wo 2013/138168 A1 [N 000000 OO A O

(43) International Publication Date
19 September 2013 (19.09.2013)

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

WIPOIPCT

(10) International Publication Number

WO 2013/138168 Al

(51

eay)

(22)

(25)
(26)
(30)

1

(72

74

31

International Patent Classification:
GO6F 15/173 (2006.01)

International Application Number:
PCT/US2013/029756

International Filing Date:
8 March 2013 (08.03.2013)

English
English

Filing Language:
Publication Language:

Priority Data:

13/418,761 13 March 2012 (13.03.2012)

Applicant: INTERNATIONAL BUSINESS
CHINES CORPORATION [US/US]; New
Road, Armonk, New York 10504 (US).

Inventors: BRANCH, Joel W.; 19 Skyline Drive,
Hawthorne, New York 10532 (US). NIDD, Michael E.;
Saecumerstrasse 4, CH-8803 Rueschlikon (CH). RISS-
MANN, Ruediger; Sacumerstrasse 4, CH-8803 Ruesch-
likon (CH).

Agent: WALDER, Stephen; 17330 Preston Road, Suite
100B, Dallas, Texas 75252 (US).

Us

MA-
Orchard

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,

(84)

AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU,
RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ,
T™M, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
M, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant'’s entitlement to apply for and be granted a
patent (Rule 4.17(i1))

Published:

with international search report (Art. 21(3))

(54) Title: DETECTING TRANSPARENT NETWORK COMMUNICATION INTERCEPTION APPLIANCES

— AUTOMATED
NETWORK o ISER SYSTEM
TOPOLOGY WORKSTATION COMPUTING
05 =60 DEVIGE
\ 319
DISCOVERY | | COLLECTION DATA DETECTION REPORT
TOOLS [ANDFILTER [WAREHOUSE a \ooione bl ENCINE
310 ENGINE 330 ENCINE. 250
320 SNk
300
FIG. 3

(57) Abstract: Mechanisms are provided for identifying transparent network communication interception appliances (430, 530) in a
network topology (305). The mechanisms collect network configuration data from a plurality of devices in the network topology
(305, 610) and analyze the collected network configuration data using one or more heuristics to identify patterns in the collected net-
work configuration data indicative of the presence of a transparent network communication interception appliance (430, 530, 630).
The mechanisms calculate a confidence measure value based on results of the analysis of the collected network configuration data
(640). The mechanisms further send a notification of a detected presence of a transparent network communication interception appli-
ance to a computing device in response to the calculated confidence measure value meeting or exceeding at least one threshold value
(680).

10

15

20

25

WO 2013/138168 PCT/US2013/029756

DETECTING TRANSPARENT NETWORK COMMUNICATION INTERCEPTION
APPLIANCES

TECHNICAL FIELD

The present application relates generally to an improved data processing apparatus and
method and more specifically to mechanisms for detecting transparent network communication

interception appliances, such as firewalls and load balancers.

BACKGROUND ART

The functionality of appliances such as firewalls and load balancers, when such
components are well-built and properly installed, should be very difficult to discover
automatically. One reason for this is network security enforcement. In order to thwart malicious
activity, firewalls and load balancers should appear to simply be another device (e.g., router or
server) in the computing network. Furthermore, legitimate discovery mechanisms use
management connections to discover what elements are present in the network. Due to security
mechanisms, only authorized clients are permitted to make management connections. In many
instances, it may be hard to obtain the credentials to make such secure connections, still leaving
firewalls and load balancers hard to detect. Even beyond as it relates to security, firewalls and
load balancers behave like a general network components, such as servers or routers, from the
viewpoint of discovery mechanisms that may not require security credentials. This is especially
true since their unique functionality, especially in the context of data centers, is transparent to

end users and are not affected by legitimate discovery techniques.

10

15

20

25

WO 2013/138168 PCT/US2013/029756

DISCLOSURE OF THE INVENTION

In one illustrative embodiment, a method, in a data processing system, is provided for
identifying transparent network communication interception appliances in a network topology.
The method comprises collecting network configuration data from a plurality of devices in the
network topology and analyzing the collected network configuration data using one or more
heuristics to identify patterns in the collected network configuration data indicative of the
presence of a transparent network communication interception appliance. The method further
comprises calculating a confidence measure value based on results of the analysis of the collected
network configuration data. Moreover, the method comprises sending a notification of a detected
presence of a transparent network communication interception appliance to a computing device
in response to the calculated confidence measure value meeting or exceeding at least one
threshold value.

In other illustrative embodiments, a computer program product comprising a computer
useable or readable medium having a computer readable program is provided. The computer
readable program, when executed on a computing device, causes the computing device to
perform various ones of, and combinations of, the operations outlined above with regard to the
method illustrative embodiment.

In yet another illustrative embodiment, a system/apparatus is provided. The
system/apparatus may comprise one or more processors and a memory coupled to the one or
more processors. The memory may comprise instructions which, when executed by the one or
more processors, cause the one or more processors to perform various ones of, and combinations
of, the operations outlined above with regard to the method illustrative embodiment.

These and other features and advantages of the present invention will be described in, or
will become apparent to those of ordinary skill in the art in view of, the following detailed

description of the example embodiments of the present invention.

10

15

WO 2013/138168 PCT/US2013/029756

BRIEF DESCRIPTION OF DRAWINGS

The invention, as well as a preferred mode of use and further objectives and advantages
thereof, will best be understood by reference to the following detailed description of illustrative
embodiments when read in conjunction with the accompanying drawings, wherein:

Figure 1 is an example diagram of a distributed data processing system in which aspects
of the illustrative embodiments may be implemented;

Figure 2 is an example block diagram of a computing device in which aspects of the
illustrative embodiments may be implemented,

Figure 3 is an example block diagram of the primary operational elements of a transparent
network communication interception appliance (e.g., load balancer) detection mechanism in
accordance with one illustrative embodiment;

Figure 4 illustrates a network configuration in which a server cluster (or farm),
comprising server computing devices, is connected to a load balancer via a layer 2 switch;

Figure 5 is an example diagram illustrating servers responding to both a virtual [P address
(VIP) and a real IP address (RIP) at the transport layer, but sending Address Resolution Protocol
(ARP) responses for the RIP only; and

Figure 6 is a flowchart outlining an example operation of a load balancer detection

heuristics engine in accordance with one illustrative embodiment.

10

15

20

25

30

WO 2013/138168 PCT/US2013/029756

BEST MODES FOR CARRYING OUT THE INVENTION

The illustrative embodiments provide mechanisms for discovering transparent network
communication interception appliances, such as firewalls and load balancers. These appliances
are referred to herein as transparent network communication interception appliances since the
nature of these appliances is to act as an intermediary between the source and target of data
communications and thus, they intercept these communications, perform some processing on the
communications, e.g., routing, filtering, modification, or the like, and then forward/block the
communication. These appliances are referred to as “transparent” herein since the actual
nature/configuration of the appliances are transparent to standard discovery mechanisms and
appear to be just another common network device without their special purpose being known to
standard discovery mechanisms that do not implement the mechanisms of the illustrative
embodiments described hereafter.

Detection of the location of transparent network communication interception appliances,
such as firewalls and load balancers, in a network infrastructure is of importance to a number of
network management operations performed in data networks. For example, such detection may
be of particular importance with migration operations, and especially with regard to the migration
of managed server clusters, i.e. moving the services, software instances, data, and/or the like
from one set of server computing devices to another at a same or different network/geographical
location. That is, when migrating a managed server cluster, it is important to migrate the server
cluster and its firewalls/load balancers as a single unit. This is because the load balancer acts like
a “front end” for the servers and when a server is moved, the load balancers typically need to be
reconfigured. For best performance, load balancers and servers should be close to each other.
For that reason, they are typically moved together, or at the new data center a new load balancer
is established. Thus, it is important to know where the firewalls/load balancers are present in the
network infrastructure in order to be able to move them with the managed server cluster with
which they are associated. It should be appreciated that is important to identify the locations of
firewalls/load balancers, or other transparent network communication interception appliances, for
other network management operations as well.

As mentioned previously, however, there are roadblocks to automatically identifying the
location of transparent network communication interception appliances such as firewalls and

load balancers. The discovery mechanisms utilize management connections to perform their

10

15

20

25

30

WO 2013/138168 PCT/US2013/029756

discovery operations and, because of security mechanisms and security issues, such transparent
network communication interception appliances do not respond to management discovery
requests on these management connections. Consequently, the transparent network
communication interception appliances appear to discovery mechanisms to be just another device
in the network topology and thus, the discovery mechanisms cannot differentiate which devices
are actually transparent network communication interception appliances, such as firewalls or load
balancers.

The illustrative embodiments provide mechanisms for identifying transparent network
communication interception appliances in a network topology. The illustrative embodiments
provide a framework and heuristics for predicting the presence and location of transparent
network communication interception appliances, such as firewalls and load balancers, using a
non-probe based detection methodology. The mechanisms of the illustrative embodiments look
for certain patterns in the network configuration data and application/file data collected from the
devices of the network, and matches those patterns to known patterns that are indicative of the
presence and/or location of transparent network communication interception appliances. A
confidence measure may then be calculated based on the matching of data patterns to determine a
level of confidence in the prediction of the presence/location of a transparent network
communication interception appliance. Based on the confidence measure, a notification may
then be generated and sent to a system administrator, an automated migration mechanism, or the
like, to inform the particular entity of the presence/location of a transparent network
communication interception appliance.

As will be appreciated by one skilled in the art, aspects of the present invention may be
embodied as a system, method, or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware embodiment, an entirely software
embodiment (including firmware, resident software, micro-code, etc.) or an embodiment
combining software and hardware aspects that may all generally be referred to herein as a

% 4%

“circuit,” “module” or “system.” Furthermore, aspects of the present invention may take the
form of a computer program product embodied in any one or more computer readable medium(s)
having computer usable program code embodied thereon.

Any combination of one or more computer readable medium(s) may be utilized. The
computer readable medium may be a computer readable signal medium or a computer readable

storage medium. A computer readable storage medium may be, for example, but not limited to,

10

15

20

25

30

WO 2013/138168 PCT/US2013/029756

an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus,
device, or any suitable combination of the foregoing. More specific examples (a non-exhaustive
list) of the computer readable storage medium would include the following: an electrical
connection having one or more wires, a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory
(EPROM or Flash memory), an optical fiber, a portable compact disc read-only memory
(CDROM), an optical storage device, a magnetic storage device, or any suitable combination of
the foregoing. In the context of this document, a computer readable storage medium may be any
tangible medium that can contain or store a program for use by or in connection with an
instruction execution system, apparatus, or device.

A computer readable signal medium may include a propagated data signal with computer
readable program code embodied therein, for example, in a baseband or as part of a carrier wave.
Such a propagated signal may take any of a variety of forms, including, but not limited to,
electro-magnetic, optical, or any suitable combination thereof. A computer readable signal
medium may be any computer readable medium that is not a computer readable storage medium
and that can communicate, propagate, or transport a program for use by or in connection with an
instruction execution systern, apparatus, or device.

Computer code embodied on a computer readable medium may be transmitted using any
appropriate medium, including but not limited to wireless, wireline, optical fiber cable, radio
frequency (RF), etc., or any suitable combination thereof.

Computer program code for carrying out operations for aspects of the present invention
may be written in any combination of one or more programming languages, including an object
oriented programming language such as Java™, Smalltalk™, C++, or the like, and conventional
procedural programming languages, such as the "C" programming language or similar
programming languages. The program code may execute entirely on the user’s computer, partly
on the user’s computer, as a stand-alone software package, partly on the user’s computer and
partly on a remote computer, or entirely on the remote computer or server. In the latter scenario,
the remote computer may be connected to the user’s computer through any type of network.
including a local area network (LAN) or a wide area network (WAN), or the connection may be
made to an external computer (for example, through the Internet using an Internet Service

Provider).

10

15

20

25

30

WO 2013/138168 PCT/US2013/029756

Aspects of the present invention are described below with reference to flowchart
illustrations and/or block diagrams of methods, apparatus (systems) and computer program
products according to the illustrative embodiments of the invention. It will be understood that
each block of the flowchart illustrations and/or block diagrams, and combinations of blocks in
the flowchart illustrations and/or block diagrams, can be implemented by computer program
instructions. These computer program instructions may be provided to a processor of a general
purpose computer, special purpose computer, or other programmable data processing apparatus
to produce a machine, such that the instructions, which execute via the processor of the computer
or other programmable data processing apparatus, create means for implementing the
functions/acts specified in the flowchart and/or block diagram block or blocks.

These computer program instructions may also be stored in a computer readable medium
that can direct a computer, other programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions stored in the computer readable
medium produce an article of manufacture including instructions that implement the function/act
specified in the flowchart and/or block diagram block or blocks.

The computer program instructions may also be loaded onto a computer, other
programmable data processing apparatus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable apparatus, or other devices to produce a
computer implemented process such that the instructions which execute on the computer or other
programmable apparatus provide processes for implementing the functions/acts specified in the
flowchart and/or block diagram block or blocks.

The flowchart and block diagrams in the figures illustrate the architecture, functionality,
and operation of possible implementations of systems, methods and computer program products
according to various embodiments of the present invention. In this regard, each block in the
flowchart or block diagrams may represent a module, segment, or portion of code, which
comprises one or more executable instructions for implementing the specified logical function(s).
It should also be noted that, in some alternative implementations, the functions noted in the block
may occur out of the order noted in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in
the reverse order, depending upon the functionality involved. It will also be noted that each
block of the block diagrams and/or flowchart illustration, and combinations of blocks in the

block diagrams and/or flowchart illustration, can be implemented by special purpose hardware-

10

15

20

25

30

WO 2013/138168 PCT/US2013/029756

based systems that perform the specified functions or acts, or combinations of special purpose
hardware and computer instructions.

Thus, the illustrative embodiments may be utilized in many different types of data
processing environments. In order to provide a context for the description of the specific
elements and functionality of the illustrative embodiments, Figures 1 and 2 are provided
hereafter as example environments in which aspects of the illustrative embodiments may be
implemented. It should be appreciated that Figures 1 and 2 are only examples and are not
intended to assert or imply any limitation with regard to the environments in which aspects or
embodiments of the present invention may be implemented. Many modifications to the depicted
environments may be made without departing from the spirit and scope of the present invention.

Figure 1 depicts a pictorial representation of an example distributed data processing
system in which aspects of the illustrative embodiments may be implemented. Distributed data
processing system 100 may include a network of computers in which aspects of the illustrative
embodiments may be implemented. The distributed data processing system 100 contains at least
one network 102, which is the medium used to provide communication links between various
devices and computers connected together within distributed data processing system 100. The
network 102 may include connections, such as wire, wireless communication links, or fiber optic
cables.

In the depicted example, server 104 and server 106 are connected to network 102 along
with storage unit 108. In addition, clients 110, 112, and 114 are also connected to network 102.
These clients 110, 112, and 114 may be, for example, personal computers, network computers, or
the like. In the depicted example, server 104 provides data, such as boot files, operating system
images, and applications to the clients 110, 112, and 114. Clients 110, 112, and 114 are clients
to server 104 in the depicted example. Distributed data processing system 100 may include
additional servers, clients, and other devices not shown.

In the depicted example, distributed data processing system 100 is the Internet with
network 102 representing a worldwide collection of networks and gateways that use the
Transmission Control Protocol/Internet Protocol (TCP/IP) suite of protocols to communicate
with one another. At the heart of the Internet is a backbone of high-speed data communication
lines between major nodes or host computers, consisting of thousands of commercial,
governmental, educational and other computer systems that route data and messages. Of course,

the distributed data processing system 100 may also be implemented to include a number of

10

15

20

25

30

WO 2013/138168 PCT/US2013/029756

different types of networks, such as for example, an intranet. a local area network (LAN), a wide
area network (WAN), or the like. As stated above, Figure 1 is intended as an example, not as an
architectural limitation for different embodiments of the present invention, and therefore, the
particular elements shown in Figure 1 should not be considered limiting with regard to the
environments in which the illustrative embodiments of the present invention may be
implemented.

Figure 2 is a block diagram of an example data processing system in which aspects of the
illustrative embodiments may be implemented. Data processing system 200 is an example of a
computer, such as client 110 in Figure 1, in which computer usable code or instructions
implementing the processes for illustrative embodiments of the present invention may be located.

In the depicted example, data processing system 200 employs a hub architecture including
north bridge and memory controller hub (NB/MCH) 202 and south bridge and input/output (I/O)
controller hub (SB/ICH) 204. Processing unit 206, main memory 208, and graphics processor
210 are connected to NB/MCH 202. Graphics processor 210 may be connected to NB/MCH 202
through an accelerated graphics port (AGP).

In the depicted example, local area network (LAN) adapter 212 connects to SB/ICH 204.
Audio adapter 216, keyboard and mouse adapter 220, modem 222, read only memory (ROM)
224, hard disk drive (HDD) 226, CD-ROM drive 230, universal serial bus (USB) ports and other
communication ports 232, and PCI/PCle devices 234 connect to SB/ICH 204 through bus 238
and bus 240. PCI/PCle devices may include, for example, Ethernet adapters, add-in cards, and
PC cards for notebook computers. PCI uses a card bus controller, while PCle does not. ROM
224 may be, for example, a flash basic input/output system (B1OS).

HDD 226 and CD-ROM drive 230 connect to SB/ICH 204 through bus 240. HDD 226
and CD-ROM drive 230 may use, for example, an integrated drive electronics (IDE) or serial
advanced technology attachment (SATA) interface. Super 1/0 (S10Q) device 236 may be
connected to SB/ICH 204.

An operating system runs on processing unit 206. The operating system coordinates and
provides control of various components within the data processing system 200 in Figure 2. Asa
client, the operating system may be a commercially available operating system such as
Microsoft® Windows 7%. An object-oriented programming system, such as the Java™
programming system, may run in conjunction with the operating system and provides calls to the

operating system from Java™ programs or applications executing on data processing system 200.

10

15

20

25

30

WO 2013/138168 PCT/US2013/029756

As a server, data processing system 200 may be, for example, an IBM® eServer’ System
p® computer system, running the Advanced Interactive Executive (AIX®) operating system or the
LINUX® operating system. Data processing system 200 may be a symmetric multiprocessor
(SMP) system including a plurality of processors in processing unit 206. Alternatively, a single
processor system may be employed.

Instructions for the operating system, the object-oriented programming system, and
applications or programs are located on storage devices, such as HDD 226, and may be loaded
into main memory 208 for execution by processing unit 206. The processes for illustrative
embodiments of the present invention may be performed by processing unit 206 using computer
usable program code, which may be located in a memory such as, for example, main memory
208, ROM 224, or in one or more peripheral devices 226 and 230, for example.

A bus system, such as bus 238 or bus 240 as shown in Figure 2, may be comprised of one
or more buses. Of course, the bus system may be implemented using any type of communication
fabric or architecture that provides for a transfer of data between different components or devices
attached to the fabric or architecture. A communication unit, such as modem 222 or network
adapter 212 of Figure 2, may include one or more devices used to transmit and receive data. A
memory may be, for example, main memory 208, ROM 224, or a cache such as found in
NB/MCH 202 in Figure 2.

Those of ordinary skill in the art will appreciate that the hardware in Figures 1 and 2 may
vary depending on the implementation. Other internal hardware or peripheral devices, such as
flash memory, equivalent non-volatile memory, or optical disk drives and the like, may be used
in addition to or in place of the hardware depicted in Figures 1 and 2. Also, the processes of the
illustrative embodiments may be applied to a multiprocessor data processing system, other than
the SMP system mentioned previously, without departing from the spirit and scope of the present
invention.

Moreover, the data processing system 200 may take the form of any of a number of
different data processing systems including client computing devices, server computing devices,
a tablet computer, laptop computer, telephone or other communication device, a personal digital
assistant (PDA), or the like. In some illustrative examples, data processing system 200 may be a
portable computing device that is configured with flash memory to provide non-volatile memory

for storing operating system files and/or user-generated data, for example. Essentially, data

10

10

15

20

25

30

WO 2013/138168 PCT/US2013/029756

processing system 200 may be any known or later developed data processing system without
architectural limitation.

With reference again to Figure 1, one or more of the servers 104, 106, or other servers
(not shown) in the network 100 may in fact have software/hardware that causes the server 104,
106 to function as a firewall (in the case that the server acts as a gateway device to other
computing devices not shown in Figure 1), load balancer, or other type of transparent network
communication interception appliance. Alternatively, other data processing devices, not shown
in Figure 1, such as routers or the like, may have software for implementing firewalls, load
balancers, or other types of transparent network communication interception appliance
functionality.

For purpose of the following description, it will be assumed that the transparent network
communication interception appliance is a load balancer whose purpose it is to balance the load
of network communication processing across a plurality of servers by distributing client resource
requests over the cluster of resources (e.g., servers, disks, network links, etc.) according to some
established policies. Thus, the load balancer has one incoming network address/port for
recetving incoming network traffic and maps the incoming network traffic to a plurality of
outgoing network addresses/ports, each associated with one or more backend servers or other
types of computing devices. Thus, based on the load balancing determinations made by the load
balancer, incoming network traffic is redirected to one of these outgoing addresses/ports and
thus, to a corresponding server or other computing device for handling. As a result, the incoming
load is distributed over these plurality of servers/computing devices to thereby balance the load.
Other types of appliances that are not typically discoverable by discovery mechanisms due to
their transparent nature, such as firewalls and the like, may likewise be the subject of the
detection mechanisms of the illustrative embodiments.

Many operations within a network may be enhanced by knowing whether and where such
transparent network communication interception appliances (hereafter using the load balancers as
examples of the transparent network communication interception appliances) are located within
the network topology. For example, when a data center, set of servers, server clusters, services
on servers, applications on servers, or the like, needs to be migrated from one set of servers to
another or from one location to another, it is beneficial to migrate the load balancers with the
managed resources, e.g., servers, services, applications, etc., as one cohesive unit. Thus, it is

beneficial to have a discovery mechanism that is able to identify whether such load balancers are

11

10

15

20

25

30

WO 2013/138168 PCT/US2013/029756

likely present in a network topology, and if possible, identify the location of these load balancers
in the network topology. Current discovery mechanisms are not able to perform such operations
for the reasons previously discussed above.

In accordance with the mechanisms of the illustrative embodiments, one or more of the
servers 104, 106, clients 110-114, or other computing device (not shown), provides
hardware/software for implementing a transparent network communication interception
appliance (e.g., firewall, load balancer, or the like) detection mechanism. The transparent
network communication interception appliance (hereafter “load balancer™) detection mechanism
analyzes data collected from the various devices of a network topology during a discovery
process to identify patterns of data indicative of the presence of a load balancer functionality
being present in one or more of the devices. The detection mechanism further calculates a
confidence measure based on combinations of results from the pattern analysis that is performed
and then provides notifications as to the presence and/or location of load balancers in the
network topology. These notifications may then be used to configure migration operations, or
other operations, in which presence and location of load balancers is a factor.

Figure 3 is an example block diagram of the primary operational elements of a transparent
network communication interception appliance (e.g., load balancer) detection mechanism in
accordance with one illustrative embodiment. The elements shown in Figure 3 may be
implemented as hardware, software, or any combination of hardware and software. For example,
in one illustrative embodiment, the elements in Figure 3 may be implemented as software
instructions and data executed/processed by one or more data processing devices (e.g.,
processors, memories, communication hardware such as buses, network interfaces, or the like) of
one or more computing devices/systems (e.g., server computing devices, client computing
devices, collections of computing devices that together constitute a system, or the like).

As shown in Figure 3, the load balancer detection mechanism 300 comprises one or more
discovery tools 310 that operate to collect data from network devices/appliances in the network
topology 305 and provide that data to a data collector and filter engine 320. The data collector
and filter engine 320 collects the data from the various devices/appliances in the network
topology 305 as obtained by the discovery tools 310, filters the data for data of interest to the
discovery mechanism, and stores the filtered data in a data warchouse 330 for further analysis
and processing. Load balancer detection heuristics engine 340 then, either continuously,

pertodically, or in response to an event, such as a user command, automated tool command, or

12

10

15

20

25

30

WO 2013/138168 PCT/US2013/029756

other event, performs analysis on the stored data in the data warehouse 330 using established
heuristics to determine the presence and/or location of load balancers within the network
topology 305.

The load balancer detection heuristics engine 340 may provide an indication of the
detection/non-detection of load balancers in the network topology 305 to a report engine 350
which generates a report data structure that is stored and/or output to authorized user computing
devices 360, automated tools 370, or the like. These elements 360, 370 may then utilize the
report data structure to perform management operations on the network topology, such as
migration operations or the like, and may further provide feedback input to the load balancer
detection heuristics engine 340 to modify the heuristics, or parameters utilized by the heuristics,
to reflect whether the detection of the presence/location of load balancers was correct or not and
modify the operation of the load balancer detection heuristics engine 340 to be more accurate
with regard to the detection of the presence/location of load balancers.

As outlined above, the illustrative embodiments utilize discovery tools to obtain network
configuration data and/or application/file data from the network devices/appliances of the
network topology 305. One example of a discovery tool that may be used to gather such network
configuration data and/or application/file data is the SCOPE discovery tool available from
International Business Machines (IBM) Corporation of Armonk, New York. The SCOPE
mechanism uses a combination of network-based probes from Tivoli Application Dependency
Detection Manager (TADDM), also available from IBM Corporation, and script libraries that are
initiated directly by server administrators or by way of an automated mechanism. The scripts
utilized may be local scripts that are executed on the load balancer detection mechanism 300
and/or remote scripts executed on the various devices/appliances of the network topology 305.
In addition, Simple Network Management Protocol (SNMP) mechanisms may be used to gather
configuration information about the various devices, e.g., routers, switches, servers,
workstations, printers, modem racks, etc. that make up the network topology. Other discovery
tools 310 that may be utilized include direct connections to network Application Program
Interfaces (APIs) of installed middleware, fingerprinting systems such as the open source
Network Mapper (NMAP) utility, and the like. It should be noted that while a probe may be used
indirectly to obtain information about other devices in the network infrastructure, the illustrative
embodiments do not use direct probing of the transparent network communication interception

appliance to discover its existence and nature. To the contrary, probes are used in an indirect

13

10

15

20

25

30

WO 2013/138168 PCT/US2013/029756

manner and probing is not necessary. even in an indirect manner, for the functioning of the
mechanisms of the illustrative embodiments.

Any type of discovery tool that is capable of obtaining network configuration data from
devices of a network topology may be used without departing from the spirit and scope of the
illustrative embodiments. However, for purposes of the following description, it will be assumed
that local and remote scripts are primarily used to gather configuration information from server
computing devices in the network topology since load balancers, firewalls. and other transparent
network communication interception appliances are typically hosted or implemented on server
computing devices or in association with server computing devices. For instance, Galapagos is a
suite of scripts that runs utilities like Unix ifconfig and Isof, then archives the results along with
copies of particular configuration files and allows the results to be easily delivered to a discovery
mechanism, and imported from there into the SCOPE database. TADDM is configured with
access credentials (login or SNMP) for some sets of servers, so that it can connect from the
network and do much the same thing as Galapagos. These are only examples of the types of
discovery tools that may be used to provide scripting for gathering configuration data from
network devices/appliances. Examples of the types of configuration data that may be gathered
using the discovery tools 310 and passed through the filtering mechanisms for storage in the data
warehouse 330 include, for example, for each device/appliance a list of network interfaces
(including loopback devices) that contains Media Access Control (MAC) address, device type, IP
address, subnet mask, and default gateway information, a dump of the local Address Resolution
Protocol (ARP) cache, or the like. This configuration data may be collected directly from the
devices/appliances themselves, or may be collected indirectly from devices coupled to them, e.g.,
routers, switches, or the like that may have more complete ARP tables. For example, one
mechanism for obtaining information indirectly is to use a cluster analysis algorithm that collects
a list of all open ports from the servers in the cluster. Some of these ports are open, for example,
on every server and so this information does not carry any information (port 135 and 445, for
example} and can be filtered out. Other ports, such as smtp port 25, may be identified that are
only open on mail servers that are independent of the base operating system. Such configuration
information may be obtained from these other devices and analyzed to deduce the presence of
transparent network communication interception appliances using the mechanisms of the

illustrative embodiments.

14

10

15

20

25

30

WO 2013/138168 PCT/US2013/029756

SNMP is very useful for collecting information from network appliances. The command
line interfaces on network appliances can vary widely between vendors, and SNMP offers a more
predictable and standardized interface for gathering configuration information. SNMP version 3
allows user/password authentication, but older SNMP versions rely on knowledge of a
“Community String.” Particularly because of this history of weak access protection, it is normal
to use a white-list to identify which source IP addresses are permitted to access the SNMP
interface of a network appliance. Thus, in order to utilize SNMP as one of the discovery tools
310, it may be necessary to establish a white list or community string that permits the SNMP
based discovery tools to access and gather the configuration information from the various
devices/appliances of the network topology 305.

The scripts, probes, and other discovery tools 310 may gather configuration data from the
various devices/appliances of the network topology 305 and return that configuration data to the
data collector and filter engine 320. The data collector and filter engine 320 filters the gathered
configuration data for configuration data of interest based on established policies of the data
collector and filter engine 320 and organizes the filtered data for storage in the data warehouse
330.

The load balancer detection heuristics engine 340 analyzes the data stored in the data
warehouse 330 to detect patterns that indicate the existence of devices/appliances that are
otherwise difficult to detect under the normal restrictions of a discovery process, e.g., load
balancers, firewalls, and other types of transparent network communication interception
appliances, in particular load balancers in the example implementation. The nature of these
patterns ranges from the configuration of single devices (e.g., server loopback interface
configurations) to the distribution of properties across multiple devices (e.g., multiple hosts on a
single subnet having different default gateways). Using a combination of such patterns is
beneficial for the sake of progressively and efficiently estimating the location of sought-after
devices, such as load balancers, firewalls, or the like.

Directly probing transparent network communication interception appliances, such as
load balancers and firewalls, is not always feasible for discovery purposes, as discussed above.
However, detecting particular patterns among the device configurations may indicate
“associations” with load balancers, firewalls, and the like. Specifically, the load balancer

detection heuristics engine 340 of the illustrative embodiments uses one or more multi-device

15

10

15

20

25

30

WO 2013/138168 PCT/US2013/029756

heuristics and/or one or more single device heuristics to estimate the probability that a group of
hosts are providing resources for one or more load balancers.

Before describing in detail the manner by which the various heuristics may be
implemented by the load balancer detection heuristics engine 340, the underlying reasoning for

the heuristics will first be described.

Analyzing Subnet Gateway Assipnments

Analyzing the gateway assignments of a group of host systems in the same subnet of the
network topology 305 can be helpful for predicting the presence of load balancers or other
transparent network communication interception appliances. Enterprise load balancers are
usually deployed using any of several conventional network configurations and packet flows.
Figure 4, for example, illustrates a network configuration in which a server cluster (or farm) 410,
comprising server computing devices 402 and 404, is connected to a load balancer 430 via a
layer 2 switch 420. The server cluster 410 is on a separate network from the router 440. The
address of the services provided by the server computing devices 402 and 404 is a virtual IP
(VIP) address of the load balancer 430 such that client requests routed via the router 440 utilize
the VIP address of the load balancer 430. Once the load balancer 430 receives a request from a
client via the router 440, the load balancer 430 uses network address translation (NAT) structures
internal to the load balancer 430 to translate the request’s destination address to one of the
servers 402, 404 in the server cluster 410.

When the requests reach the servers 402, 404, they will have the IP address of the server
402, 404 as destination and the client IP address as source address. Because of this address
translation, the server 402, 404 cannot directly send the response packet(s) directly back to the
client, since the client expects an answer to come from the original VIP to which the request was
sent. Therefore, the server 402, 404 needs to send the packet back to the load balancer 430,
which will then reverse the network address translation and send the response packet(s) back to
the client which sent the request. To achieve this routing pattern, the load balancer 430 needs to
be configured as the default gateway on the servers 402, 404. Other servers on the same subnet
that are not load balanced would directly use the subnet router 440 as the default gateway. Thus,
if a discovery mechanism is able to identify a subnet with more than one default gateway, this

may be indicative of the use of a load balancer, such as load balancer 430.

16

10

15

20

25

30

WO 2013/138168 PCT/US2013/029756

Distance Based Server Clustering

As well as looking for certain load balancer configurations, such as having multiple
default gateways, a more general approach of identifying servers that are likely to be in a cluster
with which a load balancer is utilized may be implemented by the load balancer detection
mechanisms of the illustrative embodiments. If one can first identify server clusters, one can
then investigate the clusters to find the load balancers. In the illustrative embodiments, metrics
may be built that indicate configuration similarities such as may be found between servers that
provide the same service (via a load balancer). In the extreme case, server clusters consist of
identical servers. Where load balancers are used to increase the security and resiliency of
services, the server cluster may consist of different hardware and/or software products that
provide the same service. However, in most cases, server clusters will run identical (or very
similar) hardware and software just to keep administration as simple as possible.

By defining a distance metric between the servers, the illustrative embodiments can
identify server clusters, i.e. servers having a relatively smaller distance metric between the
servers are more likely to be in a server cluster than other servers having a relatively higher
distance metric. A threshold value may further be established for defining a required distance
metric level for indicating a server cluster. In one illustrative embodiment, the “distance™ metric
is determined based on a degree of change in the name associated with a server computing
device. That is, an amount of difference in the names of the server computing devices 1s
indicative of the “distance” between the server computing devices. Thus, server computing
devices having significantly similar names are likely to be present in the same subnet and thus,
the same server cluster.

One example of a mechanism that may be utilized to calculate a distance metric is
described in Levenshtein, “Binary Codes Capable of Correcting Deletions, Insertions, and
Reversals,” Soviet Physics Doklady, Vol. 10, No. 8, (1966), pp. 707-710. Other algorithms, such
as the algorithm described in Wagner et al., “The String-to-String Correction Problem,” Journal
of the ACM, Vol. 21, No. 1, 1974, pp. 168-173, may also be used without departing from the
spirit and scope of the illustrative embodiments. These documents are hereby incorporated
herein by reference.

Essentially, any algorithm that assigns a distance value based on the amount of “change”

needed to go from one string or name to match another string or name may be utilized. Thus, the

17

10

15

20

25

30

WO 2013/138168 PCT/US2013/029756

distance metric measures an amount of difference in the two or more strings/names associated
with a server computing device. In one illustrative embodiment, a weighted Levenshtein
distance for the server name and/or open port distance, i.e. distance between port numbers of the
various server computing devices. That is, the distance between names may be based on the
Levenshtein distance, which measures the number of edits required to change one string or name
into another string or name. For example, using an example distance algorithm, such as
described in Levenshtein and Wagner, for example, the names “Web01” and “Web02” are a
distance of | apart, whereas “Web01” and “Wefl1” are a distance of 2 apart and “Web01” and
“Mike01” are a distance of 8 apart. In the first case, the digit-for-digit change has a weighting of
I and since only | character needs to be changed, then the distance is 1. In the second case, the
change is letter-for-letter, which has a weighting of 2 and thus, the distance 1s 2 apart. In the
third case, the change is three letter-for-letter replacements and one letter insertion which all have
a weighting of 2 and thus, the distance apart is 8.

With the illustrative embodiments, because the illustrative embodiments are looking for
name groupings, not typing errors, using the weighted Levenshtein algorithm as an example,
inversions are counted (weighted) as two operations (rather than one), and substitutions of a digit
for another digit are counted only half as significant as insertions, deletions, or other
substitutions. One algorithm for calculated such a weighted Levenshtein distance metric of this
type may be to use a modified form of the algorithm described in Wagner et al., “The String-to-
String Correction Problem,” Journal of the ACM, Vol. 21, No. 1, 1974, pp. 168-173.

The distance between open port lists is calculated separately on the well-known ports (0-
1023) and for the rest of the port numbers. The ratio of ports in common to total ports open on
the server computing devices is weighted for each group of managed servers, supporting a single
service that uses a load balancer to provide a front end (e.g., 80/20 in favor of the general
purpose ports, since well-known ports are more likely to be shared between connected computing
devices) to produce a distance metric, such as a value between zero and one hundred. That is,
within a server cluster, the server computing devices tend to have the same ports open. Thus, if
there is a higher ratio of common ports to the total number of ports open on a set of server
computing devices, then this is indicative of the server computing devices being present within a
same server cluster.

The port distance and server name distance may be combined to generate a metric

indicative of the similarity between servers which gives an indication of the possible presence of

18

10

15

20

25

30

WO 2013/138168 PCT/US2013/029756

a load balancer. For example, assume server names “Webl” and “Web2” and “DatabaseHost”
all have services on ports 80, while DatabaseHost also has a service on port 50000. The first two
servers, “Web1” and “Web2™, are both using a common port, which is not necessarily indicative
of the presence of a load balancer in itself, however they also have very similar names (just a
digit apart), so they may be working together in a cluster. The third server, “DatabaseHost,” has
a very different name, and also has a service open on a user-space port that the other two do not
have, so it is probably not part of a cluster with the other two. Thus, by looking at the closeness
of the names and the ports, the mechanisms of the illustrative embodiments may deduce or
predict whether or not a load balancer, or other type of transparent network communication
interception appliance, is likely present in association with the server computing devices.

While the server name and port distance properties offer a good first prediction of the
presence of load balanced server clusters, other properties that describe machine functions
indicative of the presence of a server cluster may also be used. For example, other distance
metrics that may be used include directory structure distance, the distance between installed
applications and operating systems, and database table (and cardinality) distance (especially if
table sizes are large and few other applications are installed).

The above are examples of multi-device heuristics that may be implemented by the load
balancer detection heuristics engine 340 to predict the presence and/or location of load balancers
in a network topology 305. One or more of these heuristics may be used to generate a relative
score or confidence measure of the presence/location of a load balancer with regard to a
particular group of devices in the network topology 305. This score or confidence measure may
be used to send notifications to indicate whether or not a load balancer is present in the network
topology 305 and, if possible, the location of the load balancer.

In addition to the multi-device heuristics, or in the alternative, the load balancer detection
heuristics engine 340 may utilize single device heuristics to get information as to the possible
presence and location of load balancer sin the network topology 305. For example, these single
device heuristics may encompass analyzing server loopback network interfaces and/or analyzing

gateway MAC addresses, as described hereafter.

19

10

15

20

25

30

WO 2013/138168 PCT/US2013/029756

Analvzing Server Loopback Network Interfaces

A loopback interface is a mechanism for routing electronic signals, digital data streams,
or flows of data items from their originating facility back to the source without intentional
processing or modification. Loopback interfaces can be used for testing the transmission or
transportation infrastructure and to perform management operations. In the Internet Protocol
version 4 (IPv4), the most common loopback interface has the [P address 127.0.0.1. The
loopback interfaces that are not 127.0.0.1 are unusual, but may be found when a load balancer is
being used in Direct Routing Mode. In this mode, a load balancer accepts requests from the
clients, and forwards them to servers on the same subnet by changing the destination MAC
address. The servers have the IP address of the service provided by the servers configured on a
loopback interface.

As shown in Figure 5, servers respond to both the virtual IP address (VIP) and the real IP
address (RIP) at the transport layer, but send Address Resolution Protocol (ARP) responses for
the RIP only. That is, ARP responses are sent to allow other computing devices in the same
broadcast zone (subnet) to map a Media Access Control (MAC) address to an IP address. If two
computing devices were to use the same [P address on their physical interfaces, and respond to
ARP requests, the network behavior would become undefined (this would be a
misconfiguration). All traffic to that address instead, should go to a load balancer, so that the
load balancer is the only device that responds to ARP requests. Moreover, in server clusters, by
configuring a common address to be on a loopback device, no ARP responses are sent since the
loopback device is not connected to any physical network, but the higher level devices are able to
recognize the address as local and so they respond to the requests associated with that address.
Hence, if these configurations are able to be deduced, such as through the mechanisms of the
illustrative embodiments, the presence of load balancers may be predicted accurately.

In Figure 5, the servers 502 and 504 are configured with RIP addresses 192.168.1.10 and
192.168.1.11, respectively, as well as VIP addresses 192.168.1.50. In Figure 5, devices having a
name of the type “Lo0” are loopback devices in this example. As can be seen from Figure 5, the
servers 502 and 504 of the server cluster 510, coupled to the switch 520, share the same VIP
address 192.168.1.50 as that of the server load balancer 530. Thus, when a client request is
received via router 540 by the switch 520, the client request is forwarded to the server load

balancer 530 based on the VIP, which then sends the client request to both server 502 and 504.

20

10

15

20

25

30

WO 2013/138168 PCT/US2013/029756

The servers 502 and 504 may then send reply packets back to the client via the switch 520 and
router 540 since they have the same VIP address from which the client is expecting a response.

With this situation, the network configuration information for the servers 502 and 504, as
gathered by the discovery tools 310, may be analyzed to determine if more than one server uses
the same, or sufficiently similar, RIP addresses, or utilize loopback addresses not in the
127.0.0.0/8 subnet. That is, all addresses from 127.0.0.1 through 127.255.255.255, i.e. the
127.0.0.0/8 subnet, are currently defined in the IPv4 specification as loopback addresses and
thus, to find a loopback device in this range is a normal occurrence. To find a loopback device in
any other address range is unusual. The likely explanation for this unusual configuration of a
loopback device is to suppress ARP responses to an address while still allowing the address to be
used by upper layer devices, which is indicative of a server cluster being present and a
corresponding load balancer.

While such analysis may provide an indication of a possible presence/location of a load
balancer 530, there may be other reasons such a configuration is used such that this heuristic may
give false positive results. To further improve confidence, other patterns, such as looking for
similar host/DNS names using a Levenshtein or similar algorithm, for example, comparing the
list of running services/open ports to find servers having similar running services and/or open
ports, verifying that the servers reside on the same subnet, or the like, may be used. Through a
combination of such analysis, a score or confidence measure may be calculated that is indicative
of the likelihood that a load balancer is present in the network topology 305 in relation to the
servers 502, 504. A weighted approach may be used to calculate a component of the score for
each of the characteristics above and the resulting total score may be compared against an
established threshold indicative of the minimum score needed to determine that a load balancer is

most likely present in the network topology 305 in relation to the servers 502, 504.

Analyzing Gateway MAC Addresses

In addition to, or in the alternative of, the loopback and similar VIP address analysis
discussed above, as well as the multi-device heuristic analysis described above, the illustrative
embodiments may further analyze the gateway MAC addresses to gather insight into the possible
presence/location of load balancers. That is, load balancers are traditionally assigned virtual IP

and MAC addresses to support, among other functions, redundancy for failover configurations.

21

10

15

20

25

30

WO 2013/138168 PCT/US2013/029756

Hence, using such information can be helpful in identifying actual load balancer machines, as
opposed to the previous heuristics which mainly aim to identify servers connected to load
balancers. Since there are no (reliable) means for identifying virtual IP addresses, the illustrative
embodiments focus on identifying virtual or locally-administered, MAC addresses as a way of
identifying potential load balancers.

Locally administered MAC addresses are either generated by a network administrator or
by some internal algorithm of the load balancer itself. Either way, these addresses are different
from universally administered addresses (i.e. those containing organizational unique identifiers)
in that the second-most significant bit of the most significant byte of the address is set to 1 as
opposed to 0. Another convention that is specific to some load balancers is the pattern of the
first two significant bytes of the MAC: 02-bf (or 01-bf or 03-bf). Here the first byte indicates the
type of load balancer configuration (IGMP, unicast, or multicast) and the second is a placeholder
for the priority of the load balanced server handling a client request. While the second MAC
pattern should identify a device as being a load balancer, it is not guaranteed that the pattern will
always be used. Hence, searching for the first pattern is also helpful, even though it will not
guarantee the presence of a load balancer; such patterns in locally administered MACs could be
used for other devices such as redundant routers. However, searching for this pattern among the
MAC:s of the host gateways associated with groups of servers as defined by the clustering
algorithm described above may help increase the confidence level of load balancer detection.
That is, specific ranges of addresses associated with load balancer functionality do not guarantee
the presence of a load balancer, but are good indications that one may be present and may be

used as a basis for making informed predictions as to the presence of a load balancer.

Multiple IP Addresses Resolving to Same MAC Address

Another indication of the presence of a load balancer is a configuration in which multiple
IP addresses resolve to the same MAC address. That is, load balancers often present several
services with different IP addresses from the same subnet. For example, a load balancer may
present to an external network associated with client computing devices, several services having
the following respective IP addresses: [P1=192.168.1.50, IP2=192.168.1.51, IP3=192.168.1.52,
1P4=192.168.1.53, IP5=192.168.1.54,... In this case, each service has a different IP address but

they are all from the same subnet.

22

10

15

20

25

30

WO 2013/138168 PCT/US2013/029756

Thus, an additional heuristic that may be utilized by the mechanisms of the illustrative
embodiments is to look at the address resolution protocol (ARP) tables on routers and servers of
the network topology 305 to identify situations where multiple IP addresses resolve to the same
MAC address. Such situations will identify either virtual machine hosts or load balancers. Thus,
this heuristic may be used to provide an additional insight into the possible presence/location of a
load balancer in the network topology. This heuristic, used alone or in combination with one or
more of the other heuristics noted above, may provide a score or confidence measure that can be
evaluated to determine if a load balancer is present in the network topology 305 and may even be
used to identify the most likely location of the load balancer within the network topology 305.

Returning again to Figure 3, the load balancer detection heuristics engine 340 uses one or
more of the above described heuristics, and/or other heuristics that look at the configuration data
collected from devices/appliances in the network topology 305, to identify patterns in the
configuration data, such as those described above, that are indicative of the presence/location of a
load balancer, or other transparent network communication interception appliance, such as a
firewall or the like. The load balancer detection heuristics engine 340 may then generate a score
or confidence metric value for portions of the network topology 305, such as for each
device/appliance, set of devices/appliances, defined regions of the network topology 305, such as
subnets, or the like, which can then be compared to one or more threshold values. The threshold
values may be set by a system administrator or other authorized user to be at a level indicative of
a minimum confidence required for notification of the presence/location of a load balancer.
Based on the comparison of the generated score or confidence metric to the one or more
thresholds, the load balance detection heuristics engine 340 determines if a notification that a
load balancer has been detected should be sent to the user computing device 360 or automated
system 370.

If so, then a notification is generated and sent to the computing devices 360, 370. The
notification may comprise a notification that a load balancer is likely to be present, an
identification of the portion of the network topology 305 where the load balancer is detected as
being most likely present, which may be a region of the network topology 305 or may even be a
particular device/appliance in the network topology 305 depending on the granularity to which
the heuristic(s) are able to identify the configuration data that indicates the presence of a load
balancer. Moreover, the score or confidence metric value may be communicated as well for use

by the user and/or automated mechanism of the computing devices 360, 370. The user and/or

23

10

15

20

25

30

WO 2013/138168 PCT/US2013/029756

automated mechanism of the computing devices 360, 370 may then verify whether a load
balancer is present in the location/region of the network topology 305 identified by the
notification. This may involve manual inspection, automated investigation and analysis
mechanisms, or the like. Based on this verification, it can be determined whether the application
of the heuristics is generating accurate results. If not, then modifications to the parameters used,
heuristics used, or the like, e.g., the weightings being used in the heuristics, the particular
combination of heuristics used, etc., may be made via feedback mechanisms.

As a result of the identification of the presence/location of a load balancer, further
network management operations may be performed. For example, with regard to migration
operations, the location of the load balancer may be used to facilitate migration of the load
balancer along with the managed resources associated with the load balancer, e.g., applications,
servers, etc., as a single unit is facilitated.

Thus, the illustrative embodiments provide mechanisms for analyzing patterns in network
configuration data collected by discovery tools that are indicative of the presence/location of
transparent network communication interception appliances, such as load balancers, firewalls, or
the like. Based on this analysis, the likelihood of the presence as well as the location of such
appliances is calculated and used to send notifications to users/automated mechanisms for use in
performing network management operations, such as migration operations or the like.

Figure 6 is a flowchart outlining an example operation of a load balancer detection
heuristics engine in accordance with one illustrative embodiment. As shown in Figure 6, the
operation starts by obtaining configuration data from devices/appliances of a network topology
using one or more discovery tools (step 610). This may involve, for example, colleting subnet
devices’ network interfaces and default gateway data, subnet devices’ file system and application
register data, and the like. This information is provided to one or more network configuration
analysis heuristics and server property clustering heuristics (step 620) which are applied to the
collected network configuration data to identify patterns of configuration data indicative of a
presence/location of a load balancer (step 630). These one or more network configuration
analysis heuristics and server property clustering heuristics implement one or more of the pattern
recognitions described previously. That is, the various patterns of configuration information that
are indicative or insightful with regard to the presence of a transparent network communication

interception appliance, e.g., load balancer, firewall, or the like, and the analysis logic for

24

10

15

20

25

30

WO 2013/138168 PCT/US2013/029756

identifying these patterns may be implemented in these heuristics and applied to collected data to
determine a level to which the collected data matches these patterns, conditions, and the like.

Based on the application of the one or more network configuration analysis heuristics, a
confidence metric value is calculated (step 640). The confidence metric value may be a
combination of confidence metric values for each of the individual one or more heuristics applied
to the network configuration data, for example. These individual confidence metrics may also
each be weighted in accordance with a relative importance associated with these heuristics to the
overall determination of the presence/location of a load balancer.

The resulting confidence metric may be compared to one or more pre-cstablished
thresholds (step 650). If the threshold, one of the thresholds, or a combination of the thresholds,
is met or exceeded by the resulting confidence metric (step 660), then a potential load balancer is
detected (step 670) and a notification may be generated and sent to an authorized user/automated
system (step 680). If the threshold, one or more thresholds, or combination of thresholds is not
met or exceeded by the resulting confidence metric, then a detection failure is determined to have
occurred (step 690) and no notification is sent. The operation then terminates,

Thus, the illustrative embodiments provide mechanisms for probabilistically identifying
computer load balancers, firewalls, or other transparent network communication interception
appliances, and computing devices/systems hosting resources that are managed by such
appliances. The mechanisms of the illustrative embodiments collect network configuration data
from devices/appliances of a network topology, file system and application registry data from
these devices/appliances of the network topology, and identifies pre-defined patterns in the
collected data. These pre-defined patterns may be multi-device heuristic patterns and/or single
device heuristic patterns. Based on the pre-defined patterns, and a degree of matching of the
collected data to these pre-defined patterns, a confidence value is calculated that is reflective of
the probability that a transparent network communication interception appliance, €.g., load
balancer, is present in a designated device/appliance, region, subnet, or the like, is generated. A
notification message of the potential load balancer detection with probability as a function of the
confidence score is generated if the confidence score meets or exceeds one or more defined
thresholds.

The pre-defined patterns in the network configuration data may include the presence of
identical IP addresses on multiple hosts and loopback devices configured with any IP addresses

not in the 127.0.0.0/8 subnet. Moreover, the pre-defined patterns in network configuration data

25

10

15

20

25

30

WO 2013/138168 PCT/US2013/029756

may include servers that use a different gateway from the rest of their subnet, or a default
gateway that is not a router. Furthermore, the pre-defined patterns in network configuration data
may include multiple IP addresses that resolve to the same MAC address, as may be revealed in
ARP tables from routers and servers, for example.

In addition, in some illustrative embodiments, similar system properties in the file
system, application registry data, and open ports of multiple computing devices may be used,
alone or in combination with other heuristics, to generate a confidence score. Measuring
similarity in system properties in the file system, application registry data, and open ports of
multiple computers includes measuring the Levenshtein distance, or other type of distance
metric, among the names of machines, measuring the overlap in installed applications (taking
versioning into account) among machines, and measuring overlap in open ports among machines
wherein common and customer ports are compared different using a weighting scheme.

As previously stated above, it should be appreciated that while the illustrative
embodiments are described with regard to the specific implementation for detecting the
presence/location of load balancers, the illustrative embodiments are not limited to such. To the
contrary, other types of transparent network communication interception appliances, such as
firewalls and the like, may be the subject of the operation of the mechanisms of the illustrative
embodiments as well. Thus, the invention should not be interpreted to be limited to the
detection/location of load balancers but any appliance that is not typically detectable through
known discovery tools due to security mechanisms and may otherwise be identified through
pattern identification in network configuration data, file and application data, and the like, using
the heuristics described above and other similar pattern identification heuristics.

As noted above, it should be appreciated that the illustrative embodiments may take the
form of an entirely hardware embodiment, an entirely software embodiment or an embodiment
containing both hardware and software elements. In one example embodiment, the mechanisms
of the illustrative embodiments are implemented in software or program code, which includes but
is not limited to firmware, resident software, microcode, etc.

A data processing system suitable for storing and/or executing program code will include
at least one processor coupled directly or indirectly to memory elements through a system bus.
The memory elements can include local memory employed during actual execution of the

program code, bulk storage, and cache memories which provide temporary storage of at least

26

10

15

WO 2013/138168 PCT/US2013/029756

some program code in order to reduce the number of times code must be retrieved from bulk
storage during execution.

Input/output or I/0 devices (including but not limited to keyboards, displays, pointing
devices, etc.) can be coupled to the system either directly or through intervening /O controllers.
Network adapters may also be coupled to the system to enable the data processing system to
become coupled to other data processing systems or remote printers or storage devices through
intervening private or public networks. Modems, cable modems and Ethernet cards are just a
few of the currently available types of network adapters.

The description of the present invention has been presented for purposes of illustration
and description, and is not intended to be exhaustive or limited to the invention in the form
disclosed. Many modifications and variations will be apparent to those of ordinary skill in the
art. The embodiment was chosen and described in order to best explain the principles of the
invention, the practical application, and to enable others of ordinary skill in the art to understand
the invention for various embodiments with various modifications as are suited to the particular

use contemplated.

27

10

15

20

25

30

WO 2013/138168 PCT/US2013/029756

CLAIMS

What is claimed is:

I. A method, in a data processing system (200, 300), for identifying transparent network
communication interception appliances (430, 530) in a network topology (305), comprising:

collecting network configuration data from a plurality of devices in the network topology
(610);

analyzing the collected network configuration data using one or more heuristics to
identify patterns in the collected network configuration data indicative of the presence of a
transparent network communication interception appliance (630);

calculating a confidence measure value based on results of the analysis of the collected
network configuration data (640); and

sending a notification of a detected presence of a transparent network communication
interception appliance to a computing device in response to the calculated confidence measure

value meeting or exceeding at least one threshold value (680).

2. The method of claim 1, wherein analyzing the collected network configuration data using
one or more heuristics to identify patterns in the collected network configuration data (630)
comprises:

calculating a pattern in the collected network configuration data;

comparing the calculated pattern in the collected network configuration data to one or
more known patterns indicative of a presence of a transparent network communication
interception appliance; and

determining if the calculated pattern matches, within a given tolerance, at least one of the

one or more known patterns.

3. The method of claim 1, further comprising:
receiving feedback input indicative of whether or not results of the analysis and
calculation of the confidence measure was accurate; and

modifying at least one of the one or more heuristics based on the feedback input.

28

10

15

20

25

30

WO 2013/138168 PCT/US2013/029756

4, The method of claim 1, wherein the one or more heuristics comprises a multiple gateway
heuristic that analyzes subnet gateway computing device assignment to an associated group of
devices (410, 510), in the plurality of devices in the network topology (305) to identify whether
more than one gateway computing device (430, 530) is associated with the group of devices

(410, 510), and wherein calculating the confidence measure value (640) comprises increasing the
confidence measure value in response to the multiple gateway heuristic identifying more than one

gateway computing device being associated with the group of devices.

5. The method of claim 1, wherein the one or more heuristics comprises a distance heuristic
that calculates a difference distance between at least one of device names or device
cdmmunication ports being used by the plurality of devices (410, 510) of the network topology
(305), and compares the difference distance to at least one threshold value, and wherein
calculating the confidence measure value comprises increasing the confidence measure value in

response to the difference distance being equal to or greater than the at least one threshold value.

6. The method of claim 5, wherein the difference distance is calculated using a weighted
difference algorithm that determines an amount of change necessary to change one server name
or port assignment of a first device (402, 502) to a server name or port assignment of a second
device (404, 504) in the plurality of devices (410, 510), and weights different types of changes

with different weighting values.

7. The methed of claim 1, wherein the one or more heuristics comprises a loopback network
interface heuristic that determines if a loopback device is present in the network topology (305)
and has an associated address that is not within an established range of loopback addresses, and
wherein calculating the confidence measure (640) comprises increasing the confidence measure
in response to a determination that a loopback device is present in the network topology (305)

and has an associated address that is not within an established range of loopback addresses.
8. The method of claim 1, wherein the one or more heuristics comprises a gateway address

analysis heuristic that analyzes addresses associated with the devices (402, 404, 502, 504) in the

plurality of devices (410, 510) to identify a pattern in the addresses associated with the devices

29

10

15

20

25

30

WO 2013/138168 PCT/US2013/029756

that indicates that an associated device is a transparent network communication interception

appliance (430, 530).

9. The method of claim 8, wherein the pattern in the address is one of a specific setting of a
most significant byte of the address to a value indicative of the device being a transparent
network communication interception appliance, or a specific setting of the first two significant
bytes of the address to a value indicative of the device being a transparent network

communication interception appliance.

10. The method of claim 1, wherein the one or more heuristics comprises a multiple address
resolution heuristic that determines if one or more address resolution data structures of one or
more routers (440, 540) in the plurality of devices of the network topology (305) comprise
mappings in which multiple network addresses map to a same device address, and wherein
calculating the confidence measure (640) comprises increasing the confidence measure in
response to a determination that one or more address resolution data structures of one or more
routers (440, 540} in the plurality of devices of the network topology (305) comprise mappings in

which multiple network addresses map to a same device address.

11. A computer program product comprising a computer readable storage medium (208, 224,
226, 230) having a computer readable program stored therein, wherein the computer readable
program, when executed on a computing device (200, 300), causes the computing device to:

collect network configuration data from a plurality of devices in a network topology (305,
610y,

analyze the collected network configuration data using one or more heuristics to identify
patterns in the collected network configuration data indicative of the presence of a transparent
network communication interception appliance (430, 530, 630);

calculate a confidence measure value based on results of the analysis of the collected
network configuration data (640); and

send a notification of a detected presence of a transparent network communication
interception appliance to a computing device in response to the calculated confidence measure

value meeting or exceeding at least one threshold value (680).

30

10

15

20

25

30

WO 2013/138168 PCT/US2013/029756

12. The computer program product of claim 11, wherein the computer readable program
further causes the computing device to analyze the collected network configuration data using
one or more heuristics to identify patterns in the collected network configuration data (630) by:

calculating a pattern in the collected network configuration data;

comparing the calculated pattern in the collected network configuration data to one or
more known patterns indicative of a presence of a transparent network communication
interception appliance; and

determining if the calculated pattern matches, within a given tolerance, at least one of the

one or more known patterns.

13 The computer program product of claim 11, wherein the one or more heuristics comprises
a multiple gateway heuristic that analyzes subnet gateway computing device assignment to an
associated group of devices (410, 510), in the plurality of devices in the network topology (305)
to identify whether more than one gateway computing device (430, 530) is associated with the
group of devices (410, 510), and wherein calculating the confidence measure value (640)
comprises increasing the confidence measure value in response to the multiple gateway heuristic

identifying more than one gateway computing device being associated with the group of devices.

14. The computer program product of claim 11, wherein the one or more heuristics comprises
a distance heuristic that calculates a difference distance between at least one of device names or
device communication ports being used by the plurality of devices (410, 510) of the network
topology (305), and compares the difference distance to at least one threshold value, and wherein
calculating the confidence measure value comprises increasing the confidence measure value in

response to the difference distance being equal to or greater than the at least one threshold value.

15. The computer program product of claim 14, wherein the difference distance is calculated
using a weighted difference algorithm that determines an amount of change necessary to change
one server name or port assignment of a first device (402, 502) to a server name or port
assignment of a second device (404, 504) in the plurality of devices (410, 510), and weights

different types of changes with different weighting values.

31

10

15

20

25

30

WO 2013/138168 PCT/US2013/029756

16. The computer program product of claim 11, wherein the one or more heuristics comprises
a loopback network interface heuristic that determines if a loopback device is present in the
network topology (305) and has an associated address that is not within an established range of
loopback addresses, and wherein calculating the confidence measure (640) comprises increasing
the confidence measure in response to a determination that a loopback device is present in the
network topology (305) and has an associated address that is not within an established range of

loopback addresses.

17. The computer program product of claim 11, wherein the one or more heuristics comprises
a gateway address analysis heuristic that analyzes addresses associated with the devices (402,
404, 502, 504) in the plurality of devices (410, 510) to identify a pattern in the addresses
associated with the devices that indicates that an associated device is a transparent network

communication interception appliance (430, 530).

18. The computer program product of claim 17, wherein the pattern in the address is one of a
specific setting of a most significant byte of the address to a value indicative of the device being
a transparent network communication interception appliance, or a specific setting of the first two
significant bytes of the address to a value indicative of the device being a transparent network

communication interception appliance.

19. The computer program product of claim 11, wherein the one or more heuristics comprises
a multiple address resolution heuristic that determines if one or more address resolution data
structures of one or more routers (440, 540) in the plurality of devices of the network topology
(305) comprise mappings in which multiple network addresses map to a same device address,
and wherein calculating the confidence measure (640) comprises increasing the confidence
measure in response to a determination that one or more address resolution data structures of one
or more routers (440, 540) in the plurality of devices of the network topology (305) comprise

mappings in which multiple network addresses map to a same device address.

20. An apparatus (200, 300), comprising:

a processor (206); and

32

10

WO 2013/138168 PCT/US2013/029756

a memory (208, 224) coupled to the processor (206), wherein the memory comprises
instructions which, when executed by the processor, cause the processor to:

collect network configuration data from a plurality of devices in a network topology (305,
610);

analyze the collected network configuration data using one or more heuristics to identify
patterns in the collected network configuration data indicative of the presence of a transparent
network communication interception appliance (430, 530, 630);

calculate a confidence measure value based on results of the analysis of the collected
network configuration data (640); and

send a notification of a detected presence of a transparent network communication
interception appliance to a computing device in response to the calculated confidence measure

value meeting or exceeding at least one threshold value (680).

33

WO 2013/138168

14

PCT/US2013/029756

104
106
208~_| PROCESSING 290
UNIT(S)
210 207 208 216 236
S / / /
GRAPHICS e MAIN AUDIO
PROCESSOR | NoMCH MEMORY ADAPTER 310
204
240 N 238
O 8US SBACH s (
USB
KEYBOARD
NETWORK || AND || PCIFCle
DISK | [CO-ROM | | " "somer || areer || pevices Aii‘g ;ﬁg{gga MODEM | | ROM
PORTS
226 230 212 232 234 220 222 224

FiG. 2

WO 2013/138168

PCT/US2013/029756

34
AUTOMATED
NETWORK _USER SYSTEM
TOPOLOGY WORKSTATION COMPUTING
305 360 DEVICE
\ 370
l ATA (LOAD \/
DISCOVERY | | COLLECTION DATA g’;ﬁﬁ%ﬁj REPORT
TOOLS || AND FILTER |—» WAREHOUSE [| »| ENGINE
HEURISTICS
310 ENGINE 330 350
0 ENGINE
= 344
300
FiG. 3
ROUTER -
% N\\\\\
|
. LOAD
SWITCH
BALANCER .
420 430 HFiG. 4
A 44
It e N I
SERVER| |SERVER| _ .- /
402 404 ,

I

|

I /
: ENG IP=182.168.1.11 ENOIP=182.168.1.10 /
I

e —— e

WO 2013/138168 PCT/US2013/029756

34
ROUTER |
///, \'
’I
| SWITCH e | P=192168.1.50
\ 520 A RIP = 162,168,140

AN SERVER SERVER et

|
I |
I |
| |
: ENO IP=182.168.1.11 ENOIP=192.168.1.10 / |

|
l |
I |

Lol 1P=182.168.1.50 Lo0 IP = 182.168.1.50 ,"

A /
\ 510 /
- N—_— - — — = 7/_ -
\\ ’/
\\\\ ///
\\\ //

~—— —

WO 2013/138168

C START >

v

OBTAIN CONFIG,,
FILE, APP. DATA
FROM NETWORK
DEVICES
610

v

PROVIDE
COLLECTED DATA
TO ANALYSIS
HEURISTIC(S)
620

v

APPLY HEURISTIC(S)
TO IDENTIFY
PATTERNS

630

v

CALCULATE
CONFIDENCE
METRIC VALUE(S)
840

v

COMPARE
CONFIDENCE
METRIC TO
THRESHOLIXS)
650

VET OR
EXCEEDED?
660

NO

DETECTION
FAILED

YES

44

PCT/US2013/029756

FiG. 6

POTENTIAL LOAD
BALANCER
DETECTED

670

SEND
NOTIFICATION
MESSAGE
689

ertil]

END

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US 13/29756

A. CLASSIFICATION OF SUBJECT MATTER
IPC(8) - GO6F 15/173 (2013.01)
USPC - 709/224

According to International Patent Classification (IPC) or to both national classification and 1PC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by ¢
USPC: 709/224; IPC(8): GO6F 15/173 (2013.01)

lassification symbols)

USPC: 709/223; 709/224

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of
Google Scholar; Google Web; Google Patents; PatBase.

value, score, notify, threshold

data base and, where practicable, search terms used)

Search Terms: transparent, network, communicate, intercept, topology, data, process, configure, heuristic, pattern, calculate, confident,

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 2008/0148378 A1 (Wing et al.) 19 June 2008 (19.06.2008), entire document, especially para | 1-3, 11, 12, 20 --------—--—
- {0012], [0015]-[0016], [0022], [0032], [0034]-[0035], {0042] I,
Y : 4-10, 13-19
Y US 6,219,786 B1 (Cunningham et al.) 17 April 2001 (17.04.2001), entire document, especially 4, 8-10, 13, 17-19
col. 3, In. 56 to col. 4, In. 5, col. 4, In. 32-44, col. 6, In. 1-20, col. 6, In. 49-67, col. 7, In. 1-14
Y US 2010/0174731 A1 (Vermeulen et al.) 08 July 2010 (08.07.2010), entire document, especially | 5, 6, 14, 15
para [0310]
Y US 2004/0133640 A1 (Yeager et al.) 08 July 2004 (08.07.2004), entire document, especially 7,16
para [0802], [0889]
A US 2006/0125847 A1 (Andreev et al.) 15 June 2006 (15.06.2006), entire document 1-20
A US 2007/0014233 A1 (Oguro et al.) 18 January 2007 (18.01.2007), entire document 1-20

I:I Further documents are listed in the continuation of Box C.

L

* Special categories of cited documents:

“A” document defining the general state of the art which is not considered
to be of particular relevance

“E” earlier application or patent but published on or afier the international
filing date

“L” document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

“O” document referring to an oral disclosure, use, exhibition or other
means

“P” document published prior to the international filing date but later than

the priority date claimed

“T” later document published after the international filing date or priority
date and not in conflict with the application but cited to understand

the principle or theory underlying tﬁe invention

“X” document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

“Y” document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination

being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search

24 April 2013 (24.04.2013)

Date of mailing of the international search report

2 0 MAY 2013

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450

Facsimile No. 571.273-3201

Authorized officer:
Lee W. Young

PCT Helpdesk: 571-272-4300
PCT OSP: 571-272-7774

Form PCT/ISA/210 (second sheet) (July 2009)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - claims
	Page 30 - claims
	Page 31 - claims
	Page 32 - claims
	Page 33 - claims
	Page 34 - claims
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - wo-search-report

