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PROGRAMMABLE STREAMING DATA PROCESSOR FOR DATABASE
APPLIANCE HAVING MULTIPLE PROCESSING UNIT GROUPS

RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No.
60/412,057 entitled "Asymmetric Streaming Record Processing Computer System,"
filed on September 19, 2002, and U.S. Provisional Application No. 60/411,686
entitled "Intelligent Storage Device Controller," filed on September 18, 2002. The
entire teachings of these provisional applications is hereby incorporated by

reference.

This application is also related to U.S. Patent Application entitled
“Intelligent Storage Device Controller,” (Attorney Docket No. 3336.1008-001); U.S.
Patent Application entitled “Field Oriented Pipeline Architecture for a

Programmable Data Streaming Processor,” (Attorney Docket No. 3336.1008-002);

U.S. Patent Application entitled “Asymmetric Streaming Record Data Processor
Method and Apparatus,” (Attorney Docket No. 3336. 1016-001); and U.S. Patent
Apphcauon entitled “Programmable Data Streammg Archltectllre Having -
Autonomous and Asynchronous Job Processing Unit,” (Attomey Docket No.
3336.1016-003), all of which are being filed together on the same date as this
application. The entire teachings of each of these co-pending patent applications is
also hereby incorporated by reference. This application and the above applications

are also all assigned to Netezza Corporation.
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BACKGROUND OF THE INVENTION

This invention relates to distributed data processing systems that use multiple
processing unit groups, and in particular to programmable data streaming processor
that performs initial processing before tuples are handled by a job processor.

With continued development of low cost computing systems and
proliferation of computer networks, the world continues to see an exponential
growth in the amount and availability of information. Indeed, the Massachusetts-
based Enterprise Storage Group has observed a doubling of information every few
months. Demand for easy and efficient access to this ever-growing amount of
digital information is another certainty. For example, World Wide Web traffic
increased 300% in 2001 according to Forrester Research. Included among the
applications that continue to make the greatest demands are systems for processing:

- financial transactions;

. "click stream"” data that encapsulates the behavior of visitors to web sites;

- data relating to the operational status of public utilities such as electric
power networks, communications networks, transportation systems
and the like;

. scientific data supporting drug discovery and space exploration.

Greg Papadopolous, the Chief Technical Officer of Sun Microsystems, Inc.,

has observed that the demand for access to decision sﬁpport databases, referred to as

the Input/Output (/O) demand growth, doubles every nine months. To put this in

context, Moore's Law predicts that Central Processing Unit (CPU) power doubles

only about every 18 months. In other words, the demand for access to information is
growing at least twice as fast the ability of a single CPU to process and deliver it.

In a typical general purpose data processing system, data is stored on one or
more mass storage devices, such as hard disk drives. One or more computers are
then programmed to read data from the disks and analyze it - the programs may
include special database software written for this purpose. The problem with a
general purpose system architecture, however, is that all the data must be retrieved
from the disk and placed in a computer's memory, prior to actually being able to

perform any operations on it. If any portion of the data retrieved is not actually
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needed, the time spent fetching it is wasted. Valuable time is thus lost in the
process of retrieval and storage of unnecessary data.

The speed at which the data analysis can be performed is typically limited to
the speed at which the entire set of data can be transferred into a computer's memory
and then examined by the CPU(s). Usually, the aggregate data transfer rate of the
disks does not govern the speed at which the analysis can be performed. Disks are
inexpensive, and as such, data can be spread across a large number of disks arranged
to be accessed in parallel. The effective data transfer rate of a set of disks,
collectively, can therefore be almost arbitrarily fast.

The bandwidth of an interface or communications network between the disks
and the CPUs is also typically less than the aggregate data transfer rate of the disks.
The bottleneck is thus in the communications network or in the CPUs, but not in the
disks themselves.

It has been recognized for some time that achieving adequate performance
and scalability in the face of vast and rapidly growing data thus requires some kind
of system architecture that employs multiple CPUs. The three most prevalent
classes of so-called multiprocessing systems today include:

Symmetric Multiprocessing (SMP)

Asymmetric Multiprocessing (ASMP)

Massively Parallel Processing (MPP)
But even these approaches have weaknesses that limit their ability to efficiently
process vast amounts of data.. } ‘

SMP systems consist of several CPUs, each with their own merhofy cééhe.
Resources such as memory and the I/O system are shared by and are equally
accessible to each of the processors. The processors in an SMP system thus
constitute a pool of computation resources on which the operating system can
schedule “threads” of executing code for execution.

Two weaknesses of the SMP approach impair its performance and scalability
when processing very large amounts of data. The first problem results from a
limited ability to actually provide information to the processors. With this
architecture, the I/O subsystem and the memory bus are shared among all

processors, yet they have a limited bandwidth. Thus, when the volume of data is
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too high, the speed of the processors is wasted waiting for data to arrive. A second
problem with the SMP approach is cache coherence. Within each processor is
typically a cache memory for storing records so that they may be accessed faster.
However, the more that processors are added to an SMP system, the more that time
must be spent synchronizing all of the individual caches when changes are made to
the database. In practice, it is rare for SMP machines to scale linearly beyond about
64 processors.

Asymmetric Multiprocessing (ASMP) systems assign specific tasks to
specific processors, with a master processor controlling the system. This
specialization has a number of benefits. Resources can be dedicated to specific
tasks, avoiding the overhead of coordinating shared access. Scheduling is also
easier in an ASMP system, where there are fewer choices about which processor to
assign to a task. ASMP systems thus tend to be more scalable than SMP systems.
One basic problem with asymmetry is that it can result in one processor being
overloaded while others sit idle.

Massively Parallel Processing (MPP) systems consist of very large numbers
of processors that are loosely coupled. Each processor has its own memory and
devices and runs its own operating system. Communication between the processors
of an MPP system is accomplished by sending messages over network connections.
With no shared resources, MPP systems require much less synchronization than
SMP and ASMP systems.

" One weakness of the MPP model is that communication among Processors
occurs by passing messages over a network connection, which is a much slower
technique than communication through shared memory. If frequent inter-processor
communication is required, then the advantages of parallelism are negated by
communication latency. Another problem with the MPP approach is that traditional
programming models do not map cleanly onto message passing architectures. Using
approaches such as Common Object Request Broker Architecture (CORBA), which
are designed to handle message passing, are considered awkward by some designers.

There have also been attempts over the years to use distributed processing
approaches of various types. These began with proposals for "Database Machines"

in the 1970s, for "Parallel Query Processing” in the 1980s, and for "Active Disks"
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and "Intelligent Disks" in the last five to ten years. These techniques typically place
a programmable processor directly in a disk sub-assembly, or otherwise in a location
that is tightly coupled to a specific disk drive. This approach pushes processing
power towards the disks, and thus can be used to reduce the load on a host
computer's CPU.

More recently, system architectures have been adopted for parallel execution
of operations that originate as standard database language queries. For example,
U.S. Patent No. 6,507,834 issued to Kabra et al. uses a multi-processor architecture
to process Structured Query Language (SQL) instructions in a publish/subscribe
model such that new entries in a database are automatically processed as added. As
explained in the Abstract of that patent, a first processor is used as a dispatcher to
execute optimized queries, setup communication links between operators, and
ensure that results are sent back to the application that originated the query. The
dispatcher merges results of parallel execution by other processors to produce a

single set of output tuples that is then returned to a calling procedure.
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SUMMARY OF THE INVENTION

Brief Description of a Preferred Embodiment

In a preferred embodiment, the present invention is a data processing system
having two or more groups of processors that have attributes that are optimized for
their assigned functions. A first processor group consists of one or more host
computers, which are responsible for interfacing with applications and/or end users
to obtain queries, for planning query execution, and for, optionally, processing
certain parts of queries. The hosts in the first group may be SMP type machines. A
second processor group consists of many streaming record-oriented processors
called Job Processing Units (JPUs), preferably arranged as an MPP structure. The
JPUs typically carry out the bulk of the data processing required to implement the
logic of a query.

Functions of the host computers in the first group can be divided into a
"Front End" and an "Execution Engine". The Front End is responsiblé for parsing
queries, generating query execution plans, optimizing parallelizing execution plans,
controlling transactions, sending requests for processing to the Execution Engine
and receiving results of such requests from the Execution Engine. The Execution
Engine is responsible for scheduling the execution of j obs and other operations to

run on the JPUs or locally within the Execution Engine itself, (such as sorting,

_grouping, ‘and relational joining).

Each of the JPUs in the second group typically include a general purpose
microcomputer, local memory, one or more mass storage devices, and one or more
network connections. The JPUs preferably use a multi-tasking operating system that
permits multiple tasks to run at a given instant in time, in a priority-based demand

scheduling environment.
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The JPUs are responsible for:

- receiving data processing requests from the hosts in the form of jobs,
retrieving data items from disk or other data sources, and other tasks such as local
transaction processing, concurrency control and replication;

- communicating results back to the first Execution Engine; and

- occasionally communicating with other second group components.

In a preferred embodiment, each JPU also has a special purpose
programmable processor, referred to herein as a Programmable Streaming Data
Processor (PSDP). The PSDP acts as a storage controller, to serve as an interface
between the CPU of a JPU and the mass storage device. The PSDP is a processor
that is distinct from the more general purpose CPU in each JPU. It is also distinct
from the CPU of the "host" in the first group.

The PSDP can be implemented as a Field Programmable Gate Array
(FPGA), as in the preferred embodiment, or as an Application-Specific Integrated
Circuit (ASIC), a fully-custom Application Specific Standard Product (ASSP), or
even as discrete logic on a printed-circuit board. It can also be included in an
integrated processor (i.e., a CPU that includes peripheral interface logic) on a single
chip or in a single package, or it can be included with the circuitry of the mass
storage device.

In addition to assisting the JPU in accessing data, the PSDP is specially

programmable to also interpret data in a specific format as it is read from or written

to the associated disk(s). - This enables PSDP to perform portions of'j obsondata

directly, as it is read off the disk, prior such data ever being forwarded to the JPU.

In an embodiment specifically adapted for processing of record-oriented

‘data, data can be filtered by the PSDP as records and fields of a database, so that

only certain records, or certain portions of records, are actually forwarded to be
written into the associated JPU's main memory.

However, many other operations beyond simple filtering are possible to
implement in the PSDP. For example, records with certain characteristics can be
tagged as they are written in the JPU's main memory, to indicate that such records

are to be ignored in further processing, or to indicate certain attributes of such
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records, such as if they are to be handled differently in a transactions from other
records.

While of use in processing field-oriented database records, it should be
understood that the particular invention can also be used to advantage in processing
many different types of data, including other field delimited data such as tables,
indices, and views. The system is also advantageously used to process less
structured data such as character strings, Binary Large Objects (BLOBS), XML,
graphics files, and the like.

Discussion of Advantages

A number of advantages result from this architecture.

First, unlike prior art database machines that integrate special processing
hardware into the disk assembly itself (e.g. on the heads, on the arms, or
electronically nearby), the JPUs in the second group use the special purpose PSDP
hardware to interface to a disk and filter data after it reads from a disk, but still prior
to a more general purpose execution unit. As a result, the system designer may now
use industry standard disk controllers and standard hard disk drives. This allows the
designer to effectively leverage the ever increasingly higher density of standard IDE
and SCSI compatible storage media, as soon as they become available.

Second, like the custom controller approach, any need to first read records
into memory locations prior to performing any operation on them is still avoided.

* But when only a-fraction of the available data is relevant to a query, the PSDP -
avoids inefficiencies of other approaches that:
allocate memory for unused information
waste time copying unused information into memory
waste time stepping around unused information

The PSDP avoids these problems since database filtering operations are
performed “on the fly” in a streaming fashion, as data is read as records stream out
of the mass storage devices.

In a preferred embodiment, the PSRP can also be programmed perform
operations such as Boolean comparisons of record field values against either literal

values or other record field values, or values held in registers of the processing
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element, and reject records that fail these Boolean comparisons before they are
stored in memory. Of the records that pass the filtering conditions, the PSDP
element can thus additionally filter out the subset of fields that are irrelevant to a
particular query.

In addition to field-level record filtering, the PSDP also can perform other
operations on records as they are read from mass storage. For example, the PSDP
can be programmed to decompress records entering memory and to compress
records being sent out of memory. It can be instructed to decrypt records entering
memory or to encrypt records being sent out of memory. It can convert lowercase
fields to mixed or uppercase. It can, in fact, be programmed to perform myriad
other such operations. Because these operations occur as each record streams into
memory, the PSDP offloads such tasks from the JPUs main CPU, freeing it for other
useful work.

Other advantages result if the PSDP is programmed to perform simple
Boolean operations, such as to compare field values of the record stream against
values held in its local registers. This allows a limited class of join operations to be
performed of records before they are stored in memory. For example, if the values
of the fields being joined are limited in range (such as when a set of consecutive
integers is used to represent each of the 50 United States), the presence or absence of
a particular field value can be encoded as a bit within a sequence of bits, whose
position within the sequence corresponds to the integer field value.

" One advantage of this is that it allows field-level filtering and more complex
processing to proceed in parallel within the JPU, for additional performance benefit.
A more important advantage is that this configuration of processors is most effective
at reducing the amount of data that must flow through the system.

In essence, by using a PSDP that is dedicated to performing as much field-
level filtering as possible before records are stored into the JPU's memory, the JPU's
CPU is thus free to perform as much record processing as possible before it must
return records over the network (for aggregation with the results of other JPUs) into
a final reply to the SMP host. Because moving vast amounts of data requires much
overhead, it is advantageous to add a dedicated processing element before each step

in the data movement pathway, from input to final result.
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The JPU/PSDP architecture, in effect, separates streaming record processing from
other query processing functions. Because the PSDP can be programmed to
recognize record formats, it is capable of producing tuple sets as an output. Asa
result, after data leaves the PSDP, it can always be handled in tuple set form. This
permits very fast handling data procedures to be implemented, because a consuming
operation (be it in the JPU or the host) never has to process a block of
undifferentiated binafy data.

Additionally, since there can now be one common data handling paradigm
throughout the system, i.e., the streaming tuple set, all functions such as storage,
network, data operations, and transaction operations can efficiently and consistently
use the tuple set model. Therefore, any operation may be arranged to take as
inpui(s) the output(s) from any other operation. Also, a common set of algorithms
may be used for all operations whether on the host(s) or JPUs.

This is in contrast to most database systems, which may materialize data as
blocks of binary information that needs to be parsed by differing operations; which
use different paradigms for network, storage, and internal operations; and which are
unable to stream efficiently because of those different paradigms.

The two group architecture also allows an application to be insulated from
the details of the programming model of the JPU. The application interacts only
with the first group, and the first group translates the application's requests into
requests against the JPU. This approach has several advantages:

o ’chdnges are eésﬂy made to functiqnality because of the inherent modularity
of the system;

any step of a query may be optimally executed on either of the groups or a

combination thereof:

bugs in application code cannot cause data corruption, crashes, or affect the

requests of other applications;

so that queries written in existing standard languages using existing

Application Programming Interfaces (APIs) will run correctly while gaining

the performance advantages of the invention; and



WO 2004/027652 PCT/US2003/030001

-11 -

requests to the JPU can be made large enough to amortize the cost of the
network communication, so that the performance benefits of parallelism are

not lost to network latency.

5 BRIEF DESCRIPTION OF THE DRAWINGS
The foregoing and other objects, features and advantages of the invention
will be apparent from the following more particular description of preferred
embodiments of the invention, as illustrated in the accompanying drawings in which
like reference characters refer to the same parts throughout the different views. The
10 drawings are not necessarily to scale, emphasis instead being placed upon
illustrating the principles of the invention.
Fig. 1 is a system level block diagram of an asymmetric record processing
system according to the present invention.
Fig. 2 is a more detailed view of a Job Processing Unit (JPU).
15 Fig. 3 is a more detailed view of software components in a host.
Fig. 4 is a more detailed view of Job Processing Unit (JPU) software
components.
Fig. 5 is a block diagram of a Programmable Streaming Data Processor
(PSDP) component.
20 Fig. 6 is a more detailed view of portions of a PSDP.

Fig. 7isa detailed diagram of a Data Engine component. -
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DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT

A. SYSTEM LEVEL ARCHITECTURE

1. First Group Components

The present invention is a data processing system having at least two
“groups” of processing units, in which the individual components of each group are
individual network "nodes" within the system. As will be explained in detail below,
the present invention has to do with how the a first group of one or more host
processors accepts and responds to queries for data, and transforms such queries into
one or more jobs, a second group of nodes comprising one or more Job Processing
Units (JPUs), wherein each JPU has a streaming data interface, for receiving data
from a streaming data source, one or more general purpose CPUs, for responding to
requests from the host computers in the first group, and one or more Programmable
Streaming Data Processors (PSDPs), which perform primitive functions directly on
data received from the streaming data interface.

As more particularly shown in Fig. 1, the first group 10 consists of one or
more SMP "host" computers 12, each with its own memory, network interface, and
local storage (not shown in Fig. 1). Each host 12 runs its own operating system, and

typically, but not necessarily, each host 12 uses the same type of operating system as

. the other hosts 12.

" The hosts 12 t}:/pically accept queries that are requests for data stored on
mass storage devices, such as hard disk drives 23. The requests may originate from
any number of business intelligence applications that may be residing on local
processors 28 or client computers 36 or separately running application software 30,
that may originate through a computer network 33 or locally. Queries are typically
provided in a format such as Structured Query Language (SQL), Open DataBase
Connectivity (ODBC), Java DataBase Connectivity (JDBC), or the like.

The hosts 12 accept queries that can retrieve, modify, create and/or delete
data stored on disk 23 and the schema for such data. The hosts 12 also accept

requests to start, commit, and rollback transactions against the data. The hosts 12
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also perform typical administrative functions such as reporting on the status of the
system 10, start and shutdown operation, backing up the current state of the data,
restoring previous states of the data, replicating the data, and performing
maintenance operations.

Optionally, there is a load balancing function 11 in front of the host 12
processors, which directs individual transactions to specific host or hosts12 so as to
evenly distribute workload.

A catalog management component 15 contains descriptions of the fields and
layout of data. Catalog management 15 also contains information about which users
and applications have which permissions to operate in which ways on which types of
records, datasets, and relations. The various hosts 12 interact with catalog
management 15 in order to process the requests they receive. In one embodiment,
catalog management 15 is embedded within one of the hosts 12, with parts
replicated to the other hosts 12 and second group 20 components. As will be
understood shortly, the catalog manager provides information to permit the
components of the second group 20 to perform filtering functions.

With the exception of their need to consult catalog management 15, the hosts
12 are generally able to respond to requests without having to communicate among
themselves. In very rare instances, inter-host 12 communication may occur to

resolve a transaction sequencing issue.

2. Second Group Components 4 ‘ _
The second group 20 consists of a plurality of Job Processing Units (JPUs)

22. Asshown in Fig. 2, each JPU 22 consists of a network interface 25 for receiving
requests and delivering replies, a general purpose Central Processing Unit (CPU) 26
such as a microprocessor 26, memory 27, and a Programmable Streaming Data
Processor (PSDP) 28. Each JPU 22 runs a multi-tasking schedule-based operating
system. Each JPU 22 also has an attached disk 23 and disk controller from which
the JPU 22 may read streaming data. In other embodiments, the JPU 22 can receive
streaming record data from alternate or additional sources such as other on-board

processors or via other network interfaces in place of the disk drives 23, Such
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streaming data might include stock quotes, satellite data, patient vital signs, and
other kinds of "live-feed" information available via a network connection.

The JPU 22 accepts and responds to requests from host computers 12 in the
first group 10 to process the streaming record-oriented data under its control. These
requests are typically "jobs" of a larger query, and are expressed as sequences of
primitive operations on an input stream. The primitive operations could be
interpreted, but in the preferred embodiment, they are packaged as compiled code
that is ready for execution. An exemplary job-based query is described in more
detail below.

In addition to processing jobs, a JPU 22 also accepts and responds to
requests from hosts for other operations such as:

Start, pre-commit, commit, abort, and recover transactions

Perform mirroring or other replication operations

Start, initialize, reinitialize, stop, and retrieve status information

Create, modify, or delete descriptions of records, indices, Vieyvs and
other metadata

Each JPU 22 also accepts and responds to requests from the hosts 12 to:

Perform mirroring or other replication operations
Redistribute data from one JPU to another
Send data local to one JPU to another JPU to help process a query job
Send data to a logging device
" Send data to a réplicatidﬁ device
Acknowledge the successful completion of an operation requested by
another node.

JPU(s) 22 typically use multi-tasking Operating System (OS) to allow
receiving, processing, and reporting the results from multiple jobs in a job queue.
The OS should also support overlapping job execution. To coordinate this, the OS
typically is responsible for scheduling and prioritizing requests according to a
number of factors that are determined in real time. These may include a job priority
as assigned by the user and/or host 12, as well as a job’s expected impact on the
JPU's 22 local resources includes the amount of memory, disk, network, and/or I/O

queues needed to complete the job. The JPU 22 can also contain software for
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performing concurrency control, transaction management, recovery and replication
of data for which the JPU is responsible.

JPUs 22 in the second group 20 are not directly visible or accessible to the
users of, or the applications that run on, for example, the clients 36 or business
intelligence applications 30 that present queries to the system 10. The JPUs are,
instead, an embedded component that maintain significant autonomy and control
over their own data. A given record (or other data primitive) in the system 10 is
thus normally directly accessible to, and processed by only one JPU 22. While JPUs
may replicate their records to increase reliability or performance, they do not share
responsibility for processing a given record with other JPUs 22 when carrying at a
job as part of a query.

More details of this autonomous, asynchronous nature of the JPU’s can be found in
the above referenced co-pending U.S. Patent Application (Attorney Docket No.
3336.1016-003) entitled “Programmable Data Streaming Architecture Having
Autonomous and Asynchronous Job Processing Unit.”

The storage manager 320 within each JPU 22 provides support for other
functions such as error checking, creation and deletion of tables, the use of indices,
record insert and delete, mass loading of existing user data among various JPUs, and
the like.

Throughout the system, the components and sub-components are designed to
optimize performance thru extensive use of streaming operatlons coupled with tuple
set operatlons As will be understood shortly, most operatlons are des1gned to take' '
tuple sets (records or groups of records) as their input and output streams; these
operations try not to materialize data, but instead they stream the output to the next
operation. As a consequence many operations can be handled as one continuous
data flow, whereas in a conventional system, it would be necessary to handle them
in various layers.

For instance, a storage layer can be designed as a tuple set manager where

(from the view of other JPU processes) it stores and retrieves tuple sets. From the

_storage layer onward, data is normally handled in tuple sets, providing a consistent,

well organized, and easily accessible format for internal operations. This is in

contrast to other systems where the storage layer stores and retrieves
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undifferentiated blocks of data which are later converted to tuple sets by some other
downstream process. Another example of the streaming/tuple set architecture is the
network layer, which sends and receives tuple sets instead of blocks of data.

Yet another example is a merge aggregation mode, where a sorted data
stream is aggregated as requested, and whenever a new key index value is received,
the aggregation from the previous key index value may be streamed to the next
node.

A streaming/tuple set operation can be illustrated by tracking a typical
dataflow during a load operation. In this example load case, as data is read into a
host 12 over TCP/IP network connection 32, that data is parsed, error-checked, and
transformed, and the distribution value calculated, all while the specific byte/field is
in processor cache, and saved to the internal network output frame buffers as one
step. The result is that the input data is read/transformed in a streaming fashion and
converted to network-ready tuple set packets at streaming speed with minimal
overhead. As each packet is received, it is sent over the internal network 34 to an
appropriate JPU 22 (as determined by the a distribution value in a Query Plan). At
the JPU 22, the received data is read, converted into an approved storage format, and
placed in memory buffers on a record-by-record basis. As memory buffers are
filled, a storage layer in the JPU double-checks that the data corresponds to the
indicated table, and that the table "owns" the physical space on the disk 23, and then
writes that data to the disk 23. Note that during this process, a given byte of data

. was "touched" only afew times, and that the data was manipulated in tuple sets

thereby optimizing performance and reliability.

A second illustration of a streaming tuple set operation is a join/aggregate
operation where three joins and one co-located aggregation are performed on JPUs
22, and the results are returned through the host 12 via ODBC to the ODBC client
36 (e.g., Business Objects).

In this example, on each of three JPUs, the disk 23 is scanned and data read
off the disk through the associated PSDP, which filters records of inferest and fields
of interest within those records, and places the resulting tuples into a tuple set buffer
in JPU memory. As each tuple set buffer is filled, that tuple set is passed through
each of three JPU join nodes and the aggregate node in turn. Each time a new key
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value is received by the aggregate node, the previous aggregate value and associated
key value tuple are transformed as necessary per the ODBC request, and placed in
the JPU network packet output buffer associated with the requesting host 12. When
a network packet output buffer in the JPU is filled, its contents are sent to the host
12, where 1t is immediately placed in the user-side network buffer and is
immediately sent to the ODBC client 36.

Note that, as in the previous example, the data was "touched" c;nly a few
times. Because the data was handled in tuple sets, it could be operated on as integral
units with very minimal overhead. Because the operations are extremely integrated,
mixed operations such as joins, aggregates, output transformation, and network
packet creation are all performed while the data is in processor cache memory.

More information regarding the streaming nature of data transfer can be
found in the above referenced co-pending U.S. Patent Application (Attorney Docket
No. 3336.1016-001) entitled “Asymmetric Streaming Record Data Processor
Method and Apparatus,” (Attorney Docket No. 3336.1016-001).

B. HOST SOFTWARE FUNCTIONS

Fig. 2 is a software component diagram for a host 12. A summary
description of the functional blocks and their interactions now follows. This list is
intended here to be an introduction to a more detailed description of how a query is
processed inito a set of jobs: that can thén be carried out as"sy‘nchrondus'ly and

autonomously by JPUs 22.

Postmaster 201
Serves as Front-end for query processing
Postmaster 201 accepts requests from user applications via API 200
Creates an Execution Plan

May use authentication

Plan Generator 204

Parse/query rewrite/planner — plans how query will be processed.
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Supports SQL-92 DDL/DML

Supports SQL Functions

Provides compatibility with Oracle, SQL Server
Integrated with SQL triggers, stored procedures

Plan Optimizer 205

Cost-based optimizer, with the addition of locale costs which optimizes for

most efficient operation/highest level performance

Indicates which operations will be done within host and which will be done
10 within JPU

Communicates with Plan Link, providing tips on what filtering should be

done within the Programmable Data Streaming Processing ("PSDP") if there

are multiple filters that can be done there (more than the PSDP can handle)

Maintains usage/reference statistics for later index creation, refreshing

15 cluster indices

Plan Link 206
Takes an Execution Plan as input
Analyzes Execution Plan and splits plan further, identifying what will be
20 done within the PSDP 28, what will be done within the JPU 22 after the
PSDP 28 has returned its data to the JPU 22, and what will be done in the
- Host 12 after the JPU 22 has returned 1ts data

SQL Expression Evaluator/SQL Converter 207
25 . Expression Evaluator
Creates object code for evaluating given expression to be executed on the
Host, JPU, and PSDP based on the expressions, their type, and the

capabilities of the installed hardware

30 Host Dispatch 208
Similar to standard UNIX scheduler/dispatcher
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Queues execution plan and prioritizes based on (a) the plan's priority,
history, and expected resource requirements, and (b) available resources and
other plans' requirements

Controls number of jobs being sent to any one JPU 22 to avoid JPU
Scheduler or JPU memory overload

Sends Host jobs to host execution engine

Communications Layer 210

Provides communications among the nodes

Includes Job Listener to await data from nodes

Uses striping data from a Topology Manager to direct multicast and unicast
messages

Detects non-responsiveness of nodes and communicates with Topology

Manager to trigger failover processing

Call Home 212

Initiates message to a Technical Assistance Center (not shown) to identify
failed part and trigger service call or delivery of replacement component (as
appropriate given user support level)

Optionally communicates via SNMP to a defined app to receive a failure

indicator and callhome trigger

- Logs error(s)

Logger/Replication Server 218

Logs transaction plans, messages, failures, etc. to Netezza log in
conventional fashion

Implemented as a standard transaction logger/replication server

System Manager 220

Defines and maintains JPU Configuration information, striping information
Mirror Master — maintains mirrors info - what JPUs are being mirrored

where, maintains SPA data, maintains info on system spares
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Initiates failover processing when informed by Comm layer of a non-
communicative JPU — directs mirror of failed JPU to take over as primary
and begin copying to designated spare, directs primary of JPU mirrored on
failed JPU to copy its data to that same designated spare, to reduce load on
mirror of original failed JPU also directs mirror of the primary on that failed
JPU's mirror to do double duty and act as new primary until failover copying
has been completed

Communicates to callhome component to initiate replacement process
Manages system expansion and allows for redistribution of data as
appropriate or as requested by user during expansion

Initiates JPU diagnostics when appropriate

Provides an API to allow client management interface to get configuration

data for user display/control

Host Diags 226

Runs diagnostics on Host as required/requested

Loader 230

Provides fast loader capability for loading user data onto disks
Communicates directly to Host Dispatch to load database/insert records
Communicates with System Manager to get configuration and mirroring data
Controls index creation. on primary (and setsﬁp job to.Tun- later to create
indices on mirror)

Supports input via a number of methods (e.g., tab-separated data,
backup/recovery)

Does ETL, converts data from Oracle, SQL Server, DB/2, etc. to the internal

data format

MOX/OLAP 240

Provides OLAP/MDX, ROLAP Engine on Host
Creates and maintains MOLAP cubes

Supports multi-user MDX
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Creates Execution Plans for OLAP requests and communicates these directly
to Host Dispatch

Supports metadata writeback

Provides administrative support for user creation, security

Access System Catalog through API

Cube Builder User Interface (UI) 242

Provides interface for defining and managing cubes to be used in OLAP

Processing

JPU Downloader 250

Downloads Firmware to System JPUs 22 at system initiation/boot
Downloads PSDP 28 and JPU 22 images

Communicates with System Manager to understand number of JPUs and JPU
configurations

Initializes spares for failover

Initializes replacements

Host Disk Manager 250

Manages Host Disk (used for Catalog, Temp Tables, Transaction Log,
Netezza Log, Swap space)

Host Event Handler 252

Receives partial record sets from JPUs 22 through the Comm Layer Job
Listener

Executes remainder of Execution Plan that has to be done at Host 12
Provides intermediate and final sort-merge of JPU 22 sorted data as required
Handles joins of data returned from JPUs 22 as required |
Communicates to JPUs through Comm Layer 260 to request part1a1 result
sets from JPU buffers when idle (e.g., to get and sort/process partial records
that the JPU currently has instead of waiting for JPU 22 to fill a buffer and
then send to Host 12
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Host Transaction Manager 264
Manages transactions on the host 12
Controls requests sent to JPUs 22 that will be involved in the transaction
Provides lock management and deadlock detection
Initiates abort processing
Sends state data to Recovery Manager 266
Sends ID requests to the Transaction 1.D.(TID) Manager 268
Provides transaction IDs and deleted transaction IDs to ensure that disk
records are preceded

Manages catalog requests as transaction requests as required

TID Manager 268
Provides unique transaction identifiers (TIDs)

Coordinates with other hosts to avoid generating duplicate TIDs
Host Recovery Manager 266
Ensures transaction atomicity after component (e.g., JPU) failure
Maintains journal of transaction state
Initiates rollback as required
Backup/Recovery 270

Supports Host side of Backup/Recovery process

Interfaces with Transaction Manager and JPU Storage Manager

C. JPU SOFTWARE COMPONENTS
Fig. 3 is a diagram of the software components of a JPU 22.

Communications Layer 300
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Provides internal communication among nodes
Includes Job Listener 301 to await requests
Includes Network Poster 302 to send data when buffer filled, job completed,

or at Host request

JPU Dispatch/Scheduler 304

Receives plan through Communications Layer 300
Queues Plan
Schedules/dispatches jobs according to their priority, "fairess" to date,

expected resource requirements, and available resources

JPU Transaction Manager 306

Processes changes in transaction state to begin a transaction, pre-commit a
transaction, commit a transaction, or abort a transaction

Handles processing of dependencies among transactions as flagged by the
lock manager; broadcasts information about these dependencies to rélevant

host(s); initiates deadlock checks

JPU Lock Manager 308

Controls concurrent access to data

Interfaces with EventTask 36 before a query is executed and for each result

- set returned from a scan

Provides support fdr arithmetic locking

JPU Recovery Manager 312

Maintains a Journal to track transaction status on the JPU 22, using the
Storage Manager API

Performs transaction recovery when requested by JPU Transaction Manager
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JPU Mirror Manager 314
Mirror Sender receives copies of record updates from Storage Manager 320
and transmits these to the mirror for this JPU when an updating transaction
commits
Mirror Receiver receives record updates, buffers these in memory, and
flushes out to disk through the Storage Manager when the Mirror Receiver
buffer is full

Transmits all data to a spare system during failover processing

Storage Manager 320
Stores and manages information on disk in optimal fashion
Has an API that supports storage and retrieval of tuple sets
Supports error checking to insure that the data conforms to the indicated
table and the indicated table "owns" the physical space to which the data is
being written
Supports creation and deletion of tables, views, and indices
Handles record inserts and deletes
Supports ETL and mass loading of existing user data
Provides storage support for commit/rollback
Provides support for Precise Indexes
Provides mirroring support for failover
Optimizes sort operations and utilizes smart hiash algorithm fordata™*
distribution/striping
Provides support for compression and smart storage optimization
Controls disk I/O

JPU Resource Scheduler 322
Schedules jobs to run on the PSDP 28; communicates with JPU/PSDP
Scheduler 324 to queue up PSDP requests to retrieve required data
Optimizes the queue to keep the PSDP/disk as busy as possible, with
requests from multiple_queries intermixed in the queue based on disk

characteristics and location of data on the disk
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Takes into account the needs of any data loading for new tables being created
and transformed to internal data format (i.e., to optimize the loading process)
Supports heuristic-based scheduling, ensuring that jobs are scheduled on a
priority basis, but also ensuring that all jobs do get serviced (e.g., raising a
job in priority if it has not been run in a certain interval of time)

Supports synchronous/piggy-backed scans, combining similar requests to
optimize PSDP processing

Manages memory buffers/memory allocation on JPU; allocates memory to
Execution Plans based on expected needs and hints received from Plan
Optimizer

JPU Paging (if required)

PSDP Prep 330

Defines the instructions that will be given to the PSDP 28 in order to process
a request (instructions tell the PSDP 28 what to do with each field being read
from the disk)

Identifies what filtering, transformation, projection, and aggregation

operations are to by run by the PSDP 28

EventTask 310

Executes the portion of the Execution Plan that could not be handled by the
PSDP bu that does not have to be handled at the Host level ‘
Handles sorts, joins, transformations, and aggregations that could not be
done as data stream through the PSDP 28

Maintains a memory buffer of result set records and returns these to Host
through the Comm Layer when buffer filled, job completed, or at Host

request

JPU Diags 332

Runs diagnostics on JPU as required/requested

JPU Boot/Init 334
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Executes image burned into flash memory at boot time to bootstrap the JPU,
run diagnostics, register the JPU with the primary Host server, and download
new image from Host to run

Loads and transfers control to the image downloaded from the primary Host
server to load the JPU application code, the operating system, the network

stack, and disk driver code

Backup/Recovery 336
Supports JPU side of Backup/Recovery process

Interfaces with Transaction Manager and JPU Storage Manager

DBA Lite 338
Provides automatic and dynamic disk and Storage Manager support
Supports dynamic index creation, defragging, index garbage collection,

timers, agents

JPU/PSDP Scheduler 324
Schedules jobs to run on the PSDP; queues up PSDP requests to retrieve

required data
D. DETAILED DESCRIPTION OF PSDP ARCHITECTURE

As discussed above, the PSDP allows data to be processed during Direct
Memory Access (DMA) disk read operations. There are many different possible
operations that can be performed by the PSDP 28, including transforming and
comparing data with other data or with constants.

PSDP 28 functions fall into two general categories: disk driver logic
interface 281 and data “filter” 282. Each of these functions is described in some
detail below. It is sufficient here to note that the disk driver logic interface 281
accepts standard disk drive interface signaling, such as IDE (Integrated Device
Electronics) or SCSI (Small Computer Systems Interface), adapting it to a particular
CPU native "bus" such as a Advanced Technology Attachment (ATA) bus or the
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like. Alternatively, if there is a communications network, such as Ethernet or
Fibrechannel, instead of array of disks 23 to provide access to input data stream(s),
the interface 281 becomes a network interface that is suitable to receive and/or
transmit data over a communications network. The disk driver logic 281 is usually
implemented in an Integrated Circuit (IC) in a computer or communications device,
in or part of an IC that contains other logic, such as other interface logic or the CPU
26 itself. The disk driver 281 can even be inside the disk 23 itself, making the disk a
special-purpose unit attachable only to JPUs or communications devices for which
the interface is specific.

In the preferred embodiment, the PSDP 28 is however an Integrated Circuit
(IC) that interfaces a standard disk 23 to a peripheral bus of the JPU 22. All such
controllers have the basic function of allowing the CPU 26 in the JPU 22 to read and
write the disk 23, typically by setting up long data transfers between contiguous
regions on the disk and contiguous regions in the CPU's 26 memory, a process
usually referred to as Direct Memory Access (DMA).

The PSDP 28 also provides programmable hardware directly in the disk read
path, to and from the controller. This function of the PSDP hardware, called the
“filter”” unit 282, is programmed to understand the structure of the data the analysis
software running on the JPU 22 wishes to read and analyze. The PSDP 28 can be
this programmed to operate on data as it is received from the disk 23, before it is

stored into the JPU's memory, and in the process discard data that the JPU 22 would

* othierwise have to analyze. In an embodiment specifically adé'p'téd‘fo‘r processing of -

record-oriented data, data can be filtered by the PSDP 28 as records and fields of a
database, so that only certain fields from certain records are actually forwarded to be
written into the associated JPU's main memory.

Many other operations beyond simple filtering are possible however. For
example, records with certain characteristics can be tagged as they are processed, to
indicate that such records are to be ignored in further processing, or to indicate
certain attributes of such records, such as if they are to be handled differently in a
transaétions from other records. Other, non-filter like processes can be implemented
such as compression/decompressian; encryption/decryption; simple join operations,

and the like.



10

15

20

25

30

WO 2004/027652 PCT/US2003/030001

=28 -

Thus, while the PSDP 28 of particular use in processing field-oriented
database records, it should be understood it may process many different types of
data, including other field delimited data such as tables, indices, and views; or less
structured data such as character strings, Binary Large Objects (BLOBS), XML,
graphics files, and the like. So although referred to herein as a “filter” unit that
processes “records”, it should thus be understood that filter 282 can also perform
many other functions on various types of data, not just records.

As one example of filtering record-oriented data, the PSDP 28 can be
programmed to recognize that a certain set of records in a database have a specified
format, for example, a preamble or "header" of determined length and format,
perhaps a field including the length of the record, followed by data including some
number of fields of a certain type and length (e.g., 4-byte integers), followed by
some number of fields of a different type and length (e.g., 12-byte character strings),
followed by some number of fields of variable length, whose first few bytes specify
the length of the field in some agreed-upon manner, and so forth.

The filter unit 281 can then execute this program as it reads data from the
disk 23, locate record and field boundaries, and even employ further appropriate
Boolean logic or arithmetic methods to compare fields with one another or with
literal value. This allows the filter unit 282 to determine precisely which fields of
which records are worth transferring to memory. The remaining records are
discarded, or tagged in a manner that signals the JPU 22 that a record need not be
analyzed Again, there will be more dlscussmn of how this is done in detail below.

In the preferred embodiment, there are two basic reasons for which the filter
unit 282 can discard a record (or mark it as unworthy of attention). The first is an
analysis of the contents of the fields as described above. Using a previous example,
the filter unit 282 can, for example, be programmed for a store sales database to
check a purchase date field against a range of numbers that correspond to dates in
the month of July in the year 2000, another field for a number or string uniquely
associated with a particular store in North Carolina, another field for a set of SKU
(Stock-Keeping Unit) values belonging to various styles or manufacturers of blue
raincoats, and in this fashion mark only certain records for further processing. The

filter unit 282 can further be programmed to know which fields contain the name
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and address of the customer who made the purchase, and return only these fields
from the interesting records. Although other database software could perform these
operations, the filter unit 282 can perform them at the same rate as the data is
supplied by the disk 23. Far less data ends up in the JPU's memory as a result
leaving the JPU 22 free for more complex tasks such as sorting the resulting list of
names and addresses by last name or by postal code.

A second example of how the filter unit 282 can be used is to discard or
mark a record, as in record creation and deletion in a multi-user environment.
Databases are not static, and it is common for some users to be analyzing a database
while others are updating it. To allow such users concurrent access to the database,
records can be tagged with transaction numbers that indicate when or by whom a
record was created or marked obsolete. A user querying a database may not wish to
see records created by another user whose activity began subsequently, or whose
activity began previously but is not yet complete; if so, he probably will want to see
records marked obsolete by such a user. Or the user may wish to see only the results
of transactions entered by certain users, or only the results of transactions not
entered by certain users. To facilitate this kind of record filtering, record headers
can contain creation and deletion identifiers that the filter unit 282 can be
programmed to compare with the current user's identifier to determine whether
records should be "visible" to the current user. Once again, the filter unit can avoid
transferring useless data to memory or relieve the JPU 22 of a time-consuming
analysis task. o o | J

In the preferred embodiment there are two basic methods the filter 282 unit
can use to filter out data that is unnecessary for a given query, thereby reducing
traffic on the communications network and reducing the workload on the JPU 22.
As described above, the filter unit 282 can simply discard the data. This is not
always practical, however. Imagine a very long record with many fields, or large
fields, many of which are to be returned to the JPU 22. Further consider a situation
where a record meets the criteria is arranged in such a way that the contents of the
last field are relevant to the decision to transfer or discard the selected fields of the
record. Practical implementations of the filter unit 282 may not be able to store

("buffer") the largest possible set of returnable fields in a very long record, since
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there will be a limit on local buffer size. In such a case, the filter unit must begin
sending the selected fields to the JPU 22 before it can tell whether they actually
should be sent. After the record has been completely processed by the filter umit,
and all the selected fields transferred to the JPU 22, the filter can tag the transferred
data with a states bit that says "never mind", thus saving the JPU 22and the
communications network a great deal of work. In practice, the filter unit can append
a length indication to every record fragment it does transfer to the JPU 22, so that
the JPU 22 can find the boundaries between the record fragments the filter unit
deposits in memory. This is a natural place for this status bit (or bits, if the JPU 22
must distinguish among multiple reasons) indicating the transfer of a useless record.
In addition to selecting certain fields from certain records for transfer to the
JPU 22, the filter unit 282 can create and return additional fields not present in the
database, by performing calculations on the contents of the fields that are present.
This can further relieve the JPU 22 of work. An example of this is the calculation of
a "hash" function on the values of specified fields from a record, some of whose
fields are to be transferred to the JPU 22. A hash function is a numerical key
assigned to a collection of numeric or non-numeric field values that speeds up the
process of searching through a list of records. Other examples of useful information
that can be computed by the filter unit 282 include running sums or averages of field
values from one record to the next. All of these benefits accrue from the filter unit's

282 ability to parse the data into records and fields as it transfers the data from the

 disk 23 to the JPU 22.

Another example is a transformation, such as an ASCII substitution. One
usage for an ASCII substitution is to change the collation sequence of a given field.
For example, if the LAST NAME starts with the French ‘¢’ (ASCII 135) then the
SQL clause “WHERE LAST NAME IS >’H’” will erroneously fail unless ‘¢’ has
been mapped to ‘C’ (ASCII 76). Similar issues involve the use of the UPPER() and
LOWER() functions. In the preferred embodiment, the PSDP has 2 groups of
registers, each 256 bytes. If transformation of a given field is selected then the
PSDP setup loads transformation fields into these registers before the data is
streamed in. Each register in the transformation fields corresponds to an extended

ASCII value and the register contains the value that each extended ASCII character
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is to be converted into. In the example above, register numberl135 contains the value
76. During the streaming phase, as each tuple streams through the PSDP, for those
fields where a transformation is indicated, each byte is individually transformed to
its converted value. Two registers are provided so that two types of transforms may
be applied to different fields in a given stream, such as UPPER() and LOWERJ().
The transforms may be applied either (a) in the “filter” path, before evaluation and
comparisons or (b) in the “project” path so that a given field is converted before
being output from the PSDP. This is especially useful for correcting collation
sequences in preparation for the CPU performing a sort. More details of such a
substitution table are contained in the above referenced co-peanding U.S. patent
application entitled “Field Oriented Pipeline Architecture for a Programmable Data
Streaming Processor,” (Attorney Docket No. 3336.1008-002).

One preferred embodiment of the PSDP 28 is now described in further detail
in connection with Fig. 5. As shown in Fig. 5, a PSDP 28 consists of a finite state
machine called the Data Engine 400, which implements filter logic and other control
operations; a JPU interface 404; a disk interface (here the ATA interface 408); First-
In-First-Out (FIFO) memories 406 and 407; and a DMA driver 402.

The PSDP 28 is in one sense an On-Line Analytic Processing (OLAP)-
oriented disk drive interface. It contains logic that is capable of identifying records,
filtering out the unwanted records, and selecting fields for return as the tuple sets.

The PSDP 28 supports both a Programmed I/O (PIO) Mode-2 for register access by

- the JPU 22 and a UDMA (Ultra-Direct Méinory Access) mode-4 for data transfers. -

The terms “flow through” and “filtered” are used to differentiate DMA read
modes. In flow-through mode, also referred to as “raw read” mode, data moves
directly from the input to the output of the Data Engine 400 without being filtered.
Data that is filtered has been processed, perhaps by culling records via a comparison
and/or transaction ID processing (as described below), but typically by reformatting
the records into tuple format, during which uninteresting fields can be dropped and
PSDP-generated fields can be added. This process of culling records is called a
“restrict” operation. The process of formatting fields into tuples is called a

“project”.
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In filtering mode, disk blocks are pulled from a Disk FIFO 407, feeding them
through the Block Header, Record Header, NULL Vector, Transaction ID, Field
Parse, and Filter circuits in the Data Engine 400. Fields to be returned are pushed
into the Memory FIFO 406.

There is of course also a DMA write mode, in which data from the JPU 22
flows through the DMA driver 402 directly to the ATA interface 408.

For all three DM A modes (write, raw read, and filtered read), the PSDP 28
shadows the read/write disk command in order to control its own DMA state
machines. It does not shadow the disk address or sector cdunt, nor does it have
access to the memory addresses. For writes and raw reads, the PSDP 28 blindly
moves data from one interface to the other until the JPU 22 disables the mode. The
JPU 22 knows the quantity of data to be moved for these modes and uses the disk
and DMA controller 402 interrupts to identify the end of transfer. For filtered reads,
the quantity of data to be transferred to memory is generally unknown, and the JPU
27 identifies the end of transfer from the disk and filter interrupts. All of the record
info—header and data—can be projected during a filtered read, but the block header
info can only be returned by a raw read. DMA data integrity is protected across the
disk interface by an IDE CRC check.

As shown in Fig. 6, the Data Engine 400 includes filter logic 500, a data
parser 502, header storage 504, transaction ID processing 510, error checking 506,
and output tuple generator 508. In general the data parser 502 is responsible for
taking information from the disk 23 and formatting it into headers and fields so that
the filter logic 500, header storage 504 and error checking 506 blocks can perform
their respective tasks. The tuple generator 508 takes the output of the filter and TID
processing 510 blocks and formats the results in a "tuple", suitable for processing by
the JPU 22 or host 12.

Raw user table data as read from the disk 23 is understood and interpreted by
the data parser 502. In one preferred embodiment at the present time, user table data
is stored on disk in 128 KB segments called "blocks". Each block begins with an 8-
word header, followed by 0 or more records. The format of the block header may be

as follows:
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Block Header Field Size Details

Magic number 4B identifies beginning of block, always “FEEDFACE”

CRC-32 4B not used

Block number 4B within the table, 0 based, only 19 significant bits

Block address 4B starting sector number of the block

Block length 4B in bytes, including header, but not trailing 0°s

Layout ID 4B like a version number on the data format

Table ID 4B the Postgres object ID that uniquely identifies the table
Sector count 1B defines block size, 0 means 256, as of this time, it’s always 0
Record count 3B number of records in the block, 0 means 0

The CRC-32 field is meant to be computed by software and written to the

disk along with the rest of the block header. Its calculation was to include all data

from the block number through the end of the last sector of the block, including any

trailing 0’s. Its primary purpose was to detect data corruption resulting from

hardware or software bugs, but it could have detected disk data-retention problems

as well. It is unrelated to the UDMA-mode CRC-16 calculation required by the

ATA-5 specification, which only guards the physical interface between the PSDP 28
and disk-drive IO buffers.

The sector count is the number of sectors in the block, which must be from 1

to 256. Thus a 0 in this 1-byte field means 256. The sector count occupies the

most significant byte of the Jast word of the block header.

The record count is the number of records in the block which may be .

Although the record count occupies the least-significant three bytes of the last word
of the block header, only 13 bits are used.
A record as read from disk 23 into the Data Engine 400 is typically

composed of a record header and one or more data fields, where the record header

consists of three special fields, a length, and a null vector. The special fields are the

row number, created transaction ID, and deleted transaction ID. All of the record

header entries are optional on a per-table (not per-record) basis. However, if the

record has a null vector, it must also have a record length, but not vice versa. The

allowed data types are described elsewhere below.
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Record Header Field Size Detail
Row number 0or 8B existence per RowNumberSize register
Created XID 0or 8B existence per CreatedXIDSize register
Deleted XID 0 or 8B existence per DeletedXIDSize register
Record length 0 or 2B size per RecordLengthSize register
Record NULL vector 010 512B | size per FieldCount register

The row number (sometimes called row_num) is the unique number of the

row or record in the user’s table. It is distinct from the row address (sometimes

called row_addr), which is the complete physical address of a row in node-table-

block-record format. The row number is also distinct from the record number,

which is the 0-based ordinal number of a record within a block. The record number

is the final component of the row address. The row address is computed by the

PSDP.

The created XID contains the number, or ID, of the transaction that created

the record.

The deleted XID. In the preferred embodiment, records are not actually

deleted. Rather, they are marked as deleted so they can be restored if the transaction

that performed the deleting is rolled back. (There are system management tools to

reclaim the space.) A value of 0 indicates the record has not been deleted. A value

of 1 indicates that the record was created by a transaction that was rolled back.

These XIDs support visibility in a multi-version database system, as is

described in a related application (visibility application)

The record length is the length of the record in bytes, excludmg the row

' number and the transaction IDs, but mcludmg the record length the record null

vector, the data fields, and any pad bytes at the end of the record needed for proper

alignment of the first item of the following record. Thus, it is the distance in bytes

from the beginning of the record length field to the beginning of the next record.

Note that although all records in a table must have the same makeup, record lengths

may vary because of variable-length character fields. The RecordLengthSize

register defines record length sizes of 0, 1, 2, and 4 bytes, but only 0 and 2 are used.

The record null vector specifies which fields in the record are null, thereby

indicating validity, not existence. For instance, a null varchar is not the same as an
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empty one. The record null vector consists of an even number of bytes. If it exists,
the record null vector has the same number of bits as the record has data fields, and
computes the number of half-words in the null vector as (FieldCount + 15) >> 4.
This vector is an array of bytes. Bit 0 of the byte immediately following the record
length corresponds to the 0™ data field; bit 7 of that byte corresponds to the 7™ data
field; bit 0 of the last byte of the word that contains the record length corresponds to
the 8™ data field; and so on.

There are strict rules governing field order and alignment. Both the record
and its first data field must start on a word boundary (addr[1:0]=0). All record fields
are self-aligned up to word boundaries. This means that 16, 12, 8, and 4 byte fields
are word-aligned, 2-byte fields are Ys-word-aligned (addr[0]=0), and 1-byte fields
can start anywhere. The row number, created XID, and deleted XID are all 8 byte
fields and do not require pad bytes to align them. If there is a record length but no
record null vector, two pad bytes are required following the record length. If the
record null vector exists, it immediately follows the record length and naturally
starts on a two-byte boundary, but two pad bytes may be required following the
record null vector to properly align the first data field.

The physical order of data fields, which often is not the same as the logical
order, takes care of aligning non-character data fields; the physical order is N16,
T12, N8, I8, F8, N4, 14, F4, D4, 12, D2, 11, C1, C2, ... C16, V2. The fixed-length

character fields are packed in as tightly as possible and are not aligned. Variable-

' 1erigth character fields start with-a 2-byte length; they are ‘%-word—aligned and may

require a preceding pad byte. Up to three pad bytes may follow the record’s last
data field in order to align the next record. If so, they are counted in the length of
the earlier record.

More details of TID processing as performed by the TID processing block
510, includes rollback are contained in our co-pending U.S. Patent Application
(Attorney Docket No. 3336.1017-001) entitled "Controlling Visibility in Multi-
Version Database Systems", by Foster D. Hinshaw et al. filed on August 22, 2003.

A detailed circuit diagram of the filter / comparision logic 500 is shown in
Fig. 7. The filter logic 500 supports up to 32 comparison (and hash) instructions.

Each operates on a single field, which can be a header field, the row address, or a
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data field. Multiple instructions can operate on fields. Each instruction can perform
two comparisons, using either a Data-String Register (DSR) 701 or temp registers
702 for the second operand(s); the two temp registers 702-0, 702-1are used to store
an early record field for comparison to a later record field. There are two
programmable, byte-wide substitution tables 703 that simplify character field
comparisons by switching to all upper or lower case, for example. The instruction
results are combined in the use/lose circuit 705. In the preferred embodiment,
sixteen (16) different comparison function types are implemented by the logic units
720: e.g, true and false NOPs, the equality operators (=, =, <, >=, >, <=), bit-vector
join and its inverse, field is/is not null, field begins/does not begin with the operand,
field contains/does not contain the operand. Although every comparison can be
programmed for every supported data type (which may include integer, floating
point, fixed- and variable-length character types etc.), not all combinations of data
types and comparison operations are useful. The equality and null comparisons are
appropriate for all types. For character comparisons, the string length and ASCII
value of the characters determine inequality, such that “ABC” is less than “ABCD”,
and “A” is less than both “a” and “B”. If a field is null, every comparison except
null will fail. The bit-vector join and its inverse are for the integer data type.
Begins, contains, and their inverses are for character types, both fixed- and variable-
length.

As in traditional systems, for bit joins a bit vector is created with ‘1’s in the
positions correspondiﬂg to those positions where the join condition is true. Ini the
preferred embodiment, during the setup phase the PSDP is loaded with a 4096-bit
vector and the specific field position of the streaming data which is to be matched to
that bit vector. During the streaming phase, as each tuple streams through the PSDP,
the lower 12 bits of that field are mapped into the bit vector to determine if the
corresponding bit is set to “1”. Ifit is, then the join condition is “TRUE”, otherwise
it is “FALSE”.

The SQL predicate “EXISTS” and other related predicates such as “ANY”,
“ALL”, “NOT IN”, “NOT EXISTS”, “IN” are operated as an “EXISTS JOIN” type.
This particular join type is implemented by modifying the nested loop hash, and

merge join and bit join types. Typically, the smaller table is placed into memory
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with either a hash index or sorted with access methods of hash or binary. If the
smaller table has a range smaller than 4096, then it is converted to a bit index and
put into the PSDP as with the bit join above. During the streaming phase, as each
tuple streams either through the PSDP 28 (in the case of exist bit joins) or through
the CPU 26; the smaller table is scanned to see if it contains (or does not contain) the
target field from the streaming tuple.

A "use/lose" logic circuit consists of up to eight sum or product terms. Each
term can accept an input from each of the 32 instructions. The term outputs can be
individually inverted before they’re combined by either a sum-of-products (SOP) or
product-of-sums (POS) calculation. Normally the filter indicates which records are
to be kept, but the output of the SOP/POS calculation can be inverted to indicate
which to reject. Taken altogether, the use/lose options provide deMorgan’s Law
term minimization.

While the record’s data fields are parsed and optionally filtered, another
circuit determines whether the record is valid by comparing the created and deleted
transaction identifiers (IDs) to a data structure called the Invisibility List. The list
contains up to 32 entries. The first is always the ID of the current transaction, that is
the transaction that created the current scan. The remainder define the transactions
that are concurrent to the “surrent” transaction. There are five modes: off, normal,
dirty, silent, and rollback. Normal and dirty set a status bit in the returned tuple, as
described in the section below on tuple formats; silent and rollback affect the tuple’s
return, in conjunction with the filter results. -

A project function encompasses the selection of record fields, the generation
of new fields, and the tuple formation and return. Tuples typically consist of arow
number, some data fields, and a 2-byte length/status, but they can also include the
created and/or deleted transaction IDs, the row address, up to 255 pad words, the 32
instructions results formed into a boolean word, the hash result, and a null vector.

The hash is used to organize similar tuples into groups for processing joins
or grouping selects, and with the exception of the record null vector and
length/status, all record-header and data fields can be used in its calculation. There
are 7 defined hash modes, such as full CRC, which calculate a 32-bit CRC hash
starting with a seed of zero and using all of the bytes of all of the fields selected.
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Blank spaces in character fields are skipped, as are leading 0’s in unsigned and
positive numerics and leading 1’s in negative numbers. Hash operations are defined
on a per-field basis by the comparison instructions.

Within the PSDP 28, a “tuple” is used to describe the projected data as
output by the tuple 500. The tuple generator 508 uses principally the filter 500
output but can also use TID processing 510 and error checking 506 outputs (Fig. 5).
The term "tuple" is used here for the purpose of differentiating “raw” disk 23 and
PSDP 28 output record formats. A tuple contains fields projected from the source
record and up to six “virtual” fields: row address, pad words (tuple scratch pad), the
boolean results from each of the filter operations, a hash result, the tuple null vector,
and the tuple length. All are optional on a per-table basis. The order of these fields

is given in the following table.

Tuple Field Size Details

Row number 0/8B from record header; upper two bytes are 0

Created XID 0/8B from record header; upper two bytes are 0

Deleted XID 0/8B from record header; upper two bytes are 0

Row Address 0/8B node.table.block.record

Pad Words 0-256W Zeroed entries between specials and fields.

Data Fields 0-nB the data selected for return

Boolean Filter Result 0/4B 32 bit results of the (up to) 32 instructions.

Hash Result 0/4B computed by PSDP

Tuple Null vector 0-512B computed by PSDP; size known by software

Tuple length and Status 0/1/2/4B computed by PSDP; the tuple length in bytes; size per
TupleLengthSize register.

The row number, cfeat’ed .XYD, deleted XID, and data ﬁeldsA are tﬁe same 'as‘

described above.

The row address is a compressed version of the node, table, block, and

record information. RowAddress[63:32] is defined by the NodeIDTablelD register,

a 32-bit register that is programmed with a 32-bit, merged version of the node ID
and the table ID as part of the filter setup. RowAddress[31:13] is the 19-bit block
number defined by the block header. RowAddress[12:0] is the 13-bit récord number
calculated by the PSDP 28; it is 0-based within the current block.

Software may define up to 255 pad words in the tuple immediately following

the special fields.
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The Boolean filter result contains the pass/fail result for each of the 32 filter
instructions.

The hash result is the output of the hash circuit.

The tuple null vector contains the record null vector bits for each data field
software requested. Note that record and tuple null vectors do not generally match
up. The tuple null vector must consist of an even number of bytes and begin on a
two-byte boundary. Software ignores any undefined bits as they may have been set
by a previous scan. Once again, the existence of the null vector requires the
existence of the length. Like the record null vector, the least-significant bit of byte 0
of the null vector refers to the 0" field; the most-significant bit of byte 0 refers to the
7™ field; the least-significant bit of byte 1 refers to the 8™ field, and so on, but the
alignment and therefore the location of each of the bytes is different.

The tuple length is the total length of the tuple in bytes, including leading
specials at the beginning of the tuple and any pad bytes at the end needed for proper
alignment of the first item in the following tuple. Although all tuples returned by a
scan must have the same makeup, tuples sizes may vary due to variable-length
character fields. The TupleLengthSize register defines tuple length sizes of 0, 1, 2,
and 4 bytes. Because tuple fields are 4-byte aligned, tuple lengths are always
multiples of four, and the least-significant two bits of the tuple length are available
to indicate tuple status. Bit 0 is the overrun bit. When set, it means the tuple was
returned desp1te failing to meet the filter condltlons This can happen if the tuple is

- s0 large that the PSDP must begin transfemng it to TPU memory before the use/lose”

decision can be made, as described above. Bit 1 is the invalid bit. When set, it
means the record from which this tuple was constructed has transaction IDs that
make it invalid (i.e., invisibly created or visibly deleted).

With the exception of the length and nulls, tuple field alignments are the
same as record field alignments. In the record the length and nulls precede the data
fields, and the record null vector is left-aligned against the preceding record length.
In the tuple the length and nulls follow the data fields, and the tuple null vector is
right-aligned against the tuple length, which ends the tuple. The size of the tuple
null vector and the requirement that it end in byte lane 1 together determine the
location of its first byte: byte lane 0 or 2 (see the examples below). Aligning the
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tuple length in this manner makes it possible for software to locate the length while
striding through the tuples backwards in memory. CPU software leaves enough
space in memory at the head of the first tuple for a tuple length and null vector. This
space allows relocating the length and null vectors ahead of the corresponding data

5 fields as it walks the tuples backwards, then reverse direction to process the tuples
forward. Alignment can require as many as five pad bytes between the last byte of
data and the tuple null vector or length and, if neither null vector nor length exists,
as many as three pad bytes following the last data byte.

Alignment examples for valid end of field data, tuple null vector, and tuple

10 length:

No Length or Nulls No Length or Nulls

Address 0 1 2 3 Address 0 1 2 3

I data data data data i data data data dat:

i+4 data data data data i+4 data data data dat:

i+8 data data data data i+8 data | pad pad paa
15

Length but No Nulls Length but No Nulls

Address 0 1 2 3 Address 0 1 2 3

I data data data data i data data data dat:

i+4 data data data data i+4 data | pad pad pad

i+8 pad pad length 1 | length 0 i+8 pad | pad length 1 | leng

Length and 2-Byte Null Length and 4-Byte Null

Address 0 1 2 3 Address 0 1 2 3

I . | data data data '| data .. i . |data | pad pad pad

i+4 - | data data | data ~ | data “lit+4 pad | pad null 0 null
. i+8 nul]l O | null1 | length 1 | length O i+ 8 nuil2 | nuil3 | length 1 | leng
20 ‘

D. QUERY PROCESSING EXAMPLE
As an aid in the illustrating how the system 10 processes data, an example
database will be described that contains store sales data. The database defines a

25 SalesDetail data table, a Customer data table, and a Store data table as follows:

SalesDetail
StorelD
CustomeriD



10

15

20

25

30

35

40

WO 2004/027652 PCT/US2003/030001

-41 -

SaleDate
ProductCategory
Units

Amount

Customer
CustomerID
Gender

Store
StorelD
StoreLocation

A sample query might be to "show me the total units and dollar amount of
rain gear sold to females in North Carolina in 2000, by customer ID." This can be

translated into the SQL statement:

SELECT SalesDetail.CustomerID AS "CustID",
Sum(SalesDetail.Units) AS "Sales Units",
Sum(SalesDetail. Amount) AS "Sales Amount"

FROM SalesDetail, Customer, Store

WHERE SalesDetail.StoreID = Store.StoreID
AND SalesDetail. CustomerID = Customer.CustomerID
AND Store.StoreLocation = "NC"

AND Customer.Gender = "Female"
AND Year(SalesDetail.SaleDate)="2000"
AND SalesDetail. ProductCategory = "Raingear”

GROUP BY SalesDetail.CustomerlD;

An output from this sample query with the total units and dollar amount of

rain gear sold to females in North Carolina in 2000 by customer ID might be shown

in tabular format:

CustID Sales Units  Sales Amount
021442 1,300 $45,000
021443 1,200 $41,000
021449 1,800 $60,000
021503 3,500 $98,000
021540 4,200 $112,000
021599 5,000 $150,000

021602 4,700 $143,000
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021611 4,100 $104,000
021688 3,600 $101,000
021710 2,000 $65,000
021744 1,200 $41,000

021773 1,500 $43,000

PCT/US2003/030001
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Using the above example, a basic execution plan can be created by the SQL

Expression Evaluator 207, plan generator 204 and plan optimizer 205 of the host(s)

12. The plan might specify for example, to perform joins and aggregations on the

JPUs 22, with restriction functions being performed on the Pro grammable
Streaming Data Processor (PSDP) 28.

Job

1

"Amt"

Locale
JPU
PSDP
JPU
JPU
JPU
PSDP
JPU
JPU

JPU
PSDP

JPU

JPU
JPU

TPU
TPU
JPU
PU

JPU
JPU

HOST

Operation

SCAN Customer

RESTRICT Gender = "Female"
PROJECT CustomerID

SAVE AS TEMPCustomer

SCAN Store

RESTRICT StoreLocation ="NC"
PROJECT StorelD
BROADCAST AS TEMPStore

SCAN SalesDetail

RESTRICT ProductCategory = "Raingear" AND
Year(SaleDate)="2000"

PROJECT CustomerID, StoreID, Units, Amount

JOIN WITH TEMPStore, StoreID=TEMPStore.StoreID
PROJECT CustomerID, Units, Amount

JOIN WITH TEMPCustomer, CustomerID=
TEMPCustomer.CustomerID
PROJECT CustomerID, Units AS "Units" , Amount AS

GROUP By CustomerID

AGGREGATE Sum(Units) AS "Units", Sum(Amt) AS
"AmtTotal"

PROJECT CustomerID, "Units", "AmtTotal"

RETURN HOST

RETURN USER

Referring back to Figs. 1 and 3, the query is passed from the application

(which may be running on, Business Intelligence Application 30 local application

server 29 or client 36), the Plan Generator 204 then creates tentative execution plans.

Plans not only specify the above job descriptions, but also may specify whether



10

15

20

25

30

WO 2004/027652 PCT/US2003/030001

-44 -

specific jobs can run on currently or must run in sequence on the JPUs. The Plan
Optimizer 205 selects one of the plans and optimizes that plan and passes it to the
Plan Link 206. The Plan Link 206 expands the plan as necessary, based on where
parts of the plan will be executed, and then passes the expanded plan to the Host
Dispatch 208. The Host Dispatch 208 then sends individual Jobs within the plan to
the respective locales (i.e., the JPUs 22) for execution. In this example, jobs 1-6 are
sent to the JPUs 22 for execution, with job 7 reserved for the host 12.

For example, Job 1 scans the Customer table with the required restriction and
projection, and materializes it. Job 2 scans the Store table with the required
restriction and projection, and since it is a small table, broadcasts the resulting tuple
set to all JPUs 22, where the tuples from all JPUs 22 are then accumulated and saved
in memory as TEMPStore. Jobs 1 and 2 are specified or determined to run
concurrently if possible.

The Host Dispatch 208 may thus combine Jobs 3-6 into one streaming job
because they can all be implemented in a streaming manner without materialization
of intermediate sets. This combined job scans the SalesDetail table, with its
restrictions and projections. As the tuples are received from scan run by the PSDP
28 , each tuple is joined with TEMPStore and TEMPCustomer and aggregated. On
the aggregation node, as each new customer ID is received, the previous one and its
sums are sent to the host, where Job 7 is then invoked in a streaming fashion, to
return the aggregated tuples through the ODBC connection 38 back to the user.

Fig. Tisa diégram illustrating‘hdw an exemplary job is procesSéd by asetof -

JPUs 22, in the second group. The example Job 3 replicated here again included

instructions
3 JPU SCAN SalesDetail
PSDP RESTRICT ProductCategory = "Raingear" AND
Year(SaleDate)="2000"
JPU PROJECT CustomerID, StoreID, Units, Amount

Individual jobs are forwarded from the host 12 to typically many JPUs 22 in

parallel as a broadcast message. The broadcast message is typically sent as a User
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Datagram Protocol (UDP) type message, but can also be sent in other ways, such as
a Transmission Control Protocol (TCP) message or a unicast message.
Upon receipt of a job message at the job listener 301, the JPU dispatch unit 304
informs the transaction manager 306 and storage manager 320 to then schedule Job
3 for execution. More details of job execution can be found in the related co-
pending U.S. Patent application entitled “Programmable Data Streaming
Architecture Having Autonomous and Asynchronous Job Processing Unit,”
(Attorney Docket No. 3336.1016-003) mentioned above.

While this invention has been particularly shown and described with
references to preferred embodiments thereof, it will be understood by those skilled
in the art that various changes in form and details may be made therein without

departing from the scope of the invention encompassed by the appended claims.
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CLAIMS

What is claimed is:

1. An asymmetric data processor comprising:

a first group of nodes comprising one or more host processors, each host

comprising a memory, a network interface, and one or more Central Processing

Units (CPUs), wherein each host accepts and responds to queries for data, and

transforms such queries into one or more jobs;

a second group of nodes comprising one or more Job Processing Units

(JPUs), wherein each JPU comprises:

2.

a memory, for storing data

a network interface, for receiving data and instructions

a streaming data interface, for receiving data from a streaming data
source;

one or more general purpose CPUs, for responding to requests from
at least one host computer in the first group, and to requests from other JPUs
in the second group, and

one or more Programmable Streaming Data Processors (PSDPs),
which perform primitive functions directly on data received from the
streaming data interface, each PSDP thus performing initial processing on a
set of data; and S o

a network connecting the nodes within each group and between the
two groups, and

wherein a JPU receives jobs from one or most nodes in the first

group, performs work requested by the job, and forms a reply.

The apparatus of claim 1 wherein the data comprises structured records, and

the structured records further comprise fields of various lengths and data types.

3.

An apparatus as in claim 1 wherein the primitive functions performed by the

PSDPs comprise field-level filtering.
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4. An apparatus as in claim 1 wherein the streaming data interface is an

industry-standard mass storage interface.

5. An apparatus as in claim 2 in which at least one selected PSDP performs

Boolean comparisons of record field values against other values.

6. An apparatus as in claim 5 wherein the Boolean comparision is against other

record field values, and/or values held internally to that PSDP.

7. An apparatué as in claim 5 in which the selected PSDP restricts records that
fail Boolean comparisons of field values, as such records stream into the PSDP and

before such records are placed into the memory of the associated JPU.

8. An apparatus as in claim 2 in which the selected PSDP filters out fields of
records that are not needed for particular queries, as such fields stream into the
PSDP and before such fields are placed into the memory of the associated JPU,

projecting forward into JPU memory those fields that are needed.

9. An apparatus as in claim 2 in which the PSDP output data may contain

projected fields not contained in the source data, such as row address, transforms,

" results of expression evaluation, results of bit joins, and results of visibility tests. -

10.  Anapparatus as in claim 2 in which a selected PSDP decompresses fields

and/or records.

11.  An apparatus as in claim 1 wherein the streaming data interface is connected
to receive data from a peripheral device selected from the group consisting of disk

drive, network interface, and other streaming data source.

12.  Anapparatus as in claim 2 in which a selected PSDP performs a join

operation, where the field values being jdined have a small range of values, so that
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the presence or absence of a particular value can then be encoded as a bit within a

sequence of bits, whose position within the sequence corresponds to the field value.

13.  An apparatus as in claim 2 in which a selected PSDP performs an “exist
join” operation, where the field values being joined have a small range of values, so
that the presence or absence of a particular value can then be encoded as a bit within
a sequence of bits, whose position within the sequence corresponds to the field

value.

14.  Anapparatus as in claim 1 in which space is reserved in JPU memory at the

‘head of the first tuple produced by the PSDP for recording tuple length and null

vector, so that the length and null vectors from the end of the tuple may be relocated
to this space.

15.  An apparatus as in claim 1 in which at least one PSDP is implemented as a
Field Programmable Gate Array (FPGA).

16.  Anapparatus as in claim 1 in which the host computers in the first group
contain software comprising a plan optimizer component that determines which

filtering primitives should be executed within a PSDP.

17..  An apparatus as in ¢claim 1 in which the JPUs in the second group contain

software comprising a plan optimizer component that determines which filtering

primitives should be executed within a PSDP.

18.  An apparatus as in claim 1 in which the host computers in the first group
contain software comprising a plan link component, which determines a query
execution plan, the query execution plan further having portions that will be
processed by a PSDP, portions that will be processed by a JPU after a PSDP has
returned data to the JPU, and portions that will be processed by a host, after the JPU
has returned data to the host group.
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19.  Anapparatus as in claim 1 in which the JPUs in the second group contain
software comprising a plan link component, which determines a query execution
plan, the query execution plan further having portions that will be processed by a
PSDP, portions that will be processed by a JPU after a PSDP has returned data to the
JPU, and portions that will be processed by a host, after the JPU has returned data to
the host group.

20.  An apparatus as in claim 1 in which the hosts in the first group contain
software comprising a PSDPPrep component, which, for a given query execution

plan, defines primitive instructions.

21.  Anapparatus as in claim 1 in which the JPUs in the second group contain
software comprising a PSDPPrep component, which, for a given query execution

plan, defines primitive instructions.

22.  An apparatus as in claim 21 wherein the instructions defined by the
PSDPPrep component include instructions to process fields of records.

23.  An apparatus as in claim 21 in which a PSDPPrep component further \
identifies filtering, transformation, projection and/or aggregation operations to be
performed by a PSDP.

24.  An apparatus as in claim 21 in which a PSDPPrep component further

modifies the query execution plan to specify restrict operations that are to be

performed by a PSDP instead of a JPU.

25.  An apparatus as in claim 1 in which the JPUs contain software comprising a

PSDP Filter component, which loads an executable code image into a PSDP.

26.  An apparatus as in claim 1 in which the JPUs contain software comprising a
PSDP Scheduler component, which schedules jobs to run on a PSDP and queues
PSDP requests to retrieve required data.
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27.  An apparatus as in claim 1 in which the JPUs in the second group contain
software comprising a JPU Resource Scheduler component, which is responsible for

scheduling jobs to be run on the JPU.

28.  An apparatus as in claim 27 in which the JPU Resource Scheduler
component further schedules jobs to run on a PSDP, communicating with a PSDP

Scheduler component to queue up PSDP requests to retrieve required data.

29.  An apparatus as in claim 27 in which the JPU Resource Scheduler
component further schedules jobs, in which similar PSDP instructions in different

query execution plans are combined to avoid duplicate PSDP processing requests.

30.  An apparatus as in claim 2 in which an initial query is provided by a
structured query language (SQL) statement, and the records specified thereby exist
in various processing states within at least two components of the system including

at least within a PSDP within a JPU, and/or within a host.

31.  Anapparatus as in claim 30 in which a PSDP processes fields within records
are received from the streaming data source, without waiting to process any records

until all records are received.
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