发明名称
用于印刷电路板的冷却设备
摘要
本发明涉及一种用于印刷电路板的冷却设备，其包括印刷电路板，所述印刷电路板装备有至少一个面或第一面，以及钎焊至印刷电路线的所述至少一个面的至少一个热沉 (9)，其中所述至少一个热沉 (9) 可以设置在冷却剂中。本发明适合用于机动车辆。
1. 一种用于印刷电路板的冷却设备，其包括印刷电路板，所述印刷电路板设置有至少一个面或第一面，以及钎焊到印刷电路的所述至少一个面上的至少一个热沉元件（9），所述至少一个热沉元件（9）适合于布置在制冷剂流中。

2. 如权利要求1所述的冷却设备，所述印刷电路板包括两个面。

3. 如权利要求2所述的冷却设备，包括至少一个孔，所述至少一个孔从所述两个面中的一个到所述两个面中的另一个，穿过所述印刷电路板，所述一个热沉元件（9）被布置为面对所述至少一个通孔。

4. 如权利要求3所述的冷却设备，其中所述至少一个通孔包括覆盖有金属物质的内表面。

5. 如权利要求3或4所述的冷却设备，包括穿过所述印刷电路板的多个孔。

6. 如前述权利要求中的一项所述的冷却设备，其中印刷电路板设置有电子部件（19）。

7. 如前述权利要求中的一项所述的冷却设备，其中电子部件（19）的外部周界在第一面（16）上界定第一占用部（30），所述多个孔（18）在第一面（16）上界定第二占用部（26），所述第一占用部（30）和第二占用部（26）分隔开一非零距离。

8. 如权利要求5到7中的一项所述的冷却设备，其中电子部件（19）的外部周界在第一面（16）上界定第一占用部（30），所述多个孔（18）在第一面（16）上界定第二占用部（26），所述第一占用部（30）和第二占用部（26）至少部分地叠置。

9. 如前述权利要求中的一项所述的冷却设备，其中至少一个热沉元件（9）包括头端（31），所述头端形成抵靠印刷电路板（15）的支承邻接部。

10. 一种机动车辆内部的通风设施的通风设备（19），所述通风设备包括推进器（22），所述推进器（22）产生气流（29、30）并且适合于被电动机（21）驱动，所述通风设备包括前述权利要求中的任一项所述的冷却设备。
用于印刷电路板的冷却设备

技术领域
[0001] 本发明的技术领域是一种可能放出热量的电子印刷电路板、以及一种用于冷却所述电子组件的设备的技术领域。这样的印刷电路板尤其可应用在通风设备中，所述通风设备意图将用于机动车辆的通风、供暖、和/或空气调温设备中的气流设定为运动。

背景技术
[0002] 通常，在这种印刷电路板中，冷却设备采取散热器（heat dissipater）的形式，也就是说，添加到印刷电路板上的元件，其功能是耗散由电子组件发出的热量。该散热器被按压至印刷电路板的面上，散热器与印刷电路板的面之间插置有导热浆料，以确保所述板与散热器之间的良好热传导。
[0003] 上文描述的结构存在多个缺点。首先，这样的散热器是占据相当大空间的实体零件，其形成限制印刷电路板的应用可能性的约束，尤其是在受限体积中使用印刷电路板的情况下，例如对于在机动车辆的通风、供暖、和/或空气调节设备中的通风设备的情况下。并且，已知通风设备的重量也由于该散热器的存在而进一步加重，所述散热器是由铝合金制成的。散热器并不是通风功能中表现出微不足道成本的零件，并且所述散热器的添加包括热浆料的应用，这增加了印刷电路板生产方法的复杂性。此外，热浆料的存在降低了散热器的热耗散效率，然而，无论如何必要的是确保布置在电路板上的电子组件与散热器之间的热扩散。

发明内容
[0004] 本发明的目的是解决上文描述的缺陷。
[0005] 为此，本发明的主题是用于印刷电路板的冷却设备，所述冷却设备包括印刷电路板，所述印刷电路板设置有至少一个面或第一面，以及钎焊到印刷电路的所述至少一个面上的至少一个热沉元件，所述至少一个热沉元件适合于布置在制冷剂流中。
[0006] 冷却剂应被理解为指的是与印刷电路兼容的任何热传导流体。其例如是空气。
[0007] 因而，根据本发明的冷却设备的热沉元件与印刷电路板之间的直接热物性接触而允许更好的热耗散。此外，由于热沉元件被钎焊，其可以在印刷电路板钎焊步骤期间被紧固至印刷电路板，这确保根据本发明的冷却设备与印刷电路板本身的生产同时地生产和完成（finalized）。
[0008] 根据本发明的另一特征，所述印刷电路板包括两个面。
[0009] 根据本发明的另一特征，冷却设备包括至少一个孔，所述至少一个孔从所述两个面中的一个至所述两个面中的另一个穿过所述印刷电路板，所述至少一个热量传导装置被布置为面对所述至少一个通孔。
[0010] 根据本发明的另一特征，所述至少一个通孔包括覆盖有金属物质的内表面。
[0011] 根据本发明的另一特征，冷却设备包括穿过所述印刷电路板的多个孔。
[0012] 该多个孔形成存在于第一面上的、且由电子组件产生的热量与越过热量传导装置
的气流之间的热排放。

【0013】根据本发明的另一特征，印刷电路板设置有电子部件。

【0014】根据本发明的另一特征，电子部件的外部周界在第一面上界定第一占用部，所述多个孔在第一面上界定第二占用部，所述第一占用部和第二占用部分隔开一非零距离。

【0015】换句话说，电子部件不布置在孔上方，该电子部件与孔之间的热排放则由至少在这两个元件之间行进的导电轨道进行。

【0016】替代地，第一占用部和第二占用部至少部分地叠置。

【0017】根据本发明的另一特征，所述至少一个热沉元件包括头部，所述头部形成抵靠印刷电路板的支承邻接部。

【0018】本发明还涉及一种机动车辆内部的通风设施的通风设备，所述通风设备包括推进器，所述推进器产生气流并且适于被电动机驱动，还包括如上所述的印刷电路板。印刷电路板形成适于驱动电动机的控制设备。该控制设备是根据由机动车辆发送的请求来确定推进器的旋转速度的装置。

【0019】根据本发明提供的一个可行例，热量传导装置与导电轨道直接接触。类似地，热沉与该热量传导装置直接接触。直接接触应理解为意味着两个元件之间的物理接触，这些元件的紧固能够借助于钎焊产生。

【0020】根据本发明的第一优势在于可以设计比现有技术更轻、更紧凑、且更节省成本的印刷电路板，同时通过确保对于耗散热量的部件的冷却功能来确保可与机动车辆领域中的用途兼容的可靠性。热排放因而凭借在板的两个面之间延伸的热量传导装置的存在而被更好地确保。

【0021】这样的印刷电路板特别是地可应用在用于通风、供暖和/或空气调节设施的通风设备中。

附图说明

【0022】在阅读下文借助参考附图的指示给出的描述时，本发明的其他特征、细节和优势将更清晰地显现，在图中：

【0023】图 1 是根据本发明的印刷电路板的部分剖面视图，

【0024】图 2 是部分剖面视图，其图示了根据本发明的印刷电路板的第一变型实施例，

【0025】图 3 是部分剖面视图，其图示了根据本发明的印刷电路板的第二变型实施例，

【0026】图 4 是部分剖面视图，其图示了根据本发明的印刷电路板的第三变型实施例，

【0027】图 5 是实施根据上文描述的变型例中的任一个的印刷电路板的通风设备的示意图。

【0028】应注意的是，为实施本发明，附图以详细的方式解释了本发明，所述附图在适当的情况下当然能够用于更好地限定本发明。

具体实施方式

【0029】图 1 图示了符合本发明的、包括印刷电路板的冷却设备的示例性实施例。所述印刷电路板被部分地表示，但形成在平面上延伸的板。这样的印刷电路板例如是用于将通风、供暖、和/或空气调节设施中的气流设定为运动的通风设备的控制设备的部件。该
控制设备的功能是通过控制被送至驱动推进器（propeller）旋转的电动机的电压或电流来驱动形成通风设备的一部分的推进器的旋转速度。

[0030] 印刷电路板 1 由绝缘基底 10 形成，其上形成有一个或多个导电轨道 2。

[0031] 该印刷电路板 1 包括第一面 3，和相对于印刷电路板的本体与第一面相同的第二面 4。

[0032] 根据示例性实施例，印刷电路板包括至少一个孔 5，这种孔是通孔，也就是说现在第一面 3 和第二面 4 中。

[0033] 印刷电路板 1 的第一面 3 可以支承电子部件 11，特别是功率部件，其散热热量并且对于其来说必须确保冷却以保证与机动车辆领域中应用共兼容的可靠性水平。释放热量的这些部件例如是晶体管，特别是 MOSFET 类型的晶体管，但它们还可以是电容器或分流器（shunt）。第一面 3 可以直接地接收例如参与实施电动机的驱动或保护中的其他电子部件。

[0034] 一个或多个孔 5 接收热量传导装置 6。根据图 1 的实施例，该热量传导装置由热过孔（thermal vias）产生，优选地填充有热量传导材料。换句话说，界定孔 5 的基底 10 的内壁被金属化，且形成从印刷电路板 1 的第一面 3 延伸至第二面 4 的热释放部分（thermal drain）。根据变型例，由金属化部分 7 围绕的孔的中心区段可以留出（free），从而形成一定空间。根据另一替代例，孔的中心区段可以填充有材料，例如是铜或用于电子部件 11 的钎焊的材料。

[0035] 金属化孔的一个端部在第二面 4 的平面中延伸，且可通过而被气流流过。在上述两种情况中，一个或多个金属化部分 7 形成热释放部，所述热释放部将由电子部件产生的热量朝着气流传导，以在其中直接或间接地逸出所述热量。

[0036] 根据图 1 的表示，热量传导装置 6 是由孔 5 的金属化部分 7 形成的一组热过孔，优选地填充有热传导材料。

[0037] 孔 5 的金属化部分 7 例如被包含在印刷电路板 1 的厚度中，并且其在第一面 3 上被连接至延伸在第一面 3 上的导电轨道 2。根据该变型例，释放热量的电子部件 11 不直接安装在孔 5 上方。相反，电子部件 11 远离孔定位，并且导电轨道 2 将来自电子部件 11 的热量朝着孔 5 的一个或多个金属化部分 7 排放。这里将理解的是，电子部件 11 的外部周界在第一面 3 上界定第一占用部 12，而包含热量传导装置 6 的所述孔 5 或所述多个孔 5 在第一面 3 上界定第二占用部 8，第一占用部 12 和第二占用部 8 分隔开一非零距离，在图 1 中以附图标记 13 指代。第一占用部 12 是由电子部件 11 的突起界定的第一面 3 的区段，与印刷电路板 1 的第一面 3 坐落（inscribed）所在的平面成直角。第二占用部 8 是由孔 5 占据的第一面 3 的区段。在多个孔 5 的情况中，第二占用部 8 由围绕多个孔 18 的周界界定，在第一面 3 的平面中被测量。

[0038] 与导电轨道 2 相对，孔 5 的金属化部分 7 终止于第二面 4 的平面中，并且热沉 9 通过钎焊而紧固到印刷电路板 1 上。

[0039] 热沉 9 优选地至少部分地面对热量传导装置 6。这样的热沉 9 开始于第二面 4，并且终止于气流在其中流通的通道中。

[0040] 根据未图示的示例性实施例，该热沉 9 由通过钎焊而紧固到第二面 4 上的杆 14 形成，例如，至少部分地面向热量传导装置 6，也就是说，至少部分地面向第二占用部 8。

[0041] 根据图 1，热沉 9 还可以包括基部 16，杆 14 固定至所述基部。基部 16 则在形成于
孔5中的金属化部分7的端部的水平处，通过钎焊部15而抵靠第二面4钎焊。

[0042] 为了简化图2到4，金属化部分7和孔5已由条带象征性地表示。尽管如此，清楚的是，上文描述的并且在图1中示图的实施例的技术内容可以转置至图2到4中示图的实施例中的任一个，特别是关于热量传导装置6的结构。

[0043] 图2示出了本发明的第一变型例，其接近图1中表示的。不同之处将在下文详细描述，并且相同元件将参照图1的描述。

[0044] 一个不同之处是可能释放热量的电子部件11的定位。而在图1中，这样的部件处于距一个或多个孔的一定距离处，这里电子部件11在多个孔5上方，也就是说在热量传导装置6上方紧固到第一面5上，特别是通过钎焊来紧固。换句话说，电子部件11的外部周界界定第一面3上的第一占用部12。该第一占用部12叠置在界定围绕所述多个孔5的周界的第二占用部8上。本发明涵盖该图中示出的情况，其中第一占用部12完全叠置在第二占用部8上，所述第二占用部覆盖的区段大于由第一占用部覆盖的区段。

[0045] 本发明还涵盖第一占用部12与第二占用部8至少部分地叠置的情况。换句话说，本发明涵盖电子部件11整体布置在所述多个孔5上方的情况，但其还涵盖电子部件11仅部分地重叠所述多个孔5的情况。该图的变型例还包括热沉9，例如与图1的所述热沉相同。

[0046] 本发明的第二变型例表示在图3中。印刷电路板1接收与图1和2中的热量传导装置相同的热量传导装置6。另一方面，所述热沉9具有不同的形式。实际上，所述热沉恰好穿过印刷电路板15，与热量传导装置6齐平，例如在其中心处。杆14则具有出现在气流中的自由的第一端部，以及头有头部17的第二端部。该头部17与杆14由一体形成的。头部17形成在平面上，而在其热量传导装置6上方。通过钎焊部18而紧固到第一面3上。

[0047] 图4的变型例接近于图3的变型例。不同之处在于，热沉9紧固到热量传导装置6上的方式。

[0048] 热沉9包括具有头部17的杆14，该头部17与图3中的变型例相同。头部17不在第一面3上紧固至热量传导装置6上。钎焊部15在印刷电路板1的第二面4上产生在杆14与热量传导装置6之间。热沉9则通过其头部17而支承在热量传导装置6的第一端部上。并且通过产生在第二面4上的钎焊部15而附接至所述热量传导装置。

[0049] 本发明的第二变型例和第三变型例采用具有头部17的热沉9，所述头部在紧固至第一面3上的电子部件之间。从第一面3的平面伸出，换句话说是从所述平面突出。头部有助于拾取由电子部件产生的热量，以将所述热量朝被气流掠过的杆14，减低。

[0050] 上文变型例中所描述的印刷电路板1可包括多个孔5和/或多个相同的热量传导装置6以及多个相同的热沉9。

[0051] 根据另一变型例，根据本发明的印刷电路板1可包括根据上文所解的至少两个变型例产生的热量传导装置6和热沉9的组合。

[0052] 将注意到的是，根据上文描述的任何一个变型例的热沉9有利地由铝合金制成，并且优选地由铜制成。

[0053] 还将提到的是，优选地并且特别地，印刷电路板1在第二面4下方和/或在第一面3上设置有触点平面以允许各种部件被钎焊。

[0054] 图5图示了通风设备19中的根据本发明的印刷电路板1的示例性应用。这样的通风设备包括支撑部20，在所述支撑部20内部容置有电动机21。
电容机 21 驱动推进器 22 的旋转，所述推进器包括该图中由虚线表示的碗状部 23。由于来自电容机的轴联接至该碗状部 23，所以该碗状部形成推进器驱动装置。这样的碗状部例如是实心的，其中其壁不具有开口。根据另一替代例，这样的碗状部 23 具有多个开口。

在这样的碗状部 23 的周界上，多个叶片 24 在平行于电容机轴的延伸方向的方向上延伸。每个叶片的端部由端部 25 连结。这样的推进器 22 因而形成鼠笼式推进器，或者称为径向涡轮。

相对于电容机 21 对着推进器 22，存在控制设备 26。所述控制设备 26 的功能是通过控制被发送至电容机 21 的电压或电流来驱动推进器 22 的旋转速度的。这样的控制设备 26 抵靠支撑部 20 安装，以能够暴露于由推进器 22 产生的气流。控制设备由盖 27 覆盖，以限制外来体进入到安装有控制设备 26 的通风设备的部分中。

支撑部 20 包括开口 28，由推进器 22 设定为活动的气流可以在开口 28 中流通。这样的气流由附图标记 29 和 30 显示性地表示。这样的开口 28 由至少一个第一壁 31、以及有利地由第二壁 32 侧向地定界，这些壁中的一个和 / 或另一个能够紧固到印刷电路板 1。因而，将理解的是，气流 29、30 由支撑部 20 以及由标记为 31 和 32 的第一和第二壁中的至少一个和 / 或另一个引导。

该通道还由控制设备 26 确定。更精确地，该通道由形成控制设备 26 的印刷电路板 1 确定。

关闭用于气流 29、30 流通的通道的印刷电路板 1 的区部，与第一壁 31 和第二壁 32 结合，形成所述板的一部分，在该部分中形成一个或多个孔 5。热量传导装置 6 和一个或多个热沉 9，如参考图 1 到 4 中详细描述。

印刷电路板 1 的第二面 4 被分为，一方面，被通过推进器 22 流体的气流 29、30 掠过的印刷电路板 1 的部分 33，以及另一方面，不暴露于由推进器 22 产生的气流的区域 34。一个或多个热量传导装置 6 和一个或多个热沉 9 形成在部分 33 中，并且不存在于区域 34 中。

印刷电路板 1 的部分 33 和该同一板的区域 34 之间的分开由第一壁 31，并且有利地由第二壁 32 组织。因此将理解的是，位于印刷电路板 1 的部分 33(其至少包括热量传导装置 6 和热沉 9) 上方的第二面 4 被气流 29、31 掠过，以冷却所述部分，并且相关地，以冷却释放热量的电子部件 11。

印刷电路板 1 的这样的部分 33 形成用于导电轨道的支撑部。换句话说，多个导电轨道在被气流掠过的第二面 4 上交织，并且它们布置为使得限制两个导电轨道之间短路的风险。这样的布置例如是在被气流掠过的部分 33 上延伸的导电轨道分隔开的最小距离。根据示例性实施例，这样的距离例如最小是 1.5mm。

根据一个示例性实施例，区域 34 可以包括至少一个电子部件 35。所述至少一个部件紧密而区域 34 中延伸的第二面 4 上。该区域还包括多个导电轨道，而不需要避免短路的布置，这是由于该区域 34 与流通气流 29、30 隔离，尤其是凭借压靠第二面 4 的第一壁 31 的存在，例如，与印刷电路板 1 的延伸面成直角。
图 5