(54) Title: METHODS AND APPARATUSES FOR MANUFACTURING CAST SILICON FROM SEED CRYSTALS

(57) Abstract: Methods and apparatuses are provided for casting silicon for photovoltaic cells and other applications. With these methods, an ingot can be grown that is low in carbon and whose crystal growth is controlled to increase the cross-sectional area of seeded material during casting.
METHODS AND APPARATUSES FOR MANUFACTURING CAST SILICON FROM SEED CRYSTALS

[001] This application claims the benefit of U.S. Provisional Application No.: 60/951,155, filed July 20, 2007. The entire disclosure of U.S. Provisional Application No.: 60/951,155 is hereby incorporated by reference into this specification.

[002] This invention was made with U.S. Government support under Subcontract No.: ZAZ-6-33628-11 under prime contract with the National Renewable Energy Laboratory awarded by the Department of Energy. The Government has certain rights in this invention.

DESCRIPTION

TECHNICAL FIELD

[003] The present invention generally relates to the field of photovoltaics and to methods and apparatuses for manufacturing cast silicon for photovoltaic applications. The invention further relates to new forms of cast silicon that can be used to manufacture devices, such as photovoltaic cells and other semiconductor devices. The new silicon can have a monocrystalline, near-monocrystalline, bicrystal, or geometric multicrystalline structure and can be manufactured by a casting process utilizing seed crystals.

BACKGROUND INFORMATION

[004] Photovoltaic cells convert light into electric current. One of the most important features of a photovoltaic cell is its efficiency in converting light energy into electrical energy. Although photovoltaic cells can be fabricated from a variety of semiconductor materials, silicon is generally used because it is readily available at reasonable cost, and because it has a suitable balance of electrical, physical, and chemical properties for use in fabricating photovoltaic cells.

[005] In a known procedure for the manufacture of photovoltaic cells, silicon feedstock is doped with a dopant having either a positive or negative conductivity type, melted, and then crystallized by either pulling crystallized silicon
out of a melt zone into ingots of monocrystalline silicon (via the Czochralski (CZ) or float zone (FZ) methods), or cast into blocks or "bricks" of multi-crystalline silicon or polycrystalline silicon, depending on the grain size of the individual silicon grains. As used herein, the term "monocrystalline silicon" refers to a body of single crystal silicon, having one consistent crystal orientation throughout. Further, conventional multi-crystalline silicon refers to crystalline silicon having centimeter scale grain size distribution, with multiple randomly oriented crystals located within a body of multi-crystalline silicon. As used herein, however, the term "geometrically ordered multicrystalline silicon" (hereinafter abbreviated as "geometric multi-crystalline silicon") refers to crystalline silicon, according to embodiments of the present invention, having a geometrically ordered centimeter scale grain size distribution, with multiple ordered crystals located within a body of multi-crystalline silicon. For example, in geometric multi-crystalline silicon, the grains are typically an average of about 0.5 cm to about 5 cm in size, and grain orientation within a body of geometric multi-crystalline silicon is controlled according to predetermined orientations. Further, as used herein, the term "polycrystalline silicon" refers to crystalline silicon with micrometer scale grain size and multiple grain orientations located within a given body of crystalline silicon. For example, the grains are typically an average of about submicron to about micron in size (e.g., individual grains are not visible to the naked eye), and grain orientation distributed randomly throughout. In the procedure described above, the ingots or blocks are cut into thin substrates, also referred to as wafers, by known slicing or sawing methods. These wafers may then be processed into photovoltaic cells.

[006] Monocrystalline silicon for use in the manufacture of photovoltaic cells is generally produced by the CZ or FZ methods, both being processes in which a cylindrically shaped boule of crystalline silicon is produced. For a CZ process, a seed crystal is touched to a pool of molten silicon and the boule is slowly pulled out of the pool while heat is extracted through the solid part of the boule. As used herein, the term "seed crystal" refers to a piece of crystalline material that is brought in contact with liquid silicon such that, during solidification, the liquid silicon adapts to the crystallinity of the seed. For a FZ process, solid material is fed through a melting zone, melted upon entry into one side of the melting zone, and re-solidified on the other side of the melting zone, generally by contacting a seed crystal.
Recently, a new technique for producing monocrystalline or geometric multicrystalline material in a casting station has been invented, as disclosed in U.S. Patent Application Nos.: 11/624,365 and 11/624,411 and published as U.S. Patent Application Publication Nos.: 20070169684A1 and 20070169685A1, filed January 18, 2007. Casting processes for preparing multicrystalline silicon ingots are known in the art of photovoltaic technology. Briefly, in such processes, molten silicon is contained in a crucible, such as a quartz crucible, and is cooled in a controlled manner to permit the crystallization of the silicon contained therein. The block of cast crystalline silicon that results is generally cut into bricks having a cross-section that is the same as or close to the size of the wafer to be used for manufacturing a photovoltaic cell, and the bricks are sawn or otherwise cut into such wafers. Multi-crystalline silicon produced in such manner is an agglomeration of crystal grains where, within the wafers made therefrom, the orientation of the grains relative to one another is effectively random. Monocrystalline or geometric multicrystalline silicon has specifically chosen grain orientations and (in the latter case) grain boundaries, and can be formed by the new casting techniques disclosed in the above-mentioned patent applications by bringing liquid silicon in contact with a large seed layer that remains partially solid during the process and through which heat is extracted during solidification. As used herein, the term 'seed layer' refers to a crystal or group of crystals with desired crystal orientations that form a continuous layer. They can be made to conform with one side of a crucible for casting purposes.

In order to produce the best quality cast ingots, several conditions should be met. Firstly, as much of the ingot as possible have the desired crystallinity. If the ingot is intended to be monocrystalline, then the entire usable portion of the ingot should be monocrystalline, and likewise for geometric multicrystalline material. Secondly, the silicon should contain as few imperfections as possible. Imperfections can include individual impurities, agglomerates of impurities, intrinsic lattice defects and structural defects in the silicon lattice, such as dislocations and stacking faults. Many of these imperfections can cause a fast recombination of electrical charge carriers in a functioning photovoltaic cell made from crystalline silicon. This can cause a decrease in the efficiency of the cell.

Many years of development have resulted in a minimal amount of imperfections in well-grown CZ and FZ silicon. Dislocation free single crystals can
be achieved by first growing a thin neck where all dislocations incorporated at the seed are allowed to grow out. The incorporation of inclusions and secondary phases (for example silicon nitride, silicon oxide or silicon carbide particles) is avoided by maintaining a counter-rotation of the seed crystal relative to the melt. Oxygen incorporation can be minimized using FZ or Magnetic CZ techniques as is known in the industry. Metallic impurities are generally minimized by being left in the potsup or the tang end after the boule is brought to an end.

SUMMARY OF THE INVENTION

[010] According to some embodiments, this invention relates to a method and apparatus of controlling heat flow during the casting of silicon, particularly flow of heat through a seed crystal. Desirably, the silicon melts with a flat interface, but growth occurs with as much curvature as possible, such as to maximize an amount of monocrystalline silicon material. The embodiments of this invention balance the needs of melting a feedstock and growing the crystalline material.

[011] During the melting steps, heat can be conducted through the seed crystal to ensure melting of the feedstock while maintaining at least a portion of the seed crystal as a solid to initiate crystal growth orientation during the solidification steps. During the solidification steps, it is desirable to reduce and/or prevent heat loss through walls of a crucible, such as to minimize an amount of multicrystalline material produced. Since the bottom of the crucible is in thermal communication with a heat sink and the material for the crucible typically includes a higher thermal conductivity than molten silicon, the sides of the crucible cool as well. Surprisingly and unexpectedly, a configuration of a thermally conducting material and a thermally insulating material placed under the crucible allows control of heat flow to improve solidification by increasing an amount of monocrystalline silicon produced from the seed crystals.

[012] As used herein, the term "near-monocrystalline silicon" refers to a body of crystalline silicon, having one consistent crystal orientation throughout for greater than 50% by volume of the body, where, for example, such near-monocrystalline silicon may comprise a body of single crystal silicon next to a multicrystalline region, or it may comprise a large, contiguously consistent crystal of silicon that partially or wholly contains smaller crystals of silicon of other crystal orientations, where the smaller crystals do not make up more than 50% of the overall

SUMMARY OF THE INVENTION

[010] According to some embodiments, this invention relates to a method and apparatus of controlling heat flow during the casting of silicon, particularly flow of heat through a seed crystal. Desirably, the silicon melts with a flat interface, but growth occurs with as much curvature as possible, such as to maximize an amount of monocrystalline silicon material. The embodiments of this invention balance the needs of melting a feedstock and growing the crystalline material.

[011] During the melting steps, heat can be conducted through the seed crystal to ensure melting of the feedstock while maintaining at least a portion of the seed crystal as a solid to initiate crystal growth orientation during the solidification steps. During the solidification steps, it is desirable to reduce and/or prevent heat loss through walls of a crucible, such as to minimize an amount of multicrystalline material produced. Since the bottom of the crucible is in thermal communication with a heat sink and the material for the crucible typically includes a higher thermal conductivity than molten silicon, the sides of the crucible cool as well. Surprisingly and unexpectedly, a configuration of a thermally conducting material and a thermally insulating material placed under the crucible allows control of heat flow to improve solidification by increasing an amount of monocrystalline silicon produced from the seed crystals.

[012] As used herein, the term "near-monocrystalline silicon" refers to a body of crystalline silicon, having one consistent crystal orientation throughout for greater than 50% by volume of the body, where, for example, such near-monocrystalline silicon may comprise a body of single crystal silicon next to a multicrystalline region, or it may comprise a large, contiguously consistent crystal of silicon that partially or wholly contains smaller crystals of silicon of other crystal orientations, where the smaller crystals do not make up more than 50% of the overall

SUMMARY OF THE INVENTION

[010] According to some embodiments, this invention relates to a method and apparatus of controlling heat flow during the casting of silicon, particularly flow of heat through a seed crystal. Desirably, the silicon melts with a flat interface, but growth occurs with as much curvature as possible, such as to maximize an amount of monocrystalline silicon material. The embodiments of this invention balance the needs of melting a feedstock and growing the crystalline material.

[011] During the melting steps, heat can be conducted through the seed crystal to ensure melting of the feedstock while maintaining at least a portion of the seed crystal as a solid to initiate crystal growth orientation during the solidification steps. During the solidification steps, it is desirable to reduce and/or prevent heat loss through walls of a crucible, such as to minimize an amount of multicrystalline material produced. Since the bottom of the crucible is in thermal communication with a heat sink and the material for the crucible typically includes a higher thermal conductivity than molten silicon, the sides of the crucible cool as well. Surprisingly and unexpectedly, a configuration of a thermally conducting material and a thermally insulating material placed under the crucible allows control of heat flow to improve solidification by increasing an amount of monocrystalline silicon produced from the seed crystals.

[012] As used herein, the term "near-monocrystalline silicon" refers to a body of crystalline silicon, having one consistent crystal orientation throughout for greater than 50% by volume of the body, where, for example, such near-monocrystalline silicon may comprise a body of single crystal silicon next to a multicrystalline region, or it may comprise a large, contiguously consistent crystal of silicon that partially or wholly contains smaller crystals of silicon of other crystal orientations, where the smaller crystals do not make up more than 50% of the overall
volume. Preferably, the near-monocrystalline silicon may contain smaller crystals which do not make up more than 25% of the overall volume. More preferably, the near-monocrystalline silicon may contain smaller crystals which do not make up more than 10% of the overall volume. Still more preferably, the near-monocrystalline silicon may contain smaller crystals which do not make up more than 5% of the overall volume.

[013] As used herein, the term "bi-crystal silicon" refers to a body of silicon, having one consistent crystal orientation throughout for greater than or equal to 50% by volume of the body, and another consistent crystal orientation for the remainder of the volume of the body. For example, such bi-crystal silicon may comprise a body of single crystal silicon having a one crystal orientation next to another body of single crystal silicon having a different crystal orientation making up the balance of the volume of crystalline silicon. Preferably, the bi-crystal silicon may contain two discrete regions within the same body of silicon, the regions differing only in their crystal orientation.

[014] In accordance with the invention as embodied and broadly described, there is provided a method of manufacturing cast silicon, comprising: placing a crucible filled with silicon on a layer, the layer comprising: a thermally conducting material in contact with a heat sink, and a thermally insulating area, where a thermally conductive part of the layer is in contact with about 5% to about 99% of a bottom surface of the crucible; and solidifying the silicon by extracting heat through the thermally conducting layer. The heat extraction may occur after part or all of the silicon is melted, in order to direct seeded growth by bringing the cast silicon to a first temperature and then cooling it to a second temperature.

[015] In accordance with the present invention, there is also provided a method of manufacturing cast silicon, comprising placing silicon in a crucible having walls tapered inwards towards a center of the crucible, melting the silicon, solidifying the silicon by extraction of heat through a bottom of the crucible, bringing the cast silicon to a first temperature, cooling the silicon down to a second temperature different from the first temperature, extracting the cast silicon from the crucible and then cutting sections from the cast silicon.

[016] In accordance with the present invention, there is also provided a method of manufacturing cast silicon, comprising placing silicon in a crucible having
walls tapered outwards away from a center of the crucible, melting the silicon, solidifying the silicon by extraction of heat through a bottom of the crucible, bringing the cast silicon to a first temperature, cooling the silicon down to a second temperature different from the first temperature, extracting the cast silicon from the crucible and then cutting sections from the cast silicon.

[017] In accordance with the present invention, there is also provided a crucible for the casting of silicon having a bottom surface and a plurality of side walls, wherein at least one of the plurality of side walls tapers inwards toward a center of the crucible at an angle from about 1° to about 25° with respect to a plane perpendicular to a bottom surface of the crucible and viewed in a direction extending upwards from the bottom surface. The tapered side wall or walls may reduce the vessel cross-sectional area taken in the direction away from the bottom surface.

[018] In accordance with the present invention, there is also provided a crucible for the casting of silicon having a bottom surface and a plurality of side walls, wherein at least one of the plurality of side walls tapers outwards from a center of the crucible at an angle greater than about 2°, with respect to a plane perpendicular to a bottom surface of the crucible and viewed in a direction extending upwards from the bottom surface. The tapered side wall or walls may increase the vessel cross-sectional area taken in the direction away from the bottom surface.

[019] In accordance with the present invention, there is also provided a method of manufacturing cast silicon, comprising: coating inner side walls of a crucible with a release coating, leaving a bottom wall uncoated; placing silicon seed crystals in contact with the uncoated wall, placing silicon feedstock in the crucible, melting the feedstock while maintaining the seed crystals in at least a partially solid state, solidifying the silicon by extracting heat through the seed crystals, bringing silicon to a first temperature and cooling the silicon to a second temperature.

[020] In accordance with the present invention, there is also provided a method of manufacturing cast silicon, comprising: slicing a previously cast ingot into slabs, chemically treating the slabs to remove impurities, placing the slab in a crucible for use as a seed layer and then filling the crucible with feedstock for casting.

[021] In accordance with the present invention, there is also provided a method of manufacturing cast silicon, comprising: placing a layer of monocrystalline silicon seed crystals on at least one surface in a crucible such that seed crystals in a
center region of the layer have one crystal pole direction perpendicular to the surface and cover about 50% to about 99% of the layer area, while the remaining seed crystals on the edges of the layer have at least one different crystal pole direction perpendicular to the surface and cover the remaining layer area; adding feedstock silicon and bringing the feedstock and a portion of the seed layer to a molten state; solidifying the silicon by extracting heat through the seed layer; bringing the silicon to a predetermined, for example, uniform first temperature and then preferably uniformly cooling the silicon down to a uniform second temperature.

[022] In accordance with the present invention, there is also provided a method of manufacturing cast silicon, comprising: placing at least one monocrystalline seed crystal having at least about 10 cm by about 10 cm area on a bottom surface of a crucible that rests on a partially insulating base plate; introducing solid or liquid silicon feedstock and partially melting the seed crystal, extracting heat through the seed crystal in such a way that a convex solid boundary increases the cross-sectional area of monocrystalline growth; bringing the silicon to a first temperature and cooling it, preferably uniformly, down to a second temperature; cutting a slab from a side of the cast silicon opposite the seed crystal; cleaning the slab using a chemical process; and using the large slab as a new seed layer for a subsequent casting process.

[023] In accordance with the present invention, there is also provided a method of manufacturing cast silicon, comprising: loading a seed layer of crystalline silicon together with solid silicon feedstock into a crucible having a lid or cover; melting and solidifying the silicon while maintaining part of the seed layer as solid and while flowing at least one of argon and nitrogen gas through at least one hole in the lid or cover while at least another hole exits the gas; and cooling the silicon preferably uniformly.

[024] In accordance with the present invention, there is also provided a method of manufacturing cast silicon, comprising: loading a seed layer of crystalline silicon into a crucible, covering the crucible having a lid; introducing liquid silicon into the crucible, the liquid silicon preferably being superheated; allowing part of the seed layer to melt; solidifying the silicon while flowing at least one of argon and nitrogen gas through at least one hole in the lid while at least one other hole exits the gas; and cooling the silicon.
In accordance with the present invention, there is also provided a process for manufacturing cast silicon comprising loading a seed layer of crystalline silicon together with solid feedstock; melting the feedstock and part of the seed layer while maintaining a solid/liquid interface that is essentially flat over a center portion of the seed layer, and convex at the edges of the seed layer; solidifying the silicon by extracting heat through the seed layer while at least initially maintaining the same solid/liquid interface shape; bringing the silicon to a first temperature and cooling the silicon to a second temperature, the heating and cooling preferably being uniform.

In accordance with the present invention, there is also provided a process for manufacturing cast silicon comprising loading a seed layer of crystalline silicon together with solid feedstock; melting the feedstock and part of the seed layer while maintaining a solid/liquid interface that is substantially flat over the entire seed layer; solidifying the silicon by extracting heat through the seed layer while at least initially providing extra heat in a region comprising the edges of the seed layer; bringing the silicon to a first temperature and preferably uniformly cooling the silicon to a second temperature, the heating and cooling preferably being uniform.

In accordance with the present invention, there is also provided an apparatus for the casting of silicon comprising heaters for surrounding a crucible resting on a heat sink, the heaters being provided for the melting of silicon; a means for controlled extraction of heat through the heat sink; a port for introduction of a gas; and at least one loop of insulated, water cooled tube residing with the primary heaters and for encircling the crucible, wherein the loop can be energized to provide inductive heating at different regions within the crucible.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the features, advantages, and principles of the invention. In the drawings:

FIGS. IA-IB illustrate an exemplary system where a thermally insulating layer is combined with a thermally conducting layer below a crucible in a casting station, according to an embodiment of the present invention;
FIGS. 2A-2D illustrate two examples of tapered crucibles together with illustrations of the desired effects on the silicon cast therein, according to embodiments of the present invention;

FIG. 3 illustrates an example of silicon feedstock loaded into a partially coated crucible, according to an embodiment of the present invention;

FIG. 4 illustrates an example of a method for recycling seed layer material, according to an embodiment of the present invention;

FIG. 5 illustrates an exemplary arrangement of single crystal silicon to form a seed layer, according to an embodiment of the present invention;

FIG. 6 illustrates an exemplary method for creating large single crystal seed layers, according to an embodiment of the present invention;

FIGS. 7A-7B illustrate an exemplary apparatus for casting low carbon monocrystalline or multicrystalline silicon, according to an embodiment of the present invention;

FIG. 8 illustrates an exemplary apparatus for casting monocrystalline or multi-crystalline silicon, according to embodiments of the present invention; and

FIGS. 9A-D illustrate an exemplary system where a thermally insulating layer is combined with a thermally conducting layer in an alternate geometry, according to an embodiment of the present invention.

DESCRIPTION OF THE EMBODIMENTS

Reference will now be made in detail to embodiments of the present invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same or similar reference numbers will be used throughout the drawings to refer to the same or like parts.

In embodiments consistent with the invention, the crystallization of molten silicon is conducted by casting processes using seed crystals. As disclosed herein, such casting processes may be implemented so that the size, shape, and orientation of crystal grains in the cast body of crystallized silicon is controlled. As used herein, the term "cast" means that the silicon is formed by cooling molten silicon in a mold or vessel used to hold the molten silicon. By way of example, the silicon can be formed by solidification in a crucible, where solidification is initiated from at least one wall of the crucible, and not through a cooled foreign object drawing silicon out of the crucible. Thus, the crystallization of molten silicon is not controlled by
"pulling" a boule either by moving a seed or moving the mold, vessel, or crucible. Further, consistent with an embodiment of the present invention, the mold, vessel, or crucible includes at least one hot side wall surface for solidifying the molten silicon. As used herein, the term "hot-wall" refers to a surface that is isothermal or hotter than molten silicon. Preferably, a hot-wall surface remains fixed during processing of the silicon.

[040] Consistent with embodiments of the invention, the crystallized silicon can be either continuous monocrystalline, or continuous multi-crystalline having controlled grain orientations. As used herein, the term "continuous monocrystalline silicon" refers to single crystal silicon, where the body of silicon is one homogeneous body of monocrystalline silicon and not smaller pieces of silicon joined together to form a larger piece of silicon. Further, as used herein, the term "continuous multi-crystalline silicon" refers to multi-crystalline silicon where the body of silicon is one homogeneous body of multi-crystalline silicon and not smaller pieces of silicon joined together to form a larger piece of silicon.

[041] Casting of silicon, according to embodiments of the present invention, can be accomplished by positioning a desired collection of crystalline silicon "seeds" in, for example, the bottom of a vessel, such as a quartz crucible that can hold molten silicon. The seeds may cover all, or most, or substantially all, of the bottom of the crucible. As used herein, the term "seed" refers to a geometrically shaped piece of silicon with a desired crystal structure, having a side that conforms to a surface of a vessel in which it may be placed. Such a seed can be either a monocrystalline piece of silicon or a piece of geometrically ordered multi-crystalline silicon. Consistent with the present invention, a seed may have a top surface that is parallel to its bottom surface, although this does not have to be the case. For example, a seed can be a piece of silicon, varying in size from about 2 mm to about 10 mm across, to about 100 mm to about 1000 mm across. The piece of silicon may have a thickness of about 1 mm to about 1000 mm, preferably about 10 mm to about 50 mm. A suitable size and shape of the seed may be selected for convenience and tiling.

[042] Tiling, which will be described in more detail below, is where silicon seed crystals are arranged in a predetermined geometric orientation or pattern across either the bottom or the sides and bottom surfaces of a crucible.
Silicon feedstock may then be introduced into the crucible over the seeds, and then the feedstock is melted. Alternatively, molten silicon may be poured directly into the crucible and over the seeds. When molten silicon is poured, the crucible is preferably first brought very close to or up to the melting temperature of silicon, and then the molten silicon is poured in. Consistent with embodiments of the invention, a thin layer of the seeds can be melted before solidification begins.

The molten silicon is then allowed to cool and crystallize in the presence of the seeds, preferably in a manner such that the cooling of the molten silicon is conducted so that the crystallization of the molten silicon starts at or below the level of the original top of the solid seeds and proceeds away, preferably upwards away, from the seeds. This can be accomplished by extracting the heat of fusion through the seed crystals to a heat sink. As used herein, the term "heat sink" refers to a body of material used to extract heat from another body of material. A heat sink may extract heat by means of conduction of heat from a higher temperature area to a lower temperature area, by convection with a lower temperature fluid or by direct radiation of energy to a lower temperature object. A thermal gradient is generally maintained across a heat sink such that one side is in equilibrium with the object to be cooled while the other exchanges energy with a cooler area.

According to embodiments of the invention, the liquid-solid interface between the molten silicon and the crystallized silicon, during melting or solidification, need not be maintained substantially flat throughout the casting process. That is, the solid-liquid interface at an edge of the molten silicon is controlled during the cooling so as to move in a direction that increases a distance between the molten silicon and the silicon seed crystal. As the solidification of the molten silicon starts, the solidification front is initially substantially flat, preferably with a strong curvature at the horizontal edges of the growing solid mass of silicon. The shape of the solid-liquid interface thus may have a controlled profile throughout the casting process.

By conducting the crystallization of the molten silicon in a manner consistent with embodiments of the invention, cast silicon having specific, rather than random, grain boundaries and specific grain sizes can be made. Additionally, by aligning the seeds in a manner such that all seeds are oriented the same relative direction to each other, for example the (100) pole direction being perpendicular to a
bottom of the crucible and the (110) pole direction at 45° to the sides of a rectangular or square cross-section crucible, large bodies of cast silicon can be obtained that are, or are essentially, monocrystalline silicon in which the pole direction of such cast silicon is the same as that of the seeds. Similarly, other pole directions may be perpendicular to the bottom of the crucible. Moreover, one or more seeds may be arranged so that any common pole direction is perpendicular to a bottom of the crucible. Furthermore, consistent with an embodiment of the invention, seed crystals of two or more different pole directions can be used together to maximize the effectiveness of the crystal growth, creating a volume of silicon as large as possible with the desired crystal orientation.

[046] The seeds used for casting processes, consistent with embodiments of the invention, can be of any desired size and shape, but are suitably geometrically shaped pieces of monocrystalline, or geometrically ordered multi-crystalline, silicon, such as square, rectangular, hexagonal, rhomboid or octagonal shaped pieces of silicon. They can be shaped conducive to tiling, so they can be placed or "tilted" edge-to-edge and conformed to the bottom of a crucible in a desired pattern. Also consistent with embodiments of the invention, seeds can be placed on one or more sides of the crucible. Such seeds can be obtained, for example, by sawing a source of crystalline silicon, such as a boule of monocrystalline silicon, into pieces having the desired shapes. The seeds can also be formed by cutting them from a sample of silicon made by a process according to the embodiments of the invention, such that seeds for use in subsequent casting processes can be made from an initial casting process. For example, a smaller piece of dislocation-free seed material can used to grow a large dislocation free single crystal, sufficient to cover the entire bottom of the crucible for use as a new seed crystal layer.

[047] Processes and apparatuses for preparing silicon in accordance with embodiments of the invention will now be described. However, it is to be understood that these are not the only ways to form silicon consistent with the embodiments of the invention.

[048] Referring to FIGS. IA and IB, the cross-section of a casting station hot zone is depicted in FIG. IA, showing liquid silicon 100 and solid silicon 101 at the end of the melting stage of a seeded casting process. The silicon is positioned in a bottomed and walled crucible 110, which may be, for example, a fused quartz or silica
crucible. At this point, solid silicon 101 in crucible 110 is entirely constituted from a seed layer of silicon previously loaded at the bottom of the crucible. Feedstock silicon (not shown) is introduced on top of the seed layer. Feedstock silicon can either be loaded as a solid and then melted in the crucible, or melted in a separate container and introduced as a liquid on top of the seeds. In either case, the original silicon seed layer is partially melted and solid silicon 101 is entirely composed of the remainder of the silicon seed layer. Preferably, crucible 110 has a release coating such as one made from silica, silicon nitride, or a liquid encapsulant, to aid in the removal of crystallized silicon from crucible 110.

[049] Still referring to FIG. IA, in this depiction of a furnace hot zone, resistive heaters 120 provide the energy to maintain the temperature required to melt silicon, while insulation 130 prevents the escape of heat to an outer chamber (not shown). Consistent with an embodiment of the invention, crucible 110 is supported by a number of layers which also serve to conduct heat away from the silicon in a controlled way. For example, a heat conducting block 140 radiates heat to a water cooled chamber (not shown), thereby cooling the hot-zone components above it. A graphite support plate 142, shown in cross section in FIG. IA and in three dimensions in FIG. IB, conducts heat from heat conducting layer 141, which in turn conducts heat away from crucible 110 and silicon 100 and 101. A thermally insulating layer 150 may surround heat conducting layer 141, in an exemplary configuration, in order to alter the heat removal path and consequently alter the shape of the solidification front. Solid graphite side plates 143 surround crucible 110 and provide structural support to the crucible. Consistent with embodiments of the invention, the casting station may have a graphite support plate 142, though a tailored heat conduction path controlled by conducting layer 141 and thermally insulating layer 150 is not required.

[050] Still referring to FIGS. IA and IB, graphite side plates 143 may rest on graphite support plate 142, and conduct heat directly to plate 142, which may create cold spots at the bottom edges of the crucible. The effect of the tailored heat conduction, vis-a-vis layers 141 and 150, however, can alter the cooling parameters, and, hence, the shape of the liquid/solid interface by, for example, keeping the corners of crucible 110 hotter, resulting in only a small amount of lateral melting. For example, as shown in FIG. IA, solid silicon 101 has a high curvature at its left and right edges due to the heat exchange occurring in materials below crucible 110. Such
a curvature can result in the lateral expansion of the solid and outward growth of a seeded crystal structure. In FIG. IA, crystal growth directions of solid silicon 101 are indicated by black arrows.

[051] Referring to FIGS. 2A-2D, crystal growth of silicon maybe altered by altering the shape of the crucible. For example, crystal growth can be accomplished in an outwardly tapered crucible 200, as shown in FIGS. 2A and 2B, where the curvature of liquid silicon 220 to the solid silicon 221 promotes lateral expansion of the seeded crystal (not shown), whose growth direction is indicated by arrows in FIG. 2B. In another example, crystal growth can be accomplished in an inwardly tapered crucible 210, as shown in FIGS. 2C and 2D, which, like crucible 200 in FIG. 2A, also has the advantage of maximizing the amount of usable cast silicon 222, and minimizing the amount of unusable or undesirable silicon 223 to be removed during cutting of the cast silicon ingot (222 + 223) into bricks (shown by dashed lines). The tapered shape of undesirable silicon 223 on a side wall of the cast silicon (viewed in cross-section in FIG. 2D) is due to the extra time that the silicon at the bottom of the crucible spends at a high temperature state during solidification and crystal growth compared with the silicon at the top of the ingot, which is cooled more quickly.

[052] FIG. 3 illustrates a cross-section of silicon (feedstock 300 and crystalline seeds 301) loaded into crucible 310 for casting. Release coating 320, such as silicon nitride or silicon carbide, may be applied to areas of crucible 310 where feedstock 300 contacts crucible 310, which corresponds to areas of silicon 300 that will become completely melted during casting. No coating has been applied below crystalline seeds 301. Seeds 301 will not be completely melted and thus will not adhere to crucible 110.

[053] FIG. 4 illustrates a process for the reuse of a crystalline silicon seed layer. As shown in FIG. 4, cast ingot 400 grown from seed layer 401 is first sliced along the dotted lines to remove a slab of material containing seed layer 401. The slab of material is then trimmed at the dotted edges to remove excess material that might interfere with its placement in another crucible. Trimmed slab 402, having been trimmed to the size and shape of original seed layer 401, is then treated, potentially with other similar pieces of silicon, in a container 410, such as a tank or a tub containing a suitable liquid or other material, to remove contaminants and debris from layer 401 (and
possibly other pieces of silicon) before being placed in a new crucible 420 for use as a seed layer in a subsequent casting process.

[054] FIG. 5 illustrates an exemplary arrangement of single crystal silicon pieces arranged to form a seed layer. The (001) crystal orientation has been shown to have advantageous properties for the manufacture of silicon solar cells. (001) silicon may be chemically etched in such a way as to produce a pattern pyramids covering its entire surface, which can improve the light-trapping ability of the silicon by both decreasing reflection and increasing the path length of light in the material. Chemical etching may be accomplished by known methods. However, the casting of (001) silicon is made difficult by its tendency to grow grain boundaries at acute angles to its (001) pole direction when located next to a multicrystalline region of silicon. To counteract the growth of multicrystalline silicon, a geometric arrangement of a plurality of monocrystalline silicon seed crystals can be placed on at least one surface in a crucible (not shown), e.g., a bottom surface of a crucible, wherein the geometric arrangement includes close-packed polygons. As shown in FIG. 5, a piece of (001) silicon 500 is surrounded by a periphery of rectangles of (111) silicon 501. The pole orientation of the peripheral silicon 501 is shown as (111), but it could be any crystal orientation that is competitively favored when grown next to a multicrystalline region. In this way, the majority of a resulting cast ingot (not shown) will be composed of (001) silicon, and the competitively favored (111) grains grown from silicon 501 will limit the growth of multicrystalline silicon in the region occupied by (001) silicon over silicon 500. Similarly, silicon crystal grains produced by casting a body of multi-crystalline silicon, consistent with embodiments of the invention, may be grown in a columnar manner. Further, such crystal grains may have a cross section that is, or is close to, the shape of the seed from which it is formed, instead of having an (001) cross-sectional area that shrinks as solidification proceeds. When making silicon that has such specifically selected grain boundaries, preferably the grain boundary junctions only have three grain boundaries meeting at a corner, a condition met in the arrangement shown in FIG. 5.

[055] FIG. 6 illustrates a process for manufacturing large area, dislocation-free single crystals for use as seed layers. In this process, depicted in cross-section, polycrystalline feedstock 600 is loaded together with a single crystal seed 601 which may have lateral dimensions from about 25 cm² to about 10,000 cm² in area and a
thickness from about 3 mm to about 1000 mm. Feedstock 600 is placed in crucible 610, which is then placed in a station (not shown) on top of layers 620, 621, and 630, composed of thermally conducting (620) and thermally insulating (630) parts. The area of the thermally conducting parts 620 should preferably be about the same shape of bottom of crucible 610, having a lateral area from about 50% to about 150% that of seed crystal 601. During melting, heat is extracted through thermally conducting area 620 to a support plate 621, while heat is prevented from passing through thermally insulating layer 630. Heat is conducted out through thermally conducting area 620 even during the melting phase of casting, in order to prevent the complete melting of seed crystal 601. Once all feedstock 600 and a small portion of seed crystal 601 are melted into liquid silicon 602, remaining solid silicon 603 then acts as the nucleation layer for the solidification process. The presence of insulating layer 630 helps control the shape of solid silicon 603 during nucleation and growth, as well as the direction of solidification, indicated by arrows in FIG. 6. The strong curvature in the solidification surface causes an outward growth of solid silicon 603, while multicrystalline regions 605 are minimized. Once ingot 604 is cast, horizontal layers may be cut (dashed lines) from the upper parts of the ingot to be used as new seed slabs 606. Slabs 606 can be cleaned, trimmed, and used as a complete seed layer for a new ingot in a new crucible 610, or as a starting point for an even larger single crystal, again using the process just described.

[056] FIGS. 7A and 7B are depictions of the cross-section of an apparatus for the casting of low carbon monocristalline or multicrystalline silicon in a seeded ingot. As shown in FIG. 7A, seed crystal 700 is loaded together with feedstock 701 in crucible 710 located in a furnace hot zone (unlabeled). Crucible 710, though illustrated as covered with ceramic lid 711 (also shown in FIG. 7B), may be uncovered and completely open to the surrounding atmosphere. In casting, carbon can be incorporated into an ingot from detached pieces of graphite insulation 720 which may fall into crucible 710, or by a gas phase reaction where oxygen from crucible 710 dissolves into the silicon melt and then evaporates as SiO molecules (not shown). These molecules can adhere to graphite parts 720, 750, 760 of the furnace and react via the reaction SiO + 2C → SiC + CO.

[057] The CO gas molecule enters the liquid where SiC forms and O is again liberated to repeat the cycle. By introducing ceramic lid 711 (shown in FIG.
7B) to crucible 710, and carefully controlling process gas 730 (which may be, for example, argon), both mechanisms of carbon incorporation can be effectively stopped, or severely restricted. Ceramic lid 711 can be made of a number of materials including, for example, fused silica, quartz, silicon carbide, silicon nitride, and the like. It is desirable for the design that a fresh supply of an inert gas, such as argon, come in through channel 740 and exit through another channel (not shown) in order to prevent the above-described carbon gas reaction.

[058] Still referring to FIGS. 7A and 7B, the casting process can be operated either by loading one or more seeds 700 and feedstock 701 prior to installing crucible 710 in the furnace, or by loading only one or more seeds 700 and later introducing liquid silicon 750 into the crucible from a separate melt chamber.

[059] FIG. 8 illustrates an apparatus consistent with embodiments of this invention for modifying the shape of the solid-liquid interface during casting. As shown in FIG. 8, primary heaters 820 and an additional heater 840 are placed in the hot zone (shown surrounded by insulation 831) of a casting station to introduce targeted heating to material 800, 801. Liquid material 800 on top of solid seed material 801 has an interface that is curved at the edges, near the side walls of crucible 810. Primary heaters 820 together with primary heat sink 860 normally work to produce a substantially flat solid-liquid interface (not shown). However, additional heater 840 couples an electric current directly to material 800, 801, introducing inductive heating to the edges of the material 800, 801 near the walls of crucible 810, and thereby melts solid material 801 in its vicinity.

[060] Additional heater 840, as shown in FIG. 8, is a coil of conductive metal, which may be, for example, copper, that is cooled with circulating liquid 850 and thermally insulated from primary heaters 820 by surrounding layer 830. Additional heater 840 may be a single turn coil surrounding crucible 810 in a loop, as illustrated in FIG. 8, or it may have multiple loops forming a helix having any desired spacing between loops constituting the helix. Additional heater 840 may also be configured so that it can move relative to the walls of crucible 810 in order to affect the solid-liquid interface (not shown). Additional heater 840 operates by electrical current flowing through the copper pipe while the water cools it so the current through the pipe forms a strong magnetic field which couples with the liquid silicon, inducing
a corresponding current in the silicon. Resistive heat from the current in and/or through the silicon provides the heating action in a localized way and/or manner.

[061] Alternately, resistive heaters could be used as additional heaters 840, but resistive heaters may not be as efficient in targeting the heat application to a specific volume of material, such as material 800, 801. During casting with the apparatus shown in FIG. 8, additional heater 840 would only be activated near the end of the melting cycle, so as not to overly melt seed material 801. Additional heater 840 would continue to apply heat to crucible 810 through at least about the first 20% of the solidification process. Additional heater 840 may also continue to apply heat to crucible 810 through the entire solidification process until implementation of the cooling stage.

[062] As disclosed herein, embodiments of the invention can be used to produce large bodies of monocrystalline silicon, near-monocrystalline silicon, bicrystal silicon, or geometric multi-crystalline silicon, by a simple and cost-effective casting process. The silicon feedstock used in processes consistent with embodiments of the invention, and thus the silicon produced, can contain one or more dopants selected from a list including: boron, aluminum, lithium, gallium, phosphorus, antimony, arsenic, and bismuth. The total amount of such dopant or dopants can be about 0.01 parts per million (ppm) by atomic % (ppma) to about 2 ppma. Preferably, the amount of dopant or dopants in the silicon is an amount such that a wafer made from the silicon has a resistivity of about 0.1 to about 50 ohm-cm, preferably of about 0.5 to about 5.0 ohm-cm. Alternately, other materials having a suitable liquid phase can be cast using the processes and apparatuses disclosed here. For example, germanium, gallium arsenide, silicon germanium, sapphire, and a number of other III-V or II-VI materials, as well as metals and alloys, could be cast according to embodiments of the present invention.

[063] Moreover, although casting of silicon has been described herein, other semiconductor materials and nonmetallic crystalline materials may be cast without departing from the scope and spirit of the invention. For example, the inventors have contemplated casting of other materials consistent with embodiments of the invention, such as germanium, gallium arsenide, silicon germanium, aluminum oxide (including its single crystal form of sapphire), gallium nitride, zinc oxide, zinc sulfide, gallium indium arsenide, indium antimonide, germanium, yttrium barium
oxides, lanthanide oxides, magnesium oxide, calcium oxide, and other semiconductors, oxides, and intermetallics with a liquid phase. In addition, a number of other group III-V or group II-VI materials, as well as metals and alloys, could be cast according to embodiments of the present invention.

[064] According to some embodiments, suitable insulating materials for the thermally insulating area may include carbon fiber insulation board, carbon bonded carbon fiber (CBCF), alumina fiber, silica fiber, fused silica, fused quartz, radiation reflector, carbon fiber composite, and or any other substance having a relatively high thermal conductivity and a stability at the operating temperatures of the casting processes.

[065] According to some embodiments, suitable conducting materials for the thermally conducting material may include graphite, high temperature metals, high temperature alloys, tungsten, molybdenum, tantalum, silicon carbide, ceramics with sufficient thermal conductivity and/or any other substance having a lower thermal conductivity than the insulating material and a stability at operating temperatures of the casting processes.

[066] According to some embodiments, materials in the layer include a ratio of thermal conductivities of at least about 20:1 (conductor/insulator), desirably at least about 50:1 and more desirably at least about 100:1. For example, at the working temperature range of about 1400 °C, graphite has a thermal conductivity of 48 W/m/K conductivity while CBCF has a thermal conductivity of 0.7 W/m/K, resulting in a ratio of about 68:1. When measured at room temperature, the same materials have a ratio of about 260:1.

[067] According to some embodiments, the thermal conducting material is framed by the thermally insulating area, such as to form a square and/or a rectangular shape. Desirably, a conduction window is at least generally congruent and/or corresponds with a shape of the seed crystal arrangement. Alternately and as shown in FIGS. 9A-D, extra cooling area is applied in the corners because they are heated from two sides. FIG. 9A shows thermally conducting layer 141 with a contoured thermally insulating layer and/or area 150, such as a width of insulating layer 150 in a middle of a side is about double a width of insulating layer 150 in a corner. FIG. 9B shows crucible 110 in relation to thermally conducting layer 141 and thermally insulating layer 150. FIG. 9C shows an outline in dashed lines of support walls 142
(typically graphite) placed on the insulating layer 150. FIG. 9D shows an outline in dashed lines of solid silicon 101 placed in crucible 110 and with respect to thermally conducting layer 141 and thermally insulating layer 150.

[068] According to some embodiments a method of shaping the thermal conducting material and/or the thermal insulating material includes the use of saws, routers and/or any other suitable device. Any suitable configuration of the thermal conducting material and/or the thermal insulating material is possible, such as including lips, ledges, interlocking pieces, chamfers, rounded corners, and the like.

[069] Desirably, a solid perimeter of the partially melted seed crystal remains roughly square. Any suitable ratio of an area of a conducting window to a seed crystal area is possible, such as from about 0.5 to about 2.0, desirably about 1.0, and even more desirably about 0.9 to about 1.1.

[070] According to some embodiments, the additional heater and/or the water tube heater is movable relative the a height of the crucible, such as to apply localized heat to the silicon during solidification and adjust upwards and/or downwards with respect to the solid-liquid interface. This dynamic capability allows for flat melt/solid interface shapes during melting, with control of heat input during solidification, such as to keep the walls warm and minimize growth of multicrystalline material, while maximizing growth of the desired monocrystalline silicon, near-monocrystalline silicon, and/or geometric multicrystalline silicon.

[071] According to other embodiments of this invention, dynamic capabilities allow the apparatus to vary the heat flow, such as in the melting segment and in the growth segments. The insulating area may be increased and/or decreased by inserting and/or removing the thermally insulating area from under the crucible and/or support walls, for example. The layer may include markings, notches, pegs and/or any other suitable devices to aid in positioning various components. In other embodiments, the static insulation balances between the needs and/or characteristics in melting and in growth.

[072] According to some embodiments, the invention includes a method of manufacturing cast silicon, comprising placing a crucible on a layer. The layer comprising a thermally conducting material, a heat sink, and a thermally insulating area, where a thermally conductive part of the layer contacts with a portion of a bottom surface of the crucible. The method further comprises placing at least one
seed crystal on a bottom of the crucible, placing molten silicon in contact with the at least one seed crystal, and forming a solid body of silicon by extracting heat through the thermally conducting material. Desirably, the method further includes forming a portion of the solid body to include the at least one seed crystal.

[073] According to some embodiments, the invention includes a method of manufacturing a solar cell comprising providing a solid body of cast silicon, slicing the solid body of cast silicon to form at least one wafer, forming a p-n junction by doping a surface of the at least one wafer, and forming a surface neutralizing layer and/or a back surface field and forming electrically conductive contacts on at least one surface of the wafer.

[074] According to some embodiments, a heat flux through the layer changes from the step of melting the silicon to the step of forming a solid body, such as to provide asymmetric melting and optimize the casting process. Desirably, a minimum heat transfer to the heat sink occurs during melting, such as is barely sufficient for retaining solid silicon seed material on the crucible bottom. During the melting, however, the area of heat transfer is as wide as possible to encourage a flat melt/solid interface. During cooling or solidification the heat sink experiences a higher heat flux to cause solidification of the ingot, but the thermally insulating area is increased to at least partially isolate the graphite support walls and the side walls of the crucible from the thermally conducting material and/or the heat sink. The effect of this arrangement is to keep the sides warm and maintain a domed melt/solid interface, minimizing growth of multicrystalline silicon from the sidewalls.

[075] Optionally, the step of extracting heat expands a lateral area of the seeded crystal during solidification. The embodiment may further include placing a solid silicon feedstock in the crucible on top of the at least one seed crystal and melting the solid silicon feedstock while cooling the bottom of the crucible to maintain the at least one seed crystal in an at least partially solid state.

[076] Alternately, the step of placing molten silicon further includes melting a silicon feedstock in a melt container separate from the crucible, heating the crucible to melting temperature of silicon, controlling heating so that the at least one seed crystal in the crucible does not melt completely, and transferring the molten silicon from the melt container into the crucible.
According to some embodiments, the thermally conducting material contacts between about 5% to about 99% of the bottom surface area of the crucible, and desirably at least about 90%. Alternately, the thermally conducting material corresponds to a size and a shape of the at least one seed crystal within the crucible, such as having a ratio of an area of the thermal conducting material to an area of the seed crystal from about 0.5 to about 2.0, and desirably from about 0.9 to about 1.

The method of manufacture may further include reducing and/or enlarging the thermally conducting material and/or thermally conducting area in contact with a crucible bottom by adding and/or removing at least a portion of the thermally insulating area, for example.

Desirably, but not necessarily, the heat sink comprises a radiative heat sink, radiating heat to walls of a water-cooled vessel. According to some embodiments, the thermally insulating area forms a perimeter or a border around the thermally conducting material. Alternately, the perimeter comprises a contoured shape wider in a middle of a side of the layer than in corners of the layer. The perimeter may thermally isolate graphite side support walls for the crucible from the heat sink, such as to reduce cooling and slow multicrystalline growth from the walls. The perimeter may sometimes be referred to as a thermal ring.

According to some embodiments, the invention includes an apparatus for casting of silicon comprising optionally a crucible, optionally at least one seed crystal on a bottom of the crucible, resistive heaters in thermal communication with the crucible, and a layer. The layer comprises a thermally conducting material, a heat sink, and a thermally insulating area, wherein a thermally conductive part of the layer is for contact with a portion of a bottom surface of the crucible on a side and the heat sink on an opposite side. Desirably, the thermally insulating area forms a perimeter around the thermally conducting material. Optionally, the thermally insulating area is movable, such as comprising four or more discrete pads or blocks, so that the thermally insulating area increases, decreases and/or changes heat transferred through the layer by moving with respect to the thermally conducting material.

According to some embodiments, a ratio of thermal conductivities of the thermally conducting material to the thermally insulating area is at least about 20:1. In other embodiments, a ratio of an area of the thermal conducting material to an area of the seed crystal is from about 0.5 to about 2.0.
[082] The invention also may include a process for manufacturing cast silicon comprising the steps of loading a seed layer of crystalline silicon together with a solid feedstock, melting the solid feedstock and part of the seed layer by maintaining a solid/liquid interface essentially flat over the center of the seed layer, but convex in the solid portion at the edges of the seed layer, forming a solid body of silicon by extracting heat through the seed layer while maintaining the solid/liquid interface essentially flat over the center of the seed layer, but convex in the solid portion at the edges of the seed layer, bringing the solid body to a first temperature, and cooling the solid body to a second temperature.

[083] The first temperature, such as a range of between about 1410 °C and about 1300 °C usually includes a temperature gradient across and/or through the solid body. The second temperature, such as about 1350 °C on average usually includes a reduced temperature gradient and/or a uniform temperature profile across and/or through the solid body. The reducing the temperature gradient may be referred to sometimes as annealing in the context of this disclosure. Annealing may include closing up the insulation, for example.

[084] The invention also may include a method for manufacturing cast silicon comprising loading a seed layer of crystalline silicon together with a solid feedstock, melting the solid feedstock and part of the seed layer by maintaining a solid/liquid interface substantially flat over the entire seed layer, forming a solid body of silicon by extracting heat through the seed layer while at least initially providing extra heat in the local vicinity of at least one edge of the seed layer, bringing the solid body to a first temperature, and cooling the solid body to a second temperature.

[085] According to some embodiments, the invention includes an apparatus for casting silicon comprising at least one primary resistive heater for melting of silicon for surrounding a crucible resting on a heat sink, a means for the controlled extraction of heat through the heat sink, a port for the introduction of a gas; and an additional heater for encircling the crucible to provide inductive heating at different regions within the crucible. Desirably, the additional heater comprises one loop of a thermally insulated, water cooled, electrically conductive tube residing with the at least one primary resistive heater. Also desirably, the additional heater moves relative to walls of the crucible. The apparatus may also include at least one seed crystal on a bottom of the crucible.
The following examples are experimental results consistent with embodiments of the invention. These examples are presented for merely exemplifying and illustrating embodiments of the invention and should not be construed as limiting the scope of the invention in any manner.

Example 1

Crucible preparation: A crucible was placed on a supporting structure consisting of two layers. The bottom layer of the supporting structure is a solid isomolded graphite plate measuring 80 cm by 80 cm by 2.5 cm which supported a composite layer. The upper composite layer had an inner region that was a thermally conducting isomolded graphite plate measuring 60 cm by 60 cm by 1.2 cm, and was surrounded on all sides by a 10 cm perimeter of thermally insulating graphite fiber board of 1.2 cm thickness. In this way, the composite layer completely covered the bottom layer.

Seed preparation: A boule of pure Czochralski (CZ) silicon (monocrystalline) obtained from MEMC, Inc. and having 0.3 ppma of boron, was cut down along its length using a diamond coated band saw so that it had a square cross section measuring from 140 mm per side. The resulting block of monocrystalline silicon was cut through its cross section using the same saw into slabs having a thickness of about 2 cm to about 3 cm. These slabs were used as monocrystalline silicon seed crystals, or "seeds." The (100) crystallographic pole orientation of the silicon boule was maintained. The resulting single crystal silicon slabs were then arranged in the bottom of a quartz crucible so that the (100) direction of the slabs faced up, and the (110) direction was kept parallel to one side of the crucible. The quartz crucible had a square cross section with 68 cm on a side and a depth of about 40 cm. The slabs were arranged in the bottom of the crucible with their long dimension parallel to the bottom of the crucible and their sides touching to form a single, complete layer of such slabs on the bottom of the crucible.

Casting: The crucible was loaded with the seed plates and then filled up to a total mass of 265 kg of solid silicon feedstock at room temperature. A few wafers of highly boron doped silicon were added to provide enough boron for a total ingot doping of -0.3 ppma. The filled crucible was first surrounded with graphite support plates that rested on the thermally insulating portion of the support structure, and was then loaded into an in-situ melting/directional solidification casting station.
used to cast multi-crystalline silicon. The melt process was run by heating resistive heaters to approximately 1550 °C, and the heaters were configured so that the heating came from the top while heat was allowed to radiate out the bottom by opening the insulation a total of 6 cm. This configuration caused the melting to proceed in a top-down direction towards the bottom of the crucible. The passive cooling through the bottom caused the seed crystals to be maintained in solid state at the melting temperature, as was monitored by a thermocouple. The extent of melting was measured by a quartz dip rod that was lowered into the melt every ten minutes. The dip rod height was compared with a measurement taken on an empty crucible in the station to determine the height of the remaining solid material. By dip rod measurement, first the feedstock melted, and then the melting phase was allowed to continue until only a height of about 1.5 cm of the seed crystals remained. At this point, the heating power was dropped to a temperature setting of 1500 °C, while the radiation from the bottom was increased by opening the insulation to 12 cm. One or two additional millimeters of seed crystals melted before solidification began, as observed by dip-rod measurements. Then seeded single crystal growth proceeded until the end of the solidification step. The growth stage and the remainder of the casting cycle were performed with the normal parameters where the top-to-bottom thermal gradient is evened out, and then the entire ingot is slowly cooled to room temperature. The cast silicon product was a 66 cm by 66 cm by 24 cm ingot. The region of crystallinity consistent with the seeds began at the bottom and conformed with the edge of the unmelted material, and from there grew laterally outwards toward the crucible walls as growth began, and stabilized to a constant size towards the end of crystallization. The monocrystalline silicon structure was evident from visually inspecting the faces of bricks cut from the ingot.

[091] Example 2

[092] Seeding was accomplished as in Example 1, and an ingot was cast containing a large monocrystalline volume. After cooling, the ingot was stood on its side and loaded into a band saw with fixed diamond abrasive for cutting. The bottom of the ingot was cut off as a single layer with a thickness of 2 cm. This layer was then fixed horizontally on a cutting table. In the same band saw, the edges of the layer were trimmed such that approximately 1.5 cm was removed from each side. The slab was then sandblasted to remove glue and foreign materials, after which it was etched
in a hot sodium hydroxide bath, rinsed, and dipped in a HCl bath to remove metals. The slab was then placed on the bottom of a standard crucible of the same size as the previous ingot. Silicon feedstock was loaded to a total mass of 265 kg and the casting process was repeated, producing a second seeded ingot.

[093] **Example 3**

[094] Seed preparation: A seed layer was prepared, starting with 18 kg of square, (100), plates used to line the bottom of a crucible, providing a coverage area of 58 by 58 cm and a thickness ranging from 2-3 cm. These plates were placed together into a larger square that was centered in the crucible. Next, this square was surrounded by a 2 cm thick layer of (111) oriented seed crystals, making the total seed layer a 63 cm by 63 cm square.

[095] Casting: The crucible containing the seeds was filled with silicon to a total mass of 265 kg and placed in a casting station. Casting was performed as in Example 1, monitoring the process to assure that the seed layer remained intact through the end of melt and beginning of solidification. The resulting ingot was cut into a 5x5 grid of 12.5 cm bricks. Optical inspection of the crystal structure of the bricks showed that the (111) crystals acted as a buffer layer, preventing the ingress of randomly nucleated grains into the (100) volume.

[096] **Example 4**

[097] Crucible preparation: A standard 69 cm² crucible was placed on a support structure composed of two layers. The layers were composed as in Example 1 except that the dimensions of the composite layer were different. The bottom solid graphite layer had dimensions of 80x80x2.5 cm³ as before, but the heat conducting portion of the composite layer measured only 20x20x1.2 cm³, centered on top of the bottom layer. The remainder of the bottom layer was covered with heat insulating graphite fiber board.

[098] Seed preparation: A single piece of (100)-oriented single crystal silicon with a size of 21 cm by 21 cm by 2 cm was centered in the bottom of the crucible. The crucible was then filled with a balance of silicon feedstock to a total mass of 265 kg.

[099] Casting: The crucible and support plates were placed in a casting station and cycled as in Example 1, except that additional time was allowed for the solidification of the silicon, given the smaller heat extraction area. After cooling...
down, the ingot was sectioned. Visual inspection of the sectioned ingot verified the strong outwards growth of the crystals from the controlled heat extraction.

[0100] Example 5

[0101] Crucible preparation: A standard 69 cm2 crucible was placed on a graphite support plate and loaded with a seed layer, feedstock and dopant as in Example 1, except that the feedstock contained no silicon recycled from previous ingots. A fused silica lid that had dimensions of 69x69x12 cm3 was then placed on the crucible. A casting station was modified such that a telescoping tube was attached to the hole in the top insulation where the process gas is introduced. The charge was then loaded into the station and raised up to engage the telescope. The casting station was run using an altered recipe to allow better gas control and altered solidification settings to compensate for the effects of the crucible lid. The resulting ingot was measured to have $1/10^\text{th}$ of the carbon concentration found in a typical ingot, and additionally had a mirror-like top surface and fewer included foreign particles than typical ingots.

[0102] Thus, consistent with embodiments of the invention and the examples described above, wafers made from the silicon consistent with embodiments of the invention are suitably thin and can be used in photovoltaic cells. For example, wafers can be about 10 microns thick to about 300 microns thick. Further, the wafers used in the photovoltaic cells preferably have a diffusion length (L_p) that is greater than the wafer thickness (t). For example, the ratio of L_p to t is suitably at least 0.5. It can, for example, be at least about 1.1, or at least about 2. The diffusion length is the average distance that minority carriers (such as electrons in p-type material) can diffuse before recombining with the majority carriers (holes in p-type material). The L_p is related to the minority carrier lifetime τ through the relationship $L_p = (D\tau)^{1/2}$, where D is the diffusion constant. The diffusion length can be measured by a number of techniques, such as the Photon-Beam-Induced Current technique or the Surface Photovoltage technique. See for example, "Fundamentals of Solar Cells", by A. Fahrenbruch and R. Bube, Academic Press, 1983, pp. 90-102, which is incorporated by reference herein, for a description of how the diffusion length can be measured.

[0103] The wafers can have a width of about 100 millimeters to about 600 millimeters. Preferably, the wafers have at least one dimension being at least about 50 mm. The wafers made from the silicon of the invention, and consequently the
photovoltaic cells made by the invention can, for example, have a surface area of about 100 to about 3600 square centimeters. The front surface of the wafer is preferably textured. For example, the wafer can be suitably textured using chemical etching, plasma etching, or laser or mechanical scribing. If a monocrystalline wafer is used, the wafer can be etched to form an anisotropically textured surface by treating the wafer in an aqueous solution of a base, such as sodium hydroxide, at an elevated temperature, for example about 70°C to about 90°C, for about 10 to about 120 minutes. The aqueous solution may contain an alcohol, such as isopropanol.

[0104] Thus, solar cells can be manufactured using the wafers produced from cast silicon ingots according to the embodiments of the invention, by slicing the solid body of cast silicon to form at least one wafer; optionally performing a cleaning procedure on a surface of the wafer; optionally performing a texturing step on the surface; forming a p-n junction by doping the surface; optionally depositing an anti-reflective coating on the surface; optionally forming a back surface field with, for example, an aluminum sintering step; and forming electrically conductive contacts on at least one surface of the wafer.

[0105] In a typical and general process for preparing a photovoltaic cell using, for example, a p-type silicon wafer, the wafer is exposed on one side to a suitable n-dopant to form an emitter layer and a p-n junction on the front, or light-receiving side of the wafer. Typically, the n-type layer or emitter layer is formed by first depositing the n-dopant onto the front surface of the p-type wafer using techniques commonly employed in the art such as chemical or physical deposition and, after such deposition, the n-dopant, for example, phosphorus, is driven into the front surface of the silicon wafer to further diffuse the n-dopant into the wafer surface. This "drive-in" step is commonly accomplished by exposing the wafer to high temperatures. A p-n junction is thereby formed at the boundary region between the n-type layer and the p-type silicon wafer substrate. The wafer surface, prior to the phosphorus or other doping to form the emitter layer, can be textured. In order to further improve light absorption, an anti-reflective coating, such as silicon nitride, is typically applied to the front of the wafer, sometimes providing simultaneous surface and or bulk passivation.

[0106] In order to utilize the electrical potential generated by exposing the p-n junction to light energy, the photovoltaic cell is typically provided with a conductive
front electrical contact on the front face of the wafer and a conductive back electrical contact on the back face of the wafer, although both contacts can be on the back of the wafer. Such contacts are typically made of one or more highly electrically conducting metals and are, therefore, typically opaque.

[0107] Thus, solar cells consistent with the embodiments described above may comprise a wafer sliced from a body of continuous monocrystalline silicon being substantially free of radially-distributed defects, the body having at least two dimensions each being at least about 35 cm, a p-n junction in the wafer, an anti-reflective coating on a surface of the wafer; and a plurality of electrically conductive contacts on at least one surface of the wafer, wherein the body is substantially free of swirl defects and substantially free of oxygen-induced stacking fault defects.

[0108] Also, solar cells consistent with the embodiments described above may comprise a wafer sliced from a body of continuous multi-crystalline silicon being substantially free of radially-distributed defects, the body having a predetermined arrangement of grain orientations with a common pole direction being perpendicular to a surface of the body, the body further having at least two dimensions each being at least about 10 cm, a p-n junction in the wafer; an anti-reflective coating on a surface of the wafer, and a plurality of electrically conductive contacts on at least one surface of the wafer, wherein the multi-crystalline silicon includes silicon grains having an average grain boundary length of about 0.5 cm to about 30 cm, and wherein the body is substantially free of swirl defects and substantially free of oxygen-induced stacking fault defects.

[0109] It will be apparent to those skilled in the art that various modifications and variations can be made in the disclosed structures and methods without departing from the scope or spirit of the invention. Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. It is intended that the specification and examples be considered exemplary only, with a true scope and spirit of the invention being indicated by the following claims.
WE CLAIM:

1. A method of manufacturing cast silicon, comprising:
 placing a crucible on a layer comprising:
 a thermally conducting material;
 a heat sink; and
 a thermally insulating area,
where a thermally conductive part of the layer contacts with a portion of a bottom surface of the crucible;
 placing at least one seed crystal on a bottom of the crucible;
 placing molten silicon in contact with the at least one seed crystal; and
 forming a solid body of silicon by extracting heat through the thermally conducting material.

2. A method of manufacturing a solar cell, comprising:
 providing a solid body of cast silicon according to claim 1;
 slicing the solid body of cast silicon to form at least one wafer;
 forming a p-n junction by doping a surface of the at least one wafer; and
 forming a surface neutralizing layer and forming electrically conductive contacts on at least one surface of the wafer.

3. The method according to claim 1, wherein the extracting heat expands a lateral area of the seeded crystal during solidification.

4. The method according to claim 1, wherein the placing molten silicon further includes placing a solid silicon feedstock in the crucible on top of the at least one seed crystal and melting the solid silicon feedstock while cooling the bottom of the crucible to maintain the at least one seed crystal in an at least partially solid state.

5. The method according to claim 4, wherein a heat flux through the layer changes from the step of melting the silicon to the step of forming a solid body.
6. The method according to claim 1, wherein the placing molten silicon further includes:
 - melting a silicon feedstock in a melt container separate from the crucible;
 - heating the crucible to a melting temperature of silicon;
 - controlling heating so that the at least one seed crystal in the crucible does not melt completely; and
 - transferring the molten silicon from the melt container into the crucible.

7. The method according to claim 1, further including forming a portion of the solid body to include the at least one seed crystal.

8. The method according to claim 1, wherein the thermally conducting material contacts between about 5% to about 99% of the bottom surface area of the crucible.

9. The method according to claim 1, wherein the thermally conducting material corresponds to a size and a shape of the at least one seed crystal within the crucible.

10. The method according to claim 1, wherein the heat sink comprises a radiative heat sink, the radiative heat sink radiating heat to walls of a water-cooled vessel.

11. The method according to claim 1, wherein the thermally insulating area forms a perimeter around the thermally conducting material.

12. The method according to claim 11, wherein perimeter comprises a contoured shape wider in a middle of a side of the layer than in corners of the layer.

13. The method according to claim 11, wherein the perimeter thermally isolates side support walls for the crucible from the heat sink.
14. The method according to claim 1, further comprising reducing or enlarging the thermally conducting area in contact with the crucible bottom by adding or removing at least a portion of the thermally insulating area.

15. An apparatus for casting of silicon, comprising:
resistive heaters for being in thermal communication with a crucible; and
a layer comprising:
a thermally conducting material;
a heat sink; and
a thermally insulating area;
wherein a thermally conductive part of the layer is for contact with a portion of a bottom surface of the crucible on a side and the heat sink on an opposite side.

16. The apparatus according to claim 15, wherein the thermally insulating area forms a perimeter around the thermally conducting material.

17. The apparatus according to claim 15, wherein the thermally insulating area increases or decreases heat transferred through the layer by moving with respect to the thermally conducting material.

18. The apparatus according to claim 15, wherein a ratio of thermal conductivities of the thermally conducting material to the thermally insulating area is at least about 20:1.

19. The apparatus according to claim 15, wherein a ratio of an area of the thermal conducting material to an area of the seed crystal is from about 0.5 to about 2.0.

20. A process for manufacturing cast silicon, comprising:
loading a seed layer of crystalline silicon together with a solid feedstock;
melting the solid feedstock and part of the seed layer by maintaining a solid/liquid interface essentially flat over the center of the seed layer, but convex in the solid portion at the edges of the seed layer;
forming a solid body of silicon by extracting heat through the seed layer while maintaining the solid/liquid interface essentially flat over the center of the seed layer, but convex in the solid portion at the edges of the seed layer; bringing the solid body to a first temperature; and cooling the solid body to a second temperature.

21. A method for manufacturing cast silicon, comprising:
loading a seed layer of crystalline silicon together with a solid feedstock;
melting the solid feedstock and part of the seed layer by maintaining a solid/liquid interface substantially flat over the entire seed layer;
forming a solid body of silicon by extracting heat through the seed layer while at least initially providing extra heat in the local vicinity of at least one edge of the seed layer;
bringing the solid body to a first temperature; and cooling the solid body to a second temperature.

22. An apparatus for casting silicon, comprising:
at least one primary resistive heater for melting of silicon for surrounding a crucible resting on a heat sink;
a means for the controlled extraction of heat through the heat sink;
a port for the introduction of a gas; and
an additional heater for encircling the crucible to provide inductive heating at different regions within the crucible.

23. The apparatus according to claim 22, wherein the additional heater comprises one loop of a thermally insulated, water cooled, electrically conductive tube residing with the at least one primary resistive heater.

24. The apparatus according to claim 22, wherein the additional heater moves relative to walls of the crucible.

25. The apparatus according to claim 22, further comprising at least one seed crystal on a bottom of the crucible.
26. A method of manufacturing cast silicon, comprising:

 placing at least one monocrystalline seed crystal of at least about 10 cm by
 about 10 cm area on a bottom of a crucible that rests on a partially insulating base
 plate;
 placing liquid silicon in contact with the at least one seed crystal;
 forming a solid body of silicon by extracting heat through the seed crystal in
 such a way that a convex solid boundary increases a cross-sectional area of
 monocrystalline growth;
 bringing the solid body to a first temperature, and cooling the body to a second
 temperature;
 cutting a slab from a side of the solid body opposite the seed crystal;
 cleaning the slab using a chemical process; and
 using the slab as a seed layer for a subsequent casting process.
Fig. 5
INTERNATIONAL SEARCH REPORT

International application No
PCT/US2008/070196

A. CLASSIFICATION OF SUBJECT MATTER

| INV. | C30B11/00 | C30B29/06 | H01L31/18 | F27B14/06 |

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
C30B HOIL F27B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>EP 0 887 442 A (SHARP KK [JP]) 30 December 1998 (1998-12-30) column 3, line 19 - line 55 column 5, line 54 - column 9, line 52; claims 1,5; figures 1,6-8</td>
<td>1-14,20</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C

See patent family annex

* Special categories of cited documents

A document defining the general state of the art which is not considered to be of particular relevance

E earlier document but published on or after the international filing date

L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

O document referring to an oral disclosure, use, exhibition or other means

P document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but useful to understand the principle or theory underlying the invention

"X" document of particular relevance, the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance, the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

*"A" document member of the same patent family

Date of the actual completion of the international search

10 October 2008

Date of mailing of the international search report

20/10/2008

Name and mailing address of the ISA

European Patent Office P B 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel (+31-70) 340-2040 Fax (+31-70) 340-3016

Authorized officer

Ruiz Martinez, Maria
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>WO 2006/082085 A (ITB GMBH [DE]; HUGO FRANZ [DE]) 10 August 2006 (2006-08-10) page 4, paragraph 5 - page 5, paragraph 6; figure 1</td>
<td>1-14,20, 21</td>
</tr>
<tr>
<td>A</td>
<td>US 6 849 121 B1 (ISELER GERALD W [US] ET AL) 1 February 2005 (2005-02-01) column 3, line 10 - column 4, line 43; claim 1</td>
<td>1-26</td>
</tr>
</tbody>
</table>
INTERNATIONAL SEARCH REPORT

International application No: PCT/US2008/070196

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>EP 0887442 A</td>
<td>30-12-1998</td>
<td>CN 1209472 A</td>
<td>03-03-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69832846 T2</td>
<td>10-08-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 3520957 B2</td>
<td>19-04-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 11011924 A</td>
<td>19-01-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6136091 A</td>
<td>24-10-2000</td>
</tr>
<tr>
<td>WO 2005092791 A</td>
<td>06-10-2005</td>
<td>US 2007227189 A1</td>
<td>06-10-2005</td>
</tr>
<tr>
<td>WO 2006082085 A</td>
<td>10-08-2006</td>
<td>CN 101133191 A</td>
<td>27-02-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1851367 A2</td>
<td>07-11-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2008528434 T</td>
<td>31-07-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20070102593 A</td>
<td>18-10-2007</td>
</tr>
<tr>
<td>US 6849121 B1</td>
<td>01-02-2005</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>