine, citrulline, ornithine, homocysteine, \(\text{N}-\text{methylararginine}, \text{N'-acetyllysine}, \text{gamma-carboxyglutamate}, \text{5-hydroxyllysine}, \text{3-methylhistidine}\) and/or \(\text{L.L.'N'-trimethyllysine}\). In this connection "side chain" refers to the residue that is attached to the alpha-carbon atom, e.g. methyl in case of an Ala side chain or benzyl in case of a Phe side chain.
The term "unnatural alpha amino acid side chain" for the purpose of the present invention refers to all side chains of known alpha-amino acids that are not proteinogenic nor are known to occur naturally (i.e. in any biological systems). Examples are norleucine, cyclohexylglycine, 2-naphthylalanine, substituted alpha-amino acids (e.g. halogen substituted Tyr or Phe) as well as protected alpha-amino acid side chains, where a protection group such as Fmoc, Boc, Z, CBZ, Aloe, trityl, acetyl and/or benzyl is directly attached/reacted to a functionalization (e.g. amino, hydroxy and/or carboxy residue). In this connection "side chain" is referred to as for "natural alpha amino acid side chains".

Above embodiments of radicals R1 to R10 that possess functionalization (e.g. amino, hydroxy and/or carboxy residues), such as alkyl-CO-NH₂, alkyl-CO-OH, alkyl-NH₂, alkyl-NH-C(NH)-NH₂, CO-C(R9R10)-NH₂, CO-CH₂-C'(R9R10)-NH₂, CO-C'(R9R10)-CH₂-NH₂ and/or 2-amino-2-carbonyl-propane (2-amino-isobutyric acid/Aib residue), may be protected with protection groups as mentioned above. Such protection group carrying embodiments are regarded as belonging to/within the scope and spirit of the invention.

All stereoisomers of the compounds of the invention are contemplated, either in a mixture or in pure or substantially pure form. The compounds of the present invention can have asymmetric centers at any of the carbon atoms including any one of the R radicals. Consequently, compounds of the invention can exist in the form of their racemates, in the form of the pure enantiomers and/or diastereomers or in the form of mixtures of these enantiomers and/or diastereomers. The mixtures may have any desired mixing ratio of the stereoisomers. All these different stereochemical forms and mixtures are within the scope of the present invention.

Thus, for example, the compounds of the invention which have one or more centers of chirality and which occur as racemates or as diastereomer mixtures can be fractionated by methods known per se into their optical pure isomers, i.e. enantiomers or diastereomers. The separation of the compounds of the invention can take place by column separation on chiral or nonchiral phases or by recrystallization from an optionally optically active solvent or with use of an optically active acid or base or by derivatization with an optically active reagent such as, for example, an optically active alcohol, and subsequent elimination of the radical.

Where possible, the compounds of the invention may be in the form of the tautomers.
It is likewise possible for the compounds of the invention to be in the form of any desired prodrugs such as, for example, esters, carbonates or phosphates, in which cases the actually biologically active form is released only through metabolism. Any compound that can be converted in vivo to provide the bioactive agent (i.e. a compound of the invention) is a prodrug within the scope and spirit of the invention.

Various forms of prodrugs are well known in the art and are described for instance in:

(i) The Practice of Medicinal Chemistry (Wermuth CG et al., Chapter 31, Academic Press 1996);

(ii) Design of Prodrugs (editor: Bundgaard H, Elsevier 1985); and

Said references are incorporated herein by reference.

It is further known that chemical substances are converted in the body into metabolites which may where appropriate likewise elicit the desired biological effect - in some circumstances even in more pronounced form.

Any biologically active compound that was converted in vivo by metabolism from any compound of the invention is a metabolite within the scope and spirit of the invention.

The compounds of the invention can, if they have a sufficiently basic group such as, for example, a primary, secondary or tertiary amine, be converted with inorganic and organic acids into salts. The pharmaceutically acceptable salts of the compounds of the invention are preferably formed with hydrochloric acid, hydrobromic acid, iodic acid, sulfuric acid, phosphoric acid, methanesulfonic acid, p-toluenesulfonic acid, carbonic acid, formic acid, acetic acid, sulfoacetic acid, trifluoroacetic acid, oxalic acid, malonic acid, maleic acid, succinic acid, tartaric acid, racemic acid, malic acid, embonic acid, mandelic acid, fumaric acid, lactic acid, citric acid, taurocholic acid, glutaric acid, stearic acid, glutamic acid or aspartic acid. The salts which are formed are, inter alia, hydrochlorides, chlorides, hydrobromides, bromides, iodides, sulfates, phosphates, methanesulfonates, tosylates, carbonates, bicarbonates, formates, acetates, sulfaoacetates, triflates, oxalates, malonates, maleates, succinates, tartrates, malates, embon-
ates, mandelates, fumarates, lactates, citrates, glutarate, stearate, aspartates and glutamates. The stoichiometry of the salts formed from the compounds of the invention may moreover be an integral or non-integral multiple of one.

The compounds of the invention can, if they contain a sufficiently acidic group such as, for example, the carboxy, sulfonic acid, phosphoric acid or a phenolic group, be converted with inorganic and organic bases into their physiologically tolerated salts. Examples of suitable inorganic bases are ammonium, sodium hydroxide, potassium hydroxide, calcium hydroxide, and of organic bases are ethanolamine, diethanolamine, triethanolamine, ethylenediamine, t-butylamine, t-octylamine, dehydroabietylamine, cyclohexylamine, dibenzylethylene-diamine and lysine. The stoichiometry of the salts formed from the compounds of the invention can moreover be an integral or non-integral multiple of one.

It is likewise possible for the compounds of the invention to be in the form of their solvates and, in particular, hydrates which can be obtained for example by crystallization from a solvent or from aqueous solution. It is moreover possible for one, two, three or any number of solvate or water molecules to combine with the compounds of the invention to give solvates and hydrates.

It is known that chemical substances form solids which exist in different order states which are referred to as polymorphic forms or modifications. The various modifications of a polymorphic substance may differ greatly in their physical properties. The compounds of the invention can exist in various polymorphic forms, and certain modifications may moreover be metastable. All these polymorphic forms of the compounds of the invention are to be regarded as belonging to the invention.

The triazole derivatives (compounds of the invention) as illustrated herein are ghrelin analogue ligands of GHS receptors. Thus, the aforementioned compounds of the invention are suitable for the treatment or prophylaxis of physiological and/or pathophysiological conditions mediated by GHS receptors and/or physiological and/or pathophysiological conditions which can be influenced by modulation of these receptors, and thus prevented, treated and/or alleviated.

For the purpose of the present invention, the term "treatment" is also intended to include prophylactic treatment or alleviation.
The term "ghrelin analogue ligand" or "ligand" is intended to refer for the purposes of the present invention to every compound which binds in any way to a receptor (the receptors in the present invention being GHS receptors) and induces either activation, inhibition and/or another conceivable effect at this receptor. The term "ghrelin analogue ligand" or "ligand" thus includes agonists, antagonists, partial agonists/antagonists, inverse agonists and other ligands which cause an effect at the receptor which is similar to the effect of agonists, antagonists, partial agonists/antagonists or inverse agonist.

For the purpose of the present invention, the term "GHS receptor antagonist" or "antagonist of GHS receptors" refers to compounds of the invention that bind to GHS receptors but do not elicit a proper activation of the receptors as assessed by recording an increase of intracellular calcium which is characteristic for activation of G-protein coupled receptors (GPCRs).

The ability to properly activate the receptors is assessed for any compound of the invention by comparing the degree of activation (increase of intracellular calcium) of GHS-R 1a by the compound to be tested (at 10^(-6) M concentration) to the degree of activation (increase of intracellular calcium) of GHS-R 1a by 10^(-6) M ghrelin (100%) and to the basal level (0%). Such assessment can be readily performed by the skilled artisan due to his expert knowledge. The output is a percentage value for each compound to be tested.

Any compound of the invention that does not show a degree of activation (increase of intracellular calcium) of GHS-R 1a of at least 20 % as assessed in accordance with above specification is regarded as not eliciting a proper activation and therefore as GHS receptor antagonist. Preferably such compounds do show an antagonizing effect (counteraction/decrease) on ghrelin and/or other GHS stimulated intracellular calcium increase, prevent such stimulation or even act as inverse agonists (an inverse agonists is an ligand which binds to the same receptor binding-site as an agonist or antagonist but causes an inhibition of the basal/constitutive activity of the receptor, in principle an agonists with a negative intrinsic activity). Such compounds may furthermore exhibit an inhibitory activity on GH secretion and/or on other physiological or pathophysiological conditions or effects, such as food intake or lipogenesis. Their effects may be dissociated. Thus, they may have no impact at all on GH secretion while inhibiting other physiological effects. They may even stimulate other physiological effects.

For the purpose of the present invention, the term "GHS receptor agonist" or "agonist of GHS receptors" refers to compounds of the invention that bind to GHS receptors and
elicit a proper activation of the receptor as assessed by recording an increase of intracellular calcium which is characteristic for activation of G-protein coupled receptors.

Any compound of the invention that shows a degree of activation (increase of intracellular calcium) of GHS-R 1a of at least 20 % as assessed in accordance with above specification is regarded as eliciting a proper activation and therefore as GHS receptor agonist. Such compounds may mimic the effects of ghrelin and/or GHS on GH secretion and for instance food intake or lipogenesis. Like for antagonists, the effects of agonist compounds may be dissociated from the GH secretory effect. Such compounds may even antagonize (counteract/decrease) ghrelin and/or other GHS stimulated intracellular calcium increase.

The term "GHS receptor" or "GHS-R" is intended to comprise for the purposes of the present invention receptors that bind at least one known peptidyl and/or non-peptidyl GHS and/or ghrelin. The term "GHS receptor" or "GHS-R" is also intended to comprise different GHS binding sites in the various tissues and/or organs as illustrated herein, that bind at least one known peptidyl and/or non-peptidyl GHS and/or ghrelin and which are probably not yet characterized GHS-R subtypes.

Binding of a given known peptidyl and/or non-peptidyl GHS and/or ghrelin can be easily verified by the skilled artisan on the basis of his expert knowledge, e.g. by appropriate binding assays which represent only routine experimentation.

Such GHS receptors may be stimulated/activated by ghrelin (ghrelin responsive) or may not be stimulated/activated by ghrelin (ghrelin non-responsive) - with regard to both acylated and non-acylated ghrelin, respectively. Stimulation/activation of such receptors may cause but does not compulsorily have to elicit GH production and/or GH secretion and/or increase GH plasma levels.

Preferably such GHS receptors are selected from the group consisting of "GHS type 1 receptor, GHS-R 1a, GHS-R 1b, motilin receptor, motilin receptor 1a, neurotensin receptor, TRH receptor, GPR38 (FM1), GPR39 (FM2), FM3, GHS binding site, GHS-R subtype, cardiac GHS-R, mammary GHS-R".

More preferably, such GHS receptors are selected from the group consisting of "GHS type 1 receptor, GHS-R 1a, GHS-R 1b" and most preferably are GHS-R 1a.
As discussed herein, GHS receptors (including GHS binding sites and GHS-R subtypes) are known to be concentrated in the hypothalamus-pituitary area but also appear to be distributed in other central and peripheral tissues. Furthermore, they are also expressed in various tumoral tissues, even in tumoral tissues from organs that do not express these receptors under physiological conditions.

For the purposes of the present invention, all these GHS receptor (including GHS binding sites and GHS-R subtypes) expressing organs and/or tissues are intended to be comprised by the scope of the present invention. Expression of GHS receptors (including GHS binding sites and GHS-R subtypes) in a given organ and/or tissue can be easily verified by the skilled artisan on the basis of his expert knowledge, e.g. by appropriate molecular biologic assays, such as immunofluorescence or immunoprecipitation assays, which represent only routine experimentation.

Preferably, such GHS receptors are located in tissues and/or organs selected from the group consisting of "endocrine tissue, exocrine tissue, peripheral tissue, adipose/fat tissue, brain, hypothalamus, thalamus, hippocampus, striatum, cortex, pituitary, central nervous system, spinal cord, gland, adrenal gland, thyroid gland, salivary gland, mammary gland, neuron, bowel, intestine, stomach, heart, liver, pancreas, kidney, bile, gall, bladder, prostate, spleen, muscle, skeletal muscle, aorta, artery, vein, immune cell, leukocyte, lymphocyte, T cell, B cell, granulocyte, monocyte, macrophage, dendritic cell, mast cell, NK cell, neutrophil, eosinophil, basophil, lymph node, bone, bone marrow, tonsil, thymus, placenta, testes, ovary, uterus, lung, adipocyte, tumor/cancer cell, carcinoma cell, prostate cancer cell, thyroid cancer cell, lung cancer cell, breast cancer cell".

As illustrated supra, the compounds of the invention are ghrelin analogue ligands of GHS receptors. They can be administered to various mammalian species, including human, for the treatment or prophylaxis of physiological and/or pathophysiological condition in such mammals.

For the purpose of the present invention, all mammalian species are regarded as being comprised. Preferably, such mammals are selected from the group consisting of "human, domestic animals, cattle, livestock, pets, cow, sheep, pig, goat, horse, pony, donkey, ninny, mule, hare, rabbit, cat, dog, guinea pig, hamster, rat, mouse". More preferably, such mammals are human.
The compounds of the invention being non-peptidic ghrelin analogue ligands of GHS receptors are surprisingly characterized by a strong binding affinity to such receptors. Such compounds for instance may preferably exhibit an IC\textsubscript{50} value of less than 1000 nM for binding to GHS-R 1a. More preferably, such compounds may exhibit an IC\textsubscript{50} value of less than 500 nM, even more preferably of less than 300 nM and most preferably of less than 100 nM for binding to GHS-R 1a.

Due to their surprisingly strong receptor binding, the compounds of the invention can be advantageously administered at lower doses compared to other less potent binders while still achieving equivalent or even superior desired biological effects. In addition, such a dose reduction may advantageously lead to less or even no medicinal adverse effects. Further, the high binding specificity of the compounds of the invention may translate into a decrease of undesired side effects on its own regardless of the dose applied.

Furthermore, the compounds of the invention, being of non-peptidic nature, are resistant to degradation by enzymes of the gastro-intestinal tract. Hence, they offer the advantage to be given by oral route. They surprisingly display an improved metabolic stability and/or an improved bioavailability. Hence, again an advantageous dose reduction may be achievable which may cause less or even no side effects.

The compounds of the invention can either be antagonists or agonists of GHS receptors as illustrated and defined herein.

GHS receptor antagonists of the present invention can for instance be employed for the inhibition of GHS receptors stimulated by ghrelin and/or other GHS thus decreasing and/or blocking GH production and/or secretion and/or GH plasma levels. In addition, such GHS receptor antagonists may also be employed for the inhibition or prevention of physiological or pathophysiological effects of ghrelin which are not related to GH production and/or GH secretion.

Therefore, GHS receptor antagonists of the present invention are suitable for the treatment and/or prophylaxis of various physiological and pathophysiological conditions as disclosed herein, in particular for the short-, medium- and/or long term regulation of energy balance, the short-, medium- and/or long term regulation (stimulation and/or inhibition) of food intake, the treatment of adipogenesis, adiposity and/or obesity, body weight gain and/or reduction and the treatment of tumor cell proliferation.
In contrast, GHS receptor agonists of the present invention can for instance be employed for the activation of GHS receptors and stimulation/increase of GH production and/or GH secretion and would thus have similar effects or uses as growth hormone itself, ghrelin and/or known GHS.

Thus, GHS receptor agonists of the present invention are suitable for the treatment and/or prophylaxis of various physiological and pathophysiological conditions as disclosed herein, in particular for growth retardation, cachexia, inflammation, inflammatory effects, gastric postoperative ileus, postoperative ileus and/or gastrectomy (ghrelin replacement therapy).

For the purpose of the present invention, all physiological and/or pathophysiological conditions are intended to be comprised that are known to be mediated by GHS receptors.

Preferably, these physiological and/or pathophysiological conditions are selected from the group consisting of "acute fatigue syndrome and muscle loss following election surgery, adipogenesis, adiposity, age-related decline of thymic function, age-related functional decline ("ARFD") in the elderly, aging disorder in companion animals, Alzheimer's disease, anorexia (e.g. associated with cachexia or aging); anxiety, blood pressure (lowering), body weight gain/reduction, bone fracture repair (acceleration), bone remodeling stimulation, cachexia and protein loss reduction due to chronic illness such as cancer or AIDS, cardiac dysfunctions (e.g. associated with valvular disease, myocardial infarction, cardiac hypertrophy or congestive heart failure), cardiomyopathy, cartilage growth stimulation, catabolic disorders in connection with pulmonary dysfunction and ventilator dependency, catabolic side effects of glucocorticoids, catabolic state of aging, central nervous system disorders (in combination with antidepressants), chronic dialysis, chronic fatigue syndrome (CFS), cognitive function improvement (e.g. in dementia, Alzheimer's disease), complicated fractures (e.g. distraction osteogenesis), complications associated with transplantation, congestive heart failure (alone/in combination with corticotropin releasing factor antagonists), Crohn's disease and ulcerative colitis, Cushing's syndrome, dementia, depressions, short-, medium- and/or long-term regulation of energy balance, short-, medium- and/or long-term regulation of food intake (stimulation and/or inhibition), frailty (e.g. in elderly humans), gastrectomy (ghrelin replacement therapy), gastric postoperative ileus, glycemic control improvement, growth hormone release stimulation in the elderly, growth hormone replacement in stressed patients, growth promotion in livestock, growth retardation associated with the
Prader-Willi syndrome and Turner's syndrome, growth retardation in connection with
Crohn's disease, growth retardation, hair/nail growth maintenance, hip fractures, hun-
ger, hypercortisolism, hyperinsulinemia including nesidioblastosis, hypothermia, im-
mune deficiency in individuals with a depressed T4/T8 cell ratio, immune response
improvement to vaccination, immune system stimulation in companion animals, im-
mune system stimulation, immunosuppression in immunosuppressed patients, inflam-
mation or inflammatory effects, inflammatory bowel disease, insulin resistance in the
heart, insulin resistance in type 2 diabetic patients, insulin resistance including NIDDM,
diabetes, diabetes type I, diabetes type II, intrauterine growth retardation, irritable
bowel syndrome, lipodystrophy (e.g. HIV-induced), metabolic homeostasis mainte-
nance, milk production increase in livestock, muscle mass/strength increase, muscle
mobility improvement, muscle strength improvement, muscle strength/function mainte-
nance in elderly humans, muscular atrophy, musculoskeletal impairment (e.g. in eld-
ery), Noonan's syndrome, obesity and growth retardation associated with obesity,
osteoblast stimulation, osteochondrodysplasias, osteoporosis, ovulation induction
(adjuvant treatment), physiological short stature including growth hormone deficient
children, postoperative ileus, protein catabolic response attenuation after major sur-
gery/trauma, protein kinase B activity enhancement, psychosocial deprivation, pulmo-
mary dysfunction and ventilator dependency, pulmonary function improvement, pulsatile
growth hormone release induction, recovery of burn patients and reducing hospitaliza-
tion of burn patients (acceleration), renal failure or insufficiency resulting from growth
retardation, renal homeostasis maintenance in the frail elderly, sarcopenia, schizo-
phrenia, sensory function maintenance (e.g. hearing, sight, olfaction and taste), short
bowel syndrome, short stature associated with chronic illness, skeletal dysplasia, skin
thickness maintenance, sleep disorders, sleep quality improvement, thrombocytopenia,
thymic development stimulation, tooth repair or growth, tumor cell proliferation, ven-
tricular dysfunction or reperfusion events, wasting in connection with AIDS, wasting in
connection with chronic liver disease, wasting in connection with chronic obstructive
pulmonary disease (COPD), wasting in connection with multiple sclerosis or other neu-
rodegenerative disorders, wasting secondary to fractures, wool growth stimulation in
sheep, wound healing (acceleration), wound healing delay". More preferably these
physiological and/or pathophysiological conditions are selected from the group consist-
ing of "growth retardation, cachexia, short-, medium- and/or long term regulation of
energy balance; short-, medium- and/or long term regulation (stimulation and/or inhibi-
tion) of food intake; adipogenesis, adiposity and/or obesity; body weight gain and/or
In a further aspect of the present invention, the compounds of the invention may be used in combination with at least one additional pharmacologically active substance.

Such additional pharmacologically active substance may be other compounds of the present invention and/or other "suitable therapeutic agents" useful in the treatment and/or prophylaxis of the aforementioned physiological and/or pathophysiological conditions. The additional pharmacologically active substance may be an antagonist of GHS receptors and/or an agonist of GHS receptors depending on the purpose of the combined use. Selection and combination of the additional pharmacologically active substance(s) can be easily performed by the skilled artisan on the basis of his expert knowledge and depending on the purpose of the combined use and physiological and/or pathophysiological conditions targeted.

In a preferred embodiment, the compounds of the invention are used for the treatment and/or prophylaxis of the aforementioned physiological and/or pathophysiological conditions in the form of a medicament, where such medicament comprises at least one additional pharmacologically active substance.

In another preferred embodiment, the compounds of the invention are used for the treatment and/or prophylaxis of the aforementioned physiological and/or pathophysiological conditions in the form of a medicament, where the medicament is applied before and/or during and/or after treatment with at least one additional pharmacologically active substance.

The above mentioned "suitable therapeutic agents" include: "GHS, anti-diabetic agents; anti-osteoporosous agents; anti-obesity agents; anti-inflammatory agents; anti-anxiety agents; anti-depressants; anti-hypertensive agents; anti-platelet agents; antithrombotic and thrombolytic agents; cardiac glycosides; cholesterol/lipid lowering agents; mineralocorticoid receptor antagonists; phosphodiesterase inhibitors; protein tyrosine kinase inhibitors; thyroid mimetics (including thyroid receptor antagonists); anabolic agents; HIV or AIDS therapies; therapies useful in the treatment of Alzheimer's disease and other cognitive disorders; therapies useful in the treatment of
sleeping disorders; anti-proliferative agents; anti-tumor agents; anti-ulcer and gastro-esophageal reflux disease agents; progestin receptor agonists ("PRA"); estrogen; testosterone; a selective estrogen receptor modulator; a selective androgen receptor modulator; parathyroid hormone; and/or bisphosphonate", and preferably, a "suitable therapeutic agents" is selected of the group consisting of this agents.

Examples of suitable GHS for use in combination with the compounds of the present invention include GHRP-6, GHRP-1 as described in U.S. Patent No. 4,411,890; and publications WO 89/07110 and WO 89/07111 and B-HT920 or growth hormone releasing factor and its analogs or growth hormone and its analogs or somatomedins including IGF-1 and IGF-2 as well as GHS described in WO 01/96300.

Examples of suitable anti-diabetic agents for use in combination with the compounds of the present invention include biguanides (e.g. metformin), glucosidase inhibitors (e.g. acarbose), insulins (including insulin secretagogues or insulin sensitizers), meglitinides (e.g. repaglinide), sulfonylureas (e.g., glimepiride, glyburide and glipizide), biguanide/glyburide combinations (e.g., glucovance), thiazolidinediones (e.g. troglitazone, rosiglitazone and pioglitazone), PPAR-alpha agonists, PPAR-gamma agonists, PPAR alpha/gamma dual agonists, SGLT2 inhibitors, inhibitors of fatty acid binding protein (aP2) such as those disclosed in US patent 6,548,529, glucagon-like peptide-1 (GLP-1), and dipeptidyl peptidase IV (DP4) inhibitors.

Examples of suitable anti-osteoporous agents for use in combination with the compounds of the present invention include alendronate, risedronate, raloxifene, calcitonin, non-steroidal progestin receptor agonists, RANK ligand agonists, calcium sensing receptor antagonists, TRAP inhibitors, selective estrogen receptor modulators (SERM), estrogen and AP-1 inhibitors.

Examples of suitable anti-obesity agents for use in combination with the compounds of the present invention include endocannabinoid receptor antagonists, e.g. CB1 receptor antagonists such as rimonabant (1H-Pyrazole-3-carboxamide, 5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-N-1-piperidinyl-, monohydrochloride; CAS Registry Number: 158681-13-1; SR-141716A; US patent 5,624,941), aP2 inhibitors such as those disclosed in US patent 6,548,529, PPAR gamma agonists, PPAR delta agonists, and orlistat.

Examples of suitable anti-inflammatory agents for use in combination with the compounds of the present invention include prednisone, dexamethasone, Enbrel, cyclooxygenase inhibitors (i.e., COX-1 and/or COX-2 inhibitors such as NSAIDs, aspi-
rin, indomethacin, ibuprofen, piroxicam, Naproxen, Celebrex, Vioxx), CTLA4-lg agonists/antagonists, CD40 ligand antagonists, integrin antagonists, alpha4 beta7 integrin antagonists, cell adhesion inhibitors, interferon gamma antagonists, ICAM-1, tumor necrosis factor (TNF) antagonists (e.g., infliximab, OR1384), prostaglandin synthesis inhibitors, budesonide, clofazimine, CNI-1493, CD4 antagonists (e.g., priliximab), p38 mitogen-activated protein kinase inhibitors, protein tyrosine kinase (PTK) inhibitors, IKK inhibitors, and therapies for the treatment of irritable bowel syndrome (e.g., zelmac and Maxi-K openers such as those disclosed in US Patent No. 6,184,231).

Examples of suitable anti-anxiety agents for use in combination with the compounds of the present invention include diazepam, lorazepam, buspirone, oxazepam, and hydroxyzine pamoate.

Examples of suitable anti-depressants for use in combination with the compounds of the present invention include citalopram, fluoxetine, nefazodone, sertraline, and paroxetine.

Examples of suitable anti-hypertensive agents for use in combination with the compounds of the present invention include beta adrenergic blockers, calcium channel blockers (L-type and T-type; e.g. diltiazem, verapamil, nifedipine, amlodipine and mybefradil), diuretics (e.g., chlorothiazide, hydrochlorothiazide, flumethiazide, hydroflumethiazide, bendroflumethiazide, methylchlorothiazide, trichloromethiazide, polythiazide, benzthiazide, ethacrynic acid tricrynafen, chlorothalidone, furosemide, musolimine, bumetanide, triamterene, amiloride, spironolactone), renin inhibitors, ACE inhibitors (e.g., captopril, zofenopril, fosinopril, enalapril, ceranopril, cilazopril, delapril, pentopril, quinapril, ramipril, lisinopril), AT-1 receptor antagonists (e.g., losartan, irbesartan, valsartan), ET receptor antagonists (e.g., sitaxsentan, atrsenta and compounds disclosed in U.S. Patent Nos. 5,612,359 and 6,043,265, Dual ET/AII antagonist (e.g., compounds disclosed in WO 00/01389), neutral endopeptidase (NEP) inhibitors, vasopepsidase inhibitors (dual NEP-ACE inhibitors) (e.g., omapatrilat and gemopatri lat), and nitrates.

Examples of suitable anti-platelet agents for use in combination with the compounds of the present invention include GPIIb/IIIa blockers (e.g., abciximab, eptifibatide, tirofiban), P2Y12 antagonists (e.g., clopidogrel, ticlopidine, CS-747), thromboxane receptor antagonists (e.g., ifetroban), aspirin, and PDE-III inhibitors (e.g., dipyridamole) with or without aspirin.
Examples of suitable cardiac glycosides for use in combination with the compounds of the present invention include digitalis and ouabain.

Examples of suitable cholesterol/lipid lowering agents for use in combination with the compounds of the present invention include HMG-CoA reductase inhibitors [e.g., pravastatin, lovastatin, atorvastatin, simvastatin, NK-104 (a.k.a. itavastatin, or nisvastatin or nisbastatin) and ZD-4522 (a.k.a. rosuvastatin, or atavastatin or visastatin)], squalene synthetase inhibitors, fibrates, bile acid sequestrants, ACAT inhibitors, MTP inhibitors, lipooxygenase inhibitors, cholesterol absorption inhibitors, and cholesterol ester transfer protein inhibitors (e.g., CP-529414).

Examples of suitable mineralocorticoid receptor antagonists for use in combination with the compounds of the present invention include spironolactone and eplerinone.

Examples of suitable phosphodiesterase inhibitors for use in combination with the compounds of the present invention include PDE III inhibitors such as cilostazol, and PDE V inhibitors such as sildenafil.

Examples of suitable thyroid mimetics for use in combination with the compounds of the present invention include thyrotropin, polythyroid, KB-130015, and dronedarone.

Examples of suitable anabolic agents for use in combination with the compounds of the present invention include testosterone and SARMs.

Examples of suitable HIV or AIDS therapies for use in combination with the compounds of the present invention include indinavir sulfate, saquinavir, saquinavir mesylate, amprenavir, ritonavir, lopinavir, ritonavir/lopinavir combinations, lamivudine, zidovudine, lamivudine/zidovudine combinations, zalcitabine, didanosine, stavudine, and megestrol acetate.

Examples of suitable therapies for treatment of Alzheimer's disease and cognitive disorders for use in combination with the compounds of the present invention include donepezil, tacrine, revastigmine, 5HT6, gamma secretase inhibitors, beta secretase inhibitors, SK channel blockers, Maxi-K blockers, and KCNQs blockers.

Examples of suitable therapies for treatment of sleeping disorders for use in combination with the compounds of the present invention include melatonin analogs, melatonin receptor antagonists, ML1 B agonists, and GABA/NMDA receptor antagonists.
Examples of suitable anti-proliferative agents for use in combination with the compounds of the present invention include cyclosporin A, taxol, FK 506, and adriamycin.

Examples of suitable anti-tumor agents for use in combination with the compounds of the present invention include taxol, adriamycin, epothilones, cisplatin and carboplatin.

Examples of suitable a selective estrogen receptor modulator for use in combination with the compounds of the present invention include tamoxifen and raloxifene.

Examples of suitable a bisphosphonate for use in combination with the compounds of the present invention include MK-217 (alendronate).

The above other therapeutic agents, when employed in combination with the compounds of the present invention, may be used, for example, in those amounts indicated in the Physicians' Desk Reference (PDR) or as otherwise determined by one of ordinary skill in the art.

In a preferred embodiment, the compounds of the invention are used for the treatment and/or prophylaxis of the aforementioned physiological and/or pathophysiological conditions in the form of a medicament, where such medicament comprises as additional pharmacologically active substance an endocannabinoid receptor antagonist, preferably a CB1 receptor antagonist, most preferably rimonabant (1H-Pyrazole-3-carboxamide, 5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-N-1-piperidinyl-, monohydrochloride; CAS Registry Number: 5,624,941) and as compound of the invention a GHS-R antagonist.

In another preferred embodiment, the compounds of the invention are used for the treatment and/or prophylaxis of the aforementioned physiological and/or pathophysiological conditions in the form of a medicament, where the medicament is applied before and/or during and/or after treatment with at least one additional pharmacologically active substance, where such additional pharmacologically active substance is an endocannabinoid receptor antagonist, preferably a CB1 receptor antagonist, most preferably rimonabant (1H-Pyrazole-3-carboxamide, 5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-N-1-piperidinyl-, monohydrochloride; CAS Registry Number:
158681-1 3-1; SR-1 4 17 6A; US patent 5,624,941) and the compound of the invention is a GHS-R antagonist.

The compounds of the present invention can be administered in a known manner. The route of administration may thereby be any route which effectively transports the active compound to the appropriate or desired site of action, for example orally or non-orally, in particular topically, transdermal\(^a\), pulmonary, rectally, intravaginally, nasally or parenterally or by implantation. Oral administration is preferred.

The compounds of the invention are converted into a form which can be administered and are mixed where appropriate with pharmaceutically acceptable carriers or diluents. Suitable excipients and carriers are described for example in Ullman's Encyclopedia of Technical Chemistry, Vol. 4, (1953), 1-39; Journal of Pharmaceutical Sciences, Vol. 52 (1963), 918 et seq.; H. v. Czetsch-ündenwald, "Hilfsstoffe fur Pharmazie und angrenzende Gebiete"; Pharm. Ind. 2, 1961, 72 et seq.; Dr. H.P. Fiedler, "Lexikon der Hilfsstoffe fur Pharmazie, Kosmetik and angrenzende Gebiete", Cantor KG, Aulendorf in Württemberg, 1971.

Oral administration can take place for example in solid form as tablet, capsule, gel capsule, coated tablet, granulation or powder, but also in the form of a drinkable solution. The compounds of the invention can for oral administration be combined with known and ordinarily used, physiologically tolerated excipients and carriers such as, for example, gum arabic, talc, starch, sugars such as, for example, mannitol, methylcellulose, lactose, gelatin, surface-active agents, magnesium stearate, cyclodextrins, aqueous or nonaqueous carriers, diluents, dispersants, emulsifiers, lubricants, preservatives and flavorings (e.g. essential oils). The compounds of the invention can also be dispersed in a microparticulate, e.g. nanoparticulate, composition.

Non-orally administration can take place for example by intravenous, subcutaneous, intramuscular injection of sterile aqueous or oily solutions, suspensions or emulsions, by means of implants or by ointments, creams or suppositories. Administration as sustained release form is also possible where appropriate. Implants may comprise inert materials, e.g. biodegradable polymers or synthetic silicones such as, for example, silicone rubber. Intravaginal administration is possible for example by means of vaginal rings. Intrauterine administration is possible for example by means of diaphragms or other suitable intrauterine devices. Transdermal administration is additionally provided, in particular by means of
a formulation suitable for this purpose and/or suitable means such as, for example, patches.

The dosage may vary within a wide range depending on type and/or severity of the physiological and/or pathophysiological condition, the mode of administration, the age, gender, bodyweight and sensitivity of the subject to be treated. It is within the ability of a skilled worker to determine a “pharmacologically effective amount” of a compound of the invention and/or additional pharmacologically active substance. Administration can take place in a single dose or a plurality of separate dosages.

A suitable unit dose is, for example, from 0.001 mg to 100 mg of the active ingredient, i.e. at least one compound of the invention and, where appropriate, at least one additional pharmacologically active substance, per kg of a patient’s bodyweight.

In another aspect, the present invention relates to a pharmaceutical composition comprising a pharmacologically active amount of at least one triazole compound selected from the group consisting of: compound 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 124, 125, 126, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189 and/or compound 190.

In a further aspect, such a pharmaceutical composition may additionally comprise at least one pharmaceutically acceptable carrier and/or excipient and/or may comprise at least one further pharmacologically active substance.

In a preferred embodiment, such further pharmacologically active substance is an endocannabinoid receptor antagonist, preferably a CB1 receptor antagonist, most preferably rimonabant [1H-Pyrazole-3-carboxamide, 5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-N-1-piperidinyl-, monohydrochloride].
Concerning the pharmaceutical compositions of the invention, at least one of the triazole compounds as listed above is present in a pharmacologically effective amount, preferably in a unit dose, e.g. the aforementioned unit dose, specifically and preferably in an administration form which makes oral administration possible. Furthermore, reference may be made to that already said in connection with the possible uses and administrations of the compounds of the invention.

General synthetic schemes

The compounds of the present invention may be prepared according to the following general synthetic schemes, as well as relevant published literature procedures that are known to the one skilled in the art (e.g. WO 00/54729 and cited references therein).

Exemplary reagents and procedures for these reactions appear hereinafter and in the working examples. Unless otherwise specified, the various substituents (radicals) of the compounds have the meanings as defined for formula (I) herein.

Amide bond formation (peptide coupling) is conducted under standard peptide coupling procedures known in the prior art. Optimally, the reaction is conducted in a solvent such as dichloromethane (DCM) at room temperature using benzotriazol-1-yl-oxytris(dimethylamino)phosphonium-hexafluorophosphate (BOP) (Castro B et al., Tetrahedron Lett. 1975, 14:1219-1222) and a base, for example N-methyl-morpholine or diisopropylethylamine.

Thionation of the formed amide was performed using Lawesson's reagent (Pons JF et al., Tetrahedron Lett. 2000, 41: 4965-4968).

Cyclisation: the obtained thioamide was then submitted to the conditions reported by Hitosuyanagi et al. (Hitosuyanagi Y. et al., J. Org. Chem. 2002, 67: 3266-3271) which were slightly modified (5 eq. of hydrazide and 1.1 eq. of mercury (II) acetate in acetonitrile). Cyclisation into triazoles was generally achieved within three hours. When the hydrazide was not commercially available, it was prepared by known methods from its acid or methyl ester precursors.

Deprotection of the tert-butyloxycarbonyl group (Boc) was performed at room temperature in acidic medium as usually described.
- 99 -

Coupling → thionation

Cyclisation → deprotection

R₅ introduction

P: protecting group
For \(R_5 = -\text{CO-alkyl, -CO-cycloalkyl, -CO-cycloalkylalkyl, -CO-aryl, -CO-arylalkyl, -CO-heteroaryl, -CO-heteroarylalkyl, -CO-heterocyclyl, -CO-heterocyclylalkyl, -CO-C(R_9R_10)\text{CH}_2\text{NH}_2} \) (R):

The compounds of the invention, especially compounds 1 to 190 were named from the drawn formula using the ChemDraw Ultra 8 software (CambridgeSoft Corporation, Cambridge, USA).
Brief description of the drawings

Figures 1 - 13 show the measured competition plots of the GHS-R 1a receptor-ligand binding assay with \(^{125}\text{I}}\text{-His}^5\text{-ghrelin and selected compounds 9, 31, 39, 45, 50, 62, 64, 71, 73, 74, 79, 81 and 90 as described in II) of the example section.}

Figures 14 - 40 show the calculated dose-response plots of the \textit{in vitro} intracellular Calcium release assay with human GHS-R 1a transfected CHO cells of the selected compounds 1, 9, 12, 20, 22, 31, 39, 41, 42, 45, 46, 47, 48, 49, 50, 51, 55, 62, 64, 67, 71, 73, 74, 79, 81, 90 and ghrelin as described in III) of the example section as well as \(EC_{50}\) and \(KI\) values for GHS receptor agonists and \(IC_{50}\) and \(Kb\) values for GHS receptor antagonists.

Figures 41 - 46 show the effects of selected compounds 9, 38, 50, 64, 74, 81 on the isoproterenol-induced lipolysis inhibition curve of unacylated ghrelin (UAG) in primary adipocytes from mice under diet-induced obesity as described in VIII) of the example section.

The contents of all cited references and patents are hereby incorporated by reference. The invention is explained in more detail by means of the following examples without, however, being restricted thereto.
Examples

I) Synthesis of compounds of the invention

5 Example 1:

(R)-Λ-((5-(2-(1H-indol-3-yl)ethyl)-4-(2,4-dimethoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide (Compound 1)

Compound 1 was obtained from Boc-(D)-Trp (10 mmoles), (2,4-dimethoxyphenyl)-methanamine, 3-(1H-indol-3-yl)propane hydrazide and Boc-2-amino-2-methylpropanoic acid according to the general synthetic schemes with a total yield after purification by HPLC of 35%.

1H NMR (400 MHz, 300°K, DMSO-d6):

δ 1.32 (3H, s, CH3 Aib), 1.36 (3H, s, CH3 Aib), 2.93 (2H, m, C±k-CHrindole), 2.97 (2H, m, CH2-CH2-indole), 3.31 (1H, dd, J=14.5, J=6.1, 1H CH2 βTrp), 3.38 (1H, dd, J=14.5, J=9.1, 1H CH2 βTrp), 3.66 (3H, s, 0-CH3), 3.72 (3H, s, P-CH3), 4.93 (1H, d, J=16.9, 1H CH2 o,p-dimethoxybenzyl), 5.10 (1H, d, J=16.9, 1H CH2 o,p-dimethoxybenzyl), 5.23 (1H, m, CaH Trp), 6.31 (1H, dd, J=8.5, J=1.7, H g o,p-dimethoxybenzyl), 6.45 (1H, d, J=8.5, H g o,p-dimethoxybenzyl), 6.59 (1H, d, J=1.7, H g o,p-dimethoxybenzyl), 6.88 (1H, t, J=7.5, H 5 Trp), 6.94 (1H 1, J=7.5, H 5 indole), 7.04 (1H, t, H 6 Trp), 7.06 (1H, t, H 6 indole), 7.08 (1H, s, H 2 indole), 7.11 (1H, s, H 2 Trp), 7.18 (1H, d, J=7.9, H 4 Trp), 7.33 (3H, H 4, H 2 indole, H 2 Trp), 8.05 (2H, s, NH2 Aib), 8.95 (1H, d, J=7.9, NH Trp), 10.80 (1H, s, NH indole), 10.82 (1H, s, NH indole Trp).

13C NMR (400 MHz, DMSO-d6):

δ 22.4 (CH2-CH2 indole), 23.2 (CH3 Aib), 23.3 (CH3 Aib), 25.4 (CH2-CH2 indole), 28.7 (Cβ Trp), 41.3 (CH2- o,p-dimethoxybenzyl), 45.3 (Ca Trp), 55.2 (p-CH3), 55.4 (o-CH3), 56.3 (Cq Aib), 98.6 (C 3 o,p-dimethoxybenzyl), 104.7 (C 5 o,p-dimethoxybenzyl), 109.5 (C 3 Trp), 111.3 (C 7 Trp, C 7 indole), 112.9 (C 3 indole), 115.2 (C 1 o,p-dimethoxybenzyl), 117.8 (C 4 indole), 117.9 (C 4 Trp), 118.2 (C 5 Trp, C 5 indole), 120.9 (C 6 Trp, C 6 indole), 122.4 (C 2 indole), 124.3 (C 2 Trp), 126.8 (C 8 indole), 126.9 (C 9 Trp),...
127.5 (C_6 o,p-dimethoxybenzyl), 136.0 (C_8 Trp), 136.2 (C_8 indole), 154.6 (2Cq triazole), 157.3 (C_2 o,p-dimethoxybenzyl), 160.4 (C_4 o,p-dimethoxybenzyl), 171.3 (CO Aib).

ESI-MS: found: m/z 606.3 [M+H]^+ calculated: 604.3 g/mol

5 Example 2:

(?)-N-(1 -(5-benzyl-4-(naphthalen-1 -ylmethyl)-4 H 1,2,4-triazol-3-yl)-2-(1 H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide (Compound 4)

Compound 4 was obtained from Boc-(D)-Trp (10 mmoles), naphthalen-1-yl-methanamine, 2-phenylacetohydrazide and Boc-2-amino-2-methylpropanoic acid according to the general synthetic schemes with a total yield after purification by HPLC of 42%.

^1H NMR (300 MHz, DMSO-d$_6$, 300°K):

δ(ppm) 1.18 (3H, s, CH$_3$Aib), 1.24 (3H, s, CH$_3$Aib), 3.17 (1H, dd, J = 14 Hz and 5 Hz, CH$_2$ βTrp), 3.36 (1H, dd, J = 14 and 9 Hz, CH$_2$ αTrp), 4.05 (2H, m, CH$_2$-benzyl), 4.90 (1H, m, CH αTrp), 5.65 (1H, d, J = 18 Hz, CHNnaphtyl), 6.12 (1H, d, J$_0$= 7 Hz, H$_2$ naphtyl), 6.38 (1H, t, J$_0$= 7 Hz H$_1$ Trp), 6.47 (1H, d, J$_0$= 8 Hz, H$_4$ Trp), 6.85 (1H, t, J$_0$= 8 Hz H$_6$ Trp), 7.03 (1H, d, J$_n$= 2 Hz, H$_2$ Trp), 7.05-7.12 (5H, m, CHar benzyl), 7.15 (1H, d, J$_0$= 8 Hz, H$_7$ Trp), 7.19 (1H, d, J$_0$= 8 Hz H$_1$ H$_3$ naphtyl), 7.58 (2H, m, H$_6$ and H$_7$ naphtyl), 7.81 (1H, d, J$_0$= 8 Hz, H$_4$ naphtyl), 7.89-8.01 (5H, m, NH$_2$ Aib, H$_5$ and H$_8$ naphtyl), 8.92 (1H, d, J = 8 Hz NH amide), 10.73 (1H, s, NH indole Trp).

^13C NMR (75 MHz, DMSO-d$_6$, 300°K):

δ(ppm) 23.5 (CH$_3$Aib), 23.6 (CH$_3$Aib), 29.2 (CH$_2$ βTrp), 30.5 (CH$_2$-benzyl), 44.0 (CH$_2$-naphtyl), 45.6 (CH αTrp), 56.6 (Cq Aib), 109.7 (C$_3$ Trp), 111.7 (C$_7$ Trp), 117.9 (C$_4$ Trp), 118.4 (C$_5$ Trp), 121.1 (C$_6$ Trp), 122.1 (C$_2$ naphtyl), 122.8 (C$_8$ naphtyl), 124.9 (C$_2$ Trp), 125.7 (C$_3$ naphtyl), 126.7 (C$_6$ naphtyl), 126.9 (C$_9$ Trp), 127.0 (C$_7$ naphtyl), 128.2 (C$_4$ benzyl), 128.7-129.1 (C$_2$, C$_3$, C$_5$ and C$_6$ benzyl, C$_4$ and C$_5$ naphtyl), 129.9 (C$_9$ naphtyl), 131.5 (C$_1$ naphtyl), 133.5 (C$_{10}$ naphtyl), 136.2 (C$_1$ benzyl), 136.4 (C$_8$ Trp), 154.2 (Cq triazole), 155.7 (Cq triazole), 171.9 (CO Aib).
ESI-MS: found: m/z 543.4 [M+H]+ calculated: 542.2 g/mol

Example 3:

(R)-N-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(naphthalen-1-ylmethyl)-4H,1,2,4-triazol-3-yl)-2-
(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide (Compound 5)

Compound 5 was obtained from Boc-(D)-Trp (10 mmoles), naphthalen-1-yl-
methanamine, 3-(1H-indol-3-yl)propane hydrazide and Boc-2-amino-2-methylpropanoic
acid according to the general synthetic schemes with a total yield after purification by
HPLC of 33%.

1H NMR (400 MHz, DMSO-d6, 300K):

δ (ppm) 1.25 (3H, S, CH3 Aib), 1.28 (3H, s, CH3 Aib), 2.93 (2H, m, CH2-CH2-indole), 3.01
(2H, m, CH2-CH2-indole), 3.30 (1H, dd, J= 14.3 and 5.8 Hz, CH2 β Trp), 3.40 (1H, dd,
J= 14.3 and 8.8 Hz, CH2 β Trp), 5.03 (1H, m, CH α Trp), 5.62 (1H, d, J= 18.0 Hz, CH2-
naphtyl), 5.76 (1H, J= 18.0 Hz, CH2-naphtyl), 3.36 (1H, d, J= 7.2 Hz, H2 naphtyl), 6.51
(1H, J= 7.4 Hz, H5 naphtyl), 6.72 (1H, d, J= 7.9 Hz, H4 naphtyl), 6.76 (1H, d, J= 7.5 Hz,
H5 indole), 6.92 (1H, t, J= 7.5 Hz, H6 naphtyl), 7.0 (1H, t, J= 7.5 Hz, H6 indole), 7.02 (1H, d,
J= 2.0 Hz, H7 indole), 7.09 (1H, d, J= 2.0 Hz, H2 naphtyl), 7.13 (1H, d, J= 7.9 Hz, H4
indole), 7.26 (1H, J= 7.9 Hz, H7 naphtyl), 7.27 (1H, t, J= 8.2 Hz, H3 naphtyl), 7.29 (1H, d,
H7 indole), 7.58-7.64 (2, m, H6 and H7 naphtyl), 7.88 (1H, d, J= 8.2 Hz, H4 naphtyl),
7.93 (1H, d, J= 7.9 Hz, H8 naphtyl), 7.98 (3H, brs, NH2 Aib), 8.03 (1H, d, J= 8.2 Hz, H5
naphtyl), 8.96 (1H, d, J= 7.9 Hz, NH Trp), 10.75 (1H, brs, NH indole), 10.77 (1H, brs,
NH indole Trp).

13C NMR (100 MHz, DMSO-d6, 300K):

δ (ppm) 22.6 (CH2-CH2-indole), 23.1 (CH3 Aib), 23.2 (CH3 Aib), 25.3 (CH2-CH2-indole),
28.8 (CH2 β Trp), 43.3 (CH2-naphtyl), 45.3 (CH α Trp), 56.2 (Cq Aib), 109.4 (C3 Trp),
111.2 (C7 indole and C7 Trp), 112.9 (C9 indole), 117.5 (C4 Trp), 117.8 (C4 indole), 118.0
(C5 Trp), 118.1 (C5 indole), 120.7 (C6 Trp), 120.8 (C6 indole), 121.6 (C2 naphtyl), 122.5
(C2 indole and C8 naphtyl), 124.4 (C2 Trp), 125.4 (C3 naphtyl), 126.3 (C6 naphtyl), 126.6
(C9 indole, C9 Trp and C7 naphtyl), 127.9 (C4 naphtyl), 128.6 (C5 naphtyl), 129.5 (C9
naphtyl).
naphtyl), 131.4 (C₁ naphtyl), 133.1 (C₁₀ naphtyl), 135.9 (C₈ Trp), 136.1 (C₈ indole), 154.7 (2 C₉ triazole), 171.4 (CO Aib).

ESI-MS: found: m/z 596.4 [M+H]+ / calculated: 595.3 g/mol

5 Example 4:

(3R,5S)-1-(5-(2-(1 H-indol-3-yl)ethyl)-4-(3-methoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1 H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide (Compound 6)

Compound 6 was obtained from Boc-(D)-Trp (10 mmole), (3-methoxyphenyl)-methanamine, 3-(1H-indol-3-yl)propane hydrazide and Boc-2-amino-2-methylpropanoic acid according to the general synthetic schemes with a total yield after purification by HPLC of 25%.

1H NMR (400 MHz, DMSO-d₆):

δ(ppm) 1.28 (3H, s, CH₂ Aib), 1.30 (3H, s, CH₂ Aib), 2.92 (2H, m, CH₄-CHj-indole), 2.98 (2H, m, CH₂CH₂-indole), 3.33 (1H, dd, J=14.5, J= 6.2, 1H CH₂ βTrp), 3.40 (1H, dd, J=14.5, J= 8.8, 1H CH₂ βTrp), 3.66 (3H, s, OCH₃), 5.09 (2H, m, CH₂ m-methoxybenzyl), 5.22 (1H, m, CaH Trp), 6.38 (1H, d, J=7.5, H₆ m-methoxybenzyl), 6.59 (1H, s, H₅ m-methoxybenzyl), 6.86 (1H, t, H₅ Trp), 6.87 (1H, d, H₄ m-methoxybenzyl), 6.92 (1H, t, J=7.5, H₅ indole), 7.03 (1H, t, J=7.9, H₆ Trp), 7.05 (1H, t, H₆ indole), 7.07 (1H, s, H₂ indole), 7.11 (1H, s, H₂ Trp), 7.18 (1H, t, H₆ m-methoxybenzyl), 7.19 (1H, d, H₄ Trp), 7.31 (1H, H₄ indole), 7.32 (2H, H₂ Trp, H₂ indole), 8.00 (2H, s, NH₂ Aib), 8.96 (1H, d, J=8.1, NH Trp), 10.78 (1H, s, NH indole), 10.80 (1H, s, NH indole Trp).

13C NMR (400 MHz, DMSO-d₆):

δ(ppm) 22.4 (CH₂CH₂ indole), 23.1 (CH₃ Aib), 23.3 (CH₃ Aib), 25.4 (CH₂CH₂ indole), 28.7 (Cβ Trp), 45.3 (CH₂ m-methoxybenzyl), 45.4 (Ca Trp), 55.0 (OCH₃), 56.3 (Cq Aib), 109.5 (C₃ Trp), 111.3 (Cγ Trp, Cγ indole), 112.0 (C₅ m-methoxybenzyl), 113.0 (C₄ m-methoxybenzyl, C₃ indole), 117.8 (C₄ Trp, C₆ m-methoxybenzyl), 118.0 (C₄ indole), 118.2 (C₅ indole), 118.3 (C₅ Trp), 120.8 (C₆ indole), 120.9 (C₆ Trp), 122.4 (C₂ indole), 124.3 (C₂ Trp), 126.7 (C₉ indole), 126.9 (C₉ Trp), 130.0 (C₅ m-methoxybenzyl), 136.0
(C₈ indole), 136.1 (C₈ Trp), 137.2 (C₁ m-methoxybenzyl), 154.3 (2Cq triazole), 159.6 (C₃ m-methoxybenzyl), 171.4 (CO Aib).

ESI-MS: found: m/z 576.6 [M+H]⁺/ calculated: 575.3 g/mol

5 **Example 5:**

(?)-N-(1-(4-(3-methoxybenzyl)-5-benzyl-4A7-1,2,4-triazol-3-yl)-2-(1 H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide (**Compound 7**)

Compound 7 was obtained from Boc-(D)-Trp (10 mmoles), (3-methoxyphenyl)-methanamine, 2-phenylacetohydrazide and Boc-2-amino-2-methylpropanoic acid according to the general synthetic schemes with a total yield after purification by HPLC of 30%.

¹H NMR (400 MHz, DMSO-d⁶):

δ(ppm) 1.25 (3H, s, CH₃ Aib), 1.29 (3H, s, CH₃ Aib), 3.24 (1H, dd, J=14.3, J=5.8, 1H CH₂ βTrp), 3.38 (1H, dd, J=14.3, J=9.1, 1H CH₂ βTrp), 3.61 (3H, s, m-OCH₃), 4.04 (2H, m, CH₂ benzyl), 5.07 (1H, d, J= 17.4, 1H CH₂ m-methoxybenzyl), 5.13 (1H, d, J= 17.4, 1H CH₂ m-methoxybenzyl), 5.14 (1H, m, CH Trp), 6.32 (1H, d, J=7.8, H₆ m-methoxybenzyl), 6.40 (1H, m, H₅ m-methoxybenzyl), 6.82 (1H, t, H₅ Trp), 6.83 (1H, d, J=7.8, H₄ m-methoxybenzyl), 7.05 (1H, t, J=8.2, H₆ Trp), 7.04 (1H, d, J=8.2, H₄ Trp), 7.06 (1H, d, J=2.0, H₂ Trp), 7.12 (2H, m, H₂, H₆ Benzyl), 7.13 (1H, t, J= 7.9, H₅ m-methoxybenzyl), 7.20 (1H, m, H₄ benzyl), 7.24 (2H, m, H₃, H₅ benzyl), 7.29 (1H, d, J= 8.2, H₇ Trp), 7.99 (2H, s, NH₂ Aib), 8.92 (1H, d, J=8.2, NH Trp), 10.77 (1H, s, NH indole Trp).

¹³C NMR (400 MHz, DMSO-d⁶):

δ(ppm) 23.0 (CH₃ Aib), 23.3 (CH₃ Aib), 28.6 (Cβ Trp), 30.1 (CH₂ benzyl), 45.2 (Ca Trp), 45.6 (CH₂ m-methoxybenzyl), 54.9 (m-OCH₃), 56.2 (Cq Aib), 109.4 (C₃ Trp), 111.2 (C₇ Trp), 111.7 (C₂ m-methoxybenzyl), 113.1 (C₄ m-methoxybenzyl), 117.9 (C₄ Trp, C₆ m-methoxybenzyl), 118.2 (C₅ Trp), 120.8 (C₆ Trp), 124.3 (C₂ Trp), 126.6 (C₄ benzyl), 126.8 (C₉ Trp), 128.3 (C₃, C₅ benzyl), 128.4 (C₂, C₆ benzyl), 129.9 (C₅ m-
methoxybenzyl), 135.9 (C₁ benzyl, C₈ Trp), 137.0 (C₁ m-methoxybenzyl), 153.5 (Cq triazole), 154.8 (Cq triazole), 159.5 (C₃ m-methoxybenzyl), 171.3 (CO Aib).

ESI-MS: found: m/z 523.3 [M+H]^+ / calculated: 522.3 g/mol

5 Example 6:

(R)-N-(1-(5-(2-(1 W-indol-3-yl)ethyl)-4-benzyl-4 H₁,2,4-triazol-3-yl)-2-(1 H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide (Compound 8)

Compound 8 was obtained from Boc-(D)-Trp (10 mmoles), phenylmethanamine, 3-(1H-indol-3-yl)propane hydrazide and Boc-2-amino-2-methylpropanoic acid according to the general synthetic schemes with a total yield after purification by HPLC of 45%.

¹H NMR (400 MHz, DMSO-d⁶):

δ(ppm) 1.29 (3H, s, CH₃ Aib), 1.30 (3H, s, CH₃ Aib), 2.88 (2H, m, CH₃-CHj-indole), 2.97 (2H, m, CH₂-CH₂-indole), 3.37 (2H, m, CH₂ βTrp), 5.11 (2H, s, CH₂ benzyl), 5.21 (1H, m, CaH Trp), 6.86 (1H, t, J=7.4, H₅ Trp), 6.88 (2H, H₂, H₅ benzyl), 6.92 (1H, t, J=7.6, H₅ indole), 7.03 (1H, t, J=7.6, H₆ Trp), 7.05 (2H, H₂ indole, H₂ indole), 7.09 (1H, d, J=1.8, H₂ Trp), 7.17 (1H, d, J=7.9, H₄ Trp), 7.26 (2H, H₃, H₅ benzyl), 7.27 (1H, H₄ benzyl), 7.30 (1H, H₄ indole), 7.32 (2H, H₂ Trp, H₁ indole), 8.03 (2H, brs, NH₂ Aib), 8.95 (1H, d, J=8.1, NH Trp), 10.77 (1H, s, NH indole), 10.81 (1H, s, NH indole Trp).

¹³C NMR (400 MHz, DMSO-d⁶):

δ(ppm) 22.4 (CH₂-CH₂ indole), 23.1 (CH₃ Aib), 23.3 (CH₃ Aib), 25.4 (CH₂-CH₂ indole), 28.7 (Cβ Trp), 45.3 (Ca Trp, CH₂-benzyl), 56.3 (C₉ Aib), 109.5 (C₃ Trp), 111.3 (C₇ Trp, C₇ indole), 113.0 (C₃ indole), 117.8 (C₄ Trp), 118.0 (C₄ indole), 118.2 (C₅ indole), 118.3 (C₅ Trp), 120.9 (C₆ Trp, C₆ indole), 122.4 (C₂ indole), 124.3 (C₂ Trp), 125.9 (C₂, C₆ benzyl), 126.7 (C₉ Indole), 126.9 (C₉ Trp), 127.6 (C₄ benzyl), 128.8 (C₃, C₅ benzyl), 135.7 (C₁ benzyl), 136.0 (C₉ Trp), 136.1 (C₆ indole), 154.3 (Cq triazole), 154.5 (Cq triazole), 171.4 (CO Aib).

ESI-MS: found: m/z 546.3 [M+H]^+ calculated: 545.3 g/mol
Example 7:

(R)-\(\Lambda/-(1-(5-(3-(1\text{H}-\text{indol-3-yl})propyl)-4-benzyl-4\text{H}-1,2,4-triazol-3-yl)-2-(1\text{H}-\text{indol-3-yl})ethyl)-2-amino-2-methylpropanamide\) (Compound 9)

Compound 9 was obtained from Boc-(D)-Trp (10 mmoles), phenylmethanamine, \(4-(1\text{H}-\text{indol-3-yl})\)butanehydrazide and Boc-2-amino-2-methylpropanoic acid according to the general synthetic schemes with a total yield after purification by HPLC of 38%.

\(^1\text{H} \text{NMR} \) (400 MHz, DMSO-d\(^6\)):

\(\delta\) (ppm) 1.29 (3H, S, CH\(_3\) Aib), 1.31 (3H, s, CH\(_3\) Aib), 1.90 (2H, m, CH\(_2\)-CH\(_2\)-CHindole), 2.61 (2H, m, CH\(_2\)-CH\(_2\)-CH\(_2\)-indole), 2.69 (2H, m, CH\(_2\)-CH\(_2\)-CH\(_2\)-indole), 3.37 (2H, m, CH\(_2\)-BTrp), 5.09 (2H, S, CH\(_2\)-benzyl), 5.20 (1H, m, CaH Trp), 6.85 (3H, m, H\(_2\), H\(_6\) benzyl. H\(_5\) Trp), 6.94 (1H, t, J=7.5, H\(_5\) indole), 7.01 (1H, s, H\(_2\) indole). 7.02 (1H, t, J=7.8, H\(_6\) Trp), 7.05 (1H, t, J=8.0, H\(_6\) indole). 7.08 (1H, d, J=2.0, H\(_2\) Trp). 7.14 (1H, d, J=8.0, H\(_7\) Trp). 7.25 (3H, m, H\(_3\), H\(_4\), H\(_5\) benzyl), 7.31 (1H, d, J=8.0, H\(_7\) Trp), 7.32 (1H, d, J=8.0, H\(_7\) indole), 7.42 (1H, d, J=7.8, H\(_4\) indole), 8.03 (2H, s, NH\(_2\) Aib), 8.95 (1H, d, J=8.1, NH Trp), 10.73 (1H, s, NH indole), 10.80 (1H, d, J=2.0, NH indole Trp).

\(^{13}\text{C} \text{NMR} \) (400 MHz, DMSO-d\(^6\)):

\(\delta\) (ppm) 23.1 (CH\(_3\) Aib), 23.3 (CH\(_3\) Aib), 23.8 (CH\(_2\)-CH\(_2\)-CH\(_2\)-indole), 24.1 (CH\(_2\)-CH\(_2\)-

Example 8:

(l?)-\(\Lambda\)-\(N\)-\(1-(5-(3-(1AV-indol-3-yl)propyl)-4-(3-methoxybenzyl)-4\text{H}-1,2,4-triazol-3-yl)-2-(1\text{H}-\text{indol-3-yl})ethyl)-2-amino-2-methylpropanamide \) (Compound 10)

ESI-MS: found: m/z 560.4 [M+H]\(^+\) / calculated: 559.3 g/mol
Compound 10 was obtained from Boc-(D)-Trp (10 mmoles), (3-methoxyphenyl)-methanamine, 4-(1H-indol-3-yl)butanehydrazide and Boc-2-amino-2-methylpropanoic acid according to the general synthetic schemes with a total yield after purification by HPLC of 25%.

5

1H NMR (400 MHz, DMSO-d_6):

δ(ppm) 1.27 (3H, s, CH$_3$ Aib), 1.30 (3H, s, CH$_3$ Aib), 1.92 (2H, m, CH$_2$-CH$_2$-CH$_2$-indol(β)), 2.62 (2H, m, CH$_2$-CH$_2$-CH$_2$-indole), 2.68 (2H, m, CH$_2$-CH$_2$-CH$_2$-indole), 3.24 (1H, dd, J=14.5, J=5.8, 1H CH$_2$ βTrp), 3.39 (1H, dd, J=14.5, J=9.0, 1H CH$_2$ βTrp), 3.66 (1H, s, 77-OCH$_3$), 5.07 (2H, s, CH$_2$-m-methoxybenzyl), 5.18 (1H, m, CaH Trp), 6.35 (1H, d, J=7.5, H$_6$ m-methoxybenzyl), 6.54 (1H, bs, H$_2$ m-methoxybenzyl), 6.84 (1H, t, J=7.5, H$_5$ Trp), 6.87 (1H, dd, J=8.0, J=2.1, H$_4$ m-methoxybenzyl), 6.94 (1H, t, J=7.3, H$_5$ indole), 7.02 (1H, t, H$_6$ Trp), 7.02 (1H, s, H$_2$ indole), 7.05 (1H, t, J=7.8, H$_6$ indole), 7.08 (1H, d, J=2.1, H$_2$ Trp), 7.13 (1H, d, J=8.1, H$_4$ Trp), 7.17 (1H, t, J=8.1, H$_5$ m-methoxybenzyl), 7.30 (1H, d, H$_7$ Trp), 7.32 (1H, d, J=8, H$_7$ indole), 7.42 (1H, d, J=7.6, H$_4$ indole), 7.98 (2H, s, NH$_2$ Aib), 8.93 (1H, d, J=8.2, NH Trp), 10.71 (1H, s, NH indole), 10.77 (1H, s, NH indole Trp).

1C NMR (400 MHz, DMSO-d_6):

δ(ppm) 23.1 (CH$_3$ Aib), 23.3 (CH$_3$ Aib), 23.9 (CH$_2$-CH$_2$-CH$_2$-indole), 24.3 (CH$_2$-CH$_2$-indole), 27.4 (CH$_2$-CH$_2$-CH$_2$-indole), 28.8 (Cβ Trp), 45.2 (CH$_2$-m-methoxybenzyl), 45.4 (Ca Trp), 55.1 (m-0CH$_3$), 56.3 (Cq Aib), 109.5 (C$_3$ Trp), 111.3 (C$_7$ Trp, C$_7$ indole), 111.8 (C$_2$ m-methoxybenzyl), 113.0 (C$_4$ m-methoxybenzyl), 113.8 (C$_3$ indole), 117.8 (C$_6$ m-methoxybenzyl), 117.9 (C$_4$ Trp), 118.1 (C$_5$ indole), 118.2 (C$_5$ Trp, C$_4$ indole), 120.8 (C$_6$ Trp), 120.9 (C$_6$ indole), 122.2 (C$_2$ indole), 124.3 (C$_2$ Trp), 126.8 (C$_9$ Trp), 127.0 (C$_9$ Indole), 130.0 (C$_5$ m-methoxybenzyl), 136.0 (C$_8$ Trp), 136.2 (C$_9$ indole), 137.4 (C$_8$ m-methoxybenzyl), 154.3 (C$_3$ triazole), 154.6 (C$_3$ triazole), 159.7 (C$_3$ m-methoxybenzyl), 171.4 (CO Aib).

ESI-MS: found: m/z 590.3 [M+H]$^+$; calculated: 589.3 g/mol

30 Example 9:

(R)-N-(1-(5-(3-(1H-indol-3-yl)propyl)-4-(naphthalen-1-ylmethyl)-4H,1,2,4-triazol-3-yl)-2-((1/-endo-3-yl)ethyl)-2-amino-2-methylpropanamide (Compound 11)
Compound 11 was obtained from Boc-(D)-Trp (10 mmoles), naphthalen-1-ylmethanamine, 4-(1H-indol-3-yl)butanehydrazide and Boc-2-amino-2-methylpropanoic acid according to the general synthetic schemes with a total yield after purification by HPLC of 22%.

\[\text{ESI-MS: C}_{610.3}^{610.3} \text{[M+H]}^+ / \text{calculated: } 609.3 \text{ g/mol} \]

Example 10:

(R)-\(\beta\)-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(4-methoxybenzyl)-4A7-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide **(Compound 12)**
Compound 12 was obtained from Boc-(D)-Trp (10 mmoles), (4-methoxyphenyl)-methanamine, 3-(1H-indol-3-yl)propane hydrazide and Boc-2-amino-2-methylpropanoic acid according to the general synthetic schemes with a total yield after purification by HPLC of 28%.

\[\text{1H NMR} \ (400 \text{ MHz, DMSO-d}^6): \]

\[\delta(\text{ppm}) \ 1.30 \ (3\text{H, s, CH}_3\text{Aib}), \ 1.33 \ (3\text{H, s, CH}_3\text{Aib}), \ 2.91 \ (2\text{H, m, CHg-CHrindole}), \ 2.97 \ (2\text{H, m, CHz-CHg-indole}), \ 3.37 \ (2\text{H, d, CH}_2\text{βTrp}), \ 3.71 \ (3\text{H, s, OCH}_3), \ 5.02 \ (2\text{H, s, CH}_2\text{p-methoxybenzyl}), \ 5.23 \ (1\text{H, m, CaH Trp}), \ 6.78 \ (4\text{H, m, CHAr p-methoxybenzyl}), \ 6.87 \ (1\text{H, t, J=7.5, H}_6\text{ Trp}), \ 6.93 \ (1\text{H, t, J=7.5, H}_6\text{ indole}), \ 7.03 \ (1\text{H, t, H}_6\text{ Trp}), \ 7.05 \ (1\text{H, t, H}_6\text{ indole}), \ 7.07 \ (1\text{H, s, H}_2\text{ indole}), \ 7.09 \ (1\text{H, s, H}_2\text{ Trp}), \ 7.21 \ (1\text{H, d, J=8, H}_4\text{ Trp}), \ 7.32 \ (3\text{H, H}_4\text{ indole), H}_7\text{ Trp, H}_7\text{ indole}), \ 8.02 \ (2\text{H, s, NH}_2\text{Aib}), \ 8.97 \ (1\text{H, d, J=8.1, NH Trp}), \ 10.77 \ (1\text{H, s, NH indole}), \ 10.80 \ (1\text{H, s, NH indole Trp}). \]

\[\text{13C NMR} \ (400 \text{ MHz,DMSO-d}^6): \]

\[\delta(\text{ppm}) \ 22.4 \ (\text{CH}_2\text{-CH}_2\text{ indole}), \ 23.1 \ (\text{CH}_3\text{Aib}), \ 23.4 \ (\text{CH}_3\text{Aib}), \ 25.5 \ (\text{CH}_2\text{-CH}_2\text{ indole}), \ 28.9 \ (\text{Cβ Trp}), \ 44.9 \ (\text{CH}_2\text{p-methoxybenzyl}), \ 45.3 \ (\text{Ca Trp}), \ 55.0 \ (\text{OCH}_3), \ 56.3 \ (\text{Cq Aib}), \ 109.5 \ (\text{C}_3\text{Trp}), \ 111.3 \ (\text{C}_7\text{ Trp, C}_7\text{ indole}), \ 113.0 \ (\text{C}_9\text{ indole}), \ 114.1 \ (\text{C}_3, \text{C}_5\text{p-methoxybenzyl}), \ 117.9 \ (\text{C}_4\text{ Trp}), \ 118.0 \ (\text{C}_4\text{ indole}), \ 118.2 \ (\text{C}_5\text{ indole}), \ 118.3 \ (\text{C}_5\text{ Trp}), \ 120.9 \ (\text{C}_6\text{ indole}, \text{C}_6\text{ Trp}), \ 122.0 \ (\text{C}_2\text{ indole}), \ 124.4 \ (\text{C}_2\text{ Trp}), \ 126.7 \ (\text{C}_9\text{ indole}), \ 126.9 \ (\text{C}_9\text{ Trp}), \ 127.3 \ (\text{C}_2, \text{C}_5\text{p-methoxybenzyl}), \ 127.4 \ (\text{C}_1, \text{p-methoxybenzyl}), \ 135.9 \ (\text{C}_9\text{ Trp}), \ 136.1 \ (\text{C}_8\text{ indole}), \ 154.2 \ (\text{Cq triazole}), \ 154.5 \ (\text{Cq triazole}), \ 158.4 \ (\text{C}_4\text{p-methoxybenzyl}), \ 171.4 \ (\text{CO Aib}). \]

ESI-MS: found: m/z 576.3 [M+H]⁺/ calculated: 575.3 g/mol

Example 11:

\((\text{f})\)-N-(1-(4-(4-methoxybenzyl)-5-benzyl-4W-1 ,2,4-triazol-3-yl)-2-(1 H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide (Compound 13)

Compound 13 was obtained from Boc-(D)-Trp (10 mmoles), (4-methoxyphenyl)-methanamine, 2-phenylacetohydrazide and Boc-2-amino-2-methylpropanoic acid ac-
According to the general synthetic schemes with a total yield after purification by HPLC of 37%.

1H NMR (300 MHz, DMSO-d$_6$, 300°K):

δ(ppm) 1.24 (3H, s, CH$_2$Aib), 1.28 (3H, s, CH$_3$), 3.26 (1H, dd, 3J = 14 Hz and 6 Hz, CH$_2$ βTrp), 3.31 (1H, dd, 3J = 14 Hz and 9 Hz, CH$_2$ βTrp), 3.67 (3H, s, OCH$_3$), 3.99 (2H, s, CH$_2$-benzyl), 4.99 (2H, s, CH$_2$-p-methoxybenzyl), 5.12 (1H, m, CH αTrp), 6.67 (4H, m, CH-Harp-methoxybenzyl), 6.80 (1H, t, J_0 = 8 Hz, H$_5$ Trp), 6.98 (1H, t, J_0 = 8 Hz, H$_6$ Trp), 7.02-7.06 (4H, m, H$_2$ and H$_6$ benzyl, H$_2$ and H$_4$ Trp), 7.12-7.25 (3H, m, H$_3$, H$_4$ and H$_5$ benzyl), 7.26 (1H, d, J_0 = 8 Hz, H$_7$ Trp), 8.01 (3H, brs, NH$_2$ Aib), 8.92 (1H, d, J = 8 Hz, NH Trp), 10.77 (1H, s, NH indole Trp).

13C NMR (75 MHz, DMSO-d$_6$, 300°K):

δ(ppm) 23.5 (CH$_3$ Aib), 23.7 (CH$_2$ Aib), 29.1 (CH$_2$ βTrp), 30.6 (CH$_2$-benzyl), 45.7 (CH$_2$-p-methoxybenzyl), 45.7 (CH αTrp), 55.5 (OCH$_3$), 56.7 (C$_2$ Aib), 109.8 (C$_2$ Trp), 111.7 (C$_7$ Trp), 114.5 (C$_3$ and C$_5$ p-methoxybenzyl), 118.3 (C$_4$ Trp), 118.7 (C$_8$ \equiv Φ), 121.3 (C$_6$ Trp), 124.8 (C$_5$ Trp), 127.1 (C$_2$ and C$_6$ benzyl), 127.3 (C$_3$ Trp), 127.6 (C$_1$ p-methoxybenzyl), 127.8 (C$_2$ and C$_6$ p-methoxybenzyl), 128.8 (C$_3$, C$_4$ and C$_5$ p-methoxybenzyl), 136.3 (C$_1$ benzyl), 136.4 (C$_8$ Trp), 153.8 (C$_9$ triazole), 155.2 (C$_9$ triazole), 159.1 (C$_4$ p-methoxybenzyl), 171.9 (CO Aib).

ESI-MS: found: m/z 524.1 [M+H]$^+$/ calculated: 522.3 g/mol

Example 12:

(R)-N-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-hexyl-4W-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide (**Compound 15**)

Compound 15 was obtained from Boc-(D)-Trp (10 mmoles), hexan-1-amine, 3-(1H-indol-3-yl)propane hydrazide and Boc-2-amino-2-methylpropanoic acid according to the general synthetic schemes with a total yield after purification by HPLC of 28%.

1H NMR (400 MHz, DMSO-d$_6$):
δ(ppm) 0.77 (3H, t, J=7.2 (CH$_2$)$_2$), 1.01 (4H, m, 2CH$_2$), 1.11 (2H, m, CH$_2$-CH$_3$), 1.14 (1H, m, 1H N-CH$_2$-CH$_2$), 1.33 (1H, m, 1H N-CH$_2$-CH$_2$), 1.40 (3H, s, CH$_3$-Aib), 1.42 (3H, s, CH$_3$-Aib), 3.05 (2H, m, CH$_2$-CH$_2$-Ind), 3.10 (2H, m, CH$_2$-CH$_2$-JnCl), 3.37 (1H, dd, J=14.2, J= 7.6, 1H CH$_2$ βTrp), 3.44 (1H, dd, J=14.2, J= 7.6, 1H CH$_2$ βTrp), 3.58 (1H, m, 1H N-CH$_2$), 3.71 (1H, m, 1H N-CH$_2$), 5.21 (1H, m, CaH Trp), 6.96 (1H, H$_5$ Trp), 6.97 (1H, H$_5$ indole), 7.06 (2H, H$_6$ Trp, H$_6$ indole), 7.09 (1H, s, H$_2$ Trp), 7.13 (1H, s, H$_2$ indole), 7.34 (2H, H$_7$ Trp, H$_7$ indole), 7.48 (1H, d, H$_4$ indole), 7.50 (1H, H$_4$ Trp), 8.14 (2H, s, NH$_2$ Aib), 9.08 (1H, d, J=7.8, NH Trp), 10.84 (1H, s, NH indole), 10.88 (1H, s, NH indole Trp).

10 13C NMR (400 MHz, DMSO-d$_6$):
δ(ppm) 13.7 (CH$_2$)$_5$-CH$_2$), 21.7 (CH$_2$-CH$_3$), 22.4 (CH$_2$-CH$_2$Ind), 23.1 (CH$_3$ Aib), 23.3 (CH$_3$ Aib), 25.1 (CH$_3$-CH$_2$ Indole), 25.5 (CH$_3$-CH$_2$-CH$_2$-CH$_2$), 29.1 (Cβ Trp), 29.3 (N-CH$_2$CH$_2$), 30.4 (CH$_3$-CH$_2$-CH$_2$), 42.6 (H-CH$_2$-Cu$_2$), 56.3 (Ca Aib), 109.2 (C$_g$ Trp), 111.4-11.5 (C$_7$ Trp, C$_7$ indole), 112.8 (C$_g$ indole), 117.7 (C$_g$ Trp), 118.0 (C$_g$ indole), 118.2 (C$_4$ indole), 118.4 (C$_g$ Trp), 120.9 (C$_g$ indole, C$_g$ Trp), 122.6 (C$_g$ indole), 124.3 (C$_2$ Trp), 126.8 (C$_9$ Trp), 126.9 (C$_9$ indole), 136.0 (C$_g$ Trp), 136.2 (C$_g$ indole), 154.0 (C$_g$ triazole), 154.1 (C$_g$ triazole), 171.4 (CO Aib). ESI-MS: found: m/z 540.3 [M+H]$^+$ calculated: 539.3 g/mol

20 Example 13:
(S)-N-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(2,4-dimethoxybenzyl)-4H1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide (Compound 18)

Compound 18 was obtained from Boc-(L)-Trp (10 mmoles), (2,4-dimethoxyphenyl)-methanamine, 3-(1H-indol-3-yl)propane hydrazide and Boc-2-amino-2-methylpropanoic acid according to the general synthetic schemes with a total yield after purification by HPLC of 30%.

1H NMR (300 MHz, DMSO-d$_6$, 300°K):
δ(ppm) 1.27 (3H, s, CH$_3$ Aib), 1.31 (3H, s, CH$_3$ Aib), 2.89 (2H, m, CH$_2$CH$_2$-indole), 2.93 (2H, m, CH$_2$CH$_2$-indole), 3.27 (2H, m, CH$_2$ βTrp), 3.62 (3H, s, O-CH$_3$), 3.68 (3H, s, p-OCH$_3$), 4.89 (1H, d, 3J = 17Hz, CH$_2$-p-dimethoxybenzyl), 5.06 (1H, d, 3J = 17Hz, CH$_2$-
- 114 -

1H NMR (300 MHz, DMSO-d$_6$, 300 °K):

δ (ppm) 1.27 (3H, s, CH$_3$Aib), 1.30 (3H, s, CH$_3$Aib), 1.84 (2H, m, CH$_2$CH$_2$CH$_2$-indoled, 2.58 (2H, m, CH$_2$CH$_2$CH$_2$-JPDole), 2.65 (2H, m, CH$_2$CH$_2$CH$_2$-indoled, 3.34 (2H, d, 3J= 7 Hz, CH$_2$ βTrp), 3.67 (3H, s, OCH$_3$), 4.96 (2H, s, CH$_2$-p-methoxybenzyl), 5.19 (1H, m,
CH αTrp), 6.71 (4H, s, CH ar p-methoxybenzyl), 6.89 (1H, J o = 7 Hz, H 5 Tip), 6.92 (1H, t, J o = 7 Hz, indole), 7.02 (1H, s, H 2 indole), 7.05 (1H, s, H 2 Trp), 7.14 (1H, d, J o = 8 Hz, H 4 Trp), 7.33 (3H, H 4 indole, H 7 Trp, H 7 indole), 8.02 (3H, brs, NH 2 Aib), 7.90 (1H, d, J = 8 Hz, NH amide), 10.73 (1H, s, NH indole), 10.79 (1H, s, NH indole Trp).

5 13C NMR (75 MHz, DMSO-d6, 3000K):

δ(ppm) 23.6 (CH 3 Aib), 23.8 (CH 3 Aib), 24.3 (CH 2 CH 2 CH 2 indole), 24.8 (CH 2 CH 2 CH 2 indole), 27.7 (CH 2 CH 2 CH 2 indole), 29.1 (Cβ Trp), 45.5 (N-CH 2 p-methoxybenzyl), 45.8 (Ca Trp), 55.5 (OCH 3), 56.8 (Cq Aib), 109.8 (C 3 Trp), 111.7 (C 2 Trp, C 7 indole), 114.0 (C 3 indole), 114.5 (C 3 , C 5 p-methoxybenzyl), 118.3 (C 4 indole, C 4 Trp), 118.5 (C 5 indole), 118.8 (C 5 Trp), 121.3 (C 6 indole, C 6 Trp), 127.3 (C 9 indole), 127.4 (C 9 Trp), 127.6 (Cl p-methoxybenzyl), 127.9 (C 2 , C 6 p-methoxybenzyl, C 2 Trp, C 2 indole), 136.1 (C 8 indole), 136.4 (C 8 Trp), 154.7 (Cq triazole), 155.1 (Cq triazole), 159.2 (C 4 p-methoxybenzyl), 171.9 (CO Aib).

ESI-MS: found: m/z 590.0 [M+H]+/ calculated: 589.3 g/mol

Example 15:

(R)-N-(1-(5-(2-(1 W-indol-3-yl)ethyl)-4-(2-methoxy)benzyl)-4 H 1,2,4-triazol-3-yl)-2-(1 H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide (Compound 25)

Compound 25 was obtained from Boc-(D)-Trp (10 mmoles), (2-methoxyphenyl)methanamine, 3-(1H-indol-3-yl)propane hydrazide and Boc-2-amino-2-methylpropanoic acid according to the general synthetic schemes with a total yield after purification by HPLC of 28%.

1H NMR (300 MHz, DMSO-d6, 3000K):

δ(ppm) 1.27 (3H, s, CH 3 Aib), 1.29 (3H, s, CH 3 Aib), 2.90 (2H, m, CHU-CHHindole), 2.96 (2H, m, CH 2 CH 2 indole), 3.29 (2H, m, CH 2 βTrp), 3.65 (3H, s, OCH 3), 5.09 (3H, m, CH 2 O- methoxybenzyl and CH αTrp), 6.49 (1H, d, J o = 8 Hz, H 5 o- methoxybenzyl), 6.76 (1H, t, J o = 8 Hz, H 5 Trp), 6.81 (1H, t, J o = 8 Hz, H 5 indole), 6.89 (1H, t, J o = 7 Hz, H 6 Trp), 6.96 (1H, t, J o = 8 Hz, H 6 indole), 6.98 (1H, s, H 2 indole), 7.02 (3H, m, H 4 , H 5 and H 6 o- methoxybenzyl), 7.07 (1H, d, J o = 6 Hz, H 4 Trp), 7.18 (1H, m, H 4 indole), 7.29 (2H,
m, H$_7$ indole and H$_7$ Tip), 8.07 (3H, brs, NH$_2$ Aib), 8.97 (1H, d, J = 8 Hz, NH amide),
10.80 (1H, s, NH indole), 10.82 (1H, s, NH indole Trp).
13C NMR (75 MHz, DMSO-d$_6$, 300°K):

δ(ppm) 22.8 (CH$_2$-CH$_2$-indole), 23.6 (CH$_3$ Aib), 23.7 (CH$_3$ Aib), 25.8 (CH$_2$-CH$_2$-indole),
29.1 (CH$_2$ βTrp), 42.3 (CH$_2$O- methoxybenzyl), 45.7 (CH α Trp), 55.8 (OCH$_3$), 56.7 (Cq Aib), 109.8 (C$_3$ Trp), 111.5 (C$_3$ o- methoxybenzyl), 111.8 (C$_7$ indole and C$_7$ Trp), 113.2
(C$_3$ indole), 118.2 (C$_4$ Trp), 118.4 (C$_4$ indole), 118.7 (C$_5$ indole and C$_5$ Trp), 121.0 (C$_6$
indole), 121.3 (C$_6$ Trp), 121.4 (C$_5$ o- methoxybenzyl), 123.0 (C$_2$ indole and C$_2$ Trp),
123.3 (C$_1$ o- methoxybenzyl), 127.0 (C$_4$ o- methoxybenzyl), 127.1 (C$_9$ indole), 127.3 (C$_9$
Trp), 129.8 (C$_8$ o- methoxybenzyl), 136.4 (C$_6$ indole), 136.6 (C$_6$ Trp), 155.2 (Cq triazole), 171.9 (CO Aib).

ESI-MS: found: m/z 576.1 [M+H]$^+$ / calculated: 575.3 g/mol

Data on further exemplary embodiments that were synthesized according to the general synthesis schemes are compiled below (please refer also to Table 1):

(1R)-N-(1-(5-(3-(1 H-indol-3-yl)propyl)-4-phenethyl-4H 1,2,4-triazol-3-yl)-2-(1 H-indol-3-
yl)ethyl)-2-amino-2-methylpropanamide (Compound 3):

1H NMR (300 MHz, DMSO-d$_6$, 300°K):

δ(ppm) 1.32 (s, 3H, CH$_3$ Aib), 1.37 (s, 3H, CH$_3$ Aib), 1.86 (2H, m, CH$_2$-CH$_2$-CH$_2$-indole),
2.38 (2H, m, CH$_2$-CH$_2$-CH$_2$-indole), 2.65 (4H, m, CH$_2$-CH$_2$-CH$_2$-indole and CH$_2$-CH$_2$
phenyl), 3.38 (2H, m, CH$_2$-phenyl), 3.74 (1H, m, CH$_2$ βTrp), 3.92 (1H, m, CH$_2$
βTrp), 5.23 (1H, m, CH α Trp), 6.78 (2H, m, H$_5$ indole and H$_5$ Trp), 6.93 (1H, d, J$_0$= 8 Hz,
H$_6$ Trp), 7.01 (3H, m, H$_6$ indole, H$_2$ and H$_6$ phenyl), 7.05 (1H, d, J= 2 Hz, H$_2$ Trp), 7.08
(1H, d, J= 2 Hz, H$_2$ indole), 7.15 (3H, m, H$_3$, H$_4$ and H$_5$ phenyl), 7.29 (1H, d, J$_0$= 8 Hz,
H$_4$ Trp), 7.31 (1H, d, J$_0$= 8 Hz, H$_7$ Trp), 7.44 (1H, d, J$_0$= 8 Hz, H$_7$ indole), 7.46 (1H, d,
J$_0$= 8 Hz, H$_4$ indole), 8.06 (3H, brs, NH$_2$ Aib), 9.05 (1H, d, 8 Hz, NH amide), 10.76 (1H,
s, NH indole), 10.85 (1H, d, J= 2 Hz, NH indole Trp).

13C NMR (75 MHz, DMSO-d$_6$, 300°K):

δ(ppm) 23.5 (CH$_3$ Aib), 23.6 (CH$_2$-CH$_2$-CH$_2$-indole), 23.9 (CH$_3$ Aib), 24.5 (CH$_2$-CH$_2$
phenyl), 27.3 (CH$_2$-CH$_2$-CH$_2$-indole), 29.4 (CH$_2$ βTrp), 35.7 (CH$_2$-CH$_2$-phenyl), 44.5
- 117 -

(CH₂–CH₂–phenyl), 46.1 (CH α Trp), 56.8 (Cq Aib), 109.6 (C₃ Trp), 111.8 (C₇ indole),
111.9 (C₇ indole), 113.9 (C₃ indole), 118.3 (C₄ Trp), 118.6 (C₅ indole), 118.7 (C₄
indole), 118.9 (C₅ Trp), 121.3 (C₆ Trp), 121.4 (C₆ indole), 122.8 (C₂ indole and C₂ Trp),
127.1 (C₄ phenyl), 127.3 (C₉ Trp), 127.5 (C₉ indole), 128.8 (C₂ and C₆ phenyl), 129.1
5 (C₃ and C₅ phenyl), 136.5 (C₁ phenyl), 136.8 (C₆ Trp), 137.2 (C₈ indole), 154.7 (Cq
triazole), 172.0 (CO Aib).

([R]-N-(1-(5-(3-(1 H-indol-3-yl)propyl)-4-hexyl-4H1,2,4-thiazol-3-yl)-2-(1 H-indol-3-
yl)ethyl)-2-amino-2-methylpropanamide (Compound 16):

1H NMR (300 MHz, DMSO-d₆, 300 K):

δ (ppm) 0.74 (3H, t, J = 6 Hz, CH₃-CH₂-CH₂-CH₂-CH₂-CH₂), 0.95 (4H, brs, CH₃-CH₂-
CH₂-CH₂-CH₂-CH₂), 1.06 (3H, m, CH₃-CH₂-CH₂-CH₂-CH₂-CH₂ and 1H N-CH₂-CH₂),
1.38 (7H, s, CH₂ Aib and 1H N-CH₂-CH₂), 1.97 (2H, m, CH₂-CH₂-CH₂-CH₂-indole), 2.71 (4H,
m, CH₂-CH₂-CH₂-CH₂-indole), 3.37 (2H, m, CH₂ β Trp), 3.56 (2H, m, N-CH₂), 5.15 (1H, m,
CH α Trp), 6.91 (2H, m, H₆ indole and H₅ Trp), 7.00 (2H, m, H₆ indole and H₅ Trp), 7.07
(2H, s, H₆ indole and H₅ Trp), 7.29 (2H, d, Jₒ = 8 Hz, H₇ indole and H₇ Trp), 7.45 (2H, d,
Jₒ = 7 Hz, H₄ indole and H₄ Trp), 8.15 (3H, brs, NH₂ Aib), 9.10 (1H, d, J = 6 Hz, NH
amide), 10.77 (1H, s, NH indole), 10.85 (1H, s, NH indole Trp).

13C NMR (75 MHz, DMSO-d₆, 300 K):

δ (ppm) 14.2 (CH₃-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂ and
CH₂-CH₂-CH₂-CH₂-indole), 23.6 (CH₃ Aib), 23.7 (CH₃ Aib), 24.5 (CH₂-CH₂-CH₂-CH₂-indole), 25.9
(CH₃-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂), 27.5 (CH₂ β Trp and CH₂-CH₂-CH₂-CH₂-indole), 29.7 (N-CH₂-
C₂H₂), 30.8 (CH₂-CH₂-CH₂-CH₂-CH₂-CH₂), 43.2 (N-CH₂), 46.1 (CH α Trp), 56.8 (Cq Aib),
109.5 (C₃ Trp), 111.8 (C₇ Trp), 111.9 (C₇ indole), 113.9 (C₃ indole), 118.1 (C₄ Trp),
118.5 (C₅ indole), 118.6 (C₄ indole), 118.9 (C₅ Trp), 121.3 (C₆ indole and C₆ Trp), 122.8
(C₂ indole and C₂ Trp), 127.3 (C₉ Trp), 127.4 (C₉ indole), 136.8 (C₈ indole), 154.7 (Cq triazole), 172.0 (CO Aib).

([R]-N-(1-(4,5-bis(2-(1 H-indol-3-yl)ethyl)-4H1,2,4-triazol-3-yl)-2-(1 H-indol-3-yl)ethyl)-2-
amino-2-methylpropanamide (Compound 17):

1H NMR (300 MHz, DMSO-d₆, 300 K):
δ(ppm) 1.30 (3H, s, CH₃ Aib), 1.37 (3H, s, CH₃ Aib), 2.50 (2H, m, N-CH₂-CH₂-indole), 2.68 (2H, t, J₀ = 8 Hz, C-CH₂-CH₃Indole), 2.91 (2H, t, J₀ = 8 Hz, C-CH₂-CH₂-JnCJole), 3.34 (2H, t, m, N-CH₂-CH₂-indole), 3.93 (2H, m, CH₂ βTrp), 5.25 (1H, m, CH αTrp), 6.72-6.94 (4H, m, H₅ and H₆ Trp, H₅ indole from C-CH₂-CH₂-indole and H₆ indole from N-CH₂-CH₂-indole), 6.98-7.04 (1H, m, H₃ Trp, H₃ indole from C-CH₂-CH₂-indole, H₂ and H₆ indole from N-CH₂-CH₂-indole), 7.11 (1H, s, H₂ indole from C-CH₂-CH₂-indole), 7.19 (1H, d, J₀ = 8 Hz, H₄ indole from N-CH₂-CH₂-indole), 7.28 (3H, m, H₄ and H₇ Trp, H₇ indole from N-CH₂-CH₂-indole), 7.40 (1H, d, J₀ = 8 Hz, H₇ indole from C-CH₂-CH₂-indole), 7.44 (1H, d, J₀ = 8 Hz, H₄ indole from C-CH₂-CH₂-indole), 8.04 (3H, brs, NH₂ Aib), 9.69 (1H, d, J = 8 Hz, NH amidie), 10.73 (1H, s, NH indole from C-CH₂-CH₂-indole), 10.82 (1H, d, J = 2 Hz, NH indole Trp), 10.84 (1H, s, NH indole from N-CH₂-CH₂-indole).

¹³C NMR (75 MHz, DMSO-d₆, 300 °K):

δ(ppm) 22.7 (C-CH₂-CH₂-indole), 23.6 (CH₃ Aib), 23.8 (CH₃ Aib), 25.4 (C-CH₂-CH₂-indole), 26.0 (N-CH₂-CH₂-indole), 29.6 (CH₂ βTrp), 43.9 (N-CH₂-CH₂-indole), 46.0 (CH αTrp), 56.8 (Cq Aib), 109.5 (C₃ indole from N-CH₂-CH₂-indole), 109.9 (C₄ Trp), 111.7 (C₇ Trp), 111.9 (C₇ indole from N-CH₂-CH₂-indole and C₇ indole from C-CH₂-CH₂-indole), 113.5 (C₃ indole from C-CH₂-CH₂-indole), 118.3 (C₄ indole from N-CH₂-CH₂-indole), 118.4 (C₅ Trp), 118.5 (C₅ indole from C-CH₂-CH₂-indole), 118.7 (C₆ indole from C-CH₂-CH₂-indole), 118.9 (C₅ Trp), 119.0 (C₅ indole from N-CH₂-CH₂-indole), 121.3 (C₆ Trp), 121.5 (C₆ indole from C-CH₂-CH₂-indole and C₆ indole from N-CH₂-CH₂-indole), 122.8 (C₇ Trp, C₂ indole from C-CH₂-CH₂-indole and indole from N-CH₂-CH₂-indole), 127.1 (C₇ Trp), 127.2 (C₉ indole from C-CH₂-CH₂-indole), 127.4 (C₉ indole from N-CH₂-CH₂-indole), 136.5 (C₈ Trp and C₆ indole from C-CH₂-CH₂-indole), 136.6 (C₆ indole from N-CH₂-CH₂-indole), 154.5 (Cq triazole), 154.8 (Cq triazole), 171.8 (CO amidie).

(R)-N-(1-(4-(3-methoxybenzyl)-5-phenethyl-4 H₁,2,4-triazol-3-yl)ethyl)-2-amino-2-methylpropanamide (Compound 19):

¹H NMR (300 MHz, DMSO-d₆, 300 °K):

δ(ppm) 1.24 (3H, s, CH₃ Aib), 1.27 (3H, s, CH₃ Aib), 2.82 (4H, m, CHrCha-phenyl), 3.32 (2H, t, CH₂ βTrp), 3.63 (3H, s, OCH₃), 5.08 (2H, m, Clcb-m-methoxybenzyl), 5.18 (1H, m, CH αTrp), 6.35 (1H, d, J₀ = 8 Hz, H₆ m-methoxybenzyl), 6.57 (1H, s, H₂ m-methoxybenzyl), 6.82 (1H, t, J₀ = 8 Hz, H₅ Trp), 6.84 (1H, d, J₀ = 8 Hz, H₄ m-
methoxybenzyl), 6.99 (1H, t, 1J = 8 Hz, H$_6$ Trp), 7.08 (1H, m, H$_4$ phenyl), 7.11-7.16 (5H, m, H$_2$ and H$_4$ Trp, H$_2$ and H$_4$ phenyl, H$_6$ m-methoxybenzyl), 7.20 (2H, m, H$_3$ and H$_5$ phenyl), 7.27 (1H, d, 1J = 8 Hz, H$_2$ Trp), 8.01 (3H, brs, NH$_2$ Aib), 8.96 (1H, d, J = 8 Hz, NH amide), 10.81 (1H, d, J = 2 Hz, NH indole).

5 13C NMR (75 MHz, DMSO-d$_6$, 3000K):
\[\delta (ppm) \]
23.5 (CH$_3$ Aib), 23.8 (CH$_3$ Aib), 26.4 (CH$_2$-CH$_2$-phenyl), 29.1 (CH$_2$ βTrp), 32.7 (CH$_2$-CH$_2$-phenyl), 45.7 (CH αTrp), 45.8 (CH$_2$-m-methoxybenzyl), 55.5 (OCH$_3$), 56.7 (Cq Aib), 109.8 (C$_3$ Trp), 111.8 (C$_7$ Trp), 112.5 (C$_2$ m-methoxybenzyl), 113.5 (C$_4$ m-methoxybenzyl), 118.2 (C$_4$ Trp), 118.4 (C$_6$ m-methoxybenzyl), 118.7 (C$_5$ Trp), 121.3 (C$_6$ Trp), 124.8 (C$_2$ Trp), 126.5 (C$_4$ phenyl), 127.3 (C$_3$ Trp), 128.7 (C$_2$, C$_3$, C$_5$ and C$_6$ phenyl), 130.5 (C$_5$ m-methoxybenzyl), 136.4 (C$_8$ Trp), 137.7 (C$_1$ m-methoxybenzyl), 170.9 (C$_1$ phenyl), 154.6 (C$_4$ triazole), 154.9 (C$_4$ triazole), 160.1 (C$_3$ m-methoxybenzyl), 171.9 (CO amide).

15 (R)-N-[(1-[(4-(4-methoxybenzyl))-5-phenethyl]-H1,2,4-triazol-3-yl)-2-(1-AN-indol-3-yl)ethyl]-2-amino-2-methylpropanamide (Compound 20):
1H NMR (300 MHz, DMSO-d$_6$, 3000K):
\[\delta (ppm) \]
1.28 (3H, s, CH$_3$ Aib), 1.32 (3H, s, CH$_3$ Aib), 2.46 (2H, m, CH$_2$-CH$_2$-phenyl), 2.82 (2H, m, CH$_2$-CH$_2$-phenyl), 3.35 (2H, d, J = 7 Hz, CH$_2$ βTrp), 3.68 (3H, s, OCH$_3$).

20 5.02 (2H, s, Chb-p-methoxybenzyl), 5.22 (1H, m, CH αTrp), 6.73-6.81 (4H, m, CHar p-methoxybenzyl), 6.84 (1H, t, 1J = 7 Hz, H$_6$ Trp), 7.00 (1H, t, 1J = 7 Hz, H$_6$ Trp), 7.05-7.11 (4H, m, H$_2$ and H$_6$ phenyl, H$_2$ and H$_4$ Trp), 7.14-7.22 (3H, m, H$_3$, H$_4$ and H$_5$ phenyl), 7.29 (1H, d, 1J = 8 Hz, H$_7$ Trp), 8.09 (3H, brs, NH$_2$ Aib), 8.99 (1H, d, J = 8 Hz, NH amide), 10.83 (1H, s, NH indole Trp).

25 13C NMR (75 MHz, DMSO-d$_6$, 3000K):
\[\delta (ppm) \]
23.5 (CH$_3$ Aib), 23.8 (CH$_3$ Aib), 26.5 (CH$_2$-CH$_2$-phenyl), 29.1 (CH$_2$ βTrp), 32.6 (CH$_2$-CH$_2$-phenyl), 45.5 (CH$_2$ p-methoxybenzyl), 45.7 (CH αTrp), 55.5 (OCH$_3$), 56.8 (Cq Aib), 109.7 (C$_3$ Trp), 111.8 (C$_7$ Trp), 114.6 (C$_3$ and C$_5$ p-methoxybenzyl), 118.3 (C$_4$ Trp), 118.7 (C$_5$ Trp), 121.3 (C$_6$ Trp), 124.9 (C$_4$ Trp), 126.6 (C$_2$ and C$_6$ phenyl), 127.3 (C$_9$ Trp), 127.6 (C$_1$ p-methoxybenzyl), 128.0 (C$_2$ and C$_6$ p-methoxybenzyl), 128.7 (C$_3$, C$_4$ and C$_5$ phenyl), 136.4 (C$_8$ Trp), 140.8 (C$_1$ phenyl), 154.5 (C$_4$ triazole), 154.8 (C$_4$ triazole), 159.2 (C$_4$ p-methoxybenzyl), 172.0 (CO Aib).
(R)-N-(1-(4-(4-methoxybenzyl)-5-(3-phenylpropyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide (Compound 22):

1H NMR (300 MHz, DMSO-d6, 300K):

δ(ppm) 1.27 (3H, s, CH₃Aib), 1.31 (3H, s, CH₃Aib), 1.73 (2H, m, CH₂CH₂CH₂-phenyl), 2.47 (2H, m, CH₂CH₂CH₂-phenyl), 2.52 (2H, t, J = 7 Hz, CH₂CH₂CH₂-phenyl), 3.35 (2H, d, J = 7 Hz, CH₂βTrp), 3.68 (3H, s, OCH₃), 4.98 (2H, s, CH₂-p-methoxybenzyl), 5.20 (1H, m, CH αTrp), 6.75 (4H, m, CHar p-methoxybenzyl), 6.82 (1H, t, J₀ = 7 Hz, H₅Trp), 6.99 (1H, t, J₀ = 7 Hz, H₅Trp), 7.04-7.07 (4H, m, H₂ and H₆ phenyl, H₂ and H₄ Trp), 7.13-7.24 (3H, m, H₃, H₄ and H₅ phenyl), 7.29 (1H, d, J₀= 8 Hz, H₇ Trp), 8.03 (3H, brs, NH₂Aib), 8.96 (1H, d, J = 8 Hz, NH amide), 10.80 (1H, d, J = 2 Hz, NH indole Trp).

13C NMR (75 MHz, DMSO-d6, 300K):

δ(ppm) 23.6 (CH₃Aib), 23.6 (CH₃Aib), 24.06 (CH₂CH₂CH₂-phenyl), 28.5 (CH₂CH₂-phenyl), 29.2 (CH₂βTrp), 34.7 (CH₂CH₂CH₂-phenyl), 45.5 (CH₂-p-methoxybenzyl), 45.8 (CH αTrp), 55.5 (OCH₃), 56.8 (Cq Aib), 109.8 (C₃ Trp), 111.8 (C₇ Trp), 114.6 (C₃ and C₅ p-methoxybenzyl), 118.3 (C₄ Trp), 118.7 (C₅ Trp), 121.3 (C₆ Trp), 124.9 (C₂ Trp), 126.2 (C₂ and C₆ phenyl), 127.3 (C₉ Trp), 127.8 (C₁ p-methoxybenzyl), 127.9 (C₂ and C₆ p-methoxybenzyl), 128.7 (C₃, C₄ and C₅ phenyl), 136.4 (C₈ Trp), 141.7 (C₁ phenyl), 154.8 (Cq triazole), 159.2 (C₄ p-methoxybenzyl), 171.9 (CO Aib).

(R)-N-(1-(4-(2-(1H-indol-3-yl)ethyl)-5-(3-(1H-indol-3-yl)propyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide (Compound 24):

1H NMR (300 MHz, DMSO-d6, 300K):

δ(ppm) 1.29 (3H, s, CH₃Aib), 1.35 (3H, s, CH₃Aib), 1.78 (2H, m, CH₂CHs-Chindole), 2.34 (2H, m, CH₂CH₂CH₂-indole), 2.48 (2H, m, N-Chz-Chindole), 2.80 (2H, m, CH₂CH₂CH₂-indole), 3.34 (2H, m, N-CHzChz-indole), 3.94 (2H, m, CH₂βTrp), 5.27 (1H, m, CH αTrp), 6.73-6.94 (4H, m, H₅ and H₆ Trp, H₅ indole from N-CH₂CH₂CH₂-indole and H₅ indole from CH₂CH₂CH₂-indole), 6.99-7.04 (5H, m, H₂Trp, H₂ and H₆ indole from N-CH₂CH₂CH₂-indole, H₂ and H₆ indole from CH₂CH₂CH₂-indole), 7.20 (1H, d, J₀= 8 Hz, H₄ indole from N-CH₂CH₂CH₂-indole), 7.29 (3H, m, H₄ and H₇ Trp, H₄ indole from N-CH₂
CHrindole), 7.40 (1H, d, J= 8 Hz, H7 indole from CH2-CH2-CH2-indole), 7.44 (1H, d, J= 8 Hz, H4 indole from CHrChz-CHA-indole), 8.05 (3H, brs, NH2 Aib), 9.07 (1H, d, J= 8 Hz, NH amide), 10.75 (1H, s, NH indole from CH2-CH2-CH2-indole), 10.86 (1H, s, NH indole Trp), 10.90 (1H, s, NH indole from N-CH2-CH2-indole).

\[\delta(ppm)\]

CH3 (Aib), 23.6 (CH3 Aib), 23.8 (CH3 Aib), 24.5 (CH2-CH2-CH2-indole), 25.8 (CH2-CH2-CH2-indole), 27.2 (CH2-CH2-CH2-indole), 29.4 (CH2 β Trp), 44.1 (N-CH2-CH2-indole), 46.0 (CH α Trp), 52.9 (N-CH2-CH2-indole), 56.8 (Cq Aib), 109.7 (Cq Trp and Cq indole from N-CH2-CH2-indole), 111.8 (Cq Trp), 111.9 (Cq indole from N-CH2-CH2-indole and C7 indole from CH2-CH2-CH2-indole), 114.0 (Cq indole from CH2-CH2-CH2-indole), 118.2 (Cq indole from N-CH2-CH2-indole), 118.3 (Cq Trp), 118.5 (Cq indole from CH2-CH2-CH2-indole), 118.6 (Cq indole from CH2-CH2-CH2-indole), 118.9 (Cq Trp), 119.0 (Cq indole from N-CH2-CH2-indole), 121.3 (Cq Trp), 121.4 (Cq indole from CH2-CH2-CH2-indole), 121.6 (Cq indole from N-CH2-CH2-indole), 122.7 (Cq Trp, Cq indole from N-CH2-CH2-indole and Cq indole from CH2-CH2-CH2-indole), 127.1 (Cq Trp), 127.4 (Cq indole from N-CH2-CH2-indole and Cq indole from CH2-CH2-CH2-indole), 136.4 (Cq Trp), 136.5 (Cq indole from CH2-CH2-CH2-indole), 136.7 (Cq indole from N-CH2-CH2-indole), 154.7 (2 Cq triazole), 171.9 (CO amide).

(R)-N-(1-(4-(2-methoxybenzyl)-5-phenethyl-4 H1,2,4-triazol-3-yl)-2-(1 H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide (Compound 26):

\[\delta(ppm)\]

CH2-0-methoxybenzyl), 6.52 (1H, d, J0= 7 Hz, H3 o-methoxybenzyl), 6.78 (1H, t, J0= 7 Hz, H5 Trp), 6.82 (1H, t, J0= 8 Hz, H6 Trp), 6.84-7.04 (3H, m, H4, H5 and H6 o-methoxybenzyl), 7.15 (1H, d, J0= 7 Hz, H4 Trp), 7.19-7.29 (4H, m, H3, H4 and H5 phenyl, H7 Trp), 8.03 (3H, brs, NH2 Aib), 8.94 (1H, d, J= 8 Hz, NH amide), 10.82 (1H, s, NH indole Trp).

\[\delta(ppm)\]

CH3 (Aib), 23.6 (CH3 Aib), 23.7 (CH3 Aib), 26.3 (CH2-CH2-phenyl), 29.0 (CH2 β Trp), 32.5 (CH2-CH2-phenyl), 42.3 (CH2-0-methoxybenzyl), 45.7 (CH α Trp), 55.8 (OCH3), 56.7
(Cq Aib), 109.7 (C3 Trp), 111.5 (C7 Trp), 111.8 (C3 o-methoxybenzyl), 118.2 (C4 Trp), 118.7 (C5 Trp), 121.0 (C6 Trp), 121.3 (C3 o-methoxybenzyl), 123.2 (C1 o-methoxybenzyl), 124.9 (C2 Trp), 126.6 (C2 and C6 phenyl), 127.2 (C9 Trp and C4 o-methoxybenzyl), 128.7 (C3, C4 and C5 phenyl), 129.9 (C6 o-methoxybenzyl), 136.4 (C8 Trp), 140.6 (C1 phenyl), 154.8 (Cq triazole), 155.2 (Cq triazole), 156.7 (C6 o-methoxybenzyl), 171.9 (CO Aib).

(R)-N-(2-(1H-indol-3-yl)-1-(4-(naphthalen-1-ylmethyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)ethyl)-2-amino-2-methylpropanamide (Compound 27):

1H NMR (300 MHz, DMSO-d6, 300 K):
δ(ppm) 1.21 (3H, s, CH3 Aib), 1.25 (3H, s, CH3 Aib), 2.46 (2H, m, CH3OVphenyl), 2.88 (2H, m, CHz-Chb-phenyl), 3.26 (2H, dd, J= 14 Hz and 6 Hz, CH2 βTrp), 3.36 (2H, dd, J= 14 Hz and 9 Hz, CH2 βTrp), 4.99 (1H, m, CH αTrp), 5.65 (1H, d, J= 18 Hz, CHz-naphtyl), 5.78 (1H, d, J= 18 Hz, Cj-naphtyl), 6.29 (1H, d, J0= 7 Hz, H2 naphtyl), 6.45 (1H, t, J0= 7 Hz, H5 Trp), 6.62 (1H, d, J0= 8 Hz, H4 Trp), 6.88 (1H, d, J0= 8 Hz, H6 Trp), 7.04-7.06 (4H, m, H2 and H7 Trp, H2 and H6 phenyl), 7.07-7.25 (H3 naphtyl, H3, H4 and H5 phenyl), 7.57-7.60 (2H, m, H6 and H7 naphtyl), 7.86 (1H, d, J0= 8 Hz, H4 naphtyl), 7.98-8.00 (4H, m, H5 and H8 naphtyl, NH2 Aib), 8.96 (1H, d, J= 8 Hz, NH amide), 10.77 (1H, s, NH indole Trp).

13C NMR (75 MHz, DMSO-d6, 300 K):
δ(ppm) 23.5 (CH3 Aib), 23.6 (CH3 Aib), 26.3 (CH2CH2-phenyl), 29.2 (CH2 βTrp), 32.6 (CH2CH2-phenyl), 43.8 (CH2-naphtyl), 45.6 (CH αTrp), 56.7 (Cq Aib), 109.7 (C3 Trp), 111.7 (C7 Trp), 117.9 (C4 Trp), 118.4 (C5 Trp), 121.1 (C6 Trp), 122.1 (C2 naphtyl), 123.0 (C8 naphtyl), 124.9 (C2 Trp), 125.9 (C3 naphtyl), 126.5 (C6 naphtyl), 126.9 (C2 and C6 phenyl), 127.0 (C9 Trp and C7 naphtyl), 127.1 (C4 naphtyl), 128.4 (C5 naphtyl), 128.7 (C9, C4 and C5 phenyl), 130.0 (C9 naphtyl), 131.7 (C1 phenyl), 133.6 (C10 naphtyl), 136.4 (C8 Trp), 140.8 (C1 phenyl), 154.8 (Cq triazole), 155.3 (Cq triazole), 171.9 (CO Aib).

(R)-N-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(3,4-dichlorobenzyl)-4H1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide (Compound 28):

1H NMR (300 MHz, DMSO-d6, 300 K):
δ (ppm) 1.26 (6H, s, CH₃ Aib), 2.87 (2H, m, CH₂-CH₂-JnCJoIe), 2.96 (2H, m, CH₂-CH₂-indole), 3.32 (2H, m, CH₂ βTrp), 5.13 (3H, m, CH αTrp and CH₂ /77,p-dichlorobenzyl), 6.58 (1H, d, J₀= 8 Hz, H₆ m,p-dichlorobenzyl), 6.85 (1H, t, J₀= 7 Hz, H₅ Trp), 6.96 (1H, t, J₀= 7 Hz, H₅ indole), 7.01 (2H, m, H₆ indole and H₆ Trp), 7.04 (1H, s, H₂ Trp), 7.08 (1H, s, H₄ indole), 7.13 (1H, d, J₀= 8 Hz, H₅ m,p-dichlorobenzyl), 7.20-7.30 (4H, m, H₄ and H₇ indole, H₇ Trp and H₆ m,p-dichlorobenzyl), 7.36 (1H, d, J₀= 8 Hz, H₄ Trp), 8.08 (3H, brs, NH₂ Aib), 8.98 (1H, d, J= 8 Hz, NH amide), 10.80 (1H, s, NH indole), 10.82 (1H, s, NH indole Trp).

¹³C NMR (75 MHz, DMSO-d₆, 300.0 K):

δ (ppm) 22.8 (CH₂-CH₂-indole), 23.4 (CH₃ Aib), 23.8 (CH₃ Aib), 25.8 (CH₂-CH₂-indole), 29.0 (CH₂ βTrp), 44.8 (CH₂ An,p-dichlorobenzyl), 45.6 (CH αTrp), 56.8 (Cq Aib), 109.7 (C₃ indole), 111.8 (C₇ indole and C₇ Trp), 118.1 (C₄ Trp), 118.4 (C₅ indole), 118.6 (C₄ indole and C₅ Trp), 121.3 (C₆ indole and C₆ Trp), 123.0 (C₂ indole and C₂ Trp), 126.4 (C₂ m,p-dichlorobenzyl), 127.1 (C₉ Trp), 127.3 (C₉ indole), 128.6 (C₂ m,p-dichlorobenzyl), 130.9 (C₄ m,p-dichlorobenzyl), 131.3 (C₅ m,p-dichlorobenzyl), 132.0 (C₃ m,p-dichlorobenzyl), 136.4 (C₈ Trp), 136.6 (C₈ indole), 137.2 (C₁ m,p-dichlorobenzyl), 154.7 (Cq triazole), 155.1 (Cq triazole), 172.0 (CO Aib).

(R)-N-(1-(4-(4-fluorobenzyl)-5-benzyl-4AV-1',2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide (Compound 30):

¹H NMR (300 MHz, DMSO-d₆, 300.0 K):

δ (ppm) 1.27 (3H, s, CH₃ Aib), 1.29 (3H, s, CH₃ Aib), 3.33 (2H, m, CH₂ βTrp), 4.02 (2H, s, CH₂-benzyl), 5.10 (3H, m, CH₂-p-fluorobenzyl and CH αTrp), 6.71 (2H, m, H₃ and H₅ p-fluorobenzyl), 6.80 (1H, t, J₀= 8 Hz, H₅ Trp), 6.90 (2H, d, J₀= 8 Hz, H₂ and H₆ p-fluorobenzyl), 6.94 (1H, t, J₀= 8 Hz, H₆ Trp), 6.99-7.10 (4H, m, H₂ and H₄ Trp, H₂ and H₆ benzyl), 7.20 (3H, m, H₃, H₄ and H₆ benzyl), 7.27 (1H, d, J₀= 8 Hz, H₇ Trp), 8.09 (3H, brs, NH₂ Aib), 8.97 (1H, d, J= 8 Hz, NH amide), 10.79 (1H, s, NH indole Trp).

¹³C NMR (75 MHz, DMSO-d₆, 300.0 K):

δ (ppm) 23.5 (CH₃ Aib), 23.8 (CH₃ Aib), 29.0 (CH₂ βTrp), 31.1 (CH₂-benzyl), 45.7 (CH₂-p-fluorobenzyl), 45.8 (CH αTrp), 56.8 (Cq Aib), 109.6 (C₃ Trp), 111.8 (C₇ Trp), 115.6 and 115.9 (C₃ and C₅ p-fluorobenzyl), 118.2 (C₄ Trp), 118.7 (C₅ Trp), 121.3 (C₈ Trp), 124.8 (C₂ Trp), 127.1 (C₄ benzyl), 127.2 (C₉ Trp), 128.8 and 128.9 (C₂ and C₆ p-
fluorobenzyl), 129.4 (C₂, C₃, C₅ and C₆ p-fluorobenzyl), 131.6 (C p-fluorobenzyl), 135.9 (C benzyl), 136.4 (C₈ Trp), 154.0 (C₄ p-fluorobenzyl), 155.3 (Cq triazole), 172.0 (CO amide).

(R)-N-[1-(4-(4-methylbenzyl)-5-(3-phenylpropyl)-4 H1,2,4-triazol-3-yl)-2-(1 tf-indol-3-yl)ethyl]-2-amino-2-methylpropanamide (Compound 33):

¹H NMR (300 MHz, DMSO-d⁶, 300°K):

δ(ppm) 1.25 (3H, s, CH₃ Aib), 1.28 (3H, s, CH₃ Aib), 1.73 (2H, m, CH₂·CH₂·CH₂-phenyl), 2.23 (3H, s, CH₃ p-methylbenzyl), 2.49-2.54 (4H, m, CHrChrC Hα-phenyl), 2.84-2.97 (4H, m, CHr-CHr-CHr-CHr-phenyl), 3.32 (2H, m, CH₂ βTrp), 3.54 (1H, d, J= 7 Hz, H₂ Trp), 4.56 (1H, m, CHα-phenyl), 4.74 (1H, d, J= 7 Hz, H₂ Trp), 7.03 (1H, d, J= 7 Hz, H₂ Trp), 7.06 (5H, m, CHα-phenyl), 7.14 (1H, d, J= 7 Hz, H₂ Trp), 7.20 (2H, d, J= 7 Hz, H₂ and H₅ p-methylbenzyl), 7.27 (1H, d, J= 8 Hz, H₅ Trp), 8.01 (3H, brs, NH₂ Aib), 8.95 (1H, d, J= 8 Hz, NH amide), 10.80 (1H, d, J= 2 Hz, NH indole Trp).

¹³C NMR (75 MHz, DMSO-d⁶, 300°K):

δ(ppm) 21.0 (CH₃ p-methylbenzyl), 23.5 (CH₃ Aib), 23.8 (CH₃ Aib), 24.0 (CH₂·CH₂·CH₂-phenyl), 28.5 (CH₂·CH₂·CH₂-phenyl), 29.1 (CH₂ βTrp), 34.7 (CH₂·CH₂·CH₂-phenyl), 45.7 (CH αTrp), 45.8 (CH₂ p-methylbenzyl), 56.8 (Cq Aib), 109.8 (C₃ Trp), 111.8 (C₇ Trp), 118.3 (C₄ Trp), 118.7 (C₅ Trp), 121.3 (C₆ Trp), 124.9 (C₇ Trp), 126.2 (C₄ phenyl), 126.4 (C₃ and C₅ p-methylbenzyl), 127.3 (C₉ Trp), 128.7 (C₂, C₃, C₅ and C₆ phenyl), 129.8 (C₂ and C₆ p-methylbenzyl), 133.0 (C₁ p-methylbenzyl), 136.4 (C₈ Trp), 137.5 (C₄ p-methylbenzyl), 141.7 (C₄ phenyl), 154.8 (Cq triazole), 171.9 (CO Aib).

(R)-N-[1-(5-(2-(1H-indol-3-yl)ethyl)-4-(4-methylbenzyl)-4H1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl]-2-amino-2-methylpropanamide (Compound 34):

¹H NMR (300 MHz, DMSO-d⁶, 300°K):

δ(ppm) 1.25 (3H, s, CH₃ Aib), 1.28 (3H, s, CH₃ Aib), 2.23 (3H, s, CH₃ p-methylbenzyl), 2.84-2.97 (4H, m, CHb·CHb·indole), 3.32 (2H, m, CH₂ βTrp), 5.04 (2H, s, CH₂·p-methylbenzyl), 5.16 (1H, m, CH αTrp), 6.79-6.86 (4H, m, CHα·p-methylbenzyl), 6.99-7.05 (4H, m, H₅ and H₆ indole, H₅ and H₆ Trp), 7.08 (3H, m, H₂ indole, H₂ and H₄ Trp),
- 125 -

7.25-7.30 (3H, m, H4 and H7 indole, H7 Trp), 8.00 (3H, brs, NH2 Aib), 8.94 (1H, d, J= 8 Hz, NH amide), 10.76 (1H, s, NH indole), 10.78 (1H, s, NH indole Trp).

13C NMR (75 MHz, DMSO-d6, 3000K):
\(\delta (\text{ppm}) \) 21.0 (CH\text{3}\text{p-methylbenzyl}), 22.8 (CH\text{2}-CH\text{2}-indole), 23.8 (CH\text{3} Aib), 23.9 (CH\text{3} Aib), 25.9 (CH\text{2}-CH\text{2}-indole), 28.5 (CH\text{2} \beta\text{Trp}), 45.7 (CH\text{2} p-methylbenzyl and CH \alpha\text{Trp}), 56.7 (Cq Aib), 109.9 (C\text{3} Trp), 111.8 (C\text{7} indole and C\text{7} Trp), 113.4 (C\text{3} indole), 118.1 (C\text{4} Trp), 118.3 (C\text{4} indole), 118.5 (C\text{5} indole), 118.7 (C\text{5} Trp), 120.9 (C\text{6} indole and C\text{6} Trp), 121.3 (C\text{2} indole and C\text{2} Trp), 126.3 (C\text{3} and C\text{5} p-methylbenzyl), 127.2 (C\text{9} indole), 127.3 (C\text{9} Trp), 129.8 (C\text{2} and C\text{6} p-methylbenzyl), 133.1 (C\text{1} p-methylbenzyl), 135.8 (C\text{8} indole, C\text{8} Trp), 136.4 (C\text{4} p-methylbenzyl), 154.8 (Cq triazole), 155.0 (Cq triazole), 171.9 (CO Aib).

(R)-\(\Lambda\)-(1-4-(4-methylbenzyl)-5-phenethyl-4 \text{H}1,2,4-triazol-3-yl)-2-(1 \text{H}-\text{indol-3-yl})\text{ethyl}-2-amino-2-methylpropanamide (Compound 37):

1H NMR (300 MHz, DMSO-d6, 3000K):
\(\delta (\text{ppm}) \) 1.25 (3H, s, CH\text{3} Aib), 1.28 (3H, s, CH\text{3} Aib), 2.23 (3H, s, CH\text{3} p-methylbenzyl), 2.83 (4H, m, CH\text{4} CH\text{4} Chb-phenyl), 3.32 (2H, m, CH\text{2} \beta\text{Trp}), 5.05 (2H, s, CH\text{2} p-methylbenzyl), 5.18 (1H, m, CH \alpha\text{Trp}), 6.75 (2H, d, J= 8 Hz, H\text{3} and H\text{5} p-methylbenzyl), 6.82 (1H, t, J= 8 Hz, H\text{3} Trp), 6.99 (1H, t, J= 8 Hz, H\text{5} Trp), 7.02-7.1 15

20 (6H, m, H\text{2} Trp and CH Ar phenyl), 7.15 (1H, d, J= 7 Hz, H\text{4} Trp), 7.20 (2H, d, J= 7 Hz, H\text{2} and H\text{6} p-methylbenzyl), 7.28 (1H, d, J= 8 Hz, H\text{7} Trp), 8.01 (3H, brs, NH\text{2} Aib), 8.93 (1H, d, J= 8 Hz, NH amide), 10.77 (1H, s, NH indole Trp).

13C NMR (75 MHz, DMSO-d6, 3000K):
\(\delta (\text{ppm}) \) 21.0 (CH\text{3} p-methylbenzyl), 23.6 (CH\text{3} Aib), 23.8 (CH\text{3} Aib), 26.5 (CH\text{2}-CH\text{2} phenyl), 29.1 (CH\text{2} \beta\text{Trp}), 32.7 (CH\text{2}-CH\text{2}-phenyl), 45.7 (CH \alpha\text{Trp} and CH\text{2} p-methylbenzyl), 56.8 (Cq Aib), 109.8 (C\text{3} Trp), 111.8 (C\text{7} Trp), 118.3 (C\text{4} Trp), 118.7 (C\text{5} Trp), 121.3 (C\text{6} Trp), 124.8 (C\text{2} Trp), 126.4 (C\text{3} and C\text{5} p-methylbenzyl), 126.6 (C\text{4} phenyl), 127.3 (C\text{9} Trp), 128.7 (C\text{2}, C\text{3}, C\text{5} and C\text{6} phenyl), 129.8 (C\text{2} and C\text{6} p-methylbenzyl), 133.0 (C\text{1} p-methylbenzyl), 136.4 (C\text{8} Trp), 137.5 (C\text{4} p-methylbenzyl), 140.9 (C\text{1} phenyl), 154.5 (Cq triazole), 154.9 (Cq triazole), 171.9 (CO amide).
(R)-N-(1-(5-benzyl-4-(pyridin-2-ylmethyl)-4H,1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide (Compound 39):

\(^1^H\) NMR (300 MHz, DMSO-d\(_6\), 300°K):
\(\delta\) (ppm) 1.23 (3H, s, CH\(_3\)Aib), 1.27 (3H, s, CH\(_3\)Aib), 3.34 (1H, dd, J = 14 Hz and 6 Hz, CH\(_2\) βTrp), 3.43 (1H, dd, J = 14 Hz and 9 Hz, CH\(_2\) βTrp), 4.13 (2H, s, CH\(_2\)-benzyl), 5.22 (1H, s, CH αTrp), 5.35 (2H, s, CH\(_2\)-o-pyridyl), 6.80 (1H, J = 8 Hz, H\(_5\) Trp), 6.92 (1H, t, J\(_o\) = 8 Hz, H\(_5\) pyridyl), 6.97 (1H, t, J\(_o\) = 8 Hz, H\(_6\) Trp), 7.04 (1H, d, J\(_o\) = 8 Hz, H\(_4\) Trp), 7.07 (1H, d, J = 2 Hz, H\(_2\) Trp), 7.10-7.16 (5H, m, CHar benzyl), 7.19 (1H, s, H\(_3\) o-pyridyl), 7.26 (1H, d, J\(_o\) = 8 Hz, H\(_7\) Trp), 7.57 (1H, t, J\(_o\) = 9 Hz, H\(_4\) o-pyridyl), 8.16 (3H, brs, NH\(_2\))

\(^1^3^C\) NMR (75 MHz, DMSO-d\(_6\), 300°K):
\(\delta\) (ppm) 23.4 (CH\(_3\) Aib), 23.7 (CH\(_3\) Aib), 28.6 (CH\(_2\) βTrp), 30.4 (CH\(_2\)-benzyl), 45.7 (CH αTrp), 47.7 (CH\(_2\) o-pyridyl), 56.7 (Cq Aib), 109.8 (C\(_3\) Trp), 111.8 (C\(_2\) Trp), 118.3 (C\(_4\) Trp), 118.6 (C\(_5\) Trp), 121.2 (C\(_6\) Trp), 121.7 (C\(_3\) o-pyridyl), 123.3 (C\(_5\) o-pyridyl), 124.8 (C\(_2\) Trp), 127.1 (C\(_4\) benzyl), 127.3 (C\(_3\) Trp), 128.8 (C\(_2\) and C\(_8\) benzyl), 129.0 (C\(_3\) and C\(_5\) benzyl), 135.6 (C\(_1\) benzyl), 136.4 (C\(_8\) Trp), 137.5 (C\(_4\) o-pyridyl), 149.5 (C\(_6\) o-pyridyl), 154.1 (Cq triazole), 154.2 (Cq triazole), 155.7 (C\(_2\) o-pyridyl), 172.0 (CO amide).

(R)-N-(1-(4-(4-ethylbenzyl)-5-phenethyl-4H,1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide (Compound 43):

\(^1^H\) NMR (300 MHz, DMSO-d\(_6\), 300°K):
\(\delta\) (ppm) 1.10 (3H, t, J = 8 Hz, CH\(_3\)-CH\(_2\) p-ethylbenzyl), 1.25 (3H, s, CH\(_3\) Aib), 1.28 (3H, s, CH\(_3\) Aib), 2.53 (2H, q, J = 8 Hz, CH\(_3\)-CH\(_2\)-p-ethylbenzyl), 2.83 (4H, m, CH\(_2\)-CH\(_2\)-phenyl), 3.34 (2H, s, CH\(_2\) βTrp), 5.07 (2H, s, CH\(_2\)-p-ethylbenzyl), 5.19 (1H, m, CH αTrp), 6.77 (2H, d, J\(_o\) = 8 Hz, H\(_3\) and H\(_5\) p-ethylbenzyl), 6.81 (1H, t, J\(_o\) = 7 Hz, H\(_5\) Trp), 6.99 (1H, t, J\(_o\) = 8 Hz, H\(_5\) Trp), 7.05-7.10 (7H, m, CHar phenyl, H\(_2\) and H\(_6\) p-ethylbenzyl), 7.13 (1H, d, J = 2 Hz, H\(_2\) Trp), 7.20 (1H, d, J\(_o\) = 7 Hz, H\(_4\) Trp), 7.28 (1H, d, J\(_o\) = 8 Hz, H\(_7\) Trp), 8.03 (3H, brs, NH\(_2\)Aib), 8.94 (1H, d, J = 8 Hz, NH amide), 10.79 (1H, s NH indole)

\(^1^3^C\) NMR (75 MHz, DMSO-d\(_6\), 300°K):
(R)-N-(1-(4-(4-methoxybenzyl)-5-phenethyl)-4-H-1,2,4-triazol-3-yl)-2-(1 H-indol-3-yl)ethyl)piperidine-4-carboxamide (Compound 44):

1H NMR (300 MHz, DMSO d$_6$, 300 K):

δ (ppm) 1.42 (m, 2H, H$_3$ and H$_5$ piperidyl), 1.55 (m, 1H, H$_5$ piperidyl), 2.23 (m, 1H, H$_4$ piperidyl), 2.75 (m, 5H, H$_2$ piperidyl and Chb-ChU-phenyl), 3.04 (m, 1H, H$_5$ piperidyl), 3.13 (m, 1H, H$_2$ piperidyl), 3.32 (m, 2H, CH$_2$ Trp), 3.66 (s, 3H, OCH$_3$), 4.97 (m, 2H, CH$_2$-p-methoxybenzyl), 5.23 (m, 1H, CH Trp), 6.70 (s, 4H, CHAr p-methoxybenzyl), 6.87 (t, 1H, J$_0$= 8 Hz, H$_5$ Trp), 7.00 (m, 2H, H$_2$ and H$_6$ Trp), 7.07 (d, 2H, J$_0$= 8 Hz, H$_2$ and H$_6$ phenyl), 7.14 (d, 1H, J$_0$= 7 Hz, H$_4$ Trp), 7.18-7.30 (m, 4H, H$_7$ Trp, H$_3$, H$_4$ and H$_5$ phenyl), 8.16 and 8.46 (2 m, 2H, NH piperidyl TFA salt), 8.66 (d, 1H, J= 8 Hz, NH amide), 10.75 (1H, s, NH indole Trp).

13C NMR (75 MHz, DMSO d$_6$, 300 K):

δ (ppm) 24.9 (C$_3$ piperidyl), 25.4 (C$_5$ piperidyl), 26.5 (CH$_2$-CH$_2$-phenyl), 29.2 (CH$_2$ Trp), 32.7 (CH$_2$-CH$_2$-phenyl), 38.7 (C$_4$ piperidyl), 42.7 (C$_2$ and C$_6$ piperidyl), 44.7 (CH Trp), 45.3 (CH$_2$-p-methoxybenzyl), 55.5 (OCH$_3$), 110.2 (C$_3$ Trp), 111.7 (C$_7$ Trp), 114.4 (C$_3$ and C$_5$ p-methoxybenzyl), 118.5 (C$_4$ Trp), 118.7 (C$_6$ Trp), 121.3 (C$_8$ Trp), 124.4 (C$_2$ Trp), 126.5 (C$_2$ and C$_6$ phenyl), 127.5 (C$_9$ Trp), 127.8 (C$_1$, C$_2$ and C$_8$ p-methoxybenzyl), 128.7 (C$_3$, C$_4$ and C$_5$ phenyl), 136.4 (C$_6$ Trp), 140.8 (C$_1$ phenyl), 155.3 (C$_7$ triazole), 155.4 (C$_4$ p-methoxybenzyl), 173.1 (CO amide).

(R)-N-(1-(5-(2-(1 H-indol-3-yl)ethyl)-4-(4-methoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1 H-indol-3-yl)ethyl)piperidine-4-carboxamide (Compound 45):

1H NMR (300 MHz, DMSO d$_6$, 300 K):

δ (ppm) 15.9 (CH$_3$-CH$_2$ p-ethylbenzyl), 23.5 (CH$_3$ Aib), 23.8 (CH$_3$ Aib), 26.5 (CH$_2$-CH$_2$-phenyl), 28.1 (CH$_3$-CH$_2$ p-ethylbenzyl), 29.1 (CH$_2$ βTrp), 32.7 (CH$_2$-CH$_2$-phenyl), 45.7 (CH αTrp), 45.8 (CH$_2$ p-ethylbenzyl), 56.8 (Cq Aib), 109.8 (C$_3$ Trp), 111.8 (C$_7$ Trp), 118.3 (C$_4$ Trp), 118.7 (C$_5$ Trp), 121.3 (C$_6$ Trp), 124.9 (C$_2$ Trp), 126.5 (C$_3$ and C$_5$ p-ethylbenzyl), 126.6 (C$_4$ phenyl), 127.3 (C$_9$ Trp), 128.6 (C$_2$ and C$_6$ p-ethylbenzyl), C$_2$, C$_3$, C$_5$ and C$_6$ phenyl), 131.1 (Ci p-ethylbenzyl), 136.5 (C$_8$ Trp), 140.8 (Ci phenyl), 143.8 (C$_4$ p-ethylbenzyl), 154.6 (Cq triazole), 154.9 (Cq triazole), 171.9 (CO amide).
δ(ppm) 1.41 (m, 2H, H₃ and H₅ piperidyl), 1.54 (dd, 1H, J = 13 Hz and 2 Hz, H₅ piperidyl), 2.23 (m, 1H, H₄ piperidyl), 2.72 (m, 2H, H₂ and H₆ piperidyl), 2.77-2.93 (m, 4H, CH₂-CHU-indole), 3.06 (m, 2H, H₂ and H₆ piperidyl), 3.32 (m, 2H, CH₂βTrp), 3.65 (s, 3H, OCH₃), 4.94 (s, 2H, CH₂-p-methoxybenzyl), 5.22 (m, 1H, CH αTrp), 6.68 (s, 4H, CHar p-methoxybenzyl), 6.87 (m, 3H, H₃ and H₆ Trp, H₅ indole), 6.98 (m, 4H, H₂ and H₆ indole, H₂ and H₄ Trp), 7.20-7.33 (m, 3H, H₄ and H₇ indole, H₇ Trp), 8.15 and 8.46 (2m, 2H, NH piperidyl TFA salt), 8.64 (d, 1H, J = 8 Hz, NH amide), 10.74 (s, 2H, NH indole and NH indole Trp).

13C NMR (75 MHz, DMSO d₆, 300 K):

δ(ppm) 22.9 (CH₂-CH₂-indole), 24.9 (C₃ piperidyl), 25.4 (C₅ piperidyl), 26.0 (CH₂-CH₂-indole), 29.3 (CH βTrp), 39.1 (C₄ piperidyl), 42.7 (C₂ and C₆ piperidyl), 44.7 (CH αTrp), 45.3 (CH₂-p-methoxybenzyl), 55.5 (OCH₃), 109.5 (C₃ Trp), 111.7 (C₇ indole and C₇ Trp), 113.5 (C₃ indole), 114.4 (C₃ and C₅ p-methoxybenzyl), 118.5 (C₄ indole and C₄ Trp), 118.6 (C₅ indole and C₅ Trp), 121.2 (C₆ indole), 121.3 (C₆ Trp), 122.9 (C₆ indole and C₂ Trp), 127.2 (C₉ indole), 127.6 (C₉ Trp, C₂ and C₆ p-methoxybenzyl), 127.9 (C₁ p-methoxybenzyl), 136.4 (C₉ Trp), 136.6 (C₈ indole), 154.9 (C₇ triazole), 155.2 (C₇ triazole), 159.0 (C₄ p-methoxybenzyl), 173.0 (CO amide).

(R)-N-(1-(4-(4-methoxybenzyl)-5-phenethyl-4-H1,2,4-triazol-3-yl)-2-(1 H-indol-3-yl)ethyl)-2-aminoacetamide (Compound 50):

1H NMR (300 MHz, DMSO d₆, 300 K):

δ(ppm) 2.78 (m, 4H, CH₂-Chf phenyl), 3.26 (1H, dd, J = 14 Hz and 7 Hz, CH₂ βTrp), 3.39 (m, 3H, CH₂ βTrp and CH₂-NH₂), 3.65 (s, 3H, OCH₃), 4.95 (m, 2H, CH₂-p-methoxybenzyl), 5.20 (m, 1H, CH αTrp), 6.63 (s, 4H, CHar p-methoxybenzyl), 6.86 (t, 1H, J₀ = 7 Hz, H₅ Trp), 6.99 (s, 1H, H₂ Trp), 7.02 (t, 1H, J₀ = 7 Hz, H₆ Trp), 7.10 (m, 2H, H₂ and H₆ phenyl), 7.15 (d, 1H, J₀ = 7 Hz, H₄ Trp), 7.23 (m, 3H, H₃, H₄ and H₅ Trp), 7.31 (d, 1H, J₀ = 8 Hz, H₇ Trp), 7.95 (brs, 3H, NH₂ Gly, TFA salt), 9.20 (d, 1H, J = 8 Hz, NH amide), 10.82 (s, 1H, NH indole Trp).

13C NMR (75 MHz, DMSO d₆, 300 K):

δ(ppm) 26.5 (CH₂-CH₂ phenyl), 29.8 (CH₂ βTrp), 32.7 (CH₂-CH₂ phenyl), 39.0 (CH₂-NH₂), 45.3 (CH₂ p-methoxybenzyl), 45.4 (CH αTrp), 55.4 (OCH₃), 109.7 (C₃ Trp), 111.8 (C₇ Trp), 114.5 (C₃ and C₅ p-methoxybenzyl), 118.3 (C₄ Trp), 118.9 (C₅ Trp),
- 129 -

121.4 (C₆ Trp), 124.6 (C₂ Trp), 126.5 (C₅ and C₆ phenyl), 127.3 (C₉ Trp), 127.7 (C₁ p-methoxybenzyl), 127.8 (C₂ and C₆ p-methoxybenzyl), 128.7 (C₃, C₄ and C₅ phenyl), 136.4 (C₈ Trp), 140.9 (C₁ phenyl), 154.3 (Cq triazole), 154.8 (Cq triazole), 159.0 (C₄ p-methoxybenzyl), 166.1 (CO amide).

5

(5)-N-1-(4-(4-methoxybenzyl)-5-phenethyl-4 H₁,2,4-triazol-3-y1)-2-(1 H-indol-3-y1)ethyl)-2-(pyridin-2-y1)acetamide (Compound 51):

¹H NMR (300 MHz, DMSO d₆, 300°K):

δ(ppm) 2.77-2.88 (m, 4H, CHJ-Chb-phenyl), 3.37 (m, 2H, CH₂ βTrp), 3.64 (s, 3H, OCH₃), 3.74 (m, 2H, CH₂-0-pyridyl), 5.03 (m, 2H, CH₂-p-methoxybenzyl), 5.24 (m, 1H, CH αTrp), 6.65 (s, 4H, CHAr p-methoxybenzyl), 6.85 (t, 1H, J₀ = 7 Hz, H₅ Trp), 7.01 (m, 2H, H₂ and H₆ Trp), 7.08 (d, 2H, J₀ = 7 Hz, H₂ and H₆ phenyl), 7.15 (d, 1H, J₀ = 7 Hz, H₄ Trp), 7.21 (m, 3H, H₂, H₄ and H₅ phenyl), 7.27-7.36 (m, 2H, H₂ Trp and H₃ o-pyridyl), 7.58 (t, 1H, J = 6 Hz, H₅ o-pyridyl), 8.04 (t, 1H, J₀ = 8 Hz, H₄ o-pyridyl), 8.62 (d, 1H, J₉β =

15 Hz, H₆ o-pyridyl), 9.17 (d, 1H, J = 8 Hz, NH amide), 10.81 (s, 1H, NH indole Trp).

¹³C NMR (75 MHz, DMSO d₆, 300°K):

δ(ppm) 26.4 (CH₂-CH₂-phenyl), 29.2 (CH₂ βTrp), 32.4 (CH₂CH₂-phenyl), 41.7 (CH₂ O-pyridyl), 45.3 (CH αTrp), 45.7 (CH₂-p-methoxybenzyl), 55.5 (OCH₃), 109.7 (C₃ Trp), 111.8 (C₇ Trp), 114.4 (C₃ and C₅ p-methoxybenzyl), 118.4 (C₄ Trp), 118.8 (C₅ Trp), 121.4 (C₆ Trp), 124.1 (C₃ o-pyridyl), 124.6 (C₂ Trp), 126.4 (C₅ o-pyridyl), 126.6 (C₂ and C₆ phenyl), 127.2 (C₅ Trp), 127.4 (C₄ p-methoxybenzyl), 127.9 (C₃ and C₆ p-methoxybenzyl), 128.7 (C₃, C₄ and C₅ phenyl), 136.4 (C₈ Trp), 140.5 (d, phenyl), 142.1 (C₄ o-pyridyl), 145.3 (C₆ o-pyridyl), 153.0 (C₂ o-pyridyl), 154.5 (Cq triazole), 155.3 (Cq triazole), 159.1 (C₄ p-methoxybenzyl), 167.9 (CO amide).

25

(R)-N-(1 -(4-(2,4-dimethoxybenzyl)-5-phenethyl-4 H₁,2,4-triazol-3-y1)-2-(1 H-indol-3-y1)ethyl)picolinamide (Compound 64):

¹H NMR (300 MHz, DMSO d₆, 300°K):

δ(ppm) 2.83 (m, 2H, CHRCH₂-phenyl), 2.90 (m, 2H, CH₂-ClTrpphenyl), 3.48 (m, 2H, CH₂ βTrp), 3.57 (s, 3H, OCH₃), 3.61 (s, 3H, OCH₃), 4.97 (d, 1H, J = 17 Hz, CH₂ o,p-dimethoxybenzyl), 5.09 (d, 1H, J = 17 Hz, CH₂ o,p-dimethoxybenzyl), 5.56 (m, 1H, CH αTrp), 6.18 (dd, 1H, J₀ = 8 Hz and J₉β = 2 Hz, H₅ o,p-dimethoxybenzyl), 6.41 (d, 1H, J₁J₉β =
(f)-\text{1}H NMR (300 MHz, DMSO \textit{d\textdegree}, 300\textdegree K):

\begin{align*}
\delta (\text{ppm}) & 2.87 (m, 4H, CHs-Chb-phenyl), 3.51 (m, 2H, CH\textsubscript{2} Trp), 3.58 (s, 3H, OCH\textsubscript{3}), 3.59 (s, 3H, OCH\textsubscript{3}), 4.97 (d, 1H, J= 17 Hz, Chb-o,p-dimethoxybenzyl), 5.08 (d, 1H, J= 17 Hz, CH\textsubscript{2} o,p-dimethoxybenzyl), 5.56 (s, 1H, CH αTrp), 6.10 (dd, 1H, J= 8 Hz and J\textsubscript{m}= 2 Hz, H\textsubscript{6} o,p-dimethoxybenzyl), 6.36 (d, 1H, Jm= 2 Hz, H\textsubscript{6} o,p-dimethoxybenzyl), 6.40 (d, 1H, J= 8 Hz, H\textsubscript{6} o,p-dimethoxybenzyl), 6.87 (t, 1H, J= 8 Hz, H\textsubscript{5} Trp), 7.00 (t, 1H, J= 7 Hz, H\textsubscript{6} Trp), 7.09 (m, 3H, H\textsubscript{2} Trp, H\textsubscript{2} and H\textsubscript{6} phenyl), 7.15 (d, 1H, J= 7 Hz, H\textsubscript{4} Trp), 7.19-7.28 (m, 3H, H\textsubscript{5}, H\textsubscript{4} and H\textsubscript{5} phenyl), 7.36 (d, 1H, J= 8 Hz, H\textsubscript{7} Trp), 8.61 (t, 1H, J= 2 Hz, H\textsubscript{3} o-pyrazinyl), 8.78 (d, 1H, J= 2 Hz, H\textsubscript{5} o-pyrazinyl), 8.94 (d, 1H, J= 1 Hz, H\textsubscript{6} o-pyrazinyl), 9.26 (d, 1H, J= 8 Hz, NH amide), 10.78 (s, 1H, NH indole Trp). \end{align*}

13C NMR (75 MHz, DMSO \textit{d\textdegree}, 300\textdegree K):

\begin{align*}
\delta (\text{ppm}) & 26.1 (\text{CH\textsubscript{2}-CH\textsubscript{2}-phenyl}), 28.4 (\text{CH\textsubscript{2} Trp}), 32.1 (\text{CH\textsubscript{2}-CH\textsubscript{2}-phenyl}), 42.9 (\text{CH\textsubscript{2}-} o,p-dimethoxybenzyl), 45.5 (\text{CH αTrp}), 55.5 (\text{OCH\textsubscript{3}}), 55.8 (\text{OCH\textsubscript{3}}), 98.7 (\text{C\textsubscript{3} o,p-}
\end{align*}
dimethoxybenzyl), 104.9 (C_5 o,p-dimethoxybenzyl), 109.7 (C_3 o,p-dimethoxybenzyl), 111.8 (C_7 Trp), 114.5 (C_5 o,p-dimethoxybenzyl), 118.5 (C_4 Trp), 118.8 (C_5 Trp), 121.4 (C_6 Trp), 124.4 (C_2 Trp), 126.7 (C_6 o,p-dimethoxybenzyl), 127.5 (C_9 Trp), 128.1 (C_4 phenyl), 128.7-128.8 (C_4, C_5 and C_6 phenyl), 136.4 (C_9 Trp), 140.3 (C_1 phenyl), 141.2 (C_6 o,p-dimethoxybenzyl), 144.2 (C_2 o-pyrazinyl), 144.3 (C_3 o-pyrazinyl), 146.8 (C_5 o-pyrazinyl), 155.2 (C_9s triazole), 157.7 (C_2 o,p-dimethoxybenzyl), 160.7 (CO amide), 162.9 (C_4 o,p-dimethoxybenzyl).

(S)-N-((K)-1-(5-(2-(1H-indol-3-yl)ethyl)-4-(2,4-dimethoxybenzyl)-4H 1,2,4-triazol-3-yl)-2-

10 (1A7-indol-3-yl)ethyl)pyrrolidine-2-carboxamide (Compound 70):

1H NMR (300 MHz, DMSO d6, 300°K):

δ(ppm) 1.40 (m, 1H H_3 Pro), 1.53 (m, 1H H_4 Pro), 1.71 (m, 1H H_5 Pro), 2.90 (m, 4H, CHrC H_2-indole), 3.06 (t, 2H, J = 6 Hz, H_6 Pro), 3.28 (m, 2H, CH_2 βTrp), 3.40 (s, 3H, OCH_3), 3.80 (s, 3H OCH_3), 3.80 (m, 1H, CH αPro), 4.80 (d, 1H, J = 17 Hz, H_2 o,p-dimethoxybenzyl), 5.1 (m, 1H, CH αTrp), 6.26 (dd, 1H, J_0 = 8 Hz and J_m = 2 Hz, H_5 o,p-dimethoxybenzyl), 6.38 (d, 1H, J_0 = 8 Hz, H_6 o,p-dimethoxybenzyl), 6.53 (d, 1H, J_m = 2 Hz, H_5 α,p-
dimethoxybenzyl), 6.84 (t, 1H, H_5 indole), 6.91 (t, 1H, J_0 = 8 Hz, H_5 Trp), 6.93-7.07 (m, 4H, H_2 and H_6 indole, H_2 and H_6 Trp), 7.16 (d, 1H, J_0 = 8 Hz, H_4 Trp), 7.29 (m, 3H, H_4 and H_7 indole, H_7 Trp), 8.39 and 9.10 (2 m, 2H, NH Pro TFA salt), 9.22 (d, 1H, J = 8 Hz, NH amide), 10.76 (s, 1H, NH indole), 10.80 (s, 1H, NH indole Trp).

13C NMR (75 MHz, DMSO d6, 300°K):

δ(ppm) 22.9 (CH_2-CH_2 indole), 23.5 (C_4 Pro), 25.8 (CH_2-CH_2 indole), 29.6 (CH_2 βTrp), 29.8 (C_3 Pro), 41.9 (CH_2 o,p-dimethoxybenzyl), 45.2 (CH αTrp), 46.0 (C_9 Pro), 55.7

25 (OCH_3), 55.9 (OCH_3), 59.3 (CH αPro), 99.0 (C_3 o,p-dimethoxybenzyl), 105.1 (C_5 o,p-
dimethoxybenzyl), 109.7 (C_9 Trp), 111.8 (C_7 indole and C_2 Trp), 113.4 (C_9 indole), 115.6 (C_1 o,p-dimethoxybenzyl), 118.4 (C_4 indole and C_4 Trp), 118.7 (C_5 indole and C_5 Trp), 121.4 (C_6 indole and C_6 Trp), 123.0 (C_2 indole and C_2 Trp), 127.2 (C_9 indole), 127.3 (C_9 Trp), 128.1 (C_6 o,p-dimethoxybenzyl), 136.5 (C_9 Trp), 136.6 (C_6 indole), 155.0 (C_9 triazole), 157.8 (C_2 o,p-dimethoxybenzyl), 160.9 (C_4 o,p-dimethoxybenzyl), 168.1 (CO amide).
(R)-N-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(2,4-dimethoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)pyrazine-2-carboxamide (Compound 71):

1H NMR (300 MHz, DMSO d$_6$, 3000K):

δ(ppm) 3.01 (m, 2H, Chb-Chz-indole), 3.10 (m, 2H, CHz-Chb-indole), 3.51 (m, 2H, CH$_2$βTrp), 3.55 (s, 3H, OCH$_3$), 3.57 (s, 3H, OCH$_3$), 5.15 (d, 2H, J= 7 Hz, CH$_2$-o,p-dimethoxybenzyl), 5.63 (m, 1H, CH αTrp), 6.08 (dd, 1H, J$_0$= 8 Hz and J$_m$= 2 Hz, H$_5$ o,p-dimethoxybenzyl), 6.35 (d, 1H, J$_n$= 2 Hz, H$_3$ o,p-dimethoxybenzyl), 6.53 (d, 1H, J$_0$= 8 Hz, H$_6$ o,p-dimethoxybenzyl), 6.89 (m, 2H, H$_6$ indole and H$_6$ Trp), 7.08 (m, 2H, H$_2$ indole and H$_2$ Trp), 7.29 (m, 3H, H$_4$ Trp, H$_4$ and H$_7$ indole), 7.41 (d, 1H, J$_0$= 8 Hz, H$_7$ Trp), 8.61 (t, 1H, J= 2 Hz, H$_5$ o-pyrazine), 8.79 (d, 1H, J= 2 Hz, H$_6$ o-pyrazine), 8.94 (d, 1H, J= 1 Hz, H$_5$ o-pyrazine), 9.43 (d, 1H, J= 8 Hz, NH amide), 10.84 (s, 2H, NH indole and NH indole Trp).

13C NMR (75 MHz, DMSO d$_6$, 3000K):

δ(ppm) 22.0 (CH$_2$-CH$_2$-indole), 25.3 (CH$_2$-CH$_2$-indole), 27.9 (CH$_2$ βTrp), 44.1 (CH$_2$-o,p-dimethoxybenzyl), 45.5 (CH αTrp), 55.5 (OCH$_3$), 55.8 (OCH$_3$), 98.8 (C$_3$ o,p-dimethoxybenzyl), 104.9 (C$_2$ o,p-dimethoxybenzyl), 109.3 (C$_3$ Trp), 111.8 (C$_7$ indole and C$_7$ Trp), 112.1 (C$_3$ indole), 113.4 (C$_1$ o,p-dimethoxybenzyl), 118.4 (C$_4$ indole), 118.5 (C$_4$ Trp), 118.8 (C$_5$ indole and C$_5$ Trp), 121.5 (C$_6$ indole and C$_6$ Trp), 127.0 (C$_9$ indole), 127.4 (C$_9$ Trp), 136.4 (C$_8$ Trp), 136.6 (C$_6$ indole), 141.2 (C$_6$ o-pyrazine), 144.1 (C$_2$ o-pyrazine), 144.3 (C$_3$ o-pyrazine), 146.8 (C$_5$ o-pyrazine), 155.4 (C$_7$ triazole), 156.0 (C$_7$ triazole), 157.8 (C$_2$ o,p-dimethoxybenzyl), 161.0 (CO amide), 163.2 (C$_4$ o,p-dimethoxybenzyl).

(R)-N-(1-(5-(2-(1W-indol-3-yl)ethyl)-4-(2,4-dimethoxybenzyl)-4AV-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)pyrazine-2-carboxamide (Compound 73):

1H NMR (300 MHz, DMSO d$_6$, 3000K):

δ(ppm) 2.94 (m, 4H, CH$_2$-Chb-indole), 3.47 (m, 2H, CH$_2$βTrp), 3.57 (s, 3H, OCH$_3$), 3.60 (s, 3H, OCH$_3$), 5.05 (m, 2H, CH$_2$-o,p-dimethoxybenzyl), 5.56 (m, 1H, CH αTrp), 6.14 (dd, 1H, J$_0$= 8 Hz and J$_m$= 2 Hz, H$_5$ o,p-dimethoxybenzyl), 6.41 (d, 1H, J$_n$= 2 Hz, H$_3$ o,p-dimethoxybenzyl), 6.52 (d, 1H, J$_0$= 8 Hz, H$_6$ o,p-dimethoxybenzyl), 6.88 (t, 2H, J$_0$= 7 Hz, H$_5$ indole and H$_5$ Trp), 6.99 (t, 1H, J$_0$= 8 Hz, H$_6$ Trp), 7.01 (t, 1H, J$_0$= 8 Hz, H$_6$ indole), 7.04 (d, 1H, J= 2 Hz, H$_2$ Trp), 7.07 (d, 1H, J= 2 Hz, H$_2$ indole), 7.27-7.33 (m,
4H, H₂ and H₅ Trp, H₄ and H₃ indole, 7.55 (m, 1H, NH amide), 7.90 (m, 2H, H₄ and H₅ o-pyridyl), 8.57 (d, 1H, J₆₋₇ = 4 Hz, H₆ o-pyridyl), 9.15 (d, 1H, J₆ = 8 Hz, H₆ o-pyridyl), 10.78 (brs, 2H NH indole and NH indole Trp).

¹³C NMR (75 MHz, DMSO d₆, 300 °K):

δ(ppm) 22.3 (CH₂-CH₂-indole), 25.6 (CH₂-CH₂-indole), 28.9 (CH₂ βTrp), 43.1 (CH₂-Cp-dimethoxybenzyl), 45.5 (CH αTrp), 55.5 (OCH₃), 55.8 (OCH₃), 98.9 (C₃ o,p-dimethoxybenzyl), 105.0 (C₅ o,p-dimethoxybenzyl), 109.5 (C₆ Trp), 111.8 (C₇ indole and C₇ Trp), 112.8 (C₃ indole), 114.4 (C₁ o,p-dimethoxybenzyl), 118.4 (C₄ indole and C₄ Trp), 118.7 (C₅ indole), 118.8 (C₆ Trp), 121.4 (C₆ indole and C₆ Trp), 122.5 (C₂ indole and C₉ o-pyridyl), 123.1 (C₂ Trp), 127.1 (C₅ o-pyridyl), 127.2 (C₉ indole), 127.5 (C₉ Trp), 128.6 (C₆ o,p-dimethoxybenzyl), 136.4 (C₈ Trp), 136.6 (C₈ indole), 139.1 (C₄ o-pyridyl), 146.6 (C₆ o-pyridyl), 150.6 (C₂ o-pyridyl), 155.5 (C₉ triazole), 155.6 (C₉ triazole), 157.8 (C₉ o,p-dimethoxybenzyl), 161.0 (C₄ o,p-dimethoxybenzyl), 163.9 (CO amide).

(R)-1-(5-(2-(1H-indol-3-yl)ethyl)-4-(2,4-dimethoxybenzyl)-1H,1H,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethanamine (Compound 74):

¹H NMR (300 MHz, DMSO d₆, 300 °K):

δ(ppm) 2.79 (m, 2H, CHz-Chb-indole), 2.86 (m, 2H, CHz-Chb-indole), 3.30 (dd, 1H, 3J = 14 Hz and 5 Hz, CH₂ βTrp), 3.38 (dd, 1H, 3J = 14 Hz and 6 Hz, CH₂ βTrp), 3.62 (s, 3H, OCH₃), 3.63 (s, 3H, OCH₃), 4.47 (d, 1H, 3J = 17 Hz, CH₂-o,p-dimethoxybenzyl), 4.59 (d, 1H, 3J = 17 Hz, CH₂-o,p-dimethoxybenzyl), 6.11 (dd, 1H, J₀ = 8 Hz and Jₖm = 2 Hz, H₅ o,p-dimethoxybenzyl), 6.20 (d, 1H, J₀ = 8 Hz, H₅ o,p-dimethoxybenzyl), 6.45 (d, 1H, Jₖm = 2 Hz, H₅ o,p-dimethoxybenzyl), 6.87 (t, 1H, J₀ = 8 Hz, H₅ Trp), 6.91 (t, 1H, J₀ = 8 Hz, H₅ indole), 7.00-7.04 (m, 2H, H₆ indole and H₆ Trp), 7.07 (s, 1H, H₂ indole), 7.09 (s, 1H, H₂ indole), 7.17-7.35 (m, 4H, H₄ and H₅ indole, H₄ and H₅ Trp), 8.75 (brs, 3H, NH₂ TFA salt), 10.78 (s, 1H, NH indole Trp), 11.00 (s, 1H, NH indole Trp), 11.00 (s, 1H, NH indole Trp).

¹³C NMR (75 MHz, DMSO d₆, 300 °K):

δ(ppm) 22.9 (CH₂-CH₂-indole), 25.7 (CH₂-CH₂-indole), 29.9 (CH₂ βTrp), 41.5 (CH₂-o,p-dimethoxybenzyl), 46.5 (CH αTrp), 55.5 (OCH₃), 55.9 (OCH₃), 98.8 (C₃ o,p-dimethoxybenzyl), 105.0 (C₅ o,p-dimethoxybenzyl), 107.4 (C₆ Trp), 111.8 (C₇ indole and C₇ Trp), 113.4 (C₃ indole), 115.1 (C₁ o,p-dimethoxybenzyl), 118.0 (C₄ indole),
118.4 (C₄ Trp), 118.6 (C₅ Trp), 119.0 (C₅ indole), 121.3 (C₆ Trp), 121.6 (C₆ indole),
122.9 (C₂ indole), 125.4 (C₃ Trp), 127.1 (C₇ indole and C₉ Trp), 128.5 (C₈ o,p-
dimethoxybenzyl), 136.5 (C₈ Trp), 136.6 (C₉ indole), 152.3 (Cq triazole), 155.6 (Cq
triazole), 157.6 (C₂ o,p-dimethoxybenzyl), 160.8 (C₄ o,p-dimethoxybenzyl).

(R)-N-(1-(4-(4-methoxybenzyl)-5-phenethyl)-4 H₁,2,4-triazol-3-yl)-2-(1 H-indol-3-
yl)ethyl)picolinamide (Compound 79):

¹H NMR (300 MHz, DMSO d₆, 300°K):
δ(ppm) 2.85 (m, 4H, ChU-CH₃ phenyl), 3.51 (m, 2H, CH₂ βTrp), 3.59 (s, 3H, OCH₃).
5.1 1 (d, 1H, J= 17 Hz, CH₂ p-methoxybenzyl), 5.23 (d, 1H, J= 17 Hz, CH₂ p-
methoxybenzyl), 5.51 (m, 1H, CH αTrp), 6.59 (d, 2H, J₀= 8 Hz, H₃ and H₅ p-
methoxybenzyl), 6.73 (d, 2H, J₀= 8 Hz, H₂ and H₆ p-methoxybenzyl), 6.87 (t, 1H, J₀= 8
Hz, H₄ Trp), 7.01 (t, 1H, J₀= 8 Hz, H₅ Trp), 7.06 (m, 2H, H₂ and H₆ phenyl), 7.10 (d, 1H,
J= 2 Hz, H₂ Trp), 7.14 (d, 1H, J₀= 7 Hz, H₄ Trp), 7.24 (m, 3H, H₃, H₄ and H₅ phenyl),
7.34 (d, 1H, J₀= 8 Hz, H₇ Trp), 7.55 (m, 1H, NH amide), 7.88 (m, 2H, H₄ and H₆ o-
pyridyl), 8.56 (d, 1H, J₃= 4 Hz, H₆ o-pyridyl), 9.20 (d, 1H, J₀= 8 Hz, H₃ o-pyridyl), 10.80
(s, 1H, NH indole Trp).

¹³C NMR (75 MHz, DMSO d₆, 300°K):
δ(ppm) 26.2 (CH₂-CH₂-phenyl), 28.6 (CH₂ βTrp), 32.1 (CH₂-CH₂-phenyl), 45.5 (CH
αTrp), 46.2 (CH₂ p-methoxybenzyl), 55.4 (OCH₃), 109.6 (C₃ Trp), 111.8 (C₇ Trp), 114.3
(C₅ and C₆ p-methoxybenzyl), 118.5 (C₄ Trp), 118.8 (C₅ Trp), 121.4 (C₆ Trp), 122.5 (C₃
o-pyridyl), 124.5 (C₂ Trp), 127.2 (C₂ and C₆ phenyl), 127.4 (C₉ Trp and C₁ p-
methoxybenzyl), 127.8 (C₅ o-pyridyl), 128.7 (C₂ and C₆ p-methoxybenzyl), 128.8 (C₃,
C₄ and C₅ phenyl), 136.4 (C₈ Trp), 138.1 (C₄ o-pyridyl), 140.3 (C₁ phenyl), 148.7 (C₆ o-
pyridyl), 149.3 (C₂ o-pyridyl), 155.0 (Cq triazole), 155.3 (Cq triazole), 159.0 (C₄ p-
methoxybenzyl), 164.1 (CO amide).

(R)-N-(1-(5-(2-(1 H-indol-3-yl)ethyl)-4-(4-methoxybenzyl)-4H₁,2,4-triazol-3-yl)-2-(1 H-
indol-3-yl)ethyl)picolinamide (Compound 80):

¹H NMR (300 MHz, DMSO d₆, 300°K):
δ(ppm) 2.95 (m, 4H, CHz-CJ±Hindole), 3.48 (m, 2H, CH₂ βTrp), 3.58 (s, 3H, OCH₃), 5.16
(m, 2H, CH₂ p-methoxybenzyl), 5.50 (m, 1H, CH αTrp), 6.57 (d, 2H, J₀= 8 Hz, H₃ and
- 135 -

H_5 p-methoxybenzyl), 6.72 (d, 2H, J_0= 8 Hz, H_2 and H_6 p-methoxybenzyl), 6.87 (t, 2H, J_0= 8 Hz, H_5 Trp and H_5 indole), 6.96-7.07 (m, 5H, H_2 and H_6 indole, H_2, H_4 and H_6 Trp), 7.27-7.34 (m, 3H, H_4 and H_7 indole, H_7 Trp), 7.55 (m, 1H, NH amide), 7.88 (m, 2H, H_4 and H_5 o-pyridyl), 8.56 (d, 1H, J_{op}= 4 Hz, H_6 o-pyridyl), 9.18 (d, 1H, J_0= 8 Hz, H_3 o-pyridyl), 10.77 (brs, 2H, NH indole Trp and NH indole).

1^3C NMR (75 MHz, DMSO d_6, 300^0K):

δ(ppm) 22.4 (CH_2-CH_2-indole), 25.7 (CH_2-CH_2-indole), 28.9 (CH_2 βTrp), 45.5 (CH αTrp), 46.2 (CH_2_p-methoxybenzyl), 55.4 (OCH_3), 109.7 (C_3 Trp), 111.8 (C_7 Trp and C_7 indole), 112.6 (C_3 indole), 114.3 (C_3 and C_6 p-methoxybenzyl), 118.4 (C_4 Trp and C_4 indole), 118.7 (C_5 indole), 118.8 (C_5 Trp), 121.4 (C_6 Trp and C_6 indole), 122.4 (C_9 o-pyridyl and C_9 indole), 124.5 (C_2 Trp), 126.7 (C_9 indole), 127.1 (C_9 Trp), 127.2 (C_5 o-pyridyl), 127.5 (C_1 p-methoxybenzyl), 127.7 (C_2 and C_6 p-methoxybenzyl), 136.4 (C_8 Trp), 136.6 (C_8 indole), 138.1 (C_4 o-pyridyl), 148.7 (C_8 o-pyridyl), 149.3 (C_2 o-pyridyl), 155.3 (C_q triazole), 159.0 (C_4 p-methoxybenzyl), 164.0 (CO amide).

1^H NMR (300 MHz, DMSO d_6, 300^0K):

δ(ppm) 2.18 (m, 2H, NH piperazine), 2.96 (m, 6H, H_2, H_6 and H_6 piperazine), 3.34 (d, 2H, J= 7 Hz, CH_2 βTrp), 3.57 (m, 4H, Chb-CHZ-indole), 3.61 (s, 3H, OMe), 3.64 (m, 1H, H_3 piperazine), 4.82 (m, 2H, CH_2-p-methoxybenzyl), 5.40 (m, 1H, CH αTrp), 6.45 (d, 2H, J_0= 8 Hz, H_3 and H_5 p-methoxybenzyl), 6.51 (d, 2H, J_0= 8 Hz, H_2 and H_6 p-methoxybenzyl), 6.65-7.47 (m, 10H, Char, indole and indole Trp), 8.95 (m, 1H, NH amide), 10.88 (d, 1H, J= 2 Hz, NH indole), 10.91 (s, 1H, NH indole Trp).

1^3C NMR (75 MHz, DMSO d_6, 300^0K):

δ(ppm) 22.5 (CH_2-CH_2-indole), 25.6 (CH_2-CH_2-indole), 31.3 (CH_2 βTrp), 41.9 (CH_2-p-methoxybenzyl), 47.7 (CH αTrp, C_5 and C_6 piperazine), 55.5 (OCH_3 and C_2 piperazine), 61.1 (C_3 piperazine), 109.3 (C_3 Trp), 111.7 (C_7 indole and C_7 Trp), 114.0 (C_9 indole), 114.3 (C_3 and C_6 p-methoxybenzyl), 118.6 (C_4 indole), 118.7 (C_4 Trp), 118.9 (C_6 indole and C_5 Trp), 121.4 (C_6 indole), 121.5 (C_6 Trp), 123.9 (C_2 indole and C_2 Trp), 127.0 (C_9 indole), 127.2 (C_9 Trp), 127.7 (C_1 p-methoxybenzyl), 128.1 (C_2 and C_6 p-
methoxybenzyl), 136.3 (C₈ Trp), 136.5 (C₈ indole), 155.5 (Cq triazole), 162.2 (C₄ p-
methoxybenzyl), 171.1 (CO amide).

(S)-N'-((R)-1-(5-(2-(1 H-indol-3-yl)ethyl)-4-(4-methoxybenzyl)H1,2,4-triazol-3-yl)-2-
(1AV-indol-3-yl)ethyl)pyrrolidine-2-carboxamide (Compound 89):

1H NMR (300 MHz, DMSO d₆, 300 K):
δ(ppm) 1.42 (m, 1H, H₃ Pro), 1.52 (m, 1H, H₄ Pro), 1.72 (m, 1H, H₄ Pro), 2.07 (m, 1H
H₃ Pro), 2.94 (m, 4H, CH₂CH₂JrIdOle), 3.05 (t, 2H, J = 6 Hz, H₅ Pro), 3.30 (m, 2H, CH₂
βTrp), 3.67 (s, 3H, OCH₃), 3.96 (m, 1H, CH α Pro), 5.02 (s, 2H, CH₂-p-methoxybenzyl),
5.19 (m, 1H, CH αTrp), 6.73 (s, 4H, CHar p-methoxybenzyl), 6.84 (t, 1H, J₀ = 8 Hz, H₅
indole), 6.90 (t, 1H, J₀ = 8 Hz, H₅ Trp), 6.93-7.06 (m, 4H, H₂ and H₆ indole, H₂ and H₆
Trp), 7.17 (el. 1H, J₀ = 8 Hz, H₄ Trp), 7.29 (d, 3H, J₀ = 8 Hz, H₄ and H₇ indole, H₇
Trp), 8.39 and 9.10 (2 m, 2H, NH Pro TFA salt), 9.25 (d, 1H, J = 8 Hz, NH amide), 10.76 (s,
1H, NH indole), 10.80 (d, 1H, J = 2 Hz, NH indole Trp).

13C NMR (75 MHz, DMSO d₆, 300 K):
δ(ppm) 22.8 (CH₂CH₂-indole), 23.5 (C₄ Pro), 25.8 (CH₂CH₂-indole), 29.4 (CH₂ βTrp),
29.8 (C₃ Pro), 45.2 (CH αTrp), 45.5 (CH₂-p-methoxybenzyl), 46.0 (C₅ Pro), 55.5
(OCH₃), 59.3 (CH αPro), 109.6 (C₃ Trp), 111.8 (C₇ indole and C₇ Trp), 113.4 (C₃
indole), 114.6 (C₃ and C₄ p-methoxybenzyl), 118.4 (C₄ indole), 118.5 (C₄ Trp), 118.7
(C₅ indole and C₅ Trp), 121.4 (C₆ indole and C₆ Trp), 123.0 (C₂ Trp), 124.7 (C₂ indole),
127.2 (C₉ indole), 127.3 (C₉ Trp), 127.7 (C₁ p-methoxybenzyl), 127.8 (C₂ and C₆ p-
methoxybenzyl), 126.5 (C₈ Trp), 136.6 (C₈ indole), 154.8 (Cq triazole), 154.9 (Cq
triazole), 159.2 (C₄ p-methoxybenzyl), 168.2 (CO amide).

(R)-N-((K)-1-(5-(2-(1 H-indol-3-yl)ethyl)-4-(4-methoxybenzyl)H1,2,4-triazol-3-yl)-2-
(1H-indol-3-yl)ethyl)pyrrolidine-2-carboxamide (Compound 90):

1H NMR (300 MHz, DMSO d₆, 300 K):
δ(ppm) 1.23 (m, 1H, H₃ Pro), 1.52 (m, 1H, H₄ Pro), 1.74 (m, 1H, H₄ Pro), 2.08 (m, 1H,
H₃ Pro), 2.81 (m, 2H, H₅ Pro), 2.90-3.14 (m, 4H, CHrChrIndole), 3.31 (dd, 1H, J = 14
Hz and 7 Hz, CH₂ βTrp), 3.41 (dd, 1H, J = 14 Hz and 8 Hz, CH₂ βTrp), 3.63 (s, 3H,
OCH₃), 4.05 (m, 1H, CH α Pro), 4.86 (s, 2H, CH₂-p-methoxybenzyl), 5.21 (m, 1H, CH
αTrp), 6.63 (s, 4H, CHar p-methoxybenzyl), 6.88 (t, 2H, J0 = 7 Hz, H5 indole and H5 Trp), 7.02 (m, 4H, H2 and H6 indole, H2 and H6 Trp), 7.26-7.34 (m, 4H, H4 and H7 indole, H4 and H7 Trp), 8.51 and 9.18 (2 m, 2H, NH Pro, TFA salt), 9.27 (d, 1H, J = 8 Hz, NH amide), 10.73 (s, 1H, NH indole), 10.80 (s, 1H, NH indole Trp).

5 13C NMR (75 MHz, DMSO d6, 300.0(K)):

δ(ppm) 22.8 (CH2-CH2-indole), 23.8 (C4 Pro), 25.9 (CH2-CH2-indole), 29.7 (CH2 βTrp and C3 Pro), 45.4 (CH2-p-methoxybenzyl), 45.8 (CH αTrp), 46.1 (C9 Pro), 55.5 (OCH3), 59.2 (CH αPro), 109.7 (C3 Trp), 111.8 (C7 Trp), 111.9 (C7 indole), 113.4 (C3 indole), 114.4 (C3 and C5 p-methoxybenzyl), 118.3 (C4 indole), 118.5 (C4 Trp), 118.6 (C6 indole), 118.9 (C5 Trp), 121.4 (C8 indole and C8 Trp), 122.9 (C2 indole and C2 Trp), 127.2 (C9 indole), 127.4 (C9 Trp), 127.6 (C1, C2 and C6 p-methoxybenzyl), 136.5 (C8 Trp), 136.6 (C8 indole), 154.4 (Cq triazole), 155.0 (Cq thazole), 159.1 (C4 p-methoxybenzyl), 168.3 (CO amide).

15 (R)-Λ-(1-(5-(2-(1W-indol-3-yl)ethyl)-4-(4-bromobenzyl)-4 H1,2,4-triazol-3-yl)-2-(1W-indol-3-yl)ethyl)-2-amino-2-methylpropanamide (Compound 92):

1H NMR (400 MHz, DMSO-d6):

δ(ppm) 1.28 (3H, s, CH2 Aib), 1.30 (3H, s, CH2 Aib), 2.90 (2H, m, Chg-Cha-indole), 3.00 (2H, m, CHz-Chg-indole), 3.37 (2H, m, CH2 βTrp), 5.10 (2H, s, CH2 4-bromobenzyl),

20 5.13 (1H, m, CaH Trp), 6.75 (2H, d, J=8.1, H2, H6 4-bromobenzyl), 6.88 (1H, t, J=7.3, H5 Trp), 6.93 (1H, t, J=7.5, H5 indole), 7.03 (1H, t, J=7.0, H6 Trp), 7.05 (1H, H6 indole), 7.07 (1H, d, J=1.7, H2 indole), 7.09 (1H, d, J=1.8, H2 Trp), 7.12 (1H, d, J=8.2, H4 Trp), 7.28 (1H, d, J=7.9, H4 indole), 7.32 (2H, d, J=8.2, H7 Trp, H7 indole), 7.41 (2H, d, J=8.1, H3, H6 4-bromobenzyl), 8.01 (2H, s, NH2 Aib), 8.95 (1H, d, J=7.9, NH Trp), 10.77 (1H, brs, NH indole), 10.80 (1H, brs, NH indole Trp).

13C NMR (400 MHz, DMSO-d6):

δ(ppm) 22.4 (CH2-CHJndole), 23.1 (CH3 Aib), 23.4 (CH3 Aib), 25.4 (CH2-CHJndole), 28.7 (Cβ Trp), 44.8 (CH2 4-bromobenzyl), 45.2 (Ca Trp), 56.3 (Cq Aib), 109.4 (C3 Trp), 111.3 (C7 Trp, C7 indole), 113.0 (C3 indole), 117.8 (C4 Trp), 118.0 (C4 indole), 118.2 (C5 indole), 118.3 (C5 Trp), 120.8 (C4 4-bromobenzyl), 120.9 (C6 Trp, C6 indole), 122.5 (C2 indole), 124.4 (C2 Trp), 126.7 (C9 Indole), 126.8 (C9 Trp), 128.0 (C2, C6 4-
bromobenzyl), 131.6 (C₃, C₅ 4-bromobenzyl), 135.1 (C₁ 4-bromobenzyl), 136.1 (C₈ Trp, C₈ indole), 154.2 (Cq triazole), 154.5 (Cq triazole), 171.4 (CO Aib).

(R)-N-(1-(5-(2-(1 W-indol-3-yl)ethyl)-4-(4-methoxybenzyl)-4tf-1,2,4-triazol-3-yl)-2-phenylethyl)-2-amino-2-methylpropanamide (Compound 93):

¹H NMR (300 MHz, DMSO-d₆, 300⁰K):

δ(ppm) 1.18 (3H, s, CH₃ Aib), 1.27 (3H, s, CH₃ Aib), 2.91 (4H, m, C±b-CtU-indole), 3.19 (2H, m, CH₂ βPhe), 3.69 (3H, s, OCH₃), 5.05 (2H, m, CH₂-p-methoxybenzyl), 5.20 (1H, m, CH αPhe), 6.82 (2H, d, J₀= 8 Hz, H₃ and H₅ p-methoxybenzyl), 6.86 (2H, d, J₀= 8 Hz, H₆ indole), 7.03 (1H, d, J= 2 Hz, H₂ indole), 7.11-7.20 (5H, m, CHar Phe), 7.29 (2H, d, J₀= 8 Hz, H₄ and H₇ indole), 7.99 (3H, brs, NH₂ Aib), 8.93 (1H, d, J= 8 Hz, NH amide), 10.77 (1H, s, NH indole).

¹³C NMR (75 MHz, DMSO-d₆, 300⁰K):

δ(ppm) 22.8 (CH₂CH₂-indole), 23.5 (CH₃ Aib), 23.9 (CH₃ Aib), 25.9 (CH₂CH₂-indole), 38.7 (CH₂ βPhe), 45.7 (CH₂-p-methoxybenzyl), 46.4 (CH αPhe), 55.6 (OCH₃), 56.8 (Cq Aib), 111.8 (C₇ indole), 113.4 (C₃ indole), 114.7 (C₃ and C₅ p-methoxybenzyl), 118.5 (C₄ Trp), 118.6 (C₆ Trp), 121.4 (C₇ Trp), 123.0 (C₂ Trp), 127.0 (C₄ phenyl), 127.2 (C₉ indole), 127.9 (C₁ p-methoxybenzyl), 128.1 (C₂ and C₆ phenyl), 128.5 (C₅ and C₆ phenyl), 129.8 (C₂ and C₆ p-methoxybenzyl), 136.6 (C₈ indole), 137.7 (C₁ phenyl), 155.2 (Cq triazole), 154.4 (Cq triazole), 159.3 (C₄ p-methoxybenzyl), 171.7 (CO Aib).

(R)-N-(1-(4-(2-(1 H-indol-3-yl)ethyl)-4H,1,2,4-triazol-3-yl)-2-(1 H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide (Compound 95):

²⁵¹H NMR (400 MHz, DMSO-d₆):

δ(ppm) 1.29 (3H, s, CH₃ Aib), 1.35 (3H, s, CH₃ Aib), 2.85 (1H, m, 1H N-CH₂-CH₂-In), 2.89 (1H, m, 1H₁-N-CH₂-CH₂-In), 3.28 (1H, dd, J=14.2, J=6.8, 1H CH₂ β Trp), 3.40 (1H, dd, J=14.2, J=8.4, 1H CH₂ β Trp), 4.10 (2H, m, N-CH₄-CH₂-In), 5.25 (1H, m, CHα Trp), 6.85 (1H, d, J=2.0, H₂ indole), 6.90-6.98 (2H, m, H₅ indole), 7.01 (1H, d, J=2.0, H₂ indole), 7.02-7.12 (2H, m, H₅ indole), 7.30 (1H, d, J=8.2, H₇ indole), 7.33 (1H, d, J=8.3, H₇ indole), 7.40 (1H, d, J=7.9, H₄ indole), 7.47 (1H, d, J=7.8, H₄ indole), 8.04 (2H, brs,
NH₂ Aib), 8.42 (1H, s, H triazole), 9.01 (1H, d, J=8.0, NH Trp), 10.81 (1H, s, NH indole), 10.90 (1H, s, NH indole).

(R)- N-(1-(5-((1 H-indol-3-yl)methyl)-4-methyl-1H,2,4-triazol-3-yl)-2-(1 H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide (Compound 96):

1H NMR (400 MHz, DMSO-d$_6$):

δ(ppm) 1.20 (3H, s, CH$_3$ Aib), 1.28 (3H, s, CH$_3$ Aib), 3.32 (3H, d, N-CH$_3$), 3.30-3.45 (2H, m, CH$_3$β Trp), 4.22 (2H, S$_7$-CH$_2$-Ind), 5.30 (1H, m, CHa Trp), 6.91 (1H, t, J=7.5, H$_5$ indole), 6.94 (1H, d, J=7.5, H$_5$ indole), 7.02 (1H, t, J=7.9, H$_6$ indole), 7.05 (1H, t, J=7.9, H$_6$ indole), 7.08 (1H, d, J=1.9, H$_2$ indole), 7.12 (1H, d, J=1.9, H$_2$ indole), 7.29 (1H, d, J=8.1, H$_1$ indole), 7.33 (1H, d, J=8.2, H$_2$ indole), 7.48 (1H, d, J=7.9, H$_4$ indole), 7.57 (1H, d, J=7.9 H$_4$ indole), 8.00 (2H, brs, NH$_2$ Aib), 8.85 (1H, d, J=8.2, NH Trp), 10.82 (1H, s, NH indole), 10.98 (1H, s, NH indole).

15 (R)- N-(1-(5-((1 H-indol-3-yl)methyl)-4-methyl-1H,2,4-triazol-3-yl)-2-(1 H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide (Compound 97):

1H NMR (400 MHz, DMSO-d$_6$):

δ(ppm) 1.30 (3H, s, CH$_3$ Aib), 1.40 (3H, s, CH$_3$ Aib), 3.00-3.20 (4H, m, -CH$_2$-CHa-Ind), 3.36 (3H, s, N-CH$_3$), 3.45-3.50 (2H, m, CH$_3$β Trp), 5.30 (1H, m, CHa Trp), 6.95-7.04 (2H, t, H$_5$ indole), 7.06-7.13 (2H, m, H$_5$ indole), 7.18 (2H, brs, H$_2$ indole), 7.34 (1H, d, J=8.0, H$_1$ indole), 7.36 (1H, d, J=8.0, H$_7$ indole), 7.48 (1H, d, J=7.8, H$_4$ indole), 7.58 (1H, d, J=7.8, H$_4$ indole), 8.10 (2H, brs, NH$_2$ Aib), 8.95 (1H, d, J=8.1, NH Trp), 10.95 (1H, s, NH indole), 10.96 (1H, s, NH indole).

13C NMR (100 MHz, DMSO-d$_6$):

δ(ppm) 22.9 - 25.9 (-CH$_2$-CH$_2$-Indole), 24.1 (CH$_3$ Aib), 24.3 (CH$_3$ Aib), 28.8 (CH$_2$β Trp), 30.7 (-NCH$_3$), 46.2 (CHA Trp), 57.2 (C$_3$ indole), 110.2 (C$_3$ indole), 112.3 (2C$_7$ indole), 113.5 (C$_9$ indole), 118.9-119.2 (2C$_6$, 2C$_4$ indole), 121.9 (2C$_6$ indole), 123.6 (2C$_6$ indole), 125.3 (2C$_2$ indole), 127.7 (C$_9$ indole), 128.0 (C$_9$ indole), 136.9 (C$_8$ indole), 137.1 (C$_8$ indole), 155.3 (C$_9$ triazole), 155.8 (C$_9$ triazole), 172.2 (CO Aib).
(f?)-N-(1-{5-[(1 H-indol-3-yl)methyl]-4W-1,2,4-triazol-3-yl}-2-(1 H-indol-3-yl)ethyl)-2- amino-2-methylpropanamide (Compound 98):

1H NMR (400 MHz, DMSO-d$_6$):

δ(ppm) 1.31 (3H, s, CH$_3$Aib), 1.42 (3H, s, CH$_3$Aib), 3.19 (1H, dd, J=14.5, J= 9.6, 1H CH$_2$ βTrp), 3.35 (1H, dd, J=14.5, J= 5.3, 1H CH$_2$ βTrp), 4.15 (2H, s, CH$_2$ indole), 5.26 (1H, m, CaH Trp), 6.95 (1H, t, H$_5$ Trp), 6.96 (1H, t, H$_6$ indole), 7.05 (1H, d, H$_7$ Trp), 7.06 (1H, s, H$_2$ Trp), 7.07 (1H, d, H$_7$ indole), 7.21 (1H, s, H$_2$ indole), 7.32 (1H, d, H$_7$ Trp), 7.37 (1H, d, H$_7$ indole), 7.51 (1H, d, J=7.8, H$_4$ indole), 7.58 (1H, d, J=7.8, H$_4$ Trp), 8.00 (2H, s, NH$_2$ Aib), 8.64 (1H, d, J=8.7, NH Trp), 10.77 (1H, s, NH indole Trp), 10.92 (1H, s, NH indole).

13C NMR (400 MHz,DMSO-d$_6$):

δ(ppm) 22.9 (CH$_2$ indole), 23.2 (CH$_3$ Aib), 23.3 (CH$_3$ Aib), 29.4 (Cp Trp), 48.3 (Ca Trp), 56.3 (Cq Aib), 109.7 (C$_q$ indole), 110.3 (C$_3$ Trp), 111.2 (C$_7$ Trp), 111.3 (C$_5$ indole), 118.1 (C$_4$ Trp, C$_5$ Trp), 118.3 (C$_4$ indole), 118.4 (C$_6$ indole), 120.7 (C$_6$ Trp), 121.0 (C$_6$ indole), 123.4 (C$_2$ indole), 123.6 (C$_2$ Trp), 126.8 (C$_9$ indole), 127.1 (C$_9$ Trp), 136.0 (C$_8$ Trp), 136.2 (C$_8$ indole), 157.5 (Cq triazole), 161.7 (Cq triazole), 170.8 (CO Aib).

(l?)-N-(1-{5-[(1 H-indol-3-yl)methyl]-4-(2,4-dimethoxybenzyl)-4H 1,2,4-triazol-3-yl)-2-(1 H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide (Compound 99):

1H NMR (400 MHz, DMSO-d$_6$):

δ(ppm) 1.27 (3H, s, CH$_3$ Aib), 1.29 (3H, s, CH$_3$ Aib), 3.25 (1H, dd, J=14.3, J= 5.6, 1H CH$_2$ βTrp), 3.38 (1H, dd, J=14.3, J= 9.1, 1H CH$_2$ βTrp), 3.68 (3H, s, OCH$_3$), 3.72 (3H, s, OCH$_3$), 4.10 (1H, d, J=16.5, 1H CH$_2$ indole), 4.16 (1H, d, J=16.5, 1H CH$_2$ indole), 4.96 (1H, d, J=16.8, 1H CH$_2$ o,p-dimethoxybenzyl), 5.12 (1H, d, J=16.8, 1H CH$_2$ o,p-dimethoxybenzyl), 5.16 (1H, m, CaH Trp), 6.21 (1H, dd, J=8.5, J=2.1, H$_5$ o,p-dimethoxybenzyl), 6.27 (1H, d, J=8.5, H$_6$ o,p-dimethoxybenzyl), 6.57 (1H, d, J=2.1, H$_3$ o,p-dimethoxybenzyl), 6.83 (1H, t, H$_5$ Trp), 6.94 (1H, t, H$_5$ indole), 7.02 (1H, t, H$_5$ Trp), 7.05 (1H, d, H$_2$ indole), 7.06 (1H, t, H$_6$ indole), 7.07 (1H, s, H$_2$ Trp), 7.07 (1H, d, H$_5$ Trp), 7.31 (1H, d, H$_7$ Trp), 7.33 (1H, d, H$_7$ indole), 7.36 (1H, d, J=7.8, H$_4$ indole), 8.00 (2H, br s, NH$_2$ Aib), 8.92 (1H, d, J=8.2, NH Trp), 10.79 (1H, s, NH indole Trp), 10.89 (1H, s, NH indole).

13C NMR (400 MHz,DMSO-d$_6$):
δ(ppm) 21.2 (CH₂ indole), 23.1 (CH₃ Aib), 23.2 (CH₃ Aib), 28.6 (C₃ Trp), 41.4 (N-CH₂ o,p-dimethoxybenzyl), 45.1 (Ca Trp), 55.2 (OCH₃), 55.4 (OCH₃), 56.2 (Cq Aib), 98.5 (C₃ o,p-dimethoxybenzyl), 104.6 (C₅ o,p-dimethoxybenzyl), 107.9 (C₃ indole), 109.5 (C₅ Trp), 111.2 (C₇ Trp), 111.3 (C₇ indole), 115.1 (C₁ o,p-dimethoxybenzyl), 117.8 (C₄ Trp), 118.1 (C₅ Trp), 118.3 (C₃ indole), 118.4 (C₆ indole), 120.8 (C₆ Trp), 121.1 (C₆ indole), 123.5 (C₁ indole), 124.3 (C₄ Trp), 126.6 (C₉ indole), 126.8 (C₉ Trp), 127.2 (C₆ o,p-dimethoxybenzyl), 136.0 (C₅ Trp), 136.2 (C₈ indole), 157.5 (Cq triazole), 154.9 (Cq triazole), 157.2 (C₂ o,p-dimethoxybenzyl), 160.3 (C₄ o,p-dimethoxybenzyl), 171.2 (CO Aib).

10

(R)-L-(1-(5-((1H-indol-3-yl)methyl)-4-(4-methoxybenzyl)-4H 1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide (Compound 101):

1H NMR (300 MHz, DMSO-d₆, 300K):
δ(ppm) 1.22 (3H, s, CH₃ Aib), 1.25 (3H, s, CH₃ Aib), 3.22 (1H, dd, J= 14 Hz and 6 Hz, CH₂ βTrp), 3.34 (1H, dd, J= 14 Hz and 9 Hz, CH₂ βTrp), 3.68 (3H, s, OCH₃), 4.11 (2H, m, Chb-indole), 5.09 (3H, m, CH αTrp and Chb-p-methoxybenzyl), 6.70 (4H, s, CHarm-p-methoxybenzyl), 6.78 (2H, m, H₅ indole and H₅ Trp), 6.93 (2H, m, H₆ indole and H₆ Trp), 7.01-7.06 (3H, m, H₂ indole, H₂ and H₄ Trp), 7.31 (3H, m, H₄ and H₇ indole, H₇ Trp), 7.98 (3H, brs, NH₂ Aib), 8.92 (1H, d, J= 8 Hz, NH amide), 10.77 (1H, s, NH indole Trp).

13C NMR (75 MHz, DMSO-d₆, 300K):
δ(ppm) 21.7 (CHr indole), 23.5 (CH₃ Aib), 23.7 (CH₃ Aib), 28.9 (CH₂ βTrp), 45.6 (CH αTrp), 45.8 (CH₂ p-methoxybenzyl), 55.5 (OCH₃), 56.7 (Cq Aib), 108.1 (C₃ indole), 109.7 (C₅ Trp), 111.7 (C₇ Trp), 111.9 (C₇ indole), 114.5 (C₅ and C₆ p-methoxybenzyl), 118.3 (C₄ Trp), 118.7 (C₄ indole), 118.8 (C₅ indole), 118.9 (C₅ Trp), 121.3 (C₆ indole), 121.6 (C₆ Trp), 124.2 (C₂ indole), 125.3 (C₂ Trp), 127.1 (C₉ indole), 127.2 (C₉ Trp), 127.6 (C₁ p-methoxybenzyl), 127.8 (C₂ and C₆ p-methoxybenzyl), 136.4 (C₉ Trp), 136.7 (C₈ indole), 154.2 (Cq triazole), 155.2 (Cq triazole), 159.2 (C₄ p-methoxybenzyl), 171.9 (CO Aib).

30

(R)-L-(1-(4-(2,4-dimethoxybenzyl)-5-benzyl-4AV-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide (Compound 102):
1H NMR (400 MHz, DMSO-d$_6$):

δ(ppm) 1.30 (3H, s, CH$_3$ Ajb), 1.33 (3H, s, CH$_3$ Aib), 3.26 (1H, dd, J=14.2, 1H CH$_2$ βTrp), 3.38 (1H, dd, J=14.2, 1H CH$_2$ βTrp), 3.69 (3H, s, OCH$_3$), 3.72 (3H, s, OCH$_3$), 4.02 (2H, s, CH$_2$ benzyl), 4.87 (1H, d, J=16.7, 1H CH$_2$ o,p-dimethoxybenzyl), 5.08 (1H, d, J=16.7, 1H CH$_2$ o,p-dimethoxybenzyl), 5.17 (1H, m, CaH Trp), 6.24 (1H, dd, J=8.4, 1H, 7.99 (1H, d, J=1.7, H$_5$ o,p-dimethoxybenzyl), 6.28 (1H, d, J=8.4, 1H H$_6$ o,p-dimethoxybenzyl), 6.56 (1H, d, J=1.7, H$_5$ o,p-dimethoxybenzyl), 6.85 (1H, t, J=7.5, H$_5$ Trp), 7.02 (1H, t, H$_6$ Trp), 7.07 (2H, m, H$_2$ benzyl), 7.08 (1H, s, H$_2$ Trp), 7.09 (1H, d, H$_4$ Trp), 7.16-7.29 (3H, m, H$_3$, H$_4$, H$_5$ benzyl), 7.31 (1H, d, J=8.2, H$_7$ Trp), 8.01 (2H, s, NH$_2$ Ajb), 8.92 (1H, d, J=7.9, NH Trp), 11.79 (1H, s, NH indole Trp).

13C NMR (400 MHz, DMSO-d$_6$):

δ(ppm) 23.2 (2CH$_3$ Aib), 28.7 (Cβ Trp), 30.2 (CH$_2$-benzyl), 41.3 (CH$_2$- o,p-dimethoxybenzyl), 45.2 (Ca Trp), 55.2 (OCH$_3$), 55.4 (OCH$_3$), 56.2 (Cq Aib), 98.5 (C$_3$ o,p-dimethoxybenzyl), 104.7 (C$_5$ o,p-dimethoxybenzyl), 109.5 (C$_3$ Trp), 111.3 (C$_7$ Trp), 115.1 (C$_1$ o,p-dimethoxybenzyl), 117.8 (C$_4$ Trp), 118.2 (C$_5$ Trp), 120.8 (C$_6$ Trp), 124.3 (C$_2$ Trp), 126.5 (C$_2$, C$_6$ benzyl), 126.8 (C$_3$ Trp), 127.3 (C$_6$ o,p-dimethoxybenzyl), 128.3 (C$_3$, C$_4$, C$_5$ Benzyl), 135.8 (C$_1$ benzyl), 136.0 (C$_8$ Trp), 153.4 (Cq triazole), 155.0 (Cq triazole), 157.2 (C$_2$ o,p-dimethoxybenzyl), 160.3 (C$_4$ o,p-dimethoxybenzyl), 171.3 (CO Aib).

20

(1/-)-N-(1-(5-(1H-indol-3-yl)methyl)-4-phenethyl-4'H,1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide (Compound 104):

1H NMR (300 MHz, DMSO-d$_6$, 3000K):

δ(ppm) 1.27 (3H, s, CH$_3$ Aib), 1.29 (3H, s, CH$_3$ Aib), 2.39-2.53 (4H, m, CH$_2$CH$_2$-phenyl), 3.74 (1H, m, CH$_2$ βTrp), 3.92 (1H, m, CH$_2$ βTrp), 3.99 (2H, s, CH$_2$-indole), 5.21 (1H, m, CH αTrp), 6.74 (2H, m, H$_5$ indole and H$_5$ Trp), 6.90 (1H, t, J=8 Hz, H$_6$ Trp), 6.92 (1H, t, J=8 Hz, H$_6$ indole), 7.01-7.06 (4H, m, H$_2$ and H$_6$ phenyl, H$_2$ indole and H$_2$ Trp), 7.16 (3H, m, H$_3$, H$_4$ and H$_5$ phenyl), 7.27 (1H, d, J=8 Hz, H$_4$ Trp), 7.32 (1H, d, J=8 Hz, H$_7$ Trp), 7.36 (1H, d, J=8 Hz, H$_7$ indole), 7.50 (1H, d, J=8 Hz, H$_4$ indole), 7.99 (3H, brs, NH$_2$ Aib), 9.02 (1H, S$_1$J= 8 Hz, NH amide), 10.79 (1H, s, NH indole Trp), 10.94 (1H, s, NH indole).

13C NMR (75 MHz, DMSO-d$_6$, 3000K):
δ(ppm) 21.4 (CH$_2$-indole), 23.5 (CH$_3$ Aib), 23.8 (CH$_3$ Aib), 29.5 (CH$_2$ βTrp), 35.8 (CH$_2$-CH$_2$-phenyl), 44.5 (CH$_2$-CH$_2$-phenyl), 45.8 (CH αTrp), 56.7 (Cq Aib), 108.5 (C$_3$ indole), 109.9 (C$_3$ Trp), 114.0 (C$_2$ indole and C$_7$ Trp), 118.4 (C$_4$ Trp), 118.8 (C$_4$ indole and C$_5$ Trp), 119.0 (C$_5$ indole), 121.4 (C$_6$ Trp), 121.7 (C$_6$ indole), 124.0 (C$_2$ indole and C$_2$ Trp), 127.1 (C$_4$ phenyl), 127.7 (C$_9$ indole and C$_9$ Trp), 128.8 (C$_2$ and C$_6$ phenyl), 129.1 (C$_3$ and C$_5$ phenyl), 136.5 (C$_8$ Trp), 136.6 (C$_8$ indole), 137.5 (C$_1$ phenyl), 153.6 (Cq triazole), 155.0 (Cq triazole), 171.8 (CO Aib).

(R)-N-(1-(5-benzyl-4-(2,2-diphenylethyl))-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide \(\text{(Compound 106)} \):

1H NMR (300 MHz, DMSO-d$_6$, 300 K):

δ(ppm) 1.29 (3H, s, CH$_3$ Aib), 1.34 (3H, s, CH$_3$ Aib), 3.37 (4H, m, CH$_2$ βTrp and CH$_2$-benzyl), 3.74 (1H, t, J = 7 Hz, CH$_2$-CH(Phe)$_2$), 4.21 (1H, dd, J = 14 Hz and 8 Hz, CH$_2$-CH(Phe)$_2$), 4.51 (1H, dd, J = 14 Hz and 8 Hz, CH$_2$-CH(Phe)$_2$), 5.08 (1H, m, CH αTrp), 6.72 (2H, m, H$_2$ and H$_6$ benzyl), 6.86-6.93 (5H, m, H$_3$, H$_4$ and H$_5$ benzyl, H$_5$ and H$_6$ Trp), 7.03 (1H, s, H$_2$ Trp), 7.06-7.25 (CHar phenyl from CH(Phe)$_2$), 7.33 (1H, d, J$_0$ = 8 Hz, H$_8$ Trp), 7.47 (1H, d, J$_0$ = 8 Hz, H$_7$ indole), 8.10 (3H, brs, NH$_2$ Aib), 8.98 (1H, d, J = 8 Hz, NH amide), 10.94 (1H, s, NH indole Trp).

13C NMR (75 MHz, DMSO-d$_6$, 300 K):

δ(ppm) 23.5 (CH$_3$ Aib), 23.7 (CH$_3$ Aib), 29.4 (CH$_2$ βTrp), 30.1 (CH$_2$-benzyl), 46.0 (CH αTrp), 47.7 (CH$_2$-CH(Phe)$_2$), 51.3 (CH(Phe)$_2$), 56.8 (Cq Aib), 109.8 (C$_3$ Trp), 112.0 (C$_7$ Trp), 118.5 (C$_4$ Trp), 119.0 (C$_5$ Trp), 121.5 (C$_6$ Trp), 124.8 (C$_2$ Trp), 127.1 (C$_4$ phenyl from CH(Phe)$_2$), 127.4 (C$_9$ Trp, C$_2$ and C$_6$ benzyl), 128.3 (C$_2$ and C$_6$ phenyl from CH(Phe)$_2$), 128.8-129.1 (C$_3$ and C$_5$ phenyl from CH(Phe)$_2$, C$_3$, C$_4$ and C$_5$ benzyl), 136.2 (C$_1$ benzyl), 136.5 (C$_9$ Trp), 141.0 (C$_1$ phenyl from CH(Phe)$_2$), 153.5 (Cq triazole), 155.1 (Cq triazole), 172.0 (CO Aib).

(R)-N-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(2,2-diphenylethyl))-4W-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide \(\text{(Compound 107)} \):

1H NMR (300 MHz, DMSO-d$_6$, 300 K):

δ(ppm) 1.34 (3H, s, CH$_3$ Aib), 1.38 (3H, s, CH$_3$ Aib), 2.06 (1H, m, CHz-Cli-indole), 2.30 (1H, m, CH$_2$-CH$_2$ indole), 2.78 (2H, m, CH$_2$-CH$_2$ indole), 3.35 (1H, dd, J = 14 Hz and 7
Hz, CH$_2$βTrp), 3.46 (1H, dd, J= 14 Hz and 9 Hz, CH$_2$βTrp), 3.58 (1H, t, J= 7 Hz, CH$_2$-CH(Phe)$_2$), 4.14 (1H, dd, J= 14 Hz and 8 Hz, CH$_2$-O-KPhe)$_2$), 4.39 (1H, dd, J= 14 Hz and 7 Hz, CH$_2$-CH(Plle)$_2$). 5.12 (1H, m, CH αTrp), 6.50 (2H, m, H$_6$ indole and H$_5$ Trp), 6.76 (2H, m, H$_6$ indole and H$_6$ Trp), 6.87 (2H, m, H$_2$ indole and H$_2$ Trp), 6.89-6.96 (2H, m, H$_4$ phenyl), 7.03-7.15 (8H, m, H$_2$, H$_3$, H$_5$ and H$_6$ phenyl), 7.33 (3H, m, H$_4$ indole, H$_4$ and H$_7$ Trp), 7.47 (1H, d, J= 8 Hz, H$_7$ indole), 8.11 (3H, brs, NH$_2$ Aib), 9.04 (1H, d, J= 8 Hz, NH amide), 10.76 (1H, s, NH indole), 10.96 (1H, s, NH indole Trp).

13C NMR (75 MHz, DMSO-d$_6$, 300 K):

δ(ppm) 22.4 (CH$_2$-CH$_2$-indole), 23.6 (CH$_3$ Aib), 23.8 (CH$_3$ Aib), 24.9 (CH$_2$-CH$_2$-indole), 29.6 (CH$_2$βTrp), 46.1 (CH αTrp), 47.5 (CH$_2$-CH(Phe)$_2$), 51.5 (CH$_2$-CH(Phe)$_2$), 56.8 (Cq Aib), 109.8 (C$_3$ Trp), 111.8 (C$_7$ Trp), 112.1 (C$_7$ indole), 113.5 (C$_3$ indole), 118.4 (C$_4$ Trp), 118.7 (C$_4$ and C$_5$ indole), 119.0 (C$_5$ Trp), 121.4 (C$_6$ indole and C$_6$ Trp), 122.8 (C$_2$ indole), 125.0 (C$_2$ Trp), 127.2 (C$_4$ indole and C$_8$ Trp), 127.3 (C$_4$ phenyl), 128.2 (C$_2$ and C$_6$ phenyl), 128.7 (C$_3$ and C$_8$ phenyl), 136.6 (C$_8$ indole and C$_8$ Trp), 141.0 (C$_1$ phenyl), 154.6 (2 Cq thazole), 172.0 (CO Aib).

(l?)-N-1-(4,5-dibenzyl-4 H1,2,4-thiazol-3-yl)-2-(1 H indol-3-yl)ethyl-2-amino-2-methylpropanamide (Compound 109):

1H NMR (300 MHz, DMSO-d$_6$, 300 K):

δ(ppm) 1.23 (3H, s, CH$_3$ Aib), 1.26 (3H, s, CH$_3$ Aib), 3.23 (1H, dd, J= 14 Hz and 6 Hz, CH$_2$βTrp), 3.35 (1H, dd, J= 14 Hz and 9 Hz, CH$_2$βTrp), 3.99 (2H, s, C-CH$_2$-phenyl), 5.10 (3H, m, N-Chb-phenyl and CH αTrp), 6.77 (3H, m, H$_6$ Trp, H$_2$ and H$_6$ phenyl from N-CH$_2$-phenyl), 6.99 (2H, m, H$_2$ and H$_6$ Trp), 7.01-7.07 (3H, m, H$_4$ Trp, H$_2$ and H$_6$ from C-CH$_2$-phenyl), 7.15-7.23 (6H, m, H$_3$, H$_4$ and H$_6$ phenyl from N-CH$_2$-phenyl and from C-CH$_2$-phenyl), 7.25 (1H, d, J= 8 Hz, H$_7$ Trp), 8.01 (3H, brs, NH$_2$ Aib), 8.91 (1H, d, J= 8 Hz, NH amide), 10.78 (1H, s, NH indole Trp).

13C NMR (75 MHz, DMSO-d$_6$, 300 K):

δ(ppm) 23.5 (CH$_3$ Aib), 23.7 (CH$_3$ Aib), 29.0 (CH$_2$ βTrp), 30.6 (C-CH$_2$-phenyl), 45.7 (CH αTrp), 46.1 (N-CH$_2$-phenyl), 56.7 (Cq Aib), 109.8 (C$_3$ Trp), 111.7 (C$_7$ Trp), 118.3 (C$_4$ Trp), 118.7 (C$_5$ Trp), 121.2 (C$_6$ Trp), 124.8 (C$_2$ Trp), 126.3 (C$_2$ and C$_6$ phenyl from N-CH$_2$-phenyl), 127.0 (C$_3$ and C$_6$ phenyl from C-CH$_2$-phenyl), 127.2 (C$_9$ Trp), 128.0 (C$_4$ phenyl from N-CH$_2$-phenyl), 128.8 (C$_3$, C$_4$ and C$_5$ phenyl from C-CH$_2$-phenyl), 128.9 (C$_3$
and C\textsubscript{5} phenyl from N-CH\textsubscript{2}-phenyl), 135.8 (Ci phenyl from N-CH\textsubscript{2}-phenyl), 136.2 (d phenyl from C-CH\textsubscript{2}-phenyl), 136.4 (C\textsubscript{6} Trp), 153.9 (Cq triazole), 155.3 (Cq triazole), 171.9 (CO Aib).

\textit{5} \textit{(R)}-\textit{N}-\textit{(1-(5-benzyl-4-hexyl-4 H1,2,4-triazol-3-yl)-2-(1 Hindol-3-yl)ethyl)-2-amino-2-methylpropanamide} \textbf{\textit{(Compound 110)}}:

\textit{1H NMR} (300 MHz, DMSO-d6, 300\textdegree{}K):

\begin{align*}
\delta (ppm) & \quad 0.71 \ (3H, t, \textit{J}= 7 \text{ Hz}, (CH\textsubscript{2})\textsubscript{5}-CH\textsubscript{3}), \quad 0.87 \ (4H, m, 2CH\textsubscript{2}), \quad 0.95 \ (2H, m, CH\textsubscript{2}-CH\textsubscript{3}), \quad 1.00 \ (2H, m, N-CH\textsubscript{2}-CH\textsubscript{2}), \quad 1.36 \ (6H, s, C\ H\textsubscript{3} Aib), \quad 3.36 \ (1H, dd, \textit{J}= 14 \text{ Hz} \text{ and } 7 \text{ Hz}, C\ H\textsubscript{2} \beta_{\text{Trp}}) \quad 3.41 \ (1H, dd, \textit{J}= 14 \text{ Hz} \text{ and } 7 \text{ Hz}, C\ H\textsubscript{2} \alpha_{\text{Trp}}), \quad 3.50 \ (1H, m, N-CH\textsubscript{2}), \quad 3.65 \ (1H, m, N-CH\textsubscript{2}), \quad 4.11 \ (2H, s, CH\textsubscript{3}-benzyl), \quad 5.14 \ (1H, m, CH \alpha_{\text{Trp}}), \quad 6.90 \ (1H, s, J= 7 \text{ Hz}, H\textsubscript{5} Trp), \quad 7.01 \ (1H, t, J\textsubscript{0}= 7 \text{ Hz}, H\textsubscript{6} Trp), \quad 7.04 \ (1H, s, H\textsubscript{2} Trp), \quad 7.09 \ (2H, m, H\textsubscript{2} and H\textsubscript{6} benzyl), \quad 7.17-7.29 \ (4H, m, H\textsubscript{4} Trp, H\textsubscript{5} H\textsubscript{4} and H\textsubscript{5} benzyl), \quad 7.47 \ (1H, d, J\textsubscript{0}= 8 \text{ Hz}, H\textsubscript{3} Trp), \quad 8.10 \ (3H, brs, NH\textsubscript{2} Aib), \quad 9.05 \ (1H, d, J= 7 \text{ Hz}, NH amide), \quad 10.84 \ (1H, s, NH indole Trp).
\end{align*}

\textit{13C NMR} (75 MHz, DMSO-d6, 300\textdegree{}K):

\begin{align*}
\delta (ppm) & \quad 14.1 \ ((CH\textsubscript{2})\textsubscript{5}-CH\textsubscript{3}), \quad 22.1 \ (CH\textsubscript{2}-CH\textsubscript{3}), \quad 23.8 \ (CH\textsubscript{3} Aib), \quad 23.5 \ (CH\textsubscript{3} Aib), \quad 25.8 \ (CH\textsubscript{3} benzyl), \quad 29.5 \ (CH\textsubscript{2} \beta_{\text{Trp}}), \quad 30.3 \ (N-CH\textsubscript{2}-CH\textsubscript{2}), \quad 30.8 \ (CH\textsubscript{2}-benzyl and CH\textsubscript{3}-CH\textsubscript{2}, \textsubscript{CH}H\textsubscript{2}), \quad 43.3 \ (N-CH\textsubscript{2}-CH\textsubscript{2}), \quad 46.1 \ (CH \alpha_{\text{Trp}}), \quad 56.8 \ (Cq Aib), \quad 109.6 \ (C\textsubscript{3} Trp), \quad 111.9 \ (C\textsubscript{7} Trp), \quad 118.2 \ (C\textsubscript{4} Trp), \quad 118.8 \ (C\textsubscript{5} Trp), \quad 121.4 \ (C\textsubscript{6} Trp), \quad 124.7 \ (C\textsubscript{2} Trp), \quad 127.2 \ (C\textsubscript{2} and C\textsubscript{6} benzyl), \quad 127.3 \ (C\textsubscript{9} Trp), \quad 128.8 \ (C\textsubscript{3}, C\textsubscript{4} and C\textsubscript{5} benzyl), \quad 136.2 \ (C\textsubscript{1} benzyl), \quad 136.5 \ (C\textsubscript{8} Trp), \quad 153.1 \ (Cq triazole), \quad 155.1 \ (Cq triazole), \quad 171.9 \ (CO Aib).
\end{align*}

\textit{(R)}-\textit{N}-\textit{(1-(4-(2-(1 tf-indol-3-yl)ethyl)-5-benzyl-4A7-1 ,2,4-triazol-3-yl)-2-(1 Hindol-3-yl)ethyl)-2-amino-2-methylpropanamide} \textbf{\textit{(Compound 111)}}:

\textit{1H NMR} (400 MHz, DMSO-d6, 300\textdegree{}K):

\begin{align*}
\delta (ppm) & \quad 1.31 \ (3H, s, CH\textsubscript{2} Aib), \quad 1.35 \ (3H, s, CH\textsubscript{2} Aib), \quad 2.51 \ (2H, m, CHz-Cji-indole), \quad 3.37 \ (2H, m, CH\textsubscript{2} \beta_{\text{Trp}}), \quad 3.76-3.90 \ (4H, m, Chb-benzyl and Chfe-Chz-indole), \quad 5.25 \ (1H, m, CH \alpha_{\text{Trp}}), \quad 6.88 \ (2H, t, J\textsubscript{0}= 7 \text{ Hz}, H\textsubscript{6} indole and H\textsubscript{5} Trp), \quad 6.95 \ (2H, t, J\textsubscript{0}= 7 \text{ Hz}, H\textsubscript{6} indole and H\textsubscript{5} Trp), \quad 7.03 \ (4H, m, H\textsubscript{2} Trp, H\textsubscript{2} indole, H\textsubscript{2} and H\textsubscript{6} benzyl), \quad 7.16 \ (2H, d, J\textsubscript{0}= 8 \text{ Hz}, H\textsubscript{4} indole and H\textsubscript{4} Trp), \quad 7.20-7.30 \ (4H, 3, H\textsubscript{7} indole, H\textsubscript{3}, H\textsubscript{4} and H\textsubscript{5} benzyl), \quad 7.47 \ (1H, d, H\textsubscript{6} benzyl).
\end{align*}
$J_\beta = 8$ Hz, H_7 Trp), 8.05 (3H, brs, NH$_2$ Aib), 9.05 (1H, d, $J_\beta = 8$ Hz, NH amide), 10.83 (1H, s, NH indole), 10.88 (1H, s, NH indole Trp).

13C NMR (100 MHz, DMSO-d$_6$, 300°K):

δ(ppm) 23.5 (CH$_3$ Aib), 23.7 (CH$_3$ Aib), 29.6 (CH$_2$ βTrp), 30.3 (CH$_2$-benzyl and CH$_2$-C$_{\text{indole}}$), 44.1 (CH$_2$-CH$_2$-indole), 46.1 (CH αTrp), 56.8 (Cq Aib), 109.8 (C$_3$ Trp), 109.9 (C$_3$ indole), 111.9 (C$_7$ indole and C$_7$ Trp), 118.3 (C$_4$ Trp), 118.4 (C$_4$ indole), 118.9 (C$_5$ indole and C$_5$ Trp), 121.3 (C$_6$ Trp), 121.5 (C$_6$ indole), 123.7 (C$_2$ indole), 124.7 (C$_2$ Trp), 127.0 (C$_9$ indole), 127.2 (C$_6$ and C$_6$ benzyl), 127.4 (C$_9$ Trp), 128.8 (C$_3$ and C$_5$ benzyl), 129.0 (C$_4$ benzyl), 136.3 (C$_1$ benzyl), 136.4 (C$_6$ indole and C$_6$ Trp), 153.1 (Cq triazole), 155.3 (Cq triazole), 171.8 (CO Aib).

(S)-Λ-(1-(4-(2,4-dimethoxybenzyl)-5-benzyl-4 $H_1,2,4$-triazol-3-yl)-2-(1 W-indol-3-yl)ethyl)-2-amino-2-methylpropanamide (Compound 112):

1H NMR (300 MHz, DMSO-d$_6$, 300°K):

δ(ppm) 1.26 (3H, s, CH$_3$ Aib), 1.29 (3H, s, CH$_3$ Aib), 3.24 (1H, dd, $J= 14$ Hz and 6 Hz, CH$_2$ βTrp), 3.33 (1H, dd, $J= 14$ Hz and 9 Hz, CH$_2$ βTrp), 3.64 (3H, s, OCH$_3$), 3.68 (3H, s, OCH$_3$), 3.99 (2H, s, CH$_2$ phenyl), 4.84 (1H, d, $J= 17$ Hz, CH$_2$ o,p-dimethoxybenzyl), 5.05 (1H, d, $J= 17$ Hz, CH$_2$ o,p-dimethoxybenzyl), 5.13 (1H, m, CH αTrp), 6.24 (2H, m, H$_5$ and H$_6$ o,p-dimethoxybenzyl), 6.52 (1H, d, $J_m = 2$ Hz, H$_5$ o,p-dimethoxybenzyl), 6.83 (1H, t, $J_\beta = 7$ Hz, H$_6$ Trp), 7.01 (1H, t, $J_\beta = 8$ Hz, H$_6$ Trp), 7.04 (1H, s, H$_2$ Trp), 7.05-7.23 (6H, m, H$_4$ Trp and CHar phenyl), 7.27 (1H, d, $J_\beta = 8$ Hz, H$_7$ Trp), 8.01 (3H, brs, NH$_2$ Aib), 8.90 (1H, d, $J= 8$ Hz, NH amide), 10.77 (1H, d, $J= 2$ Hz, NH indole Trp).

13C NMR (75 MHz, DMSO-d$_6$, 300°K):

δ(ppm) 23.6 (CH$_3$ Aib), 29.1 (CH$_3$ βTrp), 30.6 (CH$_2$-phenyl), 41.9 (CH$_2$ o,p-dimethoxybenzyl), 45.7 (CH αTrp), 55.7 (OCH$_3$), 55.9 (OCH$_3$), 56.7 (Cq Aib), 99.9 (C$_3$ o,p-dimethoxybenzyl), 105.1 (C$_5$ o,p-dimethoxybenzyl), 109.9 (C$_3$ Trp), 111.7 (C$_7$ Trp), 115.5 (C$_1$ o,p-dimethoxybenzyl), 118.3 (C$_4$ Trp), 118.6 (C$_5$ Trp), 121.3 (C$_6$ Trp), 124.2 (C$_2$ Trp), 127.0 (C$_6$ o,p-dimethoxybenzyl), 127.3 (C$_9$ Trp), 127.8 (C$_4$ phenyl), 128.8 (C$_2$, C$_3$, C$_6$ and C$_6$ phenyl), 136.2 (C$_8$ Trp), 136.4 (C$_1$ phenyl), 153.9 (Cq triazole), 155.5 (Cq triazole), 157.6 (C$_2$ o,p-dimethoxybenzyl), 160.8 (C$_4$ o,p-dimethoxybenzyl), 171.8 (CO amide).
(R)-\(\alpha \)-(4-(3,5-dimethoxybenzyl)-S-phenethyl-4H-1,2,4-triazol-3-yl)ethyl)-2-amino-2-methylpropanamide (Compound 113):

\(^1H \) NMR (300 MHz, DMSO-d6, 300\(^{0}\)K):

\[\delta (ppm) \]

1.24 (3H, s, CH\textsubscript{3}Alb), 1.27 (3H, s, CH\textsubscript{3}Aib), 2.83 (4H, s, CHrChU-phenyl), 3.32 (2H, m, CH\textsubscript{2} Trp), 3.61 (6H, s, OCH\textsubscript{3}), 5.02 (2H, m, CH\textsubscript{2} m-dimethoxybenzyl), 5.18 (1H, m, CH \(\alpha \) Trp), 6.07 (2H, d, J\textsubscript{m} = 2 Hz, H\textsubscript{2} and H\textsubscript{6} m-dimethoxybenzyl), 6.42 (1H, brs, H\textsubscript{4} m-dimethoxybenzyl), 6.83 (1H, t, J\textsubscript{b} = 7 Hz, H\textsubscript{5} Trp), 6.99 (1H, t, J\textsubscript{b} = 8 Hz, H\textsubscript{6} Trp), 7.08 (1H, d, J = 2 Hz, H\textsubscript{2} Trp), 7.13 (3H, t, J\textsubscript{b} = 8 Hz, H\textsubscript{3}, H\textsubscript{4} and H\textsubscript{5} phenyl), 7.20 (3H, d, J\textsubscript{b} = 7 Hz, H\textsubscript{2} and H\textsubscript{6} phenyl, H\textsubscript{4} Trp), 7.28 (1H, d, J\textsubscript{b} = 8 Hz, H\textsubscript{7} Trp), 7.99 (3H, brs, NH\textsubscript{2} Aib), 8.92 (1H, d, J = 8 Hz, NH amide), 10.77 (1H, s, NH indole).

\(^{13}C \) NMR (75 MHz, DMSO-d6, 300\(^{0}\)K):

\[\delta (ppm) \]

23.5 (CH\textsubscript{3}Alb), 23.8 (CH\textsubscript{3}Aib), 26.5 (CH\textsubscript{2} CH\textsubscript{2} phenyl), 29.2 (CH\textsubscript{2} \(\beta \) Trp), 32.7 (CH\textsubscript{2} CH\textsubscript{2} phenyl), 45.6 (CH \(\alpha \) Trp), 45.8 (CH\textsubscript{2} m-dimethoxybenzyl), 55.6 (OCH\textsubscript{3}), 56.8 (Cq Alb), 99.6 (C\textsubscript{4} m-dimethoxybenzyl), 104.6 (C\textsubscript{2} and C\textsubscript{6} m-dimethoxybenzyl), 109.9 (C\textsubscript{3} Trp), 111.8 (C\textsubscript{7} Trp), 118.2 (C\textsubscript{4} Trp), 118.7 (C\textsubscript{5} Trp), 121.3 (C\textsubscript{6} Trp), 124.8 (C\textsubscript{2} Trp), 126.5 (C\textsubscript{4} phenyl), 127.3 (C\textsubscript{9} Trp), 128.7 (C\textsubscript{2}, C\textsubscript{3}, C\textsubscript{5} and C\textsubscript{6} phenyl), 136.4 (C\textsubscript{8} Trp), 138.6 (C\textsubscript{4} m-dimethoxybenzyl), 140.9 (C\textsubscript{1} phenyl), 154.6 (Cq triazole), 154.8 (Cq triazole), 161.4 (C\textsubscript{3} and C\textsubscript{5} m-dimethoxybenzyl), 171.8 (CQ amide).

(R)-\(\alpha \)-(1-(4-(4-bromobenzyl)-5-benzyl-4AV-1,2,4-triazol-3-yl)-2-(1 H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide (Compound 114):

\(^1H \) NMR (300 MHz, DMSO-d6, 300\(^{0}\)K):

\[\delta (ppm) \]

1.23 (3H, s, CH\textsubscript{3}Alb), 1.25 (3H, s, CH\textsubscript{3}Aib), 3.26 (1H, dd, J\textsubscript{d} = 14 Hz and 6 Hz, CH\textsubscript{2} Trp), 3.34 (1H, dd, J\textsubscript{d} = 14 Hz and 9 Hz, CH\textsubscript{2} \(\beta \) Trp), 4.01 (2H, m, CH\textsubscript{2} benzyl), 5.01 (1H, m, CH \(\alpha \) Trp), 5.08 (2H, s, CH\textsubscript{2} p-bromobenzyl), 6.59 (2H, d, J\textsubscript{d} = 8 Hz, H\textsubscript{2} and H\textsubscript{6} p-bromobenzyl), 6.81 (1H, t, J\textsubscript{d} = 7 Hz, H\textsubscript{5} Trp), 6.94 (1H, s, H\textsubscript{2} Trp), 6.98 (1H, t, J\textsubscript{d} = 7 Hz, H\textsubscript{6} Trp), 7.06 (2H, m, H\textsubscript{2} and H\textsubscript{6} benzyl), 7.12 (1H, d, J\textsubscript{b} = 7 Hz, H\textsubscript{4} Trp), 7.16-7.20 (3H, m, H\textsubscript{3}, H\textsubscript{4} and H\textsubscript{5} benzyl), 7.26 (1H, d, J\textsubscript{b} = 8 Hz, H\textsubscript{7} Trp), 7.29 (2H, d, J\textsubscript{b} = 8 Hz, H\textsubscript{3} and H\textsubscript{5} benzyl), 8.00 (3H, brs, NH\textsubscript{2} Aib), 8.92 (1H, d, J = 8 Hz, NH amide), 10.78 (1H, s, NH indole Trp).

\(^{13}C \) NMR (75 MHz, DMSO-d6, 300\(^{0}\)K):
δ(ppm) 23.5 (CH₃ Aib), 23.8 (CH₃ Aib), 29.0 (CH₂ β Trp), 30.5 (CH₂ benzyl), 45.6 (CH₂-
p-bromobenzyl), 45.7 (CH α Trp), 56.7 (Cq Aib), 109.7 (C₅ Trp), 111.8 (C₁ Trp), 118.2
(C₄ tryptophane), 118.7 (C₆ Trp), 121.2 (C₄ p-bromobenzyl), 121.3 (C₆ Trp), 124.9 (C₂
tryptophane), 127.0 (C₂ and C₆ benzyl), 127.2 (C₆ Trp), 128.4 (C₂ and C₆ p-
bromobenzyl), 128.9 (C₃, C₄ and C₅ benzyl), 131.9 (C₃ and C₅ p-bromobenzyl), 135.2
(C₁ p-bromobenzyl), 136.2 (C₈ Trp), 136.4 (C₁ benzyl), 153.9 (Cq triazole), 155.3 (Cq
triazole), 171.9 (CO Aib).

(R)-N-(1-(4-(2-methoxybenzyl)-5-benzyl-4 H1,2,4-triazol-3-yl)-2-(1 H-indol-3-yl)ethyl)-2-
amino-2-methylpropanamide (Compound 115):

¹H NMR (300 MHz, DMSO-d⁶, 300°K):

δ(ppm) 1.24 (3H, s, CH₃ Aib), 1.27 (3H, s, CH₃ Aib), 3.20 (1H, dd, J = 14 Hz and 5 Hz,
CH₂ β Trp), 3.33 (1H, dd, J = 14 Hz and 9 Hz, CH₂ β Trp), 3.68 (3H, s, OCH₃), 4.00 (2H,
s, CH₂ phenyl), 4.95 (1H, d, J = 17 Hz, CH2-O- methoxybenzyl), 5.07 (1H, m, CH α Trp),
5.18 (1H, d, J = 17 Hz, CH₂-O- methoxybenzyl), 6.27 (1H, d, J₀= 8 Hz, H₃ o-
methoxybenzyl), 6.67 (1H, t, J₀= 7 Hz, H₅ Trp), 6.77 (1H, t, J₀= 6 Hz, H₆ Trp), 6.92-7.05
(6H, m, H₂ Trp, H₂ and H₅ phenyl, H₄, H₅ and H₆ o-methoxybenzyl), 7.14-7.26 (5H, m,
H₄ and H₇ Trp, H₃, H₄ and H₅ phenyl), 8.03 (3H, brs, NH₂ Aib), 8.91 (1H, d, J = 8 Hz, NH
amide), 10.78 (1H, s, NH indole Trp).

¹³C NMR (75 MHz, DMSO-d⁶, 300°K):

δ(ppm) 23.5 (CH₃ Aib), 23.6 (CH₃ Aib), 29.1 (CH₂ β Trp), 30.5 (CH₂ phenyl), 42.1 (CH₂-
o-methoxybenzyl), 45.7 (CH α Trp), 55.9 (OCH₃), 56.7 (Cq Aib), 109.8 (C₅ Trp), 111.3
(C₃ o-methoxybenzyl), 111.7 (C₇ Trp), 118.2 (C₄ Trp), 118.7 (C₅ Trp), 120.9 (C₅ o-
methoxybenzyl), 121.2 (C₆ Trp), 123.3 (Cl o-methoxybenzyl), 124.8 (C₂ Trp), 126.6
25 (C₂ and C₆ phenyl), 127.1 (C₄ o-methoxybenzyl), 127.2 (C₉ Trp), 128.8 (C₃, C₄ and C₅
phenyl), 129.5 (C₆ o-methoxybenzyl), 136.0 (Cl phenyl), 136.4 (C₈ Trp), 154.0 (Cq
triazole), 155.6 (Cq triazole), 156.5 (C₂ o-methoxybenzyl), 171.8 (CO Aib).

(S)-N-(1-(4-(2,4-dimethoxybenzyl)-5-phenyl-4 H1,2,4-triazol-3-yl)-2-(1 H-indol-3-
yl)ethyl)-2-amino-2-methylpropanamide (Compound 116):

¹H NMR (300 MHz, DMSO-d⁶, 300°K):
δ (ppm) 1.28 (3H, s, CH$_3$ Aib), 1.32 (3H, s, CH$_3$ Aib), 2.81 (4H, m, CH$_2$-aip), 3.30 (2H, t, CH$_2$ β Trp), 3.61 (3H, s, OCH$_3$), 3.69 (3H, s, OCH$_3$), 4.87 (1H, d, J = 17 Hz, CH$_2$-o,p-dimethoxybenzyl), 5.03 (1H, d, J = 17 Hz, CH$_2$-o,p-dimethoxybenzyl), 5.20 (1H, m, CH αTrp), 6.29 (1H, dd, J$_{0}$ = 8 Hz and J$_{m}$ = 2 Hz, H$_5$ o,p-dimethoxybenzyl), 6.43 (1H, d, J$_{0}$ = 8 Hz, H$_6$ o,p-dimethoxybenzyl), 6.55 (1H, d, J$_{m}$ = 2 Hz, H$_7$ o,p-dimethoxybenzyl), 6.83 (1H, t, J$_{0}$ = 8 Hz, H$_5$ Trp), 6.99 (1H, t, J$_{0}$ = 8 Hz, H$_6$ Trp), 7.06 (1H, d, J = 2 Hz, H$_2$ Trp), 7.09-7.25 (6H, m, H$_4$ Trp and CHar phenyl), 7.28 (1H, d, J$_{0}$ = 8 Hz, H$_7$ Trp), 8.04 (3H, brs, NH$_2$ Aib), 8.92 (1H, d, J = 8 Hz, NH amide), 10.79 (1H, s, NH indole Trp).

13C NMR (75 MHz, DMSO-d$_6$, 300°C):

10 δ (ppm) 23.6 (CH$_3$ Aib), 23.7 (CH$_3$ Aib), 26.5 (CH$_2$-CH$_2$-phenyl), 29.1 (CH$_2$ β Trp), 32.7 (CH$_2$-CH$_2$-phenyl), 4.18 (CH$_2$-o,p-dimethoxybenzyl), 45.7 (CH αTrp), 55.7 (OCH$_3$), 55.9 (OCH$_3$), 56.8 (Cq Aib), 99.1 (C$_5$ o,p-dimethoxybenzyl), 105.2 (C$_5$ o,p-dimethoxybenzyl), 109.9 (C$_3$ Trp), 111.8 (C$_7$ Trp), 115.6 (C$_1$ o,p-dimethoxybenzyl), 118.3 (C$_4$ Trp), 118.7 (C$_5$ Trp), 121.3 (C$_5$ Trp), 124.4 (C$_2$ Trp), 126.6 (C$_4$ phenyl), 127.3 (C$_9$ Trp), 128.2 (C$_6$ o,p-dimethoxybenzyl), 128.7 (C$_2$, C$_3$, C$_5$ and C$_6$ phenyl), 136.4 (C$_8$ Trp), 140.9 (C$_1$ phenyl), 154.6 (C$_q$ triazole), 155.0 (C$_q$ triazole), 157.8 (C$_2$ o,p-dimethoxybenzyl), 160.9 (C$_4$ o,p-dimethoxybenzyl), 171.8 (CO Aib).

(1R)-N-(1-(4,5-diphenethyl-4 H 1,2,4-triazol-3-yl)-2-(1 H indol-3-yl)ethyl)-2-amino-2-methylpropanamide (Compound 117):

1H NMR (300 MHz, DMSO-d$_6$, 300°C):

δ (ppm) 1.32 (3H, s, CH$_3$ Aib), 1.37 (3H, s, CH$_3$ Aib), 2.59 (4H, m, C-CHrChb-phenyl), 2.83 (2H, t, J = 8 Hz, N-CH$_2$-CH$_2$-phenyl), 3.38 (2H, m, N-CH$_2$-CH$_2$-phenyl), 3.84 (1H, m, CH$_2$ β Trp), 3.94 (1H, m, CH$_2$ β Trp), 5.23 (1H, m, CH αTrp), 6.84 (2H, m, H$_4$ phenyl from C-CH$_2$-CH$_2$-phenyl and H$_4$ phenyl from N-CH$_2$-CH$_2$-phenyl), 6.93 (1H, t, J$_{0}$ = 8 Hz, H$_5$ Trp), 7.00 (1H, t, J$_{0}$ = 8 Hz, H$_5$ Trp), 7.07 (1H, d, J = 2 Hz, H$_2$ Trp), 7.1-7.27 (9H, m, H$_2$, H$_3$, H$_5$ and H$_5$ phenyl from C-CH$_2$-CH$_2$-phenyl, H$_2$, H$_3$, H$_5$ and H$_5$ phenyl from N-CH$_2$-CH$_2$-phenyl and H$_4$ Trp), 7.50 (1H, d, J$_{0}$ = 8 Hz, H$_7$ Trp), 8.07 (3H, brs, NH$_2$ Aib), 9.04 (1H, d, J = 8 Hz, NH amide), 10.85 (1H, s, NH indole Trp).

13C NMR (75 MHz, DMSO-d$_6$, 300°C):

δ (ppm) 23.5 (CH$_3$ Aib), 23.8 (CH$_3$ Aib), 25.9 (C-CH$_2$-CH$_2$-phenyl), 29.5 (CH$_2$ β Trp), 32.4 (C-CH$_2$-CH$_2$-phenyl), 35.8 (N-CH$_2$-CH$_2$-phenyl), 44.2 (N-CH$_2$-CH$_2$-phenyl), 45.9 (CH
(R)-2-amino-2-methylpropanamide (Compound 118):

1H NMR (300 MHz, DMSO-d$_6$, 300 K):

δ(ppm) 1.24 (3H, s, CH$_3$Aib), 1.25 (3H, s, CH$_3$Aib), 3.33 (2H, m, CH$_2$ βTrp), 4.04 (2H, s, CH$_2$-benzyl), 5.05 (1H, m, CH αTrp), 5.12 (2H, s, CH$_2$-77,p-dichlorobenzyl), 6.49 (1H, dd, J$_0$ = 8 Hz and J$_m$ = 2 Hz, H$_6$/77,p-dichlorobenzyl), 6.80 (1H, t, J$_0$ = 8 Hz, H$_5$ Trp), 6.87 (1H, d, J$_m$ = 2 Hz, H$_2$ Trp), 6.98 (1H, t, J$_0$ = 7 Hz, H$_6$ Trp), 7.02-7.10 (3H, m, H$_2$ and H$_6$ benzyl, H$_5$ m,p-dichlorobenzyl), 7.18 (3H, m, H$_3$, H$_4$ and H$_6$ benzyl), 7.26 (2H, m, H$_4$ and H$_7$ Trp), 8.04 (3H, brs, NH$_2$Aib), 8.94 (1H, d, J = 9 Hz, NH amide), 10.81 (1H, s, NH indole Trp).

13C NMR (75 MHz, DMSO-d$_6$, 300 K):

δ(ppm) 23.4 (CH$_3$Aib), 23.8 (CH$_3$Aib), 29.0 (CH$_2$ βTrp), 30.4 (CH$_2$-benzyl), 45.1 (CH$_2$ m,p-dichlorobenzyl), 45.6 (CH αTrp), 56.7 (Cq Aib), 109.6 (C$_3$ Trp), 111.8 (C$_7$ Trp), 118.1 (C$_4$ Trp), 118.6 (C$_5$ Trp), 121.3 (C$_6$ Trp), 124.9 (C$_2$ Trp), 126.4 (C$_6$ m,p-dichlorobenzyl), 127.0 (C$_2$ m,p-dichlorobenzyl), 127.2 (C$_9$ Trp), 128.4 (C$_2$ and C$_6$ benzyl), 130.7 (C$_4$ and C$_5$ m,p-dichlorobenzyl), 131.8 (C$_3$ m,p-dichlorobenzyl), 136.0 (C$_1$ benzyl), 136.4 (C$_8$ Trp), 136.7 (C$_1$ m,p-dichlorobenzyl), 154.1 (Cq triazole), 155.2 (Cq triazole), 172.0 (CO Aib).

(l)-N-(1-(4-(4-methoxybenzyl)-5-benzyl-4 H 1,2,4-triazol-3-yl)-2-phenylethyl)-2-amino-2-methylpropanamide (Compound 120):

1H NMR (300 MHz, DMSO-d$_6$, 300 K):

δ(ppm) 1.18 (3H, s, CH$_3$Aib), 1.26 (3H, s, CH$_3$Aib), 3.09 (1H, dd, J = 14 Hz and 6 Hz, CH$_2$ βPhe), 3.18 (1H, dd, J = 14 Hz and 9 Hz, CH$_2$ βPhe), 3.99 (2H, d, J = 4 Hz, CH$_2$-
phenyl), 4.95 (1H, d, J = 16 Hz, CH$_2$-p-methoxybenzyl), 5.06 (1H, d, J = 16 Hz, CH$_2$-p-methoxybenzyl), 5.13 (1H, m, CH αPhe), 6.78 (4H, s, CH$_2$-p-methoxybenzyl), 7.02-7.08 (4H, m, H$_2$ and H$_6$ phenyl, H$_2$ and H$_6$ Phe), 7.12-7.25 (6H, m, H$_3$, H$_4$ and H$_5$ phenyl, H$_3$, H$_4$ and H$_5$ Phe), 7.99 (3H, brs, NH$_2$ Aib), 8.92 (1H, d, J= 8 Hz, NH amide).

13C NMR (75 MHz, DMSO-d$_6$, 300°K):

δ(ppm) 23.4 (CH$_3$ Aib), 23.8 (CH$_3$ Aib), 30.7 (CH$_2$-phenyl), 38.7 (CH$_2$ βPhe), 45.9 (CH$_2$-p-methoxybenzyl), 46.4 (CH αPhe), 55.6 (OCH$_3$), 56.7 (Cq Aib), 114.6 (C$_3$ and C$_5$-p-methoxybenzyl), 126.9 and 127.1 (C$_4$ phenyl and C$_4$ Phe), 127.7 (C$_1$-p-methoxybenzyl), 128.2 (C$_2$ and C$_6$ Phe), 128.5 (C$_3$ and C$_5$ Phe), 128.9 (C$_2$, C$_3$, C$_5$ and C$_6$ phenyl), 129.7 (C$_2$ and C$_6$-p-methoxybenzyl), 136.3 (C$_4$ phenyl), 137.6 (C$_1$ Phe), 154.0 (Cq triazole), 154.9 (Cq triazole), 159.2 (C$_4$-p-methoxybenzyl), 171.7 (CO amide).

(R)-N-(1-(4-(4-fluorobenzyl))-5-phenethyl)-4 H$_1$2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide (Compound 121):

1H NMR (300 MHz, DMSO-d$_6$, 300°K):

δ(ppm) 1.27 (3H, s, CH$_3$ Aib), 1.28 (3H, s, CH$_3$ Aib), 2.82 (4H, m, C$_2$-Cl-χphenyl), 3.34 (2H, m, CH$_2$ βTrp), 5.06 (2H, s, CH$_2$-p-fluorobenzyl), 5.16 (1H, m, CH αTrp), 6.85 (3H, m, H$_5$ Trp, H$_3$ and H$_5$-p-fluorobenzyl), 6.98-7.04 (4H, m, H$_2$ and H$_6$ Trp, H$_2$ and H$_6$ phenyl), 7.09-7.11 (2H, m, H$_2$ and H$_6$-p-fluorobenzyl), 7.15 (1H, d, J= 6 Hz, H$_4$ Trp), 7.19 (3H, t, J= 8 Hz, H$_3$, H$_4$ and H$_5$ phenyl), 7.29 (1H, d, J= 8 Hz, H$_7$ Trp), 8.01 (3H, brs, NH$_2$ Aib), 8.94 (1H, d, J= 8 Hz, NH amide), 10.78 (1H, s, NH indole Trp).

13C NMR (75 MHz, DMSO-d$_6$, 300°K):

δ(ppm) 23.5 (CH$_3$ Aib), 23.8 (CH$_3$ Aib), 26.5 (CH$_2$-CH$_2$-phenyl), 29.2 (CH$_2$ βTrp), 32.7 (CH$_2$-CH$_2$-phenyl), 45.4 (CH$_2$-p-fluorobenzyl), 45.7 (CH αTrp), 56.8 (Cq Aib), 109.8 (C$_3$ Trp), 111.8 (C$_7$ Trp), 115.9 and 116.2 (C$_3$ and C$_5$-p-fluorobenzyl), 118.3 (C$_4$ Trp), 118.7 (C$_5$ Trp), 121.3 (C$_6$ Trp), 124.8 (C$_2$ Trp), 126.5 (C$_4$ phenyl), 127.3 (C$_3$ Trp), 128.5 (C$_2$ and C$_6$-p-fluorobenzyl), 128.7 (C$_2$, C$_3$, C$_5$ and C$_6$ phenyl), 132.2 (C$_1$-p-fluorobenzyl), 136.4 (C$_8$ Trp), 140.9 (C$_1$ phenyl), 154.5 (Cq triazole), 154.7 (Cq triazole), 160.3 (C$_4$-p-fluorobenzyl), 171.9 (CO amide).

NMR 19F (282 MHz, DMSO-d$_6$, 300°K):
δ(ppm) - 114.9 (1F, m, p-fluorobenzyl).

(?)-N-(1-((4-(3,4-dichlorobenzyl)-5-phenethyl-4 H 1,2,4-triazol-3-yl)-2-(1 H-indol-3-y)ethyl)-2-amino-2-methylpropanamide (Compound 122):

5 1H NMR (300 MHz, DMSO-d6, 300°K):

δ(ppm) 1.25 (3H, s, CH3 Aib), 1.26 (3H, s, CH3 Aib), 2.84 (4H, m, Chb-CHb-phenyl), 3.34 (2H, d, J= 7 Hz, CH2 βTrp), 5.11 (3H, m, CH αTrp and CH2-m,p-dichlorobenzyl), 6.63 (1H, dd, J0 = 8 Hz and Jm= 2 Hz, H6 m,p-dichlorobenzyl), 6.83 (1H, t, J0 = 8 Hz, H5 Trp), 6.99 (1H, t, J0 = 8 Hz, H6 Trp), 7.05 (1H, d, J = 2 Hz, H2 Trp), 7.12 (5H, m, CHar phenyl), 7.17 (1H, d, J0 = 8 Hz, H4 Trp), 7.21 (1H, s, H2 /77,p-dichlorobenzyl), 7.27 (1H, d, J0 = 8 Hz, H5 m,p-dichlorobenzyl), 7.39 (1H, d, J0 = 8 Hz, H7 Trp), 8.02 (3H, brs, NH2 Aib), 8.94 (1H, d, J = 8 Hz, NH amide), 10.78 (1H, s, NH indole Trp).

13C NMR (75 MHz, DMSO-d6, 300°K):

δ(ppm) 23.5 (CH3 Aib), 23.8 (CH3 Aib), 26.4 (CH2-CH2-phenyl), 29.1 (CH2 βTrp), 32.6 (CH2-C phenyl), 44.7 (CH2-m,p-dichlorobenzyl), 45.6 (CH αTrp), 56.7 (Cq Aib), 109.7 (C3 Trp), 111.8 (C7 Trp), 118.1 (C4 Trp), 118.7 (C5 Trp), 121.3 (C6 Trp), 124.9 (C2 Trp), 126.5 (C4 phenyl and C6 /n.p-dichlorobenzyl), 127.2 (C9 Trp), 128.7 (C2, C3, C5 and C6 phenyl, C2 /77,p-dichlorobenzyl), 130.9 (C4 m,p-dichlorobenzyl), 131.4 (C5 m,p-dichlorobenzyl), 132.0 (C3 m,p-dichlorobenzyl), 136.4 (C8 Trp), 137.2 (C1 m,p-dichlorobenzyl), 140.8 (C1 phenyl), 154.5 (Cq triazole), 154.7 (Cq triazole), 171.9 (CO amide).

(R)- N-(1-((4-(4-methylbenzyl)-5-benzyl-1,2,4-triazol-3-yl)-2-(1 H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide (Compound 124):

25 1H NMR (300 MHz, DMSO-d6, 300°K):

δ(ppm) 1.22 (3H, s, CH3 Aib), 1.27 (3H, s, CH3 Aib), 2.22 (3H, s, CH3 p-methylbenzyl), 3.22 (1H, dd, J= 14 Hz and 6 Hz, CH2 βTrp), 3.33 (1H, dd, J= 14 Hz and 9 Hz, CH2 βTrp), 3.99 (2H, s, CH2-benzyl), 5.04 (2H, s, CH2-p-methylbenzyl), 5.09 (1H, m, CH αTrp), 6.64 (2H, d, J0 = 8 Hz, H3 and H5 p-methylbenzyl), 6.78 (1H, t, J0 = 7 Hz, H6 Trp), 6.98 (4H, t, J0 = 7 Hz, H3 Trp, H4 and H5 benzyl), 7.01 (1H, d, J = 2 Hz, H2 Trp), 7.07 (2H, d, J0 = 7 Hz, H2 and H6 p-methylbenzyl), 7.20 (3H, m, H4 Trp, H2 and H6 benzyl),
7.26 (1H, d, J = 8 Hz, H7 Trp), 7.98 (3H, brs, NH2 Aib), 8.89 (1H, d, J = 8 Hz, NH amide), 10.74 (1H, s, NH indole Trp).

\(^{13}\text{C NMR}\) (75 MHz, DMSO-d\(^6\), 300\(^{0}\)K):

δ(ppm) 21.0 (CH\(_3\) p-methylbenzyl), 23.5 (CH\(_3\) Aib), 23.7 (CH\(_3\) Aib), 29.1 (CH\(_2\) β-Trp), 30.6 (CHz-benzyl), 45.7 (CH α-Trp), 46.0 (CH\(_2\)-p-methylbenzyl), 56.7 (Cq Aib), 109.8 (C\(_3\) Trp), 111.7 (C\(_7\) Trp), 118.3 (C\(_4\) Trp), 118.6 (C\(_5\) Trp), 121.2 (C\(_6\) Trp), 124.8 (C\(_2\) Trp), 126.3 (C\(_3\) and C\(_5\) p-methylbenzyl), 127.0 (C\(_4\) benzyl), 127.2 (C\(_9\) Trp), 128.9 (C\(_2\), C\(_3\), C\(_5\) and C\(_6\) benzyl), 129.7 (C\(_2\) and C\(_6\) p-methylbenzyl), 132.9 (C\(_1\) p-methylbenzyl), 136.3 (C\(_4\) p-methylbenzyl), 136.4 (C\(_8\) Trp), 137.4 (C\(_1\) benzyl), 153.9 (Cq triazole), 155.3 (Cq triazole), 171.8 (CO amide).

(S)-N\(-(1-(4-(4-methoxybenzyl)-5-(3-phenylpropyl)-4 H-1,2,4-triazol-3-yl)-2-(1 H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide (Compound 125):

\(^{1}\text{H NMR}\) (300 MHz, DMSO-d\(^6\), 300\(^{0}\)K):

δ(ppm) 1.27 (3H, s, CH\(_3\) Aib), 1.31 (3H, s, CH\(_3\) Aib), 1.74 (2H, m, (CH\(_2\)-CH\(_2\)-CH\(_2\)-phenyl), 2.52 (4H, t, J = 7 Hz, CHrCHrC±h-phenyl), 3.35 (2H, d, J = 7 Hz, CH\(_2\) β-Trp), 3.68 (3H, s, OCH\(_3\)), 4.98 (2H, s, CH\(_2\)-p-methoxybenzyl), 5.20 (1H, m, CH α-Trp), 6.75 (4H, s, CHarp-methoxybenzyl), 6.83 (1H, t, J\(_0\) = 8 Hz, H\(_5\) Trp), 6.99 (1H, t, J\(_0\) = 7 Hz, H\(_6\) Trp), 7.06 (3H, m, H\(_\alpha\) and H\(_\beta\) phenyl, H\(_2\) Trp), 7.14 (1H, d, J\(_0\) = 7 Hz, H\(_4\) Trp), 7.19 (3H, t, J\(_0\) = 8 Hz, H\(_\alpha\), H\(_\beta\) and H\(_\gamma\) phenyl), 7.29 (1H, d, J\(_0\) = 8 Hz, H\(_7\) Trp), 8.01 (3H, brs, NH\(_2\) Aib), 8.94 (1H, d, J = 8 Hz, NH amide), 10.79 (1H, d, J = 2 Hz, NH indole Trp).

\(^{13}\text{C NMR}\) (75 MHz, DMSO-d\(^6\), 300\(^{0}\)K):

δ(ppm) 23.6 (CH\(_3\) Aib), 23.8 (CH\(_3\) Aib), 24.1 (CH\(_2\)-CH\(_2\)-CH\(_2\)-phenyl), 28.5 (CH\(_2\)-CH\(_2\)-CH\(_2\)-phenyl), 29.2 (CH\(_2\) β-Trp), 34.7 (CH\(_2\)-CH\(_2\)-CH\(_2\)-phenyl), 45.5 (CH\(_2\)-p-methoxybenzyl), 45.8 (CH α-Trp), 55.5 (OCH\(_3\)), 56.8 (Cq Aib), 109.8 (C\(_3\) Trp), 111.8 (C\(_7\) Trp), 114.6 (C\(_3\) and C\(_5\) p-methoxybenzyl), 118.3 (C\(_4\) Trp), 118.7 (C\(_5\) Trp), 121.3 (C\(_6\) Trp), 124.9 (C\(_2\) Trp), 126.2 (C\(_4\) phenyl), 127.3 (C\(_9\) Trp), 127.8 (C\(_1\) p-methoxybenzyl), 127.9 (C\(_3\), C\(_4\) and C\(_5\) phenyl), 128.7 (C\(_2\) and C\(_6\) p-methoxybenzyl), 136.4 (C\(_8\) Trp), 141.7 (C\(_1\) phenyl), 154.7 (Cq triazole), 154.8 (Cq triazole), 159.2 (C\(_1\) p-methoxybenzyl), 171.9 (CO amide).
(S)-Λ /-(1 -(4-(4-methoxybenzyl)-5-benzyl-4 H -1,2,4-triazol-3-yl)-2-(1 H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide (Compound 126):

1H NMR (300 MHz, DMSO-d6, 3000 K):
δ(ppm) 1.25 (3H, CH3 Aib), 1.28 (3H, CH3 Aib), 3.26 (1H, dd, J = 14 Hz and 6 Hz, CH2 βTrp), 3.34 (1H, dd, J = 14 Hz and 8 Hz, CH2 βTrp), 3.99 (2H, s, CH2-phenyl), 4.98 (2H, Aib), 7.17 (1H, d, J = 2.77 Hz, and 1H, d, J = 2.94 Hz, CH2 p-nitrobenzyl), 5.13 (1H, d, J = 2.48 Hz, CH3-p-methoxybenzyl), 5.13 (1H, d, J = 2.48 Hz, CH3-p-methoxybenzyl), 6.70 (1H, t, J0= 8 Hz, H2 Trp), 6.99 (1H, d, J0 = 8 Hz, H3 Trp), 7.02-7.06 (4H, m, H2 and H4 Trp, H2 and H6 phenyl), 7.20 (3H, m, H3, H4 and H5 phenyl), 7.27 (1H, d, J0 = 8 Hz, H7 Trp), 8.00 (3H, s, NH2 Aib), 8.91 (1H, d, J = 8 Hz, NH amide), 10.76 (1H, s, NH indole Trp).

13C NMR (75 MHz, DMSO-d6, 3000 K):
δ(ppm) 23.5 (CH3 Aib), 23.7 (CH3 Aib), 29.1 (CH2 βTrp), 30.6 (CH2-phenyl), 45.7 (CH αTrp and CH2-p-methoxybenzyl), 55.5 (OCH3), 56.7 (Cq Aib), 109.8 (Cq Trp), 111.7 (Cq Trp), 114.5 (Cq and Cq p-methoxybenzyl), 118.3 (Cq Trp), 118.7 (Cq Trp), 121.3 (Cq Trp), 124.8 (Cq Trp), 127.1 (Cq phenyl), 127.3 (Cq Trp), 127.6 (Cq p-methoxybenzyl), 127.8 (Cq and Cq p-methoxybenzyl), 128.8 (Cq and Cq phenyl), 128.9 (Cq and Cq phenyl), 136.3 (Cq Trp), 136.4 (Cq phenyl), 153.8 (Cq triazole), 155.2 (Cq triazole), 159.2 (Cq p-methoxybenzyl), 171.9 (CO amide).

1N-(R)-1 -(4-(4-nitrobenzyl)-5-phenethyl-4 H -1,2,4-triazol-3-yl)-2-(1 H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide (Compound 128):

1H NMR (300 MHz, DMSO-d6, 3000 K):
δ(ppm) 1.28 (3H, CH3 Aib), 1.29 (3H, CH3 Aib), 2.77-2.94 (4H, m, CH2 CH2 phenyl), 3.28 (1H, dd, 3J = 14 Hz and 8 Hz, CH2 βTrp), 3.43 (1H, dd, 3J = 14 Hz and 7 Hz, CH2 βTrp), 5.05 (1H, m, CH αTrp), 5.25 (2H, d, J = 7 Hz, CHjrp-nitrobenzyl), 6.72 (1H, t, J0 = 7 Hz, H5 Trp), 6.89 (2H, d, J0 = 9 Hz, H2 and H6 p-nitrobenzyl), 6.92 (1H, t, J0 = 7 Hz, H6 Trp), 7.00 (1H, d, Jm = 2 Hz, H2 Trp), 7.08-7.15 (4H, m, H4 and H7 Trp, H2 and H5 phenyl), 7.17 (2H, J0 = 7 Hz, H3 and H5 phenyl), 7.24 (1H, t, J0 = 8 Hz, H4 phenyl), 7.92 (2H, d, J0 = 9 Hz, H3 and H5 p-nitrobenzyl), 8.06 (3H, brs, NH2 Aib), 8.98 (1H, d, J = 8 Hz, NH amide), 10.79 (1H, s, NH indole Trp).

13C NMR (75 MHz, DMSO-d6, 3000 K):
δ(ppm) 23.5 (CH3 Aib), 23.7 (CH3 Aib), 29.1 (CH2 βTrp), 30.6 (CH2-phenyl), 45.7 (CH αTrp and CH2-p-methoxybenzyl), 55.5 (OCH3), 56.7 (Cq Aib), 109.8 (Cq Trp), 111.7 (Cq Trp), 114.5 (Cq and Cq p-methoxybenzyl), 118.3 (Cq Trp), 118.7 (Cq Trp), 121.3 (Cq Trp), 124.8 (Cq Trp), 127.1 (Cq phenyl), 127.3 (Cq Trp), 127.6 (Cq p-methoxybenzyl), 127.8 (Cq and Cq p-methoxybenzyl), 128.8 (Cq and Cq phenyl), 128.9 (Cq and Cq phenyl), 136.3 (Cq Trp), 136.4 (Cq phenyl), 153.8 (Cq triazole), 155.2 (Cq triazole), 159.2 (Cq p-methoxybenzyl), 171.9 (CO amide).
δ (ppm) 23.5 (CH₃ Aib), 23.8 (CH₃ Aib), 26.4 (CH₂ CH₂-phenyl), 29.1 (CH₂ β Trp), 32.6 (CH₂ CH₂-phenyl), 45.3 (CH₂ p-nitrobenzyl), 45.7 (CH α Trp), 56.8 (Cq Aib), 109.6 (C₃ Trp), 111.8 (C₇ Trp), 118.1 (C₄ Trp), 118.5 (C₅ Trp), 121.2 (C₆ Trp), 124.1 (C₂ and C₅ p-nitrobenzyl), 124.8 (C₂ Trp), 126.5 (C₂ and C₅ phenyl), 127.2 (C₉ Trp, C₁ and C₆ p-nitrobenzyl), 128.7 (C₃, C₄ and C₅ phenyl), 136.4 (C₆ Trp), 140.8 (C₁ phenyl), 143.5 (C₁ p-nitrobenzyl), 154.5 (Cq triazole), 154.8 (Cq triazole), 172.0 (CO Aib).

(S)-N-(1-(4-(4-methoxybenzyl)-5-phenethyl-4 H 1,2,4-triazol-3-yl)-2-(1 H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide (Compound 129):

1H NMR (300 MHz, DMSO-d⁶, 3000K):

δ (ppm) 1.27 (3H, s, CH₃ Aib), 1.30 (3H, s, CH₃ Aib), 2.81 (4H, m, Ctb-C H₂-phenyl), 3.34 (2H, d, J= 7 Hz, CH₂ β Trp), 3.68 (3H, s, OCH₃), 4.99 (2H, s, CH₂ P-methoxybenzyl), 5.20 (1H, m, CH α Trp), 6.75 (4H, m, CHarp- methoxybenzyl), 6.83 (1H, t, J₀= 7 Hz, H₅ Trp), 7.03 (1H, t, J₀= 8 Hz, H₆ Trp), 7.04 (1H, d, J= 2 Hz, H₂ Trp), 7.10 (2H, d, J₀= 7 Hz, H₂ and H₆ phenyl), 7.13 (1H, d, J₀= 8 Hz, H₄ Trp), 7.19 (3H, t, J₀= 7 Hz, H₃, H₄ and H₅ phenyl), 7.29 (1H, d, J₀= 8 Hz, H₇ Trp), 8.01 (3H, brs, NH₂ Aib), 8.94 (1H, d, J= 8 Hz, NH amide), 10.78 (1H, d, J= 2 Hz, NH indole Trp).

13C NMR (75 MHz, DMSO-d⁶, 3000K):

δ (ppm) 23.6 (CH₃ Aib), 23.8 (CH₃ Aib), 26.6 (CH₂ CH₂-phenyl), 29.2 (CH₂ β Trp), 32.7 (CH₂ CH₂-phenyl), 45.3 (CH₂ p-nitrobenzyl), 45.7 (CH α Trp), 55.5 (OCH₃), 56.8 (Cq Aib), 109.9 (C₃ Trp), 111.8 (C₇ Trp), 114.6 (C₃ and C₅ p-methoxybenzyl), 118.3 (C₄ Trp), 118.7 (C₅ Trp), 121.3 (C₆ Trp), 124.8 (C₂ Trp), 126.5 (C₄ phenyl), 127.3 (C₉ Trp and C₁ p-methoxybenzyl), 127.9 (C₂ and C₆ p-methoxybenzyl), 128.7 (C₂, C₃, C₅ and C₆ p-methoxybenzyl), 136.5 (C₆ Trp), 140.9 (C₁ phenyl), 154.4 (Cq triazole), 154.7 (Cq triazole), 159.2 (C₄ p-methoxybenzyl), 171.9 (CO amide).

(R)-N-(1-(4-(4-methoxyphenethyl)-5-phenethyl-4 H 1,2,4-triazol-3-yl)-2-(1 H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide (Compound 130):

1H NMR (300 MHz, DMSO-d⁶, 3000K):

δ (ppm) 1.30 (3H, s, CH₃ Aib), 1.35 (3H, s, CH₃ Aib), 2.55 (4H, m, CH₂ CH₂-phenyl and CHz-ChU-p-methoxybenzyl), 2.83 (2H, t, J= 8 Hz, CHj-CHrphenyl), 3.37 (2H, m, CH₂ CH₂-p-methoxybenzyl), 3.65 (3H, s, OCH₃), 3.77 (1H, m, CH₂ β Trp), 3.89 (1H, m, CH₂
\(\beta \text{Trp} \), 5.20 (1H, m, CH \(\alpha \text{Trp} \)), 6.72 (4H, s, CHar p-methoxybenzyl), 6.94 (1H, t, J\(\text{H} = 7 \) Hz, H\(\beta \) Trp), 7.02 (1H, t, J\(\text{H} = 8 \) Hz, H\(\gamma \) Trp), 7.05 (1H, d, J\(\text{H} = 2 \) Hz, H\(\delta \) Trp), 7.11 (2H, d, J\(\text{H} = 7 \) Hz, H\(\alpha \) and H\(\gamma \) phenyl), 7.16 (1H, d, J\(\text{H} = 7 \) Hz, H\(\delta \) Trp), 7.25 (3H m, H\(\beta \), H\(\gamma \), H\(\delta \) phenyl), 7.50 (1H, d, J\(\text{H} = 8 \) Hz, H\(\beta \) Trp), 8.05 (3H, brs, NH\(\alpha \) Aib), 9.02 (1H, d, J\(\text{H} = 8 \) Hz, NH amide), 10.83 (1H, d, J\(\text{H} = 2 \) Hz, NH indole Trp).

\(^{13} \text{C NMR} \) (75 MHz, DMSO-d\(^{6} \), 300\(^{0} \)K):
\[\delta \text{ppm} \]
- 23.5 (CH\(_{3} \) Aib), 23.8 (CH\(_{3} \) Aib), 26.0 (CH\(_{2} \)CH\(_{2} \)phenyl), 29.5 (CH\(_{2} \) \(\beta \)Trp), 32.5 (CH\(_{2} \)CH\(_{2} \)phenyl), 35.0 (CH\(_{2} \)CH\(_{2} \)p- methoxybenzyl), 44.4 (CH\(_{2} \)CH\(_{2} \)p- methoxybenzyl), 45.8 (CH \(\alpha \)Trp), 55.4 (OCH\(_{3} \)), 56.8 (Cq Aib), 109.9 (C\(_{3} \) Trp), 111.9 (C\(_{7} \) Trp), 114.2 (C\(_{3} \) and C\(_{5} \)p- methoxybenzyl), 118.4 (C\(_{4} \) Trp), 118.9 (C\(_{5} \) Trp), 121.4 (C\(_{6} \) Trp), 124.7 (C\(_{2} \) Trp), 126.5 (C\(_{4} \) phenyl), 127.4 (C\(_{9} \) Trp), 128.7 (C\(_{2} \), C\(_{3} \), C\(_{5} \) and C\(_{6} \) phenyl), 129.4 (C\(_{1} \)p- methoxybenzyl), 130.3 (C\(_{2} \) and C\(_{6} \)p- methoxybenzyl), 136.5 (C\(_{8} \) Trp), 141.0 (C\(_{1} \) phenyl), 154.0 (Cq triazole), 154.5 (Cq triazole), 158.6 (C\(_{4} \)p- methoxybenzyl), 171.8 (CO amide).

\(^{1} \text{H NMR} \) (300 MHz, DMSO-d\(^{6} \), 300\(^{0} \)K):
\[\delta \text{ppm} \]
- 1.26 (3H, s, CH\(_{3} \) Aib), 1.29 (3H, s, CH\(_{3} \) Aib), 2.95 (4H, m, CH\(_{3} \)Chb-phenyl),
- 3.40 (2H, m, CH\(_{2} \) \(\beta \)Trp), 5.26 (1H, m, CH \(\alpha \)Trp), 5.37 (2H, s, CH\(_{2} \)o-pyridyl), 6.83 (1H, t, J\(\text{H} = 7 \) Hz, H\(\delta \) Trp), 6.98 (1H, t, J\(\text{H} = 8 \) Hz, H\(\gamma \) Trp), 7.11-7.30 (1OH, m, H\(\beta \), H\(\gamma \) and H\(\delta \) Trp, CHar phenyl, H\(\beta \) and H\(\gamma \) o-pyridyl), 7.71 (1H, t, J\(\text{H} = 7 \) Hz, H\(\gamma \) o-pyridyl), 8.22 (3H, brs, NH\(\alpha \) Aib), 8.42 (1H, d, J\(\text{H} = 4 \) Hz, H\(\beta \) o-pyridyl), 9.05 (1H, d, J\(\text{H} = 8 \) Hz, NH amide), 10.87 (1H, s, NH indole Trp).

\(^{15} \text{C NMR} \) (75 MHz, DMSO-d\(^{6} \), 300\(^{0} \)K):
\[\delta \text{ppm} \]
- 23.4 (CH\(_{3} \) Aib), 23.7 (CH\(_{3} \) Aib), 26.4 (CH\(_{2} \)CH\(_{2} \)phenyl), 28.6 (CH\(_{2} \) \(\beta \)Trp), 32.5 (CH\(_{2} \)CH\(_{2} \)phenyl), 45.7 (CH \(\alpha \)Trp), 47.6 (CH\(_{2} \)o-pyridyl), 56.8 (Cq Aib), 109.8 (C\(_{3} \) Trp), 111.8 (C\(_{7} \) Trp), 118.3 (C\(_{4} \) Trp), 118.6 (C\(_{5} \) Trp), 121.2 (C\(_{6} \) Trp), 122.0 (C\(_{3} \) o-pyridyl), 123.6 (C\(_{5} \) o-pyridyl), 126.3 (C\(_{2} \) Trp), 126.6 (C\(_{4} \) phenyl), 127.3 (C\(_{9} \) Trp), 128.7 (C\(_{2} \), C\(_{3} \), C\(_{5} \) and C\(_{6} \) phenyl), 136.4 (C\(_{8} \) trytophane), 137.7 (C\(_{4} \)o-pyridyl), 140.7 (C\(_{1} \) phenyl), 150.1 (C\(_{6} \) o-pyridyl), 154.9 (Cq triazole), 155.2 (Cq triazole), 158.7 (C\(_{2} \) o-pyridyl), 172.0 (CO amide).
\(\nu \cdot ((R)-1-(4-(2,4\text{-dimethoxybenzyl})-5\text{-phenethyl}-4H\text{-1,2,4-triazol-3-yl})-2-(1H\text{-indol-3-yl})\text{ethyl})-2\text{-amino-2-methylpropanamide} \) (Compound 179):

\(^1\)H NMR (300 MHz, DMSO d\(^6\), 300\(^0\)K):

5 \(\delta \) (ppm) 1.26 (s, 3H, CH\(_3\) Aib), 1.30 (s, 3H, CH\(_3\) Aib), 2.82 (m, 4H, CH\(_2\) C=ch \text{-phenyl}), 3.29 (t, 2H, J = 8 Hz, CH\(_2\) \text{Trp}), 3.61 (s, 3H, OCH\(_3\)), 3.68 (s, 3H, OCH\(_3\)), 4.85 (d, 1H, J = 17 Hz, CH\(_2\) o,p-dimethoxybenzyl), 5.02 (d, 1H, J = 17 Hz, CH\(_2\) o,p-dimethoxybenzyl), 5.18 (m, 1H, CH \text{Trp}), 6.29 (dd, 1H, J\(_{1} \)= 8 Hz and J\(_{m} \)= 2 Hz, H\(_6\) o,p-dimethoxybenzyl), 6.40 (d, 1H, J\(_{0} \)= 8 Hz, H\(_5\) o,p-dimethoxybenzyl), 6.55 (d, 1H, J\(_{m} \)= 2 Hz, H\(_3\) o,p-dimethoxybenzyl), 6.82 (t, 1H, J\(_{0} \)= 8 Hz, H\(_5\) Trp), 6.99 (t, 1H, J\(_{0} \)= 8 Hz H\(_6\) Trp), 7.05 (s, 1H, H\(_1\) Trp), 7.09-7.24 (m, 6H, H\(_4\) Trp and CHar phenyl), 7.27 (d, 1H, J\(_{0} \)= 8 Hz, H\(_7\) Trp), 7.99 (s, 3H, large, NH\(_2\) Aib TFA salt), 8.89 (d, 1H, J = 8 Hz, NH amide), 10.77 (s, 1H, NH indole Trp).

\(^{13}\)C NMR (75 MHz, DMSO d\(^6\), 300\(^0\)K):

15 \(\delta \) (ppm) 23.6 (CH\(_3\) Aib), 23.7 (CH\(_3\) Aib), 26.5 (CH\(_2\)-CH\(_2\)-phenyl), 29.2 (CH\(_2\) \text{Trp}), 32.7 (CH\(_2\)-CH\(_2\)-phenyl), 41.6 (CH\(_2\) o,p-dimethoxybenzyl), 45.7 (CH \text{Trp}), 55.7 (OCH\(_3\)), 55.9 (OCH\(_3\)), 56.7 (Cq Aib), 99.1 (C\(_3\) o,p-dimethoxybenzyl), 105.2 (C\(_5\) o,p-dimethoxybenzyl), 110.0 (C\(_3\) Trp), 111.8 (C\(_7\) Trp), 115.7 (C\(_i\) o,p-dimethoxybenzyl), 118.3 (C\(_4\) Trp), 118.7 (C\(_5\) Trp), 121.3 (C\(_6\) Trp), 126.5 (C\(_2\) Trp and C\(_6\) o,p-dimethoxybenzyl), 127.3 (C\(_9\) Trp), 128.1 (C\(_4\) phenyl), 128.7 (C\(_2\), C\(_3\), C\(_5\) and C\(_6\) phenyl), 136.4 (C\(_8\) Trp), 140.9 (C\(_1\) phenyl), 154.5 (Cq triazole), 155.0 (Cq triazole), 157.8 (C\(_2\) o,p-dimethoxybenzyl), 160.9 (C\(_4\) o,p-dimethoxybenzyl), 171.7 (CO amide).

\(\nu \cdot ((R)-1-(4-(4-m\text{-thoxybenzyl})-5\text{-phenethyl}-4H\text{-1,2,4-triazol-3-yl})-2-(1H\text{-indol-3-yl})\text{ethyl})\text{-tetrahydro-2Hpyran-4-carboxamide} \) (Compound 184):

\(^1\)H NMR (300 MHz, DMSO d\(^6\), 300\(^0\)K):

30 \(\delta \) (ppm) 1.20 (m, 1H, H\(_2\) tetrahydropyrane), 1.30 (m, 3H, H\(_3\) and H\(_5\) tetrahydropyrane), 2.17 (m, 1H, H\(_4\) tetrahydropyrane), 2.82 (m, 4H, CHz-Chb-phenyl), 3.16 (m, 2H, H\(_2\) and H\(_6\) tetrahydropyrane), 3.31 (dd, 1H, J = 14 Hz and 8 Hz, CH\(_2\) \text{Trp}), 3.35 (dd, 1H, J = 14 Hz and 7 Hz, CH\(_2\) \text{Trp}), 3.66 (s, 3H, OCH\(_3\)), 3.72 (m, 2H, H\(_2\) and H\(_6\) tetrahydropyrane), 5.08 (m, 2H, CH\(_2\) o,p-dimethoxybenzyl), 5.26 (m, 1H, CH \text{Trp}), 6.73 (s, 4H, CHar-
methoxybenzyl), 6.87 (t, 1H, J= 8 Hz, H_5 Trp), 7.02 (m, 2H, H_2 and H_6 Trp), 7.07 (d, 2H, J= 7 Hz, H_2 and H_5 phenyl), 7.18 (m, 3H, H_3, H_4 and H_5 phenyl), 7.30 (m, 2H, H_4 and H_7 Trp), 8.52 (d, 1H, J= 8 Hz, NH amide), 10.77 (s, 1H, NH indole Trp).

13C NMR (75 MHz, DMSO d$_6$, 300 K):

δ(ppm) 26.3 (CH$_2$-CH$_2$-phenyl), 28.8 (C$_3$ and C$_5$ tetrahydropyranne), 29.2 (CH$_2$ βTrp), 32.2 (CH$_2$-CH$_2$-phenyl), 40.7 (C$_4$ tetrahydropyranne), 44.8 (CH αTrp), 45.9 (CH$_2$-p-methoxybenzyl), 55.5 (OCH$_3$), 66.6 (C$_2$ and C$_6$ tetrahydropyranne), 109.8 (C$_5$ Trp), 111.7 (C$_7$ Trp), 114.5 (C$_3$ and C$_5$ p-methoxybenzyl), 118.4 (C$_4$ Trp), 118.7 (C$_5$ Trp), 121.3 (C$_6$ Trp), 124.5 (C$_2$ Trp), 126.7 (C$_4$ phenyl), 127.2 (C$_9$ Trp), 127.5 (Cl p-methoxybenzyl), 128.8 (C$_2$ and C$_6$ phenyl), 128.7 (C$_3$ and C$_5$ phenyl), 127.9 (C$_2$ and C$_6$ p-methoxybenzyl), 136.4 (C$_8$ Trp), 140.4 (C$_1$ phenyl), 154.7 (C$_q$ triazole), 155.7 (C$_q$ triazole), 159.2 (C$_4$ p-methoxybenzyl), 174.2 (CO amide).

N-(((1H-indol-3-yl)methyl)-4-(3-methoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1W-indol-3-yl)ethyl)-2-amino-2-methylpropanamide (Compound 185):

1H NMR (300 MHz, DMSO d$_6$, 300 K):

δ(ppm) 1.19 (s, 3H, CH$_3$ Aib), 1.23 (s, 3H, CH$_3$ Aib), 3.14 (dd, 1H, J= 14 Hz and 5 Hz, CH$_2$ βTrp), 3.34 (dd, 1H, J= 14 Hz and 9 Hz, CH$_2$ βTrp), 3.46 (s, 3H, OCH$_3$), 3.72 (m, 2H, Chb-indole), 5.06 (m, 1H, CH αTrp), 5.14 (m, 2H, CH$_2$-m-methoxybenzyl), 6.31 (s, 1H, H$_5$ m-methoxybenzyl), 6.32 (d, 1H, J= 7 Hz, H$_6$ m-methoxybenzyl), 6.77 (m, 3H, H$_5$ indole, H$_5$ Trp and H$_4$ m-methoxybenzyl), 6.92 (m, 2H, H$_6$ indole and H$_6$ Trp), 7.02 (m, 2H, H$_2$ indole and H$_2$ Trp), 7.26-7.30 (m, 3H, H$_5$ m-methoxybenzyl, H$_4$ and H$_7$ indole, H$_4$ Trp), 7.41 (d, 1H, J= 8 Hz, H$_7$ Trp), 7.94 (bs, 3H, NH$_2$ Aib TFA salt), 8.87 (d, 1H, J= 8 Hz, NH amide), 10.73 (d, 1H, J= 2 Hz, NH indole), 10.85 (s, 1H, NH indole Trp).

13C NMR (75 MHz, DMSO d$_6$, 300 K):

δ(ppm) 21.7 (CH$_2$-indole), 23.5 (CH$_3$ Aib), 23.7 (CH$_3$ Aib), 28.9 (CH$_2$ βTrp), 45.5 (CH αTrp), 46.2 (CH$_2$-m-methoxybenzyl), 55.2 (OCH$_3$), 56.7 (C$_q$ Aib), 108.2 (C$_3$ indole), 109.8 (C$_5$ Trp), 111.7 (C$_7$ Trp), 111.9 (C$_7$ indole and C$_2$ m-methoxybenzyl), 113.7 (C$_4$ m-methoxybenzyl), 118.2 (C$_6$ m-methoxybenzyl), 118.4 (C$_q$ Trp), 118.6 (C$_4$ indole), 118.9 (C$_5$ indole and C$_5$ Trp), 121.2 (C$_6$ indole), 121.6 (C$_6$ Trp), 127.1 (C$_9$ indole), 127.2
(C₉ Trp), 136.4 (C₈ Trp), 136.7 (C₈ indole), 137.5 (C₁ m-methoxybenzyl), 154.2 (C₉ triazole), 155.3 (C₉ triazole), 160.0 (C₃ m-methoxybenzyl), 171.8 (CO amide).

Table 1: Further exemplary embodiments with synthetic sequence and MS data (compounds no. 2, 3, 14, 16, 17, 19-22, 24, 26-35, 36-122, 124-126, 128-150, 152-190):

<table>
<thead>
<tr>
<th>No.</th>
<th>Chemical name (Chem Draw Ultra 8)</th>
<th>ESI-MS (calculated)</th>
<th>ESI-MS (found (M+H)+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>(R)-N-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide</td>
<td>559.3</td>
<td>560.4</td>
</tr>
<tr>
<td>3</td>
<td>(R)-N-(1-(5-(3-(1H-indol-3-yl)propyl)-4-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide</td>
<td>573.3</td>
<td>574.3</td>
</tr>
<tr>
<td>14</td>
<td>(R)-N-(1-(5-(3-(1H-indol-3-yl)propyl)-4-(4-bromobenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide</td>
<td>637.2</td>
<td>638.1</td>
</tr>
<tr>
<td>16</td>
<td>(R)-N-(1-(5-(3-(1H-indol-3-yl)propyl)-4-hexyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide</td>
<td>553.3</td>
<td>554.4</td>
</tr>
<tr>
<td>17</td>
<td>(R)-N-(1-(4,5-bis(2-(1H-indol-3-yl)ethyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide</td>
<td>598.3</td>
<td>599.2</td>
</tr>
<tr>
<td>19</td>
<td>(R)-N-(1-(4-(3-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide</td>
<td>536.3</td>
<td>537.1</td>
</tr>
<tr>
<td>20</td>
<td>(R)-N-(1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide</td>
<td>536.3</td>
<td>537.3</td>
</tr>
<tr>
<td>21</td>
<td>(R)-N-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(3,5-dimethoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide</td>
<td>605.3</td>
<td>606.4</td>
</tr>
<tr>
<td>22</td>
<td>(R)-N-(1-(4-(4-methoxybenzyl)-5-(3-phenylpropyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide</td>
<td>550.3</td>
<td>551.3</td>
</tr>
<tr>
<td>24</td>
<td>(R)-N-(1-(4-(2-(1H-indol-3-yl)ethyl)-5-(3-(1H-indol-3-yl)propyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide</td>
<td>612.3</td>
<td>612.8</td>
</tr>
<tr>
<td>26</td>
<td>(R)-N-(1-(4-(2-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide</td>
<td>536.3</td>
<td>537.1</td>
</tr>
<tr>
<td>27</td>
<td>(R)-N-(2-(1H-indol-3-yl)-1-(4-(naphthalen-1-ylmethyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)ethyl)-2-amino-2-methylpropanamide</td>
<td>556.3</td>
<td>557.2</td>
</tr>
<tr>
<td>28</td>
<td>(R)-N-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(3,4-dichlorobenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide</td>
<td>613.2</td>
<td>614.2</td>
</tr>
<tr>
<td>29</td>
<td>(R)-N-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(4-fluorobenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide</td>
<td>563.3</td>
<td>564.1</td>
</tr>
<tr>
<td>30</td>
<td>(R)-N-(1-(4-(4-fluorobenzyl)-5-benzyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide</td>
<td>510.3</td>
<td>511.0</td>
</tr>
<tr>
<td>31</td>
<td>(R)-N-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(2,4-dimethoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)piperidine-4-carboxamide</td>
<td>631.3</td>
<td>632.0</td>
</tr>
<tr>
<td>32</td>
<td>(R)-N-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(2,4-dimethoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)piperidine-3-carboxamide</td>
<td>631.3</td>
<td>631.8</td>
</tr>
<tr>
<td>33</td>
<td>(R)-N-(1-(4-(4-methylbenzyl)-5-(3-phenylpropyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide</td>
<td>534.3</td>
<td>535.4</td>
</tr>
<tr>
<td>34</td>
<td>(R)-N-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(4-methylbenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide</td>
<td>559.7</td>
<td>559.9</td>
</tr>
<tr>
<td>36</td>
<td>(R)-N-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(2,4-dimethoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)piperidine-2-carboxamide</td>
<td>631.3</td>
<td>631.8</td>
</tr>
<tr>
<td>37</td>
<td>(R)-N-(1-(4-(4-methylbenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide</td>
<td>520.3</td>
<td>521.0</td>
</tr>
<tr>
<td>No.</td>
<td>Chemical Structure</td>
<td>LogP</td>
<td>MW</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>38</td>
<td>(R)-N-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(2,4-dimethoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-aminobenzamide</td>
<td>639.3</td>
<td>639.8</td>
</tr>
<tr>
<td>39</td>
<td>(R)-N-(1-(5-benzyl-4-(pyridin-2-ylmethyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide</td>
<td>493.3</td>
<td>493.9</td>
</tr>
<tr>
<td>40</td>
<td>(2S,4R)-N-((R)-1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-4-hydroxyppyrolidine-2-carboxamide</td>
<td>564.3</td>
<td>565.0</td>
</tr>
<tr>
<td>41</td>
<td>(S)-N-((R)-1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)piperidine-3-carboxamide</td>
<td>562.3</td>
<td>563.0</td>
</tr>
<tr>
<td>42</td>
<td>(R)-N-((R)-1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)piperidine-3-carboxamide</td>
<td>562.3</td>
<td>562.9</td>
</tr>
<tr>
<td>43</td>
<td>(R)-N-(1-(4-(4-ethylbenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide</td>
<td>534.3</td>
<td>535.0</td>
</tr>
<tr>
<td>44</td>
<td>(R)-N-(1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)piperidine-4-carboxamide</td>
<td>562.3</td>
<td>563.0</td>
</tr>
<tr>
<td>45</td>
<td>(R)-N-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(4-methoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)piperidine-4-carboxamide</td>
<td>601.3</td>
<td>602.0</td>
</tr>
<tr>
<td>46</td>
<td>(S)-N-((R)-1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)pyrrolidine-2-carboxamide</td>
<td>548.3</td>
<td>548.9</td>
</tr>
<tr>
<td>47</td>
<td>(R)-N-((R)-1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)pyrrolidine-2-carboxamide</td>
<td>548.3</td>
<td>548.9</td>
</tr>
<tr>
<td>48</td>
<td>(S)-N-((R)-1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)piperidine-2-carboxamide</td>
<td>562.3</td>
<td>563.0</td>
</tr>
<tr>
<td>49</td>
<td>(R)-N-((R)-1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)piperidine-2-carboxamide</td>
<td>562.3</td>
<td>562.9</td>
</tr>
<tr>
<td>50</td>
<td>(R)-N-(1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-aminoacetamide</td>
<td>508.3</td>
<td>508.9</td>
</tr>
<tr>
<td>51</td>
<td>(R)-N-(1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-(pyridin-2-yl)acetamide</td>
<td>570.3</td>
<td>571.2</td>
</tr>
<tr>
<td></td>
<td>Chemical Formula</td>
<td>570.3</td>
<td>570.9</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>52</td>
<td>N-((R)-1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-(pyridin-4-yl)acetamide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>(R)-N-((R)-1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)cyclohexanecarboxamide</td>
<td>561.3</td>
<td>562.4</td>
</tr>
<tr>
<td>54</td>
<td>(R)-N-((R)-1-(5-((2-(1H-indol-3-yl)ethyl)-4-benzyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)piperidine-4-carboxamide</td>
<td>571.3</td>
<td>572.5</td>
</tr>
<tr>
<td>55</td>
<td>(R)-N-((R)-1-(5-((2-(1H-indol-3-yl)ethyl)-4-benzyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)piperidine-3-carboxamide</td>
<td>571.3</td>
<td>572.4</td>
</tr>
<tr>
<td>56</td>
<td>(R)-N-((R)-1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-3-aminopropanamide</td>
<td>522.3</td>
<td>523.3</td>
</tr>
<tr>
<td>57</td>
<td>(S)-N-((R)-1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-aminopropanamide</td>
<td>522.3</td>
<td>523.3</td>
</tr>
<tr>
<td>58</td>
<td>(R)-N-((R)-1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-(pyridin-3-yl)acetamide</td>
<td>570.3</td>
<td>571.2</td>
</tr>
<tr>
<td>59</td>
<td>(R)-N-((R)-1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-3-(pyridin-3-yl)propyramide</td>
<td>584.3</td>
<td>585.3</td>
</tr>
<tr>
<td>60</td>
<td>(R)-N-((R)-1-(5-((2-(1H-indol-3-yl)ethyl)-4-benzyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-(pyridin-2-yl)acetamide</td>
<td>579.3</td>
<td>580.2</td>
</tr>
<tr>
<td>61</td>
<td>(R)-N-((R)-1-(5-((2-(1H-indol-3-yl)ethyl)-4-(2,4-dimethoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-(pyridin-2-yl)acetamide</td>
<td>639.3</td>
<td>640.5</td>
</tr>
<tr>
<td>62</td>
<td>(R)-N-((R)-1-(4-(2,4-dimethoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)piperidine-4-carboxamide</td>
<td>592.3</td>
<td>593.3</td>
</tr>
<tr>
<td>63</td>
<td>(R)-N-((R)-1-(4-(2,4-dimethoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)piperidine-2-carboxamide</td>
<td>592.3</td>
<td>593.3</td>
</tr>
<tr>
<td>64</td>
<td>(R)-N-((R)-1-(4-(2,4-dimethoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)picolinamide</td>
<td>586.3</td>
<td>587.2</td>
</tr>
<tr>
<td>65</td>
<td>(R)-N-((R)-1-(4-(2,4-dimethoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)isonicotinamide</td>
<td>586.3</td>
<td>587.2</td>
</tr>
<tr>
<td>No.</td>
<td>Chemical Structure</td>
<td>587.3</td>
<td>588.2</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>66</td>
<td>(R)-N-(1-(4-(2,4-dimethoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)pyrazine-2-carboxamide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>(R)-N-1-(4-(2,4-dimethoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)piperazine-2-carboxamide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>(S)-N-(R)-1-(4-(2,4-dimethoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)pyrrolidine-2-carboxamide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>(R)-N-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(2,4-dimethoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-aminooacetamide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>(S)-N-(R)-1-(5-(2-(1H-indol-3-yl)ethyl)-4-(2,4-dimethoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)pyrrolidine-2-carboxamide</td>
<td>617.3</td>
<td>618.0</td>
</tr>
<tr>
<td>71</td>
<td>(R)-N-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(2,4-dimethoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)pyrazine-2-carboxamide</td>
<td>626.3</td>
<td>627.2</td>
</tr>
<tr>
<td>72</td>
<td>(R)-N-1-(5-(2-(1H-indol-3-yl)ethyl)-4-(2,4-dimethoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)piperazine-2-carboxamide</td>
<td>632.3</td>
<td>633.2</td>
</tr>
<tr>
<td>73</td>
<td>(R)-N-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(2,4-dimethoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)picolinamide</td>
<td>625.3</td>
<td>626.3</td>
</tr>
<tr>
<td>74</td>
<td>(R)-1-(5-(2-(1H-indol-3-yl)ethyl)-4-(2,4-dimethoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethanamine</td>
<td>520.3</td>
<td>520.8</td>
</tr>
<tr>
<td>75</td>
<td>(R)-N-(1-(4-(2,4-dimethoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-aminoacetamide</td>
<td>538.3</td>
<td>539.3</td>
</tr>
<tr>
<td>76</td>
<td>(R)-N-(1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)pyrazine-2-carboxamide</td>
<td>557.3</td>
<td>558.0</td>
</tr>
<tr>
<td>77</td>
<td>(R)-N-(1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)isonicotinamide</td>
<td>556.3</td>
<td>556.9</td>
</tr>
<tr>
<td>78</td>
<td>(R)-N-(1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)piperazine-2-carboxamide</td>
<td>563.3</td>
<td>564.0</td>
</tr>
<tr>
<td>79</td>
<td>(R)-N-(1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)picolinamide</td>
<td>556.3</td>
<td>557.3</td>
</tr>
<tr>
<td>80</td>
<td>(R)-N-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(4-methoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)picolinamide</td>
<td>595.3</td>
<td>596.2</td>
</tr>
<tr>
<td>81</td>
<td>(R)-N-1-(5-(2-(1H-indol-3-yl)ethyl)-4-(4-methoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)piperazine-2-carboxamide</td>
<td>602.3</td>
<td>603.3</td>
</tr>
<tr>
<td>82</td>
<td>(R)-N-(1-(4-(4-ethylbenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-(pyridin-2-yl)acetamide</td>
<td>568.3</td>
<td>569.3</td>
</tr>
<tr>
<td>83</td>
<td>(R)-N-(1-(4-(4-ethylbenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)piperidine-4-carboxamide</td>
<td>560.3</td>
<td>561.3</td>
</tr>
<tr>
<td>84</td>
<td>(R)-N-1-(4-(4-ethylbenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)piperazine-2-carboxamide</td>
<td>561.3</td>
<td>562.2</td>
</tr>
<tr>
<td>85</td>
<td>(R)-N-(1-(4-(4-ethylbenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)ethyl)pyrazine-2-carboxamide</td>
<td>555.3</td>
<td>556.2</td>
</tr>
<tr>
<td>86</td>
<td>(R)-N-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(2,4-dimethoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-cis-amino-cyclohexanecarboxamide</td>
<td>645.3</td>
<td>646.2</td>
</tr>
<tr>
<td>87</td>
<td>(S)-N-((R)-1-(5-(2-(1H-indol-3-yl)ethyl)-4-(4-methoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)piperidine-3-carboxamide</td>
<td>601.3</td>
<td>601.9</td>
</tr>
<tr>
<td>88</td>
<td>(R)-N-((R)-1-(5-(2-(1H-indol-3-yl)ethyl)-4-(4-methoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)piperidine-3-carboxamide</td>
<td>601.3</td>
<td>602.2</td>
</tr>
<tr>
<td>89</td>
<td>(S)-N-((R)-1-(5-(2-(1H-indol-3-yl)ethyl)-4-(4-methoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)pyrrolidine-2-carboxamide</td>
<td>587.3</td>
<td>588.2</td>
</tr>
<tr>
<td>90</td>
<td>(R)-N-((R)-1-(5-(2-(1H-indol-3-yl)ethyl)-4-(4-methoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)pyrrolidine-2-carboxamide</td>
<td>587.3</td>
<td>588.0</td>
</tr>
<tr>
<td>91</td>
<td>(R)-N-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(4-methoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-(pyridin-2-yl)acetamide</td>
<td>609.3</td>
<td>610.0</td>
</tr>
<tr>
<td>92</td>
<td>(R)-N-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(4-bromobenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide</td>
<td>623.2</td>
<td>624.1</td>
</tr>
<tr>
<td>93</td>
<td>(R)-N-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(4-methoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-phenylethyl)-2-amino-2-methylpropanamide</td>
<td>536.3</td>
<td>536.9</td>
</tr>
<tr>
<td></td>
<td>Chemical Structure</td>
<td>LogP</td>
<td>LogD</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>94</td>
<td>(R)-N-(2-(1H-indol-3-yl)-1-(5-phenethyl-4-(thiophen-2-ylmethyl)-4H-1,2,4-triazol-3-yl)ethyl)piperidine-4-carboxamide</td>
<td>538.3</td>
<td>538.8</td>
</tr>
<tr>
<td>95</td>
<td>(R)-N-(1-4-(2-(1H-indol-3-yl)ethyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide</td>
<td>455.2</td>
<td>456.2</td>
</tr>
<tr>
<td>96</td>
<td>(R)-N-(1-(5-((1H-indol-3-yl)methyl)-4-methyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide</td>
<td>455.2</td>
<td>456.4</td>
</tr>
<tr>
<td>97</td>
<td>(R)-N-(1-(5-((1H-indol-3-yl)methyl)-4-methyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide</td>
<td>469.3</td>
<td>470.2</td>
</tr>
<tr>
<td>98</td>
<td>(R)-N-(1-(5-((1H-indol-3-yl)methyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide</td>
<td>441.3</td>
<td>442.1</td>
</tr>
<tr>
<td>99</td>
<td>(R)-N-(1-(5-((1H-indol-3-yl)methyl)-4-(2,4-dimethoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide</td>
<td>591.3</td>
<td>592.1</td>
</tr>
<tr>
<td>100</td>
<td>(R)-N-(1-(4-(2,4-dimethoxybenzyl)-5-methyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide</td>
<td>476.3</td>
<td>477.4</td>
</tr>
<tr>
<td>101</td>
<td>(R)-N-(1-(5-((1H-indol-3-yl)methyl)-4-(4-methoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide</td>
<td>561.3</td>
<td>562.3</td>
</tr>
<tr>
<td>102</td>
<td>(R)-N-(1-(4-(2,4-dimethoxybenzyl)-5-benzyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide</td>
<td>552.3</td>
<td>553.2</td>
</tr>
<tr>
<td>103</td>
<td>(R)-N-(1-(5-((3-(1H-indol-3-yl)propyl)-4-(2,4-dimethoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide</td>
<td>619.3</td>
<td>620.2</td>
</tr>
<tr>
<td>104</td>
<td>(R)-N-(1-(5-(1H-indol-3-yl)methyl)-4-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide</td>
<td>545.3</td>
<td>546.4</td>
</tr>
<tr>
<td>105</td>
<td>(R)-N-(1-(5-benzyl-4-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide</td>
<td>506.3</td>
<td>507.4</td>
</tr>
<tr>
<td>106</td>
<td>(R)-N-(1-(5-benzyl-4-(2,2-diphenylethyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide</td>
<td>582.3</td>
<td>583.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>107</td>
<td>(R)-N-(1-(5-(2-(1H-indol-3-yl))ethyl)-4-(2,2-diphenylethyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide</td>
<td>635.3</td>
<td>636.4</td>
</tr>
<tr>
<td>108</td>
<td>(R)-N-(1-(4-(3,5-dimethoxybenzyl)-5-benzyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide</td>
<td>552.3</td>
<td>553.3</td>
</tr>
<tr>
<td>109</td>
<td>(R)-N-(1-(4,5-dibenzyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide</td>
<td>492.3</td>
<td>493.3</td>
</tr>
<tr>
<td>110</td>
<td>(R)-N-(1-(5-benzyl-4-hexyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide</td>
<td>486.3</td>
<td>487.4</td>
</tr>
<tr>
<td>111</td>
<td>(R)-N-(1-(4-(2-(1H-indol-3-yl)ethyl)-5-benzyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide</td>
<td>545.3</td>
<td>546.2</td>
</tr>
<tr>
<td>112</td>
<td>(S)-N-(1-(4-(2,4-dimethoxybenzyl)-5-benzyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide</td>
<td>552.3</td>
<td>553.1</td>
</tr>
<tr>
<td>113</td>
<td>(R)-N-(1-(4-(3,5-dimethoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide</td>
<td>566.3</td>
<td>567.3</td>
</tr>
<tr>
<td>114</td>
<td>(R)-N-(1-(4-(4-bromobenzyl)-5-benzyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide</td>
<td>570.2</td>
<td>571.0</td>
</tr>
<tr>
<td>115</td>
<td>(R)-N-(1-(4-(2-methoxybenzyl)-5-benzyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide</td>
<td>522.3</td>
<td>523.0</td>
</tr>
<tr>
<td>116</td>
<td>(S)-N-(1-(4-(2,4-dimethoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide</td>
<td>566.3</td>
<td>567.0</td>
</tr>
<tr>
<td>117</td>
<td>(R)-N-(1-(4,5-diphenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide</td>
<td>520.3</td>
<td>521.1</td>
</tr>
<tr>
<td>118</td>
<td>(R)-N-(1-(4-(3,4-dichlorobenzyl)-5-benzyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide</td>
<td>560.2</td>
<td>561.3</td>
</tr>
<tr>
<td>119</td>
<td>(R)-1-(5-(2-(1H-indol-3-yl)ethyl)-4-(2,4-dimethoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethanamine</td>
<td>451.3</td>
<td>452.1</td>
</tr>
<tr>
<td>120</td>
<td>(R)-N-(1-(4-(4-methoxybenzyl)-5-benzyl-4H-1,2,4-triazol-3-yl)-2-phenylethyl)-2-amino-2-methylpropanamide</td>
<td>483.3</td>
<td>484.0</td>
</tr>
<tr>
<td></td>
<td>Molecule</td>
<td>Value</td>
<td>Value</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>121</td>
<td>(R)-N-(1-(4-(4-fluorobenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide</td>
<td>524.3</td>
<td>524.9</td>
</tr>
<tr>
<td>122</td>
<td>(R)-N-(1-(4-(3,4-dichlorobenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide</td>
<td>574.2</td>
<td>574.9</td>
</tr>
<tr>
<td>124</td>
<td>(R)-N-(1-(4-(4-methylbenzyl)-5-benzyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide</td>
<td>506.3</td>
<td>507.3</td>
</tr>
<tr>
<td>125</td>
<td>(S)-N-(1-(4-(4-methoxybenzyl)-5-(3-phenylpropyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide</td>
<td>550.3</td>
<td>551.3</td>
</tr>
<tr>
<td>126</td>
<td>(S)-N-(1-(4-(4-methoxybenzyl)-5-benzyl-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide</td>
<td>522.3</td>
<td>523.4</td>
</tr>
<tr>
<td>128</td>
<td>(R)-N-(1-(4-(4-nitrobenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide</td>
<td>551.3</td>
<td>551.9</td>
</tr>
<tr>
<td>129</td>
<td>(S)-N-(1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide</td>
<td>536.3</td>
<td>537.0</td>
</tr>
<tr>
<td>130</td>
<td>(R)-N-(1-(4-(4-methoxyphenethyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide</td>
<td>550.3</td>
<td>551.0</td>
</tr>
<tr>
<td>131</td>
<td>(R)-N-(2-(1H-indol-3-yl)-1-(5-phenethyl-4-thiophen-2-ylmethyl)-4H-1,2,4-triazol-3-yl)ethyl)-2-amino-2-methylpropanamide</td>
<td>512.2</td>
<td>512.8</td>
</tr>
<tr>
<td>132</td>
<td>(R)-N-(2-(1H-indol-3-yl)-1-(5-phenethyl-4-(pyridin-2-ylmethyl)-4H-1,2,4-triazol-3-yl)ethyl)-2-amino-2-methylpropanamide</td>
<td>507.3</td>
<td>508.4</td>
</tr>
<tr>
<td>133</td>
<td>(R)-N-(2-(1H-indol-3-yl)-1-(5-phenethyl-4-(pyridin-2-ylmethyl)-4H-1,2,4-triazol-3-yl)ethyl)piperidin-3-carboxamide</td>
<td>533.3</td>
<td>534.0</td>
</tr>
<tr>
<td>134</td>
<td>(S)-N-((R)-1-(4-(4-ethylbenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)pyrrolidine-2-carboxamide</td>
<td>546.3</td>
<td>547.3</td>
</tr>
<tr>
<td>135</td>
<td>N-((R)-1-(4-(4-ethylbenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-aminoacetamide</td>
<td>506.3</td>
<td>507.3</td>
</tr>
<tr>
<td>136</td>
<td>N-((R)-1-(5-(2-(1H-indol-3-yl)ethyl)-4-(4-methoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-(pyridin-4-yl)acetamide</td>
<td>609.3</td>
<td>610.4</td>
</tr>
<tr>
<td>No.</td>
<td>Structure</td>
<td>M.W.</td>
<td>M.W.</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>137</td>
<td>(2R)-N-((R)-1-(4-(4-ethylbenzyl)5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)piperidine-2-carboxamide</td>
<td>560.3</td>
<td>561.3</td>
</tr>
<tr>
<td>138</td>
<td>N-((R)-1-(4-(4-ethylbenzyl)5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)picolinamide</td>
<td>554.3</td>
<td>555.3</td>
</tr>
<tr>
<td>139</td>
<td>N-((R)-1-(4-(4-ethylbenzyl)5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)2-aminoypyridine-3-carboxamide</td>
<td>569.3</td>
<td>570.3</td>
</tr>
<tr>
<td>140</td>
<td>(2S)-N-((R)-1-(4-(4-ethylbenzyl)5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-aminopropanamide</td>
<td>520.3</td>
<td>521.2</td>
</tr>
<tr>
<td>141</td>
<td>N-((R)-1-(4-(4-ethylbenzyl)5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)isonicotinamide</td>
<td>554.3</td>
<td>555.4</td>
</tr>
<tr>
<td>142</td>
<td>N-((R)-2-(1H-indol-3-yl)-1-(5-phenethyl-4-phenyl-4H-1,2,4-triazol-3-yl)ethyl)piperidine-4-carboxamide</td>
<td>518.3</td>
<td>519.3</td>
</tr>
<tr>
<td>143</td>
<td>(2S)-N-((R)-2-(1H-indol-3-yl)-1-(5-phenethyl-4-phenyl-4H-1,2,4-triazol-3-yl)ethyl)piperidine-2-carboxamide</td>
<td>504.3</td>
<td>505.1</td>
</tr>
<tr>
<td>144</td>
<td>N-((R)-2-(1H-indol-3-yl)-1-(5-phenethyl-4-phenyl-4H-1,2,4-triazol-3-yl)ethyl)-2-aminooacetamide</td>
<td>464.3</td>
<td>465.1</td>
</tr>
<tr>
<td>145</td>
<td>N-((R)-2-(1H-indol-3-yl)-1-(5-phenethyl-4-phenyl-4H-1,2,4-triazol-3-yl)ethyl)-2-(pyridin-2-yl)acetamide</td>
<td>526.3</td>
<td>527.2</td>
</tr>
<tr>
<td>146</td>
<td>N-((R)-2-(1H-indol-3-yl)-1-(5-phenethyl-4-phenyl-4H-1,2,4-triazol-3-yl)ethyl)picolinamide</td>
<td>512.3</td>
<td>513.4</td>
</tr>
<tr>
<td>147</td>
<td>N-((R)-1-(5-2-(1H-indol-3-yl)ethyl)-4-(4-ethylphenyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)picolinamide</td>
<td>579.3</td>
<td>580.1</td>
</tr>
<tr>
<td>148</td>
<td>N-((R)-1-(5-2-(1H-indol-3-yl)ethyl)-4-(4-ethylphenyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-(pyridin-2-yl)acetamide</td>
<td>593.3</td>
<td>594.2</td>
</tr>
<tr>
<td>149</td>
<td>N-((R)-1-(5-2-(1H-indol-3-yl)ethyl)-4-(4-ethylphenyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-aminooacetamide</td>
<td>531.3</td>
<td>532.2</td>
</tr>
<tr>
<td>150</td>
<td>(2S)-N-((R)-1-(5-2-(1H-indol-3-yl)ethyl)-4-(4-ethylphenyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)pyrrolidine-2-carboxamide</td>
<td>571.3</td>
<td>572.4</td>
</tr>
<tr>
<td></td>
<td>Chemical Structure</td>
<td>Molecular Weight (amu)</td>
<td>Molecular Formula</td>
</tr>
<tr>
<td>----</td>
<td>---</td>
<td>------------------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>152</td>
<td>N-((R)-1-(5-(2-(1H-indol-3-yl)ethyl)-4-(4-methoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-((1H-indol-3-yl)ethyl)-2-aminoacetamide</td>
<td>547.3</td>
<td>C36H29N5O4S</td>
</tr>
<tr>
<td>153</td>
<td>N-((R)-1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-trans-aminocyclohexanecarboxamide</td>
<td>576.3</td>
<td>C38H33N5O4S</td>
</tr>
<tr>
<td>154</td>
<td>N-((R)-1-(4-(4-ethylbenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-(pyridin-3-yl)acetamide</td>
<td>568.3</td>
<td>C36H28N6O3S</td>
</tr>
<tr>
<td>155</td>
<td>(3S)-N-((R)-1-(4-(4-ethylbenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)piperidine-3-carboxamide</td>
<td>560.3</td>
<td>C38H32N5O3S</td>
</tr>
<tr>
<td>156</td>
<td>N-((R)-1-(4-(4-ethylbenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-aminobenzamide</td>
<td>568.3</td>
<td>C36H29N6O2S</td>
</tr>
<tr>
<td>157</td>
<td>N-((R)-1-(5-(2-(1H-indol-3-yl)ethyl)-4-phenyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)picolinamide</td>
<td>551.3</td>
<td>C35H25N6O2S</td>
</tr>
<tr>
<td>158</td>
<td>N-((R)-1-(5-(2-(1H-indol-3-yl)ethyl)-4-phenyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)piperidine-4-carboxamide</td>
<td>557.3</td>
<td>C38H32N5O3S</td>
</tr>
<tr>
<td>159</td>
<td>N-((R)-2-(1H-indol-3-yl)-1-(4-(2,4-dimethoxyphenyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)ethyl)piperidine-4-carboxamide</td>
<td>572.3</td>
<td>C42H30N5O6S</td>
</tr>
<tr>
<td>160</td>
<td>N-((R)-2-(1H-indol-3-yl)-1-(4-(2,4-dimethoxyphenyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)ethyl)-2-(pyridin-2-yl)acetamide</td>
<td>586.3</td>
<td>C40H31N5O4S</td>
</tr>
<tr>
<td>161</td>
<td>N-((R)-2-(1H-indol-3-yl)-1-(4-(2,4-dimethoxyphenyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)ethyl)pyrazine-2-carboxamide</td>
<td>573.3</td>
<td>C40H31N5O4S</td>
</tr>
<tr>
<td>162</td>
<td>N-((R)-2-(1H-indol-3-yl)-1-(4-(2,4-dimethoxyphenyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)ethyl)pyrazine-2-carboxamide</td>
<td>524.3</td>
<td>C38H27N5O4S</td>
</tr>
<tr>
<td>163</td>
<td>N-((R)-2-(1H-indol-3-yl)-1-(4-(2,4-dimethoxyphenyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)ethyl)piperidine-4-carboxamide</td>
<td>578.3</td>
<td>C40H31N5O4S</td>
</tr>
<tr>
<td>164</td>
<td>N-((R)-1-(5-benzyl-4-((pyridin-2-yl)methyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)piperidine-4-carboxamide</td>
<td>513.3</td>
<td>C40H31N5O4S</td>
</tr>
<tr>
<td>165</td>
<td>N-((R)-1-(5-benzyl-4-((pyridin-2-yl)methyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-aminoacetamide</td>
<td>465.3</td>
<td>C37H27N5O3S</td>
</tr>
<tr>
<td>166</td>
<td>N-(R)-1-(5-benzyl-4-(((pyridin-2-yl)methyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)piperidine-4-carboxamide</td>
<td>519.3</td>
<td>520.2</td>
</tr>
<tr>
<td>167</td>
<td>N-(R)-1-(5-benzyl-4-(((pyridin-4-yl)methyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide</td>
<td>493.3</td>
<td>494.3</td>
</tr>
<tr>
<td>168</td>
<td>N-(R)-1-(5-(4-methoxybenzyl)-4-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide</td>
<td>536.3</td>
<td>537.3</td>
</tr>
<tr>
<td>169</td>
<td>N-(R)-1-(5-benzyl-4-(((pyridin-4-yl)methyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)picolinamid</td>
<td>513.3</td>
<td>514.2</td>
</tr>
<tr>
<td>170</td>
<td>N-(R)-1-(5-benzyl-4-(((pyridin-4-yl)methyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)2-amino-acetamide</td>
<td>465.3</td>
<td>466.1</td>
</tr>
<tr>
<td>171</td>
<td>(R)-benzyl-3-((2-aminoisobutyramido)-3-(5-(2-(1H-indol-3-yl)ethyl)-4-(4-methoxybenzyl)-4H-1,2,4-triazol-3-yl)-propanoate</td>
<td>594.3</td>
<td>595.2</td>
</tr>
<tr>
<td>172</td>
<td>N-(R)-1-(5-benzyl-4-(((pyridin-3-yl)methyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide</td>
<td>493.3</td>
<td>494.3</td>
</tr>
<tr>
<td>173</td>
<td>N-(R)-1-(4-benzyl-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide</td>
<td>506.3</td>
<td>507.3</td>
</tr>
<tr>
<td>174</td>
<td>N-(R)-2-(1H-indol-3-yl)-1-(4-methyl-5-phenethyl-4H-1,2,4-triazol-3-yl)ethyl)-2-amino-2-methylpropanamide</td>
<td>450.3</td>
<td>451.3</td>
</tr>
<tr>
<td>175</td>
<td>N-(R)-1-(5-(2-(1H-indol-3-yl)ethyl)-4-phenyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide</td>
<td>531.3</td>
<td>532.4</td>
</tr>
<tr>
<td>176</td>
<td>N-(R)-1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)benzamide</td>
<td>555.3</td>
<td>556.2</td>
</tr>
<tr>
<td>177</td>
<td>(R)-1-(4-((4,2-dimethoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)-N-phenylmethanesulfonamide</td>
<td>635.3</td>
<td>637.0</td>
</tr>
<tr>
<td>178</td>
<td>(R)-1-(4-((4,2-dimethoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)-N-tosylethanamine</td>
<td>635.3</td>
<td>636.3</td>
</tr>
<tr>
<td>179</td>
<td>N-(R)-1-(4-((2,4-dimethoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)2-amino-2-methylpropanamide</td>
<td>566.3</td>
<td>567.2</td>
</tr>
<tr>
<td></td>
<td>Chemical Structure</td>
<td>MW</td>
<td>MW</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>180</td>
<td>N-1-((R)-1-((4-(2,4-dimethoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)ethane-1,2-diamine</td>
<td>524.3</td>
<td>525.2</td>
</tr>
<tr>
<td>181</td>
<td>N-((R)-1-((furan-2-yl)methyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide</td>
<td>496.3</td>
<td>497.1</td>
</tr>
<tr>
<td>182</td>
<td>N-((R)-1-((furan-2-yl)methyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)picolinamide</td>
<td>516.3</td>
<td>517.1</td>
</tr>
<tr>
<td>183</td>
<td>N-((R)-1-((furan-2-yl)methyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)piperidine-4-carboxamide</td>
<td>522.3</td>
<td>523.2</td>
</tr>
<tr>
<td>184</td>
<td>N-((R)-1-((4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-tetrahydro-2H-pyran-4-carboxamide</td>
<td>563.3</td>
<td>564.2</td>
</tr>
<tr>
<td>185</td>
<td>N-((R)-1-((5-((1H-indol-3-yl)methyl)-4-(3-methoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide</td>
<td>561.3</td>
<td>562.2</td>
</tr>
<tr>
<td>186</td>
<td>(2S)-N-((R)-1-((4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-3-phenylpropanamide</td>
<td>598.3</td>
<td>599.1</td>
</tr>
<tr>
<td>187</td>
<td>(R)-1-((5-(2-(1H-indol-3-yl)ethyl)-4-(2,4-dimethoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)-N-losylethanamine</td>
<td>674.3</td>
<td>675.0</td>
</tr>
<tr>
<td>188</td>
<td>N-((R)-1-((4-(2,4-dimethoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-4-azidobenzamide</td>
<td>626.3</td>
<td>627.3</td>
</tr>
<tr>
<td>189</td>
<td>N-benzyl-(R)-1-((4-(2,4-dimethoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethanamine</td>
<td>571.3</td>
<td>572.3</td>
</tr>
<tr>
<td>190</td>
<td>(2S)-N-((R)-1-((5-(2-(1H-indol-3-yl)ethyl)-4-(4-methoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2,5-dihydro-1H-pyrrole-2-carboxamide</td>
<td>585.3</td>
<td>586.2</td>
</tr>
</tbody>
</table>
II) GHS-R 1a Receptor-ligand binding assay (membrane preparations from transfected LLC PK-1 cells)

The GHS-R 1a receptor binding/affinity studies were performed according to Guerlavais et al. (J. Med. Chem. 2003, 46: 1191-1203).

Isolated plasma membranes from LLC PK-1 cells, a renal epithelial cell line originally derived from porcine kidneys (ECACC No. 86121 112) (10 µg of protein), that were transiently transfected with human GHS-R 1a cDNA (Guerlavais et al., J. Med. Chem. 2003, 46: 1191-1203), were incubated in homogenization buffer HB [50 mM Tris (pH 7.3), 5 mM MgCl₂, 2.5 mM EDTA, and 30 µg/mL bacitracin (Sigma)] for 60 min at 25°C (steady-state conditions) with 60 pM ¹²⁵I-His⁸-ghrelin (Amersham) in the presence or absence of competing compounds (compounds of the invention).

The binding affinity for each compound to be tested for the human GHS-R 1a was measured by displacement of the radiolabeled ghrelin with increasing concentrations of the test compound (10⁻¹¹M to 10⁻⁵M) (each experiment being performed in triplicates).

Nonspecific binding was defined using an excess (10⁻⁶ M) of ghrelin. The binding reaction was stopped by addition of 4 mL of ice-cold HB followed by rapid filtration over Whatman GP/C filters presoaked with 0.5% polyethyleneimine to prevent excessive binding of radioligand to the filters. Filters were rinsed three times with 3 mL of ice-cold wash buffer [50 mM Tris (pH 7.3), 10 mM MgCl₂, 2.5 mM EDTA, and 0.015% (w/v) X-100 Triton], and the radioactivity bound to membranes was measured in a gamma-counter (Kontron Analytical Gamma Matic, Automatic gamma counting system).

The concentration of test compounds required to inhibit radiolabeled ghrelin binding by 50% (IC₅₀) was determined by fitting competitive binding curves using non-linear regression (PRISM 3.0, Graph Pad San Diego, USA).

In the following table 2 results obtained for selected compounds of the invention are presented in comparison to an example of the prior art. IC₅₀ values given are the mean of at least two independent experiments performed in triplicates.

Figures 1 - 13 show the measured competition plots of the GHS-R 1a Receptor-ligand binding assay with ¹²⁵I-His⁸-ghrelin and the selected compounds 9, 31, 39, 45, 50, 62, 64, 71, 73, 74, 79, 81 and 90.
Table 2: GHS-R 1a Receptor-ligand binding assay test results (IC₅₀ values for a number of selected exemplary compounds)

<table>
<thead>
<tr>
<th>No.</th>
<th>GHS-R 1a IC₅₀ [nM]</th>
<th>Chemical name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>160</td>
<td>(R)-N-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(2,4-dimethoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide</td>
</tr>
<tr>
<td>2</td>
<td>81</td>
<td>(R)-N-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide</td>
</tr>
<tr>
<td>3</td>
<td>14</td>
<td>(R)-N-(1-(5-(3-(1H-indol-3-yl)propyl)-4-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide</td>
</tr>
<tr>
<td>4</td>
<td>220</td>
<td>(R)-N-(1-(5-benzyl-4-(naphthalen-1-ylmethyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide</td>
</tr>
<tr>
<td>5</td>
<td>125</td>
<td>(R)-N-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(naphthalen-1-ylmethyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide</td>
</tr>
<tr>
<td>6</td>
<td>18</td>
<td>(R)-N-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(3-methoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide</td>
</tr>
<tr>
<td>7</td>
<td>120</td>
<td>(R)-N-(1-(4-(3-methoxybenzyl)-5-benzyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide</td>
</tr>
<tr>
<td>8</td>
<td>18</td>
<td>(R)-N-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-benzyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide</td>
</tr>
<tr>
<td>9</td>
<td>46</td>
<td>(R)-N-(1-(5-(3-(1H-indol-3-yl)propyl)-4-benzyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide</td>
</tr>
<tr>
<td>10</td>
<td>32</td>
<td>(R)-N-(1-(5-(3-(1H-indol-3-yl)propyl)-4-(3-methoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide</td>
</tr>
<tr>
<td>11</td>
<td>137</td>
<td>(R)-N-(1-(5-(3-(1H-indol-3-yl)propyl)-4-(naphthalen-1-ylmethyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>((R)-N(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(4-methoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide)</td>
</tr>
<tr>
<td>13</td>
<td>138</td>
<td>((R)-N(1-(4-(4-methoxybenzyl)-5-benzyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide)</td>
</tr>
<tr>
<td>14</td>
<td>150</td>
<td>((R)-N(1-(5-(3-(1H-indol-3-yl)propyl)-4-(4-bromobenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide)</td>
</tr>
<tr>
<td>15</td>
<td>120</td>
<td>((R)-N(1-(5-(2-(1H-indol-3-yl)ethyl)-4-hexyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide)</td>
</tr>
<tr>
<td>16</td>
<td>240</td>
<td>((R)-N(1-(5-(3-(1H-indol-3-yl)propyl)-4-hexyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide)</td>
</tr>
<tr>
<td>17</td>
<td>156</td>
<td>((R)-N(1-(4,5-bis(2-(1H-indol-3-yl)ethyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide)</td>
</tr>
<tr>
<td>18</td>
<td>83</td>
<td>((S)-N(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(2,4-dimethoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide)</td>
</tr>
<tr>
<td>19</td>
<td>78</td>
<td>((R)-N(1-(4-(3-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide)</td>
</tr>
<tr>
<td>20</td>
<td>14</td>
<td>((R)-N(1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide)</td>
</tr>
<tr>
<td>21</td>
<td>203</td>
<td>((R)-N(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(3,5-dimethoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide)</td>
</tr>
<tr>
<td>22</td>
<td>12</td>
<td>((R)-N(1-(4-(4-methoxybenzyl)-5-(3-phenylpropyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide)</td>
</tr>
<tr>
<td>23</td>
<td>37</td>
<td>((R)-N(1-(5-(3-(1H-indol-3-yl)propyl)-4-(4-methoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide)</td>
</tr>
<tr>
<td>24</td>
<td>29</td>
<td>((R)-N(1-(4-(2-(1H-indol-3-yl)ethyl)-5-(3-(1H-indol-3-yl)propyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(R)-N-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(2-methoxy)benzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>25</td>
<td>96</td>
<td>(R)-N-(1-(4-(2-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide</td>
</tr>
<tr>
<td>26</td>
<td>56</td>
<td>(R)-N-(2-(1H-indol-3-yl)-1-(4-(naphthalen-1-ylmethyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)ethyl)-2-amino-2-methylpropanamide</td>
</tr>
<tr>
<td>27</td>
<td>126</td>
<td>(R)-N-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(3,4-dichlorobenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide</td>
</tr>
<tr>
<td>28</td>
<td>79</td>
<td>(R)-N-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(4-fluorobenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide</td>
</tr>
<tr>
<td>29</td>
<td>66</td>
<td>(R)-N-(1-(4-(4-fluorobenzyl)-5-benzyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide</td>
</tr>
<tr>
<td>30</td>
<td>171</td>
<td>(R)-N-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(2,4-dimethoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)piperidine-4-carboxamide</td>
</tr>
<tr>
<td>31</td>
<td>0,5</td>
<td>(R)-N-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(2,4-dimethoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)piperidine-3-carboxamide</td>
</tr>
<tr>
<td>32</td>
<td>10,3</td>
<td>(R)-N-(1-(4-(4-methylbenzyl)-5-(3-phenylpropyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide</td>
</tr>
<tr>
<td>33</td>
<td>30</td>
<td>(R)-N-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(4-methylbenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide</td>
</tr>
<tr>
<td>34</td>
<td>28</td>
<td>(R)-N-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(4-methylbenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide</td>
</tr>
<tr>
<td>36</td>
<td>53</td>
<td>(R)-N-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(2,4-dimethoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)piperidine-2-carboxamide</td>
</tr>
<tr>
<td>37</td>
<td>136</td>
<td>(R)-N-(1-(4-(4-methylbenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide</td>
</tr>
<tr>
<td>38</td>
<td>112</td>
<td>(R)-N-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(2,4-dimethoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-aminobenzamide</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chemical Formula</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>40</td>
<td>249</td>
<td>(2S,4R)-N-((R)-1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-4-hydroxypyrrolidine-2-carboxamide</td>
</tr>
<tr>
<td>41</td>
<td>16</td>
<td>(S)-N-((R)-1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)piperidine-3-carboxamide</td>
</tr>
<tr>
<td>42</td>
<td>7</td>
<td>(R)-N-((R)-1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)piperidine-3-carboxamide</td>
</tr>
<tr>
<td>43</td>
<td>44</td>
<td>(R)-N-(1-(4-(4-ethylbenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide</td>
</tr>
<tr>
<td>44</td>
<td>0.6</td>
<td>(R)-N-(1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)piperidine-4-carboxamide</td>
</tr>
<tr>
<td>45</td>
<td>0.3</td>
<td>(R)-N-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(4-methoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)piperidine-4-carboxamide</td>
</tr>
<tr>
<td>46</td>
<td>12</td>
<td>(S)-N-((R)-1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)pyrrolidine-2-carboxamide</td>
</tr>
<tr>
<td>47</td>
<td>27</td>
<td>(R)-N-((R)-1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)pyrrolidine-2-carboxamide</td>
</tr>
<tr>
<td>48</td>
<td>11</td>
<td>(S)-N-((R)-1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)piperidine-2-carboxamide</td>
</tr>
<tr>
<td>49</td>
<td>23</td>
<td>(R)-N-((R)-1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)piperidine-2-carboxamide</td>
</tr>
<tr>
<td>50</td>
<td>56</td>
<td>(R)-N-(1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-aminoacetamide</td>
</tr>
<tr>
<td>51</td>
<td>3</td>
<td>(R)-N-(1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-(pyridin-2-yl)acetamide</td>
</tr>
<tr>
<td>53</td>
<td>18</td>
<td>(R)-N-(1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)cyclohexanecarboxamide</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>54</td>
<td>35</td>
<td>(R)-N-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-benzyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)piperidine-4-carboxamide</td>
</tr>
<tr>
<td>55</td>
<td>11</td>
<td>(R)-N-1-(5-(2-(1H-indol-3-yl)ethyl)-4-benzyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)piperidine-3-carboxamide</td>
</tr>
<tr>
<td>56</td>
<td>59</td>
<td>(R)-N-(1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-3-aminopropanamide</td>
</tr>
<tr>
<td>57</td>
<td>140</td>
<td>(S)-N-((R)-1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-aminopropanamide</td>
</tr>
<tr>
<td>58</td>
<td>29</td>
<td>(R)-N-(1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-(pyridin-3-yl)acetamide</td>
</tr>
<tr>
<td>59</td>
<td>173</td>
<td>(R)-N-(1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-3-(pyridin-3-yl)propanamide</td>
</tr>
<tr>
<td>60</td>
<td>61</td>
<td>(R)-N-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-benzyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-(pyridin-2-yl)acetamide</td>
</tr>
<tr>
<td>61</td>
<td>34</td>
<td>(R)-N-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(2,4-dimethoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-(pyridin-2-yl)acetamide</td>
</tr>
<tr>
<td>62</td>
<td>0,9</td>
<td>(R)-N-(1-(4-(2,4-dimethoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)piperidine-4-carboxamide</td>
</tr>
<tr>
<td>63</td>
<td>210</td>
<td>(R)-N-((R)-1-(4-(2,4-dimethoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)piperidine-2-carboxamide</td>
</tr>
<tr>
<td>64</td>
<td>1,1</td>
<td>(R)-N-(1-(4-(2,4-dimethoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)picolinamide</td>
</tr>
<tr>
<td>65</td>
<td>58</td>
<td>(R)-N-(1-(4-(2,4-dimethoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)isonicotinamide</td>
</tr>
<tr>
<td>66</td>
<td>8</td>
<td>(R)-N-(1-(4-(2,4-dimethoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)pyrazine-2-carboxamide</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(R)-N-[1-(4-(2,4-dimethoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl]piperazine-2-carboxamide</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>67</td>
<td>35</td>
<td>(R)-N-[1-(4-(2,4-dimethoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl]pyrrolidine-2-carboxamide</td>
</tr>
<tr>
<td>68</td>
<td>44</td>
<td>(S)-N-[(R)-1-(4-(2,4-dimethoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl]pyrrolidine-2-carboxamide</td>
</tr>
<tr>
<td>69</td>
<td>38</td>
<td>(R)-N-[1-(5-(2-(1H-indol-3-yl)ethyl)-4-(2,4-dimethoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl]2-aminoacetamide</td>
</tr>
<tr>
<td>70</td>
<td>6</td>
<td>(S)-N-[(R)-1-(5-(2-(1H-indol-3-yl)ethyl)-4-(2,4-dimethoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl]pyrrolidine-2-carboxamide</td>
</tr>
<tr>
<td>71</td>
<td>19</td>
<td>(R)-N-[1-(5-(2-(1H-indol-3-yl)ethyl)-4-(2,4-dimethoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl]pyrazine-2-carboxamide</td>
</tr>
<tr>
<td>72</td>
<td>32</td>
<td>(R)-N-[1-(5-(2-(1H-indol-3-yl)ethyl)-4-(2,4-dimethoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl]piperazine-2-carboxamide</td>
</tr>
<tr>
<td>73</td>
<td>1,8</td>
<td>(R)-N-[1-(5-(2-(1H-indol-3-yl)ethyl)-4-(2,4-dimethoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl]picolinamide</td>
</tr>
<tr>
<td>75</td>
<td>140</td>
<td>(R)-N-[1-(4-(2,4-dimethoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl]2-aminoacetamide</td>
</tr>
<tr>
<td>76</td>
<td>14</td>
<td>(R)-N-[1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl]pyrazine-2-carboxamide</td>
</tr>
<tr>
<td>77</td>
<td>119</td>
<td>(R)-N-[1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl]isonicotinamide</td>
</tr>
<tr>
<td>78</td>
<td>54</td>
<td>(R)-N-[1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl]piperazine-2-carboxamide</td>
</tr>
<tr>
<td>79</td>
<td>0,7</td>
<td>(R)-N-[1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl]picolinamide</td>
</tr>
<tr>
<td>80</td>
<td>1,9</td>
<td>(R)-N-[1-(5-(2-(1H-indol-3-yl)ethyl)-4-(4-methoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl]picolinamide</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>81</td>
<td>18</td>
<td>(R)-N-(1-((1H-indol-3-yl)ethyl)-4-(4-methoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-piperazine-2-carboxamide</td>
</tr>
<tr>
<td>82</td>
<td>51</td>
<td>(R)-N-(1-((4-ethylbenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-(pyridin-2-yl)acetamide</td>
</tr>
<tr>
<td>83</td>
<td>19</td>
<td>(R)-N-(1-((4-ethylbenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)piperidine-4-carboxamide</td>
</tr>
<tr>
<td>84</td>
<td>247</td>
<td>(R)-N-(1-((4-ethylbenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-piperazine-2-carboxamide</td>
</tr>
<tr>
<td>85</td>
<td>89</td>
<td>(R)-N-(1-((4-ethylbenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)pyrazine-2-carboxamide</td>
</tr>
<tr>
<td>86</td>
<td>143</td>
<td>(R)-N-(1-((5-(2-(1H-indol-3-yl)ethyl)-4-(2,4-dimethoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl))-2-cis-amino-cyclohexanecarboxamide</td>
</tr>
<tr>
<td>87</td>
<td>10</td>
<td>(S)-N-((R)-1-(5-((2-(1H-indol-3-yl)ethyl)-4-(4-methoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)piperidine-3-carboxamide</td>
</tr>
<tr>
<td>88</td>
<td>29</td>
<td>(R)-N-((R)-1-(5-((2-(1H-indol-3-yl)ethyl)-4-(4-methoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)piperidine-2-carboxamide</td>
</tr>
<tr>
<td>89</td>
<td>9</td>
<td>(S)-N-((R)-1-(5-((2-(1H-indol-3-yl)ethyl)-4-(4-methoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)pyrrolidine-2-carboxamide</td>
</tr>
<tr>
<td>90</td>
<td>28</td>
<td>(R)-N-((R)-1-(5-((2-(1H-indol-3-yl)ethyl)-4-(4-methoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)pyrrolidine-2-carboxamide</td>
</tr>
<tr>
<td>91</td>
<td>11</td>
<td>(R)-N-(1-((5-(2-(1H-indol-3-yl)ethyl)-4-(4-methoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-(pyridin-2-yl)acetamide</td>
</tr>
<tr>
<td>92</td>
<td>200</td>
<td>(R)-N-(1-((5-(2-(1H-indol-3-yl)ethyl)-4-(4-bromobenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide</td>
</tr>
<tr>
<td>94</td>
<td>255</td>
<td>(R)-N-(2-(1H-indol-3-yl)-1-(5-phenethyl-4-(thiophen-2-ylmethyl)-4H-1,2,4-triazol-3-yl)ethyl)piperidine-4-carboxamide</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>--</td>
</tr>
<tr>
<td>108</td>
<td>250</td>
<td>(R)-N-(1-(4-(3,5-dimethoxybenzyl)-5-benzyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide</td>
</tr>
<tr>
<td>136</td>
<td>106</td>
<td>(R)-N-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(4-methoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-(pyridin-4-yl)acetamide</td>
</tr>
<tr>
<td>138</td>
<td>44</td>
<td>N-((R)-1-(4-(4-ethylbenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)picolinamide</td>
</tr>
<tr>
<td>146</td>
<td>105</td>
<td>N-((R)-2-(1H-indol-3-yl)-1-(5-phenethyl-4-phenyl-4H-1,2,4-triazol-3-yl)ethyl)picolinamide</td>
</tr>
<tr>
<td>147</td>
<td>49</td>
<td>N-((R)-1-(5-(2-(1H-indol-3-yl)ethyl)-4-(4-ethylphenyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)picolinamide</td>
</tr>
<tr>
<td>148</td>
<td>96</td>
<td>N-((R)-1-(5-(2-(1H-indol-3-yl)ethyl)-4-(4-ethylphenyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-(pyridin-2-yl)acetamide</td>
</tr>
<tr>
<td>152</td>
<td>138</td>
<td>N-((R)-1-(5-(2-(1H-indol-3-yl)ethyl)-4-(4-methoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-aminoacetamide</td>
</tr>
<tr>
<td>155</td>
<td>188</td>
<td>(3S)-N-((R)-1-(4-(4-ethylbenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)piperidine-3-carboxamide</td>
</tr>
<tr>
<td>157</td>
<td>160</td>
<td>N-((R)-1-(5-(2-(1H-indol-3-yl)ethyl)-4-phenyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)picolinamide</td>
</tr>
<tr>
<td>158</td>
<td>70</td>
<td>N-((R)-1-(5-(2-(1H-indol-3-yl)ethyl)-4-phenyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)piperidine-4-carboxamide</td>
</tr>
<tr>
<td>159</td>
<td>33</td>
<td>N-((R)-2-(1H-indol-3-yl)-1-(4-(2,4-dimethoxyphenyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)ethyl)picolinamide</td>
</tr>
<tr>
<td>160</td>
<td>121</td>
<td>N-((R)-2-(1H-indol-3-yl)-1-(4-(2,4-dimethoxyphenyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)ethyl)-2-(pyridin-2-yl)acetamide</td>
</tr>
<tr>
<td>163</td>
<td>63</td>
<td>N-((R)-2-(1H-indol-3-yl)-1-(4-(2,4-dimethoxyphenyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)ethyl)piperidine-4-carboxamide</td>
</tr>
<tr>
<td>164</td>
<td>207</td>
<td>N-((R)-1-(5-benzyl-4-((pyridin-2-yl)methyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)picolinamide</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>173</td>
<td>114</td>
<td>$N-((R-1-(4-(benzyl-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-ylyethyly)-2-amino-2-methylpropanamide$</td>
</tr>
<tr>
<td>175</td>
<td>140</td>
<td>$N-((R-1-(5-(2-(1H-indol-3-yl)ylethyl)-4-phenyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ylethyl)-2-amino-2-methylpropanamide$</td>
</tr>
<tr>
<td>176</td>
<td>80</td>
<td>$N-((R-1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ylethyl)benzamide$</td>
</tr>
<tr>
<td>179</td>
<td>62</td>
<td>$N-((R-1-(4-(2,4-dimethoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ylethyl)-2-amino-2-methylpropanamide$</td>
</tr>
<tr>
<td>180</td>
<td>189</td>
<td>$N-1-(1-(4-(2,4-dimethoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ylethyl)\text{ethane}-1,2-diamine$</td>
</tr>
<tr>
<td>182</td>
<td>81</td>
<td>$N-((R-1-(4-(furan-2-ylymethyly)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ylethyl)\text{picolinamide}$</td>
</tr>
<tr>
<td>184</td>
<td>5,9</td>
<td>$N-((R-1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ylethyl)\text{tetrahydro-2-H-pyran-4-carboxamide}$</td>
</tr>
<tr>
<td>186</td>
<td>175</td>
<td>$(2S)-$N-((R-1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ylethyl)-2-amino-3-phenylpropanamide$</td>
</tr>
<tr>
<td>187</td>
<td>66</td>
<td>$(R-1-(5-(2-(1H-indol-3-ylyethyly)-4-(2,4-dimethoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)\text{N-tosylethanamine}$</td>
</tr>
<tr>
<td>188</td>
<td>87</td>
<td>$N-((R-1-(4-(2,4-dimethoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ylethyl)-4-azidobenzamide$</td>
</tr>
<tr>
<td>190</td>
<td>12</td>
<td>$(2S)-$N-((R-1-(5-(2-(1H-indol-3-ylyethyly)-4-(4-methoxybenzyl)-4H-1,2,4-triazol-3-yly)-2-(1H-indol-3-yly)-2,5-dihydro-1-\text{H-pyrrole-2-carboxamide}$</td>
</tr>
</tbody>
</table>

Example 39 from WO 00/54729 A2 ca. 50000 $(R\)-$N\-(1\-(5\-(\text{tert\-butylthio})\-4\-(furan\-2\-ylmethyly)\-4H\-1,2,4\-triazol\-3\-yl)\-2\-(1H\-indol\-3\-yl)\text{ethyl})\-2\-amino\-2\-methylpropanamide$

Example 8 from WO 00/54729 A2 ca. 200000 $(S\)-$N\-(1\-(4\-benzyl\-5\-(\text{tert\-butylthio})\-1,2,4\-triazol\-3\-yly)\-2\-(\text{benzyloxy}ethyl)\-2\-amino\-2\-methylpropanamide$

Example 3 from WO 00/54729 A2 ca. 30000 $(R\)-$N\-(1\-(\text{1\-methylpropanate\-tetrazol\-5\-yl})\-2\-(1H\-indol\-3\-yly)\text{ethyl})\-2\-amino\-2\-methylpropanamide$
| Example from page 175, WO 00/54729 A2 | ca. 25000 | (S)-N-(1-(1-benzyl-tetrazol-5-yl)-2-(benzyloxy)ethyl)-2-amino-2-methylpropanamide |
III) *In vitro* intracellular Calcium release assay using human GHS-R 1a transfected CHO cells

The potential of the compounds of the invention to modulate GHS receptor activity was assessed by an *in vitro* intracellular Calcium release assay employing CHO cells that were transfected with human GHS-R 1a.

Release of intracellular calcium or inhibition thereof was measured using the fluorescent calcium indicator assay (FLIPR) and Fluo-4 AM.

CHO cells (CHO-K1 Chinese Hamster Ovary cell line, ATCC No. CCL-61) were transiently transfected with human GHS-R 1a cDNA by electroporation and plated into 96-well black bottom plates (Corning 3603) (80,000 cells/well). Transient transfections were performed using the Easyject Optima Electroporator (Equibio), according to the manufacturer's instructions.

Transfected cells were grown in Dulbecco's modified Eagle's medium without phenol red, supplemented with 10% (v/v) non-essential amino acids, 2 mM glutamine and streptomycin-penicillin (250 µg/ml-250 µg/ml) (all purchased from Cambrex) at 37°C, 5% CO₂ in a humidified atmosphere for 24 hours.

After incubation, transfected cells were washed with 150 µl Buffer A [Hanks' balanced salt solution (Sigma H-6648), 0.5% (v/v) BSA (Sigma A-7906), 20mM CaCl₂, 2.5mM probenecid (pH 7.4, dissolved in 1M NaOH) (Sigma P-8761)] and were then loaded with fluorescent calcium indicator Fluo-4 AM (10⁻⁶ M) (Interchim UP72972) prepared in Buffer A, additionally containing 0.06% pluronic acid (Molecular probes P-6867) (a mild-ionic detergent which facilitates Fluo-4AM ester loading). (Loading: 100µl per well of Buffer A containing 120µl/ml Pluronic Acid and 1 µM Fluo-4AM was added to the cells).

After loading with Fluo-4 AM, transfected cells were incubated for 1 hour in the dark at 37°C.

Compounds to be tested were dissolved in Buffer A in triplicates at a concentration of 10⁻⁶ M and distributed into another 96-well plate (Fisher Labosi A 1210500).
Following incubation, excess Fluo-4AM was removed, 100 µl of Buffer A was added to each well at room temperature and immediately removed by aspiration. This was then repeated, before adding 50 µl Buffer A to each well.

Transfected cells were further incubated at room temperature for 30 min to allow complete de-esterification of intracellular Fluo-4AM esters.

Subsequently, both plates, the black-bottom plate containing transfected cells and the microtiter plate containing the compounds to be tested, were then placed into a temperature-regulated (25°C) FlexStation machine (benchtop scanning fluorometer Flex Station II, Molecular Devices, Sunnyvale, California, USA) for fluorescence output measurements.

Since Fluo-4AM exhibits a large fluorescence intensity increase upon binding of calcium, fluorescence output can be used directly as a proportional measure of intracellular calcium release.

Basal fluorescence output from the transfected cells was measured for 15 sec and then 50 µl of the compounds to be tested were automatically distributed into the wells containing the transfected cells. The fluorescence output was then recorded for a further 45 sec.

Excitation and emission wavelengths were 485 nm and 525 nm, respectively. Basal fluorescence intensity of Fluo-4AM-loaded transfected cells without compounds to be tested varied between 800-1200 arbitrary units, whereas maximal fluorescence output of dye-loaded transfected cells upon incubation with the compounds to be tested varied between 5000-7000 arbitrary units and was equivalent to that achieved by stimulation of dye-loaded transfected cells with 10⁻⁶ M ghrelin.

For each compound to be tested change in fluorescence output upon addition of the respective compound was compared with the basal fluorescence output measured with a negative control, i.e. addition 50 µl of buffer A to transfected cells only.

The ability and extent to which each compound to be tested caused calcium release was determined relative to the basal level (0%) and the maximum level (100%) achieved with 1 µM ghrelin.

For the compounds to be tested that were identified as GHS receptor agonists, EC₅₀ and Kᵢ values were determined using a dose-response curve.
As for the compounds to be tested that were identified as GHS receptor antagonists, IC₅₀ and Kb (antagonist dissociation constant) values were determined using antagonist inhibition curves in the presence of 10⁻⁷ M ghrelin (submaximal concentration). IC₅₀ values were calculated as the molar concentration of GHS receptor antagonist that reduced the maximal response of ghrelin by 50%. Kb values were estimated using the Cheng-Prusoff Equation (Lazareno S and Birdsall NJ, Trends Pharmacol Sci. 1993, 14(6):237-239).

Figures 14 - 40 show the calculated dose-response plots of the in vitro intracellular Calcium release assay with human GHS-R 1α transfected CHO cells of the selected compounds 1, 9, 12, 20, 22, 31, 39, 41, 42, 45, 46, 47, 48, 49, 50, 51, 55, 62, 64, 67, 71, 73, 74, 79, 81, 90 and ghrelin as well as individual EC₅₀ and Ki values for agonistic compounds and IC₅₀ and Kb values for antagonistic compounds.
IV) Assaying *in vivo* GH concentration in the plasma of male rat pups

GH plasma concentrations of male rat pups were assayed to characterize the modulation effect (antagonistic or agonistic) of the compounds of the invention being GHS receptor analogue ligands.

In principle, assaying *in vivo* GH concentration in rat plasma was performed according to Torsello et al. (Eur. J. Pharmacol. 1998, 360: 123-129).

Male Sprague-Dawley rat pups (Charles River, Calco, Italy) were separated on postnatal day seven from their mothers and randomly redistributed to the dams, so that each one nurtured ten to twelve pups. On postnatal day ten, the pups were again separated from their mothers.

The compounds to be tested were dissolved in solvent [DMSO (0.4% of total volume), distilled water (4% of total volume), brought to the final volume with physiological saline].

One hour after separation from their mothers, the pups were given isovolumetric amounts of the compounds to be tested (160 µg/kg body weight s.c.) at time -10 min and then administered with hexarelin (80 µg/kg body weight s.c.) or solvent at time 0 min before being killed 15 min later by decapitation. Trunk blood was collected, immediately centrifuged and plasma samples were stored at -20°C until assayed for the determination of GH concentrations.

Plasma GH concentrations were measured using a rat growth hormone enzyme immunoassay kit (SPIbio, France, cat. no. 589601) according to the manufacturer’s instructions. Values are expressed in terms of NIDDK rat-GH-RP2 standard (potency 2 IU/mg) as ng/mL of plasma.

The limit of detection calculated as the concentration producing 15% displacement of initial tracer was 0.5 ng/mL; intra-assay and inter-assay coefficient of variation are 4% (n=24) and 14% (n=9).

In the following table 3 results obtained for selected compounds of the invention are presented.
Table 3: Relative GH concentration in rat plasma after treatment with selected compounds of the invention (160 µg/kg body weight s.c.) and/or hexarelin (80 µg/kg body weight s.c.) and/or solvent

<table>
<thead>
<tr>
<th>Treatment</th>
<th>GH concentration (ng/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>solvent</td>
<td>4,008 ± 0,469</td>
</tr>
<tr>
<td>hexarelin</td>
<td>162,839 ± 21,095</td>
</tr>
<tr>
<td>compound 1</td>
<td>n.d.</td>
</tr>
<tr>
<td>compound 1 + hexarelin</td>
<td>80.22 ± 18.66</td>
</tr>
<tr>
<td>compound 12</td>
<td>4.0 ± 0.12</td>
</tr>
<tr>
<td>compound 12 + hexarelin</td>
<td>200.0 ± 19.7</td>
</tr>
<tr>
<td>compound 20</td>
<td>5.27 ± 0.59</td>
</tr>
<tr>
<td>compound 20 + hexarelin</td>
<td>220.51 ± 15.52</td>
</tr>
<tr>
<td>compound 22</td>
<td>4.88 ± 0.33</td>
</tr>
<tr>
<td>compound 22 + hexarelin</td>
<td>239.91 ± 19.75</td>
</tr>
<tr>
<td>compound 47</td>
<td>5,658 ± 1,192</td>
</tr>
<tr>
<td>compound 47 + hexarelin</td>
<td>160,857 ± 13,52</td>
</tr>
<tr>
<td>compound 39</td>
<td>5,509 ± 1,950</td>
</tr>
<tr>
<td>compound 39 + hexarelin</td>
<td>82,481 ± 11,530</td>
</tr>
<tr>
<td>compound 31</td>
<td>119,937 ± 33,054</td>
</tr>
<tr>
<td>compound 31 + hexarelin</td>
<td>103,528 ± 14,094</td>
</tr>
<tr>
<td>compound 48</td>
<td>6,096 ± 2,091</td>
</tr>
<tr>
<td>compound 48 + hexarelin</td>
<td>145,946 ± 12,159</td>
</tr>
<tr>
<td>compound 44</td>
<td>87,520 ± 15,066</td>
</tr>
<tr>
<td>compound 44 + hexarelin</td>
<td>100,52 ± 12,112</td>
</tr>
<tr>
<td>solvent</td>
<td>2,237 ± 0,073</td>
</tr>
<tr>
<td>hexarelin</td>
<td>170,101 ± 13,226</td>
</tr>
<tr>
<td>compound 9</td>
<td>13,016 ± 1,960</td>
</tr>
<tr>
<td>compound 9 + hexarelin</td>
<td>183,562 ± 16,729</td>
</tr>
<tr>
<td>Compound</td>
<td>Value</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>compound 39</td>
<td>5.509 ± 1.95</td>
</tr>
<tr>
<td>compound 39 + hexarelin</td>
<td>82.481 ± 11.53</td>
</tr>
<tr>
<td>compound 50</td>
<td>9.852 ± 1.040</td>
</tr>
<tr>
<td>compound 50 + hexarelin</td>
<td>164.459 ± 4.443</td>
</tr>
<tr>
<td>compound 64</td>
<td>13.056 ± 2.169</td>
</tr>
<tr>
<td>compound 64 + hexarelin</td>
<td>138.394 ± 14.580</td>
</tr>
<tr>
<td>solvent</td>
<td>10,729 ± 2,027</td>
</tr>
<tr>
<td>hexarelin</td>
<td>253,820 ± 12,268</td>
</tr>
<tr>
<td>compound 71</td>
<td>15,326 ± 1,355</td>
</tr>
<tr>
<td>compound 71 + hexarelin</td>
<td>173,611 ± 18,444</td>
</tr>
<tr>
<td>compound 74</td>
<td>10,571 ± 0,791</td>
</tr>
<tr>
<td>compound 74 + hexarelin</td>
<td>194,564 ± 7,658</td>
</tr>
<tr>
<td>compound 81</td>
<td>18,634 ± 2,933</td>
</tr>
<tr>
<td>compound 81 + hexarelin</td>
<td>216,575 ± 19,734</td>
</tr>
<tr>
<td>compound 90</td>
<td>16,857 ± 2,152</td>
</tr>
<tr>
<td>compound 90 + hexarelin</td>
<td>218,844 ± 19,723</td>
</tr>
</tbody>
</table>
V) Assaying the feeding behavior (food intake) of young-adult male rats

The impact of compounds of the invention being GHS receptor analogue ligands on the feeding behaviour, i.e. food intake, of young-adult male rats was assayed.

In principle, assaying the feeding behavior (food intake) of young-adult male rats was performed according to Torsello et al. (Eur. J. Pharmacol. 1998, 360: 123-129).

For the assay, young-adult male Sprague-Dawley rats (Charles River, Calco, Italy), weighing 200-250 g, were used.

Rats had 1 week of acclimation in individual home cages, and animal room conditions (22±2°C, 65% humidity, artificial light from 08.00 to 20.00 h). The following week, they were daily trained to mimic the experimental procedure. Rats maintained free access to dry pellets and tap water throughout the whole experimental period. At the end of training, rats were administered (around 10.00-11.00 a.m.) subcutaneously with the compounds to be tested (160 µg/kg body weight) and/or hexarelin (80 µg/kg body weight) and/or solvent [DMSO (0.4% of total volume), distilled water (4 % of total volume), brought to the final volume with physiological saline].

Hexarelin was used to study the effects of the compounds to be tested on stimulated feeding behavior. Immediately after the injections, the animals were returned to their home cages, which contained a known amount of standard rat chow and ad libitum water. Every hour for the following 6 hours, the remaining food was carefully collected and weighed to the nearest 0.1 g. Food intake was normalized for the body weight of the rats and expressed as grams of food eaten per 100 g body weight of rats.

In the following table 4 results obtained for selected compounds of the invention are presented.
Table 4: Cumulative food intake (g food/100 g body weight) of young-adult rats after 2 hours and 6 hours and after treatment with selected compounds of the invention (160 µg/kg body weight s.c.) and/or hexarelin (80 µg/kg body weight s.c.) and/or solvent

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Cumulative food intake (after 2 hours)</th>
<th>Cumulative food intake (after 6 hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>solvent</td>
<td>0.003 ± 0.0015</td>
<td>0.017 ± 0.0026</td>
</tr>
<tr>
<td>hexarelin</td>
<td>0.533 ± 0.194</td>
<td>1.0014 ± 0.1973</td>
</tr>
<tr>
<td>compound 1</td>
<td>0.02 ± 0.002</td>
<td>0.06 ± 0.03</td>
</tr>
<tr>
<td>compound 1 + hexarelin</td>
<td>0.06 ± 0.02</td>
<td>0.33 ± 0.21</td>
</tr>
<tr>
<td>compound 12</td>
<td>0.034 ± 0.011</td>
<td>0.06 ± 0.019</td>
</tr>
<tr>
<td>compound 12 + hexarelin</td>
<td>0.13 ± 0.07</td>
<td>0.48 ± 0.22</td>
</tr>
<tr>
<td>compound 20</td>
<td>0.01</td>
<td>0.2 ± 0.19</td>
</tr>
<tr>
<td>compound 20 + hexarelin</td>
<td>0.53 ± 0.21</td>
<td>0.63 ± 0.19</td>
</tr>
<tr>
<td>compound 22</td>
<td>0.01</td>
<td>0.44 ± 0.2</td>
</tr>
<tr>
<td>compound 22 + hexarelin</td>
<td>0.67 ± 0.12</td>
<td>0.86 ± 0.18</td>
</tr>
<tr>
<td>compound 47</td>
<td>0.006 ± 0.002</td>
<td>0.02 ± 0</td>
</tr>
<tr>
<td>compound 47 + hexarelin</td>
<td>0.35 ± 0.201</td>
<td>0.47 ± 0.194</td>
</tr>
<tr>
<td>compound 44</td>
<td>0.43 ± 0.0721</td>
<td>0.7075 ± 0.1471</td>
</tr>
<tr>
<td>compound 44 + hexarelin</td>
<td>1.2667 ± 0.1319</td>
<td>1.4033 ± 0.1177</td>
</tr>
<tr>
<td>solvent</td>
<td>0.184 ± 0.111</td>
<td>0.497 ± 0.183</td>
</tr>
<tr>
<td>hexarelin</td>
<td>0.536 ± 0.176</td>
<td>0.594 ± 0.169</td>
</tr>
<tr>
<td>compound 9</td>
<td>0.01 ± 0</td>
<td>0.01 ± 0</td>
</tr>
<tr>
<td>compound 9 + hexarelin</td>
<td>0.0104 ± 0.0032</td>
<td>0.0231 ± 0.0032</td>
</tr>
<tr>
<td>solvent</td>
<td>0.184 ± 0.111</td>
<td>0.497 ± 0.183</td>
</tr>
<tr>
<td>hexarelin</td>
<td>1.060 ± 0.143</td>
<td>1.138 ± 0.114</td>
</tr>
<tr>
<td>compound 13</td>
<td>0.057 ± 0.057</td>
<td>0.167 ± 0.167</td>
</tr>
<tr>
<td>compound 13 + hexarelin</td>
<td>0.731 ± 0.318</td>
<td>0.792 ± 0.337</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>solvent</td>
<td>0.184 ± 0.111</td>
<td>0.497 ± 0.183</td>
</tr>
<tr>
<td>hexarelin</td>
<td>1.060 ± 0.143</td>
<td>1.138 ± 0.114</td>
</tr>
<tr>
<td>compound 17</td>
<td>0.001 ± 0.001</td>
<td>0.2661 ± 0.166</td>
</tr>
<tr>
<td>compound 17 + hexarelin</td>
<td>0.0501 ± 0.049</td>
<td>0.846 ± 0.411</td>
</tr>
<tr>
<td>solvent</td>
<td>0.184 ± 0.111</td>
<td>0.497 ± 0.183</td>
</tr>
<tr>
<td>hexarelin</td>
<td>0.428 ± 0.192</td>
<td>0.588 ± 0.303</td>
</tr>
<tr>
<td>compound 24</td>
<td>0.008 ± 0.008</td>
<td>0.215 ± 0.200</td>
</tr>
<tr>
<td>compound 24 + hexarelin</td>
<td>0.586 ± 0.252</td>
<td>0.912 ± 0.359</td>
</tr>
<tr>
<td>solvent</td>
<td>0.184 ± 0.111</td>
<td>0.497 ± 0.183</td>
</tr>
<tr>
<td>hexarelin</td>
<td>0.627 ± 0.211</td>
<td>0.778 ± 0.218</td>
</tr>
<tr>
<td>compound 30</td>
<td>0.264 ± 0.244</td>
<td>0.277 ± 0.246</td>
</tr>
<tr>
<td>compound 30 + hexarelin</td>
<td>1.350 ± 0.177</td>
<td>1.449 ± 0.213</td>
</tr>
<tr>
<td>solvent</td>
<td>0.184 ± 0.018</td>
<td>0.399 ± 0.201</td>
</tr>
<tr>
<td>hexarelin</td>
<td>0.278 ± 0.078</td>
<td>0.883 ± 0.259</td>
</tr>
<tr>
<td>compound 38</td>
<td>0.001 ± 0</td>
<td>0.076 ± 0.096</td>
</tr>
<tr>
<td>compound 38 + hexarelin</td>
<td>0.002 ± 0.002</td>
<td>0.478 ± 0.141</td>
</tr>
<tr>
<td>solvent</td>
<td>0.184 ± 0.111</td>
<td>0.497 ± 0.183</td>
</tr>
<tr>
<td>hexarelin</td>
<td>0.26 ± 0.13</td>
<td>0.78 ± 0.25</td>
</tr>
<tr>
<td>compound 49</td>
<td>0.004 ± 0.004</td>
<td>0.004 ± 0.004</td>
</tr>
<tr>
<td>compound 49 + hexarelin</td>
<td>0.057 ± 0.037</td>
<td>0.558 ± 0.212</td>
</tr>
<tr>
<td>solvent</td>
<td>0.184 ± 0.111</td>
<td>0.497 ± 0.183</td>
</tr>
<tr>
<td>hexarelin</td>
<td>0.536 ± 0.176</td>
<td>0.594 ± 0.169</td>
</tr>
<tr>
<td>compound 50</td>
<td>0.012 ± 0.008</td>
<td>0.039 ± 0.011</td>
</tr>
<tr>
<td>compound 50 + hexarelin</td>
<td>0.003 ± 0.002</td>
<td>0.017 ± 0.001</td>
</tr>
<tr>
<td>solvent</td>
<td>0.184 ± 0.111</td>
<td>0.497 ± 0.183</td>
</tr>
<tr>
<td>hexarelin</td>
<td>0.427 ± 0.16</td>
<td>0.688 ± 0.203</td>
</tr>
<tr>
<td>compound 64</td>
<td>0.012 ± 0.008</td>
<td>0.039 ± 0.011</td>
</tr>
<tr>
<td>compound 64 + hexarelin</td>
<td>0.012 ± 0.004</td>
<td>0.021 ± 0.007</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>solvent</td>
<td>0.184 ± 0.111</td>
<td>0.497 ± 0.183</td>
</tr>
<tr>
<td>hexarelin</td>
<td>0.696 ± 0.267</td>
<td>0.74 ± 0.27</td>
</tr>
<tr>
<td>compound 71</td>
<td>0.522 ± 0.283</td>
<td>0.53 ± 0.28</td>
</tr>
<tr>
<td>compound 71 + hexarelin</td>
<td>0.117 ± 0.074</td>
<td>0.20 ± 0.01</td>
</tr>
<tr>
<td>solvent</td>
<td>0.184 ± 0.111</td>
<td>0.497 ± 0.183</td>
</tr>
<tr>
<td>hexarelin</td>
<td>0.70 ± 0.116</td>
<td>1.221 ± 0.06</td>
</tr>
<tr>
<td>compound 72</td>
<td>0.008 ± 0.003</td>
<td>0.011 ± 0.0</td>
</tr>
<tr>
<td>compound 72 + hexarelin</td>
<td>0.634 ± 0.33</td>
<td>0.746 ± 0.31</td>
</tr>
<tr>
<td>solvent</td>
<td>0.184 ± 0.111</td>
<td>0.497 ± 0.183</td>
</tr>
<tr>
<td>hexarelin</td>
<td>1.031 ± 0.219</td>
<td>1.455 ± 0.192</td>
</tr>
<tr>
<td>compound 80</td>
<td>0.145 ± 0.143</td>
<td>0.346 ± 0.159</td>
</tr>
<tr>
<td>compound 80 + hexarelin</td>
<td>0.475 ± 0.196</td>
<td>0.733 ± 0.238</td>
</tr>
<tr>
<td>solvent</td>
<td>0.184 ± 0.111</td>
<td>0.497 ± 0.183</td>
</tr>
<tr>
<td>hexarelin</td>
<td>0.696 ± 0.267</td>
<td>0.74 ± 0.27</td>
</tr>
<tr>
<td>compound 81</td>
<td>0.017 ± 0.004</td>
<td>0.03 ± 0.0</td>
</tr>
<tr>
<td>compound 81 + hexarelin</td>
<td>0.024 ± 0.0101</td>
<td>0.116 ± 0.077</td>
</tr>
<tr>
<td>solvent</td>
<td>0.184 ± 0.111</td>
<td>0.497 ± 0.183</td>
</tr>
<tr>
<td>hexarelin</td>
<td>0.412 ± 0.173</td>
<td>0.68 ± 0.29</td>
</tr>
<tr>
<td>compound 81</td>
<td>0.034 ± 0.003</td>
<td>0.346 ± 0.179</td>
</tr>
<tr>
<td>compound 81 + hexarelin</td>
<td>1.4 ± 0.35</td>
<td>1.665 ± 0.345</td>
</tr>
<tr>
<td>solvent</td>
<td>0.184 ± 0.111</td>
<td>0.497 ± 0.183</td>
</tr>
<tr>
<td>hexarelin</td>
<td>0.323 ± 0.131</td>
<td>0.45 ± 0.17</td>
</tr>
<tr>
<td>compound 90</td>
<td>0.014 ± 0.001</td>
<td>0.035 ± 0.003</td>
</tr>
<tr>
<td>compound 90 + hexarelin</td>
<td>0.054 ± 0.041</td>
<td>0.069 ± 0.041</td>
</tr>
</tbody>
</table>
VI) Motilin Receptor-ligand binding assay (using human recombinant HEK-293 cells)

Motilin Receptor binding/affinity studies were performed as described by Feighner SD et al. (Science 1999, 284: 2184-2188). The assays were run under the following conditions:

- **Source:** Human recombinant HEK-293 cells [Motilin-Receptor 1a (MTL-Rla)]
- **Ligand:** 0.1 nM [125I] Motilin (human, porcine)
- **Vehicle:** 1% DMSO
- **Incubation Time/Temperature:** 2.5 hours at 25°C
- **Incubation Buffer:** 50 mM Tris, pH 7.4, 10 mM MgCl₂, 0.5% BSA
- **Non-Specific Ligand:** 1 µM Motilin (human, porcine)

Compounds of the invention were tested in concentrations comprising 0.01 µM, 0.1 µM, 1 µM and 10 µM.

IC₅₀ values were determined by a non-linear, least square regression analysis using Data Analysis Toolbox (MDL Information Systems, USA).

In the following table 5 results obtained for selected compounds of the invention are presented.

Table 5: Motilin Receptor-ligand binding assay test results (IC₅₀ values for a number of selected exemplary compounds)

<table>
<thead>
<tr>
<th>No.</th>
<th>MTL-R 1a IC₅₀ [µM]</th>
<th>Chemical name</th>
</tr>
</thead>
<tbody>
<tr>
<td>44</td>
<td>1.61</td>
<td>(R)-N-(1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)piperidine-4-carboxamide,</td>
</tr>
<tr>
<td>64</td>
<td>1.39</td>
<td>(R)-N-(1-(4-(2,4-dimethoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)picolinamide,</td>
</tr>
</tbody>
</table>
VII) Study of anti-cachectic effects in an adjuvant-induced arthritis model system

The effectiveness of compounds of the invention in the treatment of cachexia was investigated according to Ibanez de Caceres I et al. (J Endocrinol. 2000, 165(3): 537-544) using a cachexia model system (Roubenoff R et al., Arthritis Rheum. 1997, 40(3): 534-539).

Table 6 shows the anti-cachetic effect of compound 44 (0.1 µg/kg/day s.c. injection) in arthritic rats in comparison to adjuvant induced arthritis without medical treatment.

| Table 6: Body weight change in gram (mean of 6 animals per group) |
|----------------------|--------|--------|--------|--------|--------|--------|
| | Day 3 | Day 6 | Day 10 | Day 13 | Day 15 | Day 17 |
| Rats with adjuvant induced arthritis + vehicle | -3.02 | 2.95 | 11.97 | 9.32 | -2.78 | -8.27 |
| Arthritic rats + treatment with compound 44 (0,1 µg/kg/day s.c.) | -5.32 | 2.98 | 14.92 | 19.08 | 7.05 | 1.47 |
Study of anti-inhibitory effects of isoproterol-induced lipolysis in adipocyte models

The effectiveness of compounds of the invention in the inhibition of the unacylated ghrelin-induced inhibition of isoproterol-induced lipolysis was investigated using adipocyte models.

Isolation of primary mouse adipocytes

Mice were fed with high fat diet induce obesity (60% of lipids) starting at 4 weeks of age for 12 and 18 weeks.

White adipose tissue from epididymal fat was minced and digested in Krebs-Ringer-Bicarbonate-Hepes (KRBH) buffer (20 mM Hepes pH 7.4, 120 mM NaCl, 4.7 mM KCl, 1.2 mM K$_2$HPO$_4$, 2.5 mM CaCl$_2$, 1.2 mM MgSO$_4$, 24 mM NaHCO$_3$) saturated with CO$_2$ containing glucose (1 mg/mL), 1% BSA and collagenase (2 mg/g tissue). The digestion was made under constant shaking (250 rpm) at 37°C for 45 minutes.

The cell suspension was filtered through a nylon mesh to separate the adipocytes from tissue fragments, and washed three times in 3 ml. of warm KRBH 1% BSA.

The cells was resuspended in KRBH 1%BSA and incubated in shaker (75 rpm) at 37°C for 30 minutes.

Lipolysis assay

Lipolysis in primary adipocytes cells was induced with 30 nM of isoproterenol in KRBH 4% BSA for 90 minutes with constant (125 rpm) shaking at 37°C.

Lipolysis in differentiated cells was induced with 30 nM of isoproterenol in DMEM FBS free for 90 minutes at 37°C with shaking every 15 minutes.

The inhibitory effect of unacylated ghrelin (UAG) on isoproterenol induced lipolysis was documented with increasing concentration of UAG from 10^{-11} M to 10^{-6} M in presence or in absence of selected compounds of the invention at 10^{-7} M.

The lipolysis index was assessed by measuring glycerol release following triglyceride hydrolysis.

The antagonistic effect was determined as follows:
pA2 = - log F concentration of competitor (M) / Ratio - 1

with

\[
\text{Ratio} = \frac{\text{EC50 in presence of competitor (M)}}{\text{EC50 in absence of competitor (M)}}
\]

Figures 41 - 46 show the effects of selected compounds 9, 38, 50, 64, 74, 81 on the isoprorerenol-induced lipolysis inhibition curve of unacylated ghrelin (UAG) in primary adipocytes from mice under diet-induced obesity.
Claims

1. Use of a compound according to formula (I)

wherein:

- R_1 and R_2 are independently of one another selected from the group consisting of "hydrogen atom, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, aryl, heteroaryl, arylalkyl, heteroaryalkyl, heterocycyl, heterocyclylalkyl, alkylsulfonyl, arylsulfonyl, arylalkylsulfonyl" which are optionally substituted in the alkyl, cycloalkyl, cycloalkylalkyl, aryl, heteroaryl, arylalkyl, heteroaryalkyl, heterocycyl and/or heterocyclylalkyl group by up to 3 substituents independently selected from the group consisting of "halogen, -F, -Cl, -Br, -I, -N$_3$, -CN, -NR$_7$R$_8$, -OH, -NO$_2$, alkyl, aryl, arylalkyl, -O-alkyl, -O-aryl, -O-aryalkyl"; and preferably are selected from the group consisting of "alkyl, aryl, heteroaryl, arylalkyl, heteroaryalkyl" optionally being substituted by up to 3 substituents independently selected from the group consisting of "halogen, -F, -Cl, -Br, -I, -N$_3$, -CN, -NR$_7$R$_8$, -OH, -NO$_2$, alkyl, aryl, arylalkyl, -O-alkyl, -O-aryl, -O-aryalkyl";

- one of radicals R_3 and R_4 is a hydrogen atom, whereas the other radical is selected from the group consisting of "hydrogen atom, alkyl, aryl, heteroaryl, arylalkyl, heteroaryalkyl, heterocycyl, heterocyclylalkyl, -alkyl-O-aryl, -alkyl-O-aryalkyl, -alkyl-O-heteroaryl, -alkyl-O-heteroaryalkyl, -alkyl-O-heterocycyl, -alkyl-O-heterocyclylalkyl, -alkyl-C-O-aryl, -alkyl-C-O-aryalkyl, -alkyl-C-O-heteroaryl, -alkyl-C-O-heteroaryalkyl, -alkyl-C(O)-aryl, -alkyl-C(O)-aryalkyl, -alkyl-C(O)-heteroaryl, -alkyl-C(O)-heteroaryalkyl, -alkyl-C(O)-heterocycyl, -alkyl-C(O)-heterocyclylalkyl, -alkyl-C(O)-NH$_2$, -alkyl-C(O)-OH, -alkyl-NH$_2$, -alkyl-N H-C(N H)$_2$-NH$_2$, alkylsulfonyl, arylsulfonyl, aryalkylsulfonyl, alkyl-S-alkyl, alkyl-S-H" which are optionally substituted in the aryl, heteroaryl, arylalkyl, heteroaryalkyl, heterocycyl and/or heterocyclylalkyl group by up to 3 substituents independently selected.
- 198 -

from the group consisting of "halogen, -F, -Cl, -Br, -I, -N\(_3\), -CN, -NR7R8, -OH, -NO\(_2\), alkyl, aryl, arylalkyl, -O-alkyl, -O-aryl, -O-aryalkyl"; and preferably are selected from the group consisting of "arylalkyl, heteroarylated, heterocyclylated, alkyl-O-aryl, -alkyl-0-heteroaryl, alkyl-O-heteroarylalkyl, alkyl-O-heterocyclylalkyl, alkyl-CO-aryl, alkyl-CO-aryalkyl, alkyl-CO-heteroaryl, alkyl-CO-heteroaryalkyl, alkyl-CO-heterocyclyl, alkyl-CO-heteroaryalkyl, alkyl-C(O)O-aryl, alkyl-C(O)O-aryalkyl, alkyl-C(O)O-heteroaryl, alkyl-C(O)O-heteroaryalkyl, alkyl-C(O)O-heterocyclyl, alkyl-C(O)O-heteroaryalkyl, alkyl-NH\(_2\), alkyl-NH-C(NH\(_2\))-NH\(_2\)" optionally being substituted in the aryl, heteroaryl, aryalkyl, heteroarylated, heterocyclylated and/or heteroarylated group by up to 3 substituents independently selected from the group consisting of "halogen, -F, -Cl, -Br, -I, -N\(_3\), -CN, -NR7R8, -OH, -NO\(_2\), alkyl, aryl, aryalkyl, -O-alkyl, -O-aryl, -O-aryalkyl";

R5 is selected from the group consisting of "hydrogen atom, alkyl, cycloalkyl, cycloalkyalkyl, aryl, heteroaryl, aryalkyl, heteroarylated, heterocyclylated, CO-alkyl, CO-cycloalkyl, CO-cycloalkyalkyl, CO-aryl, CO-aryalkyl, CO-heteroaryl, CO-heteroaryalkyl, CO-heterocyclyl, CO-heteroaryalkyl, CO-C*(R9R1 0)-NH\(_2\), CO-CH\(_2\)C*(R9R1 0)-NH\(_2\), CO-C*(RgRIO)-CH\(_2\)NH\(_2\), alklylsulfonyl, arylsulfonyl, aryalkylsulfonyl" which are optionally substituted by up to 3 substituents independently selected from the group consisting of "halogen, -F, -Cl, -Br, -I, -N\(_3\), -CN, -NR7R8, -OH, -NO\(_2\), alkyl, aryl, aryalkyl, -O-alkyl, -O-aryl, -O-aryalkyl"; and preferably is selected from the group consisting of "hydrogen atom, CO-alkyl, CO-cycloalkyl, CO-aryl, CO-heteroaryl, CO-aryalkyl, CO-heteroaryalkyl, CO-C*(R9R1 0)-NH\(_2\), CO-CH\(_2\)C*(R9R1 0)-NH\(_2\), CO-C*(RgRIO)-CH\(_2\)NH\(_2\), optionally being substituted by up to 3 substituents independently selected from the group consisting of "halogen, -F, -Cl, -Br, -I, -N\(_3\), -CN, -NR7R8, -OH, -NO\(_2\), alkyl, aryl, aryalkyl, -O-alkyl, -O-aryl, -O-aryalkyl";

R6 is selected from the group consisting of "hydrogen atom, alkyl, cycloalkyl, cycloalkyalkyl" and preferably is a hydrogen atom;

R7 and R8 are independently of one another selected from the group consisting of "hydrogen atom, alkyl, cycloalkyl, cycloalkyalkyl" and preferably are a hydrogen atom;
R9 and R10 are independently of one another selected from the group consisting of "hydrogen atom, alkyl, natural alpha-amino acid side chain, unnatural alpha-amino acid side chain" and preferably are selected from the group consisting of "hydrogen atom, alkyl"; m is 0, 1 or 2 and preferably is 0; and * means a carbon atom of R or S configuration when chiral; for the manufacture of a medicament for the treatment or prophylaxis of physiological and/or pathophysiological conditions in mammals that are mediated by GHS receptors.

2. The use of a compound according to formula (I) as claimed in claim 1, where

3. The use of a compound according to formula (I) as claimed in claims 1, where
R4 is a hydrogen atom;
R5 is selected from the group consisting of "hydrogen atom, alkyl, cycloalkyl, cycloalkylalkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, heterocyclylalkyl, alkylsulfonyl, arylsulfonyl, aryalkylsulfonyl, -CO-cycloalkyl, -CO-cycloalkylalkyl, -CO-aryl, -CO-arylalkyl, -CO-heteroaryl, -CO-heteroarylalkyl, -CO-heterocyclyl, -CO-heterocyclalkyl";
with the proviso that if R5 is "-CO-heteroarylalkyl", "heteroaryl" is not imidazole; and
with the proviso that if R5 is "-CO-heterocyclalkyl" and "heterocyclalkyl" contains only nitrogen atoms as heteroatoms, that at least two nitrogen atoms are contained in "heterocyclalkyl"; and
with the proviso that if R5 is "-CO-heterocyclylalkyl" and "heterocyclyl" contains only nitrogen atoms as heteroatoms that in the case that one or two nitrogen atoms are contained in "heterocyclyl" no nitrogen atom is positioned at position 1 of "heterocyclyl" that is the atom directly linking "heterocyclyl" to the carbonyl group "-CO-";

where "alkyl, cycloalkyl, cycloalkylalkyl, aryl, heteroaryl, arylalkyl, heteroaryalkyl, heterocyclyl, heterocyclylalkyl, alkylsulfonyl, arylsulfonyl, arylalkysulfonyl, -CO-cycloalkyl, -CO-cycloalkylalkyl, -CO-aryl, -CO-arylalkyl, -CO-heteroaryl, -CO-heteroaryalkyl, -CO-heterocyclyl, and/or -CO-heterocyclylalkyl" are optionally substituted by up to 3 substituents independently selected from the group consisting of "halogen, -F, -Cl, -Br, -I, -N_3, -CN, -NR_7R_8, -OH, -NO_2, alkyl, aryl, arylalkyl, -O-alkyl, -O-aryl, -O-arylalkyl";

with the proviso that if R5 is "-CO-cycloalkyl" or "-CO-cycloalkylalkyl", R5 is not substituted with NR7R8 at position 1 of "cycloalkyl", that is the C atom directly linking "cycloalkyl" to the carbonyl group "-CO-" in case of R5 = "-CO-cycloalkyl" or to the "alkyl" in case R5 = "-CO-cycloalkylalkyl"; and

with the proviso that if R5 is "-CO-aryl" or "-CO-arylalkyl" and "aryl" is phenyl/benzene and is only substituted with one substituent, this one substituent is not-NR7R8;

R6 is a hydrogen atom;

R7 and R8 are independently of one another selected from the group consisting of "hydrogen atom, alkyl, cycloalkyl, cycloalkylalkyl" and preferably are a hydrogen atom; and

m is 0, 1 or 2, and more preferably is 0.

4. The use of a compound according to formula (I) as claimed in claim 1, where

R1 is selected from the group consisting of "hydrogen, methyl, (2-methoxyphenyl)-methyl, (3-methoxyphenyl)-methyl, (4-methoxyphenyl)-methyl, (3-methoxyphenyl)-ethyl, (4-methoxyphenyl)-ethyl, phenyl, phenyl-methyl, phenyl-ethyl, (4-ethylphenyl)-methyl, (4-methylphenyl)-methyl, (4-fluorophenyl)-methyl, (4-bromophenyl)-methyl, (2,4-dimethoxyphenyl)-methyl, (3,5-dimethoxyphenyl)-methyl, 2,2-diphenyl-ethyl, naphthalene-1-yl-methyl, 1H-indole-3-yl-methyl, 2-(1H-indole-3-yl)-ethyl, 3-(1H-indole-3-yl)-propyl, 4-methyl-phenyl, 4-ethyl-phenyl, n-
hexyl, (3,4-dichlorophenyl)-methyl, (4-nitro-phenyl)-methyl, (pyridine-2-yl)-methyl, (pyridine-3-yl)-methyl, (pyridine-4-yl)-methyl, (thiophene-2-yl)-methyl, (thiophene-3-yl)-methyl, (furan-2-yl)-methyl, (furan-3-yl)-methyl";

R2 is selected from the group consisting of "methyl, 1H-indole-3-yl-methyl, 2-(1H-indole-3-yl)-ethy1, 3-(1H-indole-3-yl)-propyl, 2-phenyl-ethyl, 3-phenyl-propyl, 4-phenyl-butyl, 2-methoxy-phenylmethyl, 3-methoxy-phenylmethyl, 4-methoxy-phenylmethyl, 2-methoxy-phenylethyl, 3-methoxy-phenylethyl, 4-methoxy-phenylethyl";

R3 is selected from the group consisting of "hydrogen atom, methyl, propan-2-yl, 2-methyl-propan-1-yl, butan-2-yl, butan-1-yl, -CH₂SH, -(CH₂)₂S-CH₃, 1H-indole-3-yl-methyl, phenyl-methyl, 2-phenyl-ethyl, -CH²O-CH₃rphenyl, -(CH₂)₂CO-CH₂phenyl, -(CH₂)₂CO-CH₂phenyl, -CHrC(O)O-phenyl, -(CH₂)₂C²O-phenyl, hydroxy-methyl, 1-hydroxy-ethan-1-yl, -CH₂CO-NH₂, -(CH₂)₂CO-NH₂, (1-hydroxy-benzene-4-yl)-methyl, -CH₂-C(O)-CH₂-phenyl, -(CH₂)₂-C(O)-CH₂-phenyl, -(CH₂)₂-C(O)-phenyl, -(CH₂)₂-C(O)-phenyl", and preferably is selected from the group consisting of "1H-indole-3-yl-methyl, -CHz-CO-CHz-phenyl, -(CH₂)₂CO-CH₂phenyl, -CH₂C(O)O-phenyl, -(CH₂)₂C²O-phenyl";

R4 is a hydrogen atom;

R5 is selected from the group consisting of "hydrogen atom, -CO-CH₂NH₂ (Gly residue), -CO-CH₂CH₂NH₂ (beta-Ala residue), -CO-CH₂CH₂NH₂ (D- and/or L-alpha-Ala residue), -CO-(pyrrolidine-2-yl) (D- and/or L-Pro residue), 2-amin0-2-carbonyl-propane (2-amino-isobutyric acid/Aib residue), 4-carbonyl-1H-piperidine, 3-carbonyl-1H-piperidine, R-(3-carbonyl-1H-piperidine), S-(3-carbonyl-1H-piperidine), 2-carbonyl-1H-piperidine, R-(2-carbonyl-1H-piperidine), S-(2-carbonyl-1H-piperidine), 1-amino-2-carbonyl-benzene, carbonyl-cyclohexane, 2-acetyl-pyridine, 3-acetyl-pyridine, 4-acetyl-pyridine, 2-propionyl-pyridine, 3-propionyl-pyridine, 4-propionyl-pyridine, (R-1-amino)-2-carbonyl-cyclohexane, (S-1-amino)-2-carbonyl-cyclohexane, 2-carbonyl-1A7-imidazole, 2-carbonyl-pyridine, 3-carbonyl-pyridine, 4-carbonyl-pyridine, 2-amino-3-carbonyl-pyridine, 2-carbonyl-pyrazine, 2-carbonyl-4-hydroxy-1/-/-pyrrolidine, 4-carbonyl-1H,3H-diazacyclohexane, methyl-sulfonyl, phenylsulfonyl, i-carbonyl-i-amino-2-phenylethane, phenylmethyl, 1-carbonyl-4-azide-benzene, 2-carbonyl-2,5-dihydro-1H-pyrrole, 2-carbonyl-piperazine, 2-carbonyl-1H-pyrrolidine, 2-aminoethane, carbonyl-benzene, 2-
carbonyl-pyrazine, 3-carbonyl-pyrazine, 4-carbonyl-oxacyclohexane, 4-methyl-phenylsulfonyl, phenylmethyl-sulfonyl";

R6 is a hydrogen atom; and
m is 0;

5. The use of a compound according to formula (I) as claimed in claim 4, where
R3 is selected from the group consisting of "-CHr-CO-CH^phenyl, -(CHz)z CO-CHz-phenyl, -CH z CO-NH 2, -(CHz)z CO-NH, -CH z CO-OH, -(CHz)z CO-OH, -(CHz)z NH-C(NH)-NH 2, -CH z SH, -(CH z)z S-CH 3".

10.

6. The use of a compound according to formula (I) as claimed in claim 4, where
R5 is selected from the group consisting of "hydrogen atom, methylsulfonyl, phenylsulfonyl, carbonyl-cyclohexane, (R-1-amino)-2-carbonyl-cyclohexane, (S-1-amino)-2-carbonyl-cyclohexane, 2-carbonyl-pyridine, 3-carbonyl-pyridine, 4-carbonyl-pyridine, 2-acetyl-pyridine, 3-acetyl-pyridine, 4-acetyl-pyridine, 2-propionyl-pyridine, 3-propionyl-pyridine, 4-propionyl-pyridine, 2-amino-3-carbonyl-pyridine, 2-carbonyl-1 Himidazole, 2-carbonyl-pyrazine, 4-carbonyl-1 H,3H-diazacyclohexane".

20.

7. The use as claimed in any of claims 1 to 6 where the compound is selected from the group consisting of:

compound 1 \[\text{[f]-A} \{1-(5-2-(1 \text{H-indol}-3-yl)ethyl)-4-(2,4-dimethoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl\}2-amino-2-methylpropanamide,\]

compound 2 \[\text{[R]-A} \{1-(5-2-(1 \text{H-indol}-3-yl)ethyl)-4-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl\}2-amino-2-methylpropanamide,\]

compound 3 \[\text{[f]-A} \{1-(5-3-(1 \text{H-indol}-3-yl)propyl)-4-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl\}2-amino-2-methylpropanamide,\]

compound 4 \[\text{[f]-A} \{1-(5-benzyl-4-(naphthalen-1-ylmethyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl\}2-amino-2-methylpropanamide,\]

compound 5 \[\text{[R]-A} \{1-(5-2-(1 \text{H-indol}-3-yl)ethyl)-4-(naphthalen-1-ylmethyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl\}2-amino-2-methylpropanamide,\]
compound 6 \((R)-\Lambda-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(3-methoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)\cdot 2\text{-amino}-2\text{-methylpropanamide,}\)

compound 7 \((R)-\Lambda-(1-(4-(3-methoxybenzyl)-5-benzyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)\cdot 2\text{-amino}-2\text{-methylpropanamide,}\)

compound 8 \((*)/-V-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-benzyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)\cdot 2\text{-amino}-2\text{-methylpropanamide,}\)

compound 9 \((R)-\Lambda-(1-(5-(3-(1H-indol-3-yl)propyl)-4-benzyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)\cdot 2\text{-amino}-2\text{-methylpropanamide,}\)

compound 10 \((R)-/V-(1-(5-(3-(1H-indol-3-yl)propyl)-4-(3-methoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)\cdot 2\text{-amino}-2\text{-methylpropanamide,}\)

compound 11 \((R)-\Lambda-(1-(5-(3-(1H-indol-3-yl)propyl)-4-(naphthalen-1-ylmethyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)\cdot 2\text{-amino}-2\text{-methylpropanamide,}\)

compound 12 \((R)-\Lambda-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(4-methoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)\cdot 2\text{-amino}-2\text{-methylpropanamide,}\)

compound 13 \((R)-\Lambda-(1-(4-(4-methoxybenzyl)-5-benzyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)\cdot 2\text{-amino}-2\text{-methylpropanamide,}\)

compound 14 \((R)-\Lambda-(1-(5-(3-(1H-indol-3-yl)propyl)-4-(4-bromobenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)\cdot 2\text{-amino}-2\text{-methylpropanamide,}\)

compound 15 \((R)-/V-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-hexyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)\cdot 2\text{-amino}-2\text{-methylpropanamide,}\)

compound 16 \((R)-\Lambda-(1-(5-(3-(1H-indol-3-yl)propyl)-4-hexyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)\cdot 2\text{-amino}-2\text{-methylpropanamide,}\)

compound 17 \((R)-/V-(1-(4,5-bis(2-(1H-indol-3-yl)ethyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)\cdot 2\text{-amino}-2\text{-methylpropanamide,}\)

compound 18 \((S)-\Lambda-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(2,4-dimethoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)\cdot 2\text{-amino}-2\text{-methylpropanamide,}\)

compound 19 \((R)-\Lambda-(1-(4-(3-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)\cdot 2\text{-amino}-2\text{-methylpropanamide,}\)

compound 20 \((R)-/V-(1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)\cdot 2\text{-amino}-2\text{-methylpropanamide,}\)
compound 21 (R)-V-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(3,5-dimethoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,

compound 22 (R)-Λ-(1-(4-(4-methoxybenzyl)-5-(3-phenylpropyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,

compound 23 (R)-Λ-(1-(5-(3-(1H-indol-3-yl)propyl)-4-(4-methoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,

compound 24 (R)-Λ-(1-(4-(2-(1H-indol-3-yl)ethyl)-5-(3-(1H-indol-3-yl)propyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,

compound 25 (R)-Λ-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(2-methoxy)benzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,

compound 26 (R)-Λ-(1-(4-(2-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,
compound 37 (R)-\(-\{1-(4-(4-methylbenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl\}-2-amino-2-methylpropanamide,

compound 38 (R)-\(-\{1-(5-(2-(1H-indol-3-yl)ethyl)-4-(2,4-dimethoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl\}-2-amino-2-methylpropanamide,

compound 39 (\(\#\))-(1-(5-benzyl-4-(pyridin-2-ylmethyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,

compound 40 (25,4\(\#\))-(\(\#\))-(1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-4-hydroxyproline-2-carboxamide,

compound 41 (S)-\(-\{1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl\}-2-amino-2-methylpropanamide,

compound 42 (R)-\(-\{1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl\}-2-amino-2-methylpropanamide,

compound 43 (\(\#\))-(1-(4-(4-ethylbenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,

compound 44 (\(\#\))-(1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,

compound 45 (R)-\(-\{1-(5-(2-(1H-indol-3-yl)ethyl)-4-(4-methoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl\}-2-amino-2-methylpropanamide,

compound 46 (S)-\(-\{1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl\}-2-amino-2-methylpropanamide,

compound 47 (\(\#\))-(1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,

compound 48 (S)-\(-\{1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl\}-2-amino-2-methylpropanamide,

compound 49 (\(\#\))-(1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,

compound 50 (R)-\(-\{1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl\}-2-amino-2-methylpropanamide,

compound 51 (R)-\(-\{1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl\}-2-amino-2-methylpropanamide,
compound 52 \((R)-N-(1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-(pyridin-4-yl)acetamide,\)

compound 53 \((f?)-N-(1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)cyclohexane-carboxamide,\)

5 compound 54 \((f?)-N-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-benzyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)piperidine-4-carboxamide,\)

compound 55 \((R)-N-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-benzyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)piperidine-3-carboxamide,\)

compound 56 \((R)-N-(1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-3-aminopropanamide,\)

compound 57 \((S)-N-(f?)-1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-aminopropanamide,\)

compound 58 \((f?)-N-(1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-(pyridin-3-yl)acetamide,\)

10 compound 59 \((f?)-N-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-benzyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-3-(pyridin-3-yl)propanamide,\)

compound 60 \((f?)-N-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-benzyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-(pyridin-2-yl)acetamide,\)

compound 61 \((f?)-\Lambda-1-(5-(2-(1H-indol-3-yl)ethyl)-4-(2,4-dimethoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-(pyridin-2-yl)acetamide,\)

compound 62 \((R)-\Lambda-1-(4-(2,4-dimethoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)piperidine-4-carboxamide,\)

compound 63 \((R)-\Lambda-(f?)-1-(4-(2,4-dimethoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)piperidine-2-carboxamide,\)

compound 64 \((f?)-\Lambda-(f?)-1-(4-(2,4-dimethoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)picolinamide,\)

compound 65 \((f?)-\Lambda-(1-(4-(2,4-dimethoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)isonicotinamide,\)

compound 66 \((R)-\Lambda-1-(4-(2,4-dimethoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)pyrazine-2-carboxamide,
compound 67 (f?)-N-1-(4-(2,4-dimethoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)piperazine-2-carboxamide,

compound 68 (S)-N-(f?)-1-(4-(2,4-dimethoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1A7-indol-3-yl)ethyl)pyrrolidine-2-carboxamide,

5 compound 69 (R)-N-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(2,4-dimethoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-aminoacetamide,

compound 70 (S)-N-[(f?)]-1-(5-(2-(1H-indol-3-yl)ethyl)-4-(2,4-dimethoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)pyrrolidine-2-carboxamide,

compound 71 (R)-N-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(2,4-dimethoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)piperazine-2-carboxamide,

compound 72 (R)-N-(5-(2-(1H-indol-3-yl)ethyl)-4-(2,4-dimethoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)piperazine-2-carboxamide,

compound 73 (R)-N-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(2,4-dimethoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)pyrazine-2-carboxamide,

15 compound 74 (f?)-1-(5-(2-(1H-indol-3-yl)ethyl)-4-(2,4-dimethoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1W-indol-3-yl)ethyl)pyrazine-2-carboxamide,

compound 75 (f?)-N-(1-(4-(2,4-dimethoxybenzyl)-5-phenethyl-4W-1,2,4-triazol-3-yl)-2-(1W-indol-3-yl)ethyl)-2-aminoacetamide,

compound 76 (f?)-N-(1-(4-(methoxybenzyl)-5-phenethyl-4 H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)piperazine-2-carboxamide,

compound 77 (R)-N-(1-(4-(methoxybenzyl)-5-phenethyl-4 H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)isonicotinamide,

compound 78 (f?)-N-1-(4-(methoxybenzyl)-5-phenethyl-4 H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)piperazine-2-carboxamide,

25 compound 79 (f?)-N-(1-(4-(methoxybenzyl)-5-phenethyl-4 H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)piperazine-2-carboxamide,

compound 80 (f?)-N-(1-(5-(2-(1A7-indol-3-yl)ethyl)-4-(methoxybenzyl)-4 H-1,2,4-triazol-3-yl)-2-(1W-indol-3-yl)ethyl)picolinamide,

compound 81 (f?)-N-1-(5-(2-(1H-indol-3-yl)ethyl)-4-(methoxybenzyl)-4 H-1,2,4-triazol-3-yl)-2-(1W-indol-3-yl)ethyl)piperazine-2-carboxamide,
compound 82 \[\text{(R)}-\text{N}-(1-(4-(4-ethylbenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-(pyridin-2-yl)acetamide,\]

compound 83 \[\text{(S)}-\text{N}-(1-(4-(4-ethylbenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)piperidine-4-carboxamide,\]

compound 84 \[\text{(R)}-\text{N}-(1-(4-(4-ethylbenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)piperazine-2-carboxamide,\]

compound 85 \[\text{(R)}-\text{N}-(1-(4-(4-ethylbenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)pyrazine-2-carboxamide,\]

compound 86 \[\text{(R)}-\text{N}-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(2,4-dimethoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-cis-aminocyclohexanecarboxamide,\]

compound 87 \[\text{(S)}-\text{N}-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(4-methoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)piperidine-3-carboxamide,\]

compound 88 \[\text{(R)}-\text{N}-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(4-methoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)piperidine-2-carboxamide,\]

compound 89 \[\text{(S)}-\text{N}-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(4-methoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)pyrrolidine-2-carboxamide,\]

compound 90 \[\text{(R)}-\text{N}-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(4-methoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)pyrrolidine-2-carboxamide,\]

compound 91 \[\text{(R)}-\text{N}-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(4-methoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-(pyridin-2-yl)acetamide,\]

compound 92 \[\text{(R)}-\text{N}-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(4-bromobenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,\]

compound 93 \[\text{(R)}-\text{N}-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(4-methoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-phenylethyl)-2-amino-2-methylpropanamide,\]

compound 94 \[\text{(R)}-\text{N}-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(thiophen-2-ylmethyl)-4H-1,2,4-triazol-3-yl)ethyl)piperidine-4-carboxamide,\]

compound 95 \[\text{(S)}-\text{N}-(1-(4-(2-(1H-indol-3-yl)ethyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,\]

compound 96 \[\text{(R)}-\text{N}-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(4-methoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,\]
compound 97 \((R)-V-(1-(5-(2-(1H\text{-indol-3-yl})\text{ethyl})-4-methyl-4tf-1,2,4\text{-triazol-3-yl})-2-(1H\text{-indol-3-yl})\text{ethyl})-2\text{-amino-2-methylpropanamide}, \)

compound 98 \((f?)-N-(1-(5-((1H\text{-indol-3-yl})\text{methyl})-4H\text{-1,2,4\text{-triazol-3-yl}})-2-(1W\text{-indol-3-y}l)\text{ethyl})-2\text{-amino-2-methylpropanamide}, \)

5 compound 99 \((f?)-N-(1-(5-((1H\text{-indol-3-yl})\text{methyl})-4-(2,4-dimethoxybenzyl)-4H\text{-1,2,4\text{-triazol-3-yl}})-2-(1W\text{-indol-3-y}l)\text{ethyl})-2\text{-amino-2-methylpropanamide}, \)

compound 100 \((R)-N-(1-(4-(2,4-dimethoxybenzyl)-5-methyl-4\text{A7-1} ,2,4\text{-triazol-3-yl})-2-(1A7\text{-indol-3-y}l)\text{ethyl})-2\text{-amino-2-methylpropanamide}, \)

compound 101 \((R)-N-(1-(5-((1H\text{-indol-3-yl})\text{methyl})-4-(4\text{-methoxybenzyl})-4H\text{-1,2,4\text{-triazol-3-yl}})-2-(1A7\text{-indol-3-y}l)\text{ethyl})-2\text{-amino-2-methylpropanamide}, \)

compound 102 \((R)-N-(1-(4-(2,4-dimethoxybenzyl)-5-benzyl-4\text{W-1} ,2,4\text{-triazol-3-yl})-2-(1A7\text{-indol-3-y}l)\text{ethyl})-2\text{-amino-2-methylpropanamide} \)

compound 103 \((R)-N-(1-(5-(3-(1H\text{-indol-3-yl})propyl)-4-(2,4-dimethoxybenzyl)-4H\text{-1,2,4\text{-triazol-3-yl}})-2-(1W\text{-indol-3-y}l)\text{ethyl})-2\text{-amino-2-methylpropanamide} \)

15 compound 104 \((R)-V-(1-(5-((1H\text{-indol-3-yl})\text{methyl})-4-phenethyl-4H\text{-1,2,4\text{-triazol-3-yl}})-2-(1AV\text{-indol-3-yl})\text{ethyl})-2\text{-amino-2-methylpropanamide}, \)

compound 105 \((f?)-V-(1-(5-benzyl-4-phenethyl-4H\text{-1,2,4\text{-triazol-3-yl}})-2-(1H\text{-indol-3-y}l)\text{ethyl})-2\text{-amino-2-methylpropanamide}, \)

compound 106 \((R)-N-(1-(5-benzyl-4-(2,2-diphenylethyl)-4H\text{-1,2,4\text{-triazol-3-yl}})-2-(1AV\text{-indol-3-y}l)\text{ethyl})-2\text{-amino-2-methylpropanamide}, \)

compound 107 \((R)-N-(1-(5-(2-(1H\text{-indol-3-yl})\text{ethyl})-4-(2,2-diphenylethyl)-4H\text{-1,2,4\text{-triazol-3-yl}})-2-(1H\text{-indol-3-y}l)\text{ethyl})-2\text{-amino-2-methylpropanamide}, \)

compound 108 \((R)-V-(1-(4-(3,5-dimethoxybenzyl)-5-benzyl-4\text{W-1} ,2,4\text{-triazol-3-yl})-2-(1W\text{-indol-3-y}l)\text{ethyl})-2\text{-amino-2-methylpropanamide}, \)

compound 109 \((f?)-V-(1-(4,5-dibenzyl-4H\text{-1,2,4\text{-triazol-3-yl}})-2-(1H\text{-indol-3-y}l)\text{ethyl})-2\text{-amino-2-methylpropanamide}, \)

compound 110 \((R)-N-(1-(5-benzyl-4-hexyl-4H\text{-1,2,4\text{-triazol-3-yl}})-2-(1H\text{-indol-3-y}l)\text{ethyl})-2\text{-amino-2-methylpropanamide}, \)

compound 111 \((f?)-N-(1-(4-(2-(1H\text{-indol-3-yl})\text{ethyl})-5-benzyl-4H\text{-1,2,4\text{-triazol-3-yl}})-2-(1W\text{-indol-3-y}l)\text{ethyl})-2\text{-amino-2-methylpropanamide}, \)
compound 112 (S)-Ν-(1-(4-(2,4-dimethoxybenzyl)-5-benzyl-4/-/-1
2-(1 H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,

compound 113 (R)-Ν-(1-(4-(3,5-dimethoxybenzyl)-5-phenethyl-4
H 1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,

compound 114 (f?)-Ν-(1-(4-(4-bromobenzyl)-5-benzyl-4
H 1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,

compound 115 (R)-Ν-(1-(4-(2-methoxybenzyl)-5-benzyl-4
H 1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,

compound 116 (S)-Ν-(1-(4-(2,4-dimethoxybenzyl)-5-phenethyl-4
H 1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,

compound 117 (R)-Ν-(1-(4,5-diphenethyl-4 H 1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,

compound 118 (f?)-Ν-(1-(4-(3,4-dichlorobenzyl)-5-benzyl-4
H 1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,

compound 119 (+)-1-(5-(2-(1W-indol-3-yl)ethyl)-4-(2,4-dimethoxybenzyl)-4
H 1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethanamine,

compound 120 (R)-Ν-(1-(4-(4-methoxybenzyl)-5-benzyl-4
H 1,2,4-triazol-3-yl)-2-phenylethyl)-2-amino-2-methylpropanamide,

compound 121 (f?)-Ν-(1-(4-(4-fluorobenzyl)-5-phenethyl-4
H 1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,

compound 122 (f?)-Ν-(1-(4-(3,4-dichlorobenzyl)-5-phenethyl-4
H 1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,

compound 123 (R)-Ν-(1-(4-(4-methylbenzyl)-5-benzyl-4
H 1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,

compound 124 (S)-Ν-(1-(4-(4-methoxybenzyl)-5-(3-phenylpropyl)-4
H 1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,

compound 125 (S)-Ν-(1-(4-(4-methoxybenzyl)-5-(3-phenylpropyl)-4
H 1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,

compound 126 (S)-Ν-(1-(4-(4-methoxybenzyl)-5-benzyl-4
H 1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,

compound 127 (R)-Ν-(1-(4-(4-nitrobenzyl)-5-benzyl-4
H 1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,
compound 129 (S)-/V-(1-(4-(4-methoxybenzyl)-5-phenethyl-4W-1,2,4-triazol-3-yl)-2-(1A7-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,

compound 130 (R)-/N-(1-(4-(4-methoxyphenethyl)-5-phenethyl-4/-/-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,

compound 131 (R)-/(R)-(1-(4-(4-methoxyphenethyl)-5-phenethyl-4/-/-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,

compound 132 (R)-/N-(2-(1H-indol-3-yl)-1-(5-phenethyl-4-(pyridin-2-ylmethyl)-4H-1,2,4-triazol-3-yl)ethyl)-2-amino-2-methylpropanamide,

compound 133 (R)-/N-(2-(1H-indol-3-yl)-1-(5-phenethyl-4-(pyridin-2-ylmethyl)-4H-1,2,4-triazol-3-yl)ethyl)piperidine-3-carboxamide,

compound 134 (S)-/N-((R)-1-(4-(4-ethylbenzyl)-5-phenethyl-4Ay-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)pyrrolidine-2-carboxamide,

compound 135 /N-((R)-1-(4-(4-ethylbenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1A7-indol-3-yl)ethyl)-2-aminoacetamide,

compound 136 /N-((R)-1-(5-(2-(1H-indol-3-yl)ethyl)-4-(4-methoxybenzyl)-4AV-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-(pyridine-4-yl)acetamide,

compound 137 (2R)-/N-((R)-1-(4-(4-ethylbenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)piperidine-2-carboxamide,

compound 138 /N-((R)-1-(4-(4-ethylbenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)picolinamide,

compound 139 /N-((K)-1-(4-(4-ethylbenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-aminopyridine-3-carboxamide,

compound 140 (2S)-/N-((R)-1-(4-(4-ethylbenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1AV-indol-3-yl)ethyl)-2-aminopropanamide,

compound 141 /N-((R)-1-(4-(4-ethylbenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1/-/-1,2,4-triazol-3-yl)ethyl)isonicotinamide,

compound 142 /N-((R)-2-(1W-indol-3-yl)-1-(5-phenethyl-4-phenyl-4H-1,2,4-triazol-3-yl)ethyl)piperidine-4-carboxamide,

compound 143 (2S)-N-((R)-2-(1W-indol-3-yl)-1-(5-phenethyl-4-phenyl-4H-1,2,4-triazol-3-yl)ethyl)pyrrolidine-2-carboxamide,
compound 144 N-((R)-2-(1 tf-indol-3-yl)-1-(5-phenethyl-4-phenyl-4 H 1,2,4-triazol-3-yl)ethyl)-2-aminoacetamide,

compound 145 N-((R)-2-(1 tf-indol-3-yl)-1-(5-phenethyl-4-phenyl-4 H 1,2,4-triazol-3-yl)ethyl)-2-(pyridin-2-yl)acetamide,

5 compound 146 N-((R)-2-(1 H-indol-3-yl)-1-(5-phenethyl-4-phenyl-4 H 1,2,4-triazol-3-yl)ethyl)picolinamide,

compound 147 N-((K)-1-(5-(2-(1 H-indol-3-yl)ethyl)-4-(4-ethylphenyl)-4 H 1,2,4-triazol-3-yl)-2-(1 H-indol-3-yl)ethyl)-2-(pyridin-2-yl)acetamide,

compound 148 N-((R)-1-(5-(2-(1 H-indol-3-yl)ethyl)-4-(4-ethylphenyl)-4 H 1,2,4-triazol-3-yl)-2-(1 H-indol-3-yl)ethyl)picolinamide,

10 compound 149 N-((K)-1-(5-(2-(1 H-indol-3-yl)ethyl)-4-(4-ethylphenyl)-4 H 1,2,4-triazol-3-yl)-2-(1 H-indol-3-yl)ethyl)-2-aminoacetamide,

compound 150 (2S)-N-((R)-1-(5-(2-(1 H-indol-3-yl)ethyl)-4-(4-ethylphenyl)-4 H 1,2,4-triazol-3-yl)-2-(1 H-indol-3-yl)ethyl)piperidine-2-carboxamide,

15 compound 152 N-((R)-1-(5-(2-(1 H-indol-3-yl)ethyl)-4-(4-methoxybenzyl)-4 H 1,2,4-triazol-3-yl)-2-(1 H-indol-3-yl)ethyl)-2-aminoacetamide,

compound 153 N-((R)-1-(4-(4-methoxybenzyl)-5-phenethyl-4 H 1,2,4-triazol-3-yl)-2-(1 H-indol-3-yl)ethyl)-2-trans-aminocyclohexanecarboxamide,

compound 154 N-((R)-1-(4-(4-ethylbenzyl)-5-phenethyl-4 H 1,2,4-triazol-3-yl)-2-(1 H-indol-3-yl)ethyl)-2-aminoacetamide,

compound 155 (3S)-N-((R)-1-(4-(4-ethylbenzyl)-5-phenethyl-4 H 1,2,4-triazol-3-yl)-2-(1 H-indol-3-yl)ethyl)piperidine-3-carboxamide,

compound 156 N-((R)-1-(4-(4-ethylbenzyl)-5-phenethyl-4 H 1,2,4-triazol-3-yl)-2-(1 H-indol-3-yl)ethyl)-2-aminobenzamide,

compound 157 N-((R)-1-(5-(2-(1 H-indol-3-yl)ethyl)-4-phenyl-4 H 1,2,4-triazol-3-yl)-2-(1 H-indol-3-yl)ethyl)piperolinamide,

compound 158 N-((R)-1-(5-(2-(1 H-indol-3-yl)ethyl)-4-phenyl-4 H 1,2,4-triazol-3-yl)-2-(1 H-indol-3-yl)ethyl)piperidine-4-carboxamide,

compound 159 N-((R)-2-(1 H-indol-3-yl)-1-(4-(2,4-dimethoxyphenyl)-5-phenethyl-4 H 1,2,4-triazol-3-yl)ethyl)picolinamide,
compound 160 \(N\)-((R)-2-(1A7-indol-3-yl)-1-(4-(2,4-dimethoxyphenyl)-5-phenethyl-4\(H\)-1,2,4-triazol-3-yl)ethyl)-2-(pyridin-2-yl)acetamide,

compound 161 \(N\)-((R)-2-(1\(H\)-indol-3-yl)-1-(4-(2,4-dimethoxyphenyl)-5-phenethyl-4\(H\)-1,2,4-triazol-3-yl)ethyl)pyrazine-2-carboxamide,

compound 162 \(N\)-((R)-2-(1\(H\)-indol-3-yl)-1-(4-(2,4-dimethoxyphenyl)-5-phenethyl-4\(H\)-1,2,4-triazol-3-yl)ethyl)-2-aminoacetamide,

compound 163 \(N\)-((R)-2-(1\(H\)-indol-3-yl)-1-(4-(2,4-dimethoxyphenyl)-5-phenethyl-4\(H\)-1,2,4-triazol-3-yl)ethyl)piperidine-4-carboxamide,

compound 164 \(N\)-((R)-1-(5-benzyl-4-((pyridin-2-yl)methyl)-4\(H\)-1,2,4-triazol-3-yl)-2-(1\(H\)-indol-3-yl)ethyl)picolinamide,

compound 165 \(N\)-((R)-1-(5-benzyl-4-((pyridin-2-yl)methyl)-4\(H\)-1,2,4-triazol-3-yl)-2-(1\(H\)-indol-3-yl)ethyl)-2-amino-acetamide,

compound 166 \(N\)-((R)-1-(5-benzyl-4-((pyridin-3-yl)methyl)-4\(H\)-1,2,4-triazol-3-yl)-2-(1\(H\)-indol-3-yl)ethyl)piperidine-4-carboxamide,

compound 167 \(N\)-((R)-1-(5-benzyl-4-((pyridin-4-yl)methyl)-4\(H\)-1,2,4-triazol-3-yl)-2-(1\(H\)-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,

compound 168 \(N\)-((R)-1-(5-(4-methoxybenzyl)-4-phenethyl-4\(H\)-1,2,4-triazol-3-yl)-2-(1\(H\)-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,

compound 169 \(N\)-((R)-1-(5-benzyl-4-((pyridin-4-yl)methyl)-4\(H\)-1,2,4-triazol-3-yl)-2-(1\(H\)-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,

compound 170 \(N\)-((R)-1-(5-benzyl-4-((pyridin-3-yl)methyl)-4\(H\)-1,2,4-triazol-3-yl)-2-(1\(H\)-indol-3-yl)ethyl)-2-amino-acetamide,

compound 171 (R)-benzyl-3-(2-aminoisobutyramido)-3-(5-(2-(1\(H\)-indol-3-yl)ethyl)-4-(4-methoxybenzyl)-4\(H\)-1,2,4-triazol-3-yl)-propanoate,

compound 172 ^((RJ-i-CS-benzyl\(^\wedge\)-pyridin-3-yO)methyl\(^\wedge\)-triazol-3-yl)^\(^\wedge\)-(1\(H\)-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,

compound 173 \(N\)-((R)-1-(4-benzyl-5-phenethyl-4\(H\)-1,2,4-triazol-3-yl)-2-(1\(H\)-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,

compound 174 \(N\)-((R)-2-(1\(W\)-indol-3-yl)-1-(4-methyl-5-phenethyl-4\(H\)-1,2,4-triazol-3-yl)ethyl)picolinamide,
compound 175 \(/\text{V-}((\text{R})-1-(5-(2-(1\text{H-indol-3-yl})\text{ethyl})-4\text{-phenyl}-4\text{tf-}1,2,4\text{-triazol-3-yl})-2-(1\text{H-indol-3-yl})\text{ethyl})-2\text{-amino-2-methylpropanamide,}\)

compound 176 \(/\text{N-}((\text{R})-1-(4-(4\text{-methoxybenzyl})-5\text{-phenethyl}-4\text{H-1,2,4-triazol-3-yl})-2-(1\text{H-indol-3-yl})\text{ethyl})\text{benzamide,}\)

compound 177 \((\text{R})-1-(4-(2,4\text{-dimethoxybenzyl})-5\text{-phenethyl}-4\text{A}-1,2,4\text{-triazol-3-yl})-2-(1\text{H-indol-3-yl})\text{-N-phenylmethanesulfonfylamine,}\)

compound 178 \((\text{R})-1-(4-(2,4\text{-dimethoxybenzyl})-5\text{-phenethyl}-4\text{W}-1,2,4\text{-triazol-3-yl})-2-(1\text{H-indol-3-yl})\text{-N-tosylethanamine,}\)

compound 179 \(/\text{V-}((\text{R})-1-(4-(2,4\text{-dimethoxybenzyl})-5\text{-phenethyl}-4\text{H-1,2,4-triazol-3-yl})-2-(1\text{W-indol-3-yl})\text{ethyl})-2\text{-amino-2-methylpropanamide,}\)

compound 180 \(/\text{N-1-}((\text{R})-1-(4-(2,4\text{-dimethoxybenzyl})-5\text{-phenethyl}-4\text{f/-}1,2,4\text{-triazol-3-yl})-2-(1\text{H-indol-3-yl})\text{ethyl})\text{ethane-1,2-diamine,}\)

compound 181 \(/\text{N-}((\text{R})-1-(4-((\text{furan-2-yl})\text{methyl})-5\text{-phenethyl}-4\text{H-1,2,4-triazol-3-yl})-2-(1\text{H-indol-3-yl})\text{ethyl})\text{-2-amino-2-methylpropanamide,}\)

compound 182 \(/\text{V-}((\text{R})-1-(4-((\text{furan-2-yl})\text{methyl})-5\text{-phenethyl}-4\text{H-1,2,4-triazol-3-yl})-2-(1\text{W-indol-3-yl})\text{ethyl})\text{picolinamide,}\)

compound 183 \(/\text{N-}((\text{R})-1-(4-((\text{furan-2-yl})\text{methyl})-5\text{-phenethyl}-4\text{H-1,2,4-triazol-3-yl})-2-(1\text{H-indol-3-yl})\text{ethyl})\text{piperidine-4-carboxamide,}\)

compound 184 \(/\text{V-}((\text{R})-1-(4-(4\text{-methoxybenzyl})-5\text{-phenethyl}-4\text{H-1,2,4-triazol-3-yl})-2-(1\text{W-indol-3-yl})\text{ethyl})\text{-tetrahydro-2 H-pyran-4-carboxamide,}\)

compound 185 \(/\text{N-}((\text{R})-1-(5-(1\text{H-indol-3-yl})\text{methyl})-4-(3\text{-methoxybenzyl})-4\text{AV-1,2,4-triazol-3-yl})-2-(1\text{H-indol-3-yl})\text{ethyl})\text{-2-amino-2-methylpropanamide,}\)

compound 186 \((2\text{S})-\text{N-}((\text{R})-1-(4-(4\text{-methoxybenzyl})-5\text{-phenethyl}-4\text{H-1,2,4-triazol-3-yl})-2-(1\text{H-indol-3-yl})\text{ethyl})\text{-2-amino-3-phenylpropanamide,}\)

compound 187 \((\text{R})-1-(5-(2-(1\text{H-indol-3-yl})\text{ethyl})-4-(2,4\text{-dimethoxybenzyl})-4\text{H1,2,4-triazol-3-yl})-2-(1\text{W-indol-3-yl})\text{-N-tosylethanamine,}\)

compound 188 \(/\text{N-}((\text{R})-1-(4-(2,4\text{-dimethoxybenzyl})-5\text{-phenethyl}-4\text{H-1,2,4-triazol-3-yl})-2-(1\text{V-indol-3-yl})\text{ethyl})\text{-4-azidobenzamide,}\)

compound 189 \(/\text{N-benzyl-}((?)-1-(4-(2,4\text{-dimethoxybenzyl})-5\text{-phenethyl}-4\text{H-1,2,4-triazol-3-yl})-2-(1\text{H-indol-3-yl})\text{ethylamine,}\)

compound 190 (2S)-N-((R)-1-(5-(2-(1H-indol-3-yl)ethyl)-4-(4-methoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1W-indol-3-yl)ethyl)-2,5-dihydro-1H-pyrrole-2-carboxamide.

8. The use as claimed in any of claims 1 to 7 where the treatment is achieved by modulation of GHS receptors.

9. The use as claimed in any of claims 1 to 8 where the compound is a GHS receptor antagonist.

10. The use as claimed in claim 9, where the GHS receptor antagonist is selected from the group consisting of: compound 1, 3, 12, 13, 14, 18, 20, 22, 23, 33, 36, 37, 38, 41, 46, 47, 48, 49, 50, 51, 52, 53, 57, 58, 59, 60, 61, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 82, 85, 86, 87, 88, 89, 90, 91, 93, 101, 102, 109, 114, 116, 119, 134, 135, 136, 137, 138, 139, 140, 145, 146, 147, 148, 150, 152, 153, 154, 156, 157, 159, 160, 161, 164, 171, 174, 176, 178, 179, 182, 184, 186, 188 and/or compound 190.

11. The use as claimed in any of claims 1 to 8 where the compound is a GHS receptor agonist.

12. The use as claimed in claim 11, where the GHS receptor agonist is selected from the group consisting of: compound 2, 4, 5, 6, 7, 8, 9, 10, 11, 15, 16, 17, 19, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 39, 40, 42, 43, 44, 45, 54, 55, 56, 62, 67, 78, 81, 83, 84, 87, 92, 94, 99, 103, 104, 105, 106, 107, 108, 110, 111, 115, 117, 118, 121, 122, 124, 130, 131, 142, 155, 158, 163, 173, 175, 180, 181, 183, 185 and/or compound 187.

13. The use as claimed in any of claims 1 to 12 where the mammal is selected from the group consisting of "human, domestic animals, cattle, livestock, pets, cow, sheep, pig, goat, horse, pony, donkey, hinny, hare, rabbit, cat, dog, guinea pig, hamster, rat, mouse" and preferably is human.

14. The use as claimed in any of claims 1 to 13 where the GHS receptors are selected from the group consisting of "GHS type 1 receptor, GHS-R 1a, GHS-R 1b, motilin receptor, motilin receptor 1a, neurotensin receptor, TRH receptor, GPR38 (FM1),
GPR39 (FM2), FM3, GHS-R subtype, GHS binding site, cardiac GHS-R, mammary GHS-R", preferably is selected from the group consisting of "GHS type 1 receptor, GHS-R 1a, GHS-R 1b" and most preferably are GHS-R 1a.

15. The use as claimed in any of claims 1 to 14 where physiological and/or pathological conditions are selected from the group consisting of "acute fatigue syndrome and muscle loss following election surgery, adipogenesis, adiposity, age-related decline of thymic function, age-related functional decline ("ARFD") in the elderly, aging disorder in companion animals, Alzheimer's disease, anorexia (e.g. associated with cachexia or aging); anxiety, blood pressure (lowering), body weight gain/reduction, bone fracture repair (acceleration), bone remodeling stimulation, cachexia and protein loss reduction due to chronic illness such as cancer or AIDS, cardiac dysfunctions (e.g. associated with valvular disease, myocardial infarction, cardiac hypertrophy or congestive heart failure), cardiomyopathy, cartilage growth stimulation, catabolic disorders in connection with pulmonary dysfunction and ventilator dependency, catabolic side effects of glucocorticoids, catabolic state of aging, central nervous system disorders (in combination with antidepressants), chronic dialysis, chronic fatigue syndrome (CFS), cognitive function improvement (e.g. in dementia, Alzheimer's disease), complicated fractures (e.g. distraction osteogenesis), complications associated with transplantation, congestive heart failure (alone/in combination with corticotropin releasing factor antagonists), Crohn's disease and ulcerative colitis, Cushing's syndrome, dementia, depressions, short-, medium- and/or long-term regulation of energy balance, short-, medium- and/or long-term regulation of food intake (stimulation and/or inhibition), frailty (e.g. in elderly humans), gastrectomy (ghrelin replacement therapy), gastric postoperative ileus, glycemic control improvement, growth hormone release stimulation in the elderly, growth hormone replacement in stressed patients, growth promotion in livestock, growth retardation associated with the Prader-Willi syndrome and Turner's syndrome, growth retardation in connection with Crohn's disease, growth retardation, hair/nail growth maintenance, hip fractures, hunger, hypercortisolism, hyperinsulinemia including nesidioblastosis, hypothermia, immune deficiency in individuals with a depressed T4/T8 cell ratio, immune response improvement to vaccination, immune system stimulation in companion animals, immune system stimulation, immunosuppression in immunosuppressed patients, inflammation or inflammatory effects, inflammatory bowel disease, insulin resistance in the heart, insulin resis-
tance in type 2 diabetic patients, insulin resistance including NIDDM, diabetes, dia-
5
5

betes type I, diabetes type II, intrauterine growth retardation, irritable bowel syn-

drome, lipodystrophy (e.g. HIV-induced), metabolic homeostasis maintenance, milk
production increase in livestock, muscle mass/strength increase, muscle mobility
improvement, muscle strength improvement, muscle strength/function mainte-
nance in elderly humans, muscular atrophy, musculoskeletal impairment (e.g. in
elderly), Noonan's syndrome, obesity and growth retardation associated with obe-
sity, osteoblast stimulation, osteochondrodysplasias, osteoporosis, ovulation
induction (adjuvant treatment), physiological short stature including growth hor-
6
6

mone deficient children, postoperative ileus, protein catabolic response attenuation
after major surgery/trauma, protein kinase B activity enhancement, psychosocial
deprivation, pulmonary dysfunction and ventilator dependency, pulmonary function
improvement, pulsatile growth hormone release induction, recovery of burn pa-
tients and reducing hospitalization of burn patients (acceleration), renal failure or
7
7

insufficiency resulting from growth retardation, renal homeostasis maintenance in
the frail elderly, sarcopenia, schizophrenia, sensory function maintenance (e.g.
hearing, sight, olfaction and taste), short bowel syndrome, short stature associ-
ated with chronic illness, skeletal dysplasia, skin thickness maintenance, sleep dis-
orders, sleep quality improvement, thrombocytopenia, thymic development
8
8

stimulation, tooth repair or growth, tumor cell proliferation, ventricular dysfunction
or reperfusion events, wasting in connection with AIDS, wasting in connection with
chronic liver disease, wasting in connection with chronic obstructive pulmonary
disease (COPD), wasting in connection with multiple sclerosis or other neurode-
gegenerative disorders, wasting secondary to fractures, wool growth stimulation in
sheep, wound healing (acceleration) and/or wound healing delay".
9
9

16. The use as claimed in claim 15 where physiological and/or pathophysiological con-
ditions are selected from the group consisting of "growth retardation, cachexia,
short-, medium- and/or long term regulation of energy balance; short-, medium-
and/or long term regulation (stimulation and/or inhibition) of food intake; adipo-
genesis, adiposity and/or obesity; body weight gain and/or reduction; diabetes,
diabetes type I, diabetes type II, tumor cell proliferation; inflammation, inflammatory
effects, gastric postoperative ileus, postoperative ileus and/or gastrectomy (ghrelin
replacement therapy)"
17. The use as claimed in any of claims 1 to 16 where such medicament comprises at least one additional pharmacologically active substance.

18. The use as claimed in claim 17, where such medicament comprises a GHS receptor antagonist and an endocannabinoid receptor antagonist, preferably a CB1 receptor antagonist, most preferably rimonabant [1H-Pyrazole-3-carboxamide, 5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-N-1-piperidinyl-, monohydrochloride] as additional pharmacologically active substance.

19. The use as claimed in any of claims 1 to 16 where the medicament is applied before and/or during and/or after treatment with at least one additional pharmacologically active substance.

20. The use as claimed in claim 19, where the medicament comprises a GHS receptor antagonist and the additional pharmacologically active substance is an endocannabinoid receptor antagonist, preferably a CB1 receptor antagonist, most preferably rimonabant [1H-Pyrazole-3-carboxamide, 5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-N-1-piperidinyl-, monohydrochloride].

21. A triazole compound selected from the group consisting of:

- **compound 1** (±)-N-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(2,4-dimethoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,

- **compound 2** (R)-N-(1-(5- (2-(1H-indol-3-yl)ethyl)-4-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,

- **compound 3** (R)-N-(1-(5- (3-(1H-indol-3-yl)propyl)-4-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,

- **compound 4** (R)-N-(1-((5-benzyl-4-(naphthalen-1-ylmethyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,

- **compound 5** (R)-N-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(naphthalen-1-ylmethyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,

- **compound 6** (±)-N-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(3-methoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide.
compound 7 (R)-_α-[1-(4-(3-methoxybenzyl)-5-benzyl-4H-1,2,4-triazol-3-yl)ethyl]-2-amino-2-methylpropanamide,

compound 8 (R)-_α-[1-(5-(2-(1H-indol-3-yl)ethyl)-4-benzyl-4H-1,2,4-triazol-3-yl)ethyl]-2-amino-2-methylpropanamide,

compound 9 (R)-_α-[1-(5-(3-(1H-indol-3-yl)propyl)-4-benzyl-4H-1,2,4-triazol-3-yl)ethyl]-2-amino-2-methylpropanamide,

compound 10 (R)-_α-[1-(5-(3-(1H-indol-3-yl)propyl)-4-(3-methoxybenzyl)-4H-1,2,4-triazol-3-yl)ethyl]-2-amino-2-methylpropanamide,

compound 11 (R)-_α-[1-(5-(3-(1H-indol-3-yl)propyl)-4-(naphthalen-1-ylmethyl)-4H-1,2,4-triazol-3-yl)ethyl]-2-amino-2-methylpropanamide,

compound 12 (R)-_α-[1-(5-(2-(1H-indol-3-yl)ethyl)-4-(4-methoxybenzyl)-4H-1,2,4-triazol-3-yl)ethyl]-2-amino-2-methylpropanamide,

compound 13 (S)-_α-[1-(4-(4-methoxybenzyl)-5-benzyl-4H-1,2,4-triazol-3-yl)ethyl]-2-amino-2-methylpropanamide,

compound 14 (R)-_α-[1-(5-(3-(1H-indol-3-yl)propyl)-4-(4-bromobenzyl)-4H-1,2,4-triazol-3-yl)ethyl]-2-amino-2-methylpropanamide,

compound 15 (S)-_α-[1-(5-(2-(1H-indol-3-yl)ethyl)-4-hexyl-4H-1,2,4-triazol-3-yl)ethyl]-2-amino-2-methylpropanamide,

compound 16 (R)-_α-[1-(5-(3-(1H-indol-3-yl)propyl)-4-hexyl-4H-1,2,4-triazol-3-yl)ethyl]-2-amino-2-methylpropanamide,

compound 17 (R)-_α-[1-(4,5-bis(2-(1H-indol-3-yl)ethyl)-4H-1,2,4-triazol-3-yl)ethyl]-2-amino-2-methylpropanamide,

compound 18 (S)-_α-[1-(5-(2-(1H-indol-3-yl)ethyl)-4-(2,4-dimethoxybenzyl)-4H-1,2,4-triazol-3-yl)ethyl]-2-amino-2-methylpropanamide,

compound 19 (R)-_α-[1-(4-(3-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)ethyl]-2-amino-2-methylpropanamide,

compound 20 (R)-_α-[1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)ethyl]-2-amino-2-methylpropanamide,

compound 21 (S)-_α-[1-(5-(2-(1H-indol-3-yl)ethyl)-4-(3,5-dimethoxyphenyl)-4H-1,2,4-triazol-3-yl)ethyl]-2-amino-2-methylpropanamide,
compound 22 (R)-N-(1-(4-(4-methoxybenzyl)-5-(3-phenylpropyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,

compound 23 (R)-N-(1-(5-(3-(1H-indol-3-yl)propyl)-4-(4-methoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,

compound 24 (R)-N-(1-(4-(2-(1H-indol-3-yl)ethyl)-5-(3-(1H-indol-3-yl)propyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,

compound 25 (R)-N-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(2-methoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,

compound 26 (R)-N-(1-(4-(2-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,

compound 27 (R)-N-(2-(1H-indol-3-yl)-1-(4-(napthalen-1-ylmethyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)ethyl)-2-amino-2-methylpropanamide,

compound 28 (R)-N-(1-(4-(2-(1H-indol-3-yl)ethyl)-5-(3-(1H-indol-3-yl)propyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,

compound 29 (R)-N-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(4-fluorobenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,

compound 30 (R)-N-(1-(4-(4-fluorobenzyl)-5-benzyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,

compound 31 (R)-N-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(2,4-dimethoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)piperidine-4-carboxamide,

compound 32 (R)-N-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(2,4-dimethoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)piperidine-3-carboxamide,

compound 33 (R)-N-(1-(4-(4-methylbenzyl)-5-(3-phenylpropyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,

compound 34 (R)-N-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(4-methylbenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,

compound 35 (R)-N-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(2,4-dimethoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)piperidine-2-carboxamide,

compound 36 (R)-N-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(2,4-dimethoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)piperidine-2-carboxamide,
compound 38
(R)-/V-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(2,4-dimethoxybenzyl)-4H-
1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-aminobenzamide,

compound 39
(R)-Λ-(1-(5-benzyl-4-(pyridin-2-ylmethyl)-4/-M ,2,4-triazol-3-yl)-2-
(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,

compound 40
(2S,4R)-Λ-(1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-
triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-4-hydroxyproline-2-carboxamide,

compound 41
(S)-/V-((ff)-1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1 ,2,4-triazol-3-
yl)-2-(1H-indol-3-yl)ethyl)piperidine-3-carboxamide,

compound 42
(R)-Λ-((R)-1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1 ,2,4-triazol-3-
yl)-2-(1H-indol-3-yl)ethyl)piperidine-3-carboxamide,

compound 43
(R)-Λ-((ff)-1-(4-(4-ethylbenzyl)-5-phenethyl-4H-1 ,2,4-triazol-3-
yl)-2-(1H-indol-3-yl)ethyl)piperidine-2-carboxamide,

compound 44
(ff)-Λ-((ff)-1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1 ,2,4-triazol-3-
yl)-2-(1H-indol-3-yl)ethyl)piperidine-2-carboxamide,

compound 45
(ff)-/V-((ff)-1-(5-(2-(1H-indol-3-yl)ethyl)-4-(4-methoxybenzyl)-4H-1,2,4-
triazol-3-yl)-2-(1AV-indol-3-yl)ethyl)piperidine-4-carboxamide,

compound 46
(S)-Λ-((ff)-1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1 ,2,4-triazol-3-
yl)-2-(1H-indol-3-yl)ethyl)pyrrolidine-2-carboxamide,

compound 47
(ff)-N-((R)-1-(4-(4-methoxybenzyl)-5-phenethyl-4 H 1,2,4-triazol-3-
yl)-2-(1 H-indol-3-yl)ethyl)pyrrolidine-2-carboxamide,

compound 48
(S)-N-((ff)-1-(4-(4-methoxybenzyl)-5-phenethyl-4 H 1,2,4-triazol-3-
yl)-2-(1 H-indol-3-yl)ethyl)piperidine-2-carboxamide,

compound 49
(R)-N-((ff)-1-(4-(4-methoxybenzyl)-5-phenethyl-4W-1 ,2,4-triazol-3-
yl)-2-(1 H-indol-3-yl)ethyl)piperidine-2-carboxamide,

compound 50
(ff)-N-((ff)-1-(4-(4-methoxybenzyl)-5-phenethyl-4 H 1,2,4-triazol-3-
yl)-2-(1W-indol-3-yl)ethyl)-2-aminoacacetamide,

compound 51
(ff)-N-((ff)-1-(4-(4-methoxybenzyl)-5-phenethyl-4 H 1,2,4-triazol-3-
yl)-2-(1ff-indol-3-yl)ethyl)-2-(pyridin-2-yl)acetamide,

compound 52
(R)-N-((ff)-1-(4-(4-methoxybenzyl)-5-phenethyl-4 H 1,2,4-triazol-3-
yl)-2-(1 H-indol-3-yl)ethyl)-2-(pyridin-4-yl)acetamide,
compound 53 (R)-N-(1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)cyclohexanecarboxamide,

compound 54 (f?)-N-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-benzyl-4H,1,2,4-triazol-3-yl)-2-(1/-/-indol-3-yl)ethyl)piperidine-4-carboxamide,

compound 55 (R)-N-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-benzyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)piperidine-3-carboxamide,

compound 56 (R)-N-(1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)piperidine-3-carboxamide,

compound 57 (S)-N-(f?)-1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-aminopropanamide,

compound 58 (R)-N-(1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-(pyridin-3-yl)acetamide,

compound 59 (R)-N-(1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-3-(pyridin-3-yl)propanamide,

compound 60 (f?)-N-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-benzyl-4H,1,2,4-triazol-3-yl)-2-(1/-/-indol-3-yl)ethyl)-2-(pyridin-2-yl)acetamide,

compound 61 (H)-N-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(2,4-dimethoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1/-/-indol-3-yl)ethyl)-2-(pyridin-2-yl)acetamide,

compound 62 (f?)-Λ-(1-(4-(2,4-dimethoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)piperidine-4-carboxamide,

compound 63 (f?)-Λ-(1-(4-(2,4-dimethoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)piperidine-2-carboxamide,

compound 64 (f?)-Λ-(1-(4-(2,4-dimethoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)picolinamide,

compound 65 (f?)-Λ-(1-(4-(2,4-dimethoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)isonicotinamide,

compound 66 (f?)-Λ-(1-(4-(2,4-dimethoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1/-/-indol-3-yl)ethyl)pyrazine-2-carboxamide,

compound 67 (R)-Λ-1-(4-(2,4-dimethoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1/-/-indol-3-yl)ethyl)piperazine-2-carboxamide,
(-)-/V-(R)-1-(4-(2,4-dimethoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)pyrrolidine-2-carboxamide,

compound 69
(R)-/V-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(2,4-dimethoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)aminoacetamide,

compound 70
(S)-/V-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(2,4-dimethoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)pyrazine-2-carboxamide,

compound 71
(R)-/V-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(2,4-dimethoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)pyrazine-2-carboxamide,

compound 72
(2,4-(2,4-di-tetraazafluorenyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)piperazine-2-carboxamide,

compound 73
(R)-/V-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(2,4-dimethoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)pyrazine-2-carboxamide,

compound 74
(R)-/V-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(2,4-dimethoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)pyrazine-2-carboxamide,

compound 75
(R)-/V-(1-(5-(2-(1H-indol-3-yl)ethyl)-4-(2,4-dimethoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)piperazine-2-carboxamide,
compound 83 \((\text{fl})\)-\((-\text{V})\)-\((1-(4-(4\text{-ethylbenzyl})-5\text{-phenethyl}-4H-1,2,4\text{-triazol-3-yl})-2\text{-}(1H\text{-indol-3-yl})\text{ethyl})\text{piperidine-4-carboxamide},

compound 84 \((\text{R})\)-\((-\text{N})\)-\((1-(4-(4\text{-ethylbenzyl})-5\text{-phenethyl-4H-1,2,4-triazol-3-yl})-2\text{-}(1\text{-H indol-3-yl})\text{ethyl})\text{piperazine-2-carboxamide},

compound 85 \((\text{R})\)-\((-\text{N})\)-\((1-(4-(4\text{-ethylbenzyl})-5\text{-phenethyl-4H-1,2,4-triazol-3-yl})-2\text{-}(1\text{-H indol-3-yl})\text{ethyl})\text{pyrazine-2-carboxamide},

compound 86 \((\text{R})\)-\((-\text{N})\)-\((-1-(5-\text{-}(2\text{-}\text{H indol-3-yl})\text{ethyl})-4-(2,4\text{-dimethoxybenzyl})-4H-1,2,4\text{-triazol-3-yl})-2\text{-}(1\text{-H indol-3-yl})\text{ethyl}2\text{-cis-aminocyclohexancarboxamide},

compound 87 \((\text{S})\)-\((-\text{N})\)-\((-1-(5-\text{-}(2\text{-}\text{H indol-3-yl})\text{ethyl})-4-(4\text{-methoxybenzyl})-4H-1,2,4\text{-triazol-3-yl})-2\text{-}(1\text{-H indol-3-yl})\text{ethyl})\text{pyrazine-2-carboxamide},

compound 88 \((\text{R})\)-\((-\text{N})\)-\((-1-(5-\text{-}(2\text{-}\text{H indol-3-yl})\text{ethyl})-4-(4\text{-methoxybenzyl})-4H-1,2,4\text{-triazol-3-yl})-2\text{-}(1\text{-H indol-3-yl})\text{ethyl})\text{pyridine-3-carboxamide},

compound 89 \((\text{R})\)-\((-\text{N})\)-\((-1-(5-\text{-}(2\text{-}\text{H indol-3-yl})\text{ethyl})-4-(4\text{-methoxybenzyl})-4H-1,2,4\text{-triazol-3-yl})-2\text{-}(1\text{-H indol-3-yl})\text{ethyl})\text{pyridine-3-carboxamide},

compound 90 \((\text{R})\)-\((-\text{N})\)-\((-1-(5-\text{-}(2\text{-}\text{H indol-3-yl})\text{ethyl})-4-(4\text{-methoxybenzyl})-4H-1,2,4\text{-triazol-3-yl})-2\text{-}(1\text{-H indol-3-yl})\text{ethyl})\text{pyridine-2-carboxamide},

compound 91 \((\text{R})\)-\((-\text{N})\)-\((-1-(5-\text{-}(2\text{-}\text{H indol-3-yl})\text{ethyl})-4-(4\text{-methoxybenzyl})-4H-1,2,4\text{-triazol-3-yl})-2\text{-}(1\text{-H indol-3-yl})\text{ethyl})\text{pyridine-2-carboxamide},

compound 92 \((\text{R})\)-\((-\text{N})\)-\((-1-(5-\text{-}(2\text{-}\text{H indol-3-yl})\text{ethyl})-4-(4\text{-methoxybenzyl})-4H-1,2,4\text{-triazol-3-yl})-2\text{-}(1\text{-H indol-3-yl})\text{ethyl})\text{pyridine-2-carboxamide},

compound 93 \((\text{R})\)-\((-\text{N})\)-\((-1-(5-\text{-}(2\text{-}\text{H indol-3-yl})\text{ethyl})-4-(4\text{-methoxybenzyl})-4H-1,2,4\text{-triazol-3-yl})-2\text{-}(1\text{-H indol-3-yl})\text{ethyl})\text{pyridine-2-carboxamide},

compound 94 \((\text{R})\)-\((-\text{N})\)-\((-1-(5-\text{-}(2\text{-}\text{H indol-3-yl})\text{ethyl})-4-(4\text{-methoxybenzyl})-4H-1,2,4\text{-triazol-3-yl})-2\text{-}(1\text{-H indol-3-yl})\text{ethyl})\text{pyridine-4-carboxamide},

compound 95 \((\text{R})\)-\((-\text{N})\)-\((-1-(5-\text{-}(2\text{-}\text{H indol-3-yl})\text{ethyl})-4-(4\text{-methoxybenzyl})-4H-1,2,4\text{-triazol-3-yl})-2\text{-}(1\text{-H indol-3-yl})\text{ethyl})\text{pyridine-4-carboxamide},

compound 96 \((\text{R})\)-\((-\text{N})\)-\((-1-(5-\text{-}(2\text{-}\text{H indol-3-yl})\text{ethyl})-4-(4\text{-methoxybenzyl})-4H-1,2,4\text{-triazol-3-yl})-2\text{-}(1\text{-H indol-3-yl})\text{ethyl})\text{pyridine-4-carboxamide},

compound 97 \((\text{R})\)-\((-\text{N})\)-\((-1-(5-\text{-}(2\text{-}\text{H indol-3-yl})\text{ethyl})-4-(4\text{-methoxybenzyl})-4H-1,2,4\text{-triazol-3-yl})-2\text{-}(1\text{-H indol-3-yl})\text{ethyl})\text{pyridine-4-carboxamide},
compound 98 (R)-\text{N}-\{(5-(1H-indol-3-yl)methyl)-4H,1,2,4-triazol-3-yl\}-2-(1AV-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,

compound 99 (f?-\text{N})-\{(5-(1H-indol-3-yl)methyl)-4-(2,4-climethoxybenzyl)-4H,1,2,4-triazol-3-yl\}-2-(1W-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,

5 compound 100 (R)-\text{N}-\{(4-(2,4-dimethoxybenzyl)-5-methyl-4H,1,2,4-triazol-3-yl\}-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,

compound 101 (R)-\text{N}-\{(5-(1H-indol-3-yl)methyl)-4-(4-methoxybenzyl)-4H,1,2,4-triazol-3-yl\}-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,

compound 102 (f?)-\text{N}-\{(4-(2,4-dimethoxybenzyl)-5-benzyl-4H,1,2,4-triazol-3-yl\}-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,

compound 103 (R)-\text{N}-\{(5-(3-(1H-indol-3-yl))propyl)-4-(2,4-dimethoxybenzyl)-4H,1,2,4-triazol-3-yl\}-2-(1W-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,

compound 104 (f?)-\text{N}-\{(1-(5-(1H-indol-3-yl)methyl)-4-phenethyl)-4H,1,2,4-triazol-3-yl\}-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,

compound 105 (R)-\text{N}-\{(5-benzyl-4-phenethyl-4H,1,2,4-triazol-3-yl\}-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,

compound 106 (f?)-\text{N}-\{(1-(benzyl-4-(2,2-dipheneylethyl))-4H,1,2,4-triazol-3-yl\}-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,

compound 107 (f?)-\text{N}-\{(1-(5-(2-(1H-indol-3-yl))ethyl)-4-(2,2-dipheneylethyl))-4H,1,2,4-triazol-3-yl\}-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,

compound 108 (f?)-\text{N}-\{(1-(4-(3,5-dimethoxybenzyl)-5-benzyl-4H,1,2,4-triazol-3-yl\}-2-(1AV-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,

compound 109 (R)-\text{N}-\{(4,5-dibenzyl-4/-/1,2,4-triazol-3-yl\}-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,

compound 110 (\pm)-\text{N}-\{(5-benzyl-4-hexyl-4H,1,2,4-triazol-3-yl\}-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,

compound 111 (R)-\text{N}-\{(4-(2-(1H-indol-3-yl))ethyl)-5-benzyl-4H,1,2,4-triazol-3-yl\}-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,

compound 112 (S)-\text{N}-\{(4-(2,4-dimethoxybenzyl)-5-benzyl-4/-1,2,4-triazol-3-yl\}-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,
compound 113 \((f?)-\Lambda /-(1-(4-(3,5-dimethoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,\)

compound 114 \((K)-\Lambda /-(1-(4-(4-bromobenzyl)-5-benzyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,\)

compound 115 \((f?)-\Lambda /-(1-(4-(2-methoxybenzyl)-5-benzyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,\)

compound 116 \((S)-\Lambda /-(1-(4-(2,4-dimethoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,\)

compound 117 \((R)-\Lambda /-(1-(4,5-diphenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,\)

compound 118 \((R)-\Lambda /-(1-(4-(4,5-dichlorobenzyl)-5-benzyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,\)

compound 119 \((f?)-1-(5-(2-(1H-indol-3-yl)ethyl)-4-(2,4-dimethoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,\)

compound 120 \((R)-\Lambda /-(1-(4-(4-methoxybenzyl)-5-benzyl-4H-1,2,4-triazol-3-yl)-2-phenylethyl)-2-amino-2-methylpropanamide,\)

compound 121 \((R)-\Lambda /-(1-(4-(4-methylbenzyl)-5-benzyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,\)

compound 122 \((R)-\Lambda /-(1-(4-(4-methoxybenzyl)-5-(3-phenylpropyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,\)

compound 123 \((S)-\Lambda /-(1-(4-(4-methoxybenzyl)-5-(3-phenylpropyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,\)

compound 124 \((R)-\Lambda /-(1-(4-(4-methylbenzyl)-5-benzyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,\)

compound 125 \((S)-\Lambda /-(1-(4-(4-methoxybenzyl)-5-(3-phenylpropyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,\)

compound 126 \((S)-\Lambda /-(1-(4-(4-methoxybenzyl)-5-benzyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,\)

compound 127 \((S)-\Lambda /-(1-(4-(4-nitrobenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,\)

compound 128 \((S)-\Lambda /-(1-(4-(4-nitrobenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,\)

compound 129 \((S)-\Lambda /-(1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,\)
compound 130 \((R)-N-(1-(4-(4-methoxyphenethyl)-5-phenethyl-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide, \)

compound 131 \((R)-N-(2-(1H-indol-3-yl)-1-(5-phenethyl-4-(thiophen-2-ylmethyl)-4H-1,2,4-triazol-3-yl)ethyl)-2-amino-2-methylpropanamide, \)

compound 132 \((R)-N-(2-(1H-indol-3-yl)-1-(5-phenethyl-4-(pyridin-2-ylmethyl)-4H-1,2,4-triazol-3-yl)ethyl)piperidine-3-carboxamide, \)

compound 133 \((R)-N-(2-(1H-indol-3-yl)-1-(5-phenethyl-4-(pyridin-2-ylmethyl)-4H-1,2,4-triazol-3-yl)ethyl)piperidine-2-carboxamide, \)

compound 134 \((S)-N-((R)-1-(4-(4-ethylbenzyl)-5-phenethyl-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)piperidine-3-carboxamide, \)

compound 135 \(N-((R)-1-(4-(4-ethylbenzyl)-5-phenethyl-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-aminoacetamide, \)

compound 136 \(N-((R)-1-(5-(2-(1H-indol-3-yl)ethyl)-4-(methoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-(pyridin-4-yl)acetamide, \)

compound 137 \((2R)-N-((R)-1-(4-(4-ethylbenzyl)-5-phenethyl-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)piperidine-2-carboxamide, \)

compound 138 \(N-((R)-1-(4-(4-ethylbenzyl)-5-phenethyl-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)picolinamide, \)

compound 139 \(N-((R)-1-(4-(4-ethylbenzyl)-5-phenethyl-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-aminoypyridine-3-carboxamide, \)

compound 140 \((2S)-N-((R)-1-(4-(4-ethylbenzyl)-5-phenethyl-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-aminoacetamide, \)

compound 141 \(N-((R)-1-(4-(4-ethylbenzyl)-5-phenethyl-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)isonicotinamide, \)

compound 142 \(N-((R)-2-(1H-indol-3-yl)-1-(5-phenethyl-4-phenyl-1,2,4-triazol-3-yl)ethyl)piperidine-4-carboxamide, \)

compound 143 \((2S)-N-((R)-2-(1H-indol-3-yl)-1-(5-phenethyl-4-phenyl-4H-1,2,4-triazol-3-yl)ethyl)pyrrolidine-2-carboxamide, \)

compound 144 \(N-((R)-2-(1H-indol-3-yl)-1-(5-phenethyl-4-phenyl-4H-1,2,4-triazol-3-yl)ethyl)-2-aminoacetamide, \)
compound 145 \(N'\)-(R)-2-(1H-indol-3-yl)-1-((5-phenethyl-4-phenyl-4H-1,2,4-triazol-3-yl)ethyl)-2-(pyridin-2-yl)acetamide,

compound 146 \(N'\)-(R)-2-(1H-indol-3-yl)-1-((5-phenethyl-4-phenyl-4H-1,2,4-triazol-3-yl)ethyl)picolinamide,

compound 147 \(N'\)-(R)-1-(5-(2-(1H-indol-3-yl)ethyl)-4-(4-ethylphenyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-(pyridin-2-yl)acetamide,

compound 148 \(N'\)-(R)-1-(5-(2-(1H-indol-3-yl)ethyl)-4-(4-ethylphenyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)picolinamide,

compound 149 \(N'\)-(R)-1-(5-(2-(1H-indol-3-yl)ethyl)-4-(4-ethylphenyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-aminoacetamide,
compound 161 \(N'-(\text{R})-2-(1H\text{-indol-3-yl})-1-(4-(2,4\text{-dimethoxyphenyl}-4H\text{-1,2,4-triazol-3-yl})\text{ethyl})\text{pyrazine-2-carboxamide}, \)

compound 162 \(N'-(\text{R})-2-(1H\text{-indol-3-yl})-1-(4-(2,4\text{-dimethoxyphenyl}-4H\text{-1,2,4-triazol-3-yl})\text{ethyl})-2\text{-aminoacetamide}, \)

compound 163 \(N'-(\text{R})-2-(1H\text{-indol-3-yl})-1-(4-(2,4\text{-dimethoxyphenyl}-4H\text{-1,2,4-triazol-3-yl})\text{ethyl})\text{piperidine-4-carboxamide}, \)

compound 164 \(N'-(\text{R})-1-(5\text{-benzyl-4-((pyridin-2-yl)methyl}-4H\text{-1,2,4-triazol-3-yl})\text{-2-}\text{(1H\text{-indol-3-yl})\text{ethyl})picolinamide}, \)

compound 165 \(N'-(\text{R})-1-(5\text{-benzyl-4-((pyridin-2-yl)methyl}-4H\text{-1,2,4-triazol-3-yl})\text{-2-}\text{(1H\text{-indol-3-yl})\text{ethyl})-2-aminoacetamide}, \)

compound 166 \(N'-(\text{R})-1-(5\text{-benzyl-4-((pyridin-2-yl)methyl}-4H\text{-1,2,4-triazol-3-yl})\text{-2-}\text{(1H\text{-indol-3-yl})\text{ethyl})piperidine-4-carboxamide}, \)

compound 167 \(N'-(\text{R})-1-(5\text{-benzyl-4-((pyridin-4-yl)methyl}-4H\text{-1,2,4-triazol-3-yl})\text{-2-}\text{(1H\text{-indol-3-yl})\text{ethyl})-2-amino-2-methylpropanamide}, \)

compound 168 \(N'-(\text{R})-1-(5\text{-methoxybenzyl-4-phenethyl-4H\text{-1,2,4-triazol-3-yl})-2-}\text{(1H\text{-indol-3-yl})\text{ethyl})-2-amino-2-methylpropanamide}, \)

compound 169 \(N'-(\text{R})-1-(5\text{-benzyl-4-((pyridin-4-yl)methyl}-4H\text{-1,2,4-triazol-3-yl})\text{-2-}\text{(1H\text{-indol-3-yl})\text{ethyl})picolinamide}, \)

compound 170 \(N'-(\text{R})-1-(5\text{-benzyl-4-((pyridin-4-yl)methyl}-4H\text{-1,2,4-triazol-3-yl})\text{-2-}\text{(1H\text{-indol-3-yl})\text{ethyl})-2-aminoacetamide}, \)

compound 171 \((\text{R})\text{-benzyl-3-(2-aminoisobutyramido)-3-(5-(2-(1H\text{-indol-3-yl})\text{ethyl})-4-(4-methoxybenzyl)-4H\text{-1,2,4-triazol-3-yl})-propanoate}, \)

compound 172 \(N'-(\text{R})-1-(5\text{-benzyl-4-((pyridin-3-yl)methyl}-4H\text{-1,2,4-triazol-3-yl})\text{-2-}\text{(1H\text{-indol-3-yl})\text{ethyl})-2-amino-2-methylpropanamide}, \)

compound 173 \(N'-(\text{R})-1-(4\text{-benzyl-5-phenethyl-4H\text{-1,2,4-triazol-3-yl})-2-}\text{(1H\text{-indol-3-yl})\text{ethyl})-2-amino-2-methylpropanamide}, \)

compound 174 \(N'-(\text{R})-2-(1A7\text{-indol-3-yl})-1-(4\text{-methyl-5-phenethyl-4H\text{-1,2,4-triazol-3-yl})\text{ethyl})picolinamide}, \)

compound 175 \(N'-(\text{R})-1-(5-(2-(1H\text{-indol-3-yl})\text{ethyl})-4-phenyl-4H\text{-1,2,4-triazol-3-yl})\text{-2-}\text{(1H\text{-indol-3-yl})\text{ethyl})-2-amino-2-methylpropanamide}, \)
compound 176 /V-(R)-1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)benzamide,
compound 177 (R)-1-(4-(2,4-dimethoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1A7-indol-3-yl)-N-phenylmethanesulfonyleamine,
compound 178 (R)-1-(4-(2,4-dimethoxybenzyl)-5-phenethyl-4A7-1,2,4-triazol-3-yl)-2-(1A7-indol-3-yl)-N-tosylethanamine,
compound 179 /V-1-((R)-1-(4-(2,4-dimethoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,
compound 180 /V-1-((R)-1-(4-(2,4-dimethoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)ethane-1,2-diamine,
compound 181 /V-1-((R)-1-(4-((furan-2-yl)methyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,
compound 182 /V-1-((R)-1-(4-((furan-2-yl)methyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)picolinamide,
compound 183 /V-1-((R)-1-(4-((furan-2-yl)methyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)piperidine-4-carboxamide,
compound 184 /V-1-((R)-1-(4-((furan-2-yl)methyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-tetrahydro-2H-pyran-4-carboxamide,
compound 185 /V-1-((R)-1-(5-((1H-indol-3-yl)methyl)-4-(3-methoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-2-methylpropanamide,
compound 186 (2S)-/N-1-((R)-1-(4-(4-methoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2-amino-3-phenylpropanamide,
compound 187 (R)-1-(5-(2-(1H-indol-3-yl)ethyl)-4-(2,4-dimethoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-N-tosylethanamine,
compound 188 /N-1-((R)-1-(4-(2,4-dimethoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-4-azidobenzamide,
compound 189 /N-benzyl-(R)-1-((4-(2,4-dimethoxybenzyl)-5-phenethyl-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)ethanamine,
compound 190 (2S)-/N-1-((R)-1-(5-(2-(1H-indol-3-yl)ethyl)-4-(4-methoxybenzyl)-4H-1,2,4-triazol-3-yl)-2-(1H-indol-3-yl)ethyl)-2,5-dihydro-1H-pyrrole-2-carboxamide.
22. A pharmaceutical composition comprising a pharmacologically active amount of at least one compound as claimed in claim 21.

23. The pharmaceutical composition as claimed in claim 22, where the active ingredient is present in a unit dose of from 0.001 mg to 100 mg per kg of a patient's body weight.

24. The pharmaceutical composition as claimed in any of claims 22 to 23, where the composition additionally comprises at least one pharmaceutically acceptable carrier and/or excipient.

25. The pharmaceutical composition as claimed in any of claims 22 to 24, where the composition comprises at least one further pharmacologically active substance.

26. The pharmaceutical composition as claimed in claim 25, where the further pharmacologically active substance is an endocannabinoid receptor antagonist, preferably a CB1 receptor antagonist, most preferably rimonabant [1H-Pyrazole-3-carboxamide, 5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-N-1-piperidinyl-, monohydrochloride].
Figure 1 (compound 9)

% Binding of ^{125}I-His(9) ghrelin

Log Conc. Compound (M)

Figure 2 (compound 31)

% 125I-Ghrelin Bound

Log Concentration Compound (M)
Figure 5 (compound 50)

% Binding of 125I-His(9)ghrelin

Log Conc. Compound (M)

Figure 6 (compound 62)

% 125I-Ghrelin Bound

Log Conc. Compound (M)
Figure 7 (compound 64)

% Binding of ^{125}I-His(9) ghrelin

Log Conc. Compound (M)

Figure 8 (compound 71)

% Binding of ^{125}I-His(9) ghrelin

Log Conc. Compound (M)
Figure 9 (compound 73)

Figure 10 (compound 74)
Figure 13 (compound 90)

Figure 14 (compound 1)

IC50 = 1.42e-6
Kb = 1.23e-8M
Figure 15 (compound 9)

EC50: 3.89e-08

Figure 16 (compound 12)

IC50 = 1.34e-7
Kb = 2.4e-9M
Figure 17 (compound 20)

Log Concentration Compound (M)

IC50 = 3.68e-7
Kb = 2.78e-8M

Figure 18 (compound 22)

Log Concentration Compound (M)

IC50 = 2.91e-7
Kb = 3.11e-8M
Figure 19 (compound 31)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EC50</td>
<td>1.0440e-09</td>
</tr>
<tr>
<td>KI</td>
<td>9.4580e-10</td>
</tr>
</tbody>
</table>

% Activation of calcium vs. Concentration log (M)

Figure 20 (compound 39)

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EC50</td>
</tr>
</tbody>
</table>
Figure 21 (compound 41)

Log Concentration Compound (M)

% calcium activation

IC50 = 4.59e-7
K_b = 5.33e-8

Figure 22 (compound 42)

% Activation of calcium

<table>
<thead>
<tr>
<th>EC50</th>
<th>3.7000e-08</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_l</td>
<td>3.3510e-08</td>
</tr>
</tbody>
</table>
Figure 23 (compound 45)

```
<table>
<thead>
<tr>
<th>Concentration log (M)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EC50</td>
<td>3.0110e-09</td>
</tr>
<tr>
<td>KI</td>
<td>2.7270e-09</td>
</tr>
</tbody>
</table>
```

Figure 24 (compound 46)

IC50 = 2,10e-7
Kb = 1,59e-8
Figure 25 (compound 47)

IC$_{50} = 1.30\times 10^{-7}$

$K_b = 5.37\times 10^{-9}$

Figure 26 (compound 48)

IC$_{50} = 1.627\times 10^{-7}$

$K_b = 1.74\times 10^{-8}M$
Figure 27 (compound 49)

IC50 = 5.37e-7
Kb = 5.84e-8

Figure 28 (compound 50)

IC50: 6.23e-07
Kb: 1.46e-08
Figure 29 (compound 51)

![Graph showing calcium activation](image)

- IC50 = 4.650e-7
- Kd = 1.878e-8

Figure 30 (compound 55)

![Graph showing calcium activation](image)

<table>
<thead>
<tr>
<th>Concentration (log M)</th>
<th>EC50</th>
<th>Ki</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4.3060e-09</td>
<td>3.8990e-09</td>
</tr>
</tbody>
</table>
Figure 31 (compound 62)

![Graph showing % Activation of calcium against Concentration log (M)]

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EC50</td>
<td>6.0470e-09</td>
</tr>
<tr>
<td>KI</td>
<td>5.4770e-09</td>
</tr>
</tbody>
</table>

Figure 32 (compound 64)

![Graph showing % activation of calcium against Log Conc. Compound (M)]

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>IC50</td>
<td>1.05e-06</td>
</tr>
<tr>
<td>Kb</td>
<td>2.25e-08</td>
</tr>
</tbody>
</table>
Figure 33 (compound 67)

![Graph showing concentration vs. % activation of calcium with EC50 and KI values provided.]

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC50</td>
<td>2.3860e-08</td>
</tr>
<tr>
<td>KI</td>
<td>2.1610e-08</td>
</tr>
</tbody>
</table>

Figure 34 (compound 71)

![Graph showing concentration vs. % activation of calcium with IC50 and Kb values provided.]

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC50</td>
<td>4.30e-06</td>
</tr>
<tr>
<td>Kb</td>
<td>9.71e-08</td>
</tr>
</tbody>
</table>
Figure 35 (compound 73)

% calcium activation

Log Concentration Compound (M)

IC50 = 1.44e-6
Kb = 1.66e-8M

Figure 36 (compound 74)

% activation of calcium

Log Conc. Compound (M)

IC50: 7.82e-06
Kb: 1.68e-07
Figure 37 (compound 79)

IC50 = 2.74e-7
Kd = 8.9e-9

Figure 38 (compound 81)

EC50: 9.64e-09
Figure 39 (compound 90)

IC50: 3.46e-07
Kb: 8.58e-09

Figure 40 (ghrelin)

<table>
<thead>
<tr>
<th>Concentration log (M)</th>
<th>EC50</th>
<th>KI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3.3610e-09</td>
<td>3.0440e-09</td>
</tr>
</tbody>
</table>
Figure 41 (compound 9)

![Graph showing inhibitory effect of UAG on lipolysis induced by isoproterenol as lipolysis index (%).]

- Unacylated ghrelin
 $EC_{50} = 1.73 \times 10^{-9}$
- $UAG + 10^{-7}$M compound 9
 $EC_{50} = 3.1 \times 10^{-9}$

$pA_2 = 6.89$

Figure 42 (compound 38)

![Graph showing inhibitory effect of UAG on lipolysis induced by isoproterenol as lipolysis index (%).]

- Unacylated ghrelin
 $EC_{50} = 1.53 \times 10^{-9}$
- $UAG + 10^{-7}$M compound 38
 $EC_{50} = 2.581 \times 10^{-9}$

$pA_2 = 6.83$
Figure 43 (compound 50)

Inhibitory effect of UAG on lipolysis induced by isoproterenol as lipolysis index (%)

- Unacylated ghrelin
 EC\textsubscript{50} = 1.8 \times 10^{-9}
- UAG + 10^{-7}M compound 50
 EC\textsubscript{50} = 1.52 \times 10^{-9}

Figure 44 (compound 64)

Inhibitory effect of UAG on lipolysis induced by isoproterenol as lipolysis index (%)

- Unacylated ghrelin
 EC\textsubscript{50} = 1.74 \times 10^{-9}
- UAG + 10^{-7}M compound 64
 EC\textsubscript{50} = 1.86 \times 10^{-9}
 pA\textsubscript{2} = 5.85
Figure 45 (compound 74)

- Unacylated ghrelin
 \[EC_{50} = 6.19 \times 10^{-11} \]
- UAG + 10^{-7}M compound 74
 \[EC_{50} = 3.44 \times 10^{-10} \]
 \[\text{pA}_2 = 7.65 \]

Figure 46 (compound 81)

- Unacylated ghrelin
 \[EC_{50} = 1.77 \times 10^{-11} \]
- UAG + 10^{-7}M compound 81
 \[EC_{50} = 5.51 \times 10^{-11} \]
 \[\text{pA}_2 = 7.04 \]