EUROPEAN PATENT SPECIFICATION

Method of operating a washing machine and washing machine
Verfahren zum Betrieb einer Waschmaschine und Waschmaschine
Procédé de fonctionnement d’une machine à laver et machine à laver

Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO
PL PT RO RS SE SI SK SM TR

Date of publication and mention of the grant of the patent:
18.06.2014 Bulletin 2014/25

Application number: 10192052.8
Date of filing: 22.11.2010

Date of publication of application:
23.05.2012 Bulletin 2012/21

Proprietor: Electrolux Home Products Corporation N.V.
1130 Brussel (BE)

Inventor: Frucco, Giuseppe
33080 Porcia (PN) (IT)

Representative: Nardoni, Andrea et al
Electrolux Italia S.p.A.
Corso Lino Zanussi, 30
33080 Porcia (PN) (IT)

References cited:
EP-A2-1 096 052
EP-B1-0 807 707
US-A-3 282 072
US-B1-6 402 962

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

[0001] The present application is directed to a method of operating a washing machine and to a washing machine.

[0002] In washing machine technology it is well known to recirculate washing liquid in order to reduce consumption of washing liquid, e.g. water. Washing machines operable in such a way are known for example from EP 0 240 911 B1, EP 1 204 792 B1 and EP 0 807 707.

[0003] Document US-A1-5714939 discloses a washing machine comprising a control unit for monitoring the filter of the washing liquid recirculation unit, as well as an operating method for such a washing machine, wherein, in case a filter clogging state is detected, the control unit immediately sends a user warning signal to a signal lamp.

[0004] Recirculation of washing liquid generally involves a recirculation unit with a recirculation pump. The recirculation pump extracts washing liquid from a bottom section of the tub of the washing machine and feeds it back into the tub via a spray or jet system arranged above the filling level of washing liquid.

[0005] In order to prevent fluff and other foreign matter from entering and impairing the function or operation of the pump or jet system, a recirculation filter may be provided upstream the pump.

[0006] If such recirculation filters become clogged the washing efficiency of the washing machine drastically drops.

[0007] By virtue of these facts, it is an object of the invention to provide an improved method of operating a washing machine, in particular avoiding reduced washing efficiency upon recirculation filter clogging. Further, a corresponding washing machine shall be provided.

[0008] This object is achieved by independent claims 1 and 8. Embodiments of the invention result from dependent claims.

[0009] According to independent claim 1, a method of operating a washing machine which is operable in a recirculation washing mode is provided. The washing machine may be a conventional washing machine, i.e. a laundry washer, or a washer dryer, both of front loading and top loading type.

[0010] With the method according to the invention, a filter clogging state of a washing liquid filter of a recirculation unit, or of a recirculation circuit, is monitored or observed, at least from time to time or at certain time intervals. Advantageously, monitoring of the washing liquid filter can be carried out continuously during operation of the washing machine.

[0011] If, in the monitoring action, a critical filter clogging state or the occurrence of a critical filter clogging state is detected, then the recirculation washing mode is deactivated and substituted by a non-recirculation washing mode.

[0012] A critical filter clogging state shall for example pertain to situations or states in which the washing liquid filter is clogged to such an extent that further operation in recirculation mode would impair washing quality and/or, in particular in the long term, negatively impact the pump of the recirculation unit.

[0013] Deactivation and substitution of the recirculation mode shall mean that execution of the recirculation mode is blocked, and, even if a recirculation mode has been selected by a user, the recirculation mode is replaced or overruled by a non-recirculation mode. Information about blocked recirculation mode may be made available for future operations. For example the information may be stored in a memory, where a deactivation flag may be set. If a critical filter clogging state has been removed and no critical recirculation filter clogging state can be determined any more, the recirculation washing mode can be activated again, e.g. the deactivation flag may be deleted.

[0014] A non-recirculation mode can for example be a conventional washing mode in which laundry is tumbled in a washing drum, with the tub being filled with washing liquid up to a non-recirculation level (e.g. a level higher than the level in the recirculation mode).

[0015] As can be seen, the method can ensure effective washing quality even in cases with clogged washing liquid filters in the recirculation circuit. Besides from this, severe damages to the washing machine, in particular the pump of the recirculation unit, can be greatly prevented. This is of particular importance, for example, if the pump acting in the recirculation circuit is also used and adapted for draining washing liquid from the washing machine.

[0016] In an embodiment, substitution of the recirculation washing mode by the non-recirculation mode involves increasing or raising, with respect to the recirculation mode, a filling level of washing liquid in the tub of the washing machine.

[0017] Increasing the filling level can involve setting a respective filling level parameter of the washing machine and/or adding additional liquid, for example water, to the tub. Advantageously, the level of the washing liquid being present or to be present in the tub of the washing machine during operation thereof will be raised.

[0018] Setting or providing a respective filling level parameter, for example in a memory of the washing machine, preferably together with deactivation information, may be advantageous, as subsequent washing operations can be based on such information. This means that if a critical recirculation filter clogging state has been detected and recirculation washing is selected again, the machine automatically conducts, preferably after user confirmation, a non-recirculation mode according to respective parameters, until critical recirculation filter clogging state is removed.

[0019] Further, setting and storing respective parameters and making available such kind of information for subsequent operating phases may be advantageous if the critical filter clogging state is determined in an idle or non-operating mode or state of the washing machine. This implies that the filter clogging state may even be
In general, it may be adequate to monitor the filter clogging state during recirculation washing phases of the washing machine. However, in an advantageous embodiment in which the filter is used both as a recirculation filter, and as a draining filter for washing liquid, monitoring the filter clogging state in non-recirculation phases may be appropriate.

Increasing the filling level of washing fluid in response to a critical filter clogging state safeguards washing quality and efficiency as recirculation washing modes operate with reduced filling levels as compared to conventional tumble-only washing modes. With reduced filling levels and disabled recirculation, the exposure of laundry to washing liquid is reduced which clearly leads to inferior cleaning efficiency and may result in excessive wear of laundry or other items tumbling in the drum of the washing machine. Therefore, if a critical filter clogging state is observed or detected, which leads to deactivation of the recirculation unit, additional liquid, such as water, can be automatically fed to the tub.

The filter clogging state can be monitored by measuring or detecting one or more representative parameters. For example, the washing liquid flow of washing liquid in the recirculation circuit and/or the washing liquid pressure or pressure change in the tub affected by recirculation washing operation, in particular a washing liquid pressure drop in an initial phase after activating recirculation washing, and/or at least one optically detectable particular feature of the washing liquid filter, can be used as parameters. In using such parameters, the recirculation mode can be deactivated and substituted, if at least one of the measured washing liquid flow, measured washing liquid pressure or pressure change and optically detected particular feature, is indicative of a critical clogging state.

Advantageously, it is possible that at least one of the measured washing liquid flow, washing liquid pressure or pressure change, in particular pressure drop, is compared to a reference flow value, or reference pressure value or reference pressure change or drop value, respectively. In such cases, a critical clogging state can be determined to exist if at least one of the following situations occurs: the washing liquid flow is less than or equal the reference flow value, or the washing liquid pressure is higher than or equal the reference pressure value, or the washing liquid pressure change is less than or equal the reference pressure change value.

In order to improve accuracy, in an advantageous embodiment a critical filter clogging state may only be determined to exist if the above mentioned parameters are indicative of a filter clogging state over a certain, in particular extended, period of time or in several successive measurements.

In a further embodiment, it is possible, that upon deactivating the recirculation mode during operation of the washing machine, a conduit connecting a bottom section of the tub of the washing machine to a recirculation unit or recirculation circuit is closed via a valve, preferably a ball valve. In this way, washing liquid can be prevented from entering the recirculation circuit. A synergistic effect of using such a valve may be obtained, if a heating element for heating the washing liquid is arranged upstream the valve. In this case, washing liquid still being present in the deactivated recirculation unit or circuit downstream the valve will not be heated any more, and hence energy can be saved.

In an advantageous embodiment, at least one of an event of deactivation of the recirculation mode and occurrence of a critical clogging state is made available to a user, preferably by at least one of visual and audible signs. For example, deactivation of the recirculation unit or the occurrence of a critical filter clogging state may be visually indicated on a user interface of the washing machine. Advantageously, a warning or other signals may also be made available to a user if the clogging state of the filter is close to a critical clogging state. In particular with such embodiments, it is possible to consider further parameters suitable for detecting and/or predicting critical clogging states.

As can be seen from the above description, the proposed method provides an improved method for operating a washing machine, and in particular is effective in avoiding reduced washing efficiency upon recirculation filter clogging.

According to independent claim 8, a washing machine operable in a recirculation washing mode is provided. The washing machine may for example be a laundry washer or washer dryer and similar as already mentioned beforehand.

The washing machine advantageously comprises a tub, a recirculation unit for recirculating washing liquid in a recirculation circuit provided with the tub, and at least one recirculation washing liquid filter. The washing machine advantageously further comprises an electronic control unit adapted to operate the washing machine according to the proposed method or any embodiment thereof.

As to advantages and advantageous effects of the washing machine, reference is made to the description above.

In order to implement the proposed method or an embodiment thereof, the recirculation unit may comprise at least one pump for pumping washing liquid in a recirculation circuit. The washing liquid filter can advantageously be integrated in the recirculation circuit, and arranged upstream the pump. The washing liquid filter may be adapted to retain lint, loose fibers, dirt particles, impurities and foreign matter from entering the recirculation pump.

In order to monitor parameters suitable for de-
It shall be mentioned, that if it is determined that critical filter clogging state occurs or prevails, accordingly, i.e. for deactivating the recirculation unit if a feature are available for operating the washing machine liquid pressure or pressure change or detected particular the measured washing liquid flow, measured washing liquid pressure or pressure change or detected particular feature are available for operating the washing machine accordingly, i.e. for deactivating the recirculation unit if a critical filter clogging state occurs or prevails.

It shall be mentioned, that if it is determined that a critical clogging state no longer exists or ceased to exist, advantageously the recirculation washing mode may be activated again.

In an embodiment, in a conduit connecting an opening provided in a bottom section of the tub with an input side of the pump, there may be provided a valve, preferably a ball valve, arranged and adapted to open and close the conduit. Reference is also made to the above discussion.

The washing machine may advantageously comprise a user messaging or information unit. This user messaging or information unit may be adapted to at least one of visually and audibly indicate to a user at least one of an event of deactivation of the recirculation mode and occurrence of a critical clogging state. It is of particular interest, to provide accurate information about filter clogging, preferably announcing filter clogging in advance. Accurate information may advantageously be obtained by observing one or more parameters and comparing them to at least one respective reference parameter value or reference parameter.

In a further embodiment, the washing machine may advantageously comprise an integral filter unit having a recirculation filter section and draining filter section, wherein at least one recirculation washing liquid filter is accommodated in the recirculation filter section. In such a configuration, loose fibers or fluff and the like may be rinsed away from the recirculation washing liquid filter during draining washing liquid off the tub of the washing machine. At some instances, it may well be that an announced or an actually occurred critical filter clogging state can be removed in this way. This enables the washing machine to be operated in recirculation mode over extended periods of time.

In a yet further embodiment, the pump may be operable as a recirculation pump and a draining pump, and a valve, preferably a three way valve, may be provided for connecting the pump either to the recirculation circuit or a draining circuit. In this case, some of the monitored parameters, such as for example a flow of washing liquid through the pump, may be used to identify or forecast also critical draining filter clogging states.

The washing machine may comprise a liquid inlet adapted to feeding additional or fresh liquid to the tub and cooperating with the electronic control unit such that in the event of deactivation of the recirculation washing mode due to a critical clogging state of the recirculation washing liquid filter, additional or fresh liquid is fed to the tub. In this way, excellent washing results can be achieved even if the recirculation unit is deactivated.

Exemplary embodiments of the invention will be described in connection with the annexed figures, in which

FIG 1 shows a schematic representation of a washing machine according to the invention in a first operational state;

FIG 2 shows the washing machine of FIG 1 in a second operational state;

FIG 3 shows a time course of an operational parameter of the washing machine of FIG 1 and 2; and

FIG 4 shows a filter of the washing machine of FIG 1 and 2.

The following description of embodiments shall not be construed as limiting the scope of the invention. In particular, features jointly shown in any of the figures can be implemented alone or in any other combination as discussed further above.

If not otherwise stated like elements are denoted by like reference signs throughout the figures. The figures may not be true to scale, and scales of different figures may be different.

FIG 1 shows a schematic representation of a washing machine 1 in a first operational state.

The washing machine, which in the present case is a laundry washer (but which could be as well a washer-drier), advantageously comprises a tub 2, in which a drum 3 is rotatably arranged, in order to carry out a washing operation by tumbling items, such as laundry 4, placed in the drum 3.

The washing machine 1 further comprises an inlet 5 for feeding water into the tub 2, preferably via a drawer 6 adapted to accommodate washing agent or washing powder. By feeding water via the drawer 6, the washing agent accommodated therein is flushed into the tub 2. The inlet 5 comprises an actuable inlet valve, not illustrated, which, for example by virtue of an electronic controller 7 connected thereto, is operable to feed water in accordance with a preset washing liquid level into the tub 2.

The washing machine 1 further comprises a draining unit for draining washing liquid from the tub 2. The draining unit comprises a draining filter element 8 arranged upstream a draining pump 9. An inlet side of the draining pump 9 is connected via the draining filter element 8 to a main conduit 10 in turn connected to a bottom opening 11 of the tub 2. An outlet of the draining
pump 9 is connected to a draining conduit 12 provided for discharging washing liquid from the tub 2 to an external drainage.

The washing machine 1 further comprises a recirculation unit for recirculating washing liquid. The recirculation unit comprises a recirculation filter element 13 arranged upstream a recirculation pump 14. An inlet of the recirculation pump 14 is connected via the recirculation filter element 13 to the main conduit 10. An outlet side of the recirculation pump 14 is connected to a recirculation conduit 15. A distal end of the recirculation conduit 15 is connected to an opening, in the present case advantageously a top opening, provided in the tub 2 in such a way that washing liquid can be sprayed or jetted onto laundry present in the tub 2. A jet of recirculated washing liquid is schematically shown in FIG 1 and depicted by reference sign 16.

The draining filter element 8 and recirculation filter element 13 are preferably accommodated in a filter unit, in which the draining filter element 8 is arranged in a draining section, and the recirculation filter element 13 is arranged in a recirculation section. In a further embodiment, not illustrated, the recirculation filter element 13 and the draining filter element 8 may be two totally independent (i.e. distinct) components and they may be arranged in totally independent (i.e. distinct) filter units or seats.

In between the bottom opening 11 and the filter unit, a ball valve 17 may be advantageously provided and adapted to enable and block the main conduit 10. In a further embodiment, not illustrated, the ball valve 17 may be replaced by a different kind of valve, for example a butterfly valve, a gate valve, an electronic-controlled valve, etc.; more in general any kind of valve adapted to block the main conduit 10 may be used.

A branch connecting upstream the ball valve 17 to the main conduit 10, preferably comprises a pressurestat 18, i.e. a pressure sensor. The pressurestat 18 is adapted and connected to the main conduit 10 such that a washing liquid pressure or pressure change can be determined.

The operation of the washing machine 1 is now described in more detail. FIG 1 shows the washing machine 1 in a recirculation mode in which washing liquid is taken from the bottom section of the tub 2 and sprayed or jetted onto the laundry 4 contained in the drum 3. The flow of washing liquid through the recirculation unit is indicated by small arrows. As can be seen, washing liquid is circulated with the tub 2, preferably, but not necessarily in a continuous way.

Circulation of the washing liquid has the advantage that the amount of water needed for conducting a washing programme can be greatly reduced as compared to non-recirculation washing, such as conventional tumble washing. The recirculation washing liquid level, i.e. the level of the washing liquid in the tub 2, is indicated in FIG 1 by reference sign 19. As can be seen, due to reduced amounts of washing liquid, the laundry 4 is not fully immersed in washing liquid. However, spraying washing liquid onto the laundry 4 compensates for this. Therefore, excellent washing results can be obtained even with reduced amounts of washing liquid.

In particular, as laundry 4 is tumbled by a rotating movement of the drum 3, fluff, loose fibers, dirt and other foreign particles (typically coming from the laundry) will be present in the washing liquid. Obviously, the recirculation filter element 13 intended for protecting the recirculation pump 14 from fluff, foreign particles and so on is prone to being clogged by respective foreign particles and the like. Already partial clogging of the recirculation filter element 13 will result in a reduced recirculation flow impairing washing quality and efficiency. In order to avoid reduced washing efficiency, the washing machine 1 can monitor the clogging state of the recirculation filter element 13, and, in particular in the event that a critical clogging state occurs, disable or deactivate the recirculation washing unit.

Upon disabling or deactivating the recirculation mode, the washing machine 1 is set or further operated in a non-recirculation, i.e. tumble-only, mode.

Preferably, along with switching from recirculation to non-recirculation mode, the inlet valve of the inlet 5 is opened and fresh water is fed into the tub 2 until the predetermined non-recirculation washing liquid level 20 (see FIG 2) is obtained.

The situation after feeding fresh, i.e. additional, water such that the non-recirculation washing liquid level 20 is obtained, is shown in FIG 2. As can be seen therefrom, and in particular from a comparison of FIG 1 and FIG 2, an enlarged portion of the laundry 4 contained in the drum 3 is immersed with washing liquid, as is usual for non-recirculation washing. Thereby washing quality and efficiency is greatly enhanced as compared to washing results with reduced recirculating washing liquid levels.

Detecting a critical clogging state of the recirculation filter element 13 can be implemented, for example, as follows.

The pressure of washing liquid is continuously, or at least at certain time intervals, measured by the pressurestat 18. The pressure can for example be measured as the height of washing liquid contained in the tub 2.

Obviously, if the recirculation pump 14 starts to recirculate washing liquid in the recirculation circuit, the height of washing liquid, and therefore the pressure measured by the pressurestat 18 will decrease. The pressure decrease or reduction, i.e. the pressure drop, induced by activation or operation of the recirculation pump 14 is maximal, i.e. the pressure in the tub 2 is minimal, if the recirculation filter element 13 is not clogged. If the pressure remains above a threshold value, or the pressure drop is smaller than a respective threshold value, a critical clogging state is reached. Thereupon, the electronic controller 7, which is advantageously connected to the pressurestat 18 and monitors the pressure or pressure drop, disables the recirculation washing mode. Then, other operational parameters, such as the washing...
liquid level, may be advantageously adapted in correspondence with non-recirculation washing mode requirements. For adapting the washing liquid level, the inlet valve can be activated in order to feed additional water.

[0059] As an example, inter alia depending on the type of washing machine used, a pressure drop of 10 - 20 mm, corresponding to 10 - 20 kg/m², may be used to identify a critical clogging state, if a pressure drop of 25 mm can be observed in unclogged states of the recirculation filter element 13. In this connection, FIG 3 shows two diagrams of washing liquid pressure versus time. In an initial time interval, the pressure of the washing liquid has a value of \(p_1 \) which corresponds to an idle or to a non-recirculation washing mode of the washing machine 1. At a certain point of time \(t_R \) the recirculation unit, and in particular the recirculation pump 14 is activated. Activation of the recirculation pump 14 leads to a pressure drop of the washing liquid pressure in the tub 2. In a first pressure drop graph (numbered 24 in Fig 3), which corresponds to an unclogged state of the recirculation filter element 13, the pressure drop \(\Delta p \), from \(p_1 \) to \(p_2 \), as indicated by a double arrow in FIG 3, is for example from 70 mm to 45 mm, i.e. 25 mm, corresponding to a non-clogged recirculation filter state.

[0060] With increasing clogging of the recirculation filter element 13, the flow of washing liquid in the recirculation circuit is increasingly blocked, and hence the drop of washing liquid pressure is increasingly diminished. In FIG 3, a second pressure drop graph (numbered 25 in Fig 3) is shown, which corresponds to a critical clogging state. Due to filter clogging, a smaller pressure drop \(\Delta p' \) from \(p_1 \) to \(p_3 \) is observed.

[0061] In the present case, the washing liquid pressure is observed or monitored by the electronic controller 7 via pressure values of the pressostat 18. If the pressure drop \(\Delta p \) for example is lower than a respective critical pressure drop value, such as for example lower than 10 - 20 mm, a critical filter clogging state can be assumed. As a consequence, recirculation operation modes of the washing machine 1 can be deactivated or substituted as already described further above.

[0062] Advantageously, other parameters of the washing machine 1, for example of the filter, can be used to identify clogged recirculation filter states. Such parameters may be for example the flow or flow rate in the recirculation circuit or other recirculation filter parameters, optical characteristics of the recirculation filter element 13 and so on. Preferably respective parameters are selected such that automatic inspection is possible.

[0063] In FIG 4 a filter 21 implementing a recirculation filter element 13 is shown. The recirculation filter element 13 and the draining filter element 8 preferably are accommodated in a common filter housing 22; in an advantageous embodiment the recirculation filter element 13 and the draining filter element 8 may be made in a single-piece construction (i.e. they may be obtained as a single component). The respective filter elements are arranged within the housing such that washing liquid passes the recirculation filter element 13 in recirculation operation mode, and passes the draining filter element 8 in non-recirculation operation mode.

[0064] As is indicated in FIG 4, the filter meshwork of the recirculation filter element 13 is preferably somewhat more tight than that the draining filter element 8. Due to the fact, that both filter elements 8, 13 are arranged and adapted in a common housing, washing liquid of either recirculation mode or non-recirculation mode may flow through the filter 21. The washing liquid will be filtered by filter 21 and foreign particles, dust, fluff or other lint will be retained by either the recirculation filter element 13 in recirculation mode and by the draining filter element 8 in draining mode. Both filter elements 8, 13 shown in FIG 4 are or can be adapted to efficiently remove foreign particles from the washing liquid as is required by respective pumps 9, 14.

[0065] One advantage of the implementation of FIG 4, i.e. arranging the recirculation 13 and draining filter element 8 in a common housing is that washing liquid draining via the draining filter element 8 can advantageously carry away loose fibers, dust and other foreign substances adhering to the recirculation filter element 13. Here, it shall be considered, that the recirculation filter element 13 is comparatively fine, whereas the draining filter element 8 is comparable coarse. Hence, fibers, fluff and the like retained by the recirculation filter element 13 may probably pass through the draining filter element 8. Therefore, draining washing liquid from the tub 2 may reduce recirculation filter clogging.

[0066] However it is clear that also two completely separated filters and filter housings may be used.

[0067] The filter 21 may advantageously be of exchangeable, preferably of reusable, type. In case of an exchangeable filter 21, a handle 23 may be provided at the filter housing 22, for easing replacement of the filter 21.

[0068] In all, it can be seen, that the proposed method or methods for operating the washing machine 1 lead to improved operation, in particular to enhanced and more efficient washing.

Claims

1. Method of operating a washing machine (1) operable in a recirculation washing mode, wherein a filter clogging state of a washing liquid filter (13) of a recirculation unit is monitored, characterized in that if a critical filter clogging state is detected, the recirculation washing mode is deactivated and substituted by a non-recirculation washing mode.

2. Method according to claim 1, wherein substitution of the recirculation washing mode by the non-recirculation mode involves increasing, with respect to the recirculation mode, a filling level (19, 20) of washing liquid in a tub (2) of the washing machine (1).
3. Method according to claim 2, wherein increasing the filling level (19, 20) during operation of the washing machine (1) involves feeding additional liquid to the tub (2).

4. Method according to at least one of claims 1 to 3, wherein monitoring the filter clogging state involves at least one of measuring a washing liquid flow of washing liquid in a recirculation circuit, and/or measuring a washing liquid pressure and/or pressure change in the tub (2) effected by recirculation washing operation and/or optically detecting at least one particular feature of the washing liquid filter (13), and wherein the recirculation mode is deactivated and substituted if at least one of the measured washing liquid flow, and/or measured washing liquid pressure and/or pressure change and/or optically detected particular feature is indicative of a critical filter clogging state.

5. Method according to claim 4, wherein at least one of the measured washing liquid flow, and/or washing liquid pressure and/or pressure change is compared to a reference flow value, and/or reference pressure value and/or reference pressure change value, respectively, and a critical clogging state is determined to exist if at least one of the washing liquid flow is less than or equal the reference flow value, and/or the washing liquid pressure is higher than or equal the reference pressure value and/or the washing liquid pressure change is less than or equal the reference pressure change value.

6. Method according to at least one of claims 1 to 5, wherein upon deactivating the recirculation mode during operation of the washing machine (1), a conduit connecting a bottom section of the tub (2) of the washing machine (1) to a recirculation unit is closed via a valve.

7. Method according to at least one of claims 1 to 6, wherein at least one of an event of deactivation of the recirculation mode and occurrence of a critical filter clogging state is made available to a user.

8. Washing machine (1) operable in a recirculation washing mode, comprising a tub (2), a recirculation unit for recirculating washing liquid in a recirculation circuit provided with the tub (2), and at least one recirculation washing liquid filter (13), characterised by comprising an electronic control unit (7) adapted to operate the washing machine (1) according to at least one of claims 1 to 7.

9. Washing machine (1) according to claim 8, the recirculation unit comprising a pump (14) for pumping washing liquid in a recirculation circuit, wherein at least one recirculation washing liquid filter (13) is comprised in the recirculation circuit and arranged upstream the pump (14), the recirculation washing liquid filter (13) being adapted to retain lint, loose fibers, dirt particles, impurities and foreign matter from entering the pump (14).

10. Washing machine (1) according to at least one of claims 8 and 9, further comprising at least one of a flow meter for measuring a washing liquid flow in the recirculation circuit, and/or a pressure sensor for measuring a washing liquid pressure or pressure change in the tub (2) and/or an optical sensor for optically detecting at least one particular feature of the recirculation washing liquid filter (13), respectively connected to the electronic control unit (7) in such a way that the measured washing liquid flow, and/or measured washing liquid pressure and/or pressure change and/or optically detected particular feature are available for operating the washing machine (1) accordingly.

11. Washing machine (1) according to at least one of claims 8 to 10, wherein in a conduit (10) connecting an opening (11) provided in a bottom section of the tub (2) with an input side of the pump (14) there is provided a valve arranged and adapted to open and close the conduit (10).

12. Washing machine (1) according to at least one of claims 8 to 11, further comprising a user messaging or information unit adapted to visually and/or audibly indicate to a user an event of deactivation of the recirculation mode and/or the occurrence of a critical clogging state.

13. Washing machine (1) according to at least one of claims 8 to 12, comprising an integral filter unit (21, 22) having a recirculation filter section and draining filter section, wherein at least said recirculation washing liquid filter (13) is accommodated in the recirculation filter section.

14. Washing machine (1) according to at least one of claims 8 to 13, wherein the pump is operable as a recirculation pump (14) and as a draining pump (9), and wherein a valve, preferably a three way valve, is provided for connecting the pump either to the recirculation circuit (15) or to a draining circuit (12).

15. Washing machine (1) according to at least one of claims 8 to 14, further comprising a liquid inlet (5) adapted for feeding additional or fresh liquid to the tub (2) and cooperating with the electronic control unit (7) such that in the event of deactivation of the recirculation washing mode due to a critical clogging state of the recirculation washing liquid filter (13), additional or fresh liquid is fed to the tub (2).
Patentansprüche

2. Verfahren nach Anspruch 1, wobei der Ersatz des Kreislauf-Waschmodus durch den rückführungsfreien Waschmodus einen bezüglich des Kreislaufmodus zunehmenden Füllstand (19, 20) von Waschflüssigkeit in einer Wanne (2) der Waschmaschine (1) aufweist.

3. Verfahren nach Anspruch 2, wobei die Zunahme des Füllstands (19, 20) beim Betrieb der Waschmaschine (1) die Zufuhr zusätzlicher Flüssigkeit in die Wanne (2) aufweist.

4. Verfahren nach mindestens einem der Ansprüche 1-3, wobei die Überwachung des Filterverstopfungszustands mindestens die Messung eines Waschflüssigkeitsstroms von Waschflüssigkeit in einem Kreislauf und/oder die Messung eines Waschflüssigkeitssdrucks und/oder einer durch den Kreislauf-Waschbetrieb bewirkten Druckänderung in der Wanne (2) und/oder die optische Erkennung von mindestens einem besonderen Merkmal des Waschflüssigkeitsfilters (13) aufweist, wobei der Kreislaufmodus deaktiviert und ersetzt wird.

6. Verfahren nach mindestens einem der Ansprüche 1-5, wobei bei der Deaktivierung des Kreislaufmodus durch einen rückführungsfreien Waschmodus ersetzt wird.

7. Verfahren nach mindestens einem der Ansprüche 1-6, wobei mindestens ein Ereignis der Deaktivierung des Kreislaufmodus bzw. ein Vorliegen eines kritischen Filterverstopfungszustands einem Benutzer zugänglich gemacht wird.

8. Waschmaschine (1), die in einem Kreislauf-Waschmodus betreibbar ist und die eine Wanne (2) aufweist sowie eine Rückführungseinheit zur Rückführung von Waschflüssigkeit in einen Rückführungskreislauf mit der Wanne (2) und mindestens einem Rückführungs-Waschflüssigkeitsfilter (13), dadurch gekennzeichnet, dass sie eine elektronische Steuereinheit (7) aufweist, die eingerichtet ist, um die Waschmaschine (1) gemäß mindestens einem der Ansprüche 1-7 zu betreiben.

9. Waschmaschine (1) nach Anspruch 8, wobei die Rückführungseinheit eine Pumpe (14) zum Pumpen von Waschflüssigkeit in einen Rückführungskreislauf aufweist, wobei im Rückführungskreislauf mindestens ein Rückführungs-Waschflüssigkeitsfilter (13) enthalten und vor der Pumpe (14) angeordnet ist, wobei der Rückführungs-Waschflüssigkeitsfilter (13) eingerichtet ist, um Fusseln, lose Fasern, Schmutzpartikel, Verunreinigungen und Fremdstoffe vor dem Eintritt in die Pumpe (14) zurückzuhalten.

10. Waschmaschine (1) nach mindestens einem der Ansprüche 8-9, die weiter mindestens einen Durchflussmesser zum Messen einer Waschflüssigkeitsströmung im Rückführungskreislauf und/oder einen Drucksensor zum Messen eines Waschflüssigkeitssdrucks oder einer Druckänderung in der Wanne (2) und/oder einen optischen Sensor zur optischen Erkennung von mindestens einem besonderen Merkmal des Rückführungs-Waschflüssigkeitsfilters (13) aufweist, die jeweils derart an die elektronische Steuereinheit (7) angeschlossen sind, dass die gemessene Waschflüssigkeitsströmung und/oder der gemessene Waschflüssigkeitssdruck und/oder die Druckänderung und/oder das erkannte besondere Merkmal entsprechend für den Betrieb der Waschmaschine (1) verfügbar sind.

11. Waschmaschine (1) nach einem der Ansprüche 8-10, wobei in einer Leitung (10), die eine in einem unteren Abschnitt der Wanne (2) vorhandene Öffnung (11) mit einer Einlassseite der Pumpe (14) verbindet, ein Ventil vorhanden ist, das zum Öffnen und Schließen der Leitung (10) angeordnet und eingerichtet ist.
12. Waschmaschine (1) nach mindestens einem der Ansprüche 8-11, die weiter eine Benutzermeldung- oder Informationseinheit aufweist, die eingerichtet ist, um visuell und/oder hörbar einem Benutzer ein Deaktivierungseignis des Kreislaufmodus und/oder das Vorliegen eines kritischen Verstopfungszustands anzuzeigen.

13. Waschmaschine (1) nach mindestens einem der Ansprüche 8-12, die eine integrierte Filtereinheit (21, 22) mit einem RückführungsfILTERABSCHNITT und einem Auslassfilterabschnitt aufweist, wobei mindestens der Rückführungs-Waschflüssigkeitsschicht (13) im RückführungsfILTERABSCHNITT abgeordnet ist.

14. Waschmaschine (1) nach mindestens einem der Ansprüche 8-13, wobei die Pumpe als Rückführungs- pumpe (14) und als Ablasspumpe (9) betreibbar ist und wobei ein Ventil, das vorzugsweise ein Dreiweg- ventili ist, vorhanden ist, um die Pumpe entweder mit dem Rückführungskreislauf (15) oder einem Ablasskreislauf (12) zu verbinden.

15. Waschmaschine (1) nach mindestens einem der Ansprüche 8-14, die weiter einen Flüssigkeitseinslass (5) aufweist, der für die Zufuhr von zusätzlicher oder frischer Flüssigkeit zur Wanne (2) und zum Zusammenwirken mit der elektronischen Steuereinheit (7) eingerichtet ist, sodass im Fall der Deaktivierung des Kreislauf-Waschmodus aufgrund eines kritischen Verstopfungszustands des Rückführungs-Waschflüssigkeitsschicht (13) der Wanne (2) zusätzliche bzw. frische Flüssigkeit zugeführt wird.

Revendications

1. Procédé de fonctionnement d’une machine à laver (1) apte à fonctionner selon un mode de lavage à recirculation, dans lequel un état de colmatage de filtre d’un filtre de liquide de lavage à recirculation (13) d’une unité de recirculation est surveillé, caractérisé par le fait que si un état de colmatage de filtre critique est détecté, le mode de lavage à recirculation est désactivé et remplacé par un mode de lavage non à recirculation.

2. Procédé selon la revendication 1, dans lequel le remplacement du mode de lavage à recirculation par le mode non à recirculation met en jeu l’augmentation, par rapport au mode à recirculation, d’un niveau de remplissage (19, 20) de liquide de lavage dans une cuve à lessive (2) de la machine à laver (1).

3. Procédé selon la revendication 2, dans lequel l’augmentation du niveau de remplissage (19, 20) durant un fonctionnement de la machine à laver (1) met en jeu l’alimentation d’un liquide supplémentaire à la cuve à lessive (2).

4. Procédé selon au moins l’une des revendications 1 à 3, dans lequel la surveillance de l’état de colmatage de filtre met en jeu au moins l’une de la mesure d’un écoullement de liquide de lavage dans un circuit de recirculation et/ou de la mesure d’une pression et/ou d’un changement de pression de liquide de lavage dans la cuve à lessive (2) effectué par un fonctionnement de lavage à recirculation et/ou de la détection optique d’au moins une caractéristique particulière du filtre de liquide de lavage (13), et dans lequel le mode à recirculation est désactivé et remplacé si au moins l’un de l’écoullement de liquide de lavage mesuré et/ou de la pression et/ou du changement de pression de liquide de lavage mesurés et/ou de la caractéristique particulière du filtre de liquide de lavage (13), et dans lequel le mode à recirculation est désactivé et remplacé si au moins l’un de l’écoullement de liquide de lavage et/ou de la pression et/ou du changement de pression de liquide de lavage mesurés est comparé à une valeur d’écoullement de référence et/ou une valeur de pression de référence et/ou une valeur de changement de pression de référence, respectivement, et un état de colmatage critique est déterminé comme existant si au moins l’un de l’écoullement de liquide de lavage est inférieur ou égal à la valeur d’écoullement de référence et/ou de la pression de liquide de lavage est supérieure ou égale à la valeur de pression de référence et/ou du changement de pression de liquide de lavage est inférieur ou égal à la valeur de changement de pression de référence.

5. Procédé selon la revendication 4, dans lequel au moins l’un de l’écoullement de liquide de lavage mesuré et/ou de la pression et/ou du changement de pression de liquide de lavage mesurés est comparé à une valeur d’écoullement de référence et/ou une valeur de pression de référence et/ou une valeur de changement de pression de référence, respectivement, et un état de colmatage critique est déterminé comme existant si au moins l’un de l’écoullement de liquide de lavage est inférieur ou égal à la valeur d’écoullement de référence et/ou de la pression de liquide de lavage est supérieure ou égale à la valeur de pression de référence et/ou du changement de pression de liquide de lavage est inférieur ou égal à la valeur de changement de pression de référence.

6. Procédé selon au moins l’une des revendications 1 à 5, dans lequel, lors de la désactivation du mode à recirculation pendant le fonctionnement de la machine à laver (1), une conduite reliant une section inférieure de la cuve à lessive (2) de la machine à laver (1) à une unité de recirculation est fermée par l’intermédiaire d’une vanne.

7. Procédé selon au moins l’une des revendications 1 à 6, dans lequel au moins l’un d’un événement de désactivation du mode à recirculation et d’une apparition d’un état de colmatage de filtre critique est rendu consultable par un utilisateur.

8. Machine à laver (1) apte à fonctionner selon un mode de lavage à recirculation, comprenant une cuve à lessive (2), une unité de recirculation pour faire recirculer le liquide de lavage dans un circuit de recirculation comportant la cuve à lessive (2), et au moins un filtre de liquide de lavage à recirculation (13), caractérisée par le fait qu’elle comprend une unité de commande électronique (7) apte à faire fonction-
9. Machine à laver (1) selon la revendication 8, l’unité de recirculation comprenant une pompe (14) pour pomper du liquide de lavage dans un circuit de recirculation, au moins un filtre de liquide de lavage à recirculation (13) étant compris dans le circuit de recirculation et agencé en amont de la pompe (14), le filtre de liquide de lavage à recirculation (13) étant apte à empêcher des peluches, des fibres en vrac, des particules de poussière, des impuretés et des corps étrangers d’entrer dans la pompe (14).

10. Machine à laver (1) selon au moins l’une des revendications 8 et 9, comprenant en outre au moins l’un d’un débitmètre pour mesurer un écoulement de liquide de lavage dans le circuit de recirculation et/ou d’un capteur de pression pour mesurer une pression ou un changement de pression de liquide de lavage dans la cuve à lessive (2) et/ou d’un capteur optique pour détecter de manière optique au moins une caractéristique particulière du filtre de liquide de lavage à recirculation (13), respectivement reliés à l’unité de commande électronique (7) d’une manière telle que l’écoulement de liquide de lavage mesuré et/ou la pression et/ou le changement de pression de liquide de lavage mesurés et/ou la caractéristique particulière détectée de manière optique sont disponibles pour faire fonctionner la machine à laver (1) en conséquence.

11. Machine à laver (1) selon au moins l’une des revendications 8 à 10, dans laquelle, dans une conduite (10) reliant une ouverture (11) prévue dans une section inférieure de la cuve à lessive (2) à un côté d’entrée de la pompe (14), est disposée une vanne agencée et apte à ouvrir et fermer la conduite (10).

12. Machine à laver (1) selon au moins l’une des revendications 8 à 11, comprenant en outre une unité de messagerie ou d’informations d’utilisateur apte à indiquer de manière visuelle et/ou audible à un utilisateur un événement de désactivation du mode à recirculation et/ou l’apparition d’un état de colmatage critique.

13. Machine à laver (1) selon au moins l’une des revendications 8 à 12, comprenant une unité de filtre intégrée (21, 22) ayant une section de filtre de recirculation et une section de filtre de vidange, au moins ledit filtre de liquide de lavage à recirculation (13) étant reçu dans la section de filtre de recirculation.

14. Machine à laver (1) selon au moins l’une des revendications 8 à 13, dans laquelle la pompe est apte à fonctionner en tant que pompe de recirculation (14) et en tant que pompe à vidange (9), et dans laquelle une vanne, de préférence une vanne trois voies, est disposée pour relier la pompe soit au circuit de recirculation (15), soit un circuit de vidange (12).

15. Machine à laver (1) selon au moins l’une des revendications 8 à 14, comprenant en outre une entrée de liquide (5) apte à alimenter du liquide supplémentaire ou propre à la cuve à lessive (2) et à coopérer avec l’unité de commande électronique (7) de telle sorte que, dans l’événement de désactivation du mode de lavage à recirculation due à un état de colmatage critique du filtre de liquide de lavage à recirculation (13), du liquide supplémentaire ou propre est alimenté à la cuve à lessive (2).
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• EP 0240911 B1 [0002]
• EP 1204792 B1 [0002]
• EP 0807707 A [0002]