(54)发明名称
用于开关电容器电平移位器的偏置电路

(57)摘要
本发明涉及提供一种抗噪声、开关控制电路。该电路包括低通滤波器，该低通滤波器经配置耦合至开关的第一端并耦合至低通滤波器的第一电压箱位。第一电压箱位经配置耦合至开关的控制端并相对于第一端将控制端的电压限制在第一箱位电压范围内。该电路包括耦合至开关控制电路的输入端的第二电压箱位。第二电压箱位经配置耦合以至开关的控制端。第二电压箱位还经配置以降低耦合至第二电压箱位的控制电压的电平。电路包括偏置装置，该偏置装置经配置耦合至开关的控制端并施加偏置电压至控制端。
1. 一种抗噪声的开关控制电路，其包括：
低通滤波器，所述低通滤波器经配置以将所述低通滤波器的低通输出耦合至开关的第一端，所述开关具有所述第一端、第二端和控制端；
耦合至所述低通滤波器的第一电压箱位，所述第一电压箱位经配置以耦合至所述开关的所述控制端并相对于所述第一端将所述控制端的电压限制在第一箱位电压范围内；
耦合至所述开关控制电路的输入端的第二电压箱位，所述第二电压箱位经配置以耦合至所述开关的所述控制端，所述第二电压箱位还经配置以降低耦合至所述第二电压箱位的控制电压的电压；以及
偏置装置，所述偏置装置经配置以耦合至所述开关的所述控制端并外加偏置电压至所述控制端。

2. 根据权利要求1所述的开关控制电路，还包括：
耦合器，其经配置以阻断DC即直流电流，同时将所述控制电路电压耦合至所述第二电压箱位。

3. 根据权利要求2所述的开关控制电路，其中所述偏置装置与所述耦合器协作以形成进一步的低通滤波器。

4. 根据权利要求1所述的开关控制电路，其中所述偏置装置被耦合至所述低通滤波器。

5. 根据权利要求1所述的开关控制电路，其中所述开关包括MOSFET即金属氧化物半导体场效应晶体管，所述MOSFET具有作为所述开关的所述控制端的栅极。

6. 根据权利要求1所述的开关控制电路，其中所述第一电压箱位包括第一背靠背齐纳二极管，以及所述第二电压箱位包括第二背靠背齐纳二极管。

7. 根据权利要求1所述的开关控制电路，其中，所述低通滤波器包括电容器和电容器，并且所述偏置装置包括耦合至所述低通滤波器的输出的电阻器。

8. 根据权利要求1所述的开关控制电路，其中所述第一电压箱位电压范围由包含在所述第一电压箱位中的第一背靠背齐纳二极管来确定，并且第二电压箱位电压范围由包含在所述第二电压箱位中的第二背靠背齐纳二极管来确定。

9. 一种抗噪声开关装置，其包括：
具有第一端、第二端和控制端的开关，其中，所述第一端和所述第二端响应于所述控制端相对于所述第一端在激活电压范围内而耦合在一起；
AC耦合装置即交流电流耦合装置，所述AC耦合装置具有作为所述抗噪声开关装置的输入端的第一端；
耦合至所述开关的所述控制端和所述第一端的第一电压箱位，所述第一电压箱位被布置以便相对于所述开关的所述第一端将所述控制端的电压箱位在第一箱位电压；
耦合至所述AC耦合装置的第二端的第二电压箱位，所述第二电压箱位耦合至所述开关的所述控制端，所述第二电压箱位经配置以响应于所述AC耦合装置的所述第二端的电压在量值上大于第二箱位电压，使所述控制端的电压朝向所述AC耦合装置的所述第二端的电压推进；
具有被耦合至所述开关的所述第一端的输出的低通滤波器；以及
偏置装置，所述偏置装置被耦合至所述开关的所述控制端和所述第一端。

10. 根据权利要求9所述的抗噪声开关装置，其中，所述AC耦合装置包括电容器，并且所
述第二电压箱位包括背靠背齐纳二极管，所述背靠背齐纳二极管与所述电容器串联。

11. 根据权利要求9所述的抗噪声开关装置，其中所述开关包括P型MOSFET即P型金属氧化物半导体场效应晶体管，所述MOSFET的栅极充当所述开关的所述控制端，并且其中所述第一电压箱位包括跨所述MOSFET的源极和所述MOSFET的所述栅极耦合的背靠背齐纳二极管。

12. 根据权利要求9所述的抗噪声开关装置，其中所述低通滤波器包括串联的第一电容器和电容器，并且所述偏置装置包括第二电容器。

13. 根据权利要求9所述的抗噪声开关装置，其中，所述第一箱位电压通过第一背靠背齐纳二极管设定，以及所述第二箱位电压通过第二背靠背齐纳二极管设定。

14. 根据权利要求9所述的抗噪声开关装置，其中，所述AC耦合装置和所述第二电压箱位经配置以在所述抗噪声开关装置的输入端接收输入信号，其中所述输入信号具有在量值上大于所述第二箱位电压两倍的峰峰值值。

15. 根据权利要求9所述的抗噪声开关装置，其中所述开关的所述控制端具有响应于在所述抗噪声开关装置的所述输入端处的输入信号具有在量值上小于所述第二箱位电压两倍峰峰值值由所述偏置装置外加的偏置电压。

16. 根据权利要求9所述的抗噪声开关装置，其中，所述开关和所述偏置装置经配置以响应于相对于所述抗噪声开关装置的所述输入端缺乏时钟信号而停用所述开关。

17. 一种用于控制开关的方法，所述方法包括：

- 将开关的第一端耦合至低通滤波器的输出，所述开关具有所述第一端、第二端和控制端；
- 将所述开关的所述控制端偏置在激活电压范围或停用电压范围之一内；
- AC即交流电流耦合输入信号以产生所述输入信号的AC耦合版；
- 响应于所述输入信号的所述AC耦合版超过第二箱位电压范围，电压箱位所述输入信号的所述AC耦合版以产生所述输入信号的降低的AC耦合版；
- 电压箱位所述输入信号的所述降低的AC耦合版以产生所述输入信号的电压箱位的AC耦合版；并且
- 向所述开关的所述控制端施加所述输入信号的所述电压箱位的AC耦合版。

18. 根据权利要求17所述的方法，还包括：

- 响应于所述开关的所述控制端在所述激活电压范围内激活所述开关；并且
- 响应于所述开关的所述控制端在所述停用电压范围内停用所述开关。

19. 根据权利要求17所述的方法，还包括：

- 使用所述低通滤波器来低通滤波电压以产生低通滤波的电压；并且
- 在所述开关的所述第一端上表示所述低通滤波的电压。

20. 根据权利要求17所述的方法，其中：

- 电压箱位所述AC耦合版包括作为被降低第一幅值的所述输入信号的所述AC耦合版来产生所述输入信号的所述降低的AC耦合版，并且
- 电压箱位所述降低的AC耦合版包括将所述输入信号的所述电压箱位的AC耦合版限制到第二幅值。
用于开关电容器电平移位器的偏置电路

背景技术
[0001] 电噪声环境对电子电路造成破坏。例如，利用开关电容器电平移位器，在开关控制端或其他开关端上的电噪声可以导致在他们不应激活时激活或他们应当激活时不激活，从而中断正在进行的电容器的操作。电荷可以在电荷不应被传送时传送，因为开关在当开关不应被激活时激活。电荷可以在电荷不应被传送时无法传送，因为开关在当开关闭应有效时无效。由于这样的状况，可能在电容器上产生不正确的电压，从而降低或破坏电平转换电压的任意电压测量的精度。诸如这些问题的问题尤其可见于电动汽车或混合动力汽车以及其他类型的电动汽车（无论是陆地、水上还是空气类的电动汽车）中的电子电路。

发明内容
[0003] 在一个实施例中，提供一种抗噪声、开关控制电路。电路包括经配置耦合至开关的第一端的低通滤波器。电路包括耦合至低通滤波器的第一电压箱位，第一电压箱位经配置于耦合至开关的控制端并相对于第一端将控制端的电压限制在第一箱位电压范围内。电路包括耦合至开关控制电路的输入端的第二电压箱位。第二电压箱位经配置后合至开关的控制端。第二电压箱位还经配置以降低耦合至第二电压箱位的控制电压的电平。电路包括偏置装置，该偏置装置经配置以耦合至开关的控制端并外加（impress）偏置电压至控制端。

[0004] 在另一实施例中，提供了抗噪声开关装置。开关装置包括具有第一端、第二端和控制端的开关，其中，第一端和第二端响应于控制端相对于第一端在激活电压范围内而被耦合在一起。开关装置包括AC（交流电流）耦合装置，其具有作为抗噪声开关装置的输入端的第一端。开关装置包括第一电压箱位和第二电压箱位。第一电压箱位被耦合至开关的控制端和第一端。第一电压箱位可控操作以便相对于开关的第一端将控制端的电压箱位在第一箱位电压。第二电压箱位被耦合至AC耦合装置的第二端。第二电压箱位被耦合至开关的控制端。第二电压箱位经配置以响应于AC耦合装置的第二端上的电压在值上（in magnitude）大于第二箱位电压，使控制端的电压向AC耦合装置的第二端上的电压推进（urge）。开关装置包括具有耦合于开关的第一端的输出的低通滤波器和耦合至开关的控制端和第一端的偏置装置。

[0005] 在又一实施例中，提供一种抗噪声开关电容器电平移位器。电平移位器包括第一电容器、第二电容器、耦合至电平移位器的第一端并耦合至第一电容器的第一端的第一开关，以及耦合至第一电容器的第一端并耦合至第二电容器的第一端的第一开关。电平移位器包括耦合至电平移位器的第三端并耦合至第一电容器的第二端的第三开关，以及耦合至第一电容器的第二端并耦合至第二电容器的第二端的第四开关。电平移位器包括耦合至第一开关的控制端的第一AC（交流电流）耦合和DC（直流电流）偏置装置，以及耦合至第三开关的控制端的第二AC耦合和DC偏置装置。第一和第二装置经配置以DC偏置相应的第一或第三开关的控制端并向相应的第一或第三开关的控制端传送第一时钟信号的AC耦合的电压箱位。第一和第二装置可操作以便将相应的第一或第三开关的控制端处的电压箱位在箱
位电压范围内。第二开关和第四开关经配置以耦合至第二时钟信号。

[0006] 在一个实施例中，提供用于控制开关的方法。该方法包括将开关的控制端偏置在激活电压范围或停用电压范围中的一个范围内，并AC（交流电）耦合输入信号，以产生输入信号的AC耦合版。该方法可包括响应于输入信号的AC耦合版超出第二阈值电压范围，电压阈值输入信号的AC耦合版以产生输入信号的降低的AC耦合版。该方法可包括电压阈值输入信号的降低的AC耦合版以产生输入信号的电压阈值的AC耦合版并行开关的控制端施加输入信号的电压阈值的AC耦合版。

[0007] 所述实施例的其他方面和优点将从下列结合附图的其他实施方式变得明显，其中，所述附图借助示例示出所述实施例的原理。

附图说明

[0008] 所述实施例及其优点通过参考结合附图的下列描述可以更好理解。这些附图在没有偏离所述实施例的实质和范围的情况下不以任何方式限制本领域的技术人员对所述实施例进行的形式和细节的改变。

[0009] 图1是开关电容器电平移位器的示意图。

[0010] 图2是根据本发明具有抗噪声电路的开关电容器电平移位器的示意图。

[0011] 图3是用于在电磁噪声环境中操作开关的方法的流程图。

具体实施方式

[0012] 下面将描述具有抗噪声电路的开关电容器电平移位器。实施例提供动态设定开关电容器电平移位器中的一对晶体管的栅极偏置电压的设备和方法。通过实施例，该设备的开关元件可以在存在共模噪声时用高置信度（high degree of confidence）来控制。

[0013] 详细说明的实施例在本文公开。不过，本文公开的特定功能细节仅仅代表描述实施例的目的。不过，实施例可以以许多替代形式实施，并且不应解读为仅限于本文阐述的实施例。

[0014] 应当理解，虽然术语第一、第二等可在本文用于描述不同的步骤或计算，但是这些步骤或计算不应被这些术语限制。这些术语仅用于将一个步骤或计算与另一个步骤或计算区分开。例如，在没有偏离本公开的范围的情况下，第一计算可以称为第二计算，以及同样，第二步骤可以称为第一步骤。如本文所使用的，术语“和/或”和“/”包括一个或者多个关联列出项目中的任意一个和全部组合。

[0015] 如本文所使用的，单数形式“一种”、“一个”、“该”旨在也包括复数形式，除非上下文明确指出不同。还应当理解，当用于本文时，术语“包括”和/或“包含”指定陈述特征、整数、步骤、操作、元件和/或组件的存在，但不排除一个或多个其他特征、整数、步骤、操作、元件、组件和/或其组的存在和添加。因此，本文所使用术语仅用于描述特定实施例的目的，并不旨在限制本发明。

[0016] 还需要指出，在某些替代实施中，所指出的功能/动作不一定以图中指出的顺序出现。例如，取决于涉及的功能/动作，连续指出的两个图实际上可以并行执行，或者有时候可以以相反顺序执行。

[0017] 如图1所示，用于开关电容器电平移位器的一个应用于测量电池组（battery
说明

stack)中的电池单元(cell)电压。当然，电平移位器也可以用于许多其他目的和功能。在这里，开关S1a、S2a、S1b、S2b被非重叠时钟激活和停用，并且，电荷从电平移位器的输入端口传送至第一电容器C1并从第一电容器C1传送至第二电容器C2。第二电容器C2以地为基准
(referenced to ground)，以便在考虑电平移位器的输出端口时，来自电池单元5的电压经电平向下移位从而变成接地参考电压并通过电压测量电路102测量。下面描述理想或无噪音操作，紧跟后面的是对于在电噪声环境中的操作的描述。

0018] 开关S1a和开关S1b在第一时钟CLK_1上的有效电平激活，包含示例中，开关在当时钟具有逻辑值1时闭合。当开关S1a和开关S1b闭合时，电池组中的电池单元5的电压在第一电容器C1上表示。接下来，开关S1a和开关S1b被第一时钟CLK_1上的无效电平停用。在该示例中，开关在当对应时钟信号具有逻辑值0时断开。接下来，开关S2a和开关S2b被第二时钟CLK_2上的有效电平激活。在该示例中，开关在当时钟是逻辑值1时断开。断开的开关导致第一和第二电容器C1、C2耦合在一起并且它们的相应电压相等。通过开关激活和停用的重复循环，电容器C2两端的电压接近电池单元5的电压。第二电容器C2两端的电压的精确测量通过电压测量电路102进行，并且第二电容器C2的电压表示电池单元5的电压。

0019] 如果电池组处于电噪声环境中，诸如电动或混合动力汽车或其他应用中，则电池组中的电池单元终端上可能有各种频率的尖峰信号和/或峰峰噪声电压 (peak to peak noise voltage)。这些噪声电压很容易接通和断开正在实现一个开关的MOSFET(金属氧化物半导体场效应晶体管)，因为这些电压可以超过MOSFET的阈值电压。这种状况在当开关S1b和S2b在相同时间被激活时可能产生电池终端到接地的短路，或在当开关S1a和S2a在相同时间被激活时过充电第二电容器C2。后一种情况会损坏电压测量电路102。在图2中，抗噪声电路被应用于开关电容器电平移位器204中的各个开关S1a、S1b，从而提供适合电噪声环境的抗噪声开关电容器电平移位器。抗噪声电路被示出为开关控制电路，并且将开关控制电路应用于开关S1a产生了抗噪声开关装置202。抗噪声开关装置202可以与开关电容器电平移位器204的每个相应的开关集成。本文所述的抗噪声电路以下方式采用电压箱位/滤波器，AC耦合和偏置，抑制噪声并调节开关的控制电压以便在电噪声环境中操作。应用于开关S1a和S1b的抗噪声电路可以被称为耦合于开关的控制端的AC耦合、电压箱位、低通滤波和DC偏置装置。

0020] 仍然参考图2，开关装置202的终端也是电平移位器204的终端，并且该终端被示为连接到电池组中的电池单元的正极端Cell_V+。电池单元电压通过包括与电容器C3串联的电阻器R1的低通滤波器滤波。在该示例中，这个低通滤波器具有7.2kHz的角频率并且在约10kHz以上衰减共模噪声。应当明白，所述频率并不意味着限制，因为根据应用，低通滤波器可以在其他合适的频率工作。低通滤波器的输出端耦合至充当开关S1a的P型MOSFET的源极，低通滤波器的输出端是电阻器R1和电容器C3的公共节点。应当明白，低通滤波器平滑在电池单元终端处的电压，抑制频率高于低通滤波器滚降频率 (roll-off) 的噪声。P型MOSFET的栅极端充当开关S1a的控制端，并且P型MOSFET的源极端和漏极端充当开关S1a的第一和第二端。

0021] 继续图2，被实施为电阻器R2的偏置装置将低通滤波器的输出端耦合至充当开关S1a的P型MOSFET的栅极端。另选地，电阻器R2可以被描述为跨P型MOSFET的源极和栅极端耦合，因此，对于止的栅极到源极值，P型MOSFET的栅极被偏置到与P型MOSFET的源极端相同的
电压。在该示例中，P型MOSFET具有负阈值，以及0V的栅极到源极电压将P型MOSFET偏置为停用状态，即可求开关Sta的默认值为关断，这也可以称为断开或停用。电阻器R2也充当分压器装置，并且在缺乏驱动控制信号的情况下，泄放（bleed off）P型MOSFET的栅极上的任何电荷。

[0022] 在图2中，被实施为背靠背齐纳二极管Z1的电压箱位跨正当开关Sta的P型MOSFET的源极端和栅极端耦接。当栅极到源极电压具有小于箱位电压的量值时，电压箱位具有高阻抗。这个箱位电压通过齐纳二极管电压的总和和一个二极管压降来设定，例如，在一个实施例中，4.7V加0.6V或5.3V。当栅极到源极电压在量值上超出箱位电压时，即栅极试图下降到比源极电压低超出箱位电压，或试图上升比源极电压高箱位电压时，二极管导通相对大量的电流并箱位电压。因此，电压箱位起到将在P型MOSFET的栅极端的电压箱位在P型MOSFET的源极箱位的电压箱位范围内的作用。这个箱位动作防止栅极到源极电压变得大到足以损坏P型MOSFET。

[0023] 控制开关的时钟被设置为非重叠时钟，如图2中的示例时钟波形所示。在该示例中，时钟信号CLK_1是低有效的，以便接通P型MOSFET。在这里，为CLK_1选择相对小的幅值，例如，CLK_1是18V峰值。时钟的幅值经设定以克服大的电压下降。换句话说，时钟的幅值经设定具有比周围其他路径的信号具有更大的信号比。应当明白，这个峰值电压大到如果直接使用会潜在损坏MOSFET，以及如下所述，开关装置202经配置防止损坏MOSFET。

[0024] 时钟信号CLK_1通过AC耦合装置AC耦合到开关控制电路中，在这里，AC耦合装置被实施为电容器C4，电容器C4阻断（block）DC分量或时钟信号CLK_1的偏移。电容器C4的另一端被串联耦合至电压箱位Z2。电压箱位Z2用一组背靠背齐纳二极管来实现。应当明白，电压箱位Z2经操作从AC耦合的时钟信号的幅值减去箱位电压，并且向开关Sta的P型MOSFET的栅极端传送AC耦合时钟信号的降低版。当栅极端与AC耦合时钟信号之间的差异的电压变得大于箱位电压时，通过设定背靠背齐纳二极管，电压箱位Z2使P型MOSFET的栅极端的电压向第一时钟CLK_1的电压推进。另选地，这描述为第二电压箱位即电容器C4，其响应于AC耦合装置的第二端上的电压量值大于相对于开关Sta的控制端的第二箱位电压，因此，电压箱位Z2响应于控制电压在相对于开关Sta的控制端的箱位电压范围之外，向该开关的控制端传送降低电平的控制电压。

[0025] 偏置装置，此情况下是R2另外形成具有AC耦合装置即电容器C4的低通滤波器的一部分。在所示示例中，这个滤波器具有72Hz（赫兹，或每秒循环数）的角频率。这个低通滤波器从MOSFET栅极偏置的平均DC值去耦时钟的DC开始（offset）。低通滤波器也确保时钟信号无论何时被停止时MOSFET将被关断。开关Stb被类似于开关Sta的线路环绕，开关Sta执行类似的功能。应当明白，当开关Sta被第一和第三开关Sta、Stb的P型MOSFET的源极端由于至电池组中的相应电池单元端的连接而处于不同的电压或需要电平转换的其他差分电压。因此，当开关Sta、Stb的两个P型MOSFET的栅极端处于不同的电压并且不应彼此直接耦合。因此，每个此类开关具有其自身的抗噪声电路。

[0026] 利用替代图1的第一开关Sta的第一抗噪声开关装置202以及替代第三开关Stb的第二抗噪声开关装置，抗噪声开关电容器电平移位器204可以如图2所示形成。电平移位器204的第一端至电池组中的电池单元的正极端Cell_V+的连接如上面参考抗噪声开关装置202所述。类似地，第二抗噪声开关装置替代图1的开关Stb，并且如图2所示，将电平移位器
204的端连接至电池组中的电池单元的负极端C11 V。在如图2所示的开关电容器电平移动器204的实施例中，开关S2a通过电容器C5被AC耦合至时钟信号CLK_2，并且开关S2b被DC耦合（在该示例中，直流耦合）至时钟信号CLK_2。开关S2a具有泄放电阻器206，其设定当开关S2a的N类MOSFET的栅极的偏压为0V。二极管208防止该N型MOSFET的栅极到源极电压过低，在该示例中，这个低电压将超出低于0V的一个二极管压降。电容器C1和C2以及图1中的开关等相关的电容器202的开关装置或开关。电平移动器204的另外端由第二电容器C2的相对空形成，第二电容器C2两侧的电容单元电压可以在图2中被测量为所测量的Vc11。

【0027】图3示出用于操作开关尤其在电噪声环境环境中操作开关的方法。在起始点之后，开关的控制端在图302中被偏置。例如，参考图2，偏置装置诸如电容器R2可以将充当开关S1a的P型MOSFET的栅极端耦合至诸如通过电阻R1和电容器R3形成的低通滤波器的输出端。另选地，偏置装置可以跨P型MOSFET的栅极和源极端耦合。在缺乏其他控制电压的情况下，利用跨栅极和源极端耦合的电容器R2，P型MOSFET被偏置到关断或停用状态。很容易设计其他偏置电压、偏置类型和偏置状态。

【0028】在图3的行动304中，利用相对幅值的输入信号。例如，在图2的电路中，峰值值为18V的信号可以用第一时钟CLK_1。在某些实施例中，输入信号的幅值被选择，同时应牢记，噪声幅值，如18V峰值的示例并不意味着限制。例如，取决于应用和噪声环境，可以使用具有大于预期噪声的幅值的输入信号。在图3的行动306中，输入信号的DC被阻断，应当明白，输入信号的DC的阻断可以通过使用AC耦合装置诸如电容器（例如图2的电容器C4）来完成。在动作308中，从输入信号的幅值减去电压。例如，电压箱值Z2从AC耦合的第一时钟信号CLK_1减去箱值电压，如参考图2所示。在动作310中，纠正信号的幅值随后被限制。在某些实施例中，电压箱值，诸如图2的电压箱值Z1实现这个功能。在动作312中，这个修正的信号被施加于开关的控制端。如图2所示，AC耦合的第一时钟信号CLK_1通过穿过电压箱值Z2来更改，从而形成降低的幅值。随后，这个修正的信号被电压箱值Z1箱值并施加于充当开关S1a的P型MOSFET的栅极端。这些行动产生抗噪声并且避免损坏开关的开关控制电压。

【0029】应当明白，其他类型的电压箱值可以用双极晶体管、各种类型的MOSFET晶体管、参考电压、放大器和其他电路来设计。在某些实施例中，与常规二极管串联的齐纳二极管可以用于电压箱值，该齐纳二极管产生取决于方向具有不同电压的非对称箱值。电压箱值的其他实施例可以采用专用集成电路（ASIC）。应当明白，上述的电压箱值并不意味着限制实现本文所述功能的可替代电压箱值可以用于在所述实施例中。其他类型的滤波器可以经设计用于各种电路。其他类型的耦合可以经设计用于各种电路。这些可替代滤波器可以应用于上述电路的变体中，以提供上述滤波器的功能。

【0030】虽然所述方法操作以指定的顺序描述，但是应当理解，其他操作可以在所述操作之间执行，所述操作可以进行调整，以便它们出现在稍微不同的时间或所述操作可以分布在允许处理操作发生在与所述处理相关联的不同间隔的系统中。

【0031】前面的描述已参考特定实施例进行了描述用于解释目的。不过，上面的说明性讨论并不旨在列举所述实施例或将本发明限制在所公开的精确形式。鉴于上述教导，许多更改和变化是可能的。所述实施例之所以被选择和描述，是为了最佳解释所述实施例的原理及其实际应用，并从而使得本领域的技术人员能够最佳利用所述实施例和适用于所考虑特定
用途的不同更改。因此，所述实施例应被解读为说明性和非限制性的，并且本发明并不局限于本文给出的细节，而是可以在附属权利要求的范围及其相当物内更改。
图2
图3

开始

偏置开关的控制端

使用大幅值的输入信号

阻断输入信号的DC

从输入信号的幅值减去电压

限制修正信号的幅值

施加修正的信号到开关的控制端

结束