

(12) 特許協力条約に基づいて公開された国際出願

(19) 世界知的所有権機関
国際事務局

(43) 国際公開日
2013年12月5日(05.12.2013)

(10) 国際公開番号

WO 2013/180240 A1

(51) 国際特許分類:

A61K 33/00 (2006.01) A61P 23/00 (2006.01)
A61K 31/05 (2006.01) A61P 25/00 (2006.01)
A61K 31/08 (2006.01) A61P 25/18 (2006.01)
A61K 31/5517 (2006.01) A61P 25/28 (2006.01)
A61K 45/00 (2006.01) A61P 43/00 (2006.01)

沢市並木3丁目2番地 A404 Saitama (JP).
与那嶺 龍二(YONAMINE, Ryuji); 〒3590042 埼玉
県所沢市並木3丁目2番地 2-503 Saitama
(JP).

(21) 国際出願番号:

PCT/JP2013/065094

(22) 国際出願日:

2013年5月30日(30.05.2013)

(74) 代理人: 岩谷 龍(IWATANI, Ryo); 〒5300003 大阪
府大阪市北区堂島2丁目1番31号 京阪堂島
ビル3階 Osaka (JP).

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

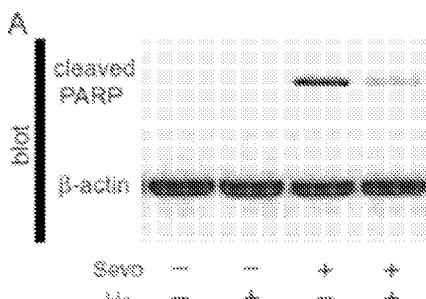
(30) 優先権データ:

特願 2012-125535 2012年5月31日(31.05.2012) JP

(71) 出願人: 丸石製薬株式会社(MARUISHI PHARMACEUTICAL CO., LTD.) [JP/JP]; 〒5380042 大阪府大阪市鶴見区今津中2丁目4番2号 Osaka (JP).

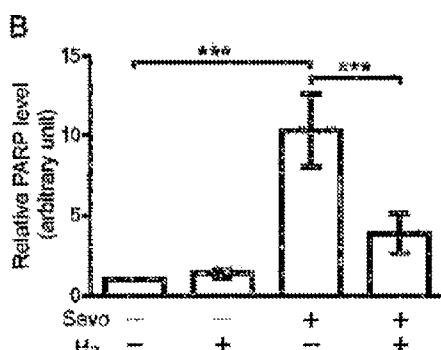
(72) 発明者: 風間 富栄(KAZAMA, Tomiei); 〒3591132
埼玉県所沢市松が丘1丁目17-1 Saitama (JP).
佐藤 泰司(SATOH, Yasushi); 〒3590042 埼玉県所

(81) 指定国(表示のない限り、全ての種類の国内保護が可能): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.


(84) 指定国(表示のない限り、全ての種類の広域保護が可能): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア

[続葉有]

(54) Title: MEDICINE COMPRISING COMBINATION OF GENERAL ANESTHETIC DRUG AND HYDROGEN


(54) 発明の名称: 全身麻酔薬と、水素とを組み合わせてなる、医薬

[図1]

(57) Abstract: The purpose of the present invention is to provide a general anesthetic medicine which can prevent and/or alleviate an anesthetic-induced neuropathy in the brain (preferably the developing brain). The present invention relates to a medicine which can prevent and/or alleviate an anesthetic-induced neuropathy in the brain (preferably the developing brain), said medicine comprising a combination of a general anesthetic drug and hydrogen.

(57) 要約: 本発明は、脳(好ましくは、発達期)の麻酔薬誘発性神経障害を予防及び/又は軽減することができる全身麻酔用医薬を提供することを目的とし、全身麻酔薬と水素とを組み合わせてなる、脳(好ましくは、発達期)の麻酔薬誘発性神経障害を予防及び/又は軽減することができる医薬に関する。

ア (AM, AZ, BY, KG, KZ, RU, TJ, TM), ヨーロッパ 添付公開書類:
(AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR,
GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT,
NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI
(BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML,
MR, NE, SN, TD, TG). — 国際調査報告（条約第 21 条(3)）

明細書

発明の名称：全身麻醉薬と、水素とを組み合わせてなる、医薬 技術分野

[0001] 本発明は、全身麻醉薬と水素とを組み合わせてなる、医薬に関する。

背景技術

[0002] 新生児における神経障害が、長期間に渡って持続する効果を引き起こすことが危惧されている（非特許文献1、非特許文献2、非特許文献3）。そのため、新生児において、正常な神経発達を変化させる可能性がある薬物（例えば、アポトーシスによる神経変性を引き起こすアルコール、フェンシクリジン、ケタミン、N₂O、イソフルラン、ベンゾジアゼピン、バルビツレート及び抗痙攣薬（非特許文献4））を用いる場合、慎重になるべきである。新生児における薬物による神経障害の誘発は、単回の薬物曝露でも十分に起こり得ることから、麻酔の投与においても、慎重になるべきである（非特許文献5、非特許文献6）。

[0003] 正常な神経発達は、綿密に調節された、増殖、分化、遊走及びシナプス形成をはじめとする、一連の事象である（非特許文献7）。グルタミン酸は、これらの全プロセスにおいて役割を有すると考えられており（非特許文献8）、例えば、遊走の標的領域において、高濃度のグルタミン酸は、検出に用いられるNMDA受容体に加え（非特許文献9）、神経細胞の化学誘引物質としての役割を示唆する（非特許文献10）。種々の解剖学的領域における特定のNMDA受容体サブタイプ（例えば、NR2B及びNR2D）の発見は、遊走制御の正確な性質の解明に役立ち得る（非特許文献10）。同一グループによる研究から、種が異なると、遊走制御において異なるメディエーターが使用され、GABA（ラットに関する研究）又はグルタミン酸（マウスに関する研究）のいずれかが用いられることが明らかとなっている（非特許文献11）。

[0004] シナプス形成（脳の急成長期）とは、シナプスが急速に構築される期間で

あり、高レベルのプログラム細胞死（P C D）（最大 1 %（非特許文献 1 2 ））を特徴とする。これには、広範な皮質視床及び視床皮質投射の形成が含まれる（非特許文献 1 3 ）。種間発生学は限りなく複雑であるが、神経発達の各段階は、同一順序で起こる傾向にあるため、比較できることがわかっている（非特許文献 1 4 ）。そのため、7 日齢のラットの仔（非特許文献 1 5 ）から、0 ～8 カ月のヒト（非特許文献 1 6 ）までのシナプス形成のピークの時期を推定することが可能である。しかしながら、N M D A 受容体サブタイプの分析によれば、ヒトでは、シナプス形成の期間が、妊娠の後期（妊娠 8 ～ 1 0 カ月）の始めから数歳までの長期に及んでいる可能性が高い（非特許文献 1 7 ）。

[0005] 1972 年に初めて提唱されたアポトーシス（非特許文献 1 8 ）は、細胞数の削減、調整、制御及び細胞の廃棄等のプロセスにおける正常な神経発達の本質的特徴である。アポトーシスは、その目的のみに用いられる細胞タンパク質による誘導、決定及び実行を含む「積極的な細胞死」と特徴付けられている（非特許文献 1 9 ）。

[0006] 未成熟な中枢神経系（C N S ）におけるプログラム細胞死（P C D ）は、標的由来の神経栄養因子によってコントロールされていると思われる（神経栄養仮説）。それによれば、神経細胞の生存を促進する標的細胞のシナプスに到達できなかった神経細胞は（非特許文献 2 0 ）、環境による栄養支援の中止に伴って、ニューロトロphins 及び電気刺激の両方による特殊な形の細胞自殺を開始する（非特許文献 2 1 、非特許文献 2 2 ）。神経細胞は、その生存経路の複雑な分岐性と収束性のために、多数のリガンド及び機構が生存の維持に関与している。神経細胞のサイトゾル及びミトコンドリアは、細胞の運命を決定する、抗アポトーシス性因子（例えば、B c l - 2 及びc A M P 応答結合タンパク質）及びアポトーシス促進性因子（例えば、B a d 、B a x 及びカスパーゼファミリー）のいずれにも対応している。B c l - 2 及びその関連ペプチドはC N S の発達において特に重要であると考えられている（非特許文献 2 3 ）が、これは、新生児における高レベルの発現と、B c l - 2 の

実験における過剰発現が栄養支援の欠乏を覆し(非特許文献24)、さらにP CDをも完全に防ぎ得る(非特許文献25)という事実から明らかである。B c I - 2の変異体(B c I - X_L)は、神経細胞の標的細胞のシナプス到達前の神経細胞の発達の維持において特別な役割を有している可能性がある(非特許文献26)。

[0007] 1999年、新生児ラットにおけるNMDA受容体アンタゴニストの使用によって、特定のパターンの、グリア細胞とは異なる神経変性が生じることを示すデータが公開された(非特許文献27)。電子顕微鏡では、この神経変性はアポトーシス性細胞死と同一であり、背外側視床核において最も顕著であった。背外側視床核は、学習及び記憶に関与している脳の領域のひとつである(非特許文献28)。この現象は、その後、他の薬物を用いて他の脳領域において再現されている(非特許文献29)。

[0008] その後の研究によって、新生児ラットは、シナプス形成期間中、麻酔薬の有害な副作用に対して脆弱であるということが示された。前記ラットは、麻酔薬に曝露された後に、背外側及び前腹側視床核並びに頭頂葉皮質等の領域において、変質している神経細胞数が基準値の最大68倍に増加することを示した(非特許文献30)。後日、この増加の結果として、行動試験における機能的神経障害がみられた。具体的には、GABA作動性麻酔薬イソフルラン(非特許文献31)は、それ自体で、用量依存的に神経変性を生じさせ、ミダゾラムの連続添加(二重GABA作動性カクテル)、次いでN₂Oの連続添加(三重カクテル)で相乗作用的な神経変性が生じた(非特許文献30)。このプロセスは、ラットでは、麻酔薬以外の領域のGABA作動性薬剤に対する曝露、例えば、抗痙攣薬治療及び母体の薬物乱用で起こることがわかっている(非特許文献32、非特許文献33)。

[0009] 上記のように、種間の複雑さはあるが、神経発達の各段階は、同一順序で起こるため、新生児ラットに対する麻酔薬投与の影響から、ヒトへの影響をある程度推定でき、ヒトの臨床研究でも発達期の脳における麻酔薬投与によって誘発される神経毒性について、多くの知見が得られている(非特許文献

34)。しかしながら、発達期の脳における麻酔薬投与によって誘発される神経毒性の作用機序については、多くの因子が複雑に関係しており、ほとんどが未知であった。その後の研究によって、前記作用機序として、(1)アポトーシスの増加、(2)GABAニューロンへの影響、(3)大脳皮質の臨界期(critical period)への影響等が考えられ、GABAニューロンへの影響によって神経障害が起きたとの報告もある(非特許文献35)。前記作用機序に関するこれまでの研究では、研究手法の容易さから、アポトーシスに関心が集まっていた。

[0010]アポトーシスを引き起こす細胞内シグナル伝達経路で最も重要な分子は、カスパーゼ(caspase: Cysteine-Aspartic-acid-proteASE)と呼ばれるタンパク質分解酵素である。細胞内でカスパーゼ-3が活性化すると、アポトーシスが起こる。アポトーシス誘導シグナルの伝達経路には、主として、次のものがある。(1)デスレセプタを介する経路(腫瘍壞死因子受容体(TNF_R1)やFas/CD95がよく知られている。)、(2)ミトコンドリアを介する経路(呼吸における電子伝達系の構成因子の一つであるシトクロムcが、アポトーシスの実行においても重要な役割を担っている)、(3)小胞体ストレスによる経路(小胞体に異常なタンパク質が生成した場合等にアポトーシスのシグナルが発生する。)、(4)エフェクターを直接活性化する経路(イニシエーターを経ずに、ストレス誘導因子が直接エフェクターを活性化する。)。

[0011]デスレセプタを介する経路では、カスパーゼ-8、カスパーゼ-10が活性化される。ミトコンドリアを介する経路では、ミトコンドリアから遊離したシトクロムcによりカスパーゼ-9が活性化される。小胞体ストレスによる経路では、カスパーゼ-12が活性化される。これらのイニシエーター-カスパーゼ群が、下流のエフェクター-カスパーゼ(カスパーゼ-3、カスパーゼ-6、カスパーゼ-7)を活性化する。エフェクターを直接活性化する経路では、イニシエーター-カスパーゼを経ずに、直接、エフェクター-カスパーゼ(カスパーゼ-3、カスパーゼ-6、カスパーゼ-7)を活性化する。こ

これらのカスパーゼは、ポリーアドリボースポリメラーゼ (poly ADP-ribose polymerase, PARP) を基質として、その分解によってアポトーシスが実行される（非特許文献36、非特許文献37）。

[0012] 麻酔薬によって誘発されると考えられているアポトーシスについて、一般的なアポトーシスとは異なる作用機序を有する可能性もあると考えられており、その根本的なメカニズムは解明されておらず、有効な治療法も未だ確立されていない。そのため、麻酔薬による発達期の脳のアポトーシスや、その後の認知機能障害を軽減する新規治療法の開発が待たれていた。

先行技術文献

非特許文献

[0013] 非特許文献1 : Anand and Scalzo, 2000, Biol. Neonate 77(2):69-82
非特許文献2 : Balduini et al., 2000, Brain Research 859:318-325
非特許文献3 : Jevtovic-Todorovic et al., 2003, The Journal of Neuroscience 23(3):876-882
非特許文献4 : Olney et al., 2002d, Brain Pathol 12(4):488-498
非特許文献5 : Ikonomidou et al., 2001, Biochemical Pharmacology 62:401-405
非特許文献6 : Young et al., Cell Death and Differentiation (2003) 10, 1148-1155
非特許文献7 : Butler, 1999, TINS 22(8):332-334
非特許文献8 : Ikonomidou and Lechoslaw, 2002, Lancet Neurology 1:383-386
非特許文献9 : Komuro and Rakie, 1993, Science 260(5104):95-97
非特許文献10 : Behar et al., 1999, The Journal of Neuroscience 19(11): 4449-4461
非特許文献11 : Behar et al., 2001, Cerebral Cortex 11:744-753
非特許文献12 : Olney et al., 2002b, Neurobiology of Disease 9:205-219
非特許文献13 : Molar and Blakemore, 1995, Trends Neurosci. 18(9):389-393

97

非特許文献14 : Clancy et al., 2001, *Neuroscience* 105:7-17

非特許文献15 : Olney et al., 2002a, *Neurotoxicology* 23(6):659-668

非特許文献16 : Ikonomidou et al., 1999, *Science* 283: 70-74

非特許文献17 : Dobbing and Sands, 1979, *Early Hum Dev* 3:79-84

非特許文献18 : Kerr et al., 1972, *Br J Cancer* 26(4):239-257

非特許文献19 : Sloviter, 2002, *TRENDS in Pharmacological Science* 23(1):19-24

非特許文献20 : Sherrard and Bower, 1998, *Clin Exp Pharmacol Physiol* 25(7-8):487-495

非特許文献21 : Young et al., 1999, *Nature Med* 5:448-453

非特許文献22 : Brenneman et al., 1990, *Brain Res Dev Brain Res* 51(1):63-68

非特許文献23 : Yuan and Yankner, 2000, *Nature* 407:802-809

非特許文献24 : Garcia et al., 1992, *Science* 258(5080):302-304

非特許文献25 : Martinou et al., 1994, *Neuron* 13(4):1017-1030

非特許文献26 : Motoyama et al., 1995, *Science* 267:1506-1510

非特許文献27 : Ikonomidou et al., 1999, *Science* 283: 70-74

非特許文献28 : Goen et al., 2002, *Behavioural Brain Research* 136:329-337

非特許文献29 : Monti and Contestabile, 2000, *European Journal of Neuroscience* 12:3117-3123

非特許文献30 : V. Jevtic-Todorovic et al. 2003 *Journal of Neuroscience* 23:876-882

非特許文献31 : Gyulai et al., 2001, *Anesthesiology* 95:585-593

非特許文献32 : Bittigau et al., 2002, *PNAS* 99(23):15089-15094

非特許文献33 : Farber and Olney, 2003, *Developmental Brain Research* 147:37-45

非特許文献34 : Wilder RT, et al., Anesthesiology 100: 796-804, 2009

非特許文献35 : Anesthesiology 2009; 111:1365-1371

非特許文献36 : Salveen GS, Riedl SJ 2008 Adv Exp Med Biol. 615:13-23

非特許文献37 : LA. Pradelli, M. Beneteau, JE, Ricci 2010 Cell. Mol. Life Sci. 67:1589-1597

発明の概要

発明が解決しようとする課題

[0014] 本発明は、脳（好ましくは、発達期）の麻酔薬誘発性神経障害を予防及び／又は軽減することができる全身麻酔用医薬を提供することを目的とする。

課題を解決するための手段

[0015] 本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、全身麻酔薬と水素とを組み合わせることで、脳（好ましくは、発達期）の麻酔薬誘発性神経障害を予防及び／又は軽減させることができることを見出した。

[0016] すなわち、本発明は以下の発明に関する。

[1] 全身麻酔薬と、水素を組み合わせてなる、ヒト又はヒト以外の動物用医薬。

[2] 全身麻酔薬と、水素とを併用で投与されることを特徴とする、ヒト又はヒト以外の動物の全身麻酔のための医薬。

[3] 麻酔薬誘発性神経障害を予防及び／又は軽減するために使用される前記[1]又は[2]に記載の医薬。

[4] 麻酔薬誘発性神経障害が、神経細胞アポトーシスに付随するものである前記[3]に記載の医薬。

[5] 全身麻酔薬が、水素と併用されるように用いられることを特徴とする、全身麻酔薬を含有する麻酔薬誘発性神経障害の予防及び／又は軽減用医薬。

[6] 全身麻酔薬が吸入麻酔薬又は液状の静脈麻酔薬であり、水素が水素ガスである前記[1]～[5]のいずれか1項に記載の医薬。

[7] 水素ガス濃度が、医薬中0.15～7% (v/v) である前記[6]に記載の医薬。

[8] 胎児、新生児、乳児、幼児、小児又は高齢者を対象とする前記[1]～[7]のいずれか1項に記載の医薬。

[9] 全身麻酔薬が、亜酸化窒素、イソフルラン、エンフルラン、メトキシフルラン、セボフルラン、デスフルラン、ジエチルエーテル、プロポフォール及びミダゾラムからなる群より選ばれた1種以上の麻酔薬である前記[1]～[8]のいずれか1項に記載の医薬。

[10] 麻酔薬誘発性神経障害が、神経運動障害、神経認知障害、精神認知障害又は自閉症である前記[3]、[5]～[9]のいずれか1項に記載の医薬。

[11] 麻酔薬誘発性神経障害を予防及び／又は軽減するために、全身麻酔薬と水素とを併用する医薬の調製方法。

[12] 麻酔薬誘発性神経障害が、神経細胞アポトーシスに付随するものであることを特徴とする前記[11]に記載の調製方法。

[13] 全身麻酔薬が吸入麻酔薬又は液状の静脈麻酔薬であり、水素が水素ガスである前記[11]又は[12]に記載の調製方法。

[14] 水素ガス濃度が、医薬中0.15～7% (v/v) である前記[1]～[3]に記載の調製方法。

[15] 医薬が、胎児、新生児、乳児、幼児、小児又は高齢者を対象とする前記[1]～[14]のいずれか1項に記載の調製方法。

[16] 水素と組み合わせて用いられる全身麻酔剤製造のための全身麻酔薬の使用。

[17] 全身麻酔薬と水素とを組み合わせてなる医薬の製造のための全身麻酔薬と水素の使用。

[18] 麻酔薬誘発性神経障害を予防及び／又は軽減するための医薬の製造のための全身麻酔薬と水素の使用。

[19] 麻酔薬誘発性神経障害が、神経細胞アポトーシスに付随するもので

ある前記〔18〕に記載の使用。

〔20〕全身麻醉薬が吸入麻醉薬又は液状の静脈麻醉薬であり、水素が水素ガスである前記〔16〕～〔18〕のいずれか1項に記載の使用。

〔21〕水素ガス濃度が、医薬中0.15～7%（v/v）である前記〔20〕に記載の使用。

〔22〕胎児、新生児、乳児、幼児、小児又は高齢者を対象とする前記〔16〕～〔18〕のいずれか1項に記載の使用。

〔23〕全身麻醉薬が、亜酸化窒素、イソフルラン、エンフルラン、メトキシフルラン、セボフルラン、デスフルラン、ジエチルエーテル、プロポフォール及びミダゾラムからなる群より選ばれた1種以上の麻醉薬である前記〔16〕～〔18〕のいずれか1項に記載の使用。

〔24〕麻醉薬誘発性神経障害が、神経運動障害、神経認知障害、精神認知障害又は自閉症である前記〔18〕に記載の使用。

〔25〕全身麻醉薬と水素とを併用して対象に投与する工程を有する、麻醉薬誘発性神経障害を予防及び／又は軽減する方法。

〔26〕全身麻醉薬が吸入麻醉薬又は液状の静脈麻醉薬であり、水素が水素ガスである前記〔25〕に記載の方法。

〔27〕水素ガス濃度が、医薬中0.15～7%（v/v）である前記〔26〕に記載の方法。

〔28〕投与対象が、胎児、新生児、乳児、幼児、小児又は高齢者である前記〔25〕に記載の方法。

〔29〕全身麻醉薬が、亜酸化窒素、イソフルラン、エンフルラン、メトキシフルラン、セボフルラン、デスフルラン、ジエチルエーテル、プロポフォール及びミダゾラムからなる群より選ばれた1種以上の麻醉薬である前記〔25〕に記載の方法。

〔30〕麻醉薬誘発性神経障害が、神経運動障害、神経認知障害、精神認知障害又は自閉症である前記〔25〕に記載の方法。

〔31〕麻醉薬誘発性神経障害が、神経細胞アポトーシスに付随するもので

ある前記〔25〕に記載の方法。

発明の効果

[0017] 本発明の医薬は、脳（好ましくは、発達期）の麻醉薬誘発性神経障害を予防及び／又は軽減することが可能である。また、本発明は、簡便で、副作用がなく、効率的に作用し、さらに安価であるため、例えば、産科及び小児科等の医療において有効な全身麻酔用医薬を提供することができる。

図面の簡単な説明

[0018] [図1]図1は、試験例1の結果を示す。Aは、分解P A R P（アポトーシス細胞死のバイオマーカー）への抗体を使用したウェスタンプロットの結果を示す。β-アクチン反応をコントロールとして使用した。Bは、分解P A R Pバンドを定量化した結果を示す。図中、***は $P < 0.001$ を意味する。図中、Sevoはセボフルランを意味する。

[図2]図2は、試験例2のマウス脳の光学顕微鏡画像を示す。図中、Aは、キャリアガスが30%酸素であり、セボフルラン未投与のサンプル（コントロール）の結果を示し、Bは、キャリアガスが30%酸素であり、3%セボフルランに6時間曝露した後の、マウス脳の光学顕微鏡観察時の画像を示し、Cは、キャリアガスが30%酸素であり、3%セボフルラン及び1.3%水素に6時間曝露した後の、マウス脳の光学顕微鏡画像を示す。図中、茶色の点が、分解カスパーゼ-3陽性の細胞の存在、すなわちアポトーシスを示す。各画像は、一つのグループにつき、8～10匹のマウスから選んだ1匹のものである。図中、スケールバーは、1mmである。

[図3]図3は、試験例2の免疫化学的染色により検出された分解カスパーゼ-3を示す茶色の点の数をカウントした結果を示す。コントロール、セボフルラン及びセボフルラン+水素の各グループの平均値の比較は、一元配置分散分析とそれに続くニューマン-クルーズポストホックテスト（一つのグループにつき、n=8-10のマウス）を用いて実施した。F値及びP値を、それぞれのパネルの下に示した。図中、コントロールと比較したとき、*は $P < 0.05$ を、**は $P < 0.01$ を、***は $P < 0.001$ を意味する。また、#

は $P < 0.05$ を、 ** は $P < 0.01$ を、 *** は $P < 0.001$ を意味する。

[図4] 図4は、 ターミナル・デオキシヌクレオチジル・トランスフェラーゼを用いたニックエンドラベリング (TUNEL) 法の染色結果を示す。図中、 Aは、 キャリアガスが30%酸素であり、 セボフルラン未投与のサンプル (コントロール) の結果を示し、 Bは、 キャリアガスが30%酸素であり、 3%セボフルランに6時間曝露した後、 さらに6時間経過後の、 マウス脳の光学顕微鏡画像を示し、 Cは、 キャリアガスが30%酸素であり、 3%セボフルラン及び1.3%水素に6時間曝露した後、 さらに6時間経過後の、 マウス脳の光学顕微鏡観察時の画像を示す。図中、 茶色の点は、 TUNEL陽性の細胞であり、 アポトーシスを起こした細胞を示す。各画像は、 一つのグループにつき、 8匹のマウスから選んだ1匹のマウスのものである。図中、 スケールバーは、 1 mmである。

[図5] 図5は、 発達期の脳において、 セボフルランの曝露が引き起こす酸化ストレスを、 水素ガスが緩和することを示す。図中、 Aは、 キャリアガスが30%酸素であり、 セボフルラン未投与のサンプル (コントロール) の結果を示し、 Bは、 キャリアガスが30%酸素であり、 3%セボフルランに6時間曝露した後の、 マウス脳の光学顕微鏡画像を示し、 Cは、 キャリアガスが30%酸素であり、 3%セボフルラン及び1.3%水素 (C) に6時間曝露した後の、 マウス脳の蛍光顕微鏡観察時の画像を示す。図中、 赤色は、 4-ヒドロキシ-2-ノネナール (4-HNE) 陽性の細胞であり、 酸化ストレスを受けたことを示す。図中、 スケールバーは、 100 μ mである。各画像は、 一つのグループにつき、 8匹のマウスから選んだ1匹のマウスのものである。

[図6] 図6は、 試験例3の結果を示す。図中、 Aはオープンフィールドテストの結果を示し、 BはY字型迷路試験の結果を示し、 Cは恐怖条件付けテスト状況試験の結果を示し、 Dは恐怖条件付けテスト音試験の結果を示す。図中、 コントロールと比較したとき、 ** は $P < 0.01$ を、 *** は $P < 0.001$ を意味する。また、 $^{##}$ は $P < 0.01$ を、 $^{###}$ は $P < 0.001$ を意味する。

[図7]図7は、試験例3の結果を示す。図中、Aは社会性試験の結果を示し、Bは嗅覚試験の結果を示し、Cは新規物試験の結果を示す。図中、コントロールと比較したとき**は $P < 0.01$ を、#は $P < 0.05$ を意味する。また、対応する生物ターゲットと比較したとき***は $P < 0.001$ を意味する。

発明を実施するための形態

[0019] 本発明の医薬は、全身麻酔薬と水素とを組み合わせてなる、ヒト又はヒト以外の動物用医薬である。また、本発明の医薬は、全身麻酔薬と、水素とを併用で投与される、ヒト又はヒト以外の動物の全身麻酔のための医薬である。本発明の医薬は、麻酔薬誘発性神経障害を予防及び／又は軽減するために使用することができる。本発明における全身麻酔薬は、水素と併用されるように用いられるのが好適である。本発明の医薬とは、全身麻酔薬と水素とを組み合わせてなるものであり、それぞれ別個に同一又は異なる投与経路から同時投与する投与形態、及びそれぞれ別個に同一又は異なる投与経路による間隔をずらした投与のいずれの投与形態も含むものである。

[0020] 全身麻酔薬について、NMDA受容体アンタゴニストである全身麻酔薬に対する曝露が、脳発達のシナプス形成段階の間にアポトーシス性神経変性を誘発することが当技術分野において知られている。

[0021] 麻酔薬への曝露によって、ニューロン以外のグリア細胞等のいくつかの領域でアポトーシスが増加すること (Anesthesiology 2010; 112:834-841)、及び、NMDA受容体のアップレギュレーションによってアポトーシスが発生すること (Int. J. Devl Neuroscience 27(2009)727-731) から、麻酔薬は、一般的なアポトーシスとは異なる作用機序でアポトーシスを誘発すると考えられ、その結果、神経障害を誘発すると危惧されている。

[0022] また、GABA受容体の作動作用を有する麻酔薬は、GABAニューロンに影響を与え、興奮性ニューロン及び抑制性ニューロンのバランスを崩すことで神経障害を誘発するともいわれている (Anesthesiology 2009; 111:1365-1371)。

[0023] 小児麻酔とアポトーシスレベルの上昇との後記する明確な関わりを前提と

して、このプロセスのバックグラウンドの機構を特定するために多数の研究が進行中である。GABA受容体とNMDA受容体両方の活性化は、神経細胞の生存シグナル伝達に影響を及ぼすことが知られている(Brunet et al., 2001, *Current Opinion in Neurobiology* 11:297-305; Bittigau et al., 2002, *PNAS* 99(23):15089-15094)。この点を考慮して、エタノール中毒にしたマウスが、このプロセスの研究のための動物モデルの基礎を形成してきた。カスパーゼー3はアポトーシス細胞の優れたマーカーであるが、高度に分岐したデスシグナル伝達カスケードの最終エフェクターであるため、その位置からは、アポトーシスの機構への洞察がほとんど得られない。カスパーゼー3活性化は、アポトーシスの外因性のデス受容体媒介経路と内因性のミトコンドリア媒介経路両方に共通のステップである(Green, 2000, *Cell* 102:1-4)。

[0024] ヤング(Young)らは、一連の適格な実験を用いて、アポトーシスの機構のうち、調査対象を単一経路に絞り込むことを考えた。二重免疫組織化学-免疫蛍光、ウェスタンプロット解析及びノックアウトマウスの組合せを用いて経路特異的成分、中でも、*Bax*及びシトクロムc(内因性)及びカスパーゼー8(外因性)を明らかにした(Young et al., *Cell Death and Differentiation* (2003) 10, 1148-1155)。エタノールで処理した野生型マウスは、エタノール誘発性アポトーシスの特徴的なパターンを示すのに対し、同様の処理を施したホモ接合体*Bax*-ノックアウトマウスはアポトーシスの徵候を実質的に全く示さないことがわかった。実際、アポトーシスレベルは対照の生理学的細胞死において見られるものよりも低かった。さらに、*Bax*-ノックアウトマウスは、カスパーゼー8活性化が起こらないことを実証した。これにより、麻酔誘発性アポトーシスにおいて内因性アポトーシス経路が関与していることが明らかとなった。

[0025] ミトコンドリア周辺が中心となる内因性経路は、神経細胞のサイトゾル中のアポトーシス促進性及び抗アポトーシス性メディエーターの組合せによって制御されている。発生中の神経細胞との関連では、*Bcl-XL*(*Bcl-2*ファミリーのメンバー)は主に抗アポトーシス性であるのに対し、*Bax*

はアポトーシス促進性である(Yuan and Yunker, 2000, *Nature* 407:802-809)。ヤングらは、エタノール、二重NMDA受容体アンタゴニスト（NMDA受容体アンタゴニスト2種類の同時投与）及びGABA作動性麻酔剤は、通常不活性状態でミトコンドリア膜に保存されているBaxを、サイトゾルに放出する能力を有するという仮説を立てた。

[0026] Baxは、サイトゾル中にあると（Bcl-X_Lによって抑制されない場合）活性な複合体の一部となり、これがミトコンドリア膜に戻り、ミトコンドリア膜を破壊することができる(Korsmeyer et al., 2002, *Cell Death and Differentiation* 7:1166-1173)。その後のミトコンドリア内容物（具体的には、シトクロムc—細胞エネルギー産生の通常の部分）のサイトゾルへの輸送が、極めて強力なアポトーシス促進シグナルを生じさせると考えられている。サイトゾルのシトクロムcはApaf-1及びカスパーゼー8と複合体を形成し、次いで、これがカスパーゼー3を活性化し、さらなるカスケードの開始をもたらし、最終的に、細胞骨格タンパク質及びDNA両方の特徴的な切断を引き起こす(Dikranian et al., 2001, *Neurobiology of Disease* 8:359-379)。

[0027] もちろん、上記分析から、麻酔薬がこの経路と相互作用する正確な点を同定することは不可能である。また、個々の種類の薬剤は、アポトーシスを誘発できる（例えば、イソフルラン単独(Jevtovic-Todorovic et al., 2003)及びケタミン単独(Ikonomidou et al., 1999, *Science* 238:70-74)）。したがって、続いて起こる細胞内カスケードは下流に収束するが(Brunet et al., 2001, *Current Opinion in Neurobiology* 11:297-305; Bittigau et al., 2002, *PNAS* 99(23):15089-15094)、二重GABA作動性薬剤及びNMDA受容体アンタゴニストの使用は、2種の受容体相互作用間の潜在的な相違を区別しない。イソフルラン及び／又は亜酸化窒素が、おそらくは細胞内カルシウム輸送を混乱させることによって、細胞内Bax/Bcl-2比を調節不全にできるということは十分にあり得ることである。

[0028] 細胞内カルシウムイオン濃度が上昇すると、カルシウムイオン依存性の酵

素の活性化（NOS、PLA2、CaM kinase等）を介したカスケード系が賦活化し、膜構成成分の脂質の障害、フリーラジカル（ROS）の产生、ミトコンドリア呼吸鎖の障害とATP产生不全が引き起こされ、これらが引き金となって急性又は遅発性のアポトーシスが誘発されると考えるグルタミン酸一カルシウムイオン説が支持されてきた。しかしながら、この説のカスケードでは、アポトーシスの真の原因因子は不明である（麻酔、“虚血性神経細胞死の分子生物学的機序と薬物療法による脳保護”、2007、56：248-270）。

[0029] 本発明における全身麻酔薬としては、全身性の麻酔効果が得られる薬であれば、特に限定されないが、例えば、吸入麻酔薬及び静脈麻酔薬等が好適に挙げられる。

[0030] 本発明における吸入麻酔薬としては、特に限定されないが、例えば、ハロタン、イソフルラン、エンフルラン、メトキシフルラン、セボフルラン、デスフルラン等の揮発性吸入麻酔薬；エチレン、シクロプロパン、ジエチルエーテル、クロロホルム、亜酸化窒素又はキセノン等のガス性吸入麻酔薬が挙げられ、イソフルラン、エンフルラン、セボフルラン、デスフルラン等のハロゲン化エーテル系化合物又は亜酸化窒素等が好ましい。吸入麻酔薬は、注射又は静脈内注入により投与される静脈麻酔薬と組合せて使用されてもよい。

[0031] 本発明における静脈麻酔薬としては、特に限定されないが、例えば、プロポフォール、ミダゾラム、ケタミン、チレタミン、チオペンタール、メトヘキシタール又はエトミデート等が挙げられ、プロポフォール、ミダゾラム等が好ましい。

[0032] 本発明に用いる全身麻酔薬としては、上記具体例のうち、亜酸化窒素、イソフルラン、エンフルラン、メトキシフルラン、セボフルラン、デスフルラン、ジエチルエーテル、プロポフォール及びミダゾラムからなる群より選ばれた1種以上の麻酔薬がより好ましい。

上記具体例のうち、ハロタン、イソフルラン、エンフルラン、メトキシフル

ラン、セボフルラン、デスフルラン、エトミデート、チオペンタール、プロポフォール及びミダゾラム等の麻醉薬は、GABA_A受容体作用薬である。さらに、前記麻醉薬のうちのいくつか（例えば、N₂O、ケタミン及びイソフルラン等）はNMDA受容体アンタゴニストであるが、麻醉薬全てについてNMDA受容体拮抗作用が解明されているわけではない。

[0033] 全身麻醉薬の用量は、年齢、健康状態、その他の医薬との相互作用及び実施される手術の種類に応じ、患者毎に異なり、本発明の効果を達成できる範囲であれば、特に限定されないが、例えば、上記の吸入麻醉薬及び静脈麻醉薬等の全身麻醉薬の医薬中の濃度は、0.1～10% (v/v) であってもよく、0.2～8% (v/v) であってもよく、0.2～5% (v/v) であってもよい。また、麻醉の導入時と麻醉状態維持時の濃度を変えてよい。

[0034] 本発明において、水素は、水素分子 (H₂) を意味し、水素分子 (H₂) であれば、特に形態は限定されず、水素ガスを用いてもよく、水素ガスを水に溶解させた水素水を用いてもよい。

[0035] 前記全身麻醉薬及び水素の適用対象としては、特に限定されないが、例えば、ヒト、ウシ、ウマ、ヒツジ、ヤギ、イヌ、サル、ネコ、クマ、ラット、ウサギ等の動物が挙げられる。

[0036] 本発明の医薬の適用対象の年齢等は、特に限定されないが、麻醉の影響を受けやすい時期の動物に好適に適用される。例えば、対象がヒトの場合、好ましくは胎児、新生児、乳児、幼児、小児又は高齢者を対象とし、脳が発達期にあり、麻醉の影響を受けやすい点を考慮して、より好ましくは胎児、新生児、乳児、幼児、小児等であり、さらに好ましくは胎児、新生児、乳児又は3歳以下の幼児である。前記胎児とは、妊娠8週目以降出生前の子を意味する。前記新生児とは、生後28日未満の乳児を意味する。前記乳児とは、1歳未満の子供を意味する。前記幼児とは、1歳以上7歳未満を意味する。前記小児とは、7歳以上15歳未満を意味する。前記高齢者とは、65歳以上の人を意味する。

[0037] 本発明の医薬の実施態様としては、全身麻酔薬と水素とを併用していてもよく、全身麻酔薬と水素とを予め混合しておいてよい。

[0038] 本発明の医薬において、全身麻酔薬の形態及び水素の形態は特に限定されないが、顕著に優れた麻酔薬誘発性神経障害の予防及び／又は軽減効果を示す点から、吸入麻酔薬又は静脈麻酔薬と、水素ガスとの組み合わせとすることが好ましい。

[0039] 本発明の医薬において、全身麻酔薬と水素を併用する場合、全身麻酔薬と水素を使用するタイミングは特に限定されず、全身麻酔薬の前投与、同時投与又は後投与のいずれに水素を用いてよく、またいずれかを組み合わせてもよいが、対象への前処理の負担がない点から、全身麻酔薬と水素の同時投与が好ましい。ここで、「前投与」とは、全身麻酔薬を未投与状態の対象へ水素を一定時間投与することを意味する。また、「同時投与」とは、全身麻酔薬の投与開始時から投与停止時まで継続して、又は全身麻酔薬の投与開始時から投与停止時までの間に一定時間、対象へ水素を投与することを意味する。「後投与」とは、全身麻酔薬の投与停止後から、対象へ水素を一定時間投与することを意味する。なお、全身麻酔薬及び水素の投与時間は、特に限定されないが、例えば、セボフルランを、4.0%以下の濃度で、酸素及び亜酸化窒素と組み合わせて使用した場合、10分～8時間程度であってよい。

[0040] 全身麻酔薬と水素との併用において、全身麻酔薬の形態及び水素の形態は特に限定されないが、本発明の好適な一態様では、顕著に優れた麻酔薬誘発性神経障害の予防及び／又は軽減効果を示す点から、全身麻酔薬が吸入麻酔薬又は静脈麻酔薬であり、水素が水素ガスである併用とすることが好ましい。

[0041] 本発明の医薬において、全身麻酔薬と水素を予め混合しておく場合、混合比率は特に限定されないが、例えば、吸入麻酔薬と水素ガスとを用いる場合、医薬中の水素ガス濃度は、通常0.01～7% (v/v) であり、安全性を考慮して上限値は低いほうが好ましく、例えば、0.15～4% (v/v) であってもよく、0.18～3% (v/v) であってもよく、0.2～1

・ 5% (v/v) であってもよく、0. 25% (v/v) 以上1% (v/v) 未満であってもよく、0. 28~0. 9% (v/v) であってもよい。

[0042] 本発明に用いる水素の用量は、年齢、健康状態、その他の医薬との相互作用及び実施される手術の種類に応じ、患者毎に異なり、本発明の効果を達成できる範囲であれば、特に限定されないが、医薬中の水素濃度は、通常0. 01~7% (v/v) であり、安全性を考慮して上限値は低いほうが好ましく、例えば、0. 15~4% (v/v) であってもよく、0. 18~3% (v/v) であってもよく、0. 2~1. 5% (v/v) であってもよく、0. 25% (v/v) 以上1% (v/v) 未満であってもよく、0. 28~0. 9% (v/v) であってもよい。

[0043] 本発明の好適な一態様として、吸入麻酔薬と水素ガスとを組み合わせてなる、ヒト又はヒト以外の動物用医薬において、特に限定されないが、医薬中の水素ガス濃度は通常0. 01~7% (v/v) であり、安全性を考慮して上限値は低いほうが好ましく、例えば、0. 15~4% (v/v) であってもよく、0. 18~3% (v/v) であってもよく、0. 2~1. 5% (v/v) であってもよく、0. 25% (v/v) 以上1% (v/v) 未満であってもよく、0. 28~0. 9% (v/v) であってもよい。

[0044] 本発明の好適な一態様として、液状の静脈麻酔薬と水素ガスとを組み合わせてなる、ヒト又はヒト以外の動物用医薬において、特に限定されないが、医薬中のガスの水素ガス濃度は通常0. 01~7% (v/v) であり、安全性を考慮して上限値は低いほうが好ましく、例えば、0. 15~4% (v/v) であってもよく、0. 18~3% (v/v) であってもよく、0. 2~1. 5% (v/v) であってもよく、0. 25% (v/v) 以上1% (v/v) 未満であってもよく、0. 28~0. 9% (v/v) であってもよい。

[0045] 本発明の好適な一態様として、吸入麻酔薬と水素ガスとを併用して使用する場合、医薬中の水素ガス濃度は、特に限定されないが、通常0. 01~7% (v/v) であり、安全性を考慮して上限値は低いほうが好ましく、例えば、0. 15~4% (v/v) であってもよく、0. 18~3% (v/v)

であってもよく、0.2～1.5% (v/v) であってもよく、0.25% (v/v) 以上1% (v/v) 未満であってもよく、0.28～0.9% (v/v) であってもよい。

[0046] 本発明の好適な一態様として、液状の静脈麻酔薬と水素ガスとを併用して使用する場合、医薬中のガスの水素ガス濃度は、特に限定されないが、通常0.01～7% (v/v) であり、安全性を考慮して上限値は低いほうが好ましく、例えば、0.15～4% (v/v) であってもよく、0.18～3% (v/v) であってもよく、0.2～1.5% (v/v) であってもよく、0.25% (v/v) 以上1% (v/v) 未満であってもよく、0.28～0.9% (v/v) であってもよい。

[0047] 本発明の医薬には、本発明の効果を妨げない限り、酸素、窒素、亜酸化窒素等を加えていてもよい。本発明の医薬に含まれる酸素濃度は、通常、20～90% (v/v) 程度であり、20～70% (v/v) 程度が好ましく、20～50% (v/v) 程度が好ましい。窒素及び亜酸化窒素は、本発明の効果を妨げない限り、濃度は限定されない。

[0048] 本発明において、医薬のガス成分の構成成分について、上記した成分以外の残量は、全て窒素ガスであってもよく、窒素ガス以外に空気に含まれる微量成分を含有していてもよい。

[0049] 吸入麻酔薬と水素ガスとを用いた場合の好適な実施態様としては、特に限定されないが、例えば、(i) 0.1～10% (v/v) の吸入麻酔薬、0.15～1.5% (v/v) の水素ガス及び20～90% (v/v) の酸素を含有する医薬、(ii) 0.1～8% (v/v) の吸入麻酔薬、0.15～1.5% (v/v) の水素ガス及び20～70% (v/v) の酸素を含有する医薬、又は(iii) 0.1～5% (v/v) の吸入麻酔薬、0.15～1.5% (v/v) の水素ガス及び20～50% (v/v) の酸素を含有する医薬等が挙げられる。

[0050] 液状の静脈麻酔薬と水素ガスとを用いた場合の好適な実施態様としては、特に限定されないが、例えば、(i) 0.1～10% (w/w) の静脈麻酔

薬、0.15～1.5% (v/v) の水素ガス及び20～90% (v/v) の酸素を含有する医薬、(i) 0.1～8% (w/w) の静脈麻酔薬、0.15～1.5% (v/v) の水素ガス及び20～70% (v/v) の酸素を含有する医薬、又は(iii) 0.1～5% (w/w) の静脈麻酔薬、0.15～1.5% (v/v) の水素ガス及び20～50% (v/v) の酸素を含有する医薬等が挙げられる。

[0051] 本発明の別の好適な一態様として、静脈麻酔薬と水素水とを組み合わせてなる、ヒト又はヒト以外の動物用医薬において、医薬中の水素水濃度は、特に限定されない。

[0052] 本発明の別の好適な一態様では、静脈麻酔薬と水素水とを併用して使用する場合、医薬中の水素水濃度は、特に限定されない。

[0053] 本発明の医薬は、麻酔薬誘発性神経障害を予防及び／又は軽減できる。「神経障害を予防及び／又は軽減する」とは、本発明の医薬を適用された対象(例えば、ヒトの場合、患者)と、水素の非存在下において全身麻酔薬を適用された対象とを比較した場合に、1種以上の神経障害の重篤度を低下させることを意味する。また、「神経細胞損傷を予防及び／又は軽減する」とは、本発明の医薬を適用された対象と、水素の不存在下において全身麻酔薬を適用された対象とを比較した場合に、1種以上の神経細胞の損傷の重篤度を低下させることを意味する。

[0054] 既存のデータから、発達中のヒトの脳は、子宮内及び人生の最初の1年の両方で胎児表現型から成人表現型に類似するものへと、極めて動的な変換を受けるということが推定できる。このプロセスは、シナプスの極めて早いターンオーバー(1日に20%もの高さ(Okabe et al., 1999, *Nat. Neuroscience* 2:804-811))及び高レベルのバックグラウンドアポトーシス(Hua and Smith, 2004, *Nature Neuroscience* 7(4):327-332)という特徴を有する。これは、標的細胞のシナプスに到達できない神経細胞が、おそらくはエネルギー効率を維持するために排除されるためである。この研究は、神経発生(シナプス形成)のこの決定的な段階の間の麻酔剤への曝露が、発達中の脳において

てアポトーシスを引き起こすことを確認するものである。実験により、GABA作動性吸入剤（例えば、イソフルラン等）への曝露が、皮質においてアポトーシスレベルの4倍の上昇を誘発することが実証された。また、亜酸化窒素（単一の薬剤としては神経変性を示さない）は、イソフルラン誘発性アポトーシスを対照に見られるものの12倍に大幅に増強することによってその神経変性潜在力を示す。同様の結果が海馬から得られ、この結果では、イソフルラン及びイソフルラン-亜酸化窒素混合物がアポトーシスレベルを上昇させた（それぞれ、4倍及び7倍）。

[0055] 海馬、すなわち辺縁系の一部を形成する皮質組織の特殊化した層は、記憶形成において重要な機能を有する(Aggleton and Brown, 1999, Behav Brain Sci 22(3):425-44)。海馬の神経細胞は、シナプスの効力が、特定のパターンの神経活性によって徐々に増強される、「長期増強」(LTP)として知られる現象を示す能力を有する。このプロセスが細胞レベルでの記憶の基礎であると考えられている。一般的には、海馬の処理は、海馬と海馬傍回（海馬台）の両方で起こり、その後、脳弓に投影される。海馬及び海馬台における神経細胞損傷の広がりを考えると、高レベルの麻酔薬に曝露された新生児ラットが、成人として学習障害の徵候を示すこと(Jevtovic-Todorovic et al., 2003)は驚くことではなく、同じ研究においてLTP抑制の発見によって裏付けられている。

[0056] 本発明における麻酔薬誘発性神経障害としては、好適には、脳の麻酔薬誘発性神経障害が挙げられ、本発明の神経障害には、特に限定されないが、神経運動障害、神経認知障害、精神認知障害、知的障害、自閉症等が挙げられる。前記神経運動障害は、強度、平衡及び移動性の障害を含む。前記神経認知障害は、学習障害及び記憶障害を含む。上記の神経障害は、神経変性、神経細胞アポトーシス、神経細胞壊死等の要因によって引き起こされると考えられており、特定の一つの要因だけでなく、複合的な要因によって引き起こされている可能性が考えられている。中でも、神経細胞アポトーシスは、前記のいずれの障害においても何らかの影響を与えているものと推察される。

前記神経変性とは、細胞収縮、辺縁趨向及び膜に封入されたアポトーシス小体の形成を伴うクロマチン凝集を意味する。

[0057] このような神経認知障害は、通常、ランド(Randt)記憶検査のショートストーリーモジュール(short-story module)[Randt C, Brown E. Administration manual: Randt Memory Test. New York: Life Sciences, 1983]、改訂ウェchsラー成人知能検査(Wechsler Adult Intelligence Scale Revised)の数唱下位検査(Digit Span subtest)と符合作業下位検査(Digit Symbol subtest)[Wechsler D. The Wechsler Adult Intelligence Scale-Revised (WAIS-R). San Antonio, Tex.: Psychological Corporation, 1981.]、改訂ベントン視覚記録検査(Benton Revised Visual Retention Test)[Benton AL, Hansher K. Multilingual aphasia examination. Iowa City: University of Iowa Press, 1978]及びトレイルメイキングテスト(Trail Making Test) (パートB) [Reitan RM. Validity of the Trail Making Test as an indicator of organic brain damage. Percept Mot Skills 1958;8:271-6]等の十分に確立された基準によって評価できる。その他の適した神経運動及び神経認知検査は、Combs D, D'Alecy L:Motor performance in rats exposed to severe forebrain ischemia:Effect of fasting and 1,3-butanediol. Stroke 1987; 18: 503-511及びGionet T, Thomas J, Warner D, Goodlett C, Wasserman E, West J: Forebrain ischemia induces selective behavioral impairments associated with hippocampal injury in rats. Stroke 1991;22:1040-1047に記載されている。

[0058] 本発明の別の態様は、全身麻酔薬と水素とを併用する、麻酔薬誘発性神経障害の予防及び／又は軽減用医薬の調製方法に関する。全身麻酔薬、水素、医薬の適用対象及び麻酔薬誘発性神経障害並びにこれらの組み合わせは、上述のとおりである。本調製方法は、全身麻酔薬と水素とを併用する工程を有してもよく、全身麻酔薬と水素とを予め混合する工程を有してもよい。

[0059] 本調製方法において、吸入麻酔薬と水素ガスとを用いる場合の好適な実施態様としては、特に限定されないが、例えば、(i) O₂ 1～10% (v/v)

v) の吸入麻酔薬、0.15～1.5% (v/v) の水素ガス及び20～90% (v/v) の酸素を含有するように、吸入麻酔薬と水素ガスとを併用する工程又は吸入麻酔薬と水素ガスとを予め混合する工程を有する医薬の調製方法、(ii) 0.1～8% (v/v) の吸入麻酔薬、0.15～1.5% (v/v) の水素ガス及び20～70% (v/v) の酸素を含有するように、吸入麻酔薬と水素ガスとを併用する工程又は吸入麻酔薬と水素ガスとを予め混合する工程を有する医薬の調製方法、又は(iii) 0.1～5% (v/v) の吸入麻酔薬、0.15～1.5% (v/v) の水素ガス及び20～50% (v/v) の酸素を含有するように、吸入麻酔薬と水素ガスとを併用する工程又は吸入麻酔薬と水素ガスとを予め混合する工程を有する医薬の調製方法等が挙げられる。

[0060] 本調製方法において、液状の静脈麻酔薬と水素ガスとを用いた場合の好適な実施態様としては、特に限定されないが、例えば、(i) 0.1～10% (w/w) の静脈麻酔薬、0.15～1.5% (v/v) の水素ガス及び20～90% (v/v) の酸素を含有するように、静脈麻酔薬と水素ガスとを併用する工程又は静脈麻酔薬と水素ガスとを予め混合する工程を有する医薬の調製方法、(ii) 0.1～8% (w/w) の静脈麻酔薬、0.15～1.5% (v/v) の水素ガス及び20～70% (v/v) の酸素を含有するように、静脈麻酔薬と水素ガスとを併用する工程又は静脈麻酔薬と水素ガスとを予め混合する工程を有する医薬の調製方法、又は(iii) 0.1～5% (w/w) の静脈麻酔薬、0.15～1.5% (v/v) の水素ガス及び20～50% (v/v) の酸素を含有するように、静脈麻酔薬と水素ガスとを併用する工程又は静脈麻酔薬と水素ガスとを予め混合する工程を有する医薬の調製方法等が挙げられる。

[0061] 本発明の別の態様としては、水素と組み合わせて用いられる全身麻酔剤製造のための全身麻酔薬の使用が挙げられる。前記麻酔剤には、薬効成分の安定、患者の水分補給及び電解質のバランス維持を目的として、公知の賦形剤、添加剤を加えてもよい。前記賦形剤、添加剤としては、本発明の効果を妨

げない限り、従来公知の賦形剤、添加剤を使用することができる。例えば、プロポフォールの麻酔剤の中には、ダイズ油、中鎖脂肪酸トリグリセリド、精製卵黄レシチン、濃グリセリン、オレイン酸ナトリウム等を添加してもよい。全身麻酔薬、水素及び医薬の適用対象は、上述のとおりである。

[0062] 本使用において、吸入麻酔薬と水素ガスとを用いる場合の好適な実施態様としては、特に限定されないが、例えば、(i) 0. 1～10% (v/v) の吸入麻酔薬、0. 15～1. 5% (v/v) の水素ガス及び20～90% (v/v) の酸素を含有し、さらに必要に応じて添加剤を含んでいてもよい全身麻酔剤製造のための全身麻酔薬の使用、(ii) 0. 1～8% (v/v) の吸入麻酔薬、0. 15～1. 5% (v/v) の水素ガス及び20～70% (v/v) の酸素を含有し、さらに必要に応じて添加剤を含んでいてもよい全身麻酔剤製造のための全身麻酔薬の使用、又は(iii) 0. 1～5% (v/v) の吸入麻酔薬、0. 15～1. 5% (v/v) の水素ガス及び20～50% (v/v) の酸素を含有し、さらに必要に応じて添加剤を含んでいてもよい全身麻酔剤製造のための全身麻酔薬の使用等が挙げられる。

[0063] 本使用において、液状の静脈麻酔薬と水素ガスとを用いた場合の好適な実施態様としては、特に限定されないが、例えば、(i) 0. 1～10% (w/w) の静脈麻酔薬、0. 15～1. 5% (v/v) の水素ガス及び20～90% (v/v) の酸素を含有し、必要に応じて添加剤を含んでいてもよい全身麻酔剤製造のための全身麻酔薬の使用、(ii) 0. 1～8% (w/w) の静脈麻酔薬、0. 15～1. 5% (v/v) の水素ガス及び20～70% (v/v) の酸素を含有し、必要に応じて添加剤を含んでいてもよい全身麻酔剤製造のための全身麻酔薬の使用、又は(iii) 0. 1～5% (w/w) の静脈麻酔薬、0. 15～1. 5% (v/v) の水素ガス及び20～50% (v/v) の酸素を含有し、必要に応じて添加剤を含んでいてもよい全身麻酔剤製造のための全身麻酔薬の使用等が挙げられる。

[0064] 本発明の別の態様は、全身麻酔薬と水素とを組み合わせてなる医薬の製造のための全身麻酔薬と水素の使用に関する。全身麻酔薬、水素及び医薬の適

用対象並びにこれらの組み合わせは、上述のとおりである。本使用の実施態様としては、全身麻醉薬と水素とを併用していてもよく、全身麻醉薬と水素とを予め混合しておいてもよい。

[0065] 本使用において、吸入麻醉薬と水素ガスとを用いる場合の好適な実施態様としては、特に限定されないが、例えば、(i) 0. 1～10% (v/v) の吸入麻醉薬、0. 15～1. 5% (v/v) の水素ガス及び20～90% (v/v) の酸素を含有する医薬の製造のための全身麻醉薬と水素の使用、(ii) 0. 1～8% (v/v) の吸入麻醉薬、0. 15～1. 5% (v/v) の水素ガス及び20～70% (v/v) の酸素を含有する医薬の製造のための全身麻醉薬と水素の使用、又は(iii) 0. 1～5% (v/v) の吸入麻醉薬、0. 15～1. 5% (v/v) の水素ガス及び20～50% (v/v) の酸素を含有する医薬の製造のための全身麻醉薬と水素の使用等が挙げられる。

[0066] 本使用において、液状の静脈麻醉薬と水素ガスとを用いた場合の好適な実施態様としては、特に限定されないが、例えば、(i) 0. 1～10% (w/w) の静脈麻醉薬、0. 15～1. 5% (v/v) の水素ガス及び20～90% (v/v) の酸素を含有する医薬の製造のための全身麻醉薬と水素の使用、(ii) 0. 1～8% (w/w) の静脈麻醉薬、0. 15～1. 5% (v/v) の水素ガス及び20～70% (v/v) の酸素を含有する医薬の製造のための全身麻醉薬と水素の使用、又は(iii) 0. 1～5% (w/w) の静脈麻醉薬、0. 15～1. 5% (v/v) の水素ガス及び20～50% (v/v) の酸素を含有する医薬の製造のための全身麻醉薬と水素の使用等が挙げられる。

[0067] 本発明の別の態様は、麻醉薬誘発性神経障害を予防及び／又は軽減するための医薬の製造における、全身麻醉薬と水素の使用に関する。全身麻醉薬、水素、医薬の適用対象、麻醉薬誘発性神経障害及び実施態様並びにこれらの組み合わせは、上述のとおりである。

[0068] 本使用において、吸入麻醉薬と水素ガスとを用いる場合の好適な実施態様

としては、特に限定されないが、例えば、(i) 0. 1～10% (v/v) の吸入麻酔薬、0. 15～1. 5% (v/v) の水素ガス及び20～90% (v/v) の酸素を含有する、麻酔薬誘発性神経障害を予防及び/又は軽減するための、医薬の製造ための、全身麻酔薬と水素の使用、(ii) 0. 1～8% (v/v) の吸入麻酔薬、0. 15～1. 5% (v/v) の水素ガス及び20～70% (v/v) の酸素を含有する、麻酔薬誘発性神経障害を予防及び/又は軽減するための、医薬の製造ための、全身麻酔薬と水素の使用、又は(iii) 0. 1～5% (v/v) の吸入麻酔薬、0. 15～1. 5% (v/v) の水素ガス及び20～50% (v/v) の酸素を含有する、麻酔薬誘発性神経障害を予防及び/又は軽減するための、医薬の製造ための、全身麻酔薬と水素の使用等が挙げられる。

[0069] 本使用において、液状の静脈麻酔薬と水素ガスとを用いた場合の好適な実施態様としては、特に限定されないが、例えば、(i) 0. 1～10% (w/w) の静脈麻酔薬、0. 15～1. 5% (v/v) の水素ガス及び20～90% (v/v) の酸素を含有する、麻酔薬誘発性神経障害を予防及び/又は軽減するための、医薬の製造ための、全身麻酔薬と水素の使用、(ii) 0. 1～8% (w/w) の静脈麻酔薬、0. 15～1. 5% (v/v) の水素ガス及び20～70% (v/v) の酸素を含有する、麻酔薬誘発性神経障害を予防及び/又は軽減するための、医薬の製造ための、全身麻酔薬と水素の使用、又は(iii) 0. 1～5% (w/w) の静脈麻酔薬、0. 15～1. 5% (v/v) の水素ガス及び20～50% (v/v) の酸素を含有する、麻酔薬誘発性神経障害を予防及び/又は軽減するための、医薬の製造ための、全身麻酔薬と水素の使用等が挙げられる。

[0070] 本発明の別の態様は、神経細胞アポトーシスに付随する麻酔薬誘発性神経障害を予防及び/又は軽減するための医薬の製造ための全身麻酔薬と水素の使用に関する。全身麻酔薬、水素、医薬の適用対象、麻酔薬誘発性神経障害及び実施態様並びにこれらの組み合わせは、上述のとおりである。

[0071] 本使用において、吸入麻酔薬と水素ガスとを用いる場合の好適な実施態様

としては、特に限定されないが、例えば、(i) 0. 1～10% (v/v) の吸入麻酔薬、0. 15～1. 5% (v/v) の水素ガス及び20～90% (v/v) の酸素を含有する、神経細胞アポトーシスに付随する麻酔薬誘発性神経障害を予防及び／又は軽減するための、医薬の製造のための全身麻酔薬と水素の使用、(ii) 0. 1～8% (v/v) の吸入麻酔薬、0. 15～1. 5% (v/v) の水素ガス及び20～70% (v/v) の酸素を含有する、神経細胞アポトーシスに付随する麻酔薬誘発性神経障害を予防及び／又は軽減するための、医薬の製造のための全身麻酔薬と水素の使用、又は(iii) 0. 1～5% (v/v) の吸入麻酔薬、0. 15～1. 5% (v/v) の水素ガス及び20～50% (v/v) の酸素を含有する、神経細胞アポトーシスに付随する麻酔薬誘発性神経障害を予防及び／又は軽減するための、医薬の製造のための全身麻酔薬と水素の使用等が挙げられる。

[0072] 本使用において、液状の静脈麻酔薬と水素ガスとを用いた場合の好適な実施態様としては、特に限定されないが、例えば、(i) 0. 1～10% (w/w) の静脈麻酔薬、0. 15～1. 5% (v/v) の水素ガス及び20～90% (v/v) の酸素を含有する、神経細胞アポトーシスに付随する麻酔薬誘発性神経障害を予防及び／又は軽減するための、医薬の製造のための全身麻酔薬と水素の使用、(ii) 0. 1～8% (w/w) の静脈麻酔薬、0. 15～1. 5% (v/v) の水素ガス及び20～70% (v/v) の酸素を含有する、神経細胞アポトーシスに付随する麻酔薬誘発性神経障害を予防及び／又は軽減するための、医薬の製造のための全身麻酔薬と水素の使用、又は(iii) 0. 1～5% (w/w) の静脈麻酔薬、0. 15～1. 5% (v/v) の水素ガス及び20～50% (v/v) の酸素を含有する、神経細胞アポトーシスに付随する麻酔薬誘発性神経障害を予防及び／又は軽減するための、医薬の製造のための全身麻酔薬と水素の使用等が挙げられる。

[0073] 本発明のさらなる別の態様は、麻酔誘発性神経細胞損傷を予防及び／又は軽減するための医薬の製造における全身麻酔薬と水素の使用に関する。全身麻酔薬、水素、医薬の適用対象、麻酔薬誘発性神経障害及び実施態様並びに

これらの組み合わせは、上述のとおりである。

[0074] 本発明の別の態様は、全身麻酔薬と水素とを併用して対象に投与する工程を有する、麻酔薬誘発性神経障害を予防及び／又は軽減する方法に関する。全身麻酔薬、水素及び麻酔薬誘発性神経障害並びにこれらの組み合わせは、上述のとおりである。本方法は、全身麻酔薬と水素とを併用する工程を有してもよく、全身麻酔薬と水素とを予め混合する工程を有してもよい。

[0075] 本方法において、吸入麻酔薬と水素ガスとを用いる場合の好適な実施態様としては、特に限定されないが、例えば、(i) 0. 1～10% (v/v) の吸入麻酔薬、0. 15～1. 5% (v/v) の水素ガス及び20～90% (v/v) の酸素を含有させ、対象に投与する工程を有する、麻酔薬誘発性神経障害を予防及び／又は軽減する方法、(ii) 0. 1～8% (v/v) の吸入麻酔薬、0. 15～1. 5% (v/v) の水素ガス及び20～70% (v/v) の酸素を含有させ、対象に投与する工程を有する、麻酔薬誘発性神経障害を予防及び／又は軽減する方法、又は(iii) 0. 1～5% (v/v) の吸入麻酔薬、0. 15～1. 5% (v/v) の水素ガス及び20～50% (v/v) の酸素を含有させ、対象に投与する工程を有する、麻酔薬誘発性神経障害を予防及び／又は軽減する方法等が挙げられる。

[0076] 本方法において、液状の静脈麻酔薬と水素ガスとを用いた場合の好適な実施態様としては、特に限定されないが、例えば、(i) 0. 1～10% (w/w) の静脈麻酔薬、0. 15～1. 5% (v/v) の水素ガス及び20～90% (v/v) の酸素を含有させ、対象に投与する工程を有する、麻酔薬誘発性神経障害を予防及び／又は軽減する方法等、(ii) 0. 1～8% (w/w) の静脈麻酔薬、0. 15～1. 5% (v/v) の水素ガス及び20～70% (v/v) の酸素を含有させ、対象に投与する工程を有する、麻酔薬誘発性神経障害を予防及び／又は軽減する方法等、又は(iii) 0. 1～5% (w/w) の静脈麻酔薬、0. 15～1. 5% (v/v) の水素ガス及び20～50% (v/v) の酸素を含有させ、対象に投与する工程を有する、麻酔薬誘発性神経障害を予防及び／又は軽減する方法等が挙げられる。

[0077] 本態様において、全身麻酔薬と水素を併用するタイミングは特に限定されず、全身麻酔薬の前投与、同時投与又は後投与のいずれに水素を用いてよく、またいずれかを組み合わせてもよいが、対象への前処理の負担がない点から、全身麻酔薬と水素の同時投与が好ましい。ここで、「前投与」とは、全身麻酔薬を未投与状態の対象へ水素を一定時間投与することを意味する。また、「同時投与」とは、全身麻酔薬の投与開始時から投与停止時まで継続して、又は全身麻酔薬の投与開始時から投与停止時までの間に一定時間、対象へ水素を投与することを意味する。「後投与」とは、全身麻酔薬の投与停止後から、対象へ水素を一定時間投与することを意味する。なお、全身麻酔薬及び水素の投与時間は、特に限定されない。前記全身麻酔薬及び水素の投与対象としては、特に限定されないが、例えば、ヒト、ウシ、ウマ、ヒツジ、ヤギ、イヌ、サル、ネコ、クマ、ラット、ウサギ等の動物が挙げられる。

[0078] 本発明の全身麻酔薬及び水素の投与対象の年齢等は特に限定されないが、麻酔の影響を受けやすい時期の動物に好適に投与される。例えば、対象がヒトの場合、好ましくは胎児、新生児、乳児、幼児、小児又は高齢者を対象とし、脳が発達期にあり、麻酔の影響を受けやすい点を考慮して、より好ましくは胎児、新生児、乳児、幼児、小児等であり、さらに好ましくは胎児、新生児、乳児又は3歳以下の幼児である。胎児、新生児、乳児、幼児、小児又は高齢者の各定義は上述のとおりである。

[0079] 本発明の別の態様は、全身麻酔薬と水素とを組み合わせてなる医薬を、対象に投与する工程を有する、麻酔薬誘発性アポトーシスを阻害する方法に関する。全身麻酔薬、水素及び医薬の適用対象並びにこれらの組み合わせは、上述のとおりである。本方法は、全身麻酔薬と水素とを併用する工程を有してもよく、全身麻酔薬と水素とを予め混合する工程を有してもよい。

[0080] 本方法において、吸入麻酔薬と水素ガスとを用いる場合の好適な実施態様としては、特に限定されないが、例えば、(i) 0.1～10% (v/v) の吸入麻酔薬、0.15～1.5% (v/v) の水素ガス及び20～90% (v/v) の酸素を含有するように、吸入麻酔薬と水素ガスとを併用する工

程又は吸入麻酔薬と水素ガスとを予め混合する工程及び前記工程で得られる医薬を、対象に投与する工程を有する、麻酔薬誘発性アポトーシスを阻害する方法、(i i) 0. 1～8% (v/v) の吸入麻酔薬、0. 15～1. 5% (v/v) の水素ガス及び20～70% (v/v) の酸素を含有するように、吸入麻酔薬と水素ガスとを併用する工程又は吸入麻酔薬と水素ガスとを予め混合する工程及び前記工程で得られる医薬を、対象に投与する工程を有する、麻酔薬誘発性アポトーシスを阻害する方法、又は(i i i) 0. 1～5% (v/v) の吸入麻酔薬、0. 15～1. 5% (v/v) の水素ガス及び20～50% (v/v) の酸素を含有するように、吸入麻酔薬と水素ガスとを併用する工程又は吸入麻酔薬と水素ガスとを予め混合する工程及び前記工程で得られる医薬を、対象に投与する工程を有する、麻酔薬誘発性アポトーシスを阻害する方法等が挙げられる。

[0081] 本方法において、液状の静脈麻酔薬と水素ガスとを用いた場合の好適な実施態様としては、特に限定されないが、例えば、(i) 0. 1～10% (w/w) の静脈麻酔薬、0. 15～1. 5% (v/v) の水素ガス及び20～90% (v/v) の酸素を含有するように、静脈麻酔薬と水素ガスとを併用する工程又は静脈麻酔薬と水素ガスとを予め混合する工程及び前記工程で得られる医薬を、対象に投与する工程を有する、麻酔薬誘発性アポトーシスを阻害する方法、(i i) 0. 1～8% (w/w) の静脈麻酔薬、0. 15～1. 5% (v/v) の水素ガス及び20～70% (v/v) の酸素を含有するように、静脈麻酔薬と水素ガスとを併用する工程又は静脈麻酔薬と水素ガスとを予め混合する工程及び前記工程で得られる医薬を、対象に投与する工程を有する、麻酔薬誘発性アポトーシスを阻害する方法、又は(i i i) 0. 1～5% (w/w) の静脈麻酔薬、0. 15～1. 5% (v/v) の水素ガス及び20～50% (v/v) の酸素を含有するように、静脈麻酔薬と水素ガスとを併用する工程又は静脈麻酔薬と水素ガスとを予め混合する工程及び前記工程で得られる医薬を、対象に投与する工程を有する、麻酔薬誘発性アポトーシスを阻害する方法等が挙げられる。

[0082] 本発明において、麻醉薬誘発性神経障害をアポトーシス及び行動試験から評価した。アポトーシスについては、(i)分解P A R Pの定量、(ii)活性カスパーゼー3染色、又は(iii)T U N E L法によって評価した。

[0083] 本発明では、分解P A R Pの検出及び定量にウェスタンプロット分析を用いた。アポトーシスカスケードの主要な開始因子の一つは、カスパーゼの活性化と、それによるポリ(アデノシンニリン酸ーリボース)ポリメラーゼ(P A R P)の分解である。正常時はD N A修復やD N Aの安定化及び他の細胞内のイベントに関与する核内酵素であるP A R Pは、アポトーシスカスケードにおいては、カスパーゼー3の最終ターゲットである。アポトーシスの間に分解していく活性型カスパーゼの測定に対して、分解P A R Pの測定は、アポトーシスの後期ステージにおいても持続するシグナルの検出を可能とする。

[0084] 本発明では、活性カスパーゼー3染色に、カスパーゼー3免疫組織化学法を用いた。アポトーシスシグナル伝達カスケードの最後で、カスパーゼー9がカスパーゼー3(システィンプロテアーゼ)を活性化するため、カスパーゼー3はアポトーシス関与点の下流にある細胞のマーカーである。銀染色を広く平行させながら行う前記免疫組織化学法は、神経細胞アポトーシスの適したマーカーとして働き、生理学的細胞死の定量化目的と特性決定の両方にとって優れたものである(Olney et al., 2002b, *Neurobiology of Disease* 9:205-219)。カスパーゼー3は細胞質酵素であるため、活性化カスパーゼー3で染色された細胞はその全体が染色され、定量化が比較的容易である。

[0085] 本発明では、アポトーシスの初期におけるD N Aの断片化を、T U N E L法によって可視化させた。D N Aの断片化は、二本鎖の切断及び一本鎖の切断によって構成されている。いずれの切断タイプも、その断片のフリーの3' - O H末端を、標識ヌクレオチドを使用した酵素反応によって標識し検出することが可能である。T U N E L法は、高感度なアポトーシス検出法として用いられている。

実施例

[0086] 次に、実施例を挙げて本発明をさらに具体的に説明するが、本発明はこれらの実施例により何ら限定されるものではなく、多くの変形が本発明の技術的思想内で当分野において通常の知識を有する者により可能である。

[0087] 以下の実施例における統計分析は、グラフパッドプリズム5 (GraphPad Software Inc., La Jolla, CA) を用いて行った。それぞれのグループの平均値の比較は、一元及び二元配置分散分析によって実施し、その後それぞれについてニューマン-クルーズとボンフェローニのポストホックテストを実行した。Y字型迷路試験において、グループ間のランダムパフォーマンスに関する行動の比較は、両側の1サンプルt検定を用いて行った。P<0.05を統計的有意差ありとした。値は平均値の標準誤差で示した。

[0088] 全ての実験は、防衛医科大学校の動物実験のための倫理指針に従って実行し、防衛医科大学校動物実験委員会（所沢市、埼玉県、日本）によって認定された。

[0089] [実施例1]

動物：この研究で使用したC57BL/6マウスは、12時間の明暗周期（照明の点灯時間は7時～19時）と22±2°Cの室温の条件下で管理した。マウスは自由摂餌及び自由摂水下で飼育した。この研究で使用した全てのマウスは、同齢の同腹仔であった。

[0090] 麻酔薬及び水素処理：脳の発達期にある6日齢 (P6) のマウスを、母親のいるケージから移動した直後に、操作グローブの付いた多湿なチャンバーにマウスを置いた。空気、酸素（空気とは別に）、水素、セボフルランを混合して、最終的に酸素30%、水素1.3%、セボフルラン3%となるよう調製した麻酔薬混合ガスを前記マウスに吸入投与した。ガスの総流量は2L/分、麻酔薬の投与時間は6時間であった。酸素及び麻酔薬の分率は、ガス分析システム (Capnomac Ultima, GE Healthcare, 東京都、日本) を用いて測定した。水素ガス濃度は、企業 (Breath Lab Co., 奈良県、日本) でガスクロマトグラフィーを使用して測定した。麻酔薬に曝露中、マウスを38±1°Cに加温したマットの上で保温した。

[0091] [実施例 2]

空気、酸素（空気とは別に）、水素及びセボフルランを混合して、最終的に酸素が 30%、水素が 0.6%、セボフルラン（3%）となるように麻醉薬混合ガスを調製した以外は実施例 1 と同様に行った。

[0092] [実施例 3]

空気、酸素（空気とは別に）、水素及びセボフルランを混合して、最終的に酸素が 30%、水素が 0.3%、セボフルラン（3%）となるように麻醉薬混合ガスを調製した以外は実施例 1 と同様に行った。

[0093] [実施例 4]

空気、酸素（空気とは別に）、水素及びデスフルランを混合して、最終的に酸素が 30%、水素が 1.3%、デスフルラン（5.7%）となるように麻醉薬混合ガスを調製した以外は実施例 1 と同様に行った。

[0094] [実施例 5]

空気、酸素（空気とは別に）及び水素を混合して、酸素が 30%、水素が 1.3% の混合ガスを麻醉薬と同時吸入させながら、プロポフォール（100 mg/kg ip）の腹腔内投与と同時に、併用して吸入投与した以外は実施例 1 と同様に行った。

[0095] [実施例 6]

空気、酸素（空気とは別に）、水素及びセボフルランを混合して、最終的に酸素が 30%、水素が 1.3%、セボフルラン（2%）となるように麻醉薬混合ガスを調製した以外は実施例 1 と同様に行った。

[0096] [比較例 1]

空気、酸素（空気とは別に）及びセボフルランを混合して、最終的に酸素が 30%、セボフルラン（3%）となるように麻醉薬混合ガスを調製した以外は、実施例 1 と同様に行った。

[0097] [比較例 2]

空気、酸素（空気とは別に）及びデスフルランを混合して、最終的に酸素が 30%、デスフルラン（5.7%）となるように麻醉薬混合ガスを調製し

た以外は、実施例1と同様に行った。

[0098] [比較例3]

空気及び酸素（空気とは別に）を混合して、酸素が30%の混合ガスを麻酔薬と同時吸入させながら、プロポフォール（100mg/kg ip）の腹腔内投与と同時に、併用して吸入投与した以外は実施例1と同様に行った。

[0099] [試験例1-A]

タンパク質抽出物の精製：タンパク質抽出物の調製は、Kodama M. et al., *Anesthesiology*, 2011; 115: 979-991に記載したように、ウェスタンプロット法により実施した。以下に方法を簡単に記載する。マウスの前脳を速やかに取り出し、50 mMのトリスHCl、pH 7.4、150 mMのNaCl、1%のNP-40、0.5%のデオキシコール酸ナトリウム、プロテアーゼ阻害薬混合物（Complete; Roche Diagnostics, ペンツベルク, ドイツ）及び脱リン酸化酵素阻害薬（20 mMのグリセロリン酸、1 mMのNa₃VO₄、2 mMのNaF）を含んだ、4倍量のホモゲナイゼーションバッファ中で均質化した。続いて、ホモジネートを15,000 g、30分間、4°Cの条件で遠心分離した。上澄み溶液を分離し、使用時まで-80°Cで保管した。各試料のタンパク質濃度は、ビシンコニン酸タンパク質定量キット（Pierce, Rockford, IL）を用いて測定した。

[0100] ウェスタンプロット分析：ウェスタンプロット法は、Kodama M. et al., *Anesthesiology*, 2011; 115: 979-991に記載した方法で実施した。以下に方法を簡単に記載する。ホモジネートをドデシル硫酸ナトリウム-ポリアクリルアミドゲルによる電気泳動に供した。その後、タンパク質をポリフッ化ビニリデン膜（Immobilon-P; Millipore, Bedford, MA）に転写した。プロットは、抗-ポリ-（アデノシンニリン酸リボース）-ポリメラーゼ（抗-PARP）（ウサギポリクローナル; Cell Signaling Technology）又は抗-β-アクチン（マウスモノクローナル; Sigma, St. Louis, MO）抗体と免疫反応した。続いて、ペルオキシダーゼ複合型二次抗体を加えて、プロットをインキュベー

トした。タンパク質バンドは、化学発光検出器 (SuperSignal West Pico; Pierce) を用いて可視化した。分解P A R P バンドの定量は、 β -アクチンで標準化した。二元配置分散分析とそれに続くボンフェローニのポストホックテスト (一つのグループにつき、 $n = 3 - 6$ のマウス) を使用して、比較を実施した。

[0101] 前記前脳の抽出物について、分解P A R P (アポトーシス細胞死のバイオマーカー) への抗体を使用して、ウェスタンプロットによる分析を実施した。分析結果を図1 A に示す。分解P A R P バンドの定量化の結果を図1 B に示す。図1 A 及び B から、酸素30%含有ガス又は酸素30%及び水素1.3%を含有するガスのみに曝露したマウス脳の分解P A R P の免疫活性は検出下限以下であったが、酸素30%及びセボフルラン3%を含有するガスに6時間曝露したマウス (比較例1) では、分解P A R P の生成反応が誘導された。一方、酸素30%、水素1.3%及びセボフルラン3%を含有するガスに曝露したマウス (実施例1) では、酸素30%を含有するガス中のセボフルランに曝露したマウスと比較して、分解P A R P に対する免疫活性の著しい低下が観察され (すなわち、水素ガスがP A R P の分解を抑制した。) 、1.3%の水素ガスが新生仔マウスのセボフルラン曝露によって引き起こされる神経細胞アポトーシスを阻害することが確認された。二元配置分散分析 (two-way ANOVA) によって、これらの有意差が確認され、水素吸入の主要な効果 ($F = 12.17$ 、 $P < 0.01$) 、セボフルラン投与の主要な影響 ($F = 45.66$ 、 $P < 0.0001$) 、及び相互作用 (水素投与×セボフルラン投与; $F = 15.28$ 、 $P < 0.01$) を示した。

[0102] 比較例1の分解P A R P の定量値を100%としたとき、実施例1～3の分解P A R P の相対的な定量値は、それぞれ、実施例1は約45%、実施例2は約50%、実施例3は約55%減少し、分解P A R P の定量値は有意に減少した。実施例6においても、実施例1と同様に、神経細胞アポトーシスが有意に減少した。これらのことから、本発明が、セボフルランの曝露によって引き起こされる神経細胞アポトーシスを、水素を用いない場合に比べて

、40%以上も阻害できることが示された。

[0103] [試験例1-B]

[試験例1-A]と同様にして、実施例4と比較例2について評価を行った。比較例2の分解PAPPの定量値を100%としたとき、実施例4の分解PAPPの相対的な定量値は、47.7%減少し、分解PAPPの定量値は有位に減少した。このことから、本発明が、デスフルランの曝露によって引き起こされる神経細胞アポトーシスを45%以上も阻害することが示された。

[0104] [試験例1-C]

[試験例1-A]と同様にして、実施例4と比較例3について評価を行った。比較例3の分解PAPPの定量値を100%としたとき、実施例5の分解PAPPの相対的な定量値は、55.1%減少し、分解PAPPの定量値は有位に減少した。このことから、本発明が、プロポフォールの曝露によって引き起こされる神経細胞アポトーシスを50%以上も阻害することが示された。

[0105] [試験例2]

病理組織学的な研究：免疫組織化学的染色は、Kodama M. et al., *Anesthesiology*, 2011; 115: 979-991及びSatoh Y. et al., *J Neurosci*, 2011; 31: 11953-11967に記載した方法で実施した。以下にその方法を簡単に記載する。4%のパラホルムアルデヒドを含有する0.1Mリン酸バッファーで、マウスを経心臓的に灌流した。頭蓋骨を開け、頭部を少なくとも2時間、同じバッファーに浸した。その後、脳を頭蓋骨から取り出し、パラフィン包埋した断片（5 μm厚）を使って病理組織学的に分析した。断片は、確立された方法に従ってキシレン中でパラフィンを剥離し、グレードエタノールシリーズ（graded ethanol series）を使って水和させた。抗原賦活化処理は、抗原賦活化溶液（Antigen Unmasking Solution; Vector Laboratories, Burlingame, CA）を用い、オートクレーブで5分間加熱（121°C）することにより実施した。その後、バックグラウンドの染色を薄くするため、断片をブロッキン

グ試薬 (Protein Block, Serum-Free; Dako, Glostrup, デンマーク) で 30 分間処理した。続いて、断片を一次抗体と共に、多湿のチャンバーの中で、一晩 4 °C でインキュベートした。この研究で使用した一次抗体は、抗一活性カスパーゼ-3 (ウサギポリクローナル; Cell Signaling Technology, Beverly, MA) 及び抗-4-ヒドロキシ-2-ノネナール (anti-4-HNE) (マウスモノクローナル; 日本老化制御研究所、静岡県、日本) 抗体であった。

[0106] 明視野染色のために、ペルオキシダーゼ複合型二次抗体 (Dako EnVision+ system; Dako) を加えて断片を恒温処理した。免疫反応性は、製造元のプロトコルに従い、3, 3-ジアミノベンジン四塩化物 (DAB, Vector Laboratories) を使って検出した。最後に、断片をヘマトキシリンで対比染色した。蛍光染色では、Alexa-Fluor 546-複合型-抗マウス IgG 抗体 (Life Technologies, Eugene, OR) を加えて断片をインキュベートした。

[0107] Kodama M. et al., Anesthesiology, 2011 ; 115 : 979-991 に記載したように、製造元のプロトコルに従い、in situ のアポトーシス検出キット (ApopTag; Chemicon, Temecula, CA) を用いて、ターミナル・デオキシヌクレオチジル・トランスフェラーゼを用いたニックエンドラベリング (TUNEL) 法を実施した。活性を検出するために DAB を使用した。断片はヘマトキシリンで対比染色した。

[0108] 一つのグループにつき、実施例 1 及び比較例 1 と同じ条件で麻酔に暴露した 8 から 10 匹のマウスから採取したサンプルを、それぞれの試験に供した。活性カスパーゼ 3 陽性又は TUNEL 陽性の細胞の数のカウントは、処理条件を知らない試験者が実施した。

[0109] 活性カスパーゼ-3 (アポトーシス細胞死の別のバイオマーカー) に対する抗体を用いて組織学的分析を実施した (図 2)。カスパーゼ-3 の活性を調べるため、断片を免疫化学的に染色した。ウェスタンプロットによる分析で、上記で記載したように、酸素 30 % 及び水素 1. 3 % を含有するガスに曝露されたマウスのアポトーシスが、酸素 30 % を含有するガスに曝露した

マウスと同じレベルであったことが示されたことから、3つのグループに対してのみ、組織学的定量を実施した：(i)酸素30%を含有するガス（以降、コントロールと示す）、(ii)酸素30%及びセボフルラン3%を含有するガス（以降、セボフルランと示す）（比較例1）及び(iii)酸素30%、水素1.3%及びセボフルラン3%を含有するガス（以降、セボフルラン+水素と示す）（実施例1）。麻酔を6時間掛けた直後の脳のある領域を模擬コントロールとして比較した時、6時間のセボフルラン曝露（比較例1）によって、活性カスパーゼー3陽性の細胞数の著しい増加が誘発された（図2B）。一方で、セボフルランのみの曝露と比較して、セボフルラン+水素の曝露（実施例1）では、マウスの活性カスパーゼー3陽性の細胞の数は顕著に少なかった（図2及び図3）。図2及び図3から、セボフルランによって引き起こされる、発達期の脳における神経細胞アポトーシスを、水素ガスが緩和することが明らかである。我々はまた、TUNEL法を細胞レベルでのアポトーシス細胞死の測定法として実施した（図4）。麻酔6時間後のTUNEL染色のパターンは、活性カスパーゼー3の染色パターンと似ていた。これらの結果から、1.3%水素は新生仔のセボフルラン曝露によって引き起こされる神経細胞アポトーシスを著しく低下させることが示された。

[0110] ヒドロキシラジカルが脂質に作用すると、脂質過酸化物となって4-HNEを産生する。そのため、4-HNEは、脂質の過酸化及び酸化ストレスのマーカーとして広く利用されている。図5は、ニューロンをセボフルランに6時間曝露した時（図5B、比較例1）、模擬コントロール（図5A）と比較して、より多くの脂質過酸化が誘発されたことを示す。一方で、セボフルラン+水素に曝露したマウス（実施例1）の脳の4-HNEの染色は（図5C）、セボフルランのみを曝露した場合（図5B）と比較して著しく減少した。これらの結果から、新生仔マウスの3%セボフルラン曝露は脳内の酸化ストレスを誘発するが、水素が酸化ストレスを減少させることが確認された。

[0111] [試験例3]

行動試験：行動研究に供したマウスは全て、実施例1及び比較例1と同じ条件で麻酔に暴露した同齢・同腹仔のオスであった。3週齢のマウスを母親から離し、3又は4匹のマウスがいるケージに収容した。所定の年齢で、それらに行動試験（麻酔薬の影響を評価するため、長期記憶障害評価のコントロールとしてのオープンフィールド試験、短期記憶障害の評価のためのY字型迷路における自発的交替行動試験、長期記憶障害の評価のための恐怖条件付け試験、社会性試験を行った。社会性試験については、社会的相互作用試験の他、そのコントロールとして新規性試験及び嗅覚試験を行った。）を受けさせた。それぞれのマウスの動きを観察し、コンピュータ作動ビデオ追跡システム（SMART；バルセロナ、スペイン）を用いて解析した。試験では、アームを持った装置を使用し、マウスの足がアームに4本全て入った数をカウントした。装置はトライアル毎に掃除した。この研究で用いた装置は全て、0' Hara & Co., LTD（東京都、日本）製のものであった。同じマウスの集団を、全ての試験に供した。

[0112] オープンフィールド試験：新しい環境に対する情動反応を、Satoh Y. et al., J Neurosci, 2011 ; 31 : 11953-11967に記載した方法を用いて、オープンフィールド試験によって測定した。行動は10分間の総移動距離（メートル）で測定した。試験は12週齢のマウスに対して実施した。結果を図6Aに示す。

[0113] Y字型迷路における自発的交替行動試験：空間作業記憶を評価するため、Satoh Y. et al., J Neurosci, 2011 ; 31 : 11953-11967に記載した方法で、Y字型迷路試験を実施した。左右対称のアクリル製のY字型迷路は、120°Cで分かれている3つのアーム（25×5cm）からなり、高さ15cmの透明な壁で囲われていた。マウスをそれぞれ、Y字型迷路の中央に置き自由に8分間の探索をさせ、アームへ侵入した連続回数又は総回数を記録した。交替反応（alternation）の割合は、連続する3回の進入が3つの全アームへの進入であった時の回数を、交替反応の最大可能数（アームへの総進入回数から2を引いた値）で除した後、100を乗じた数である。試験は12週齢のマ

ウスに対して実施した。結果を図 6 B に示す。

[0114] 恐怖条件付け試験：恐怖条件付け試験を、Satomoto M. et al., *Anesthesiology* 2009;110:628-637に記載した方法で実施した。以下に方法を簡単に記載する。マウスを特殊なケージに入れ、20秒間80 dBの白色雑音を聞かせた。20秒目に1秒間1 mAのフットショック (foot shock) を与え、この刺激を1分サイクルで3回繰り返した。刺激した24時間後にフットショックを与えたマウスをケージに戻し、マウスがフリージング（1秒間の持続時間中に体のどの部分も動かさない状態）する時間を5分間計測した（恐怖条件付けテスト状況試験）。48時間後に全く違う場所の違う形状のケージにマウスを入れ、白色雑音のみを聞かせて、マウスがフリージングする時間を3分間計測した（恐怖条件付けテスト音試験）。フリージング反応は、ビデオ追跡システムで記録し、恐怖記憶の指標とした。試験は13週齢のマウスに対して実施した。この試験に供したマウスは、その後のいずれの試験にも使用しなかった（オープンフィールド試験及びY字型迷路における自発的交替行動試験に使用したのと同じマウスのグループを試験に供した）。条件付けをしてから24時間後に、条件付けを行ったチャンバーの中にマウスを入れて、フリージングを測定した（状況による恐怖反応）結果を図 6 C に示す。条件付けをしてから48時間後に、全く違う場所の違う形状のケージにマウスを入れ、白色雑音のみを聞かせて、フリージングを測定した結果を図 6 D に示す。

[0115] 社会性試験：社会性を確認するテストは、社会的相互作用試験、新規性試験、嗅覚試験の3つの試験を行った。

[0116] 社会的相互作用に対する能力を試験するために、Satoh Y. et al., *J Neurosci*, 2011 ; 31 : 11953-11967に記載した方法で、社交性試験を実施した。相互作用の標的として、生物ターゲット（ケージに入れられた成体マウス）と無生物ターゲット（ケージに入れられたダミーマウス）のどちらを優先的に選択するかについて、オープンフィールドチャンバーで試験を実施した。生物又は無生物のターゲットを円柱型のケージの中に置き、臭いを嗅ぐことはで

きるが最小限の接触しかできないようにした。円柱型のケージは、高さ 10 cm、直径は 9 cm であり、柵の間隔は 7 mm であった。直接ケージの臭いを嗅ぐ動作を、70 lux の照明条件下で 10 分間観察し点数化した。試験は 12 週齢のマウスに対して実施した（コントロール：n = 18；セボフルラン：n = 20；セボフルラン+水素：n = 19）。全ての生物ターゲットは野生型の雄性マウスを用いた。結果を図 7 A に示す。

[0117] 嗅覚試験：嗅覚試験を、Satoh Y. et al., J Neurosci, 2011; 31: 11953-11967 に記載した方法に、多少の変更を加えて実施した。以下に方法を簡単に記載する。マウスを、初日に新しい食べ物（ブルーベリーチーズ）の香りに慣れさせた。48 時間の摂食制限の後、埋められた食べ物を見つけ出すまでに要した時間を測定した：ブルーベリーチーズのかけらを、清潔なケージの中の敷藁の 2 cm 下に埋めた。試験は 12 週齢のマウスに対して実施した（社会性試験に使用したのと同じマウスのグループを試験に供した）。結果を図 7 B に示す。

[0118] 新規物試験：新規物試験を、Satoh Y. et al., J Neurosci, 2011; 31: 11953-11967 に記載した方法で実施した。マウスを個別に収容し、10 分間の間に無生物の新規物（小さな赤いチューブ）に関わっていた時間の合計を測定した。試験は 12 週齢のマウスに対して実施した（社会性試験及び嗅覚試験に使用したのと同じマウスのグループを試験に供した）。結果を図 7 C に示す。

[0119] 新しい環境に対する情動反応を評価するために実施したオープンフィールドテストにおける 10 分間の総移動距離については、グループ間に、統計学的な有意差は無かった（コントロール：n = 18；セボフルラン：n = 20；セボフルラン+水素：n = 19）（図 6 A）。よって、全身麻酔薬は情動反応に関して影響を与えないことが示された。

[0120] 作業記憶は、複雑な認知的作業を遂行するための、情報を一時的に保持する能力である (Saxe MD et al., Proc Natl Acad Sci USA 2006; 103:17501-17506, Jones MW, Curr Mol Med 2002; 2:639-647)。空間作業記憶を評価する

ために実施したY字型迷路試験において（図6B）、グループ間に統計学的な有意差は観察されなかった（オープンフィールドテストに使用したのと同じマウスのグループを試験に供した）。よって、全身麻酔薬は短期記憶に影響しないことが示された。

[0121] 新生仔のセボフルラン曝露により引き起こされる長期記憶損傷に及ぼす、水素の影響を評価するため、水素の同時投与あり（実施例1）又はなし（比較例1）のセボフルランに曝露したマウスに、成体となった段階で、恐怖条件付け試験を受けさせた（図6C及びD）。恐怖条件付け状況試験において（図6C）、セボフルランに曝露したマウス（比較例1）の、刺激を与えてから24時間後のフリージング（すくみ行動）は、コントロールの動物と比較して、状況学習において著しく低下し（一元配置分散分析、 $F = 7.22$ 、 $P = 0.0017$ ；コントロールとセボフルランの比較において、ニューマン-クルーズポストホックテスト、 $P < 0.01$ ）、新生仔のセボフルラン曝露が、成体における長期記憶に損傷を与えることが示された。それとは対照的に、セボフルラン+水素に曝露したマウスは（実施例1）、セボフルランのみを投与したマウス（比較例1）と比較して行動が改善し（セボフルランとセボフルラン+水素の比較は、ニューマン-クルーズポストホックテスト、 $P < 0.01$ ）、コントロールとほぼ同等のパフォーマンスを示した（コントロールとセボフルラン+水素の比較は、ニューマン-クルーズポストホックテスト、 $P < 0.05$ ）。また、恐怖条件付け音試験において（図6D）、コントロールと比較して、セボフルラン曝露のマウス（比較例1）は、条件付けしてから48時間後の音試験におけるフリージングも、著しく低下した（一元配置分散分析、 $F = 12.08$ 、 $P = 0.0001$ ；コントロールとセボフルランの比較において、ニューマン-クルーズポストホックテスト、 $P < 0.001$ ）。一方で、セボフルラン+水素に曝露したマウス（実施例1）は、セボフルランのみに曝露したマウス（比較例1）と比較してより優秀な行動を示し（セボフルランとセボフルラン+水素の比較において、ニューマン-クルーズポストホックテスト、 $P < 0.001$ ）、コントロール

とほぼ同等のパフォーマンスをした（コントロールとセボフルラン+水素の比較において、ニューマン-クルーズポストホックテスト、 $P < 0.05$ ）。

これらの結果から、新生仔の全身麻酔薬曝露によって引き起こされる記憶障害の種類は長期記憶障害であり、かかる記憶障害を、水素が予防及び／又は軽減することが示された。

[0122] マウスは社交性を持った生物種であり、社会的相互作用挙動を示す (Kammler A et al., Mol Neurobiol 2004;29:167-178)。我々はこれまでに、新生仔の時にセボフルランに曝露されたマウスが、成体になった時に社会的行動欠陥を示すことを報告した (Satomoto M. et al., Anesthesiology 2009;110:628-637)。今回、新生児のセボフルラン曝露によって引き起こされる社会的行動欠陥が、水素ガスによって抑制可能か否かを調査するため、マウスの社交性試験を実施した（図7）。

[0123] 生物又は無生物をターゲットとした相互作用試験において、全てのグループは、無生物に関わるよりも相当に多くの時間を、生物との交流に費やした（t検定、全て $P < 0.001$ ）。しかしながら、コントロールと比較し、新生仔の時にセボフルランに曝露したマウスは（比較例1）、生物ターゲットと交流する時間が減少した。水素を同時投与されたマウスは（実施例1）、コントロールとほぼ同等の行動をし、セボフルランによって引き起こされる社会的行動欠陥が水素をセボフルランと同時投与することより予防できることが示された（図7A）。一元配置分散分析によって、これらの結果が裏付けられた（ $F = 6.12$ 、 $P = 0.004$ 、ニューマン-クルーズポストホックテスト、コントロールとセボフルランの比較では $P < 0.01$ 、コントロールとセボフルラン+水素の比較では $P < 0.05$ ）。嗅覚試験（一元配置分散分析、 $F = 0.50$ 、 $P = 0.71$ 、図7B）及び新規物試験（一元配置分散分析、 $F = 0.04$ 、 $P = 0.96$ 、図7C）において、セボフルランのみの投与（比較例1）とセボフルラン+水素投与（実施例1）のグループ間で、顕著な違いを検出できなかったことから、上記の社会的相互作用

の違いが、嗅覚の損傷、又は新規物に対する興味の喪失に起因していたとは言えない。そのため、水素は新生仔のセボフルラン曝露によって引き起こされる社会的行動欠陥を抑制し得るといえる。

産業上の利用可能性

[0124] 本発明により、全身麻酔薬と水素とを組み合わせて使用することにより、脳（例えば、発達期）の麻酔誘発性神経障害を予防及び／又は軽減することができる医薬を提供することが可能となった。さらに、本発明は、簡便で、副作用がなく、効率に作用し、さらに安価であることから、例えば、産科及び小児科医療において有効な医薬を提供することができる。

請求の範囲

[請求項1] 全身麻酔薬と、水素を組み合わせてなる、ヒト又はヒト以外の動物用医薬。

[請求項2] 全身麻酔薬と、水素とを併用で投与されることを特徴とする、ヒト又はヒト以外の動物の全身麻酔のための医薬。

[請求項3] 麻酔薬誘発性神経障害を予防及び／又は軽減するために使用される請求項1又は2に記載の医薬。

[請求項4] 麻酔薬誘発性神経障害が、神経細胞アポトーシスに付随するものである請求項3に記載の医薬。

[請求項5] 全身麻酔薬が、水素と併用されるように用いられることを特徴とする、全身麻酔薬を含有する麻酔薬誘発性神経障害の予防及び／又は軽減用医薬。

[請求項6] 全身麻酔薬が吸入麻酔薬又は液状の静脈麻酔薬であり、水素が水素ガスである請求項1～5のいずれか1項に記載の医薬。

[請求項7] 水素ガス濃度が、医薬中0.15～7% (v/v) である請求項6に記載の医薬。

[請求項8] 胎児、新生児、乳児、幼児、小児又は高齢者を対象とする請求項1～7のいずれか1項に記載の医薬。

[請求項9] 全身麻酔薬が、亜酸化窒素、イソフルラン、エンフルラン、メトキシフルラン、セボフルラン、デスフルラン、ジエチルエーテル、プロポフォール及びミダゾラムからなる群より選ばれた1種以上の麻酔薬である請求項1～8のいずれか1項に記載の医薬。

[請求項10] 麻酔薬誘発性神経障害が、神経運動障害、神経認知障害、精神認知障害又は自閉症である請求項3、5～9のいずれか1項に記載の医薬。

[請求項11] 麻酔薬誘発性神経障害を予防及び／又は軽減するために、全身麻酔薬と水素とを併用する医薬の調製方法。

[請求項12] 麻酔薬誘発性神経障害が、神経細胞アポトーシスに付随するもので

あることを特徴とする請求項 1 1 に記載の調製方法。

[請求項13] 全身麻酔薬が吸入麻酔薬又は液状の静脈麻酔薬であり、水素が水素ガスである請求項 1 1 又は 1 2 に記載の調製方法。

[請求項14] 水素ガス濃度が、医薬中 0. 15 ~ 7 % (v/v) である請求項 1 3 に記載の調製方法。

[請求項15] 医薬が、胎児、新生児、乳児、幼児、小児又は高齢者を対象とする請求項 1 1 ~ 1 4 のいずれか 1 項に記載の調製方法。

[請求項16] 水素と組み合わせて用いられる全身麻酔剤製造のための全身麻酔薬の使用。

[請求項17] 全身麻酔薬と水素とを組み合わせてなる医薬の製造のための全身麻酔薬と水素の使用。

[請求項18] 麻酔薬誘発性神経障害を予防及び/又は軽減するための医薬の製造のための全身麻酔薬と水素の使用。

[請求項19] 麻酔薬誘発性神経障害が、神経細胞アポトーシスに付随するものである請求項 1 8 に記載の使用。

[請求項20] 全身麻酔薬が吸入麻酔薬又は液状の静脈麻酔薬であり、水素が水素ガスである請求項 1 6 ~ 1 8 のいずれか 1 項に記載の使用。

[請求項21] 水素ガス濃度が、医薬中 0. 15 ~ 7 % (v/v) である請求項 2 0 に記載の使用。

[請求項22] 胎児、新生児、乳児、幼児、小児又は高齢者を対象とする請求項 1 6 ~ 1 8 のいずれか 1 項に記載の使用。

[請求項23] 全身麻酔薬が、亜酸化窒素、イソフルラン、エンフルラン、メトキシフルラン、セボフルラン、デスフルラン、ジエチルエーテル、プロポフォール及びミダゾラムからなる群より選ばれた 1 種以上の麻酔薬である請求項 1 6 ~ 1 8 のいずれか 1 項に記載の使用。

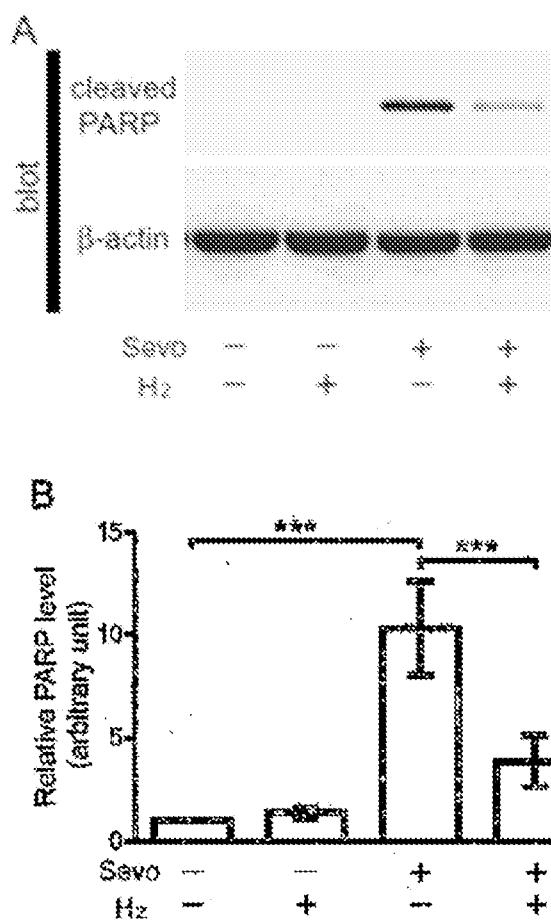
[請求項24] 麻酔薬誘発性神経障害が、神経運動障害、神経認知障害、精神認知障害又は自閉症である請求項 1 8 に記載の使用。

[請求項25] 全身麻酔薬と水素とを併用して対象に投与する工程を有する、麻酔

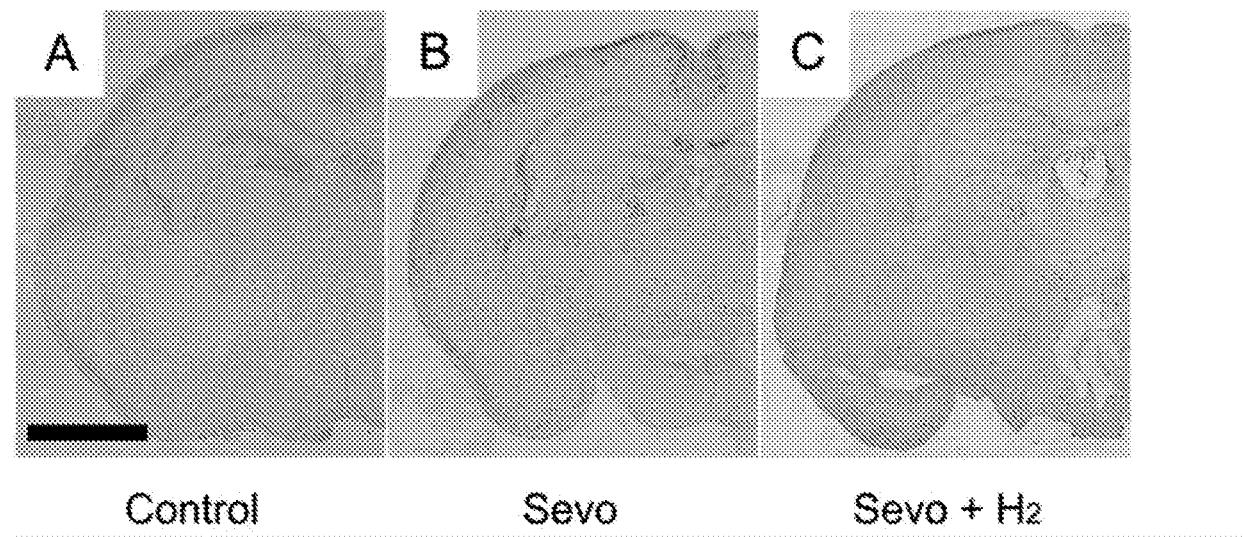
薬誘発性神経障害を予防及び／又は軽減する方法。

[請求項26] 全身麻酔薬が吸入麻酔薬又は液状の静脈麻酔薬であり、水素が水素ガスである請求項25に記載の方法。

[請求項27] 水素ガス濃度が、医薬中0.15～7% (v/v) である請求項26に記載の方法。


[請求項28] 投与対象が、胎児、新生児、乳児、幼児、小児又は高齢者である請求項25に記載の方法。

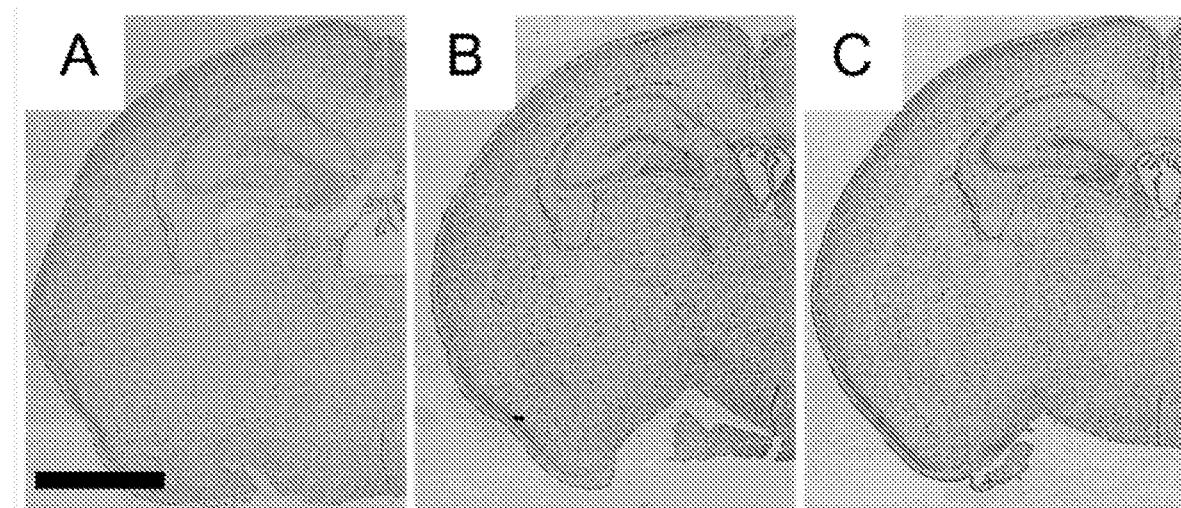
[請求項29] 全身麻酔薬が、亜酸化窒素、イソフルラン、エンフルラン、メトキシフルラン、セボフルラン、デスフルラン、ジエチルエーテル、プロポフォール及びミダゾラムからなる群より選ばれた1種以上の麻酔薬である請求項25に記載の方法。


[請求項30] 麻酔薬誘発性神経障害が、神経運動障害、神経認知障害、精神認知障害又は自閉症である請求項25に記載の方法。

[請求項31] 麻酔薬誘発性神経障害が、神経細胞アポトーシスに付随するものである請求項25に記載の方法。

[図1]

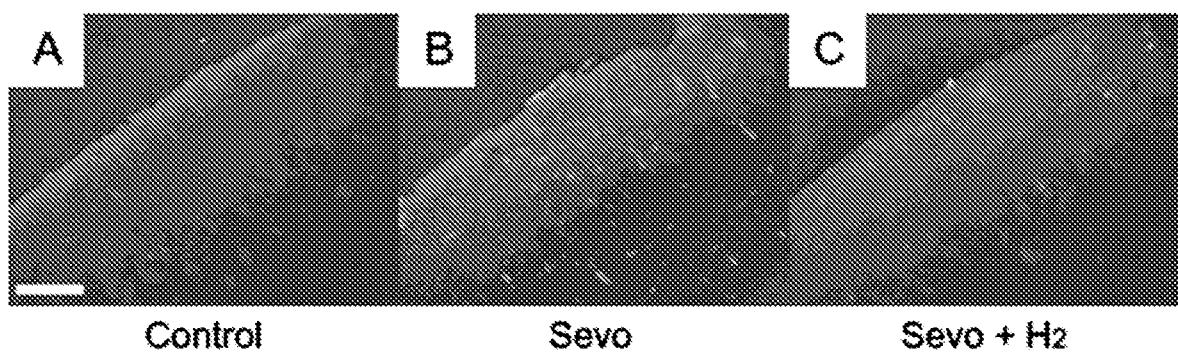
[図2]



[図3]

	Sevo	H2
—	—	—
+	—	—
+	+	+

[図4]

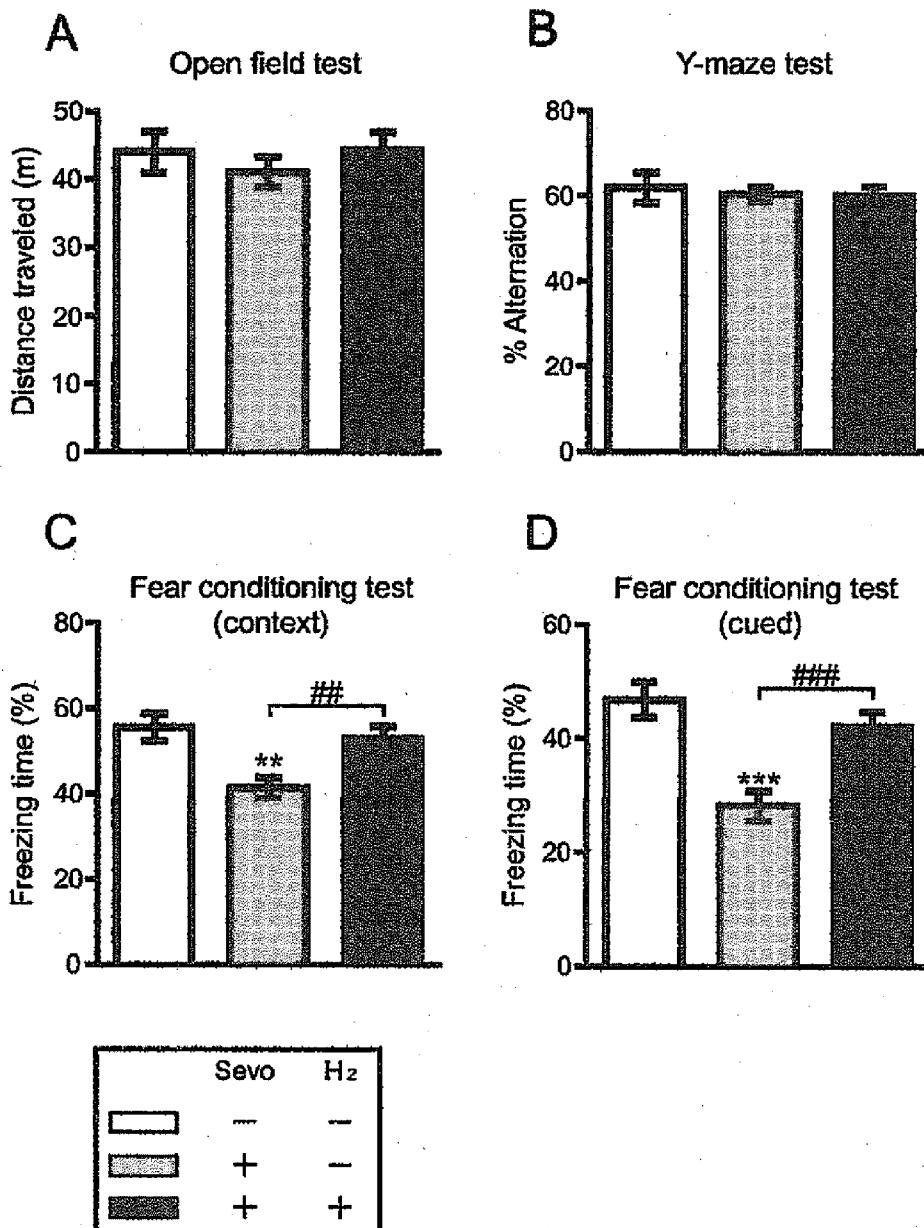


Control

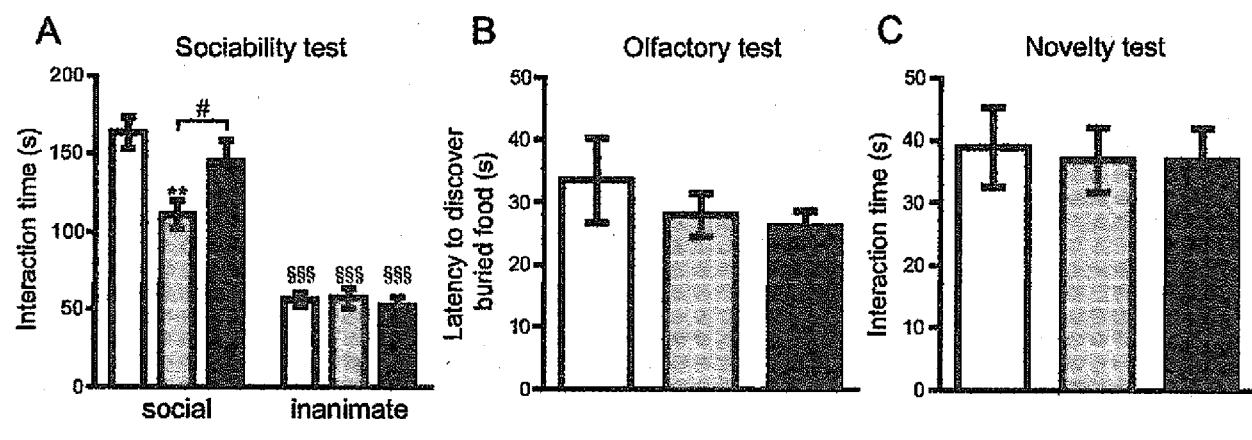
Sevo

Sevo + H₂

[図5]



Control


Sevo

Sevo + H₂

[図6]

[図7]

Sevo	H ₂
—	—
+	—
+	+

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2013/065094

A. CLASSIFICATION OF SUBJECT MATTER

A61K33/00 (2006.01) i, A61K31/05 (2006.01) i, A61K31/08 (2006.01) i,
 A61K31/5517 (2006.01) i, A61K45/00 (2006.01) i, A61P23/00 (2006.01) i,
 A61P25/00 (2006.01) i, A61P25/18 (2006.01) i, A61P25/28 (2006.01) i,
 According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

A61K33/00, A61K31/05, A61K31/08, A61K31/5517, A61K45/00, A61P23/00,
 A61P25/00, A61P25/18, A61P25/28, A61P43/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Jitsuyo Shinan Koho	1922-1996	Jitsuyo Shinan Toroku Koho	1996-2013
Kokai Jitsuyo Shinan Koho	1971-2013	Toroku Jitsuyo Shinan Koho	1994-2013

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

Cplus/REGISTRY/MEDLINE/EMBASE/BIOSIS (STN),
 JSTPlus/JMEDPlus/JST7580 (JDreamIII)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
P,X	YONAMINE, R. et al, Coadministration of hydrogen gas as part of the carrier gas mixture suppresses neuronal apoptosis and subsequent behavioral deficits caused by neonatal exposure to sevoflurane in mice, <i>Anesthesiology</i> , 2013 Jan, Vol.118, No.1, p.105-13, entire text, particularly, Abstract	1-24
P,X	XIANG, L. et al, Inhalation of hydrogen gas reduces liver injury during major hepatectomy in swine, <i>World J Gastroenterol</i> , 2012 Oct, Vol. 18, No.37, p.5197-204, entire text, particularly, Abstract	1,2,6-9,16, 17,20-23
P,A		3-5,10-15, 18,19,24

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:

"A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 "&" document member of the same patent family

Date of the actual completion of the international search
 08 July, 2013 (08.07.13)

Date of mailing of the international search report
 16 July, 2013 (16.07.13)

Name and mailing address of the ISA/
 Japanese Patent Office

Authorized officer

Facsimile No.

Telephone No.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2013/065094

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	KOBAYASHI, H. et al, Effects of hydrogen gas in a mouse cold induced brain injury model, Journal of Neurotrauma, 2011, Vol.28, No.5, p. A64, entire text	1,2,6-9,16, 17,20-23
A		3-5,10-15, 18,19,24
X	Naoko KURITA et al., "Teinodo Sevoflurane o Mochiita 3 Saiji no Nanjisei Tenkan ni Taisuru Tenkan Shoten Setsujojutsu no Masui Keiken", Clinical Pediatric Anesthesia: Official Journal of the Japanese Society of Pediatric Anesthesiology, 2003, vol.9, no.1, page 87, entire text	1,2,6,8,9, 16,17,20,22, 23
A		3-5,7,10-15, 18,19,21,24
X	Noriko TODA et al., "Kyodai Kojukaku Shinkeiga Saiboshu ni Taishite Katagawa Tsuikyu Setsujojutsu o Okonatta Nyuji 2 Shorei no Masui Keiken", The Japanese Journal of Anesthesiology, 2007, vol.56, no.2, pages 158 to 162, entire text, particularly, abstract	1,2,6,8,9, 16,17,20,22, 23
A		3-5,7,10-15, 18,19,21,24
A	Kagaku Daijiten 3, reduced-size edition (34th print), 1993, page 11, column of 'Air'	1-24
X	Shuji DOHI, "PGI2 Yudotai (OP-41483) no No Sekizui Ketsuryuryo to No Sekizui Ekiatsu ni Oyobosu Eikyo", The Japanese Journal of Anesthesiology, 1987, vol.36, no.11, pages 1790 to 1795, entire text, particularly, abstract	1,2,6,8,9, 16,17,20,22, 23
A		3-5,7,10-15, 18,19,21,24
Y	JEVTOVIC-TODOROVIC, V. et al, Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits, J Neurosci, 2003, Vol.23, No.3, p.876-82, entire text, particularly, Abstract	1-24
Y	HUANG, Y. et al, Beneficial effects of hydrogen gas against spinal cord ischemia-reperfusion injury in rabbits, Brain Res, 2011, Vol.1378, p.125-36, entire text, particularly, Abstract	1-24
Y	ZHAN, Y. et al, Hydrogen gas ameliorates oxidative stress in early brain injury after subarachnoid hemorrhage in rats, Crit Care Med, 2012 Apr, Vol.40, No.4, p.1291-6, entire text, particularly, Abstract	1-24

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2013/065094

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	LIU, Y. et al, Hydrogen saline offers neuroprotection by reducing oxidative stress in a focal cerebral ischemia-reperfusion rat model, <i>Medical Gas Research</i> , 2011, URL: < http://www.medicalgasresearch.com/content/pdf/2045-9912-1-15.pdf >	1-24

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2013/065094

Continuation of A. CLASSIFICATION OF SUBJECT MATTER
(International Patent Classification (IPC))

A61P43/00 (2006.01)i

(According to International Patent Classification (IPC) or to both national classification and IPC)

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2013/065094

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: 25–31
because they relate to subject matter not required to be searched by this Authority, namely:
Claims 25 to 31 pertain to methods for treatment of the human body by surgery or therapy.
2. Claims Nos.:
because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3. Claims Nos.:
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of additional fees.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

- The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee.
- The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation.
- No protest accompanied the payment of additional search fees.

A. 発明の属する分野の分類（国際特許分類（IPC））

Int.Cl. A61K33/00(2006.01)i, A61K31/05(2006.01)i, A61K31/08(2006.01)i, A61K31/5517(2006.01)i, A61K45/00(2006.01)i, A61P23/00(2006.01)i, A61P25/00(2006.01)i, A61P25/18(2006.01)i, A61P25/28(2006.01)i, A61P43/00(2006.01)i

B. 調査を行った分野

調査を行った最小限資料（国際特許分類（IPC））

Int.Cl. A61K33/00, A61K31/05, A61K31/08, A61K31/5517, A61K45/00, A61P23/00, A61P25/00, A61P25/18, A61P25/28, A61P43/00

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報	1922-1996年
日本国公開実用新案公報	1971-2013年
日本国実用新案登録公報	1996-2013年
日本国登録実用新案公報	1994-2013年

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）

CAplus/REGISTRY/MEDLINE/EMBASE/BIOSIS(STN), JSTPlus/JMEDPlus/JST7580(JDreamIII)

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求項の番号
P X	YONAMINE, R. et al, Coadministration of hydrogen gas as part of the carrier gas mixture suppresses neuronal apoptosis and subsequent behavioral deficits caused by neonatal exposure to sevoflurane in mice, Anesthesiology, 2013 Jan, Vol. 118, No. 1, p. 105-13, 全文, 特に Abstract	1-24

C欄の続きにも文献が列挙されている。

パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

「A」特に関連のある文献ではなく、一般的技術水準を示すもの
 「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの
 「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献（理由を付す）
 「O」口頭による開示、使用、展示等に言及する文献
 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの
 「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの
 「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの
 「&」同一パテントファミリー文献

国際調査を完了した日 08.07.2013	国際調査報告の発送日 16.07.2013
国際調査機関の名称及びあて先 日本国特許庁（ISA/JP） 郵便番号100-8915 東京都千代田区霞が関三丁目4番3号	特許庁審査官（権限のある職員） 4C 2938 小堀 麻子 電話番号 03-3581-1101 内線 3452

C (続き) . 関連すると認められる文献		
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求項の番号
P X	XIANG, L. et al, Inhalation of hydrogen gas reduces liver injury during major hepatectomy in swine, World J Gastroenterol, 2012 Oct, Vol. 18, No. 37, p. 5197-204, 全文, 特に Abstract	1, 2, 6-9, 16, 17, 20-23
P A		3-5, 10-15, 18, 19, 24
X	KOBAYASHI, H. et al, Effects of hydrogen gas in a mouse cold induced brain injury model, Journal of Neurotrauma, 2011, Vol. 28, No. 5, p. A64, 全文	1, 2, 6-9, 16, 17, 20-23
A		3-5, 10-15, 18, 19, 24
X	栗田直子他, 低濃度セボフルランを用いた3歳児の難治性てんかんに対するてんかん焦点切除術の麻酔経験, 日本小児麻酔学会誌, 2003, Vol. 9, No. 1, p. 87, 全文	1, 2, 6, 8, 9, 16, 17, 20, 22, 23
A		3-5, 7, 10-15, 18, 19, 21, 24
X	戸田法子他, 巨大後縫隔神経芽細胞腫に対して片側椎弓切除術を行った乳児2症例の麻酔経験, 麻酔, 2007, Vol. 56, No. 2, p. 158-162, 全文, 特に Abstract	1, 2, 6, 8, 9, 16, 17, 20, 22, 23
A		3-5, 7, 10-15, 18, 19, 21, 24
A	化学大辞典3 縮刷版(第34刷), 1993, p. 11, 「空気」の項	1-24
X	土肥修司, PGI2誘導体(OP-41483)の脳・脊髄血流量と脳脊髄液圧に及ぼす影響, 麻酔, 1987, Vol. 36, No. 11, p. 1790-1795, 全文, 特に Abstract	1, 2, 6, 8, 9, 16, 17, 20, 22, 23
A		3-5, 7, 10-15, 18, 19, 21, 24
Y	JEVTOVIC-TODOROVIC, V. et al, Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits, J Neurosci, 2003, Vol. 23, No. 3, p. 876-82, 全文, 特に Abstract	1-24
Y	HUANG, Y. et al, Beneficial effects of hydrogen gas against spinal cord ischemia-reperfusion injury in rabbits, Brain Res, 2011, Vol. 1378, p. 125-36, 全文, 特に Abstract	1-24
Y	ZHAN, Y. et al, Hydrogen gas ameliorates oxidative stress in early brain injury after subarachnoid hemorrhage in rats, Crit Care Med, 2012 Apr, Vol. 40, No. 4, p. 1291-6, 全文, 特に Abstract	1-24

C (続き) . 関連すると認められる文献		
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求項の番号
Y	LIU, Y. et al, Hydrogen saline offers neuroprotection by reducing oxidative stress in a focal cerebral ischemia-reperfusion rat model, Medical Gas Research, 2011, URL: < http://www.medicalgasresearch.com/content/pdf/2045-9912-1-15.pdf >	1-24

第II欄 請求の範囲の一部の調査ができないときの意見（第1ページの2の続き）

法第8条第3項（PCT17条(2)(a)）の規定により、この国際調査報告は次の理由により請求の範囲の一部について作成しなかった。

1. 請求項 25-31 は、この国際調査機関が調査をすることを要しない対象に係るものである。
つまり、
請求項25-31は手術又は治療による人体の処置方法に関するものである。

2. 請求項 _____ は、有意義な国際調査をすることができる程度まで所定の要件を満たしていない国際出願の部分に係るものである。つまり、

3. 請求項 _____ は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に従って記載されていない。

第III欄 発明の単一性が欠如しているときの意見（第1ページの3の続き）

次に述べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。

1. 出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求項について作成した。
2. 追加調査手数料を要求するまでもなく、すべての調査可能な請求項について調査することができたので、追加調査手数料の納付を求めなかった。
3. 出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納付のあった次の請求項のみについて作成した。
4. 出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載されている発明に係る次の請求項について作成した。

追加調査手数料の異議の申立てに関する注意

- 追加調査手数料及び、該当する場合には、異議申立て手数料の納付と共に、出願人から異議申立てがあった。
- 追加調査手数料の納付と共に出願人から異議申立てがあったが、異議申立て手数料が納付命令書に示した期間内に支払われなかった。
- 追加調査手数料の納付はあったが、異議申立てはなかった。

(19)

Europäisches
Patentamt
European
Patent Office
Office européen
des brevets

(11)

EP 2 857 026 A1

(12)

EUROPEAN PATENT APPLICATION
published in accordance with Art. 153(4) EPC

(43) Date of publication:

08.04.2015 Bulletin 2015/15

(51) Int Cl.:

A61K 33/00 (2006.01) **A61K 31/05** (2006.01)
A61K 31/08 (2006.01) **A61K 31/5517** (2006.01)
A61K 45/00 (2006.01) **A61P 23/00** (2006.01)
A61P 25/00 (2006.01) **A61P 25/18** (2006.01)
A61P 25/28 (2006.01) **A61P 43/00** (2006.01)

(21) Application number: 13796554.7

(22) Date of filing: 30.05.2013

(86) International application number:

PCT/JP2013/065094

(87) International publication number:

WO 2013/180240 (05.12.2013 Gazette 2013/49)

(84) Designated Contracting States:

**AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO
PL PT RO RS SE SI SK SM TR**

Designated Extension States:

BA ME

- SATOH, Yasushi**

Tokorozawa-shi
Saitama 359-0042 (JP)

- YONAMINE, Ryuji**

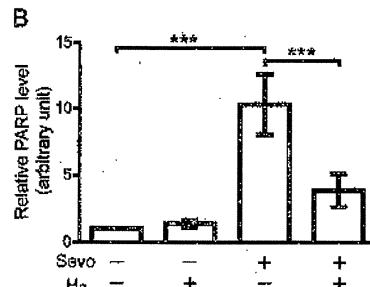
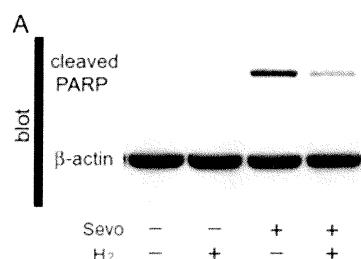
Tokorozawa-shi
Saitama 359-0042 (JP)

(30) Priority: 31.05.2012 JP 2012125535

(74) Representative: **Witte, Weller & Partner**(71) Applicant: **Maruishi Pharmaceutical Co., Ltd.**
Osaka 538-0042 (JP)

Patentanwälte mbB

Königstrasse 5
70173 Stuttgart (DE)



(72) Inventors:

- KAZAMA, Tomiei**
Tokorozawa-shi
Saitama 359-1132 (JP)

(54) **MEDICINE COMPRISING COMBINATION OF GENERAL ANESTHETIC DRUG AND HYDROGEN**

(57) An object of the present invention is to provide a medicine for general anesthesia which can prevent and/or alleviate an anesthetic-induced neurological deficit in the brain (preferably in the developing brain). The present invention relates to a medicine which comprises a combination of a general anesthetic and hydrogen and can prevent and/or alleviate an anesthetic-induced neurological deficit in the brain (preferably in the developing brain).

{Fig1}

Description**TECHNICAL FIELD**

[0001] The present invention relates to a medicine comprising a combination of a general anesthetic and hydrogen.

BACKGROUND ART

[0002] There is a concern that neonatal neurological insults cause persistent effects over a long period of time (Non Patent Literature 1, Non Patent Literature 2 and Non Patent Literature 3). For this reason, caution is required for neonatal use of drugs which could potentially alter normal neurodevelopment (for example, substances causing apoptotic neurodegeneration, such as alcohols, phencyclidine, ketamine, N₂O, isoflurane, benzodiazepine, barbiturate and anticonvulsants (Non Patent Literature 4)). Even a single exposure to such drugs is sufficient to induce neurological deficits in neonates, and thus administration of anesthetics also needs attention (Non Patent Literature 5 and Non Patent Literature 6).

[0003] Normal neurodevelopment is a carefully regulated sequence of events including proliferation, differentiation, migration and synaptogenesis (Non Patent Literature 7). Glutamate is thought to have a role in all of these processes (Non Patent Literature 8), and for example, high concentrations of glutamate at migration target zones suggest a role as a neuronal chemoattractant (Non Patent Literature 10) along with the NMDA receptor used to detect it (Non Patent Literature 9). The finding of specific NMDA receptor subtypes (e.g. NR2B and NR2D) in different anatomical regions can be helpful for elucidating the precise nature of migration control (Non Patent Literature 10). From work by the same group, it is also apparent that different species employ different mediators in migration control, either GABA (study on rats) or glutamate (study on mice) (Non Patent Literature 11).

[0004] Synaptogenesis (brain growth spurt) is a period of a rapid establishment of synapses and is characterized by a high level of programmed cell death (PCD) (up to 1% (Non Patent Literature 12)). This includes the formation of extensive corticothalamic and thalamocortical projections (Non Patent Literature 13). Despite the immense complexity of interspecies embryology, it has been shown that comparisons can be made because the stages in neurodevelopment tend to occur in the same sequence (Non Patent Literature 14). This permits an extrapolation of the period of peak synaptogenic activity from a 7-day-old rat pup (Non Patent Literature 15) to a 0 to 8-month-old human being (Non Patent Literature 16). However, based on analysis of NMDA receptor subtypes, it is more probable that humans experience an extended period of synaptogenesis, i.e. from the beginning of late pregnancy (8 to 10 months of pregnancy) to several years old (Non Patent Literature 17).

[0005] Apoptosis, first formally described in 1972 (Non

Patent Literature 18), is an essential feature of normal neurodevelopment in processes such as sculpturing, trimming, control of cell numbers and cellular disposal. Apoptosis is characterized as "active cell death" comprising initiation, commitment and execution by dedicated cellular proteins (Non Patent Literature 19).

[0006] Programmed cell death (PCD) in the immature central nervous system (CNS) is thought to be controlled by target-derived neurotrophic factors (neurotrophic hypothesis). According to the hypothesis, neurons which have failed to reach their survival promoting synaptic targets (Non Patent Literature 20) initiate, via both neurotrophins and electrical stimulation, a specialized form of cell suicide secondary to withdrawal of environmental trophic support (Non Patent Literature 21 and Non Patent Literature 22). Due to the complex divergent and convergent nature of the "survival pathway," many ligands and mechanisms are involved in maintaining neuronal survival. The cytosol and mitochondria of neurons field a balanced assortment of anti-apoptotic factors (e.g. Bcl-2 and cAMP response element binding protein) and pro-apoptotic factors (e.g. Bad, Bax and the caspase family) which determine cell fate. Bcl-2 and its associated peptides are thought to be particularly important in the developing CNS (Non Patent Literature 23), as evidenced by the high levels of expression in neonates and the fact that experimental over-expression of Bcl-2 can override lack of trophic support (Non Patent Literature 24) and even prevent PCD altogether (Non Patent Literature 25).

[0007] A variant of Bcl-2 (Bcl-X_L) may have a specialized role in maintaining developing neurons before they have found their synaptic targets (Non Patent Literature 26).

[0008] In 1999, data were published showing that use of NMDA receptor antagonists in neonatal rats produced specific patterns of neurodegeneration, which were distinct from glial cells (Non Patent Literature 27). On electron microscopy, this neurodegeneration was identical to apoptotic cell death, and most evident in the laterodorsal thalamic nucleus, which is one of the areas of the brain implicated in learning and memory (Non Patent Literature 28). This phenomenon has since been demonstrated in other brain regions with other drugs (Non Patent Literature 29).

[0009] Later work showed that neonatal rats are vulnerable to harmful side effects of anesthetics during the synaptogenic period. The neonatal rats demonstrated up to a 68-fold increase in the number of degenerated neurons above the baseline in areas such as the laterodorsal and anteroventral thalamic nuclei, and the parietal cortex after exposure to anesthetics (Non Patent Literature 30). This increase resulted in a functional neurological deficit in behavioral tests later in life. Specifically, the GABAergic anesthetic isoflurane (Non Patent Literature 31) produced dose-dependent neurodegeneration in its own right, and also produced synergistic neurodegeneration by successive addition of midazolam (a double GABAergic cocktail) and then N₂O (a triple cocktail) (Non Patent Literature 30). This process has been shown to occur

with exposure to GABAergic agents in areas other than anesthesia, such as anticonvulsant therapy and maternal drug abuse in rats (Non Patent Literature 32 and Non Patent Literature 33).

[0009] Since the stages in neurodevelopment occur in the same sequence regardless of the species as described above, despite the interspecies complexity, the effects of anesthetic administration in neonatal rats can be extrapolated to humans to some extent, and human clinical studies have reported many findings on neurotoxicity induced by anesthetic administration in developing brains (Non Patent Literature 34). However, the mechanism of the neurotoxicity induced by anesthetic administration in developing brains involves a number of intricately interrelated factors and is largely unknown. Later work has suggested several neurotoxic mechanisms of anesthetics: (1) increase in apoptosis, (2) effects on GABA neurons, (3) effects on the critical period in cerebral cortex development, etc., and there is also a report that the effects on GABA neurons caused neurological deficits (Non Patent Literature 35). In earlier studies on the neurotoxic mechanism of anesthetics, interest has been focused on apoptosis because of its simple research methodology.

[0010] The most important molecule in the intracellular signaling pathway leading to apoptosis is a protease called caspase (Cysteine-Aspartic-acid-proteASE). Activation of caspase-3 initiates apoptosis. Apoptotic signaling pathways are mainly the following ones.

- (1) death receptor pathway (tumor necrosis factor receptor (TNFR1) and Fas/CD95 are well known)
- (2) mitochondrial pathway (cytochrome c, which is a component of the respiratory electron transport system, plays an important role in the execution of apoptosis as well)
- (3) endoplasmic reticulum stress pathway (an apoptotic signal is initiated by events such as production of abnormal proteins in endoplasmic reticulum)
- (4) pathway via direct activation of effectors (stressors directly activate effectors without mediation of initiators)

[0011] In the death receptor pathway, activation of caspase-8 and caspase-10 occurs. In the mitochondrial pathway, cytochrome c released from mitochondria activates caspase-9. In the endoplasmic reticulum stress pathway, activation of caspase-12 occurs. These initiator caspases activate downstream effector caspases (caspase-3, caspase-6 and caspase-7). In the pathway via direct activation of effectors, direct activation of effector caspases (caspase-3, caspase-6 and caspase-7) occur without mediation of initiator caspases. These caspases cleave poly(ADP ribose) polymerase (PARP) as a substrate, thereby executing apoptosis (Non Patent Literature 36 and Non Patent Literature 37).

[0012] The apoptosis possibly induced by anesthetics is thought to have a different mechanism of action from

that of ordinary apoptosis, and neither the fundamental mechanism nor effective treatments have been established yet. Therefore, there has been a desire for the development of novel treatments which alleviate anesthetic-induced apoptosis in developing brains and subsequent cognitive dysfunction.

CITATION LIST

10 Non Patent Literature

[0013]

- Non Patent Literature 1: Anand and Scalzo, 2000, Biol. Neonate 77(2): 69-82
- Non Patent Literature 2: Balduini et al., 2000, Brain Research 859: 318-325
- Non Patent Literature 3: Jevtovic-Todorovic et al., 2003, The Journal of Neuroscience 23(3): 876-882
- Non Patent Literature 4: Olney et al., 2002d, Brain Pathol 12(4): 488-498
- Non Patent Literature 5: Ikonomidou et al., 2001, Biochemical Pharmacology 62: 401-405
- Non Patent Literature 6: Young et al., Cell Death and Differentiation (2003) 10, 1148-1155
- Non Patent Literature 7: Butler, 1999, TINS 22(8): 332-334
- Non Patent Literature 8: Ikonomidou and Lechoslaw, 2002, Lancet Neurology 1: 383-386
- Non Patent Literature 9: Komuro and Rakie, 1993, Science 260(5104): 95-97
- Non Patent Literature 10: Behar et al., 1999, The Journal of Neuroscience 19(11): 4449-4461
- Non Patent Literature 11: Behar et al., 2001, Cerebral Cortex 11: 744-753
- Non Patent Literature 12: Olney et al., 2002b, Neurobiology of Disease 9: 205-219
- Non Patent Literature 13: Molar and Blakemore, 1995, Trends Neurosci. 18(9): 389-397
- Non Patent Literature 14: Clancy et al., 2001, Neuroscience 105: 7-17
- Non Patent Literature 15: Olney et al., 2002a, Neurotoxicology 23(6): 659-668
- Non Patent Literature 16: Ikonomidou et al., 1999, Science 238: 70-74
- Non Patent Literature 17: Dobbing and Sands, 1979, Early Hum Dev 3: 79-84
- Non Patent Literature 18: Kerr et al., 1972, Br J Cancer 26(4): 239-257
- Non Patent Literature 19: Sloviter, 2002, TRENDS in Pharmacological Science 23(1): 19-24
- Non Patent Literature 20: Sherrard and Bower, 1998, Clin Exp Pharmacol Physiol 25(7-8): 487-495
- Non Patent Literature 21: Young et al., 1999, Nature Med 5: 448-453
- Non Patent Literature 22: Brenneman et al., 1990, Brain Res Dev Brain Res 51(1): 63-68
- Non Patent Literature 23: Yuan and Yankner, 2000,

Nature 407: 802-809
 Non Patent Literature 24: Garcia et al., 1992, Science 258(5080): 302-304
 Non Patent Literature 25: Martinou et al., 1994, Neuron 13(4): 1017-1030
 Non Patent Literature 26: Motoyama et al., 1995, Science 267: 1506-1510
 Non Patent Literature 27: Ikonomidou et al., 1999, Science 238: 70-74
 Non Patent Literature 28: Goen et al., 2002, Behavioral Brain Research 136: 329-337
 Non Patent Literature 29: Monti and Contestabile, 2000, European Journal of Neuroscience 12: 3117-3123
 Non Patent Literature 30: V. Jevtovic-Todorovic et al., 2003 Journal of Neuroscience 23: 876-882
 Non Patent Literature 31: Gyulai et al., 2001, Anesthesiology 95: 585-593
 Non Patent Literature 32: Bittigau et al., 2002, PNAS 99(23): 15089-15094
 Non Patent Literature 33: Farber and Olney, 2003, Developmental Brain Research 147: 37-45
 Non Patent Literature 34: Wilder RT et al., Anesthesiology 100: 796-804, 2009
 Non Patent Literature 35: Anesthesiology 2009; 111: 1365-1371
 Non Patent Literature 36: Salveen GS, Riedl SJ, 2008 Adv Exp Med Biol. 615: 13-23
 Non Patent Literature 37: LA. Pradelli, M. Beneteau, JE. Ricci, 2010 Cell. Mol. Life Sci. 67: 1589-1597

SUMMARY OF INVENTION

TECHNICAL PROBLEM

[0014] An object of the present invention is to provide a medicine for general anesthesia which can prevent and/or alleviate an anesthetic-induced neurological deficit in the brain (preferably in the developing brain).

SOLUTION TO PROBLEM

[0015] The present inventors conducted extensive research to achieve the above-mentioned object, and as a result, found that a combination of a general anesthetic and hydrogen enables prevention and/or alleviation of an anesthetic-induced neurological deficit in the brain (preferably in the developing brain).

[0016] That is, the present invention relates to the following.

[1] A medicine for a human or a non-human animal, comprising a combination of a general anesthetic and hydrogen.
 [2] A medicine for general anesthesia of a human or a non-human animal, characterized in that a general anesthetic and hydrogen are administered in combination.

[3] The medicine according to the above [1] or [2], wherein the medicine is used for prevention and/or alleviation of an anesthetic-induced neurological deficit.
 [4] The medicine according to the above [3], wherein the anesthetic-induced neurological deficit is associated with neuronal apoptosis.
 [5] A medicine for prevention and/or alleviation of an anesthetic-induced neurological deficit, comprising a general anesthetic, the general anesthetic being used in combination with hydrogen.
 [6] The medicine according to any one of the above [1] to [5], wherein the general anesthetic is an inhalational anesthetic or a liquid intravenous anesthetic and the hydrogen is hydrogen gas.
 [7] The medicine according to the above [6], wherein the concentration of the hydrogen gas in the medicine is 0.15 to 7% (v/v).
 [8] The medicine according to any one of the above [1] to [7], wherein the medicine is for a fetus, a neonate, an infant, a preschool child, a child or an elderly adult.
 [9] The medicine according to any one of the above [1] to [8], wherein the general anesthetic is one or more kinds of anesthetics selected from the group consisting of nitrous oxide, isoflurane, enflurane, methoxyflurane, sevoflurane, desflurane, diethyl ether, propofol and midazolam.
 [10] The medicine according to any one of the above [3] and [5] to [9], wherein the anesthetic-induced neurological deficit is a neuromotor deficit, a neurocognitive deficit, a psychocognitive deficit or autism.
 [11] A method for preparing a medicine for prevention and/or alleviation of an anesthetic-induced neurological deficit, the method using a general anesthetic in combination with hydrogen.
 [12] The method according to the above [11], wherein the anesthetic-induced neurological deficit is associated with neuronal apoptosis.
 [13] The method according to the above [11] or [12], wherein the general anesthetic is an inhalational anesthetic or a liquid intravenous anesthetic and the hydrogen is hydrogen gas.
 [14] The method according to the above [13], wherein the concentration of the hydrogen gas in the medicine is 0.15 to 7% (v/v).
 [15] The method according to any one of the above [11] to [14], wherein the medicine is for a fetus, a neonate, an infant, a preschool child, a child or an elderly adult.
 [16] Use of a general anesthetic for production of a medicine for general anesthesia used in combination with hydrogen.
 [17] Use of a general anesthetic and hydrogen for production of a medicine comprising a combination of a general anesthetic and hydrogen.
 [18] Use of a general anesthetic and hydrogen for production of a medicine for prevention and/or alle-

vation of an anesthetic-induced neurological deficit. [19] The use according to the above [18], wherein the anesthetic-induced neurological deficit is associated with neuronal apoptosis.

[20] The use according to any one of the above [16] to [18], wherein the general anesthetic is an inhalational anesthetic or a liquid intravenous anesthetic and the hydrogen is hydrogen gas.

[21] The use according to the above [20], wherein the concentration of the hydrogen gas in the medicine is 0.15 to 7% (v/v).

[22] The use according to any one of the above [16] to [18], wherein the use is for a fetus, a neonate, an infant, a preschool child, a child or an elderly adult.

[23] The use according to any one of the above [16] to [18], wherein the general anesthetic is one or more kinds of anesthetics selected from the group consisting of nitrous oxide, isoflurane, enflurane, methoxyflurane, sevoflurane, desflurane, diethyl ether, propofol and midazolam.

[24] The use according to the above [18], wherein the anesthetic-induced neurological deficit is a neuromotor deficit, a neurocognitive deficit, a psychocognitive deficit or autism.

[25] A method for preventing and/or alleviating an anesthetic-induced neurological deficit, comprising the step of administering a general anesthetic in combination with hydrogen to a subject.

[26] The method according to the above [25], wherein the general anesthetic is an inhalational anesthetic or a liquid intravenous anesthetic and the hydrogen is hydrogen gas.

[27] The method according to the above [26], wherein the concentration of the hydrogen gas in a medicine is 0.15 to 7% (v/v).

[28] The method according to the above [25], wherein the subject is a fetus, a neonate, an infant, a preschool child, a child or an elderly adult.

[29] The method according to the above [25], wherein the general anesthetic is one or more kinds of anesthetics selected from the group consisting of nitrous oxide, isoflurane, enflurane, methoxyflurane, sevoflurane, desflurane, diethyl ether, propofol and midazolam.

[30] The method according to the above [25], wherein the anesthetic-induced neurological deficit is a neuromotor deficit, a neurocognitive deficit, a psychocognitive deficit or autism.

[31] The method according to the above [25], wherein the anesthetic-induced neurological deficit is associated with neuronal apoptosis.

ADVANTAGEOUS EFFECTS OF INVENTION

[0017] The medicine of the present invention enables prevention and/or alleviation of an anesthetic-induced neurological deficit in the brain (preferably in the developing brain). Further, the medicine is convenient, free

from side effects, efficacious and inexpensive, and therefore the present invention can provide a medicine for general anesthesia which is effective in medical care in the fields such as obstetrics and pediatrics.

BRIEF DESCRIPTION OF DRAWINGS

[0018]

Fig. 1 shows the results of Test Example 1. A shows the results of Western blotting using an antibody against cleaved PARP (biomarker of apoptotic cell death). The β -actin reaction was used as a control. B shows the quantified band intensities of the cleaved PARP. In the figure, *** means $P < 0.001$. In the figure, Sevo stands for sevoflurane.

Fig. 2 shows optical microscopic images of the mouse brains of Test Example 2. In the figure, A shows the results of the sample of a mouse subjected to administration of 30% oxygen as a carrier gas without sevoflurane (control), B shows an optical microscopic image of the brain of a mouse after 6-hour exposure to 3% sevoflurane with 30% oxygen as a carrier gas, and C shows an optical microscopic image of the brain of a mouse after 6-hour exposure to 3% sevoflurane and 1.3% hydrogen with 30% oxygen as a carrier gas. In the figure, brown spots indicate the presence of cleaved caspase-3-positive cells, i.e., apoptosis. Each image is from one representative mouse out of eight to ten analyzed per group. In the figure, the scale bar marks 1 mm.

Fig. 3 shows the counts of brown spots representing cleaved caspase-3 detected by immunochemical staining in Test Example 2. Comparison of the mean values of the groups of control, sevoflurane and sevoflurane + hydrogen was performed using a one-way analysis of variance (ANOVA) followed by the Newman-Keuls post-hoc test ($n = 8$ to 10 mice per group). The F and P values are shown at the bottom of each panel. In the figure, * means $P < 0.05$, ** means $P < 0.01$, and *** means $P < 0.001$ versus the control. # means $P < 0.05$, ## means $P < 0.01$, and ### means $P < 0.001$.

Fig. 4 shows the results of terminal deoxynucleotidyl transferase-mediated nick-end labeling (TUNEL) staining. In the figure, A shows the results of the sample of a mouse subjected to administration of 30% oxygen as a carrier gas without sevoflurane (control), B shows an optical microscopic image of the brain of a mouse 6 hours after 6-hour exposure to 3% sevoflurane with 30% oxygen as a carrier gas, and C shows an optical microscopic image of the brain of a mouse 6 hours after 6-hour exposure to 3% sevoflurane and 1.3% hydrogen with 30% oxygen as a carrier gas. In the figure, brown spots represent TUNEL-positive cells, i.e. apoptotic cells. Each image is from one representative mouse out of eight analyzed per group. In the figure, the scale bar marks

1 mm.

Fig. 5 shows that hydrogen gas alleviates sevoflurane exposure-induced oxidative stress in the developing brain. In the figure, A shows the results of the sample of a mouse subjected to administration of 30% oxygen as a carrier gas without sevoflurane (control), B shows an optical microscopic image of the brain of a mouse after 6-hour exposure to 3% sevoflurane with 30% oxygen as a carrier gas, and C shows a fluorescence microscopic image of the brain of a mouse after 6-hour exposure to 3% sevoflurane and 1.3% hydrogen with 30% oxygen as a carrier gas. In the figure, red staining represents 4-hydroxy-2-nonenal (4-HNE) positive cells, i.e. oxidatively stressed cells. In the figure, the scale bar marks 100 μ m. Each image is from one representative mouse out of eight analyzed per group.

Fig. 6 shows the results of Test Example 3. In the figure, A shows the results of an open field test, B shows the results of a Y-maze test, C shows the results of a contextual fear conditioning test, and D shows the results of an auditory (cued) fear conditioning test. In the figure, ** means $P < 0.01$ and *** means $P < 0.001$ versus the control. ## means $P < 0.01$ and ### means $P < 0.001$.

Fig. 7 shows the results of Test Example 3. In the figure, A shows the results of a sociability test, B shows the results of an olfactory test, and C shows the results of a novelty test. In the figure, ** means $P < 0.01$ and # means $P < 0.05$ versus the control. \$\$\$ means $P < 0.001$ versus the corresponding animate target group.

DESCRIPTION OF EMBODIMENTS

[0019] The present invention relates to a medicine for a human or a non-human animal which comprises a combination of a general anesthetic and hydrogen. The present invention also relates to a medicine for general anesthesia of a human or a non-human animal, characterized in that a general anesthetic and hydrogen are administered in combination. The medicine of the present invention can be used for prevention and/or alleviation of an anesthetic-induced neurological deficit. It is suitable that the general anesthetic in the present invention is used in combination with hydrogen. The medicine of the present invention comprises a combination of a general anesthetic and hydrogen, and these components may be separately administered via the same or different administration route at the same time or at a given interval.

[0020] As for general anesthetics, it is known in the art that exposure to general anesthetics acting as an NMDA receptor antagonist during the synaptogenic stage of the brain development induces apoptotic neurodegeneration.

[0021] Based on the reports that anesthetic exposure increased apoptosis in several regions except for neurons, for example in glial cells (Anesthesiology 2010; 112:

834-841), and that NMDA receptor up-regulation induced apoptosis (Int. J. Devl Neuroscience 27 (2009) 727-731), anesthetics are thought to induce apoptosis via a different mechanism of action from that of ordinary apoptosis, potentially leading to induction of neurological deficits.

[0022] Anesthetics having a GABA receptor agonistic action are said to affect GABA neurons and disrupt the balance of excitatory neurons and inhibitory neurons, thereby inducing neurological deficits (Anesthesiology 2009; 111: 1365-1371).

[0023] Given the clear implications for pediatric anesthesia and increase in apoptosis level described later, much work is underway to characterize the mechanism behind this process. It is known that activation of both GABA receptors and NMDA receptors affects survival signaling in neuronal cells (Brunet et al., 2001, Current Opinion in Neurobiology 11: 297-305; and Bittigau et al. , 2002, PNAS 99 (23) : 15089-15094), and based on this knowledge, ethanol-intoxicated mice have been used as a basic animal model for study of this process. Caspase-3 is an excellent marker of apoptotic cells, but it is the final effector of the highly divergent death signaling cascade and, due to the position in the cascade, provides little insights into apoptotic mechanisms. Activation of caspase-3 is a common step of both an extrinsic apoptotic pathway mediated by death receptors and an intrinsic apoptotic pathway mediated by mitochondria (Green, 2000, Cell 102: 1-4).

[0024] Young et al. attempted narrowing down a search target from the apoptotic mechanisms to a single pathway by a series of proper experiments. A combination of dual immunohistochemistry-immunofluorescence, Western blot analysis and knock-out mice was used to highlight pathway-specific components, particularly Bax and cytochrome c (intrinsic), and caspase-8 (extrinsic) (Young et al., Cell Death and Differentiation (2003) 10, 1148-1155). It was found that ethanol-treated wild type mice showed the characteristic pattern of ethanol-induced apoptosis while homozygous Bax-knockout mice treated in the same manner showed no substantial apoptotic features. Indeed, the level of apoptosis was lower than that seen in the physiological cell death of controls. The absence of caspase-8 activation was also shown in the Bax-knockout mice. Therefore, it was found that the intrinsic apoptotic pathway is involved in anesthetic-induced apoptosis.

[0025] The intrinsic pathway centered around mitochondria is controlled by a combination of pro-apoptotic mediators and anti-apoptotic mediators in the cytosols of neuronal cells. In the context of developing neuronal cells, Bcl-X_L (a member of the Bcl-2 family) is mainly anti-apoptotic and Bax is pro-apoptotic (Yuan and Yanket, 2000, Nature 407: 802-809). Young et al. made a hypothesis that ethanol, double NMDA receptor antagonists (simultaneous administration of two NMDA receptor antagonists) and a GABAergic anesthetic agent are capable of releasing Bax, which is usually kept in an inactive state in the mitochondrial membrane, to the cytosol.

[0026] Once in the cytosol (if unchecked by Bcl-X_L), Bax becomes a part of an active complex, which then returns to the mitochondrial membrane and can disrupt the mitochondrial membrane (Korsmeyer et al., 2002, Cell Death and Differentiation 7: 1166-1173). Subsequent translocation of the content in mitochondria (specifically cytochrome c: a part usually responsible for cellular energy production) to the cytosol is considered to produce a very strong pro-apoptotic signal. The cytochrome c in the cytosol forms a complex with Apaf-1 and caspase-8, and the complex then activates caspase-3 to initiate further cascades, finally causing characteristic cleavage of both cytoskeletal proteins and DNAs (Dikranian et al., 2001, Neurobiology of Disease 8: 359-379).

[0027] Of course, from this analysis, it is not possible to identify the exact point at which anesthetics interact with this pathway. Also, individual classes of agents are capable of inducing apoptosis (for example, isoflurane alone (Jevtovic-Todorovic et al., 2003) and ketamine alone (Ikonomidou et al., 1999, Science 238: 70-74)), so use of a dual GABAergic agent and NMDA receptor antagonist does not distinguish potential differences between the two receptor interactions, although the ensuing intracellular cascades may converge downstream (Brunet et al., 2001, Current Opinion in Neurobiology 11: 297-305; Bittigau et al., 2002, PNAS 99 (23): 15089-15094). It is entirely possible that isoflurane and/or nitrous oxide can dysregulate the intracellular Bax/Bcl-2 ratio, perhaps by disrupting intracellular calcium trafficking.

[0028] One possible theory is that the increase in intracellular calcium ion concentration activates a cascade pathway mediated by the activation of calcium ion-dependent enzymes (NOS, PLA2, CaM kinase, etc.) and thereby induces damage of membrane lipids, production of free radical (ROS), failure of ATP production, and mitochondrial respiratory chain dysfunction, which trigger acute or delayed apoptosis. This theory, called the glutamate-calcium ion theory, has been accepted. However, the real causative factor of apoptosis in the cascade of this theory is unclear (Masui "Kyoketsusei shinkei saiboushi no bunshiseibutsugakuteki kijo to yakubutsu ryouhou niyori nouhogo" (The Japanese Journal of Anesthesiology, "Molecular Biological Mechanism of Ischemic Neuronal Death and Brain Protection by Medication"), 2007, 56: 248-270).

[0029] The general anesthetic in the present invention is not particularly limited as long as it exerts systemic anesthetic effect, and the preferable examples include inhalational anesthetics and intravenous anesthetics.

[0030] The inhalational anesthetics in the present invention are not particularly limited, and the examples include volatile inhalational anesthetics such as halothane, isoflurane, enflurane, methoxyflurane, sevoflurane and desflurane; and gaseous inhalational anesthetics such as ethylene, cyclopropane, diethyl ether, chloroform, nitrous oxide and xenon. Preferred are halogenated ether compounds such as isoflurane, enflurane, sevoflurane

and desflurane; nitrous oxide; and the like. The inhalational anesthetics may be used in combination with intravenous anesthetics to be administered by injection or intravenous infusion.

[0031] The intravenous anesthetics in the present invention are not particularly limited, and the examples include propofol, midazolam, ketamine, tiletamine, thiopental, methohexitol and etomidate. Preferred are propofol, midazolam and the like.

[0032] More preferably, the general anesthetic used in the present invention is, among the above-listed examples, one or more kinds of anesthetics selected from the group consisting of nitrous oxide, isoflurane, enflurane, methoxyflurane, sevoflurane, desflurane, diethyl ether, propofol and midazolam. Among the above-listed examples of anesthetics, halothane, isoflurane, enflurane, methoxyflurane, sevoflurane, desflurane, etomidate, thiopental, propofol, midazolam, etc. are GABA_A receptor agonists. Several of the anesthetics (for example, N₂O, ketamine, isoflurane, etc.) are NMDA receptor antagonists, but the presence of NMDA receptor antagonistic effect has not been confirmed for all anesthetics.

[0033] The dose of the general anesthetic varies for every patient depending on the age, the health condition, the interaction with another medicine and the kind of surgical operation to be planned, and is not particularly limited as long as the dose is in such a range that the effects of the present invention can be achieved. For example, the concentration of the general anesthetic such as the above-described inhalational anesthetic and intravenous anesthetic in the medicine may be 0.1 to 10% (v/v), 0.2 to 8% (v/v) or 0.2 to 5% (v/v). The concentration at the beginning of anesthesia may be different from that at the maintenance of anesthetic condition.

[0034] In the present invention, hydrogen means a hydrogen molecule (H₂), and any form of a hydrogen molecule may be used without particular limitation. For example, hydrogen gas may be used, and hydrogen water, which is a solution of hydrogen gas in water, may be used.

[0035] The subject to whom the general anesthetic and hydrogen are to be applied is not particularly limited, and the examples include animals such as humans, cattle, horses, sheep, goats, dogs, monkeys, cats, bears, rats and rabbits.

[0036] The age etc. of the subject to whom the medicine of the present invention is to be applied is not particularly limited, but preferred is a period of life in which an animal subject is susceptible to anesthetics. For example, in the case of a human subject, the subject is preferably a fetus, a neonate, an infant, a preschool child, a child or an elderly adult. Considering the susceptibility of developing brains to anesthetics, more preferred is a fetus, a neonate, an infant, a preschool child, a child or the like, and further preferred is a fetus, a neonate, an infant or a preschool child aged 3 years or younger. The fetus means an unborn baby from 8 weeks after conception until birth. The neonate means a newborn infant under 28 days of age. The infant means a child under 1

year of age. The preschool child means a child aged at least 1 year and less than 7 years. The child means aged at least 7 years and less than 15 years. The elderly adult means a human aged 65 years or older.

[0037] In embodiments of the medicine of the present invention, a general anesthetic and hydrogen may be used in combination, and a general anesthetic and hydrogen may be previously mixed.

[0038] In the medicine of the present invention, embodiments of the general anesthetic and embodiments of the hydrogen are not particularly limited, but a combination of an inhalational or intravenous anesthetic and hydrogen gas is preferred because such a combination produces remarkable effect on prevention and/or alleviation of an anesthetic-induced neurological deficit.

[0039] In the medicine of the present invention, in the case where a general anesthetic and hydrogen are used in combination, the timing for use of the general anesthetic and the timing for use of hydrogen are not particularly limited, and for example, hydrogen may be administered before, simultaneously with, or after general anesthetic administration, and any of these timings may be combined. However, considering that the burden of pre-treatment to a subject can be avoided, simultaneous administration of the general anesthetic and hydrogen is preferred. Here, the term "administered before general anesthetic administration" means administering hydrogen for a certain period of time to a subject which has not undergone general anesthetic administration. The term "administered simultaneously with general anesthetic administration" means administering hydrogen to a subject continuously from the beginning to the end of general anesthetic administration, or administering hydrogen to a subject for a given period of time between the beginning and the end of general anesthetic administration. The term "administered after general anesthetic administration" means administering hydrogen to a subject for a given period of time after the end of general anesthetic administration. The durations of general anesthetic administration and of hydrogen administration are not particularly limited, and for example, in the case where sevoflurane at a concentration of 4.0% or lower is used in combination with oxygen and nitrous oxide, the durations may be about 10 minutes to 8 hours.

[0040] In the case where a general anesthetic and hydrogen are used in combination, embodiments of the general anesthetic and embodiments of the hydrogen are not particularly limited. In one preferable embodiment of the present invention, the general anesthetic is an inhalational anesthetic or an intravenous anesthetic, and the hydrogen is hydrogen gas because such a combination exerts remarkable effect on prevention and/or alleviation of an anesthetic-induced neurological deficit.

[0041] In the medicine of the present invention, in the case where a general anesthetic and hydrogen are previously mixed, the mixing ratio is not particularly limited. For example in the use of an inhalational anesthetic and hydrogen gas, the concentration of the hydrogen gas in

the medicine is typically 0.01 to 7% (v/v), and preferably has a reduced upper limit in terms of safety and may be for example 0.15 to 4% (v/v), 0.18 to 3% (v/v), 0.2 to 1.5% (v/v), 0.25% (v/v) or higher and lower than 1% (v/v), or 0.28 to 0.9% (v/v).

[0042] The dose of the hydrogen used in the present invention varies for every patient depending on the age, the health condition, the interaction with another medicine and the kind of surgical operation to be planned, and is not particularly limited as long as the dose is in such a range that the effects of the present invention can be achieved. The concentration of the hydrogen in the medicine is typically 0.01 to 7% (v/v), and preferably has a reduced upper limit in terms of safety and may be for example 0.15 to 4% (v/v), 0.18 to 3% (v/v), 0.2 to 1.5% (v/v), 0.25% (v/v) or higher and lower than 1% (v/v), or 0.28 to 0.9% (v/v).

[0043] One preferable embodiment of the present invention is a medicine for a human or a non-human animal which comprises a combination of an inhalational anesthetic and hydrogen gas, and the concentration of the hydrogen gas in the medicine, although not subject to any particular limitation, is typically 0.01 to 7% (v/v), and preferably has a reduced upper limit in terms of safety and may be for example 0.15 to 4% (v/v), 0.18 to 3% (v/v), 0.2 to 1.5% (v/v), 0.25% (v/v) or higher and lower than 1% (v/v), or 0.28 to 0.9% (v/v).

[0044] One preferable embodiment of the present invention is a medicine for a human or a non-human animal which comprises a combination of a liquid intravenous anesthetic and hydrogen gas, and the concentration of the hydrogen gas in the medicine, although not subject to any particular limitation, is typically 0.01 to 7% (v/v), and preferably has a reduced upper limit in terms of safety and may be for example 0.15 to 4% (v/v), 0.18 to 3% (v/v), 0.2 to 1.5% (v/v), 0.25% (v/v) or higher and lower than 1% (v/v), or 0.28 to 0.9% (v/v).

[0045] One preferable embodiment of the present invention is a medicine using an inhalational anesthetic in combination with hydrogen gas, and the concentration of the hydrogen gas in the medicine, although not subject to any particular limitation, is typically 0.01 to 7% (v/v), and preferably has a reduced upper limit in terms of safety and may be for example 0.15 to 4% (v/v), 0.18 to 3% (v/v), 0.2 to 1.5% (v/v), 0.25% (v/v) or higher and lower than 1% (v/v), or 0.28 to 0.9% (v/v).

[0046] One preferable embodiment of the present invention is a medicine using a liquid intravenous anesthetic in combination with hydrogen gas, and the concentration of the hydrogen gas in the medicine, although not subject to any particular limitation, is typically 0.01 to 7% (v/v), and preferably has a reduced upper limit in terms of safety and may be for example 0.15 to 4% (v/v), 0.18 to 3% (v/v), 0.2 to 1.5% (v/v), 0.25% (v/v) or higher and lower than 1% (v/v), or 0.28 to 0.9% (v/v).

[0047] The medicine of the present invention may comprise oxygen, nitrogen, nitrous oxide or the like unless the effects of the present invention are hindered. The

oxygen concentration in the medicine of the present invention is typically about 20 to 90% (v/v), preferably about 20 to 70% (v/v), and more preferably about 20 to 50% (v/v). The concentrations of nitrogen and nitrous oxide are not limited unless the effects of the present invention are hindered.

[0048] In the present invention, the gas component(s) in the medicine, except for those described above, may be exclusively nitrogen gas, and may include an atmospheric trace component in addition to nitrogen gas.

[0049] Preferable embodiments of the medicine using an inhalational anesthetic and hydrogen gas are not particularly limited and include, for example,

- (i) a medicine comprising 0.1 to 10% (v/v) of the inhalational anesthetic, 0.15 to 1.5% (v/v) of hydrogen gas and 20 to 90% (v/v) of oxygen;
- (ii) a medicine comprising 0.1 to 8% (v/v) of the inhalational anesthetic, 0.15 to 1.5% (v/v) of hydrogen gas and 20 to 70% (v/v) of oxygen; and
- (iii) a medicine comprising 0.1 to 5% (v/v) of the inhalational anesthetic, 0.15 to 1.5% (v/v) of hydrogen gas and 20 to 50% (v/v) of oxygen.

[0050] Preferable embodiments of the medicine using a liquid intravenous anesthetic and hydrogen gas are not particularly limited and include, for example,

- (i) a medicine comprising 0.1 to 10% (w/w) of the intravenous anesthetic, 0.15 to 1.5% (v/v) of hydrogen gas and 20 to 90% (v/v) of oxygen;
- (ii) a medicine comprising 0.1 to 8% (w/w) of the intravenous anesthetic, 0.15 to 1.5% (v/v) of hydrogen gas and 20 to 70% (v/v) of oxygen; and
- (iii) a medicine comprising 0.1 to 5% (w/w) of the intravenous anesthetic, 0.15 to 1.5% (v/v) of hydrogen gas and 20 to 50% (v/v) of oxygen.

[0051] Another preferable embodiment of the present invention is a medicine for a human or a non-human animal which comprises a combination of an intravenous anesthetic and hydrogen water, and the concentration of the hydrogen water in the medicine is not particularly limited.

[0052] Another preferable embodiment of the present invention is a medicine using an intravenous anesthetic in combination with hydrogen water, and the concentration of the hydrogen water in the medicine is not particularly limited.

[0053] The medicine of the present invention can prevent and/or alleviate an anesthetic-induced neurological deficit. The term "prevent and/or alleviate a neurological deficit" means reducing the severity of one or more kinds of neurological deficits in a subject (for example, a patient when the subject is a human) to which the medicine of the present invention has been applied, as compared with a subject to which a general anesthetic has been applied in the absence of hydrogen. The term "prevent

and/or alleviate a neuronal injury" means reducing the severity of one or more kinds of neuronal injuries in a subject to which the medicine of the present invention has been applied, as compared with a subject to which a general anesthetic has been applied in the absence of hydrogen.

[0054] It can be deduced from existing data that the developing human brain undergoes highly dynamic change from a fetal phenotype to a phenotype that resembles the adult one during both the intra-uterine life and the first year of life. This process is characterized by very quick turnover of synapses (as high as 20% per day (Okabe et al., 1999, *Nat. Neuroscience* 2: 804-811)) and high-level background apoptosis (Hua and Smith, 2004,

15 *Nature Neuroscience* 7 (4) : 327-332) because neuronal cells which have failed to reach their synaptic target cells are eliminated, presumably based on the preservation of energy efficiency. This study confirms that exposure to anesthetic agents during this crucial stage of neurogenesis (synaptogenesis) induces apoptosis in developing brains. It was experimentally demonstrated that exposure to GABAergic inhalations (for example, isoflurane etc.) induced a 4-fold increase in the apoptosis level in the cortex. Nitrous oxide (nitrous oxide alone causes no 20 neurodegeneration) significantly enhanced isoflurane-induced apoptosis by 12-fold as compared with the control and was confirmed to have neurodegenerative potential. Similar results were observed in the hippocampus, and showed that isoflurane and a mixture of isoflurane 25 and nitrous oxide increased the apoptosis level (4-fold and 7-fold, respectively).

[0055] The hippocampus, i.e., a specialized layer of cortical tissue forming part of the limbic system, has an important role in memory formation (Aggleton and Brown, 30 1999, *Behav Brain Sci* 22(3): 425-44). Hippocampal neuronal cells have the ability to exhibit the phenomenon known as "long-term potentiation (LTP)", which is characterized by gradual increase of synaptic efficacy through a specific pattern of neural activity. This process 35 is considered to be the basis of memory at the cellular level. Generally, hippocampal processing takes place in both the hippocampus and the parahippocampal gyrus (subiculum), and the output is relayed to the fornix. Considering that exposure of neonatal rats to a high level of 40 anesthetic may induce widespread neuronal injuries over the hippocampus and the subiculum, it is not surprising that such rats showed the characteristics of learning deficits in adulthood (Jevtovic-Todorovic et al., 2003), and this finding is supported by detection of LTP suppression 45 in the same study.

[0056] The anesthetic-induced neurological deficit in the present invention is preferably an anesthetic-induced neurological deficit in the brain, and examples of the neurological deficit in the present invention include, but are 50 not particularly limited to, a neuromotor deficit, a neurocognitive deficit, a psychocognitive deficit, intellectual disability and autism. The neuromotor deficit includes deficits in strength, balance and mobility. The neurocog-

nitive deficit includes deficits in learning and memory. These neurological deficits may be caused by multiple factors, not a single one, and the possible causative factors include neurodegeneration, neuronal apoptosis and neuronal necrosis. Among them, neuronal apoptosis is considered to affect any of the above deficits. The neurodegeneration means cell shrinkage, chromatin condensation with margination and formation of membrane-enclosed "apoptotic bodies".

[0057] The neurocognitive deficit can be usually evaluated according to the following well-established criteria: the short story module of the Randt Memory Test (Randt C, Brown E. Administration manual: Randt Memory Test. New York: Life Sciences, 1983), the digit span subtest and digit symbol subtest of the Wechsler Adult Intelligence Scale-Revised (Wechsler D. The Wechsler Adult Intelligence Scale-Revised (WAIS-R). San Antonio, Tex.: Psychological Corporation, 1981.), the Benton Revised Visual Retention Test (Benton AL, Hansher K. Multilingual aphasia examination. Iowa City: University of Iowa Press, 1978), and the Trail Making Test Part B (Reitan RM. Validity of the Trail Making Test as an indicator of organic brain damage. *Percept Mot Skills* 1958; 8: 271-6), etc. Other suitable neuromotor and neurocognitive tests are described in Combs D, D'Alecy L: Motor performance in rats exposed to severe forebrain ischemia: Effect of fasting and 1,3-butanediol. *Stroke* 1987; 18: 503-511; and Gonet T, Thomas J, Warner D, Goodlett C, Wasserman E, West J: Forebrain ischemia induces selective behavioral impairments associated with hippocampal injury in rats. *Stroke* 1991; 22: 1040-1047.

[0058] Another aspect of the present invention relates to a method for preparing a medicine for prevention and/or alleviation of an anesthetic-induced neurological deficit, the method using a general anesthetic in combination with hydrogen. The general anesthetic, the hydrogen, the subject to whom the medicine is to be applied, the anesthetic-induced neurological deficit and a combination thereof are as described above. The preparation method may comprise the step of using a general anesthetic in combination with hydrogen, and may comprise the step of previously mixing a general anesthetic and hydrogen.

[0059] Preferable embodiments of the preparation method using an inhalational anesthetic and hydrogen gas are not particularly limited and include, for example,

- (i) a method for preparing a medicine, comprising the step of using an inhalational anesthetic in combination with hydrogen gas or previously mixing an inhalational anesthetic and hydrogen gas to give a medicine comprising 0.1 to 10% (v/v) of the inhalational anesthetic, 0.15 to 1.5% (v/v) of hydrogen gas and 20 to 90% (v/v) of oxygen;
- (ii) a method for preparing a medicine, comprising the step of using an inhalational anesthetic in combination with hydrogen gas or previously mixing an inhalational anesthetic and hydrogen gas to give a medicine comprising 0.1 to 5% (v/v) of the inhalational anesthetic, 0.15 to 1.5% (v/v) of hydrogen gas and 20 to 50% (v/v) of oxygen.

5 inhalational anesthetic and hydrogen gas to give a medicine comprising 0.1 to 8% (v/v) of the inhalational anesthetic, 0.15 to 1.5% (v/v) of hydrogen gas and 20 to 70% (v/v) of oxygen; and

(iii) a method for preparing a medicine, comprising the step of using an inhalational anesthetic in combination with hydrogen gas or previously mixing an inhalational anesthetic and hydrogen gas to give a medicine comprising 0.1 to 5% (v/v) of the inhalational anesthetic, 0.15 to 1.5% (v/v) of hydrogen gas and 20 to 50% (v/v) of oxygen.

[0060] Preferable embodiments of the preparation method using a liquid intravenous anesthetic and hydrogen gas are not particularly limited and include, for example,

(i) a method for preparing a medicine, comprising the step of using an intravenous anesthetic in combination with hydrogen gas or previously mixing an intravenous anesthetic and hydrogen gas to give a medicine comprising 0.1 to 10% (w/w) of the intravenous anesthetic, 0.15 to 1.5% (v/v) of hydrogen gas and 20 to 90% (v/v) of oxygen;

(ii) a method for preparing a medicine, comprising the step of using an intravenous anesthetic in combination with hydrogen gas or previously mixing an intravenous anesthetic and hydrogen gas to give a medicine comprising 0.1 to 8% (w/w) of the intravenous anesthetic, 0.15 to 1.5% (v/v) of hydrogen gas and 20 to 70% (v/v) of oxygen; and

(iii) a method for preparing a medicine, comprising the step of using an intravenous anesthetic in combination with hydrogen gas or previously mixing an intravenous anesthetic and hydrogen gas to give a medicine comprising 0.1 to 5% (w/w) of the intravenous anesthetic, 0.15 to 1.5% (v/v) of hydrogen gas and 20 to 50% (v/v) of oxygen.

[0061] Another aspect of the present invention is the use of a general anesthetic for the production of a medicine for general anesthesia used in combination with hydrogen. The medicine for general anesthesia may comprise a known excipient and additive for the purpose of

45 the stability of medicinal components, hydration of a patient, and the maintenance of electrolyte balance in a patient. The excipient and additive may be any of those conventionally known unless the effects of the present invention are hindered. For example, a propofol-based anesthetic medicine can contain soybean oil, medium chain fatty acid triglyceride, purified yolk lecithin, concentrated glycerin, sodium oleate, and/or the like. The general anesthetic, the hydrogen, and the subject to whom the medicine is to be applied are as described above.

[0062] Preferable embodiments of the use of this aspect in which an inhalational anesthetic and hydrogen gas are used are not particularly limited and include, for example,

(i) the use of a general anesthetic for the production of a medicine for general anesthesia which comprises 0.1 to 10% (v/v) of an inhalational anesthetic, 0.15 to 1.5% (v/v) of hydrogen gas and 20 to 90% (v/v) of oxygen and may further comprise an additive if needed;

(ii) the use of a general anesthetic for the production of a medicine for general anesthesia which comprises 0.1 to 8% (v/v) of an inhalational anesthetic, 0.15 to 1.5% (v/v) of hydrogen gas and 20 to 70% (v/v) of oxygen and may further comprise an additive if needed; and

(iii) the use of a general anesthetic for the production of a medicine for general anesthesia which comprises 0.1 to 5% (v/v) of an inhalational anesthetic, 0.15 to 1.5% (v/v) of hydrogen gas and 20 to 50% (v/v) of oxygen and may further comprise an additive if needed.

[0063] Preferable embodiments of the use of this aspect in which a liquid intravenous anesthetic and hydrogen gas are used are not particularly limited and include, for example,

(i) the use of a general anesthetic for the production of a medicine for general anesthesia which comprises 0.1 to 10% (w/w) of an intravenous anesthetic, 0.15 to 1.5% (v/v) of hydrogen gas and 20 to 90% (v/v) of oxygen and may further comprise an additive if needed;

(ii) the use of a general anesthetic for the production of a medicine for general anesthesia which comprises 0.1 to 8% (w/w) of an intravenous anesthetic, 0.15 to 1.5% (v/v) of hydrogen gas and 20 to 70% (v/v) of oxygen and may further comprise an additive if needed; and

(iii) the use of a general anesthetic for the production of a medicine for general anesthesia which comprises 0.1 to 5% (w/w) of an intravenous anesthetic, 0.15 to 1.5% (v/v) of hydrogen gas and 20 to 50% (v/v) of oxygen and may further comprise an additive if needed.

[0064] Another aspect of the present invention relates to the use of a general anesthetic and hydrogen for the production of a medicine comprising a combination of the general anesthetic and hydrogen. The general anesthetic, the hydrogen, the subject to whom the medicine is to be applied, and a combination thereof are as described above. In embodiments of this use, a general anesthetic and hydrogen may be used in combination, and a general anesthetic and hydrogen may be previously mixed.

[0065] Preferable embodiments of the use of this aspect in which an inhalational anesthetic and hydrogen gas are used are not particularly limited and include, for example,

(i) the use of a general anesthetic and hydrogen for the production of a medicine comprising 0.1 to 10% (v/v) of an inhalational anesthetic, 0.15 to 1.5% (v/v) of hydrogen gas and 20 to 90% (v/v) of oxygen;

(ii) the use of a general anesthetic and hydrogen for the production of a medicine comprising 0.1 to 8% (v/v) of an inhalational anesthetic, 0.15 to 1.5% (v/v) of hydrogen gas and 20 to 70% (v/v) of oxygen; and

(iii) the use of a general anesthetic and hydrogen for the production of a medicine comprising 0.1 to 5% (v/v) of an inhalational anesthetic, 0.15 to 1.5% (v/v) of hydrogen gas and 20 to 50% (v/v) of oxygen.

[0066] Preferable embodiments of the use of this aspect in which a liquid intravenous anesthetic and hydrogen gas are used are not particularly limited and include, for example,

(i) the use of a general anesthetic and hydrogen for the production of a medicine comprising 0.1 to 10% (w/w) of an intravenous anesthetic, 0.15 to 1.5% (v/v) of hydrogen gas and 20 to 90% (v/v) of oxygen;

(ii) the use of a general anesthetic and hydrogen for the production of a medicine comprising 0.1 to 8% (w/w) of an intravenous anesthetic, 0.15 to 1.5% (v/v) of hydrogen gas and 20 to 70% (v/v) of oxygen; and

(iii) the use of a general anesthetic and hydrogen for the production of a medicine comprising 0.1 to 5% (w/w) of an intravenous anesthetic, 0.15 to 1.5% (v/v) of hydrogen gas and 20 to 50% (v/v) of oxygen.

[0067] Another aspect of the present invention relates to the use of a general anesthetic and hydrogen in the production of a medicine for prevention and/or alleviation of an anesthetic-induced neurological deficit. The general anesthetic, the hydrogen, the subject to whom the medicine is to be applied, the anesthetic-induced neurological deficit and their embodiments, and a combination thereof are as described above.

[0068] Preferable embodiments of the use of this aspect in which an inhalational anesthetic and hydrogen gas are used are not particularly limited and include, for example,

(i) the use of a general anesthetic and hydrogen for the production of a medicine for prevention and/or alleviation of an anesthetic-induced neurological deficit, the medicine comprising 0.1 to 10% (v/v) of an inhalational anesthetic, 0.15 to 1.5% (v/v) of hydrogen gas and 20 to 90% (v/v) of oxygen;

(ii) the use of a general anesthetic and hydrogen for the production of a medicine for prevention and/or alleviation of an anesthetic-induced neurological deficit, the medicine comprising 0.1 to 8% (v/v) of an inhalational anesthetic, 0.15 to 1.5% (v/v) of hydrogen gas and 20 to 70% (v/v) of oxygen; and

(iii) the use of a general anesthetic and hydrogen for the production of a medicine for prevention and/or

alleviation of an anesthetic-induced neurological deficit, the medicine comprising 0.1 to 5% (v/v) of an inhalational anesthetic, 0.15 to 1.5% (v/v) of hydrogen gas and 20 to 50% (v/v) of oxygen.

[0069] Preferable embodiments of the use of this aspect in which a liquid intravenous anesthetic and hydrogen gas are used are not particularly limited and include, for example,

- (i) the use of a general anesthetic and hydrogen for the production of a medicine for prevention and/or alleviation of an anesthetic-induced neurological deficit, the medicine comprising 0.1 to 10% (w/w) of an intravenous anesthetic, 0.15 to 1.5% (v/v) of hydrogen gas and 20 to 90% (v/v) of oxygen;
- (ii) the use of a general anesthetic and hydrogen for the production of a medicine for prevention and/or alleviation of an anesthetic-induced neurological deficit, the medicine comprising 0.1 to 8% (w/w) of an intravenous anesthetic, 0.15 to 1.5% (v/v) of hydrogen gas and 20 to 70% (v/v) of oxygen; and
- (iii) the use of a general anesthetic and hydrogen for the production of a medicine for prevention and/or alleviation of an anesthetic-induced neurological deficit, the medicine comprising 0.1 to 5% (w/w) of an intravenous anesthetic, 0.15 to 1.5% (v/v) of hydrogen gas and 20 to 50% (v/v) of oxygen.

[0070] Another aspect of the present invention relates to the use of a general anesthetic and hydrogen for the production of a medicine for prevention and/or alleviation of an anesthetic-induced neurological deficit associated with neuronal apoptosis. The general anesthetic, the hydrogen, the subject to whom the medicine is to be applied, the anesthetic-induced neurological deficit and their embodiments, and a combination thereof are as described above.

[0071] Preferable embodiments of the use of this aspect in which an inhalational anesthetic and hydrogen gas are used are not particularly limited and include, for example,

- (i) the use of a general anesthetic and hydrogen for the production of a medicine for prevention and/or alleviation of an anesthetic-induced neurological deficit associated with neuronal apoptosis, the medicine comprising 0.1 to 10% (v/v) of an inhalational anesthetic, 0.15 to 1.5% (v/v) of hydrogen gas and 20 to 90% (v/v) of oxygen;
- (ii) the use of a general anesthetic and hydrogen for the production of a medicine for prevention and/or alleviation of an anesthetic-induced neurological deficit associated with neuronal apoptosis, the medicine comprising 0.1 to 8% (v/v) of an inhalational anesthetic, 0.15 to 1.5% (v/v) of hydrogen gas and 20 to 70% (v/v) of oxygen; and
- (iii) the use of a general anesthetic and hydrogen for

the production of a medicine for prevention and/or alleviation of an anesthetic-induced neurological deficit associated with neuronal apoptosis, the medicine comprising 0.1 to 5% (v/v) of an inhalational anesthetic, 0.15 to 1.5% (v/v) of hydrogen gas and 20 to 50% (v/v) of oxygen.

[0072] Preferable embodiments of the use of this aspect in which a liquid intravenous anesthetic and hydrogen gas are used are not particularly limited and include, for example,

- (i) the use of a general anesthetic and hydrogen for the production of a medicine for prevention and/or alleviation of an anesthetic-induced neurological deficit associated with neuronal apoptosis, the medicine comprising 0.1 to 10% (w/w) of an intravenous anesthetic, 0.15 to 1.5% (v/v) of hydrogen gas and 20 to 90% (v/v) of oxygen;
- (ii) the use of a general anesthetic and hydrogen for the production of a medicine for prevention and/or alleviation of an anesthetic-induced neurological deficit associated with neuronal apoptosis, the medicine comprising 0.1 to 8% (w/w) of an intravenous anesthetic, 0.15 to 1.5% (v/v) of hydrogen gas and 20 to 70% (v/v) of oxygen; and
- (iii) the use of a general anesthetic and hydrogen for the production of a medicine for prevention and/or alleviation of an anesthetic-induced neurological deficit associated with neuronal apoptosis, the medicine comprising 0.1 to 5% (w/w) of an intravenous anesthetic, 0.15 to 1.5% (v/v) of hydrogen gas and 20 to 50% (v/v) of oxygen.

[0073] Yet another aspect of the present invention relates to the use of a general anesthetic and hydrogen in the production of a medicine for prevention and/or alleviation of an anesthetic-induced neuronal injury. The general anesthetic, the hydrogen, the subject to whom the medicine is to be applied, the anesthetic-induced neurological deficit and their embodiments, and a combination thereof are as described above.

[0074] Another aspect of the present invention relates to a method for preventing and/or alleviating an anesthetic-induced neurological deficit, comprising the step of administering a general anesthetic in combination with hydrogen to a subject. The general anesthetic, the hydrogen, the anesthetic-induced neurological deficit and a combination thereof are as described above. The method may comprise the step of using a general anesthetic in combination with hydrogen, and may comprise the step of previously mixing a general anesthetic and hydrogen.

[0075] Preferable embodiments of the method of this aspect using an inhalational anesthetic and hydrogen gas are not particularly limited and include, for example,

- (i) a method for preventing and/or alleviating an anesthetic-induced neurological deficit, comprising the

step of administering 0.1 to 10% (v/v) of an inhalational anesthetic, 0.15 to 1.5% (v/v) of hydrogen gas and 20 to 90% (v/v) of oxygen to a subject;

(ii) a method for preventing and/or alleviating an anesthetic-induced neurological deficit, comprising the step of administering 0.1 to 8% (v/v) of an inhalational anesthetic, 0.15 to 1.5% (v/v) of hydrogen gas and 20 to 70% (v/v) of oxygen to a subject; and

(iii) a method for preventing and/or alleviating an anesthetic-induced neurological deficit, comprising the step of administering 0.1 to 5% (v/v) of an inhalational anesthetic, 0.15 to 1.5% (v/v) of hydrogen gas and 20 to 50% (v/v) of oxygen to a subject.

[0076] Preferable embodiments of the method of this aspect using a liquid intravenous anesthetic and hydrogen gas are not particularly limited and include, for example,

(i) a method for preventing and/or alleviating an anesthetic-induced neurological deficit, comprising the step of administering 0.1 to 10% (w/w) of an intravenous anesthetic, 0.15 to 1.5% (v/v) of hydrogen gas and 20 to 90% (v/v) of oxygen to a subject;

(ii) a method for preventing and/or alleviating an anesthetic-induced neurological deficit, comprising the step of administering 0.1 to 8% (w/w) of an intravenous anesthetic, 0.15 to 1.5% (v/v) of hydrogen gas and 20 to 70% (v/v) of oxygen to a subject; and

(iii) a method for preventing and/or alleviating an anesthetic-induced neurological deficit, comprising the step of administering 0.1 to 5% (w/w) of an intravenous anesthetic, 0.15 to 1.5% (v/v) of hydrogen gas and 20 to 50% (v/v) of oxygen to a subject.

[0077] In the above-described aspects, in the case where a general anesthetic and hydrogen are used in combination, the timing for use of the general anesthetic and the timing for use of hydrogen are not particularly limited, and for example, hydrogen may be administered before, simultaneously with, or after general anesthetic administration, and any of these timings may be combined. However, considering that the burden of pretreatment to a subject can be avoided, simultaneous administration of the general anesthetic and hydrogen is preferred. Here, the term "administered before general anesthetic administration" means administering hydrogen for a certain period of time to a subject which has not undergone general anesthetic administration. The term "administered simultaneously with general anesthetic administration" means administering hydrogen to a subject continuously from the beginning to the end of general anesthetic administration, or administering hydrogen to a subject for a given period of time between the beginning and the end of general anesthetic administration. The term "administered after general anesthetic administration" means administering hydrogen to a subject for a given period of time after the end of general anesthetic

administration. The durations of general anesthetic administration and of hydrogen administration are not particularly limited. The subject to whom the general anesthetic and hydrogen are to be administered is not particularly limited, and the examples include animals such as humans, cattle, horses, sheep, goats, dogs, monkeys, cats, bears, rats and rabbits.

[0078] The age etc. of the subject to whom the general anesthetic and hydrogen are to be administered is not particularly limited, but preferred is a period of life in which an animal subject is susceptible to anesthetics. For example, in the case of a human subject, the subject is preferably a fetus, a neonate, an infant, a preschool child, a child or an elderly adult. Considering the susceptibility of developing brains to anesthetics, more preferred is a fetus, a neonate, an infant, a preschool child, a child or the like, and further preferred is a fetus, a neonate, an infant or a preschool child aged 3 years or younger. The definitions of the fetus, the neonate, the infant, the preschool child, the child and the elderly adult are as described above.

[0079] Another aspect of the present invention relates to a method for inhibiting anesthetic-induced apoptosis, comprising the step of administering a medicine comprising a combination of a general anesthetic and hydrogen to a subject. The general anesthetic, the hydrogen, the subject to whom the medicine is to be applied, and a combination thereof are as described above. The method may comprise the step of using a general anesthetic in combination with hydrogen, and may comprise the step of previously mixing a general anesthetic and hydrogen.

[0080] Preferable embodiments of the inhibition method using an inhalational anesthetic and hydrogen gas are not particularly limited and include, for example,

(i) a method for inhibiting anesthetic-induced apoptosis comprising the steps of using an inhalational anesthetic in combination with hydrogen gas or previously mixing an inhalational anesthetic and hydrogen gas to give a medicine comprising 0.1 to 10% (v/v) of the inhalational anesthetic, 0.15 to 1.5% (v/v) of hydrogen gas and 20 to 90% (v/v) of oxygen, and administering the medicine obtained in the above step to a subject;

(ii) a method for inhibiting anesthetic-induced apoptosis comprising the steps of using an inhalational anesthetic in combination with hydrogen gas or previously mixing an inhalational anesthetic and hydrogen gas to give a medicine comprising 0.1 to 8% (v/v) of the inhalational anesthetic, 0.15 to 1.5% (v/v) of hydrogen gas and 20 to 70% (v/v) of oxygen, and administering the medicine obtained in the above step to a subject; and

(iii) a method for inhibiting anesthetic-induced apoptosis comprising the steps of using an inhalational anesthetic in combination with hydrogen gas or previously mixing an inhalational anesthetic and hydrogen gas to give a medicine comprising 0.1 to 5%

(v/v) of the inhalational anesthetic, 0.15 to 1.5% (v/v) of hydrogen gas and 20 to 50% (v/v) of oxygen, and administering the medicine obtained in the above step to a subject.

[0081] Preferable embodiments of the inhibition method using a liquid intravenous anesthetic and hydrogen gas are not particularly limited and include, for example,

- (i) a method for inhibiting anesthetic-induced apoptosis comprising the steps of using an intravenous anesthetic in combination with hydrogen gas or previously mixing an intravenous anesthetic and hydrogen gas to give a medicine comprising 0.1 to 10% (w/w) of the intravenous anesthetic, 0.15 to 1.5% (v/v) of hydrogen gas and 20 to 90% (v/v) of oxygen, and administering the medicine obtained in the above step to a subject;
- (ii) a method for inhibiting anesthetic-induced apoptosis comprising the steps of using an intravenous anesthetic in combination with hydrogen gas or previously mixing an intravenous anesthetic and hydrogen gas to give a medicine comprising 0.1 to 8% (w/w) of the intravenous anesthetic, 0.15 to 1.5% (v/v) of hydrogen gas and 20 to 70% (v/v) of oxygen, and administering the medicine obtained in the above step to a subject; and
- (iii) a method for inhibiting anesthetic-induced apoptosis comprising the steps of using an intravenous anesthetic in combination with hydrogen gas or previously mixing an intravenous anesthetic and hydrogen gas to give a medicine comprising 0.1 to 5% (w/w) of the intravenous anesthetic, 0.15 to 1.5% (v/v) of hydrogen gas and 20 to 50% (v/v) of oxygen, and administering the medicine obtained in the above step to a subject.

[0082] In the present invention, the anesthetic-induced neurological deficit was evaluated by apoptosis assays and behavioral tests. The apoptosis assays were (i) cleaved PARP quantification, (ii) active caspase-3 staining, and (iii) TUNEL assay.

[0083] In the present invention, western blot analysis was used for detection and quantification of cleaved PARP. One of the key initiation factors of the apoptotic cascade is the activation of caspases and the subsequent cleavage of poly (adenosine diphosphate ribose) polymerase (PARP). PARP is an intranuclear enzyme which is normally involved in DNA repair, DNA stability and other intracellular events, and the final target of caspase-3 in the apoptotic cascade. In contrast to measuring the active caspase, which is degraded during apoptosis, measuring cleaved PARP allows sustained signal detection even in late stages of apoptosis.

[0084] In the present invention, staining of active caspase-3 was performed by immunohistochemical analysis for caspase-3. At the end of the apoptotic signaling cascade, caspase-9 activates caspase-3 (cysteine pro-

tease). Thus, caspase-3 is a marker of cells that are downstream of the apoptotic commitment point. The immunohistochemical analysis commonly performed in parallel with silver staining serves as a marker suitable for neuronal apoptosis and is excellent for both quantification and characterization of physiological cell death (Olney et al., 2002b, *Neurobiology of Disease* 9: 205-219). Caspase-3 is a cytoplasmic enzyme, and thus active caspase-3-stained cells are stained in their entirety, hence making quantification relatively easy.

[0085] In the present invention, DNA fragmentation in early stages of apoptosis was visualized by TUNEL assay. The DNA fragmentation includes double-strand breaks and single-strand breaks. Both types of breaks can be detected by labeling the free 3'-OH termini of the fragments with modified nucleotides in an enzymatic reaction. The TUNEL assay is used as a highly sensitive detection method for apoptosis.

20 EXAMPLES

[0086] Next, the present invention will be illustrated in more detail by examples, but is not limited thereto. Within the scope of the technical idea of the present invention, various modifications can be made by persons of ordinary knowledge in the art.

[0087] Statistical analysis in the following examples was performed using GraphPad Prism 5 (GraphPad Software Inc., La Jolla, CA). Comparison of the mean values of the groups was performed by a one-way analysis of variance (ANOVA) followed by the Newman-Keuls post-hoc test or a two-way analysis of variance (ANOVA) followed by the Bonferroni post-hoc test. In the Y-maze test, comparison of group performance relative to random performance was performed using a two-tailed one-sample t-test. When the P value was < 0.05, the difference was regarded as statistically significant. The values are given as the mean and the standard error of the mean.

[0088] All experiments were conducted according to the ethical guidelines for animal experiments of the National Defense Medical College and approved by the Committee for Animal Research at the National Defense Medical College (Tokorozawa, Saitama, Japan).

45 <Example 1>

[0089] Animals: C57BL/6 mice used in this study were maintained on a 12-h light/dark cycle (lights on from 7:00 to 19:00) at room temperature of $22 \pm 2^\circ\text{C}$. The mice were kept with free access to food and water. All the mice used in this study were age-matched littermates.

[0090] Anesthetic and hydrogen treatment: The mice at postnatal day 6 (P6) during the brain developmental stage were taken out from the maternal cage and immediately thereafter placed in a humid chamber that has manipulating gloves. Air, oxygen (besides the oxygen contained in the "air"), hydrogen and sevoflurane were mixed to prepare an anesthetic mixed gas containing

30% oxygen, 1. 3% hydrogen and 3% sevoflurane as final concentrations, and the anesthetic mixed gas was administered via inhalation to the mice. The total gas flow was 2 L/min and the administration time of the anesthetic was 6 hours. The fractions of oxygen and the anesthetic were measured by a gas analysis system (Capnomac Ultima, GE Healthcare, Tokyo, Japan). The hydrogen gas concentration was measured by gas chromatography in a company called Breath Lab CO. (Nara, Japan). During the exposure to the anesthetic, the mice were kept warm on a mat heated at $38 \pm 1^\circ\text{C}$.

<Example 2>

[0091] The same procedures as described in Example 1 were performed except that air, oxygen (besides the oxygen contained in the "air"), hydrogen and sevoflurane were mixed to prepare an anesthetic mixed gas containing 30% oxygen, 0.6% hydrogen and 3% sevoflurane as final concentrations.

<Example 3>

[0092] The same procedures as described in Example 1 were performed except that air, oxygen (besides the oxygen contained in the "air"), hydrogen and sevoflurane were mixed to prepare an anesthetic mixed gas containing 30% oxygen, 0.3% hydrogen and 3% sevoflurane as final concentrations.

<Example 4>

[0093] The same procedures as described in Example 1 were performed except that air, oxygen (besides the oxygen contained in the "air"), hydrogen and desflurane were mixed to prepare an anesthetic mixed gas containing 30% oxygen, 1.3% hydrogen and 5.7% desflurane as final concentrations.

<Example 5>

[0094] The same procedures as described in Example 1 were performed except that air, oxygen (besides the oxygen contained in the "air") and hydrogen were mixed to prepare a mixed gas containing 30% oxygen and 1.3% hydrogen, and inhalational administration of the mixed gas was performed simultaneously with intraperitoneal administration of propofol (100 mg/kg i.p.).

<Example 6>

[0095] The same procedures as described in Example 1 were performed except that air, oxygen (besides the oxygen contained in the "air"), hydrogen and sevoflurane were mixed to prepare an anesthetic mixed gas containing 30% oxygen, 1.3% hydrogen and 2% sevoflurane as final concentrations.

<Comparative Example 1>

[0096] The same procedures as described in Example 1 were performed except that air, oxygen (besides the oxygen contained in the "air") and sevoflurane were mixed to prepare an anesthetic mixed gas containing 30% oxygen and 3% sevoflurane as final concentrations.

<Comparative Example 2>

[0097] The same procedures as described in Example 1 were performed except that air, oxygen (besides the oxygen contained in the "air") and desflurane were mixed to prepare an anesthetic mixed gas containing 30% oxygen and 5.7% desflurane as final concentrations.

<Comparative Example 3>

[0098] The same procedures as described in Example 1 were performed except that air and oxygen (besides the oxygen contained in the "air") were mixed to prepare a mixed gas containing 30% oxygen, and inhalational administration of the mixed gas was performed simultaneously with intraperitoneal administration of propofol (100 mg/kg i.p.).

Test Example 1-A

[0099] Purification of protein extracts: Preparation of protein extracts was performed as described in Kodama M. et al., Anesthesiology, 2011; 115: 979-991, followed by western blotting. The procedures are described briefly in the following. The forebrain of each mouse was quickly removed and homogenized in a 4-fold excess of a homogenization buffer containing 50 mM Tris HCl (pH 7.4), 150 mM NaCl, 1% NP-40, 0.5% sodium deoxycholate, a protease inhibitor cocktail (Complete; Roche Diagnostics, Penzberg, Germany) and phosphatase inhibitors (20 mM glycerophosphate, 1 mM Na_3VO_4 and 2 mM NaF). Then, the homogenate was centrifuged at 15,000 g at 4°C for 30 minutes. The supernatant was separated and stored at -80°C until use. The protein concentration of each sample was measured with the use of a bicinchoninic acid protein assay kit (Pierce, Rockford, IL).

[0100] Western blot analysis: Western blotting was performed according to the method described in Kodama M. et al., Anesthesiology, 2011; 115: 979-991. The procedures are described briefly in the following. The homogenates were subjected to sodium dodecyl sulfate polyacrylamide gel electrophoresis. Then, the proteins were transferred onto a polyvinylidene fluoride membrane (Immobilon-P; Millipore, Bedford, MA). The blots were immunoreacted with an anti-poly(adenosine diphosphate ribose) polymerase (anti-PARP) antibody (rabbit polyclonal; Cell Signaling Technology) and an anti- β -actin antibody (mouse monoclonal; Sigma, St. Louis, MO). The blots were then incubated with a peroxidase-conjugated secondary antibody. The protein bands were

visualized by a chemiluminescence detector (SuperSignal West Pico; Pierce). The band intensities of the cleaved PARP were quantified and normalized to β -actin. Comparison of the groups was performed using a two-way ANOVA followed by the Bonferroni post-hoc test (n = 3 to 6 mice per group).

[0101] The extracts from the forebrain were analyzed by Western blotting using an antibody against cleaved PARP (biomarker of apoptotic cell death). The analysis results are shown in Fig. 1A. The quantified band intensities of the cleaved PARP are shown in Fig. 1B. As shown in Figs. 1A and 1B, the immunoreactivity for the cleaved PARP in the brain of the mice exposed only to a gas containing 30% oxygen or to a gas containing 30% oxygen and 1.3% hydrogen was below the detection level, but the reaction producing cleaved PARP was induced in the mice exposed to a gas containing 30% oxygen and 3% sevoflurane for 6 hours (Comparative Example 1). Meanwhile, in the mice exposed to a gas containing 30% oxygen, 1.3% hydrogen and 3% sevoflurane (Example 1), the immunoreactivity for cleaved PARP was remarkably reduced as compared with the mice exposed to sevoflurane in a gas containing 30% oxygen (that is, hydrogen gas inhibited cleavage of PARP), and thus 1.3% hydrogen gas was shown to inhibit sevoflurane exposure-induced neuronal apoptosis in neonatal mice. Significant differences between these groups were found by a two-way ANOVA, and the primary effect of hydrogen inhalation ($F = 12.17$, $P < 0.01$), the primary effect of sevoflurane administration ($F = 45.66$, $P < 0.0001$), and interaction (hydrogen administration x sevoflurane administration; $F = 15.28$, $P < 0.01$) were found.

[0102] When the quantity of the cleaved PARP in Comparative Example 1 was set to 100%, the relative quantities of the cleaved PARP in Examples 1, 2 and 3 were lower by about 45%, by about 50% and by about 55%, respectively, and significant decreases were observed in the quantity of the cleaved PARP. In Example 6, neuronal apoptosis was significantly reduced as with Example 1. These results showed that the present invention can inhibit sevoflurane exposure-induced neuronal apoptosis by as high as 40% or more as compared with the case where hydrogen is not used.

Test Example 1-B

[0103] The evaluation of Example 4 and Comparative Example 2 was performed in the same manner as in Test Example 1-A. When the quantity of the cleaved PARP in Comparative Example 2 was set to 100%, the relative quantity of the cleaved PARP in Example 4 was lower by 47.7% and a significant decrease was observed in the quantity of the cleaved PARP. This result showed that the present invention inhibits desflurane exposure-induced neuronal apoptosis by as high as 45% or more.

Test Example 1-C

[0104] The evaluation of Example 4 and Comparative Example 3 was performed in the same manner as in Test Example 1-A. When the quantity of the cleaved PARP in Comparative Example 3 was set to 100%, the relative quantity of the cleaved PARP in Example 5 was lower by 55.1% and a significant decrease was observed in the quantity of the cleaved PARP. This result showed that the present invention inhibits propofol exposure-induced neuronal apoptosis by as high as 50% or more.

Test Example 2

[0105] Histopathological studies: Immunohistochemical staining was performed according to the method described in Kodama M. et al. , Anesthesiology, 2011; 115: 979-991 and Satoh Y. et al. , J Neurosci, 2011; 31: 11953-11967. The procedures are described briefly in the following. Mice were transcardially perfused with a 0.1 M phosphate buffer containing 4% paraformaldehyde. In each mouse, the skull was opened and the head portion was immersed in the same buffer as above for at least 2 hours. Then, the brain was removed from the skull, and paraffin-embedded sections (5- μ m thick) of the brain were prepared and histopathologically analyzed. The sections were deparaffinized in xylene and hydrated using a graded ethanol series according to the established method. For antigen retrieval, the deparaffinized sections were immersed in an antigen retrieval solution (Antigen Unmasking Solution; Vector Laboratories, Burlingame, CA), and heated in an autoclave (121°C) for 5 minutes. Then, the sections were treated with a blocking reagent (Protein Block, Serum-Free; Dako, Glostrup, Denmark) for 30 minutes to reduce background staining. Then, the sections were incubated with a primary antibody in a humid chamber at 4°C overnight. The primary antibodies used in this study were an anti-active caspase-3 antibody (rabbit polyclonal; Cell Signaling Technology, Beverly, MA) and an anti-4-hydroxy-2-nonenal (anti-4-HNE) antibody (mouse monoclonal; Japan Institute for the Control of Aging, Shizuoka, Japan).

[0106] For bright field staining, the sections were then incubated with a peroxidase-conjugated secondary antibody (Dako EnVision+ system; Dako). Immunoreactivity was revealed using 3,3-diaminobenzidine tetrachloride (DAB, Vector Laboratories) according to the manufacturer's protocol. Finally, the sections were counterstained with hematoxylin. For fluorescent staining, the sections were incubated with an Alexa Fluor 546-conjugated anti-mouse IgG antibody (Life Technologies, Eugene, OR).

[0107] As described in Kodama M. et al. , Anesthesiology, 2011; 115: 979-991, terminal deoxynucleotidyl transferase-mediated nick-end labeling (TUNEL) assay was performed using an in situ apoptosis detection kit (ApopTag; Chemicon, Temecula, CA) according to the manufacturer's protocol. DAB was used to reveal reactivity. The sections were counterstained with hematoxy-

lin.

[0108] Each test was performed using samples obtained from each group consisting of 8 to 10 mice exposed to anesthesia under the same conditions as in Example 1 or Comparative Example 1. An examiner blinded to the treatment conditions counted the number of active caspase-3-positive or TUNEL-positive cells.

[0109] Histological analysis was performed using an antibody against active caspase-3 (another biomarker of apoptotic cell death) (Fig. 2). In order to examine the activity of caspase-3, the sections were subjected to immunohistochemical staining. Since the western blot analysis showed that the apoptosis level in the mice exposed to a gas containing 30% oxygen and 1.3% hydrogen was the same as that in the mice exposed to a gas containing 30% oxygen as described above, histological quantification was performed only on the following three groups:

- (i) a gas containing 30% oxygen (hereinafter referred to as control),
- (ii) a gas containing 30% oxygen and 3% sevoflurane (hereinafter referred to as sevoflurane) (Comparative Example 1), and
- (iii) a gas containing 30% oxygen, 1.3% hydrogen and 3% sevoflurane (hereinafter referred to as sevoflurane + hydrogen)

(Example 1).

[0110] The 6-hour sevoflurane exposure (Comparative Example 1) induced a remarkable increase in the number of active caspase-3-positive cells in some regions in the brain immediately after the end of the 6-hour anesthesia as compared with the sham control (Fig. 2B). Meanwhile, in the mice exposed to sevoflurane + hydrogen (Example 1), the number of active caspase-3-positive cells was remarkably reduced as compared with the exposure to sevoflurane alone (Figs. 2 and 3). Figs. 2 and 3 clearly showed that hydrogen gas alleviates sevoflurane-induced neuronal apoptosis in developing brains. In order to measure apoptotic cell death at the cellular level, we also performed the TUNEL assay (Fig. 4). The pattern of TUNEL staining after the 6-hour anesthesia was similar to that of active caspase-3 staining. These results showed that 1.3% hydrogen remarkably reduces sevoflurane exposure-induced neuronal apoptosis in neonates.

[0111] Hydroxy radicals react with lipids to generate lipid peroxides including 4-HNE. For this reason, 4-HNE is widely used as a marker of lipid peroxidation and oxidative stress. Fig. 5 shows that the 6-hour sevoflurane exposure (Fig. 5B, Comparative Example 1) induced more lipid peroxidation in neurons as compared with the sham control (Fig. 5A). Meanwhile, 4-HNE staining in the brains of the mice exposed to sevoflurane + hydrogen (Example 1) (Fig. 5C) was remarkably reduced as compared with the exposure to sevoflurane alone (Fig. 5B). These results showed that hydrogen reduces brain ox-

idative stress induced by 3% sevoflurane exposure in neonatal mice.

Test Example 3

[0112] Behavioral tests: All mice used for behavioral studies were age-matched male littermates exposed to anesthesia under the same conditions as in Example 1 or Comparative Example 1. At 3 weeks of age, these mice were weaned and housed in groups of three or four animals per cage. At predetermined ages, they were subjected to behavioral tests to evaluate anesthetic effects. The behavioral tests included an open field test as a control for the evaluation of long-term memory impairment, a Y-maze spontaneous alternation test for the evaluation of short-term memory impairment, fear conditioning tests for the evaluation of long-term memory impairment, and sociability tests. As for the sociability tests, in addition to a social interaction test, a novelty test and an olfactory test were performed as controls. The movement of each mouse was monitored and analyzed using a computer-operated video tracking system (SMART; Barcelona, Spain). In the tests, an apparatus with arms was used and the number of entry of all four legs of the animal into the arm was counted. The apparatus was cleaned for every trial. All apparatuses used in this study were manufactured by O'Hara & Co. LTD. (Tokyo, Japan). The same set of mice was subjected to all the tests.

[0113] Open field test: Emotional responses to a novel environment were measured in an open field test according to the method described in Satoh Y. et al., J Neurosci, 2011; 31: 11953-11967. Activity was measured as the total travel distance (meter) in 10 minutes. The test was performed on 12-week-old mice. The results are shown in Fig. 6A.

[0114] Y-maze spontaneous alternation test: For evaluation of spatial working memory, a Y-maze test was performed according to the method described in Satoh Y. et al., J Neurosci, 2011; 31: 11953-11967. The test used a symmetrical acrylic Y maze consisting of three arms (25 x 5 cm) spaced 120 degrees apart with a transparent wall of 15 cm in height. Each mouse was placed on the center of the Y maze, and allowed to freely explore the maze for 8 minutes. The total number of arm entries and the number of triads were recorded. The percentage of alternation was obtained by dividing the number of triads (three consecutive entries into the three different arms) by the maximum possible number of alternations (the total number of arm entries minus 2), followed by multiplying the resulting value by 100. The test was performed on 12-week-old mice. The results are shown in Fig. 6B.

[0115] Fear conditioning test: A fear conditioning test was performed according to the method described in Satomoto M. et al., Anesthesiology, 2009; 110: 628-637. The procedures are described briefly in the following. Each mouse was placed in a special cage and presented with 80 dB white noise of 20-second duration. At the 20th

second of the stimulus presentation, a 1-sec, 1-mA foot-shock was given, and this stimulus pairing was repeated 3 times at intervals of 1 minute. At 24 hours after the repetitive stimulation, the mouse was returned to the cage, and the total time of freezing responses (a state of the absence of movement in any parts of the body for one second) was measured for 5 minutes (contextual fear conditioning test). At 48 hours after the repetitive stimulation, the mouse was placed into a cage of a different shape in a completely different place and presented with white noise only, and the total time of freezing responses was measured for 3 minutes (auditory (cued) fear conditioning test). The freezing response was recorded in the video tracking system and regarded as a measure of fear memory. The test was performed on 13-week-old mice. The mice subjected to this test were not used for any further testing (the same set of mice that had been used in the open field test and the Y-maze spontaneous alternation test was subjected to this test). Fig. 6C shows the measurement results of freezing responses observed in the mice placed in the conditioning chamber 24 hours after the conditioning (contextual fear response). Fig. 6D shows the measurement results of freezing responses observed in the mice placed in a cage of a different shape in a completely different place under white noise presentation 48 hours after the conditioning.

[0116] Sociability tests: The tests performed to assess sociability were the following three tests: a social interaction test, a novelty test and an olfactory test.

[0117] In order to examine social interaction capability, a sociability test was performed according to the method described in Satoh Y. et al., J Neurosci, 2011; 31: 11953-11967. The preference for interaction with an animate target (caged adult mouse) versus an inanimate target (caged dummy mouse) was examined in an open field chamber. The animate or inanimate target was placed in a cylindrical cage so that olfactory interaction and minimal tactile interaction were allowed. The cylindrical cage has a height of 10 cm, a diameter of 9 cm and bars spaced 7 mm apart. Sniffing directed at the cage was monitored under 70 lux lighting conditions for 10 minutes and then scored. The test was performed on 12-week-old mice (control: n = 18; sevoflurane: n = 20; sevoflurane + hydrogen: n = 19). All the animate targets used were wild type male mice. The results are shown in Fig. 7A.

[0118] Olfactory test: An olfactory test was performed as described in Satoh Y. et al., J Neurosci, 2011; 31: 11953-11967, with some modifications. The procedures are described briefly in the following. Mice were habituated to the flavor of a novel food (blueberry cheese) on the first day. After 48-hour food deprivation, a piece of blueberry cheese was buried under 2 cm of bedding in a clean cage, and the time required to find the buried food was measured. The test was performed on 12-week-old mice (the same set of mice that had been used in the above sociability test was subjected to this test). The results are shown in Fig. 7B.

[0119] Novelty test: A novelty test was performed according to the method described in Satoh Y. et al., J Neurosci, 2011; 31: 11953-11967. Mice were individually housed and the total time spent interacting with an inanimate novel object (a small red tube) in 10 minutes was measured. The test was performed on 12-week-old mice (the same set of mice that had been used in the sociability test and the olfactory test was subjected to this test). The results are shown in Fig. 7C.

[0120] In the open field test performed for the evaluation of emotional responses to a novel environment, no statistically significant differences in the total travel distance over 10 minutes were observed between the groups (control: n = 18; sevoflurane: n = 20; sevoflurane + hydrogen: n = 19) (Fig. 6A). Therefore, it was shown that general anesthetics do not affect emotional responses.

[0121] Working memory is the ability to temporarily hold information, which is essential for carrying out complex cognitive tasks (Saxe MD et al., Proc Natl Acad Sci USA 2006; 103: 17501-17506, and Jones MW, Curr Mol Med 2002; 2: 639-647). In the Y-maze test performed for the evaluation of spatial working memory (Fig. 6B), no statistically significant differences were observed between the groups (the same set of mice that had been used in the open field test was subjected to this test). Therefore, it was shown that general anesthetics do not affect short-term memory.

[0122] In order to evaluate the effect of hydrogen on long-term memory impairment caused by neonatal exposure to sevoflurane, mice neonatally exposed to sevoflurane together with hydrogen (Example 1) or without hydrogen (Comparative Example 1) were subjected to the fear conditioning test in adulthood (Figs. 6C and 6D). In the contextual fear conditioning test (Fig. 6C), freezing responses in the contextual test session 24 hours after the repetitive stimulation were remarkably reduced in the sevoflurane-exposed mice (Comparative Example 1) as compared with the control animals (one-way ANOVA, $F = 7.22$, $P = 0.0017$; Newman-Keuls post-hoc test, $P < 0.01$ for control vs. sevoflurane), and neonatal exposure to sevoflurane was shown to cause long-term memory impairment in adulthood. In contrast, the mice exposed to sevoflurane + hydrogen (Example 1) showed improved behaviors as compared with the mice exposed to sevoflurane only (Comparative Example 1) (Newman-Keuls post-hoc test, $P < 0.01$ for sevoflurane vs. sevoflurane + hydrogen) and almost the same performance as the control did (Newman-Keuls post-hoc test, $P < 0.05$ for control vs. sevoflurane + hydrogen). In the auditory (cued) fear conditioning test (Fig. 6D), freezing responses in the auditory test session 48 hours after conditioning were remarkably reduced in the sevoflurane-exposed mice (Comparative Example 1) as compared with the control (one-way ANOVA, $F = 12.08$, $P = 0.0001$; Newman-Keuls post-hoc test, $P < 0.001$ for control vs. sevoflurane). In contrast, the mice exposed to sevoflurane + hydrogen (Example 1) showed better be-

haviors as compared with the mice exposed to sevoflurane only (Comparative Example 1) (Newman-Keuls post-hoc test, $P < 0.001$ for sevoflurane vs. sevoflurane + hydrogen) and almost the same performance as the control did (Newman-Keuls post-hoc test, $P < 0.05$ for control vs. sevoflurane + hydrogen).

[0123] These results showed that the kind of memory impairment caused by neonatal exposure to general anesthetics is long-term memory impairment and that hydrogen prevents and/or alleviates such memory impairment.

[0124] Mice are a social species and exhibit behavioral social interaction (Kamsler A et al. , Mol Neurobiol 2004; 29: 167-178). We previously reported that mice neonatally exposed to sevoflurane showed social behavioral deficits in adulthood (Satomoto M. et al., Anesthesiology 2009; 110: 628-637). This time, in order to examine whether hydrogen gas can inhibit the social behavioral deficits caused by neonatal exposure to sevoflurane, the sociability tests were performed on mice (Fig. 7).

[0125] In the interaction test using an animate or inanimate target, all the groups spent much more time interacting with the animate target than with the inanimate target (t -test, $P < 0.001$ for every comparison). However, the mice neonatally exposed to sevoflurane (Comparative Example 1) spent less time interacting with the animate target than the control did. The mice subjected to simultaneous administration of sevoflurane with hydrogen (Example 1) showed almost the same behaviors as the control did, and the simultaneous administration of sevoflurane with hydrogen was shown to prevent the social behavioral deficits caused by sevoflurane (Fig. 7A). These results were confirmed by a one-way ANOVA ($F = 6.12$, $P = 0.004$; Newman-Keuls post-hoc test, $P < 0.01$ for control vs. sevoflurane, $P < 0.05$ for control vs. sevoflurane + hydrogen). It is unreasonable to say that the differences in social interaction described above were attributed to impaired olfactory sensation or loss of interest in novelty because no remarkable differences were observed between the sevoflurane administration group (Comparative Example 1) and the sevoflurane + hydrogen administration group (Example 1) in the olfactory test (one-way ANOVA, $F=0.50$, $P=0.71$, Fig. 7B) and the novelty test (one-way ANOVA, $F = 0.04$, $P = 0.96$, Fig. 7C). Therefore, it can be said that hydrogen can inhibit social behavioral deficits caused by neonatal exposure to sevoflurane.

INDUSTRIAL APPLICABILITY

[0126] The present invention, which uses a general anesthetic in combination with hydrogen, makes it possible to provide a medicine capable of preventing and/or alleviating an anesthetic-induced neurological deficit in the brain (for example, in the developing brain). Further, the medicine is convenient, free from side effects, efficacious and inexpensive, and therefore the present invention can provide a medicine for general anesthesia which is ef-

fective in obstetric and pediatric care.

Claims

5. 1. A medicine for a human or a non-human animal, comprising a combination of a general anesthetic and hydrogen.
10. 2. A medicine for general anesthesia of a human or a non-human animal, **characterized in that** a general anesthetic and hydrogen are administered in combination.
15. 3. The medicine according to claim 1 or 2, wherein the medicine is used for prevention and/or alleviation of an anesthetic-induced neurological deficit.
20. 4. The medicine according to claim 3, wherein the anesthetic-induced neurological deficit is associated with neuronal apoptosis.
25. 5. A medicine for prevention and/or alleviation of an anesthetic-induced neurological deficit, comprising a general anesthetic, the general anesthetic being used in combination with hydrogen.
30. 6. The medicine according to any one of claims 1 to 5, wherein the general anesthetic is an inhalational anesthetic or a liquid intravenous anesthetic and the hydrogen is hydrogen gas.
35. 7. The medicine according to claim 6, wherein the concentration of the hydrogen gas in the medicine is 0.15 to 7% (v/v).
40. 8. The medicine according to any one of claims 1 to 7, wherein the medicine is for a fetus, a neonate, an infant, a preschool child, a child or an elderly adult.
45. 9. The medicine according to any one of claims 1 to 8, wherein the general anesthetic is one or more kinds of anesthetics selected from the group consisting of nitrous oxide, isoflurane, enflurane, methoxyflurane, sevoflurane, desflurane, diethyl ether, propofol and midazolam.
50. 10. The medicine according to any one of claims 3 and 5 to 9, wherein the anesthetic-induced neurological deficit is a neuromotor deficit, a neurocognitive deficit, a psychocognitive deficit or autism.
55. 11. A method for preparing a medicine for prevention and/or alleviation of an anesthetic-induced neurological deficit, the method using a general anesthetic in combination with hydrogen.
12. The method according to claim 11, wherein the an-

esthetic-induced neurological deficit is associated with neuronal apoptosis.

13. The method according to claim 11 or 12, wherein the general anesthetic is an inhalational anesthetic or a liquid intravenous anesthetic and the hydrogen is hydrogen gas.

14. The method according to claim 13, wherein the concentration of the hydrogen gas in the medicine is 0.15 to 7% (v/v).

15. The method according to any one of claims 11 to 14, wherein the medicine is for a fetus, a neonate, an infant, a preschool child, a child or an elderly adult.

16. Use of a general anesthetic for production of a medicine for general anesthesia used in combination with hydrogen.

17. Use of a general anesthetic and hydrogen for production of a medicine comprising a combination of a general anesthetic and hydrogen.

18. Use of a general anesthetic and hydrogen for production of a medicine for prevention and/or alleviation of an anesthetic-induced neurological deficit.

19. The use according to claim 18, wherein the anesthetic-induced neurological deficit is associated with neuronal apoptosis.

20. The use according to any one of claims 16 to 18, wherein the general anesthetic is an inhalational anesthetic or a liquid intravenous anesthetic and the hydrogen is hydrogen gas.

21. The use according to claim 20, wherein the concentration of the hydrogen gas in the medicine is 0.15 to 7% (v/v).

22. The use according to any one of claims 16 to 18, wherein the use is for a fetus, a neonate, an infant, a preschool child, a child or an elderly adult.

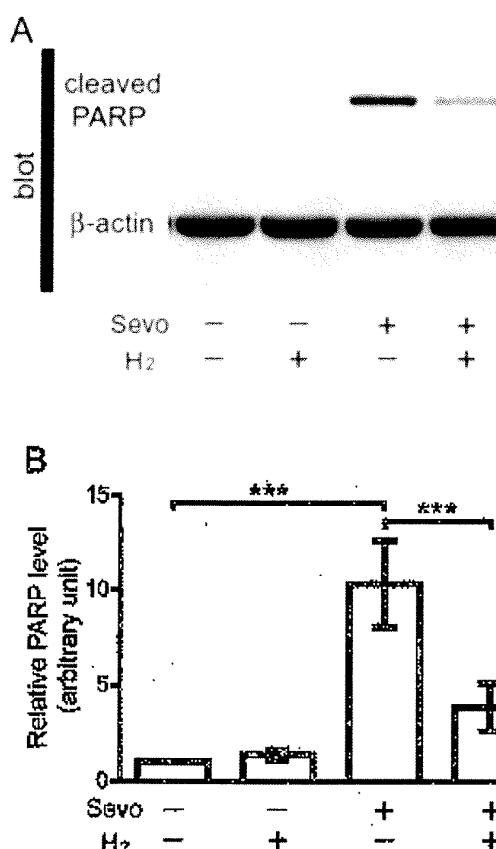
23. The use according to any one of claims 16 to 18, wherein the general anesthetic is one or more kinds of anesthetics selected from the group consisting of nitrous oxide, isoflurane, enflurane, methoxyflurane, sevoflurane, desflurane, diethyl ether, propofol and midazolam.

24. The use according to claim 18, wherein the anesthetic-induced neurological deficit is a neuromotor deficit, a neurocognitive deficit, a psychocognitive deficit or autism.

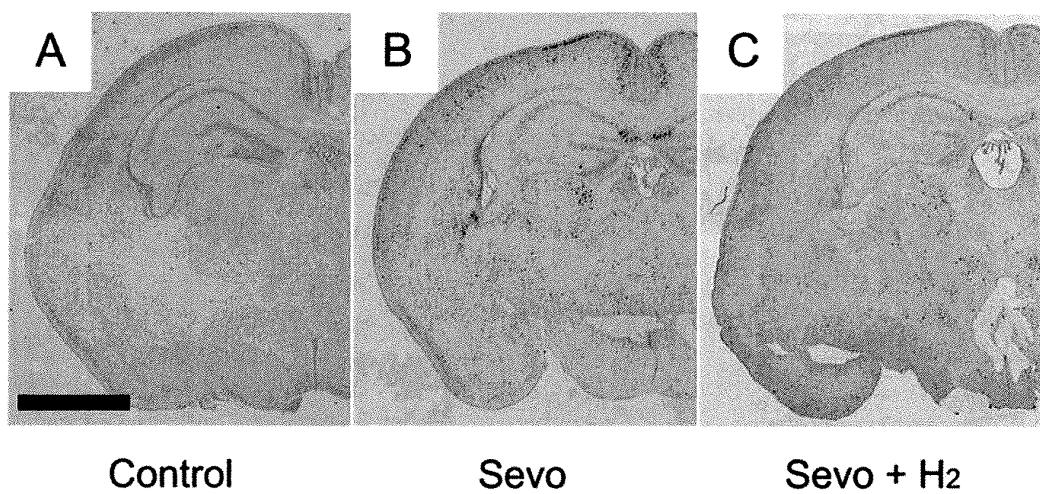
25. A method for preventing and/or alleviating an anesthetic-induced neurological deficit, comprising the step of administering a general anesthetic in combination with hydrogen to a subject.

5 26. The method according to claim 25, wherein the general anesthetic is an inhalational anesthetic or a liquid intravenous anesthetic and the hydrogen is hydrogen gas.

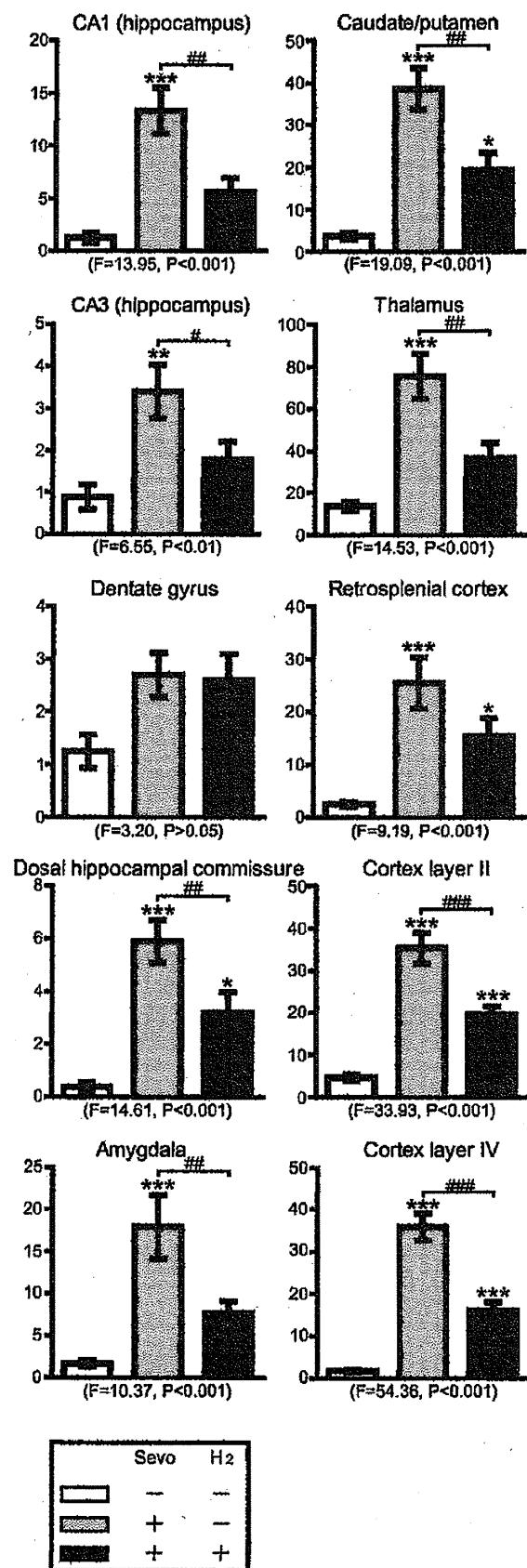
10 27. The method according to claim 26, wherein the concentration of the hydrogen gas in a medicine is 0.15 to 7% (v/v).

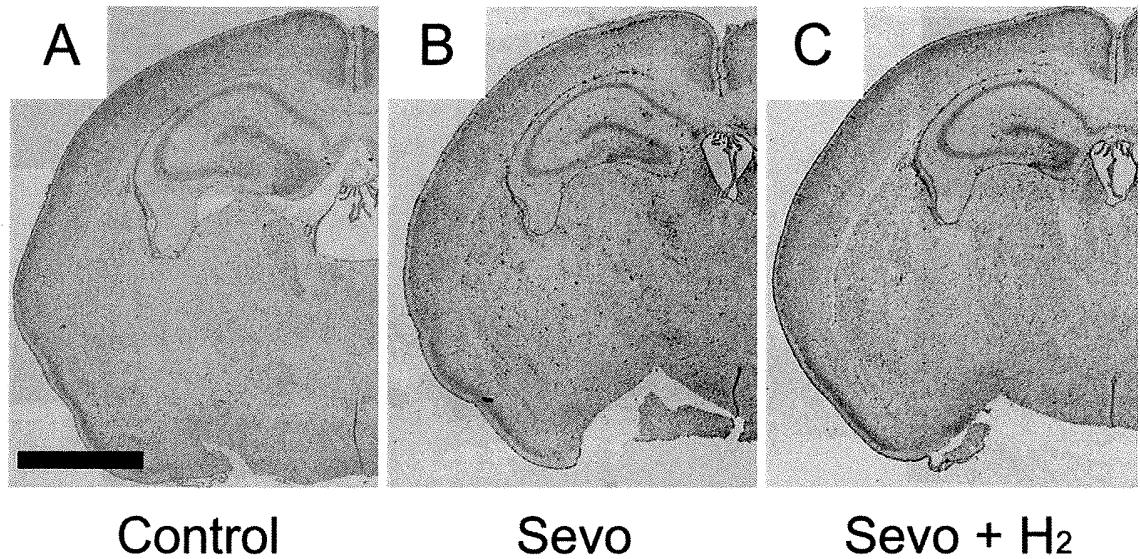

15 28. The method according to claim 25, wherein the subject is a fetus, a neonate, an infant, a preschool child, a child or an elderly adult.

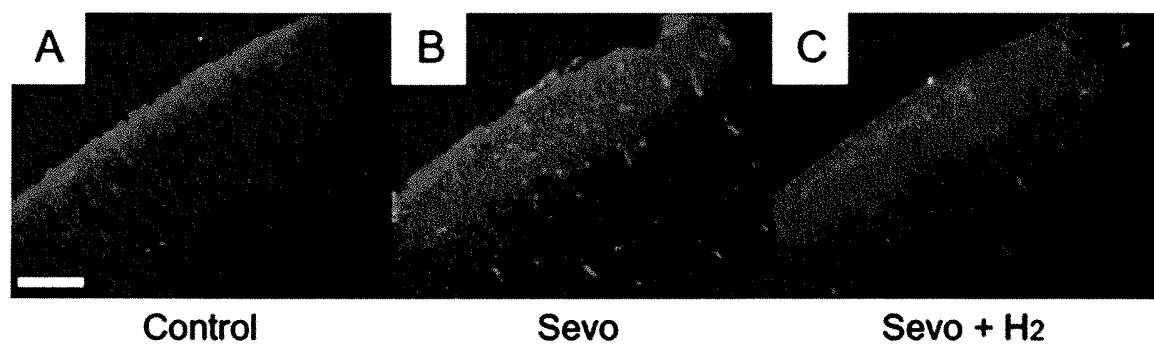
20 29. The method according to claim 25, wherein the general anesthetic is one or more kinds of anesthetics selected from the group consisting of nitrous oxide, isoflurane, enflurane, methoxyflurane, sevoflurane, desflurane, diethyl ether, propofol and midazolam.

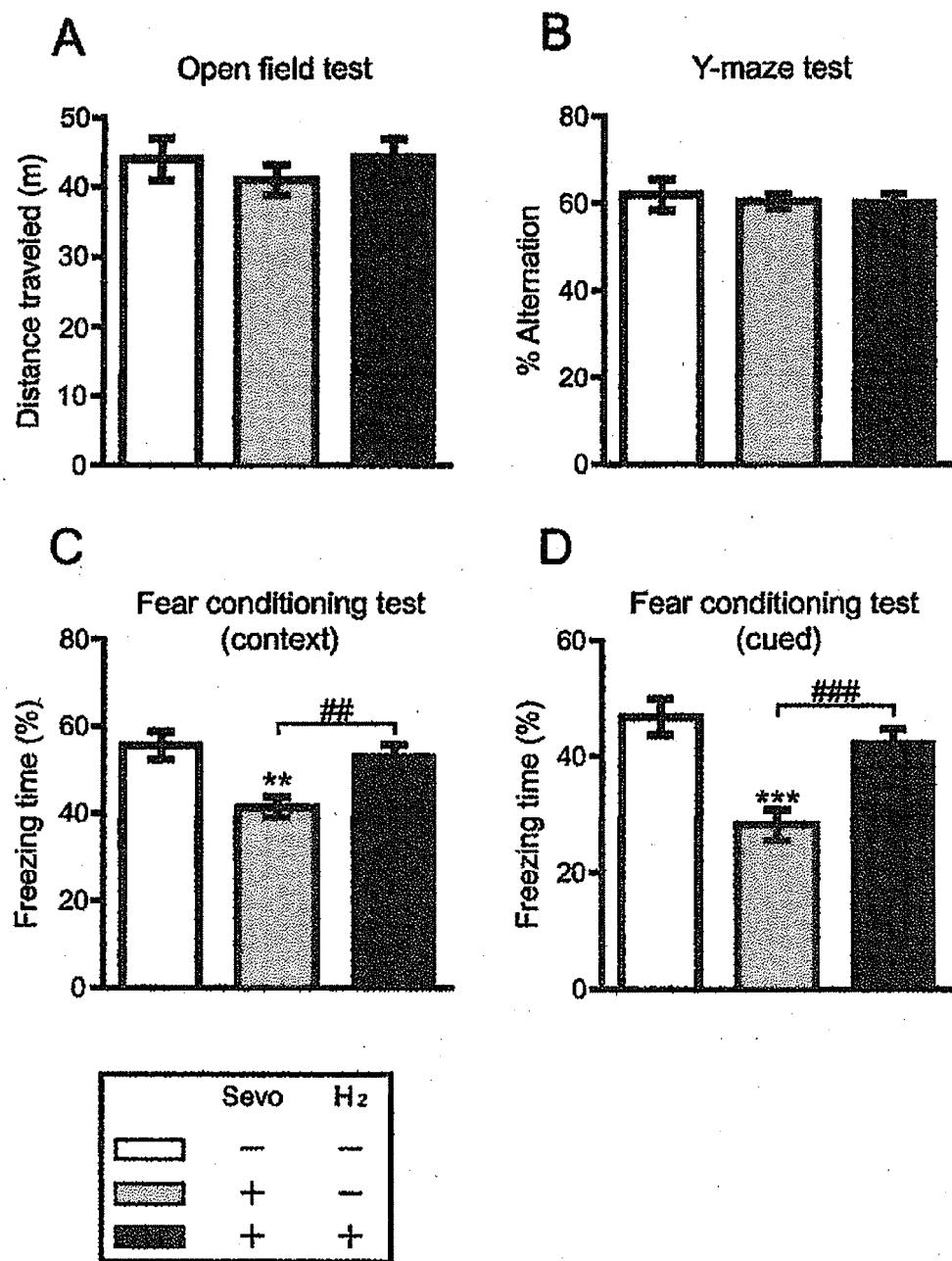

25 30. The method according to claim 25, wherein the anesthetic-induced neurological deficit is a neuromotor deficit, a neurocognitive deficit, a psychocognitive deficit or autism.

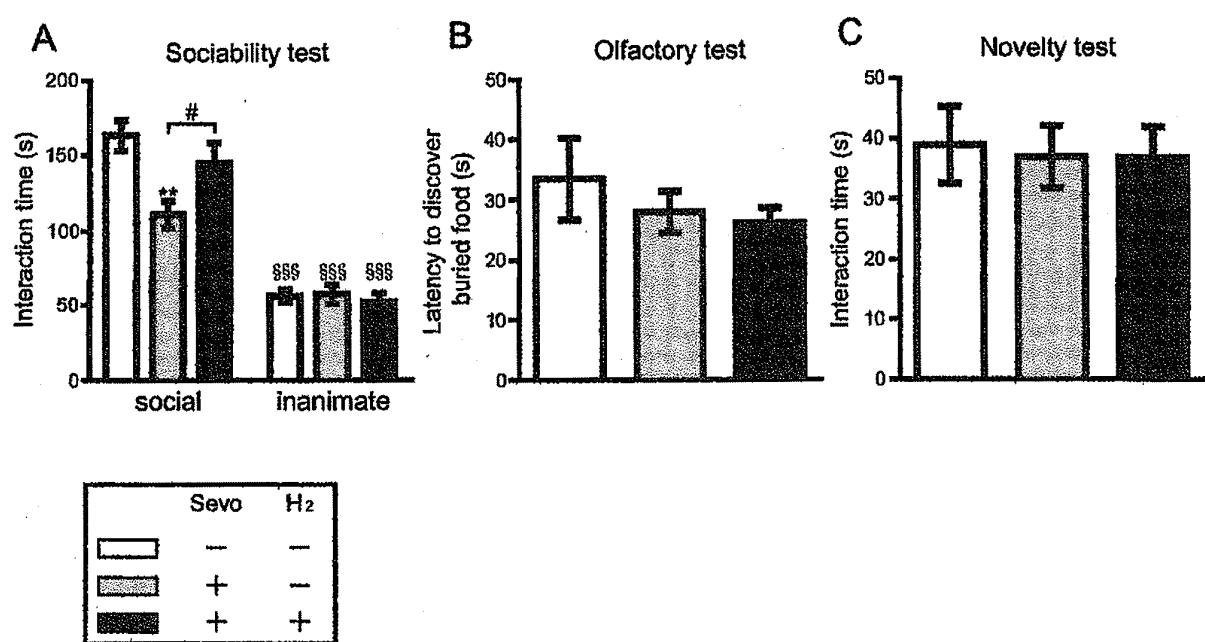
30 31. The method according to claim 25, wherein the anesthetic-induced neurological deficit is associated with neuronal apoptosis.


{Fig1}


{Fig2}


{Fig3}


{Fig4}


{fig5}

{Fig6}

{fig7}

INTERNATIONAL SEARCH REPORT		International application No. PCT/JP2013/065094	
5	A. CLASSIFICATION OF SUBJECT MATTER A61K33/00(2006.01)i, A61K31/05(2006.01)i, A61K31/08(2006.01)i, A61K31/5517(2006.01)i, A61K45/00(2006.01)i, A61P23/00(2006.01)i, A61P25/00(2006.01)i, A61P25/18(2006.01)i, A61P25/28(2006.01)i, According to International Patent Classification (IPC) or to both national classification and IPC		
10	B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) A61K33/00, A61K31/05, A61K31/08, A61K31/5517, A61K45/00, A61P23/00, A61P25/00, A61P25/18, A61P25/28, A61P43/00		
15	Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Jitsuyo Shinan Koho 1922-1996 Jitsuyo Shinan Toroku Koho 1996-2013 Kokai Jitsuyo Shinan Koho 1971-2013 Toroku Jitsuyo Shinan Koho 1994-2013		
20	Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) CAplus/REGISTRY/MEDLINE/EMBASE/BIOSIS (STN), JSTPlus/JMEDPlus/JST7580 (JDreamIII)		
25	C. DOCUMENTS CONSIDERED TO BE RELEVANT		
	Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
30	P, X	YONAMINE, R. et al, Coadministration of hydrogen gas as part of the carrier gas mixture suppresses neuronal apoptosis and subsequent behavioral deficits caused by neonatal exposure to sevoflurane in mice, Anesthesiology, 2013 Jan, Vol.118, No.1, p.105-13, entire text, particularly, Abstract	1-24
35	P, X	XIANG, L. et al, Inhalation of hydrogen gas reduces liver injury during major hepatectomy in swine, World J Gastroenterol, 2012 Oct, Vol. 18, No.37, p.5197-204, entire text, particularly, Abstract	1,2,6-9,16, 17,20-23
40	P, A		3-5,10-15, 18,19,24
45	<input checked="" type="checkbox"/> Further documents are listed in the continuation of Box C. <input type="checkbox"/> See patent family annex.		
	* Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier application or patent but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art "&" document member of the same patent family		
50	Date of the actual completion of the international search 08 July, 2013 (08.07.13)	Date of mailing of the international search report 16 July, 2013 (16.07.13)	
55	Name and mailing address of the ISA/ Japanese Patent Office Facsimile No.	Authorized officer Telephone No.	

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2013/065094

5

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT			
	Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
10	X	KOBAYASHI, H. et al, Effects of hydrogen gas in a mouse cold induced brain injury model, Journal of Neurotrauma, 2011, Vol.28, No.5, p. A64, entire text	1,2,6-9,16, 17,20-23
	A	Naoko KURITA et al., "Teinodo Sevoflurane o Mochiita 3 Saiji no Nanjisei Tenkan ni Taisuru Tenkan Shoten Setsujojutsu no Masui Keiken", Clinical Pediatric Anesthesia: Official Journal of the Japanese Society of Pediatric Anesthesiology, 2003, vol.9, no.1, page 87, entire text	3-5,10-15, 18,19,24
15	X	Naoko KURITA et al., "Teinodo Sevoflurane o Mochiita 3 Saiji no Nanjisei Tenkan ni Taisuru Tenkan Shoten Setsujojutsu no Masui Keiken", Clinical Pediatric Anesthesia: Official Journal of the Japanese Society of Pediatric Anesthesiology, 2003, vol.9, no.1, page 87, entire text	1,2,6,8,9, 16,17,20,22, 23
	A	Noriko TODA et al., "Kyodai Kojukaku Shinkeiga Saiboshu ni Taishite Katagawa Tsuikyu Setsujojutsu o Okonatta Nyuji 2 Shorei no Masui Keiken", The Japanese Journal of Anesthesiology, 2007, vol.56, no.2, pages 158 to 162, entire text, particularly, abstract	3-5,7,10-15, 18,19,21,24
20	X	Noriko TODA et al., "Kyodai Kojukaku Shinkeiga Saiboshu ni Taishite Katagawa Tsuikyu Setsujojutsu o Okonatta Nyuji 2 Shorei no Masui Keiken", The Japanese Journal of Anesthesiology, 2007, vol.56, no.2, pages 158 to 162, entire text, particularly, abstract	1,2,6,8,9, 16,17,20,22, 23
	A	Kagaku Daijiten 3, reduced-size edition (34th print), 1993, page 11, column of 'Air'	3-5,7,10-15, 18,19,21,24
25	X	Shuji DOHI, "PGI2 Yudotai (OP-41483) no No Sekizui Ketsuryuryo to No Sekizui Ekiatsu ni Oyobosu Eikyo", The Japanese Journal of Anesthesiology, 1987, vol.36, no.11, pages 1790 to 1795, entire text, particularly, abstract	1-24
	A	JEVTOVIC-TODOROVIC, V. et al, Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits, J Neurosci, 2003, Vol.23, No.3, p.876-82, entire text, particularly, Abstract	1-24
30	Y	HUANG, Y. et al, Beneficial effects of hydrogen gas against spinal cord ischemia-reperfusion injury in rabbits, Brain Res, 2011, Vol.1378, p.125-36, entire text, particularly, Abstract	1-24
	A	ZHAN, Y. et al, Hydrogen gas ameliorates oxidative stress in early brain injury after subarachnoid hemorrhage in rats, Crit Care Med, 2012 Apr, Vol.40, No.4, p.1291-6, entire text, particularly, Abstract	1-24
35	Y	JEVTOVIC-TODOROVIC, V. et al, Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits, J Neurosci, 2003, Vol.23, No.3, p.876-82, entire text, particularly, Abstract	1-24
	Y	HUANG, Y. et al, Beneficial effects of hydrogen gas against spinal cord ischemia-reperfusion injury in rabbits, Brain Res, 2011, Vol.1378, p.125-36, entire text, particularly, Abstract	1-24
40	Y	ZHAN, Y. et al, Hydrogen gas ameliorates oxidative stress in early brain injury after subarachnoid hemorrhage in rats, Crit Care Med, 2012 Apr, Vol.40, No.4, p.1291-6, entire text, particularly, Abstract	1-24
	Y	JEVTOVIC-TODOROVIC, V. et al, Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits, J Neurosci, 2003, Vol.23, No.3, p.876-82, entire text, particularly, Abstract	1-24
45	Y	HUANG, Y. et al, Beneficial effects of hydrogen gas against spinal cord ischemia-reperfusion injury in rabbits, Brain Res, 2011, Vol.1378, p.125-36, entire text, particularly, Abstract	1-24
	Y	ZHAN, Y. et al, Hydrogen gas ameliorates oxidative stress in early brain injury after subarachnoid hemorrhage in rats, Crit Care Med, 2012 Apr, Vol.40, No.4, p.1291-6, entire text, particularly, Abstract	1-24
50			
55			

Form PCT/ISA/210 (continuation of second sheet) (July 2009)

INTERNATIONAL SEARCH REPORT		International application No. PCT/JP2013/065094
C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	LIU, Y. et al, Hydrogen saline offers neuroprotection by reducing oxidative stress in a focal cerebral ischemia-reperfusion rat model, Medical Gas Research, 2011, URL: < http://www.medicalgasresearch.com/content/pdf/2045-9912-1-15.pdf >	1-24

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2013/065094

5

Continuation of A. CLASSIFICATION OF SUBJECT MATTER
(International Patent Classification (IPC))

10

A61P43/00 (2006.01)i

(According to International Patent Classification (IPC) or to both national
classification and IPC)

15

20

25

30

35

40

45

50

55

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2013/065094

5

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: 25–31
because they relate to subject matter not required to be searched by this Authority, namely:
Claims 25 to 31 pertain to methods for treatment of the human body by surgery or therapy.
2. Claims Nos.:
because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3. Claims Nos.:
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

25

This International Searching Authority found multiple inventions in this international application, as follows:

30

35

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of additional fees.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

40

45

50

55

Remark on Protest

- The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee.
- The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation.
- No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (2)) (July 2009)

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Non-patent literature cited in the description

- **ANAND ; SCALZO.** *Biol. Neonate*, 2000, vol. 77 (2), 69-82 [0013]
- **BALDUINI et al.** *Brain Research*, 2000, vol. 859, 318-325 [0013]
- **JEVTOVIC-TODOROVIC et al.** *The Journal of Neuroscience*, 2003, vol. 23 (3), 876-882 [0013]
- **OLNEY et al.** *Brain Pathol*, 2002, vol. 12 (4), 488-498 [0013]
- **IKONOMIDOU et al.** *Biochemical Pharmacology*, 2001, vol. 62, 401-405 [0013]
- **YOUNG et al.** *Cell Death and Differentiation*, 2003, vol. 10, 1148-1155 [0013] [0024]
- **BUTLER.** *TINS*, 1999, vol. 22 (8), 332-334 [0013]
- **IKONOMIDOU ; LECHOSLAW.** *Lancet Neurology*, 2002, vol. 1, 383-386 [0013]
- **KOMURO ; RAKIE.** *Science*, 1993, vol. 260 (5104), 95-97 [0013]
- **BEHAR et al.** *The Journal of Neuroscience*, 1999, vol. 19 (11), 4449-4461 [0013]
- **BEHAR et al.** *Cerebral Cortex*, 2001, vol. 11, 744-753 [0013]
- **OLNEY et al.** *Neurobiology of Disease*, 2002, vol. 9, 205-219 [0013] [0084]
- **MOLAR ; BLAKEMORE.** *Trends Neurosci.*, 1995, vol. 18 (9), 389-397 [0013]
- **CLANCY et al.** *Neuroscience*, 2001, vol. 105, 7-17 [0013]
- **OLNEY et al.** *Neurotoxicology*, 2002, vol. 23 (6), 659-668 [0013]
- **IKONOMIDOU et al.** *Science*, 1999, vol. 238, 70-74 [0013] [0027]
- **DOBBING ; SANDS.** *Early Hum Dev*, 1979, vol. 3, 79-84 [0013]
- **KERR et al.** *Br J Cancer*, 1972, vol. 26 (4), 239-257 [0013]
- **SLOVITER.** *TRENDS in Pharmacological Science*, 2002, vol. 23 (1), 19-24 [0013]
- **SHERWARD ; BOWER.** *Clin Exp Pharmacol Physiol*, 1998, vol. 25 (7-8), 487-495 [0013]
- **YOUNG et al.** *Nature Med*, 1999, vol. 5, 448-453 [0013]
- **BRENNEMAN et al.** *Brain Res Dev Brain Res*, 1990, vol. 51 (1), 63-68 [0013]
- **YUAN ; YANKER.** *Nature*, 2000, vol. 407, 802-809 [0013] [0025]
- **GARCIA et al.** *Science*, 1992, vol. 258 (5080), 302-304 [0013]
- **MARTINOU et al.** *Neuron*, 1994, vol. 13 (4), 1017-1030 [0013]
- **MOTOYAMA et al.** *Science*, 1995, vol. 267, 1506-1510 [0013]
- **GOEN et al.** *Behavioural Brain Research*, 2002, vol. 136, 329-337 [0013]
- **MONTI ; CONTESTABILE.** *European Journal of Neuroscience*, 2000, vol. 12, 3117-3123 [0013]
- **V. JEVTOVIC-TODOROVIC et al.** *Journal of Neuroscience*, 2003, vol. 23, 876-882 [0013]
- **GYULAI et al.** *Anesthesiology*, 2001, vol. 95, 585-593 [0013]
- **BITTIGAU et al.** *PNAS*, 2002, vol. 99 (23), 15089-15094 [0013] [0023] [0027]
- **FARBER ; OLNEY.** *Developmental Brain Research*, 2003, vol. 147, 37-45 [0013]
- **WILDER RT et al.** *Anesthesiology*, 2009, vol. 100, 796-804 [0013]
- *Anesthesiology*, 2009, vol. 111, 1365-1371 [0013] [0022]
- **SALVEEN GS ; RIEDL SJ.** *Adv Exp Med Biol.*, 2008, vol. 615, 13-23 [0013]
- **LA. PRADELLI ; M. BENETEAU ; JE. RICCI.** *Cell. Mol. Life Sci.*, 2010, vol. 67, 1589-1597 [0013]
- *Anesthesiology*, 2010, vol. 112, 834-841 [0021]
- *Int. J. Devl Neuroscience*, 2009, vol. 27, 727-731 [0021]
- **BRUNET et al.** *Current Opinion in Neurobiology*, 2001, vol. 11, 297-305 [0023] [0027]
- **GREEN.** *Cell*, 2000, vol. 102, 1-4 [0023]
- **KORSMEYER et al.** *Cell Death and Differentiation*, 2002, vol. 7, 1166-1173 [0026]
- **DIKRANIAN et al.** *Neurobiology of Disease*, 2001, vol. 8, 359-379 [0026]
- Molecular Biological Mechanism of Ischemic Neuronal Death and Brain Protection by Medication. *The Japanese Journal of Anesthesiology*, 2007, vol. 56, 248-270 [0028]
- **OKABE et al.** *Nat. Neuroscience*, 1999, vol. 2, 804-811 [0054]
- **HUA ; SMITH.** *Nature Neuroscience*, 2004, vol. 7 (4), 327-332 [0054]
- **AGGLETON ; BROWN.** *Behav Brain Sci*, 1999, vol. 22 (3), 425-44 [0055]
- **WECHSLER D.** The Wechsler Adult Intelligence Scale-Revised (WAIS-R). Psychological Corporation, 1981 [0057]
- **BENTON AL ; HANSHER K.** Multilingual aphasia examination. University of Iowa Press, 1978 [0057]

- **REITAN RM.** Validity of the Trail Making Test as an indicator of organic brain damage. *Percept Mot Skills*, 1958, vol. 8, 271-6 **[0057]**
- **COMBS D ; D'ALECY L.** Motor performance in rats exposed to severe forebrain ischemia: Effect of fasting and 1,3-butanediol. *Stroke*, 1987, vol. 18, 503-511 **[0057]**
- **GIONETT ; THOMAS J ; WARNER D ; GOODLETT C ; WASSERMAN E ; WEST J.** Forebrain ischemia induces selective behavioral impairments associated with hippocampal injury in rats. *Stroke*, 1991, vol. 22, 1040-1047 **[0057]**
- **KODAMA M. et al.** *Anesthesiology*, 2011, vol. 115, 979-991 **[0099]** **[0100]** **[0105]** **[0107]**
- **SATOH Y. et al.** *J Neurosci*, 2011, vol. 31, 11953-11967 **[0105]** **[0113]** **[0114]** **[0117]** **[0118]** **[0119]**
- **SATOMOTO M. et al.** *Anesthesiology*, 2009, vol. 110, 628-637 **[0115]** **[0124]**
- **SAXE MD et al.** *Proc Natl Acad Sci USA*, 2006, vol. 103, 17501-17506 **[0121]**
- **JONES MW.** *Curr Mol Med*, 2002, vol. 2, 639-647 **[0121]**
- **KAMSLER A et al.** *Mol Neurobiol*, 2004, vol. 29, 167-178 **[0124]**

摘要

本發明的目的是提供一種用於全身麻醉的藥物，所述藥物能夠預防和/或減輕由麻醉劑引起的大腦（優選地是在發育期的大腦）神經功能缺損。本發明涉及一種包括全身麻醉劑和氫的組合的藥物，所述藥物能夠預防和/或減輕由麻醉劑引起的大腦（優選地是在發育期的大腦）神經功能缺損。