
(19) United States 
(12) Patent Application Publication (10) Pub. No.: US 2011/0111742 A1 

US 20110111742A1 

Neil et al. (43) Pub. Date: May 12, 2011 

(54) AUTOMATIC APPLICATION DEFINITION (52) U.S. Cl. ..................................................... 455/414.4 
DISTRIBUTION 

(57) ABSTRACT 

(76) Inventors: Tim Neil, Mississauga (CA); Scott A new master application definition is installed at a server. 
Neil, Toronto (CA); Steve Grenier, Responsively, the server determines the identity of a user 
Georgetown (CA) associated with the server-side application related to the mas 

ter application definition. The server may then generate an 
(21) Appl. No.: 12/891,179 application definition file specific to the application and to the 

remote wireless device associated with the identified user. 
(22) Filed: Sep. 27, 2010 The application definition file may contain definitions for: a 

O O user interface format; a format for network messages; and a 
Related U.S. Application Data format for storing data. Using these definitions, the wireless 

(63) Continuation of application No. 1 1/459,054, filed on device may receive data generated by the server-side appli 
Jul. 21, 2006, now Pat. No. 7,805,133. cation and formatted in accordance with the definitions. The 

wireless device may then present a user interface for the 
O O application. Preferably, the application definition file is an 

Publication Classification E. file. KRRs, E. changes occur to previously 
(51) Int. Cl. established server-side applications, automatic updating of 

H0474/00 (2009.01) devices is efficiently accomplished. 

WIRELESS INTERFACE 
HARDWARE 

14 

VIRTUAMACHINE 
SOFTWARE 

DEVICE OPERATING 
SYSTEM SOFTWARE 

O 

LOCAL STORAGE 
26 

APPLICATIONS 

DEFlyONs 

    

    

  

  

  

    

  



Patent Application Publication May 12, 2011 Sheet 1 of 19 US 2011/0111742 A1 

O 

18 LOCAL STORAGE 
26 

APPLICATIONS 
DEFINITIONS 

28 
VIRTUAL MACHINE 

SOFTWARE 
29 

DEVICE OPERATING 
SYSTEM SFTWARE 

F 

WIRELESS INTERFACE 
HARD WARE 

14 
PROCESSOR 

12 

FIG. 1 

  

  

  

  

    

  

  

  

  

  

  

  

  

  



Patent Application Publication May 12, 2011 Sheet 2 of 19 US 2011/0111742 A1 

24 

OBJECT 
SCREENGENERATION CLASS 

ENGINE INSTANCES 
67 69 

EVENT HANDLER XML PARSER 
65 61 

FIG. 2 

  



Patent Application Publication May 12, 2011 Sheet 3 of 19 US 2011/0111742 A1 

10 4 4 
OOOOOOOOOOOO 
oooooooooooood 
COOOOOOOOOOOC 
cooooooooood 

FIRST 
EXAMPLE 
NETWORK 
GATEWAY 

40 

FIRST EXAMPLE 

wiRELEssETWORK 

MIDDLEWARE 
SERVER 

44 

SECOND 
EXAMPLE 
NETWORK 
GATEWAY 

42 

LZ 7 32 
OOOOOOOOOOOOC 
OOOOOOOOOOOOOO 
OOOOOOOOOOOOOD 
oooooooooood SECOND EXAMPLE 

WRELEssNETWORK 

FIG. 3 

  

  

  

    

  

  



Patent Application Publication May 12, 2011 Sheet 4 of 19 US 2011/0111742 A1 

USER INTERFACE 

DENT SECTION 

XML APPLICATION NETWORK 
DEFINITION FILE TRANSACTION 

28 DEFINITIESECTION 

DEVICE LOCALDATA 

DEFNTiSECTION 

FIG. 4 

  



US 2011/0111742 A1 May 12, 2011 Sheet 5 of 19 Patent Application Publication 

©QQ????????Q C(OOOOOOOOOOOOOEY OOOOOOOOOOOOOO ©GOOOOOOOOOOOO 

  

  

  

    

  

  

  

  

  

  

    

    

  

  

    

  



Patent Application Publication 

MDDLEwARE SERVER 

NETWORK INTERFACE 
HARDWARE 

BACKEND 

APPLICATIN SERVER 

May 12, 2011 Sheet 6 of 19 

MEMORY 

MIDDLEWARE SERVER 

SOFARE 
SERVER OPERATING 

SYSEM 

PROCESSOR 
60 

WRTUAL MACHINE 
24 

FIRST EXAMPLE 
MOBILE DEVICE 

DATA 
NETWORK 

63 

FIG. 6 

DATABASE 
46 

MASTER 
DEFINITIONS 

64 58 

US 2011/0111742 A1 

10 

  

  

  

  

  

    

  

    

  

  

  

  
  

  

  

  

  

    

    

    

    

  

  



Patent Application Publication May 12, 2011 Sheet 7 of 19 US 2011/0111742 A1 

BACKEND MIDDLEWARE FIRST EXAMPLE 
SERVER SERVER MOBILE DEVICE 

70 44 IO 

REDUEST LIST OF APPLICATIONS 72 

A-LIST OF AVAILABLE APPLICATIONS 74 
APPLICATION 2 

- REGISTRATION REO UEST 76 
APPLICATION 2 

DEFINITION FILE 78 

- LOGIN REOUEST 80 

LOGIN RESPONSE 82 

FIG. 7 

  



Patent Application Publication May 12, 2011 Sheet 8 of 19 US 2011/0111742 A1 

CREATE SEREEN s892 
OBJECT a 

S84 READ CREATE BUTTON ATTACH to 
EF - OBJECT FOR - HE SCREEN 

2 

Y 

BS 
ON SCREEN FR BTN BUTTON OBJEC 

-S8 
RE 

8 NS 
SCREE 

S8-- Rain", "REATE filt Affair to E BEXES - 8X BEC - H SCE 
QNSCREE21 riffiti six 1 ffif'Box SE 

S88- S88- s320 

E 8XES 
SCREE 

S824 REA AEE attack to ES >f DEFINTON -- (BJECT FOR - ESCREEN QN SCREEN2-1 T FRIENS OBJECT 
N S826 S828 

arrrrrrrkkakkak, MENIS ON 
SCREER 

S83. ATTACH to 
SCREE St BOXES 

ON SCREEN Y 

SIBOXES ON 
SCREE 

S844- CHC Ei "ft CREATE choice Attacht To 
NSCREE REFINITION FOR- TEMOBJECT FOR - THE SCREEN 

CEE, CCEE OBJECT 
S846- S848 

s854. DISPLAY 
SCREEN 

FIG. 8 

  

  

    

  

  

  

  

  

    

  

    

  

    

  

  



Patent Application Publication May 12, 2011 Sheet 9 of 19 US 2011/0111742 A1 

SGREEN ENGINEEREATES S902 WMOBJECT FOR USER 
INTERFACE TEM 

FIG. 9 
SEREEENGINEEAS S304 DISPLAY SCREEN METHOD 

OF VM OBJECT 

S908 

WM OBJECT CREATES WMOBJECT READS NEXT 
ATTRIBUTE FOR THE USER 
NTERFACE TEM FROM 

THE BINARY DESCRIPTION 

OPERATING SYSTEM S906 
OBJECT FOR THE USER 

INTERFACE ITEM 

S910 

WM OBJECT READS FIRST WM OBJECT APPLIES MORE 
ATTRIBUTE FOR THE USER THE AT TRIBUTE TO ATTRIBUTES 
INTERFACE ITEM FROM THE OPERATING EXIST? 

THE BINARY DESCRIPTION SYSTEM OBJECT 

S918 S920 S916 
VENTS 

EXIST FOR THE 
USER INTERFACE 

ITEM 

WMOBJECT READS FIRST WMOBJECT ADDS 
Y EVENT FOR THE USER EVENT TO THE LIST 

INTERFACE ITEM FROM OF RECOGNIZED 
THE BINARY DESCRIPTION EVENTS 

S924 
WMOBJECT READS 
FIRST ACTION FOR 
THE EVENT ON THAT 
USER INTERFACE 

TEM 

S922 
WMOBJECT READS 
NEXT ACTION FOR 
THE EVENT ON THAT 
USER INTERFACE ITEM 

S926 
MORE 

ACTIONS 
EXIST? 

S928 S930 
WMOBJECT RETURNS 
REFERENCE TO THE 
OPERATING SYSTEM N Y 

OBJECT 

    

    

    

  

    

  

    

    

    

  



Patent Application Publication May 12, 2011 Sheet 10 of 19 US 2011/0111742 A1 

S1 OO2 OSPASSES EVENT TO EVENT 
HANDLER FUNCTION 

S1004 EVENIANDLERFUNCION INSPECTSLIST OF RECOGNIZED 
EVENTS FOR THAT SCREEN 

S1 OO6 
EVENTIS 

RECOGNIZED 

S1008 EVENT HANDLER INSPECTSLIST 
OF ACTIONS FOREVENT 

S1010 EVENT HANDLER READS NEXT 
ACTION 

S1012 EVENT HANDLER EXECUTES 
NEXT ACTION 

S1014 
MORE 

ACTIONS IN 

    

    

    

  

  





Patent Application Publication May 12, 2011 Sheet 12 of 19 US 2011/0111742 A1 

To: steven(nextal.com -84 
Subject: Hello Back 86 

: I am responding to your 
message. 

F.G. 12 

  



US 2011/0111742 A1 May 12, 2011 Sheet 13 of 19 

0 ? 

Patent Application Publication 



{ISI "?INH 

US 2011/0111742 A1 

VSI "OIH 

May 12, 2011 Sheet 14 of 19 

„ (GIIGIÐ VISSTIWN) SINGILILN?S „=CTIE IJONGTHGHI?I „SEX, „=CI?X?CINT „O „=GZI 

Patent Application Publication 

SINH LHINHS 
„ONGIVNA,={HCIAL CITI, H > 

> 96 

  



|OSTI "OICH 

US 2011/0111742 A1 

<LEXOV??IVALV?GI XV7/> <SELVOICIQVE TEVIL/> 

May 12, 2011 Sheet 15 of 19 

<S'HI VICIGH [][H'IOEVOEL » 

Patent Application Publication 



Patent Application Publication May 12, 2011 Sheet 16 of 19 US 2011/0111742 A1 

MIDDLEWARE VIRTUAL 
SERVER MACHINE 
44 24 

REGISTRATION REO UEST I 602 

1ST APPLICATION DEFINITION FILE 1604-1 

2N APPLICATION DEFINITION FILE 1604-2 

NAPPLICATION DEFINITION FILE 1604-N 

FIG. 16 

  



Patent Application Publication May 12, 2011 Sheet 17 of 19 US 2011/0111742 A1 

START 

1702 

RECEIVE REGISTRATION REOUEST 

1704 

DETERMINE USERD 

17O6 
DETERMINE APPLICATION 
ASSOCIATED WITH USERD 

1708 
GENERATE APPLICATION DEFINITION 

FILE FOR APPLICATION 

1710 
TRANSMIT APPLICATION DEFINITION 

FILE TO MOBILE DEVICE 

END 

FIG. 17 



Patent Application Publication May 12, 2011 Sheet 18 of 19 US 2011/0111742 A1 

BACKEND MIDDLEWARE VIRTUAL 
SERVER SERVER MACHINE 

70 44 24 

NEW MASTER DEFINITION I 802 

NEW APPLICATION DEFINITION 
FILE 1804 

FIG. 18 

  



Patent Application Publication May 12, 2011 Sheet 19 of 19 US 2011/0111742 A1 

START ) 
1992 

94. 
DETERMINE AusERIDAssociaTED 

WITH GIVEN APPLICATION 

1906 

FE FRAPPCA: 

r & 88 
TRANSMI APPLICATION DEFINITION 5 

8 ASSAE - 
SER i 

C to D 
FIG. 19 

  



US 2011/011 1742 A1 

AUTOMATIC APPLICATION DEFINITION 
DISTRIBUTION 

CROSS-REFERENCE TO RELATED 
APPLICATION 

0001. This application is a continuation of Application 
No. 1 1/459,054, filed Jul. 21, 2006, the contents of which are 
hereby incorporated by reference. 

FIELD OF TECHNOLOGY 

0002 The present disclosure relates to software, devices 
and methods allowing varied mobile devices to interact with 
server-side Software applications and, more particularly, to 
the automatic reconfiguration of Such mobile devices. 

BACKGROUND 

0003 Wireless connectivity is a feature of the modern 
telecommunications environment. An increasing range of 
people are using a wide variety of wireless data networks to 
access corporate data applications. 
0004. However, there are numerous competing mobile 
devices that can be used to achieve this. Each device has its 
own operating system and its own display characteristics. 
Operating systems are not mutually compatible, nor are the 
display characteristics—some are color, Some are black and 
white. Some are text-only, some are pictorial. 
0005. At the same time, an increasing number of mobile 
device users are people without a technical background or 
high level of educational achievement. Such people are often 
intimidated by the need to run complex installation programs. 
Furthermore, at present, Such installation programs generally 
depend on cable connections to a personal computer by the 
means of a “cradle' or other such device. 
0006. Therefore, a mechanism whereby a mobile client for 
a server-side application may be enabled for multiple wireless 
devices with minimal modification of the application at the 
server is required. Further, the ability to install and upgrade 
the application onto mobile devices wirelessly, without the 
need for human intervention or connection to PCs, is desir 
able. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0007. In figures that illustrate, by way of example, 
embodiments of the present disclosure: 
0008 FIG. 1 schematically illustrates a mobile device, 
exemplary of an embodiment of the present disclosure, 
including virtual machine Software, further exemplary of an 
embodiment of the present disclosure; 
0009 FIG. 2 further illustrates the organization of an 
exemplary virtual machine at the mobile device of FIG. 1; 
0010 FIG. 3 illustrates an operating environment for the 
device of FIG. 1 including a middleware server; 
0011 FIG. 4 illustrates the structure of an example appli 
cation definition file stored at the middleware server of FIG.3 
used by the device of FIG. 1; 
0012 FIG. 5 schematically illustrates the formation of 
application definition files at the middleware server of FIG.3: 
0013 FIG. 6 schematically illustrates the middleware 
server of FIG. 3, exemplary of an embodiment of the present 
disclosure, including a database, further exemplary of an 
embodiment of the present disclosure; 

May 12, 2011 

0014 FIG. 7 is a sequence diagram illustrating the 
exchange of sample messages passed between the mobile 
device, the middleware server and the backend application 
server of FIG. 3; 
0015 FIG. 8 illustrates steps performed at a mobile device 
under control of the virtual machine of FIG. 2; 
0016 FIG. 9 illustrates steps performed at a mobile device 
under control of the virtual machine of FIG. 2; 
(0017 FIG. 10 illustrates steps performed at a mobile 
device under control of the virtual machine of FIG. 2; 
0018 FIG. 11 illustrates the format of messages 
exchanged in the message flow of FIG. 7: 
0019 FIG. 12 illustrates a presentation of a user interface 
for a sample application at a mobile device; 
0020 FIG. 13 illustrates a sample portion of an application 
definition file defining the user interface illustrated in FIG. 
12: 
0021 FIG. 14 illustrates the format of a message formed in 
accordance with the sample portion of the application defini 
tion file of FIG. 13; 
0022 FIG. 15A illustrates a sample portion of an applica 
tion definition file defining a local storage at a mobile device; 
0023 FIG. 15B schematically illustrates local storage in 
accordance with FIG.15A; 
(0024 FIG. 15C illustrates how locally stored data is 
updated by a sample message in accordance with the sample 
portion of an application file definition of FIG. 15A; 
0025 FIG. 16 is a sequence diagram illustrating the 
exchange of messages between the mobile device and the 
middleware server; 
0026 FIG. 17 illustrates exemplary steps of a method of 
automatically configuring a mobile device triggered by 
mobile device registration according to an embodiment of the 
present disclosure; 
0027 FIG. 18 is a sequence diagram illustrating the 
exchange of messages between the backend server, the 
middleware server and the mobile device; and 
0028 FIG. 19 illustrates exemplary steps of a method of 
automatically configuring a mobile device triggered by 
receipt of a new master application definition according to an 
embodiment of the present disclosure. 

DETAILED DESCRIPTION 

0029 When a new or updated version of a server-side 
application is made available at a server associated with the 
server-side application, a new master document may be gen 
erated for the server-side application. Elements of the master 
document may be combined at a middleware server to form a 
device-specific document that describes aspects of the server 
side application to a further application executing on a remote 
wireless device. The middleware server may recognize that a 
new master document has been received and automatically 
generate a device-specific document for a given mobile com 
munication device. The middleware server may then auto 
matically transmit the device-specific document to the given 
mobile communication device. Such an installation scenario 
may be referred to as a “push’ installation scenario. The 
destination mobile devices for the transmissions of automati 
cally-generated, device-specific documents may be selected 
on the basis of mobile device groups (e.g., Sales, marketing) 
which are known to require access to the latest version of the 
relevant server-side application. 
0030. In accordance with an aspect of the present disclo 
Sure, there is provided a method of configuring a mobile 



US 2011/011 1742 A1 

communication device. The method includes receiving a 
master document associated with a server-side application 
and, responsive to the receiving, determining a user identifi 
cation associated with the server-side application. The 
method further includes generating, from elements of the 
master document, a device-specific document to describe 
aspects of the server-side application to a further application 
executing on a mobile communication device associated with 
the user identification and transmitting the device-specific 
document to the mobile communication device associated 
with the user identification. Additionally, a computing device 
is provided to carry out the method and a computer readable 
memory is provided that stores instructions to allow a pro 
cessor to perform the method. 
0031. Other aspects and features of the present disclosure 
will become apparent to those of ordinary skill in the art, upon 
review of the following description of specific embodiments 
of the application in conjunction with the accompanying fig 
U.S. 

0032 FIG. 1 illustrates elements of a mobile device 10, 
exemplary of an embodiment of the present disclosure, in 
communication with a wireless network 22. The mobile 
device 10 may be any conventional mobile device, modified 
to function in manners exemplary of the present disclosure. 
As such, elements of the mobile device 10 include a processor 
12, a network interface 14, a storage memory 16 and a user 
interface 18 typically including a keypad and/or touch 
screen. The network interface 14 enables the device 10 to 
transmit and receive data over the wireless network 22. The 
mobile device 10 may be, for example, be a WinCE based 
device, a PalmOS device, a WAP enabled mobile telephone, 
or the like. The storage memory 16 of the device 10 stores 
operating system software 20 providing a mobile operating 
system such as the PalmOS or WinCE. The operating system 
software 20 typically includes graphical user interface soft 
ware and network interface Software having Suitable applica 
tion programming interfaces (APIs) for use by other applica 
tions executing at the device 10. 
0033. The storage memory 16 at the device 10 further 
stores virtual machine software 29, exemplary of an embodi 
ment of the present disclosure. The virtual machine software 
29, when executed by the mobile device 10, enables the 
device 10 to present an interface, for a server-side application 
provided by a middleware server, as described below. Spe 
cifically, a virtual machine 24 (see FIG. 2), which exists 
through an execution of the virtual machine software 29 on 
the processor 12, interprets a document that describes aspects 
of the server-side application to virtual machine executing on 
the device 10. 

0034. The document, which may be called an “application 
definition file’, may define: a user interface 18 controlling 
application functionality and the display format (including 
display flow) at the device 10 for a particular server-side 
application; the format of data to be exchanged over the 
wireless network 22 for the particular server-side application; 
and the format of data to be stored locally at the device 10 for 
the particular server-side application. The virtual machine 24 
uses the operating system software 20 and associated APIs to 
interact with the device 10, in accordance with the received 
application definition file. In this way, the device 10 may 
present interfaces for a variety of server-side applications, 
executed at a variety of servers. Moreover, multiple wireless 
devices may use a common server-side application, as each 
wireless device executes a similar virtual machine that inter 

May 12, 2011 

prets an application definition file to present a user interface 
and program flow specifically adapted for the device. 
0035. As such, and as will become apparent, the exem 
plary virtual machine software is specifically adapted to work 
with the particular mobile device 10. Thus, if the device 10 is 
a PalmOS or WinCE device, the virtual machine 24 that 
results from executing the exemplary virtual machine soft 
ware 29 is, correspondingly, a PalmOS virtual machine or a 
WinCE virtual machine. As further illustrated in FIG. 1, the 
virtual machine 24 is capable of accessing the local storage 26 
at the device 10. 
0036. Other applications, libraries and software may also 
be present within the memory 16 or the local storage 26 and 
are not specifically illustrated. For example, the device 10 
may store and execute personal information management 
(PIM) software, including calendar and contact management 
applications. Similarly, the device 10 could store and execute 
software allowing the device 10 to perform a number of 
functions. Software could, for example, interact with the 
hardware at the device 10 to allow the device 10 to act as a 
multimedia player; allowing the device 10 to print; allowing 
the device 10 to interact with other incorporated hardware not 
specifically illustrated, including, but not limited to, a Blue 
tooth interface; a Global Positioning Satellite (GPS) 
Receiver; and the like. The memory 16 may also store soft 
ware components in the form of object classes that may be 
used to extend the functionality of the virtual machine 24. As 
will become apparent, these external software components in 
the form of object classes allow the virtual machine 24 to 
become extensible. The object classes may, for example, 
allow the virtual machine 24 to access additional hardware or 
software local to the device 10. 
0037. As detailed below, an exemplary application defini 
tion file may be formed using a markup language. Such as the 
known eXtensible Markup Language (XML) or a variant 
thereof. In accordance with an embodiment of the present 
disclosure, defined XML entities are understood by the vir 
tual machine 24. Defined XML entities are detailed in Appen 
dix 'A' (FIGS. 16A-16JJ) of U.S. Patent Application Publi 
cation 2003/0060896 A9. The defined XML entities are 
interpreted by the virtual machine 24 and may be used as 
building blocks to present an interface, at the mobile device 
10, to server-side applications, as detailed herein. 
0038 Specifically, as illustrated in FIG. 2, the virtual 
machine software 29 includes: conventional XML parser 
Software; event handler software; screen generation engine 
software; and object classes. The virtual machine software 
29, when executed leads to the virtual machine 24, which 
includes: an XML parser 61; an event handler 65; a screen 
generation engine 67; and instances of the object classes 69. 
The object classes correspond to XML entities supported by 
the virtual machine software 29 and possibly other XML 
entities contained within an application definition file. Sup 
ported XML entities are detailed in Appendix 'A' of previ 
ously-referenced U.S. Patent Application Publication 2003/ 
0060896 A9. A person of ordinary skill will readily appreciate 
that those XML entities identified in Appendix 'A' are exem 
plary only and may be extended or shortened as desired. 
0039. The XML parser 61 may be formed in accordance 
with the Document Object Model, or DOM, available at 
www.w3.org/DOM/, the contents of which are hereby incor 
porated by reference. The XML parser 61 enables the virtual 
machine 24 to read an application description file. Using the 
XML parser 61, the virtual machine 24 may form a binary 



US 2011/011 1742 A1 

representation of the application definition file for storage at 
the mobile device 10, thereby eliminating the need to parse 
text each time an application is used. The XML parser 61 may 
convert each XML tag contained in the application definition 
file, and its associated data, to tokens, for later processing. As 
will become apparent, this may avoid the need to repeatedly 
parse the text of an application description file. 
0040. The screen generation engine 67 orchestrates the 
display of initial and Subsequent Screens at the mobile device 
10 in accordance with an application description file 28, as 
detailed below. 

0041. The event handler 65 allows the virtual machine 24 
to react to certain external events. Example events include 
user interaction with presented Screens or display elements, 
incoming messages received from a wireless network, or the 
like. 
0042. The object classes define objects that allow the 
mobile device 10 to process each of the supported XML 
entities. Each of the object classes includes: attributes, which 
are used to store parameters defined by the XML file and 
functions allowing the XML entity to be processed at the 
mobile device, as detailed in Appendix 'A' of previously 
referenced U.S. Patent Application Publication 2003/ 
0060896A9, for each supported XML entity. So, as should be 
apparent, supported XML entities are extensible. The virtual 
machine software 29 may be expanded to support XML enti 
ties not detailed in Appendix 'A'. Corresponding object 
classes could be added to the virtual machine software 29. 
0043. As detailed below, upon invocation of a particular 
application at the mobile device 10, the virtual machine 24 
presents an initial screen on the user interface 18 based on the 
contents of the application definition file 28. Screen elements 
are created by the screen generation engine 67 by creating 
instances 69 of corresponding object classes for defined ele 
ments. The object class instances 69 are created using 
attributes contained in the application definition file 28. 
Thereafter the event handler 65 of the virtual machine 24 
reacts to events for the application. Again, the event handler 
65 consults the contents of the application definition file 28 
for the application in order to properly react to events. Events 
may be reacted to by creating instances of an associated 
“action” object class from the object classes. 
0044 Similarly, the object classes of the virtual machine 
software 29 further include object classes corresponding to 
data tables and network transactions defined in the Table 
Definition and Package Definition sections of Appendix 'A' 
of previously-referenced U.S. Patent Application Publication 
2003/0060896 A9. At run time, instances 69 of object classes 
corresponding to these classes are created and populated with 
parameters contained within the application definition file 28, 
as required. 
0045 Using this general description, persons of ordinary 
skill in the art will be able to form the virtual machine soft 
ware 29 for any particular device. Typically, the virtual 
machine software 29 may be formed using conventional 
object oriented programming techniques and existing device 
libraries and APIs, as to function as detailed herein. As will be 
appreciated, the particular format of the screen generation 
engine 67 and the object class instances 69 will vary depend 
ing on the type of virtual machine software, the device oper 
ating system and the APIs available at the device. Once 
formed, a machine executable version of the virtual machine 
software 29 may be loaded and stored at the mobile device 10, 
using conventional techniques. The machine executable ver 

May 12, 2011 

sion of the virtual machine software can be embedded in 
ROM, loaded into RAM over a network or loaded into RAM 
from a computer readable medium. Although, in the preferred 
embodiment the virtual machine software is formed using 
object oriented structures, persons of ordinary skill will 
readily appreciate that other approaches could be used to 
form suitable virtual machine software. For example, the 
object classes forming part of the virtual machine software 29 
could be replaced by equivalent functions, data structures or 
Subroutines formed using a conventional (i.e., non-object ori 
ented) programming environment. Operation of the virtual 
machine 24 while consulting an application definition file 
containing various XML definitions, is further detailed 
below. 

0046 FIG. 3 illustrates the operating environment for the 
first example mobile device 10. Further example mobile 
devices, including a second example mobile device 30, a third 
example mobile device 32 and a fourth example mobile 
device 34 are also illustrated in FIG.3. These further example 
mobile devices 30, 32 and 34 are similar to the first example 
mobile device 10 and also store and execute virtual machine 
software exemplary of an embodiment of the present disclo 
SU 

0047 Virtual machines, like the virtual machine 24 
executed at the first example mobile device 10, execute on 
each of the further example mobile devices 30, 32, 34, and 
communicate with a middleware server 44 by way of a first 
example wireless network 36, a second example wireless 
network38, a first example networkgateway 40 and a second 
example network gateway 42. The example gateways 40, 42 
are generally available as a service for those people wishingto 
have data access to wireless networks. An example network 
gateway is available from Broadbeam Corporation, of Cran 
bury, NJ, in association with the trademark SystemsGo!. The 
wireless networks 36,38 are further connected to one or more 
computer data networks, such as the Internet and/or private 
data networks by way of the examplegateways 40, 42. As will 
be appreciated, the application may work with many types of 
wireless networks. The middleware server 44 is, in turn, in 
communication with a data network that is in communication 
with the example wireless networks 36,38. The communica 
tion protocol used for such communication may be TCP/IP 
over an HTTP transport. As could be appreciated, other net 
work protocols such as X.25 or SNA could equally be used for 
this purpose. 
0048. The mobile devices 10, 30, 32, 34 communicate 
with the middleware server 44 in two ways. First, the virtual 
machine at each device may query the middleware server 44 
for a list of applications of which a user of an associated 
mobile device 10, 30, 32, 34 can make use. If a user decides 
to use a particular application, the corresponding mobile 
device 10, 30, 32, 34 can download a text description, in the 
form of an application definition file, for the particular appli 
cation from the middleware server 44 over its wireless inter 
face. As noted, the text description is preferably formatted 
using XML. Second, the virtual machine at each device may 
send, receive, present and locally store data related to the 
execution of applications, or its own internal operations. The 
format of exchanged data for each application is defined by an 
associated application description file. Again, the exchanged 
data is preferably formatted using XML in accordance with 
the application description file. 
0049. The middleware server 44, in turn, stores text appli 
cation description files for those applications that have been 



US 2011/011 1742 A1 

enabled to work with the various mobile devices 10,30, 32,34 
in a pre-defined format understood by the corresponding Vir 
tual machines. Software providing the functions of the 
middleware server 44 in the exemplary embodiment is written 
in Delphi and uses an SQL Server database. 
0050. As noted, text files defining application definitions 
and data may be formatted in XML. For example, XML 
version 1.0, detailed in the XML version 1.0 specification 
second edition, dated Oct. 6, 2000 and available at the internet 
address www.w3.org/TR/2000/REC-xml-2000- 1006, the 
contents of which are hereby incorporated herein by refer 
ence, may be used. However, as will be appreciated by those 
of ordinary skill in the art, the functionality of storing XML 
description files is not dependent on the use of any given 
programming language or database system. 
0051 Each application definition file is formatted accord 
ing to defined rules and uses pre-determined XML markup 
tags, known to both the virtual machine executed at the 
mobile device and the complementary server software 
executed at the middleware server 44. Tags define XML enti 
ties, which are used as building blocks to present an interface 
to an application at a mobile device. Knowledge of these 
rules, and an understanding of how each tag and section of 
text should be interpreted, allows the virtual machine 
executed at the mobile device to process an XML application 
definition file and thereafter provide an interface to an appli 
cation executed at an application server, as described below. 
The virtual machine effectively acts as an interpreter for a 
given application definition file. 
0052 FIG. 4 illustrates an example format for an XML 
application definition file 28. As illustrated, the example 
application definition file 28 for a given mobile device and 
server-side application includes three components: a user 
interface definition section 48, specific to the user interface 
for the mobile device 10, that defines the format of screen or 
screens for the application and how the user interacts with the 
screens; a network transactions definition section 50 that 
defines the format of data to be exchanged with the applica 
tion; and a local data definition section 52 that defines the 
format of data to be stored locally on the mobile device by the 
application. 
0053 Defined XML markup tags correspond to XML 
entities Supported at a mobile device and are used to create an 
application definition file 28. The defined tags may broadly be 
classified into three categories, corresponding to the three 
sections 48, 50 and 52 of an application definition file 28. 
0054 Example XML tags and their corresponding signifi 
cance are detailed in Appendix 'A' of previously-referenced 
U.S. Patent Application Publication 2003/0060896 A9. As 
noted above, the virtual machine software 29 at the mobile 
device 10 includes object classes corresponding to each of the 
XML tags. At run time, instances of the object classes are 
created as required. 
0055 Broadly, the following example XML tags may be 
used to define the user interface: 
0056 <SCREEND-this tag defines a screen such that a 
SCREEN tag pair contains the definitions of the screen ele 
ments (buttons, radio buttons and the like) and the events 
associated with the screen and the screen control elements; 
0057 <BTN>-this tag defines a button and attributes asso 
ciated with the button; 
0058 <LISTS--this tag defines a list box: 
0059) <CHOICEBOX>-this tag defines a choice item, 
which allows selection of a value from predefined list; 

May 12, 2011 

0060 <MENUD-the application developer will use this 
tag to define a menu for a given screen; 
0061 <EDITBOX>-this tag defines an edit box: 
0062 <TEXT ITEMD-this tag describes a text label that is 
to be displayed; 
0063 <CHECKBOX>-this tag describes a checkbox: 
0064 <HELP-this tag defines a help topic that is used by 
another element on the screen; 
0065 <IMAGED-this tag describes an image that appears 
on those displays that Support images; 
0.066 <ICOND-this tag describes an icon; 
0067 <EVENTY-this tag defines an event to be processed 
by the virtual machine, 24 (events can be defined against the 
application as a whole, individual screens or individual items 
on a given screen; sample events include: receipt of data over 
the wireless interface; and an edit of text in an edit box); and 
0068 <ACTIOND-this tag defines a particular action that 
might be associated with an event handler (sample actions 
include: navigating to a new window; and displaying a mes 
Sage box.). 
0069. The second category of example XML tags may be 
used in the network transaction section 50 of the application 
definition file 28. These may include the following example 
XML tags: 
(0070 <TABLEUPDATED-using this tag, the application 
developer can define an update that is performed to a table in 
the device-based local storage 26 (attributes of this tag allow 
the update to be performed against multiple rows in a given 
table at once); and 
(0071 <PACKAGEFIELD>-this tag defines a field in an 
XML package that passes over the wireless interface. 
0072 The third category of XML tags are those used to 
define a logical database that may be stored in local storage 26 
at the mobile device 10. The tags available that may be used 
in this section are: 
0073 <TABLED-this tag, along with its attributes, defines 
a table (contained within a pair of <TABLED tags are defini 
tions of the fields contained in that table; the attributes of a 
table control Such standard relational database functions as 
the primary key for the table); and 
(0074) <FIELD>-this tag defines a field and its attributes 
(attributes of a field are those found in a standard relational 
database system, Such as the data type, whether the field 
relates to a field in a different table, the need to index the field 
and so on). 
0075. The virtual machine 24 may, from time to time, need 
to perform certain administrative functions on behalf of a 
user. In order to do this, one of the object classes is associated 
with a repertoire of tags to communicate needs to the middle 
ware server 44. Such tags differ from the previous three 
groupings in that they do not form part of an application 
definition file, but are solely used for administrative commu 
nications between the virtual machine 24 and the middleware 
server 44. XML packages using these tags are composed and 
sent due to user interactions with configuration screens of the 
virtual machine 24. The tags used for this include: 
0076 <REG>-this tag allows the application to register 
and deregister a user for use with the middleware server 44; 
(0077 <FINDAPPSD-by using this tag, users can interro 
gate the middleware server 44 for a list of available applica 
tions; 
0078 <APPREG-using this tag, a mobile device can reg 
ister (or deregister) for an application and have the applica 
tion definition file downloaded automatically (or remove the 



US 2011/011 1742 A1 

application definition file from the device-based local storage 
26); and <SETACTIVED-using this tag, the user is allowed to 
identify the device that the user is currently using as the active 
device (if the user's preferred device is malfunctioning, or out 
of power or coverage, the user may need a mechanism to tell 
the middleware server 44 to attempt delivery to a different 
device). 
007.9 FIG. 5 illustrates the organization of application 
definition files at the middleware server 44 and how the 
middleware server 44 may generate an application definition 
file 28 (FIG. 4) for a given one of the example mobile devices 
10, 30, 32, 34. In the illustration of FIG. 5, only the first 
example mobile device 10 and the second example mobile 
device 30 are considered. Typically, since network transac 
tions and local data are the same across devices, the only 
portion of the application definition file that varies for differ 
ent devices is the user interface definition section 48. 

0080. As such, the middleware server 44 stores a master 
definition file 58 for a given server-side application. This 
master definition file 58 contains: an example user interface 
definition section 48-10 for the first example mobile device 
10 of FIG. 1; an example user interface definition section 
48-30 for the mobile device 30 of FIG. 3; a user interface 
definition section 48-N for an Nth mobile device; a descrip 
tion of the network transactions that are possible in the net 
work transactions definition section 50; and a definition of the 
data to be stored locally on the mobile device in the local data 
definition sections 52. Preferably, the network transactions 
definition section 50 and the local data definition sections 52 
will be the same for all example mobile devices 10, 30, . . . . 
N 

I0081 For the first example mobile device 10, the middle 
ware server 44 composes the application definition file 28 by 
determining the device type and adding the user interface 
definition section 48-10 for the first example mobile device 
10 to the definition sections 50, 52 for the network transac 
tions and the device local data. For the second example 
mobile device 30, the middleware server 44 composes the 
application definition file by adding the user interface defini 
tion section 48-30 for the second example mobile device 30 to 
the definition sections 50, 52 for the network transactions and 
the device local data. 
0082. The master definition file 58 for a given application 

is likely to be created away from the middleware server 44 and 
loaded onto the middleware server 44 by administrative staff 
charged with the operation of the middleware server 44. Mas 
ter definition files could be created either by use of a simple 
text editor or by a graphical file generation tool. Such a tool 
might generate part or all of the file, using knowledge of the 
XML formatting rules, based on the user's interaction with 
screen painters, graphical data definition tools and the like. 
0083 FIG. 6 illustrates the organization of middleware 
server 44 and associated master definition files. The middle 
ware server 44 may be any conventional application server 
modified to function in manners exemplary of the present 
disclosure. As such, the middleware server 44 includes a 
processor 60, a network interface 66, a storage memory 64 
and a server database 46. The middleware server 44 may, for 
example, be a Windows NT server, a Sun Solaris server, or the 
like. Correspondingly, the storage memory 64 of the middle 
ware server 44 stores a server operating system 62 such as 
Windows NT or Solaris. 

0084. The network interface hardware 66 enables the 
middleware server 44 to transmit and receive data over a data 

May 12, 2011 

network 63. Transmissions are used to communicate with 
both the virtual machine 24 of the first example mobile device 
10, via the wireless networks 36,38 and the wireless gateways 
40, 42, and a backend application server 70, which may be 
considered representative of one or more application servers. 
The backend application server 70 may be considered both 
the end recipient of data received by the middleware server 44 
from the mobile devices and the generator of data that is to be 
sent by the middleware server 44 to the mobile devices. 
I0085. The storage memory 64 at the middleware server 44 
further stores middleware server software 68, exemplary of 
an embodiment of an aspect of the present disclosure. The 
middleware server software 68, when executed by the pro 
cessor 60 of the middleware server 44, enables the middle 
ware server 44 to compose and understand XML packages 
that are sent by and received by the middleware server 44. 
These XML packages may be exchanged between the 
middleware server 44 and the first example mobile device 10 
or between the middleware server 44 and the backend appli 
cation server 70. 

0086. As mentioned above, communication between the 
backend application server 70 and the middleware server 44 
may use HTTP running on top of a standard TCP/IP stack. An 
HTTP connection between a running application at the back 
end application server 70 and the middleware server 44 may 
be established in response to receipt of an XML package from 
a mobile device. The server-side application executed at the 
backend application server 70 provides output to the middle 
ware server 44 over this connection. The server-side applica 
tion output may be formatted, by the server-side application, 
into appropriate XML packages understood by the virtual 
machine 24 at the first example mobile device 10. 
I0087. That is, a given server-side application (or an inter 
face portion of the server-side application) formats server 
side application output into an XML package in a manner 
consistent with a format defined in the application definition 
file for the given server-side application. Alternatively, an 
interface component, separate from the server-side applica 
tion, could easily be formed with an understanding of the 
format for output for the given server-side application. That 
is, with a knowledge of the format of data provided by and 
expected by the given server-side application at the backend 
application server 70, an interface component could be a 
produced using techniques readily understood by those of 
ordinary skill. The interface component could translate the 
output of the given server-side application to an XML pack 
age, as expected by the middleware server 44. Similarly, the 
interfaceportion may translate an XML package received, via 
the middleware server 44, from the mobile device 10 into a 
format understood by the given server-side application. 
I0088. The particular identity of the mobile device on 
which the interface to the server-side application is to be 
presented may be specified by a suitable identifier, contained 
in a header prefixed to the server-side application output 
XML package. This header may be used by the middleware 
server 44 to determine the appropriate mobile device to which 
to forward the XML package. Alternatively, the identity of the 
connection between the backend application server 70 and the 
middleware server 44 could be used to determine, at the 
middleware server 44, the appropriate mobile device to which 
to forward the XML package. 
I0089 FIG. 7 illustrates a sequence diagram detailing data 
flow (application data or application definition files 28) 



US 2011/011 1742 A1 

between the mobile device 10 and the middleware server 44, 
in manners exemplary of an embodiment of the present dis 
closure. 

0090. For data requested from the middleware server 44, 
the device 10, under software control by the virtual machine 
Software, transmits requests to the middleware server 44 (see 
also FIG. 3), which requests pass over the first wireless net 
work 36 to the first network gateway 40. The first network 
gateway 40 passes the request to the middleware server 44. 
The processor 60 of the middleware server 44 responds by 
executing a database query on the server database 46. The 
response to the query is an indication of the applications that 
are available to the user and the mobile device 10. Data 
representative of the indication is passed, by the middleware 
server 44, to the first network gateway 40. The first network 
gateway 40 forwards the data representative of the indication 
to the mobile device 10 over the first wireless network 36. 

0091 FIG. 7, when considered with FIG. 3, illustrates a 
sequence of communications, between the virtual machine 24 
at the device 10 and the middleware server 44, that may occur 
when the user of the mobile device 10 wishes interact with a 
server-side application. Accordingly, initially, the virtual 
machine 24 interrogates the middleware server 44 to deter 
mine the applications that are available for the first example 
mobile device 10. This interrogation may be initiated by the 
user instructing the virtual machine 24 at the first example 
device 10 to interrogate the middleware server 44. Respon 
sive to these instructions, the virtual machine 24 composes an 
XML package requesting the list of applications. The wire 
less interface hardware 14 (see FIG. 1) of the mobile device 
10 transmits the XML package to the middleware server 44 
(data flow 72). The XML message may be composed to 
contain a <FINDAPPSD tag, signifying, to the middleware 
server 44, a desire for a list of available applications. In 
response, the middleware server 44 makes a query to the 
server database 46. The server database 46, responsive to this 
query, returns a list of applications that are available to the 
user and to the first example mobile device 10. The list is 
typically based, at least in part, on the type of mobile device 
making the request, the identity of the user of the mobile 
device and the applications known to the middleware server 
44. The middleware server 44 converts the list into an XML 
list package and transmits the XML list package, including a 
list of available applications, to the mobile device 10 (data 
flow 74). Again, a suitable XML tag identifies the XML list 
package as containing a list of available applications. 
0092. In response to being presented with the list of avail 
able applications, a user at the first example device 10 may 
choose to register for an available server-side application in 
the list. When the user chooses to register for an application, 
the virtual machine 24 at the device 10 composes a registra 
tion request XML package containing a registration request 
for the selected application. The wireless interface hardware 
14 transmits the registration request XML package to the 
middleware server 44 (data flow 76). The registration request 
XML package may contain a <REG> tag. The name of the 
application is specified in the registration request XML pack 
age. The middleware server 44, in response to receiving the 
registration request XML package, queries the server data 
base 46 for a user interface definition associated with the 
specified application and the first example mobile device 10. 
Thereafter, the middleware server 44 creates the application 
definition file, as detailed with reference to FIG. 5. Then, the 
middleware server 44 composes an XML package including 

May 12, 2011 

the composed application definition file and transmits the 
XML package to the mobile device 10 (data flow 78). 
0093. The user is then able to use the functionality defined 
by the application definition file to send and receive data. 
0094. After receiving the XML package including the 
application definition file, the XML parser 61 of the virtual 
machine 24 may parse the XML text of the application defi 
nition file to form a tokenized version of the application 
definition file. That is, each XML tag of the application defi 
nition file may be converted to a defined token for compact 
storage and to minimize repeated parsing of the XML text 
file. The tokenized version of the application definition file 
may then be stored for immediate or later use by the device 
10. 

0.095 Thereafter, upon invocation of an interface to the 
particular application for which the device 10 has registered, 
the screen generation engine 67 of the virtual machine 24 
locates the definition of an initial screen for the particular 
application. The initial screen may be identified within the 
application definition file for the particular application as 
corresponding to a <SCREEND tag with an associated 
attribute of First screen="yes”. 
0096 Exemplary steps performed by the virtual machine 
24 in processing the initial screen (and any screen) are illus 
trated in FIG. 8. As illustrated, the screen generation engine 
67 generates an instance of an object class, defining a screen 
by parsing the section of the application definition file corre 
sponding to the <SCREEND tag in step S802. Supported 
screen elements may be buttons, edit boxes, menus, list boxes 
and choice items, as identified in sections 5.3, 5.4 and 5.5 of 
Appendix 'A' of previously-referenced U.S. Patent Applica 
tion Publication 2003/0060896 A9. Other screen elements, 
Such as images and checkboxes, as detailed in Appendix 'A'. 
may also be supported. However, for clarity of illustration, the 
processing of the other screen elements by the screen genera 
tion engine 67 is not detailed. Each Supported tag under the 
SCREEN definition section, in turn, causes creation of 
instances 69 of object classes within the virtual machine 24. 
Typically, instances of object classes corresponding to the 
tags, used for creation of a screen, result in presentation of 
data at the mobile device 10. As well, the creation of such 
instances may give rise to events (e.g., user interaction) and 
actions to be processed at the device 10. 
0097. Each element definition causes the virtual machine 
24 to use the operating system of the mobile device 10 to 
create a corresponding display element of a graphical user 
interface as more particularly illustrated in FIG. 9. Specifi 
cally, for each element, the associated XML definition is read 
in step S806, S816, S826, S836, and S846, and a correspond 
ing instance of a screen object class defined as part of the 
virtual machine software is created by the virtual machine 24 
in steps S808, S818, S828, S838 and S848, in accordance 
with steps S902 and onward illustrated in FIG.9. Each inter 
face object class instance is created in step S902. Each 
instance takes as attribute values defined by the XML text 
associated with the element. A method of the object is further 
called in step S904 and causes a corresponding device oper 
ating system object to be created. Those attributes defined in 
the XML text file, and stored within the virtual machine 
object, are applied to the corresponding display object created 
using the device operating system in steps S908S-S914. 
These steps are repeated for all attributes of the virtual 
machine object. For any element allowing user interaction, 
giving rise to an operating system event, the event handler 65 



US 2011/011 1742 A1 

of the virtual machine 24 is registered to process operating 
system events, as detailed below. 
0098. Additionally, for each event (as identified by an 
<EVENT) tag) and action (as identified by an <ACTIOND 
tag) associated with each XML element, the virtual machine 
24 creates a corresponding event object and action object 
forming part of the virtual machine software. The virtual 
machine 24 further maintains a list identifying each event 
object and each action object, and an associated identifier of 
an event in steps S916 to S928. 
0099 Steps S902-S930 are repeated for each element of 
the screen in steps S808, S818, S828, S838 and S848 as 
illustrated in FIG. 8. All elements between the <SCREEND 
definition tags are so processed. After the entire screen has 
been so created in memory, it is displayed in step S854, using 
conventional techniques. 
0100. As will be appreciated, objects are specific to the 
type of device executing the virtual machine Software. Func 
tions initiated as a result of the XML description may require 
event handling. This event handling is processed by the event 
handler 65 of the virtual machine 24 in accordance with the 
application definition file 28. Similarly, receipt of data from a 
mobile network will give rise to events. The event handler 65, 
associated with a particular application presented at the 
device, similarly processes incoming messages for that par 
ticular application. In response to the events, the virtual 
machine 24 instantiates Software objects and calls functions 
of those objects, as required by the definitions contained 
within the XML definitions contained within the application 
definition file 28, giving rise to the event. 
0101. As noted, the virtual machine software 29 includes 
object classes, allowing the virtual machine 24 to create 
objects corresponding to an <EVENT-tag. The event object 
classes include methods specific to the mobile device that 
allow the device to process each of the defined XML descrip 
tions contained within the application definition file and also 
allow the device to process program/event flow resulting from 
the processing of each XML description. 
0102 Events may be handled by the virtual machine 24 as 
illustrated in FIG. 10. Specifically, as the event handler 65 has 
been registered with the operating system for created objects, 
upon occurrence of an event, steps S1002 and onward are 
performed in response to the operating system detecting an 
event. 

0103) An identifier of the event is passed to the event 
handler 65 in step S1002. In steps S1004-S1008, this identi 
fier is compared to the known list of events, created as a result 
of steps S916-S930. For an identified event, actions associ 
ated with that event are processed in step S1008-S1014. That 
is, the virtual machine 24 performs the action defined in the 
<ACTION > tag associated with the <EVENT) tag corre 
sponding to the event giving rise to processing by the event 
handler 65. The <ACTIOND may cause creation of a new 
screen, as defined by a screen tag, a network transmission, a 
local storage, or the like. 
0104 New screens, in turn, are created by invocation of 
the screen generation engine 67, as detailed in FIGS. 8 and 9. 
In this manner, the navigation through the screens of the 
application is accomplished according to the definition 
embodied in the application definition file. 
0105 Similarly, when the user wishes to communicate 
with the middleware server 44, or store data locally, the event 
handler 65 creates instances 69 of corresponding object 
classes of the virtual machine software 29 and calls methods 

May 12, 2011 

of the instances to transmit the data, or store the data locally, 
using the local device operating system. The format of the 
data stored locally is defined by the local data definition 
section 52; the format of XML packages transmitted or 
received is defined in the network transaction package defi 
nition section 50. 
0106 For example, data that is to be sent to the wireless 
network is assembled into XML packages using methods of 
an XML builder object. Methods defined in as part of the 
XML builder object allow creation of a full XML package 
before passing the completed XML package to a message 
server object. The message server object uses the device's 
network APIs to transmit the completed XML package across 
the wireless network. 
0107 XML packages received from the data network 63 
(FIG. 6) give rise to events processed by the event handler 65. 
Processing of the receipt of XML packages is not specifically 
illustrated in FIG. 9. However, the receipt of a XML package 
triggers a "data” event recognized by the device operating 
system 20 (see FIG. 1). This data event is passed to the virtual 
machine 24 and the event handler 65 inspects the received 
XML package. As long as the data received is a valid XML 
data package as contained within the application definition 
file, the virtual machine 24 inspects the list of recognized 
XML entities. 
0.108 So, for example, a user could trigger the transmis 
sion of a login request (data flow 80, FIG. 7) by interacting 
with an initial login screen, defined in the application defini 
tion file for the application. The login request (data flow 80) 
would be passed by the middleware server 44 to the backend 
application server 70. The backend application server 70, 
according to the logic embedded within its application, would 
return a login response (data flow 82), which the middleware 
server 44 would pass to the virtual machine 24. Other appli 
cations, running on the same or other application servers 
might involve different interactions, the nature of such inter 
actions being Solely dependent on the functionality and logic 
embedded within the backend application server 70 and 
remaining independent of the middleware server 44. 
0109 FIG. 11 illustrates example XML messages passed 
as part of the message flows illustrated in FIG. 7. For each 
message, the header portion, i.e., the portion enveloped by the 
<HEAD-></HEAD tag pair, is considered to contain a times 
tamp and an identifier of the sending device. 
0110. A first example message 72 is representative of a 
message sent by the mobile device 10 to request the list of 
applications that the middleware server 44 has available to 
that user on that device. The first example message 72 speci 
fies a type for the mobile device 10 using text contained by the 
<PLATFORMD</PLATFORMD tag pair. A second example 
message 74 is representative of a message sent, to the mobile 
device 10 by the middleware server 44, in response to the first 
example message 72. The second example message 74 con 
tains a set of <APP-></APP tag pairs, each tag pair envelop 
ing an identity of a single application that is available to the 
user at the device 10. A third example message 76 is repre 
sentative of a message sent from the mobile device 10 to the 
middleware server 44 to request registration for a single 
server-side application. The tags specify information about 
the user and the mobile device 10. A fourth example message 
78 is representative of a message sent, to the mobile device 10 
by the middleware server 44, in response to the third example 
(registration request) message 76. The <VALUED (NALUED 
tag pair envelope a code indicating Success or failure. In the 



US 2011/011 1742 A1 

fourth example message 78 shown, a Success is indicated by 
“CONFIRM and is followed by an interface description for 
the application, enveloped by the <INTERFACED</INTER 
FACE tag pair. This interface description may then be stored 
locally within the storage memory 16 of the mobile device 10. 
0111. As noted, when a user starts an interface to an appli 
cation, an application definition file for which has been down 
loaded in the manner described above, the virtual machine 24 
reads the interface description section of the application defi 
nition file. The virtual machine 24 identifies the screen that 
should be displayed on startup and displays the elements of 
the screen as detailed in relation to FIGS. 9 and 10. The user 
may then use the functionality defined by the application 
definition file to send XML packages to, and receive XML 
packages from, the associated backend application server via 
the middleware server 44. 

0112 For the purposes of illustration, FIGS. 12 and 13 
illustrate the presentation of a user interface for a sample 
screen on a Windows CE Portable Digital Assistant. As illus 
trated in FIG. 13, a first XML portion 92 of the application 
definition file 28 is an interface description for a screen with 
the name “NewMsg”. This interface description may be con 
tained within the user interface definition section 48 of the 
application definition file 28 associated with the server-side 
application. The screen is defined to have a single button 
identified by a <BTN>tag, which is identified as item D in 
FIG. 13, with attributes NAME="OK", CAPTION="Send", 
INDEX="0, X="0", Y="15", HT="18" and WT=“50. This 
button gives rise to a single event (identified by the 
<EVENTSD tag) that has two associated actions: one defined 
by the <ACTION> tag with attribute TYPE =“SAVE"; and 
one defined by the <ACTIOND tag with attribute TYPE 
="ARML. The latter action results in the generation of an 
XML package (defined by the <PKG> tag with attribute 
TYPE="ME"), which has a data format as defined enveloped 
by the <PKG></PKG>tag pair. The package is defined to 
begin with a <MAIL>TAG with attributes MSGID, FROM 
and SUBJECT. Additionally, the interface description for the 
screen includes definitions for three edit boxes, as enveloped 
by the <EDITBOXES></EDITBOXES> tag pair. The defi 
nitions for the three edit boxes are identified in FIG. 13 as 
lines of XML code labeled A, B and C. 
0113. Upon invocation of the interface to the server-side 
application at the mobile device. 10, the screen generation 
engine 67 of the virtual machine 24 processes the interface 
definition for the screen, as detailed with reference to FIGS. 8 
and 9. That is, for XML tag D, the screen generation engine 67 
creates a button object in accordance with steps S804-S812. 
Similarly for XML tag pairs A, B and C within the application 
definition file 28, the virtual machine 24 creates edit box 
objects (i.e., steps S834-S842, see FIGS. 8 and 9). The data 
contained within the objects reflects the attributes of the rel 
evant button and edit box tags, contained in the application 
definition file 28 associated with the server-side application. 
0114. The resulting screen presented by the user interface 
18 of the mobile device 10 is illustrated in FIG. 12. The user 
interface 18 depicts a screen called “NewMsg”, which uses 
interface items that provide a user with an ability to compose 
and send data. The screen illustrated in FIG. 12 has an editbox 
named “To 84 corresponding to XML tag pair A in FIG. 13, 
an edit box named “Subject' 86 corresponding to XML tag 
pair B in FIG. 13 and an edit box named “Body” 88 corre 
sponding to XML tag pair C in FIG. 13. The screen illustrated 

May 12, 2011 

in FIG. 12 also incorporates a button named “OK” 90 corre 
sponding to XML tag D in FIG. 13. 
0115 Call-backs associated with the OK button 90 cause 
graphical user interface application software, as part of the 
operating system at the mobile device 10, to return control to 
the event handler 65 of the virtual machine 24. Thus, as the 
user interacts with the user interface 18, the user may input 
data within the presented screen using the mobile device API. 
Once data is to be exchanged with the middleware server 44. 
the user may press the OK button 90 and, by doing so, invoke 
an event, which is initially handled by the operating system of 
the mobile device 10. However, during the creation of the OK 
button 90, in steps S804-S810, any call-back associated with 
the button was registered to be handled by the event handler 
65 of the virtual machine 24. Upon completion, the virtual 
machine 24 receives data corresponding to the user's interac 
tion with the user interface 18 and packages this data into an 
XML package using corresponding objects. The XML pack 
age is populated according to the rules within the application 
definition file 28. 

0116. The event handler 65, in turn, processes the event 
caused by user interaction with the OK button 90 in accor 
dance with the <EVENT tag and corresponding 
<ACTIOND tag associated with the <BTN> tag, referenced 
as XML tag D, associated with the OK button 90. The events, 
and associated actions, are listed as data items associated with 
the relevant user interface item within the application defini 
tion file 28. The <ACTIONDtag causes the virtual machine 24 
to create an object that forms an XML package for transmis 
sion to the middleware server 44 in accordance with the 
format defined within the <ACTIOND</ACTIONDtag pair. 
That is, a “template' (defined beginning with the <PKG> tag 
with attribute TYPE="ME") for the XML package to be sent 
is defined within the <EVENT).</EVENT) tag pair for a 
given user interface item. This template specifies the format 
of the XML package to be sent and may include certain 
variable fields. The variable fields in the formatted XML 
package take on contents that vary according to the values 
received in data entry fields on the current and previous 
screens. The definition of the template specifies which data 
entry field should be interrogated to populate a given variable 
field within the XML package that is to be sent. 
0117. According to the template, some of the variable 
fields of the XML package are filled dynamically from data 
inserted by the user into edit boxes presented on the display of 
the mobile device 10. The template includes placeholders 
delimited by square brackets, i.e., “I” and “I”. These place 
holders reference a data source from which data for filling the 
corresponding section of the template should be obtained. A 
suitable data source might be a user interface field on the 
current Screen, a user interface field on a previous screen or a 
table in a device-based logical database. The virtual machine 
24, after reading the data source name, searches for the field 
corresponding to the referenced data source and replaces the 
placeholder with data contained within the named field. For 
example, the SUBJECT attribute of the <MAILD tag in the 
first XML portion 92 references NewMsg...Subject. As such, 
content for the SUBJECT attribute may be read from the edit 
box (field) named “Subject' on the screen named “NewMsg”. 
This process is repeated for each such placeholder, until the 
virtual machine 24, reading through the template, has 
replaced all placeholders in the template with content to form 
an XML package. 



US 2011/011 1742 A1 

0118. An exemplary XML package 94, containing data 
obtained as a result of input provided to the fields of the 
“NewMsg” screen, is illustrated in FIG. 14. The exemplary 
XML package 94 may have been created responsive to user 
interaction with the “NewMsg” screen, which user interac 
tion may be considered to have been culminated by interac 
tion with the OK button 90 (see FIG. 12) corresponding to 
XML tag U in the first XML portion 92. In this case, the user 
has entered: the text 'steven(a) nextair.com' into the edit box 
named “To'84; the text “Hello Back” into the edit box named 
“Subject'86; and the text “I am responding to your message' 
into the edit box named “Body’88. 
0119 The virtual machine 24, using the template, inspects 
these three edit boxes and places the text contained within 
each edit box in the appropriate position in the template. For 
example, the placeholder NewMsg. Subject is replaced by 
“Hello Back”. The virtual machine 24 creates the exemplary 
XML package 94 by invoking functionality embedded within 
an XML builder software object to populate the variable 
fields of the template contained in the first XML portion 92. 
Once the exemplary XML package 94 has been assembled in 
this fashion, a relevant method of the message server object is 
invoked to transmit the exemplary XML package 94 across 
the network. 
0120 When an XML package is received, the event han 
dler 65 of the virtual machine 24 is notified. In response, the 
virtual machine 24 the XML parser 61 to build a list of name 
value pairs contained within the received XML package. 
Thereafter, methods within an object class for processing 
incoming XML packages are invoked that allow the virtual 
machine 24 to inspect the XML package to determine a 
server-side application to associate with the XML package 
and select a corresponding application definition file. The 
methods within the object class for processing incoming 
XML packages also allow the virtual machine 24 to inspect 
the application definition file to identify the fields in the 
device-based logical database and the user interface screens 
that may need to be updated with new data received in the 
XML package. In the case wherein the user interface screens 
are updated, such updating may be accomplished according 
to the procedures normal to the particular device. 
0121 Handling of incoming XML packages is defined in 
the application definition file 28. That is, for each of the 
possible XML packages that can be received, the application 
description file 28 includes definitions of device-based logi 
cal database tables and screen items that should be updated, as 
well as which section of the package updates which device 
based logical database table or screen item. After an XML 
package has been received, the event handler 65 uses rules 
based on the application description file 28 to identify which 
device-based logical database tables or screen items need to 
be updated. 
0.122 FIGS. 15A-15C illustrate how the format of the 
logical database in the local storage 26 on the device 10, and 
the XML packages that update the logical database, are 
defined in the application definition file 28. A second XML 
portion 96 of the application definition file 28, illustrated in 
FIG. 15A, forms part of the local data definition section 52 
(see FIG. 4). The second XML portion 96 defines an example 
format for a portion of the logical database related to the 
e-mail application interface described with reference to 
FIGS. 12 and 13. 

0123. Two example tables are defined in the second XML 
portion 96 of FIG. 15A for formatting the logical database for 

May 12, 2011 

the e-mail application. A first XML item E of the second 
XML portion 96 corresponds to a first table, labeled “SENT 
ITEMS in FIG. 15B. A second XML item F of the second 
XML portion 96 corresponds to a second table, labeled 
“RECIPIENTS’ in FIG. 15B. The first table Stores details of 
sent e-mail messages and has four fields. The second table 
stores recipients of sent e-mail messages and has three fields. 
0.124 FIGS. 15A and 15B illustrate the use of the local 
storage 26 to store data related to XML packages that are sent 
and received. Specifically, the first table, defined by the first 
XML item E in FIG. 15A, may store the e-mail message 
contained in the exemplary XML package 94, shown in FIG. 
14. Accordingly, the application definition file 28 for the 
e-mail application may be required to contain, along with the 
first XML portion 92 and the second XML portion 96, a third 
XML portion 102, illustrated in FIG. 15C. The third XML 
portion 102 defines how the data packages, composed accord 
ing to the template included in the first XML portion 92 (see 
FIG. 13), lead to updates of the tables defined by the second 
XML portion 96. 
(0.125. The third XML portion 102 includes a first section 
104 and a second section 106. The first section 104 defines 
how fields of a received XML package may be used to update 
the first table of FIG. 15B. An example line 108 defines how 
the “MSGID field of the received XML package may be 
used to update a field named “LNGMESSAGEID in the first 
table of FIG. 15B. Similarly, the second section 106 defines 
how the fields of the received XML package may be used to 
update fields of the second table of FIG. 15B. 
0.126 The third XML portion 102 is contained by an 
<AXDATAPACKET).</AXDATAPACKETD tag pair. 
Attributes of the <AXDATAPACKETs tag provide rules that 
instruct the virtual machine 24 as to whether data contained 
within an XML package of a given XML package type should 
be used to update tables in the device-based logical database. 
These rules may be applied wheneveran XML package of the 
given XML package type is sent or received. 
I0127. As can be seen from the preceding description and 
example, Such an approach has significant advantages over 
traditional methods of deploying applications onto mobile 
devices. First, the definition of an application’s functionality 
is separated from the details associated with implementing 
Such functionality, thereby allowing the implementers of a 
mobile application to concentrate on the functionality and 
ignore implementation details. Second, application definition 
files can be downloaded wirelessly, wherever the device hap 
pens to be at the time at which the functionality is required. 
This greatly improves the usefulness of the mobile device, by 
removing reliance on returning the device to a cradle and 
running a complex installation program. Third, the use of 
application definition files allows flexible definitions for 
numerous applications. Server-side applications may be eas 
ily ported to a number of device types. 
I0128. Notably, mobile communication devices of the cur 
rent generation may act not only as a mobile telephone, but 
also may execute an e-mail client application, a personal 
information manager (PIM) application, a digital photo orga 
nizer application, etc. There are often many, widely varied 
options that may be configured. While some of the options are 
related to personalization of the mobile device, proper con 
figuration of other options may be essential to a proper inter 
action between the mobile device and an enterprise with 
which a user of the mobile device is associated. 



US 2011/011 1742 A1 

0129. When a new mobile device is issued to an individual 
associated with the enterprise, an information technology 
(IT) specialist may be given the task of configuring the new 
mobile device for use with the enterprise. To this end, the IT 
specialist may be required to navigate multiple screens on the 
new mobile device to set communications or other device 
Settings. 
0130. In view of the above disclosure, the IT specialist 
may be required to separately request an application defini 
tion file for each server-side application of potentially many 
server-side applications with which the new mobile device is 
expected to interact. 
0131. In another scenario, an employee with a previously 
personalized and configured mobile device may require that a 
replacement mobile device be similarly personalized and 
configured. The replacement mobile device may be required 
due to the loss of a previous mobile device, software or 
hardware failure of the previous mobile device or merely a 
hardware upgrade from the previous mobile device to a newer 
mobile device. 
0132 Such personalization and configuration of mobile 
devices, though beneficial, may be considered tedious and 
time consuming. 
0133. In overview, the use of device-specific documents to 
describe aspects of server-side applications to the virtual 
machine 24 executing on the first exemplary mobile device 
10, that is, application definition files, as disclosed above, 
allows for a record to be maintained at the middleware server 
44 of the application definition files that have been provided 
to a given user with a given user ID. Furthermore, the given 
user ID may be grouped with other userIDs, where the other 
user IDs are associated with users with which the given user 
shares some commonality, be it a common managerial Stra 
tum, a common Supervisor or a common rate plan, for three 
examples. 
0134. A mobile device may trigger automatic mobile 
device configuration by performing an initial registration pro 
cess with the middleware server 44. Such an initial registra 
tion process may, for instance, involve the virtual machine 24 
(see FIG. 2) executed at the first exemplary mobile device 10 
(see FIG. 1 and FIG. 3) formulating and transmitting a regis 
tration request 1602 (see FIG. 16) to the middleware server 
44. 

0135. In view of FIG. 17, the middleware server 44 
receives (step 1702) the registration request. In particular, in 
an exemplary case similar to the receipt of a request detailed 
above, the registration request passes from the first exemplary 
mobile device 10 to the first networkgateway 40 over the first 
wireless network 36 (see FIG. 3). The first network gateway 
40, which may be part of the data network 63 illustrated in 
FIG. 6, passes the registration request to the middleware 
server 44. The network interface hardware 66 of the middle 
ware server 44 receives the registration request and stores the 
registration request in the memory 64 Such that the registra 
tion request is available for processing by the processor 60. 
0.136 Processing of the registration request may, for 
example, involve the processor 60 determining the user ID 
(step 1704) associated with the device that formulated the 
registration request. Such a userID may be arranged to be part 
of a registration request that conforms to a standard for Such 
requests. For instance, the userID may be contained in a User 
ID field of the registration request or, where the registration 
request is formed in XML or a variant thereof, the registration 
request may include a User ID element. In either case, the 

May 12, 2011 

middleware server 44 may parse the received registration 
request to determine the associated user ID. 
0.137. Once the processor 60 has determined the user ID 
for a given registration request, the processor 60 may, based 
on the user ID, determine (step 1706) a set of N server-side 
applications that have been previously associated with the 
user ID, say, in the server database 46 (see FIG. 6). The 
previous association between user ID and server-side appli 
cations may be manually established by an administrator of 
the middleware server 44 or automatically established 
through historical monitoring of requests made by a mobile 
device associated with the user ID. 

0.138. The processor 60 may then generate (step 1708) an 
application definition file for the mobile device for each of the 
server-side applications in the determined set. Generation of 
an application definition file (step 1708) has been described 
above in conjunction with the description of FIG. 4 and FIG. 
5 to involve determination of a device type for the mobile 
device requesting the application definition file and the addi 
tion of the type-appropriate user interface definition section 
48 to the network transactions definition section 50 and the 
local data definition sections 52. 

0.139. Once the first application definition file is generated, 
the middleware server 44 may transmit (step 1710) the first 
application definition file 1604-1 (see FIG. 16) to the mobile 
device. Once the second application definition file is gener 
ated, the middleware server 44 may transmit (step 1710) the 
second application definition file 1604-2 (see FIG.16) to the 
mobile device. Such generation (step 1708) and transmission 
(step 1710) may continue until the Nth application definition 
file 1604-N has been generated (step 1708) and transmitted 
(step 1710) to the mobile device. 
0140. The administrator of the middleware server 44 may 
independently determine the set of applications appropriate 
to the user and save the record of the set of applications in an 
Application Listing record in the database 46 in association 
with the user ID of the user. Alternatively, the administrator 
may establish a single record of the set of applications to 
associate with users that have common properties and, con 
sequently, common application requirements. In Such a case, 
the administrator may create a Group Listing record, wherein 
the userIDs of the members of the group are listed. The Group 
Listing record may be associated with an Application Listing 
record, which identifies applications that are to be associated 
with the user IDs listed in the Group Listing record. As such, 
more efficient associations are possible. 
0141 Beyond the application definition files that are asso 
ciated with server-side applications, there may exist applica 
tion definition files that provide various settings for the 
mobile device. 

0142. In a first example, an application definition file may 
provide the mobile device with a particular phone number 
that a device is to use for a dial-up connection to a specific 
network. Alternatively, an application definition file may pro 
vide a particular Internet Protocol (IP) address to which the 
device is to connect as a point of server connection. For 
instance, a user may need to connect to a particular computer, 
at the particular IP address, that is in a designated demilita 
rized Zone. In computer security terminology, a demilitarized 
Zone is a network area that sits between an organization's 
internal network and an external network, usually the Inter 
net. The user may need to connect to the particular computer 



US 2011/011 1742 A1 

for business transactions, so, after an initial login, the user 
may want to be re-configured/re-directed to a different entry 
point to the corporate LAN. 
0143. In another example, an application definition file 
may provide the mobile device with an address for a Virtual 
Private Network (VPN) server that provides secure, authen 
ticated network connections. For instance, the user may be 
required to be authenticated before being able to access a 
Local Area Network (LAN) for access to corporate applica 
tions. The application definition file may also provide encryp 
tion key settings and an indication of an authentication pro 
tocol (HTTP LDAP, NT, etc.). 
0144. The mobile device may regularly establish a con 
nection to a server gateway. Based on a type for the connec 
tion being established to the server gateway, an optimized 
protocol may be selected. The optimized protocol may be, for 
instance, the known Transport Control Protocol/Internet Pro 
tocol (TCP/IP) or the User Datagram Protocol. The decision 
of which protocol to use may be, for instance, based on 
whether the mobile device is establishing the connection to 
the server gateway over a Wide Area Network, over a public 
wireless network or over a private WiFi network. In addition, 
a separate configuration may be required for each network, if 
the device supports roaming between these different tech 
nologies. An application definition file may provide the 
mobile device with a mapping between type of connection 
and optimized protocol. Additionally, the application defini 
tion file may provide the mobile device with configuration 
details for each of the protocols. 
0145. In a further example, an application definition file 
may provide the mobile device with configuration details for 
delivery mechanisms. The most efficient data delivery 
mechanism may depend on aspects of the server-side appli 
cations with which the mobile device is to interact. As such, in 
addition to configuration details for delivery mechanisms, the 
application definition file may provide an indication of deliv 
ery mechanism to use for interaction with a particular server 
side application. 
0146 For instance, if the server-side application is to pro 
vide the mobile device with instant notification of new data, a 
push protocol may be used as the delivery mechanism. Exem 
plary push protocols include UDP hole punching and the 
Push Access Protocol. Network Address Translator traversal 
through UDP hole punching is a method for establishing 
bidirectional UDP connections between Internet hosts in pri 
vate networks using Network Address Translation. The Push 
Access Protocol is a protocol defined in WAP-164 of the 
Wireless Application Protocol suite from the Open Mobile 
Alliance. In the case of UDP push, a keep alive “beacon' may 
be required to keep port mappings alive in public wireless 
gatewayS. 
0147 In contrast, if the server-side application is to pro 
vide the mobile device with non-critical updating of data, a 
simple pull protocol may be used as the delivery mechanism. 
Exemplary pull protocols include the Hypertext Transfer Pro 
tocol and the Simple Object Access Protocol. It should be 
clear to a person of ordinary skill that other client request 
response technologies could be used. In the case of the pull 
protocols, the application definition file may provide an indi 
cation of a polling interval of a certain time duration. The 
mobile device using a pull protocol for the delivery mecha 
nism may transmit a request for an update in a background 
process. Subsequent request transmissions may be separated 
in time by the polling interval. 

May 12, 2011 

0.148. In a still further example, an application definition 
file may provide the mobile device with configuration details 
for a particular mechanism for dealing with out of coverage 
scenarios on the mobile device. For example, the configura 
tion details may indicate whether the device should attempt to 
re-connect after the device has been disconnected. Addition 
ally, the configuration details may indicate a value for a num 
ber of times the device try to re-connect before alerting the 
user. Furthermore, the configuration details may indicate 
duration for the time between re-connection attempts. Alter 
natively, the configuration details may indicate that the device 
is to notify the user whenever the device goes out of network 
coverage so that the user may be responsible for attempting to 
re-establish a connection. 
0149 Further configuration settings, such as distinctive 
ringing, background color or pattern, server address for mul 
timedia messaging, etc., may also be provided in an applica 
tion definition file. Additional configuration settings may 
include, for example, use of a predetermined retry rate, use of 
encryption, use of analarm to indicate that there are more than 
five items in an outbound queue, use of a Secure Sockets 
Layer (SSL). 
0150 Advantageously, IT staffare relieved from having to 
configure each device manually and request each application 
definition file manually. Upon registration, a relatively unin 
formed field user can quickly have a properly configured 
mobile device, e.g., after accidentally erasing all memory on 
the device. 
0151. It has been previously anticipated that, in response 
to either of a new server-side application oran updated server 
side application being made available through the middle 
ware server 44, a notification message would be transmitted 
over a wireless connection to a set of mobile devices indicat 
ing that the new or updated server-side application is avail 
able. It has also been previously anticipated that, in response 
to receiving the notification message, each of the mobile 
devices in the set may display a dialog that provides a user 
with the option to download and install a new application 
definition file corresponding to the new or updated server 
side application. According to this approach, the user is 
required to take positive action to authorize the download and 
installation of the new application definition file. If this posi 
tive action is not taken by a given user, the application defi 
nition file for an updated server-side application may become 
out of date at the mobile device associated with the given user. 
0152 The above-discussed automated delivery of appli 
cation definition files, based on the registration of a mobile 
device, may be further extended to handle automated delivery 
of new application definition files related to new or updated 
server-side applications. That is, new application definition 
files may be delivered to mobile devices without the require 
ment for positive action to be taken by the users of those 
mobile devices. 
0153 FIG. 18 illustrates a sequence diagram detailing 
data flow between the backend server 70, the middleware 
server 44 and the mobile device 10, in manners exemplary of 
an embodiment of the present disclosure. 
0154 As discussed above, the master definition file 58 for 
a given server-side application may be created away from the 
middleware server 44 and loaded onto the middleware server 
44 by administrative staff charged with the operation of the 
middleware server 44. The master definition file 58 may also 
be generated at the backend server 70 and transmitted (data 
flow 1802) to the middleware server 44. In either case, the 



US 2011/011 1742 A1 

middleware server 44 may receive the master definition file 
58 for the given server-side application and store the master 
definition file 58 in the database 46. 
0155 FIG. 19 illustrates exemplary steps of a method of 
automatically providing application definition files to mobile 
devices. Initially, the middleware server 44 receives (step 
1902) the master definition file 58. Responsively, the middle 
ware server 44 determines at least one user ID (step 1904) 
associated with the server-side application to which the mas 
ter definition file 58 relates. As discussed above, the middle 
ware server 44 may maintain, in the database 46, an associa 
tion between user IDs and server-side applications. The 
previous association between user ID and server-side appli 
cations may be manually established by an administrator of 
the middleware server 44 or automatically established 
through historical monitoring of requests made by a mobile 
device associated with the user ID. 
0156. As such, the determining of a user ID to associate 
with a given application may simply involve the middleware 
server 44 parsing the received master definition file 58 to 
determine the server-side application and then querying the 
database 46 with the name of the server-side application as a 
key. The response from the database 46 may be an individual 
user ID or may be a Group Listing record, with several user 
IDs listed. 
0157. Once the middleware server 44 has determined at 
least one user ID to associate with the server-side application 
that is related to the received master definition file 58, the 
middleware server 44 may, based on the user ID, generate 
(step 1906) an application definition file for the server-side 
application, where the application definition file is specific to 
the mobile device associated with the determined user ID. 
0158 Generation of the application definition file (step 
1906) has been described above in conjunction with the 
description of FIG. 4 and FIG. 5 to involve determination of 
a device type for the mobile device to which the application 
definition file is to be transmitted and the addition of the 
type-appropriate user interface definition section 48 to the 
network transactions definition section 50 and the local data 
definition sections 52. 
0159. Once the application definition file is generated, the 
middleware server 44 may transmit (step 1908) the applica 
tion definition file (data flow 1804, FIG. 18) to the mobile 
device. 
(0160 The above example provides a scenario in which the 
server-side application has already been associated with the 
user ID. In an alternative scenario, a new server-side applica 
tion becomes available. It may be that an administrator com 
poses a new master application definition for the new server 
side application and installs the new master application 
definition in the database 46 at the middleware server 44. 
Given that an interface to the new server-side application has 
not been in use at mobile devices previously, it may be con 
sidered that the new server-side application has not been 
historically associated with any userIDs. As such, any asso 
ciation between the new server-side application and userIDs 
may be established by the administrator. 
(0161 The administrator may establish a direct association 
between the new server-side application and a particular user 
ID. Alternatively, the administrator may establish an indirect 
association between the new server-side application and a 
grouping of user IDs. As discussed above, the administrator 
may establish a Group Listing record, wherein the userIDs of 
the members of the group are listed. The Group Listing record 

May 12, 2011 

may be associated with an Application Listing record, which 
identifies applications that are to be associated with the user 
IDs listed in the Group Listing record. When adding the new 
master application definition to the database 46, the admin 
istrator may also update the Application Listing record by 
adding the name of the new server-side application. As such, 
the middleware server 44 may determine which mobile 
devices for which to generate new application definition files, 
i.e., those mobile devices associated with the userIDs listed in 
the Group Listing record associated with the updated Appli 
cation Listing record. 
(0162 Advantageously, where the middleware server 44 is 
configured according to an embodiment of the present disclo 
Sure, the users of the mobile devices associated with server 
side applications offered through the middleware server 44 
may be confident that their respective devices are equipped 
with up-to-date application definition files. 
0163. It will be understood that the invention is not limited 
to the embodiments described herein which are merely illus 
trative of a preferred embodiment of carrying out the inven 
tion, and which is susceptible to modification of form, 
arrangement of parts, steps, details and order of operation. 
The invention, rather, is intended to encompass all such modi 
fication within its scope, as defined by the claims. 
We claim: 
1. A method of configuring a mobile communication 

device, said method comprising, at a server: 
querying a database with an indication of a server-side 

application; 
receiving, in response to said querying, an indication of a 

user identification associated with said server-side 
application; 

generating, from elements of a master document associ 
ated with the server-side application, a document to 
describe aspects of said server-side application to a fur 
ther application executing on a mobile communication 
device associated with said user identification, said 
document being specific to a determined device type of 
said mobile communication device; and 

automatically transmitting said device type-specific docu 
ment to said mobile communication device. 

2. The method of claim 1 wherein said generating said 
device type-specific document comprises generating a docu 
ment in a markup language. 

3. The method of claim 1 wherein said elements of said 
master document include: 

a format of a user interface for said server-side application: 
a format of network messages for exchange of data gener 

ated by said server-side application; and 
a format for storing data related to said server-side appli 

cation. 
4. The method of claim 1 wherein said master document 

comprises a plurality of formats, each format of said plurality 
of formats for a user interface for said server-side application 
at a specific type of mobile communication device. 

5. The method of claim 4 wherein said generating com 
prises: 

determining a type of the mobile communication device 
associated with said user identification; and 

selecting a format among said plurality of formats, where 
said format is associated with said type. 

6. The method of claim 1 wherein said master document 
comprises a format of network messages for exchange of data 
generated by said server-side application. 



US 2011/011 1742 A1 

7. The method of claim 1 wherein said master document 
comprises a format for storing data related to said server-side 
application. 

8. A computing device comprising: 
a processor; 
memory in communication with said processor, storing 

Software adapting said device to: 
query a database with an indication of a server-side appli 

cation; 
receive, in response to said query, an indication of a user 

identification associated with said server-side applica 
tion; 

generate, from elements of a master document associated 
with the server-side application, a document to describe 
aspects of said server-side application to a further appli 
cation executing on a mobile communication device 
associated with said user identification, said document 
being specific to a determined device type of said mobile 
communication device; and 

automatically transmit said device type-specific document 
to said mobile communication device. 

9. The computing device of claim 8 wherein said software 
further adapts said device to generate said device type-spe 
cific document by generating a document in a markup lan 
gllage. 

10. The computing device of claim 8 wherein said master 
document comprises a plurality of formats, each format of 
said plurality of formats for a user interface for said server 
side application at a specific type of mobile communication 
device. 

11. The computing device of claim 10 wherein said soft 
ware further adapts said device to generate said device type 
specific document by: 

determining a type of the mobile communication device 
associated with said user identification; and 

Selecting a format among said plurality of formats, where 
said format is associated with said type. 

12. A non-transitory computer readable medium contain 
ing computer-executable instructions that, when performed 
by processor, cause said processor to: 

query a database with an indication of a server-side appli 
cation; 

receive, in response to said query, an indication of a user 
identification associated with said server-side applica 
tion; 

generate, from elements of a master document associated 
with the server-side application, a document to describe 
aspects of said server-side application to a further appli 

May 12, 2011 

cation executing on a mobile communication device 
associated with said user identification, said document 
being specific to a determined device type of said mobile 
communication device; and 

automatically transmit said device type-specific document 
to said mobile communication device. 

13. The computer readable medium of claim 12 wherein 
said generating said device type-specific document com 
prises generating a document in a markup language. 

14. The computer readable medium of claim 12 wherein 
said elements of said master document include: 

a format of a user interface for said server-side application; 
a format of network messages for exchange of data gener 

ated by said server-side application; and 
a format for storing data related to said server-side appli 

cation. 
15. The computer readable medium of claim 12 wherein 

said master document comprises a plurality of formats, each 
format of said plurality of formats for a user interface for said 
server-side application at a specific type of mobile commu 
nication device. 

16. The computer readable medium of claim 12 wherein 
said generating comprises: 

determining a type of the mobile communication device 
associated with said user identification; and 

selecting a format among said plurality of formats, where 
said format is associated with said type. 

17. The computer readable medium of claim 12 wherein 
said master document comprises a format of network mes 
sages for exchange of data generated by said server-side 
application. 

18. The method of claim 1 wherein said master document 
comprises a format for storing data related to said server-side 
application. 

19. The computing device of claim 8 wherein said elements 
of said master document include: 

a format of a user interface for said server-side application; 
a format of network messages for exchange of data gener 

ated by said server-side application; and 
a format for storing data related to said server-side appli 

cation. 

20. The computing device of claim 9 wherein said master 
document comprises a format for storing data related to said 
server-side application. 

c c c c c 


