
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2011/02964.19 A1

Dumas et al.

US 2011 O2964.19A1

(43) Pub. Date: Dec. 1, 2011

(54)

(75)

(73)

(21)

(22)

(62)

EVENT-BASED COORDINATION OF
PROCESS-ORIENTED COMPOSITE
APPLICATIONS

Inventors: Marlon G. Dumas, Queensland
(AU); Julien J.P. Vayssiere,
Queensland (AU); Tore Fjellheim,
Queensland (AU)

Assignee: SAP AG, Walldorf (DE)

Appl. No.: 12/951,912

Filed: Nov. 22, 2010

Related U.S. Application Data

Division of application No. 1 1/218.933, filed on Sep.
2, 2005, now Pat. No. 7,873,422.

Publication Classification

(51) Int. Cl.
G06F 9/46 (2006.01)

(52) U.S. Cl. .. 71.8/101

(57) ABSTRACT

A process model specified using, for example, UML activity
diagrams can be translated into an event-based model that can
be executed on top of a coordination middleware. For
example, a process model may be encoded as a collection of
coordinating objects that interact with each other through a
coordination middleware including a shared memory space.
This approach is suitable for undertaking post-deployment
adaptation of process-oriented composite applications. In
particular, new control dependencies can be encoded by drop
ping new (or enabling existing) coordinating objects into the
space and/or disabling existing ones.

process Riocieting foci
- 4

Developer
Constie

"Task"
Extractor

Execific Erwinner

xonterrrrrrrrrrrr write
Shared
Memory
Space

tackers
application

is arisoner

(Object-Orierted Coordination fiddleware

Backer
application

tax

ce 2

T / 138

wfeatif t

Sacksna
agpication

US 2011/0296419 A1 Patent Application Publication

Patent Application Publication Dec. 1, 2011 Sheet 2 of 14 US 2011/0296419 A1

US 2011/0296419 A1 Dec. 1, 2011 Sheet 3 of 14 Patent Application Publication

gö?r:33x3 404 Åpëød si ss&2.0) {------------------------------------§¶???-------------------------------------Y p?ë s?o;0&quoo Ád?dæg:

US 2011/0296419 A1 Dec. 1, 2011 Sheet 4 of 14 Patent Application Publication

(suonpuoo ºigeae Aoeud),

Patent Application Publication Dec. 1, 2011 Sheet 5 of 14 US 2011/0296419 A1

Oégioy Coordinators (e.g., connectors -502 S30
8. :S for T instance axwatarararaxaaaaaaaaXa sexxxxx -84

x -x wsa rar ax row X T Router waits for activating object (e.g., r
Wom process instantiation object or other

object)

i Router reads/evaluates object and
activates (e.g., performs a

transformation)

1- a 1-as - 508

Route paces ask-&failing object(s)
onto space to indicate erabiement of

associated actici

Connector reads evaluates task -so enabing object and activates (e.g.,
iteracts with externai application)

f Connector competes action and places -512
competion object of to space

^:
irisis?

- W - s

Reverse event-ased coordination to -520
obtain modified process rode

Patent Application Publication Dec. 1, 2011 Sheet 6 of 14 US 2011/0296419 A1

Depicy set of routers communicating
with applications through correctors

Begin execution of process instance

- 802

84.

-806
Subscribe to space for object templates

natching input set

w m a -608
Receive notification that a set of objects s : Verify grocess
matching the input set are available on instance D

the memory space : sa

Evaluate (boolean) conditions of the -612
input set against the set of objects

to fit take
objects 8waxxx < Conditions are true?

Roster Activatic r. Take set of “task
competion" objects

Perform transformation(s)
62

83.

verify process
instance D :

Write resulting "task-enabling" object(s)
back into space for corsumption by

other coordinators (routers or
connectors

F.G. 6

Patent Application Publication Dec. 1, 2011 Sheet 7 of 14 US 2011/0296419 A1

Deploy set of connectors -702
communicating with applications

7 Ca

& -78

3. - -- 3: - - - - - - 7O6 n

Place "process instantiation" object Define unique
Clinic space process instance D

-72

Weify process
SaCe instance D

74.

Execute Coffesponding task (i.e.,
interact with outside applications)

-- 78
X r -78 Write "task completion" objects to Verify process
space (to be read by routers) & instance D

Patent Application Publication Dec. 1, 2011 Sheet 8 of 14 US 2011/0296419 A1

84.

8:8

<Coordinator nate we with participants * * >
<irgit
<espate
<Coxtipletionic ect. -806

action: Checktraffic piics f>
</Textipate)
KConcilitica:-
KEquality wariabies traiši.e. '

wate: * * OK >
</CorciitionX
</reatX
<Output>

<Establingobject actiox:8 Catch axi
pilicit: * * * * f>

K fost-put
<StepSet)
*Corigietioneet

&ction: postponekeeting piidae f>
</Stop Setx

</Coordinator)

82

8 O

8

Patent Application Publication Dec. 1, 2011 Sheet 9 of 14 US 2011/0296419 A1

32

Extracting Tasks

Y 38
Analyzing asks

- 910
Generating Coordinators

Patent Application Publication Dec. 1, 2011 Sheet 10 of 14 US 2011/0296419 A1

----annurunner & Extract task ode

Generate connector for the task node r (4.

Determine aii input sets for activating
the task node (i.e., a routes leading to
the task node from a preceding task

node(s))

Generate one router per input set

1.dditional task nodess
remaining?

Depicy correctors and routers

Patent Application Publication Dec. 1, 2011 Sheet 11 of 14 US 2011/0296419 A1

Determine transition (and/or task) of
process model

Source?

initial Node Task node Control node

Return input set for
"Process

instantiation" Object

Return single input
set Containing a
completion object

Traverse process
model backwards to
task node Source

Return appropriate
number of input sets,

Output input
Set(s)

Additiona
Transitions
emaining2

Patent Application Publication Dec. 1, 2011 Sheet 12 of 14 US 2011/0296419 A1

fAiiiptSets: Frocess ;
203 y et {x, ..., xn is Actor -iccies(a) in

tiptSets(x: if ...ii inputSets{x}
-
finputSetsix: Nocie):

24. ies it, , ir; it cofing a six it
s *eir triptSet raisi, ii...t. trutSeti rais(i)

if iSets: fans raisitio
ex: Soice{} 4. 28

if Nodeyge{x} at "action"
return onsistic Object(x; 20

eisei Kotisfyps:{x : “initia 4s
return Processistantiatien objectirocess(x)

eise if Nodeygex in decision, fork? 22
ketc.,..., on s isjuncts (3.8 d.), -K

ki, ... , is inputSets(Souice in
Fetirn ci lj is, ... as it,

{cr} Cn: j in
28 eise if Nocietype(x : “mérge”

\ at it, ... , t is incoining ransix in
retirin ipu:Setsiasti i ... i triu:Sets rans(tr.

eise if Nodeype(x : "oir."
st 8, ... , t as conting raisex.

ii.1, ... , 3.r.

i ini, , , , , irri is gutSetstrans; 3. ... a putS&isitarist ir
?et if is, ;in,

in, - ... im,

Patent Application Publication Dec. 1, 2011 Sheet 13 of 14 US 2011/0296419 A1

Kotter artie is Checkirasifi?icknasalier * * >

<Ing-tat- \ Kettplate
3O4. <Cotapletion Cect

actioxane: Check resertatiotiite
piisie ' ' war : X f> f

K fierplatex
siegsplate

<Cosapieties: Okect.

to its privility 3O2 pi.ii: wax : X f>
</Eerspilatex
<xxxiitics)
*Equality variaki.e.: citize' wall:ers false f>

<A Concilition:-
*{{Conditio
*3.g3 8...ity waxiao.es: ' ' train wate: ' ' true f>

</Concilitics
Kf inp3t
<Kitpatx
<Exab.i.rgooleet action: checktraffic

gi.ic: ' ' war : X f> 32
< for:tigatx

<f Rotter

138

3

Patent Application Publication Dec. 1, 2011 Sheet 14 of 14 US 2011/0296419 A1

4A2

% isplay Notes

- 424
Check is affic or ditions R is ses. Retird

Year-e- asser-screer ---

Y 44 (S.
4.38

affice: {{x sing: 3Six orff ----
-426 , * 3.33

38 siegiiig ties: :

US 2011/02964. 19 A1

EVENT-BASED COORONATION OF
PROCESS-ORIENTED COMPOSITE

APPLICATIONS

CROSS REFERENCE TO RELATED
APPLICATIONS

0001. This application claims priority under 35 U.S.C.
S120 to, and is a divisional application of U.S. patent appli
cation Ser. No. 1 1/218,933, filed on Sep. 2, 2005, titled
EVENT-BASED COORDINATION OF PROCESS-ORI
ENTED COMPOSITE APPLICATIONS, which is incorpo
rated herein by reference in its entirety.

TECHNICAL FIELD

0002 This description relates to coordination between
Software applications.

BACKGROUND

0003 Process modeling refers generally to the formaliza
tion of a method(s) that defines tasks, as well as rules for
controlling whether, when, and how the tasks are imple
mented. For example, a business process Such as receipt of
inventory at a warehouse may be formalized, or modeled, to
define tasks related to how products are received, how corre
sponding information regarding the products is stored in a
database, and how the products are distributed for storage
within the warehouse. Virtually any process, business or oth
erwise, may be modeled in this way. The tasks of such process
models may be implemented by human and/or computer
(e.g., Software applications) actors, and process execution
engines may be used to implement particular instances of the
process models and ensure that the modeled tasks are per
formed correctly, and in the correct order, and that instance
related data is managed appropriately within each process
model instance.
0004 An example of an area in which such process models
are implemented includes the coordination and/or packaging
of multiple software applications (and/or individual function
alities of the software applications) to obtain a desired result.
Such Packaged Composite Applications (PCAs) allow devel
opers to build new applications by using existing features of
multiple, existing applications. For example, a developer may
use customer objects and related functionality from a Cus
tomer Relationship Management System, and product infor
mation from a Product Management System, in order to pro
vide customers with certain product information that may not
otherwise be available.
0005. In other words, such a process-oriented composite
application may be used to aggregate functionality from a
number of other applications, and to coordinate Such appli
cations according to a process model, e.g., a business process
model. In this way, a composite functionality may be pro
vided to a user, in a predictable, efficient, and useful manner.

SUMMARY

0006 According to one general aspect, an instance of a
process model having a plurality of tasks is created. A plural
ity of event-based applications within an event-based execu
tion environment is associated with the instance of the pro
cess model, at least one of the event-based applications being
associated with at least one of the tasks. The instance of the
process model is executed by detecting and producing events
at a sequence of the event-based applications, the events

Dec. 1, 2011

including a task-enabling event that triggers the at least one of
the event-based applications to perform the at least one taskin
association with at least one external application.
0007 Implementations may include one or more of the
following features. For example, associating a plurality of
event-based applications within an event-based execution
environment with the instance of the process model may
include associating a process instance identifier with the
instance and with the plurality of event-based applications,
and/or may include associating a plurality of coordinating
objects within a middleware with the instance of the process
model.
0008. In the latter example, executing the instance of the
process model by detecting and producing events at a
sequence of the event-based applications may include waiting
for a completion object at a router object, the completion
object signifying a completion of one of the tasks by a first
connector object, and outputting the task-enabling event from
the router to activate the at least one of the event-based appli
cations, where the at least one of the event-based applications
is associated with a second connector object. In this case,
waiting for a completion object at a router object may include
waiting for a plurality of completion objects at the router, the
completion objects including object templates, and determin
ing whether the object templates validate an input set of the
router by evaluating conditions defined in association with
the object templates and based on execution paths through the
process model. Additionally, or alternatively, executing the
instance of the process model by detecting and producing
events at a sequence of the event-based applications may
include modifying the instance with respect to the process
model by modifying and/or adding one of the coordinating
objects in the middleware.
0009. In executing the instance of the process model by
detecting and producing events at a sequence of the event
based applications, the task-enabling event may be written to
a shared memory space for detection therefrom by the at least
one of the event-based applications. A completion event may
be read from the shared memory space, the completion event
being written to the shared memory space by the at least one
of the event-based applications after a performance of the at
least one task. A second task-enabling event may be written to
the shared memory space in order to enable a second one of
the event-based applications to perform a second one of the
tasks in association with a second external application.
0010. The executing of the instance may be modified by
changing a composition of one or more of the event-based
applications, so as to overlay a desired behavior on the pro
cess model within the instance. In this case, the changing of a
composition of one or more of the event-based applications
may be incorporated into a modified process model that
reflects the changing.
0011 Executing the instance of the process model by
detecting and producing events at a sequence of the event
based applications may include executing a packaged com
posite application that is defined by the process model and
that includes functionality of the external application to per
form the at least one task. In this case, the instance of the
process model may be modified by adding and/or changing an
aspect of one or more of the event-based applications, based
on a context of the packaged composite application. Addi
tionally, or alternatively, creating an instance of a process
model having a plurality of tasks may include receiving a user
stimulus from a user of the packaged composite application.

US 2011/02964. 19 A1

0012. According to another general aspect, a system
includes an execution environment that is operable to com
municate with at least one external application. The execution
environment includes first event-based applications that are
operable to communicate with the at least one external appli
cation for performance of tasks of a process model in asso
ciation with the at least one external application, and second
event-based applications that are operable to evaluate and
output events within the execution environment to coordinate
a sequence of the performance of the tasks according to the
process model.
0013 Implementations may include one or more of the
following features. For example, the execution environment
may include a memory space into which events may be read
and/or written by the first event-based applications and/or the
second event-based applications. In this case, the events may
include an enabling event written by one of the second event
based applications for enabling one of the first event-based
applications to perform its associated task, and a completion
event written by one of the first event-based applications for
signifying completion of its associated task.
0014. The execution environment may be operable to
execute an instance of the process model, using the first
event-based applications and the second event-based appli
cations. In this case, the instance of the process model may be
modified independently of the process model by, for example,
a modification of a composition of the first event-based appli
cations and/or the second event-based applications.
0.015 According to another general aspect, an apparatus
includes a storage medium having instructions stored
thereon. The instructions include a first code segment for
reading a first task completion event from a memory space,
the first task completion event indicating completion of a first
task of a process model, a second code segment for writing a
first task-enabling event to the memory space, a third code
segment for reading the first task-enabling event and coordi
nating performance of a second task of the process model
based thereon, and a fourth code segment for writing a second
task completion event to the memory space signifying
completion of the second task.
0016. Implementations may include one or more of the
following features. For example, the first code segment may
include a fifth code segment for reading a plurality of task
completion events from the memory space, including the first
task completion event, and a sixth code segment for evaluat
ing conditions associated with the plurality of task-comple
tion events to determine whether the task-completion events
match an input set of the first code segment that is defined
with respect to a path through the process model to the third
code segment. The apparatus may include a fifth code seg
ment for reading the first task completion event from the
memory space in place of the first code segment within an
instance of the process model, and a sixth code segment for
writing a modified first task-enabling event to the memory
space, in response to the reading of the first task completion
event, in order to execute the instance separately of the pro
cess model.
0017. The details of one or more implementations are set
forth in the accompanying drawings and the description
below. Other features will be apparent from the description
and drawings, and from the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

0018 FIG. 1 is a block diagram of an example system for
providing and executing event-based coordination of pro
cess-oriented Software applications.

Dec. 1, 2011

0019 FIG. 2 is a block diagram of an implementation of
the system of FIG. 1.
0020 FIG. 3 is a flowchart illustrating a process that may
be implemented by the system of FIG. 1.
0021 FIG. 4 is an activity diagram that may be operated
upon by the system of FIG. 1.
0022 FIG. 5 is a flowchart illustrating operations of
implementations of the system of FIG. 1.
0023 FIG. 6 is a flowchart illustrating operations of
implementations of the system of FIG. 1.
0024 FIG. 7 is a flowchart illustrating operations of
implementations of the system of FIG. 1.
0025 FIG. 8 is an example of a code section that may be
implemented by the system of FIG. 1.
0026 FIG.9 is a first flowchart illustrating example opera
tions of a process model transformer of the system of FIG.1.
0027 FIG. 10 is a second flowchart illustrating example
operations of a process model transformer of the system of
FIG 1.
0028 FIG. 11 is a third flowchart illustrating example
operations of a process model transformer of the system of
FIG 1.
0029 FIG. 12 is an example of a code section that may be
used to implement the operations of the flowchart of FIG. 11.
0030 FIG. 13 is an example of a code section that may be
a result of the operations of the flowcharts of FIGS. 9-12.
0031 FIG. 14 is a block diagram of an implementation of
a portion of the diagram 400 of FIG. 4.

DETAILED DESCRIPTION

0032 FIG. 1 is a block diagram of a system 100 for pro
viding and executing event-based coordination of process
oriented Software applications, such as, for example, a pack
aged composite application. For example, by representing
tasks of a defined process as loosely coupled (or decoupled)
objects and/or events, the system 100 allows for implemen
tations in which a composite application may be enriched
with new features or with new (additional) applications, or
may be modified to meet special circumstances or demands
(e.g., to personalize the composite application to the needs of
a particular user or group of users), simply by, for example,
providing new or modified ones of the objects and/or events
(or relationships therebetween). Thus, the system 100 is oper
able to translate a process-oriented application into an event
based application that is amenable to Such runtime adapta
tion, and that exhibits various other features and advantages
that are discussed in more detail below.
0033. In FIG. 1, then, a process modeling tool 102 is
illustrated that may be used to produce a process model 104.
For example, the process modeling tool 102 may include a
graphical user interface in which tasks (which also may be
referred to or known as activities, actions, task nodes, and so
on) are represented as blocks or Some other designated shape,
while control nodes (which help define possible paths
through the tasks) may have one or more other shapes. In this
way, a developer or other user may use the process modeling
tool 102 to join the task and control nodes of the process
model 104 graphically in a desired order, and with a desired
relationship to one another.
0034) Tasks of the process model 104 may each relate to
one or more functionalities of a plurality of backend software
applications that are represented in FIG. 1 as applications
106, 108, and 110. In this way, the process model 104 con
ceptually represents a process-oriented composite applica

US 2011/02964. 19 A1

tion that aggregates functionality from the representative
applications 106, 108, and 110 by specifying interconnec
tions between the applications 106, 108, and 110.
0035. As referenced above, the software applications 106,
108, and 110 may have well-defined functions and capabili
ties, and may represent, for example, Human Resource Man
agement (HRM) applications, Supply Chain Management
(SCM) applications, Customer Relationship Management
(CRM) applications, or virtually any other type of software
that has the ability to present discrete elements or components
of its functionality for use by a composite software applica
tion (other examples of which are provided herein). For
example, the applications 106, 108, and 110 each may imple
ment an Enterprise Services Architecture (ESA) and/or
Enterprise Application Integration (EAI) solution that is
designed to allow the applications 106, 108, and 110 to
present their respective services and/or functionalities for use
in composing a Packaged Composite Application (PCA), the
behavior of which may be governed and/or described by the
process model 104. Specific examples of Such composite
software applications are provided in more detail herein, but
it should be understood that Such composite software appli
cations may take advantage of the features of the applications
106, 108, and 110 to provide a variety of advantages over a
similar application that may be built from the ground up,
where such advantages may include, for example, increased
speed of deployment, as well as improved performance, Scal
ability, resource sharing, and reliability.
0036) The composite software application may then be
implemented by a developer or other user (not shown in FIG.
1) as a user application 112. The user application 112 may run
on, for example, a computing device Such as, for example, a
Personal Digital Assistant (PDA), a cell phone, a laptop or
tablet computer, or virtually any other type of computing
device.
0037. As just mentioned, the process model 104 may be
used to govern and/or describe a behavior of the (composite)
user application 112, e.g., by being deployed within a process
management engine (not shown). In FIG. 1, however, the
system 100 includes a model transformer 114 that is operable
to transform the process-oriented description of the compos
ite application (i.e., the process model) into an event-based
coordination of the tasks of the process model 104, to be
implemented within an execution environment 116.
0038. For example, the execution environment 116 may
represent a coordination infrastructure or coordination
middleware that is operable to implement such event-based
coordination models. The execution environment 116 may
Support, for example, event publishing, data transfer/sharing,
and complex event Subscription(s), association(s) of reac
tions to event occurrences, and runtime re-configuration so
that new event Subscriptions and reaction rules may be added
as needed.

0039. In the example of FIG. 1, and in various other
examples described herein, the execution environment 116 is
illustrated as an Object-based Coordination Middleware
(OCM), which is an example of coordination middleware
having roots in the “tuple space model' (in which a repository
of elementary data structures, or “tuples’ allow multiple pro
cesses to communicate with one another via the repository).
Such coordination middleware allows cooperation between
the applications 106, 108, 110, and 112 through a flow of
objects into and out of one or more object spaces, or memo
ries. That is, for example, and as described in more detail

Dec. 1, 2011

below, components (or processes) of the applications 106.
108, 110, and 112 may use persistent storage of the execution
environment 116 to store objects, both to communicate with
one another and to coordinate actions by exchanging objects
through the space(s).
0040. The model transformer 114 is operable to input the
process model 104 and output objects to be used in the execu
tion environment 116. More specifically, the model trans
former 114 includes a task extractor 118 that is operable to
remove each of the tasks from the process model 104 for
analysis by a task analyzer 120. The task analyzer 120 also
may use information regarding transitions between the tasks
of the process model 104, information regarding control
nodes of the process model 104 (e.g., splits, joins, or other
decision points for routing through the tasks of the process
model 104), or other available information, in order to ana
lyze the tasks and/or other features of the process model 104.
Then, an object generator 122 is operable to use results of the
analysis of the task analyzer 120 to generate objects for use in
the execution environment 116 to coordinate implementa
tions of instances of the process model 104.
0041. As referenced above, the execution environment
116 may include an object-oriented coordination middleware
into which the objects generated by the object generator 122
are deployed, and which itself may contain a shared memory
space 124. Coordination between the applications 106, 108,
and 110 occurs through additional objects (e.g., passive
objects) being written and taken from the memory space 124
within the execution environment 116. As described below,
Some of the objects written to the memory space 124 may
correspond to data designated to flow from one of the appli
cations 106, 108, or 110 to another, while other ones of the
objects may provide a signposting function, e.g., indicating
that a given task of the process model 104 has been completed
or that a given task is enabled but has not yet started.
0042. More particularly, in the example of FIG. 1, the
object generator 122 deploys objects 126 and 128, which may
have their own thread(s) of execution, and that may be
referred to herein as coordinators (or, more specifically, may
be referred to as routers or connectors, respectively), and
which generally include objects or other types of software
entities that are deployed into the coordination middleware
116 to coordinate tasks of the process model 104. The coor
dinators 126 and 128 may, for example, operate in a loop until
Suspended ordestroyed, with each iteration including waiting
for an event (e.g., an addition to the memory space 124 space
of an object 130 or an interaction initiated by the external
application 112), performing internal processing and/or inter
acting with the (external) applications 106, 108, 110, and
writing one or several objects 130 to the memory space 124.
0043. In the example of FIG. 1, and as referenced above,
coordinators are further classified as the routers 126 and the
connectors 128. According to this example, and as described
in more detail herein, the routers 126 are responsible for
internal coordination activities within the execution environ
ment 116, so that such internal coordination activities may be
maintained separately from the actions of the connectors 128,
which are responsible for communicating with the external
applications 106, 108, and/or 110. Of course, other classifi
cations of coordinators 126/128 may be used.
0044 Thus, the connectors 128 represent a type of coor
dinator dedicated to enabling a connection between the
memory space 124 and the applications 106,108, 110, or 112.
The connectors 128 take into account the possibility that the

US 2011/02964. 19 A1

applications 106, 108, 110, or 112 generally may not be
programmed to interact with the execution environment 116
(and/or the memory space 124) but may instead rely on other
communication protocols and interfaces.
0045. In contrast, the routers 126 (which also may be
referred to as control routers) react to the arrival of one or
more of the object(s) 130 to the memory space 124 and
perform some processing before producing a new object(s)
130 for writing onto the space 124. The processing that the
routers 126 perform may be, for example, translation of data
using a specified operation. Such operations may include, for
example, an arithmetic operation, or more complex opera
tions, such as, for example, checking that a purchase order is
valid.
0046 Although specific examples, implementations, and
operations of the system 100 of FIG. 1 are provided in detail
below, and with reference to specific ones of the routers
126a-126d, connectors 128a-128d, and objects 130a-13a, it
may be understood from the above that the system 100 allows
for execution of an instance of the process model 104, using
an event-based coordination of the tasks of the process model
104 for the particular instance. For example, the connectors
128 may represent the tasks of the process model 104, so that
the connectors 128 interact with the applications 106, 108,
and/or 110 to provide a packaged composite application 112
that may operate according to the process model 104. Mean
while, each of the routers 126 may represent one of a possible
plurality of paths or routes through the process model 104 to
a particular one of the tasks of the process model 104.
0047. For example, tasks 104a, 104b, and 104c of the
process model 104 may be performed by corresponding ones
of the connectors 128 (in association with the external appli
cations 106, 108, and/or 110, as described herein). As may be
observed from the simple example of the process model 104,
the task 104a may be activated by a first input resulting from
a first path through a task 104b (i.e., in response to a comple
tion of the task 104b), or a second input resulting from a
second path through a task 104c (i.e., in response to a comple
tion of the task 104c). Accordingly, the routers 126 may
include a first router relating to an activation of the task 104a
resulting from a completion of the task 104b, and a second
router relating to an activation of the task 104a resulting from
a completion of the task 104c.
0048 Thus, although a particular instance of the process
model 104 may activate only one of the tasks 104b and 104c
(e.g., by activating a corresponding connector(s)), the event
based coordination of an instance of the process model 104
within the execution environment 116 contemplates either or
both of these possibilities (e.g., by having a router associated
with each). As a result, the routers 126 are able to control a
flow of data through the memory space 124 and to/from the
connectors 128 (and possibly to/from other routers), using the
objects/events 130, in a manner analogous to the way that data
would be controlled within an instance of the process model
104. Accordingly, the application 112 may be experienced
and/or implemented by a user, perhaps by way of a user
interface 132, in the same or similar manner as if the appli
cation 112 were governed by the process model 104.
0049 Additionally, however, the event-based coordina
tion of the process model 104 allows for additional advan
tages, such as, for example, run-time adaptation of the pro
cess model 104. For example, a software developer (not
shown) who may wish to modify the behavior of the user
application 112 at a developer console 134, perhaps to include

Dec. 1, 2011

a new or modified element 136 within the user interface 132,
may do so, e.g., simply by encoding a new router for addition
to the execution environment 116. Such a router (e.g., the
router 126d, shown in dashed lines in FIG. 1) may serve, for
example, to effectively intercept data (e.g., by Subscribing to
certain events/objects 130) for processing in a manner not
envisioned by the process model 104. For example, the router
126d may allow elimination of certain tasks of the process
model 104 (e.g., one of the tasks 104b or 104c), or may allow
processing of the tasks of the process model 104 in a different
order. Similarly, an addition of a new router and/or connector
may allow for the performance of an entirely new task within
a given instance of the process model 104.
0050 Thus, the system 100 maintains many or all of the
advantages of the process model 104. Such as, for example, an
ability to visualize and understand dependencies between the
applications 106, 108, and 110 in implementing the compos
ite application 112, in a convenient and consistent manner.
Additionally, the system 100 may reduce or eliminate a need
to change and re-deploy the process model 104, in order to
provide modified or enhanced capabilities within the appli
cation 112.

0051. In other words, the system 100 allows for translation
of the process model 104 of the composite application 112
into an event-based model(s) for use in a runtime environ
ment, so that, thereafter, for example, event-based rules (e.g.
event Subscriptions related to a specific task) may be added or
removed (e.g., the router 126d), with a result of overlaying
behavior on top of the composite application 112, even if the
composite application 112 has already been deployed. In this
way, users, administrators and/or developers can re-route data
and/or control in an already-deployed composite application,
perhaps in response to special requirements or unforeseen
situations, in order to steer the data and/or control into execu
tions paths not foreseen in the process model 104, and may
thereby facilitate the personalization and adaptation of the
application 112 and similar applications. As a result, Such
runtime adaptation and/or re-configuration of an instance of
the process model 104, i.e., without requiring alignment
between each execution of the composite application 112 and
the process model 104, may be advantageous to the users,
developers, and/or administrators.
0.052 For example, such ad hoc flexibility mechanisms
may be instrumental for purposes such as personalizing appli
cations to Suit requirements or preferences of specific users,
or adapting the behavior of composite applications based on
the users context (e.g. location, device, or network connec
tion) without overloading the process model with Such
details. Other examples include hot-fixing the composite
application to address unforeseen errors (as opposed to pre
dicted exceptions), and/or to add new features (e.g. to plug-in
new applications or to re-route tasks and data).
0053 As mentioned above, most or all of the features and
advantages of the process model 104 may be retained, since,
for example, the process-based and event-based views of the
application 112 may co-exist, and the process model 104 may
be used if desired or necessary. The process and event views
may then be synchronized offline. For example, if any
changes implemented through the event-based coordination/
model are desired to be maintained, then the process model
104 may be changed and re-deployed accordingly for future
US

0054 As described herein, the execution environment of
the example of FIG. 1 illustrates an object-oriented coordi

US 2011/02964. 19 A1

nation middleware. In this context, coordinating objects (also
referred to hereinas coordinators) may refer to objects having
their own thread of control that may run on the coordination
middleware (e.g., the object-oriented coordination middle
ware 116). As such, coordinators may be deployed, Sus
pended, resumed, and/or destroyed by applications running
outside the memory space 124 at any time. Moreover, coor
dinators may read and write passive objects to/from the space,
Subscribe to events, and receive notifications from the space,
including notifications from the shared memory space 124.
Thus, for example, such coordinating objects, as opposed, for
example, to passive objects, may have a special execute
method that may be invoked on a dedicated thread of control
when the coordinating object is written into the coordination
middleware/space 116/124.
0055. These and other features of coordinators are dis
cussed herein in the context of various ones of the specific
examples provided. However, even though certain examples
are described in these terms herein, it should be understood
that other execution environments and/or middleware may be
used. For example, other types of object-oriented coordina
tion middleware may be used, including, for example, pub
lish/Subscribe middleware Supporting composite events. In
Such implementations, for example, dedicated applications
operating outside the space(s) may be used to coordinate the
events of the instance of the process model 104. Additionally,
or alternatively, applications may be used that operate on top
of a messaging bus in a publish/Subscribe middleware.
0056 FIG. 2 is a block diagram of an implementation of
the system 100 of FIG. 1. In FIG. 2, the illustrated example
provides a more general setting and implementation than that
of FIG. 1. Specifically, FIG. 2 illustrates that the connectors
128 may be connected to many different types of applications,
which themselves may be running in many different contexts.
0057 For example, the connectors 128 may be connected

to mobile device 202a and 202b, which may be running the
user application 112 of FIG. 1 or a similar application. Addi
tionally, the connectors 128 may be in communication with
services 204a and 204b, e.g., with application services and/or
web services that are known to provide discrete functionality
over a network. In the latter example, the connector(s) 128
may be a coordinating object that calls the external web
service(s) 204a/204b when an object of a certain type is
written to the memory space 124, like, for example, an object
written by one of the routers 126 that indicates that a certain
previous task has been completed. The latter example shows
that the connectors 128 may be used as a mechanism to detect
that a given task is enabled and thus that a given one of the
applications 106, 108, and/or 110 should be invoked in order
to perform this task.
0058. The services 204a and 204b may exchange mes
sages with one or more of the connectors 128 using for
example the Simple Object Access Protocol (SOAP) and/or
Extensible Mark-up Language (XML) formatting, using a
mutually-agreeable communications protocol. Such as, for
example, the Hyper-Text Transfer Protocol (HTTP) or the
Simple Mail Transfer Protocol (SMTP). As is known, the
service 204a and/or 204b may be discovered by way of a
directory of services, such as, for example, the Universal
Description, Discovery, and Integration (UDDI) directory, a
distributed directory or registry designed to allow parties to
find a given service/functionality on a network. The UDDI
uses a language known as the Web Services Description Lan
guage (WSDL), which is an XML-formatted language

Dec. 1, 2011

designed to describe capabilities of the web services in a way
that allows requesting clients to take advantage of those capa
bilities.
0059 Although the services 204a and/or 204b may pro
vide discrete components of large enterprise applications,
such as the CRM and/or SCM applications described above,
the services 204a and/or 204b also may provide smaller, more
elementary services, such as, for example, providing a stock
quote, weather report, purchasing information, ticket reser
Vation capability, auction functionality, or many other types
of services. Thus, the system 100 may incorporate any such
services, as well as other types of the applications 106, 108,
and/or 110 into the packaged composite application 112 that
may be running on the mobile devices 202a and/or 202b.
Additionally, of course, such packaged composite applica
tions need not run only on mobile devices, but may be advan
tageously implemented in virtually any computing environ
ment, including, for example, desktop or workstation
environments.
0060. Further in FIG. 2, the connectors 128 may be in
communication with one or more databases 206, which may
allow the system 100 access to various types of data or infor
mation that may be useful in the context of the application
112. Finally in FIG. 2, the connectors 128 may be in commu
nication with one or more sensors 208.
0061 For example, one of the connectors 128 may com
municate with the sensor 208 for the purpose of relaying
context data between the sensor 208 and the execution envi
ronment 116. Such a one of the connectors 128 may, for
example, receive or poll data from the sensor 208, encode
Such data as a passive object(s), and write this object(s) into
the memory space 124, possibly overriding an existing object
that contains the previous known state of the relevant context
data.
0062 FIG. 3 is a flowchart 300 illustrating a process that
may be implemented by the system 100 of FIG.1. In FIG. 3,
a process-oriented composite application is converted into an
event-based coordination model that is deployed for use by
end users.
0063 Specifically, a process model is defined (302). For
example, a developer may use the process modeling tool 102
of FIG. 1 to define the process model 104. Then, the process
model is transformed into an event-based model (304). For
example, the model transformer 114 of FIG.1 may be used to
define rules by which the process model 104 may be imple
mented as an event-driven coordination of the desired com
posite application within the execution environment 116.
0064. Then, coordinator objects (e.g., connectors and
routers) may be produced from the rules of the event-based
model (306). For example, such objects may be produced by
the object generator 122 of FIG.1. The connectors and routers
may then be deployed (308) into an execution environment.
For example, the connectors 128 and the routers 126 may be
deployed into the execution environment 116 of FIG. 1.
0065. At this point, a process according to the process
model 104 is ready for execution (310). For example, execu
tion of an instance of the process of the process model 104
may result from stimulus (e.g., request) received from an
end-user application (312), e.g., the application 112. In this
case, an instance of the process is begun (314). For example,
a user may run an instance of the process of the process model
104 using the user interface 132 of the user application 112.
Execution of the process instance is described in more detail
herein, but, as should be understood from the description of

US 2011/02964. 19 A1

FIGS. 1 and 2 above, the application 112 may execute largely
as if the process model 104 were deployed and executed on a
process execution engine.
0.066. In some cases, however, a modification of the event
based coordination model may be triggered (316). Such
modification may involve, for example, deploying new rout
ers and/or coordinators as well as disabling and/or modifying
existing ones (318). This modification may affect one or
several already running instances of the process and/or new
instances that are started after the modification. For example,
a developer may use the developer console 134 of FIG. 1 to
make a modification to the execution environment 116 of
FIG. 1, e.g., by adding a new router 126 to the execution
environment 116. In this way, for example, when a following
new instance of the event-based process is begun (314), a new
feature of the application 112 may be available for the par
ticular instance. For example, the element 136 may be
included that allows a user the benefit of some new function
ality. In other examples, the modification need not be visible
to the user as an active choice to be made by the user, and may
instead simply reflect a change in execution of the instance,
due to, for example, a context of the user and/or the user
device, a desire of an employer of the user, or some other
criterion.

0067 FIG. 4 is an activity diagram 400 that may be oper
ated upon by the system 100 of FIG.1. In FIG.4, the activity
diagram 400 is a Unified Modeling Language (UML) dia
gram that is used to described a process model, such as the
process model 104 of FIG. 1. Such a UML activity diagram
uses notation and form that may be considered to be repre
sentative of the notations and forms found in other process
modeling and/or process execution languages, including, for
example, sequence, fork, join, decision, and merge nodes that
serve to control a flow of data between tasks of the model/
diagram. As such, the described techniques may easily be
adapted to other process modeling languages that rely on
these and similar constructs, such as, for example, the busi
ness process modeling notation (BPMN).
0068. In FIG. 4, the illustrated scenario is an example of a
personal workflow, i.e., a process 400 aimed at assisting a
user in the achievement of a goal that requires the execution of
a number of tasks. Most of the tasks composing the process
(but not necessarily the process itself) are intended to be
executed in a mobile device. Thus the scenario is also an
example of a mobile workflow. Such mobile and personal
workflows constitute a class of process-oriented composite
applications in which personalization and runtime adaptation
may be beneficial. Of course, Such requirements also may be
found in more traditional applications (e.g., order handling)
and the proposed techniques are also applicable in these set
tings.
0069. In the example, a user is on a trip to attend a meeting.
Before the meeting commences the user runs a process-ori
ented application modeled in FIG. 4, in order to obtain assis
tance in a lead-up to the meeting. After an initial node 401, a
bar 402 (and similar bars, discussed herein, which may be
referred to as parallelism bars) represents a start of potentially
parallel processes. In particular, a task 404 is associated with
checking a presentation time, while a task 406 is associated
with checking an availability of trains to the destination, and
a task 408 is associated with downloading meeting notes to
the user's device (which may or may not take some non-trivial
amount of time, e.g., due to low bandwidth).

Dec. 1, 2011

0070 A parallelism bar 410 specifies further parallel pro
cesses. In particular, after the presentation time 404 and the
train availability 406 have been checked, three options are
available, as indicated at a decision point 412. Specifically, if
the user is "on time’ AND “there is a train' that would take the
user near the meeting's location, then a decision point 414 is
reached, after which a task 416 associated with going to the
train leads to a payment task 418 for a train ticket, and a
Subsequent task 420 associated with catching the train.
0.071) If, at the decision point 412, the user is “not ontime'
AND “there is a train, then a parallelism bar 422 signifies a
start of a task 424 associated with checking traffic conditions
and a task 426 associated with postponing the meeting. The
tasks 424 and 426 thus assist in determining if a taxi or a train
is the best option for the user. Specifically, as just referenced,
the process 400 checks the traffic conditions 424 and, in
parallel, tries to postpone the meeting by, for example, one
hour 426.
0072 These parallel processes are rejoined at a bar 428,
and then a decision point 430 determines that if the traffic is
adverse (i.e., "not ok”), then there is no point in catching a
taxi, and the process 400 will advise the user to catch the train
by routing back to the decision point 414. If the meeting is
postponed 426, the same result occurs.
0073) If, however, there is favorable traffic and the meeting
can not or will not be postponed, then the decision point 430
directs the user to a further decision point 432, and the process
moves to a task 434 associated with catching a taxi to get there
Sooner and on time. A similar result occurs if at the decision
point 412, there is “no train, then the decision point 432 is
reached and a taxi is automatically ordered for the task 434. In
either case, a payment task 436 leads to a decision point 438,
where, for example, payment may be automatically arranged
by the composite application associated with the process 400,
and the details of the payment may be sent to a finance
department to arrange for a refund (where both of these fea
tures are modeled in FIG. 4 as the single tasks 418 and/or
436). Finally, a parallelism bar 440 indicates that once the
user is on his/her way to the meeting, and the meeting notes
have been downloaded, then the composite application may
execute a task 442 for displaying the notes, and the process
400 ends.
0074 FIG. 5 is a flowchart illustrating operations of
example implementations of the system of FIG. 1, with ref
erence to specific examples provided in the context of FIG.1.
More specifically, FIG. 5 primarily illustrates examples of
features and operations of the execution environment 116.
(0075. In FIG. 5, coordinator objects are deployed (502)
within the execution environment, e.g., upon generation
thereof by the object generator 122. In the example of FIG. 1,
the coordinator objects are classified as the connector objects
128 that are used to communicate with external applications,
and the router objects 126 that are used to define a sequence
and type of activations of the connectors 128, according to the
process model 104 (and/or modifications thereof). Of course,
other classifications may be used.
0076 Once deployed, a router object waits for an activat
ing object (504). For example, in FIG. 1, the router 126a may
wait for an event/object 130a, which may be an instantiation
object placed onto the space 124 by the connector 128a, in
response to a request from the application 112 (e.g., as in 312
and 314 in FIG. 3), or, as described below, may be a comple
tion object from a connector 128 indicating a task completion
by that connector. The router (e.g., the router 126a) then reads

US 2011/02964. 19 A1

and/or evaluates the activating object and activates some
active internal process (506), such as, for example, perform
ing some type of transformation that corresponds to advanc
ing a sequence or flow of the process model 104. More
detailed examples of these and related operations of the rout
ers 126 are provided herein, e.g., with respect to FIG. 6.
0077. The router(s) then place a task-enabling object(s)
onto the space 124, thereby to indicate enablement of an
associated action (508). For example, the router 126a may
then place an object 130b onto the space 124, which may be
a task-enabling object for the connector 128d. Connector(s)
may thus read/evaluate the task-enabling object and activate
(510). Continuing the above example, the connector 128d
may then activate the application 110, in order to perform an
appropriate task. The connector may thus complete the action
and place a completion object onto the space. For example,
the connector 128d may complete its associated task and then
write a completion object 130c onto the space 124. Further
details of examples of the operation and use of the connectors
128 are provided herein, e.g., in the context of FIG. 7, below.
0078 If the process 500 is not finished (514), then the
process 500 continues with the routers 126 waiting for an
activating object (504), and so on. For example, the router
126b may read the object 130c (506), and write the object
130d (508) for reading by the connector 128b (510). Such an
event-based process may continue, although not shown in
detail in FIG. 1, until the process 500 is finished (514). At this
point, remaining objects related to the just-completed
instance of the process 500 (e.g., the process model 104) may
be deleted (516).
0079. In the context of the example of FIG.4, FIGS. 1 and
5 illustrate that some or all of the tasks 404, 406, 408, 416,
418, 420, 424, 426,434, 436, and/or 442 may be represented
and enacted within the execution environment (e.g., coordi
nation middleware) 116 as ones of the connectors 128 of FIG.
1, interacting with appropriate external applications. Mean
while, the remaining elements of FIG. 4, including the vari
ous parallelism bars, decision points, and transitions within
and among these elements and the various tasks, as illustrated
in FIG.4, may be represented and replicated using the routers
126. In this way, and as described in more detail herein, the
routers 126 may represent the various potential paths through
an enacted instance of the model 400 (e.g., may represent a
path from a selected task to a consecutive task, possibly
through ones of the bars, decision points, and/or transitions).
0080. As already mentioned, such an event-based coordi
nation of the process model 104 may, in many cases, not
appear Substantially different to a user than if a conventional
process-based coordination were used. However, the event
based coordination described herein provided various other
advantages and features that may not be available in a pro
cess-based implementation. For example, as discussed
herein, the event-based coordinationallows for modifications
to the instance of the process model 104 being executed, yet
without requiring a change to the process model 104 itself.
0081 For example, and as described in more detail herein,
an additional router may be deployed into the execution envi
ronment 116 (518). For example, in FIG. 1, the router 126d
may be deployed into the coordination middleware 116 (as in
316 and/or 318 of FIG. 3). Additionally, or alternatively,
existing routers may be disabled or modified, in order to allow
the new and/or other modified router(s) to perform their
revised functionality. For example, router 126b may be dis
abled so that it will no longer attempt to take object 130c.

Dec. 1, 2011

I0082 Once deployed, the new or modified router simply
acts, at a design level, as any one of the other routers, e.g., the
modified router 126d acts as one of the routers 126. For
example, the router 126d may simply wait for an activating
object for its internal transformation (e.g., by Subscribing to
objects having activating characteristics, as described, for
example, with respect to FIG. 6), and then read the object
130c (506,508), rather than the router 126b reading the object
130c. Accordingly, a flow or sequence of the process model
104 may be altered, as the router 126d would then continue by
placing a task-enabling object onto the space 124 (not shown
in the example of FIG. 1) that would, presumably, activate
another connector than the connector 128b (or would activate
another characteristic thereof). Similar comments may apply
to new or modified connectors 128 that may be written to the
coordination middleware 116. Also, further details and
examples of Such adaptations of a process instance are
described in more detail below, for example, with respect to
FIG. 8 and with reference to the working example of FIG. 4.
I0083. In the case that the process instance is modified in
the above-described manner, it should be understood that no
modifications to the process model 104 are necessary, and, in
fact, it is an advantageous feature of the system 100 that such
modifications are not required, since implementing changes
to the process model may require Substantial efforts, as well
as a full-scale re-deployment of the model 104. Nonetheless,
the modification implemented may provide Such a useful
functionality or advantage that a developer may, in fact, wish
to make a corresponding change to the process model 104.
even if re-deployment or other efforts are required. In this
case, the event-based coordination resulting from the addi
tion/modification of the router 126d may be reversed (e.g., an
action of the model transformer 114 may be reversed) in order
to arrive at a modified process model (520), that may then be
re-deployed either for process-based execution in an execu
tion engine, or for continued event-based coordination in the
execution environment 116 or the like.

I0084 FIG. 6 is a flowchart 600 illustrating further
examples of operations of implementations of the system of
FIG.1. In particular, FIG. 6 illustrates example operations of
the routers 126. Although such operations may be performed
in the context(s) of the various examples above, e.g., in the
example of FIG. 5, FIG. 6 focuses primarily on operations of
the routers (e.g., 502,504,506, 508 in FIG. 5).
I0085. In FIG. 6, a set of routers are deployed to commu
nicate with applications through simultaneously-deployed
connectors (602). For example, the routers 126 may be
deployed into the execution environment 116, as already
described.

I0086. As referenced herein, the object-oriented coordina
tion middleware 116 may supportundirected decoupled com
munication based on four elementary operations, namely
read, write, take and notify. In this case, a read operation
copies an object from the memory space 124 that matches a
given object template; a take operation moves an object
matching a given object template out of the memory space
124; a write operation puts an object on the memory space
124; and a notify operation registers a Subscription for a
composite event expressed as a set of object templates. When
everthere is a combination of objects present in the space that
matches these object templates, an event occurrence will be
raised and a notification will be sent to the Subscriber (e.g.,
one of the routers 126). An object template is an expression
composed of a class name and a set of equality constraints on

US 2011/02964. 19 A1

the properties of that class. An object matches a template if its
class is equal to or is a Sub-class of the class designated by the
template and it fulfills the template's constraints.
0087 Thus, after an execution of a process instance begins
(604), e.g., by receiving an appropriate user request, and/or
upon its creation/deployment, a particular router 126 may
place a Subscription with the shared memory space 124 for a
set of object templates contained in its input set (i.e., an input
set obtained after removing the boolean conditions from the
input set) (606).
0088 For example, in this context, the routers 126 gener
ally may each be described by an input set, which includes a
set of object templates and boolean conditions, and an output,
which includes a set of expressions, each of which evaluates
into an object. To apply this terminology to the example of
FIG. 4, an input set for the “go to train’ task 416 may include
a first object template associated with the “check presentation
time' task 404, as well as a second object template associated
with the “check train availability’ task 406. The Boolean
condition AND may be applied, such that the “go to train'
task 416 is only completed if the presentation is on time AND
the train is available?on-time (possibly among other condi
tions). The output would then include an object activating the
“go to train’ task (connector).
0089. Thus, in FIG. 6, one of the routers 126 would receive
notification that a set of objects in the memory space 124
matches its input set (608). In conjunction, a process instance
ID (referred to herein as piid) may be verified (610). In this
way, it is ensured that the objects being evaluated belong to
the same instance. Otherwise, for example, a first instance of
the process 400 may occur in which a train is on-time, while
the presentation time is delayed, while in a second instance
(which may be executing simultaneously with the first
instance in the execution environment 116) the reverse may
be true. Thus, both instances should be separately identifi
able, in order to ensure the validity of each.
0090. Once the set of objects is detected, then the corre
sponding Boolean conditions may be evaluated (612). For
example, one of the routers 126 may detect the first object
template associated with the “check presentation time' task
404 mentioned above, as well as the second object template
associated with the “check train availability’ task 406, also
mentioned above. Although these object templates may be
detected (608), it is the evaluation of the corresponding Bool
ean conditions (612) that determine which of the three tran
sitions leaving the decision point 412 is followed. In other
words, a router associated with each of the “go to train’ task
416, the “check traffic conditions’ task 424, the “postpone
meeting task 426, and the "catch taxi' task 434 would
receive notification that a set of objects matching their respec
tive input set(s) are available on the memory space 124 (608),
and an evaluation of the imposed Boolean condition(s) at
each of the respective routers would determine which of the
routers would then place an output object onto the memory
space 124 to activate its respective connector (task).
0.091 Thus, if the Boolean conditions are not evaluated at
a particular one of these routers as being true (614), then the
particular router will not take the objects from the memory
space 124 (616). For the router evaluating the conditions as
true, however, activation occurs and the router will take the set
of objects (618) and perform appropriate transformations
(620), e.g., will evaluate transformation functions (i.e.,
expressions in the output) taking the set of objects as input.
The objects resulting from the transformation are then written

Dec. 1, 2011

back to the memory space 124 (622), where the resulting
objects may be read by a connector (see, e.g., FIGS. 5 and 7),
or by another router. At this point, the process instance ID piid
may be verified again (624), although it should be understood
that the piid may be evaluated at any appropriate point in, for
example, the processes 500, 600, and/or 700 (of FIG. 7,
below).
0092. The inputset thus captures the events and conditions
that lead to the activation of a router (where an event corre
sponds to the arrival of one of the objects 130 to the memory
space 124). The output, on the other hand, encodes the events
that the router will produce upon activation, i.e., the objects to
be placed in the space 124 for consumption by other coordi
natOrS.

0093. Finally, if a set of objects matching the object tem
plates in the stop set of a router (e.g., a set containing a
combination of object templates and Boolean conditions) is
found on the space, the router will terminate its execution and
replace itself by the set of routers specified in the replace set
(e.g., a set of other coordinators).
(0094 FIG. 7 is a flowchart 700 illustrating further
examples of operations of implementations of the system of
FIG.1. In particular, FIG. 7 illustrates example operations of
the connectors 128. Although Such operations may be per
formed in the context(s) of the various examples above, e.g.,
in the example of FIG. 5, FIG. 7 focuses primarily on opera
tions of the connectors (e.g., 502,510, and 512 in FIG. 5).
0095. In FIG. 7, then, a set of connectors (e.g., the con
nectors 128) are deployed into the execution environment 116
to communicate with external applications 106, 108, and/or
110 (702). One of the connectors 128 may then receive a
request for a process instance (704), e.g., from a user of a
composite application. In response, the appropriate connector
may then write a process instantiation object onto the
memory space 124 (706), and, in conjunction, may define the
unique process ID, piid, referenced above (708).
0096. That connector, or another connector that may not
be responsible for process instantiation, may then read/take
task enabling objects from the memory space 124 (710), as
may have been written to the memory space 124 in accor
dance with the description of the process 600 (e.g., 622). The
piid may be verified at this point (712).
0097. The reading connector may then execute its
assigned task, i.e., by interacting with external applications,
such as the applications 106, 108, and/or 110 (714). Once
completed, the connector may then write a task completion
object(s) to the memory space 124 (716), for reading/taking
by a subscribing router (e.g., 618 in FIG. 6), where again the
piid may be verified at this point (718).
(0098. By way of example overview of FIGS. 1 and 5-7,
then, a set of routers 126 may be deployed and interconnected
with existing applications 106, 108, and/or 110 (through the
connectors 128) in order to coordinate the execution of the
instances of a process model 104. During the execution of a
process instance, the routers 126 read and take from the
memory space 124, objects 130 denoting the completion of
tasks (i.e. task completion objects) and write into the space
objects denoting the enabling of tasks (i.e. task enabling
objects). The connectors 128, on the other hand, read and take
task enabling objects, execute the corresponding task by
interacting with external applications, and eventually write
back task completion objects, which are then read by one or
more of the routers 126. As described, and in order to make
sure that the routers 126 only correlate task completion events

US 2011/02964. 19 A1

relating to the same instance of a process, object templates in
the input set of the router will contain a constraint stating that
all the matched task completion objects must have the same
value for the attribute corresponding to the process instance
identifier (piid). In addition, and as shown and described,
when a router and/or connector writes a task enabling and/or
task completion object to the memory space 124, the router/
connector may include the corresponding piid. As shown, a
process instance is created when a process instantiation
object with the corresponding process and process instance
identifier is placed on the memory space 124 by the appro
priate connector, where the appropriate connector is respon
sible for ensuring that piid's are unique within the execution
environment 116.
0099. As described herein, the deployment of coordina
tors 126 and 128 operating on the shared memory space 124
and writing and taking objects to/from this space, constitutes
a powerful paradigm not only for executing event-based coor
dination models, but also for re-configuring these models
after their deployment. Re-configuration is facilitated by, for
example, at least two features of the object-oriented coordi
nation middleware: (i) the use of undirected (also known as
'generative') communication primitives which allows data
and events to be produced and consumed without a priori
determined recipients (and thus allows data and control to be
re-routed); and (ii) the ability to add, remove, Suspend and
resume individual coordinators and thus alter the behavior of
an application.
0100. In the context of FIG. 4 and similar examples, for
example, some functionality may or should be made unavail
able. In particular, a context change may mean that some
processing can not be performed, or a user moving outside a
firewall may prevent him/her from executing certain applica
tions. In FIG. 4, it may happen that an executing system takes
too much time to contact the other meeting participants to
check if the meeting can be postponed (i.e., the execution of
the “postpone meeting task 426 may take more time than the
user is willing to wait for).
0101. In this case, a user may indicate that he or she does
not wish to be delayed by this action, but instead, if the “check
traffic conditions’ task 424 is completed and if the traffic
conditions are acceptable, then he or she would immediately
take a taxi at task 434 (e.g., eliminating the possibility of
taking the train at the task 416).
0102. Such an adaptation may be achieved by activating a
router 126x specified in an example concrete Extensible
Mark-Up Language (XML) syntax in FIG. 8. In the XML
fragment of FIG. 8, an input (e.g., task completion) object 802
includes an object template 804 having a pid 806 of the
process instance for which this modification is to be done, the
piid 806 being illustrated as having a value “1.”
0103) A condition 808 defines a variable associated with
the checked traffic condition(s), so that a resulting output (i.e.,
task-enabling) object 810 enables the "catch taxi task 434. A
stopset element 812 indicates that the router 126x is disabled
if the “Postpone Meeting task 426 is completed. Thus, the
router 126x will only place a task-enabling object to trigger
the "catch taxi task 434 if the check traffic task 424 com
pletes before the postpone meeting task 426, and if the cor
responding Boolean expression evaluates to true.
0104 Such a router, written onto the object-oriented coor
dination middleware 116, may reduce or eliminate a need to
modify the process model 104, thereby potentially avoiding a
requirement of significant tool Support and/or over-extensive

Dec. 1, 2011

model versioning. Thus, enabling an event-based rule (e.g.,
encoded as a router, as just described) may provide a light
weight adaptation mechanism.
0105. As a further example, it may be the case that a user
prefers taxis over trains in any case, and so would like always
to catch taxis, regardless of traffic conditions and/or an
amount of time before the meeting. In this case, a router may
be introduced that enables the "catch taxi task 434 immedi
ately upon process instantiation, e.g., when the process
instance is started by the user in question. At the same time, all
other routers for that process instance would be disabled,
except the ones for the “download notes' task 408 and the
“display notes’ task 442.
0106. As referenced above, the user may specify such
dynamic changes to composite applications (e.g., the appli
cation 112) using an appropriate user interface. For example,
personalization applications may be added that run as coor
dinating objects and disable? enable routers, or place task
completion or task-enabling objects according to an adapta
tion logic previously coded by a developer.
0107 Users also may be provided with options for adapt
ing/personalizing applications. For example, when a user
manually selects one of these options, a number of coordina
tors may be enabled, and/or task-completion and/or task
enabling objects may be written to or taken off the memory
space 124. Adaptation may be scoped to specific process
instances to avoid affecting a user base that is wider than
intended. In addition, as described above with respect to FIG.
5, as certain adaptations become permanent, the adaptations
may be propagated back to the process model, resulting in a
new process model being deployed.
(0.108 FIG. 9 is a first flowchart 900 illustrating example
operations of the process model transformer 114 of the sys
tem of FIG.1. In FIG.9, a task extraction is performed (902).
For example, the task extractor 118 may determine the tasks
in the model 104 for extraction, or may determine the tasks
within the activity diagram 400 of FIG. 4.
0109 Resulting, extracted tasks (904) are then analyzed
(906). For example, the task analyzer 120 may analyze the
tasks and related information (e.g., transitions between the
tasks, control nodes, and other information associated with a
content or control of the tasks) to determine event-based rules
(908). Such event-based rules may characterize, for example,
activation and/or completion events for each of the tasks.
0110. Then, coordinating objects are generated (910). For
example, the object generator 122 may generate the routers
126 and connectors 128 (912) for deployment into the execu
tion environment 116. As described, such coordinating
objects will behave according to the event-based rules that are
encapsulated therein during the object generation process
(es). As a result, instances of the processes may proceed, for
example, according to the descriptions provided above.
0111 Although FIG. 9 is shown in the illustrated
sequence, it should be understood that such a sequence is just
one example of the possible operations of the model trans
former 114 of FIG. 1. For example, different sequences may
be used, and/or the operations of FIG.9 may be performed
recursively. Specific examples of Such implementations and
related implementations, are provided in more detail, below.
(O112 FIG. 10 is a second flowchart 1000 illustrating
example operations of the process model transformer 114 of
the system of FIG.1. In particular, FIG.10 provides examples
of the operations of FIG. 9, in the more-specific contexts of
the examples and terminology of FIGS. 5-8.

US 2011/02964. 19 A1

0113. In FIG. 10, a first task node is extracted (1002), e.g.,
from the process model 104, and perhaps by the task extractor
118 of FIG. 1. The task node is analyzed, and a connector
object is generated (1004).
0114. Then, all input sets for activating the task node (i.e.,
for activating the connector object) are determined (1006).
That is, as explained in the above discussion of input sets,
object templates may be generated for each path leading to the
task node, and Boolean conditions applied to, or associated
with, these object templates, in order to differentiate and
determine which of the potential paths was, in fact, followed
in a particular process instance (e.g., see FIG. 6).
0115 One router is then generated for each of the input
sets (1008). Thus, a plurality of routers may exist for each
connector, which is consistent with the idea that a plurality of
paths may lead to each task node.
0116. If additional tasks are remaining (1010), then the
process 1000 continues as described above. Otherwise, the
connectors and routers are ready for deployment (1012).
0117 FIG. 11 is a third flowchart 1100 illustrating
example operations of the process model transformer 114 of
the system of FIG. 1. More specifically, FIG. 11 illustrates
examples oftechniques for generating input sets (e.g., 1006 in
FIG. 10).
0118. In FIG. 11, transitions and/or tasks are determined
(1102), where transitions refer, as above, to the directional
connectors (e.g., arrows) between any two tasks, control
nodes, or other element(s) of the process model. Then, a node
type of a source of a given transition is determined (1104).
That is, since transitions directionally connect a first element
to a second element, the first element may be considered to be
a source of the transition, and the second element may be
considered to be a target or destination of the transition.
Specific examples are provided in more detail, below.
0119. As one possibility, a source node may be determined

to be an initial node (1106), i.e., a first node in the process
model. In this case, then an input set for a “process instantia
tion” object is returned (1108), this input set may be output
(1110) for deployment in association with a router.
0120 If additional transitions are remaining in the process
model (1112), then the process 1100 may continue with the
next selected transition. Otherwise, the process 1100 may end
(1114).
0121. After the next transition is determined (1102), a
node type of the transition's source may be determined (1104)
to be a task node (1116). In this case, then a single input set
would be returned containing a single task completion object
(1118). That is, a task completion object associated with a
completion of a task of the single task source would be suf
ficient as an input set for the router being defined.
0122 For example, in FIG. 4, if a transition between the
tasks 418 and 420 is selected (1102), then the node type of the
source of the transition would be determined (1104) to be the
task node 418 (1116). In this case, a task completion object
for the “pay’ task 418 would be sufficient to define an input
set for the "catch train' task 420.
0123. A third possibility for a source node type is a control
node (1120), e.g., a non-task node that determines a flow or
sequence of tasks, but is not itself a task that would be asso
ciated with a connector. Terminology for Such control nodes
varies with a selected process modeling language, and so
representative examples are provided herein. For example,
control nodes may include decision, merge, fork, and join
nodes, as well as other control nodes mentioned herein.

Dec. 1, 2011

0.124. In this case, then the process 1100 traverses back
wards through the process model to a task source of the
control node (1122). Then, an appropriate number of input
sets are returned, dependent on a type of the control node in
question (1124).
0.125 Specific examples are provided below, but gener
ally, as seen in FIG.4, the “go to train’ task 416 has a control
node 414 for a source. In this case, the process 1100 would
traverse backwards from the control node 414, back to, for
example, the tasks 404, 406, 424, and/or 426, i.e., the process
1100 would follow all backward paths until a task node on
each path is found. In this way, all paths leading to each task
node may be specified.
0.126 FIG. 12 is an example of a code section 1200 that
may be used to implement the operations of the flowchart of
FIG. 11, e.g., to generate input sets for the routers. The fol
lowing notations are used in the code section 1200. Specifi
cally, “ActionNodes(p) refers to the set of action (i.e., task)
nodes contained in process p (described as an activity dia
gram), while “Source(t)' represents the source state of tran
sition t. "Guard(t)' represents the guard on transition tCwhere
a guard generally represents a condition that specifies when a
task or event can take place). “Disjuncts(c) represents the set
of disjuncts composing a condition c, while “IncomingTrans
(X) represents a set of transitions whose target is task node X.
“NodeType(x) represents a type of node x (e.g. “action.”
“decision.” or “merge”), and “Process(x)' represents the pro
cess to which node X belongs.
0127. In the code section 1200, then, a first function 1202
(“AllInputSets') takes as input an activity diagram (e.g., the
activity diagram 400) represented as a set of nodes (e.g., task,
decision, merge, fork, join, initial, and final nodes) inter
linked through transitions, and generates a set of input sets,
where, as described, one or more input sets is then associated
with a router so as to coordinate the execution of instances of
the process in question, and where each input set encodes one
possible way of arriving to a given task node in the process.
I0128. The function 1202 AllInputSets generates all the
input sets for a given process model by relying on a second
function 1204, illustrated as InputSets, which generates a set
of input sets for a given task node of the process model. The
function 1204 relies on a third (auxiliary) function 1206 illus
trated as being named InputSetsTrans, which produces the
same type of output as InputSets but takes as parameter a
transition rather than a set. This definition of InputSetsTrans
operates based on the node type of the Source of the transition,
as described above with respect to FIG. 11, where, as
described, the source node may include a task node, an initial
node, or one of the four (or more) types of control nodes. As
shown in portion 1208, if the source of a transition is a task
node, a single input set is returned containing a completion
object for that task, as illustrated by way of example in FIG.
11 (1116 and 1118). As a result, the transition in question may
occur when a completion object corresponding to the source
task is placed onto the shared memory space (e.g., the
memory space 124 of FIG. 1).
I0129. Similarly, if the source of the transition is the initial
node 401 of the activity diagram, then, in a portion 1210, a
single input set with a “process instantiation’ object is cre
ated, indicating that the transition in question will be taken
when an object is placed on the space that signals that a new
instance of the process must be started. An example of this
process also is shown in FIG. 11 (1106 and 1108).

US 2011/02964. 19 A1

0130. If a source of the transition is a control node, a third
portion 1212 of the code section 1200 works backwards
through the activity diagram, traversing other control nodes,
until reaching task nodes. In the case of a transition originat
ing from a decision or a fork node, which is generally labeled
by a guard (or an implicit “true' guard if no guard is explicitly
given), the transition's guard is decomposed into its disjuncts,
and an input set is created for each of these guards. This is
done because, in this example, the elements of an input set are
linked by an “and” (not an “or) and thus an input set can only
capture a conjunction of elementary conditions and comple
tion/instantiation objects (i.e. a disjunct). Finally, in the case
of a transition originating from a “merge' (respectively a
join'), the portion 1212 is recursively called for each of the

transitions leading to this merge node (join node), and the
resulting sets of input sets are combined to capture the fact
that when any (all) of these transitions is (are) taken, the
corresponding merge node (join node) may activate.
0131. In FIG. 12, the algorithm of code section 1200
focuses for purposes of illustration on a core Subset of activity
diagrams covering initial and final nodes, action nodes, and
control nodes (e.g., decision, merge, fork, and join nodes)
connected by transitions. The algorithm is merely intended
for illustration, and various other aspects of a particular pro
cess model may be taken into accountappropriately in a given
COInteXt.

0132) For example, the algorithm does not take into
account object flow (which is discussed below with respect to
FIG. 14). Also, the algorithm assumes that all conditional
guards in the activity diagram are specified in disjunctive
normal form, and that there are no “implicit forks and joins
in the diagram (where an implicit fork (join) occurs when
several transitions leave from (arrive to) a task node). In Such
cases, for example, implicit forks and joins may be eliminated
from an activity diagram and replaced by explicit fork and
join nodes, prior to applying this algorithm.
0.133 FIG. 13 is an example of a code section 126 that
may be a result of the operations of the flowcharts of FIGS.
9-12. Specifically, the code section illustrates a router 126
for the “CheckTraffic' task 424 of FIG. 4, using an XML
Syntax.
0134. In FIG. 13, an input section 1302 includes an object
template 1304 which checks for a completion object associ
ated with the “check presentation time' task 404 for a given
piid, as well as an object template 1306 which checks for a
completion object associated with the “check train availabil
ity’ task 406. A condition 1308 and a condition 1310 specify
variables that must be evaluated appropriately (e.g., as true or
false) in order for an output section 1312 that includes an
enabling object for the “check traffic' task 424 to be enabled.
0135) In other words, the code section (router) 126 illus

trates that the task node 424 will only have the one router 126
associated to it, since there is only one transition (path) lead
ing to the execution of the task 424. The router 126 illustrates
that, to execute the task 424, it is necessary that both the
“check presentation time' task 404 and the “check train avail
ability” task 406 have completed, and in addition that the
condition “not ontime and train evaluates to true, and that
this condition does not contain any disjunction. When all
these conditions are satisfied, the router 126v will produce an
enabling object in the output section 1312 that will eventually
be picked up by the connector associated to action “check
traffic.

Dec. 1, 2011

0.136. In the example of FIG. 13, the process instance
identifier (pid) attribute of the completion object templates
are associated with a variable. In the concrete XML syntax, an
XML namespace (aliased “var) is reserved to refer to vari
ables. The object execution environment is capable of inter
preting collections of object templates where some of the
attributes are associated with such variables and to match
these templates in a way that if the same variable is associated
with attributes of two different templates, then the objects
matching these templates should contain the same values for
these attributes.
0.137 FIG. 14 is a block diagram of an implementation of
a portion of the diagram 400 of FIG. 4. In an activity diagram,
data flow (i.e., object flow) is represented by object nodes,
represented as example rectangles 1402 and 1404 associated
with receiving a receipt for payment, as illustrated in FIG. 14.
Such object nodes may be directly linked to a “producing
task or action preceding the object node. For example, the
receipt objects 1402 and 1404 are linked to a producing “pay”
task 418 and 436, respectively.
(0.138. The object nodes 1402/1404 also may be linked,
either directly or through the intermediary of a number of
control nodes such as a control node 1406, to one or several
“consuming task node(s) following the object node(s), e.g.,
a “request refund task 1408. In one example of FIGS. 4 and
14, the user pays using a mobile device, and this action
produces a receipt object 1402/1404 that then is forwarded to
a finance department so that the user may obtain a refund (i.e.,
may be reimbursed for the expense).
0.139. In terms of the techniques described herein, object
flows are treated as follows. The production of objects for a
given object node is the responsibility of the connector cor
responding to the task node directly preceding this object
node (i.e. the producing task). In otherwords, the correspond
ing object would appear as one of the elements in the "output
of the associated connector. In the example of FIG. 14, the
production of objects 1402/1404 of type “Receipt is done by
the connectors of the task nodes 418/436 labelled “pay, as
referenced above.
0140. The consumption of objects corresponding to an
object node is carried out by the connectors of task nodes that
follow the particular object node, either directly or through
the intermediary of a number of control nodes (i.e., the con
Suming actions). In the example of FIG. 14, the connector of
the task node 1408 labeled “Request Refund” will take the
object(s) 1402/1404 of type “Receipt from the memory
space 124 when the corresponding action is enabled.
0141 Since object flow is handled exclusively by connec
tors, the algorithm of the code section 1200 of FIG. 12 gen
erally does not have to deal with object nodes. Accordingly,
object nodes may be removed from the activity diagram
before applying the algorithm of code section 12 for deriving
input sets. Such removal of object nodes from an activity
diagram generally does not otherwise impact the analysis in a
non-trivial way, since the object nodes have only one incom
ing and one outgoing transition.
0142. As described above, a process model specified
using, for example, UML activity diagrams can be translated
into an event-based model that can be executed on top of a
coordination middleware. For example, a process model may
be encoded as a collection of coordinating objects that inter
act with each other through a shared object space. This
approach is suitable for undertaking post-deployment adap
tation of process-oriented composite applications. In particu

US 2011/02964. 19 A1

lar, new control dependencies can be encoded by dropping
new (or enabling existing) coordinating objects into the
object-oriented coordination middleware and/or disabling
existing ones.
0143. Thus, by using an event-based coordination model
at an execution layer, it is possible to make fine-grained
changes to specific parts of the process model, and to confine
these changes to specific process instances, without altering
the process model. In other words, the process model can be
used as a reference to deal with the majority of cases, but
deviations can occur for specific cases based on the activation
or de-activation of the rules composing the event model. In
this way, the described techniques seamlessly combine tech
niques from event/coordination-based and from process-ori
ented software architectures, and provides for event-based,
centralized orchestration based on coordination middleware.
0144. Also, a mapping from event-based models to pro
cess models may be performed. For example, a process model
may be automatically derived from a collection of routers and
possibly connectors. Such reverse mapping may, for
example, assist developers in propagating changes in the
event-based model to the process model, when it is decided
that these changes should be made permanent.
0145 Although the above examples are discussed largely
in terms of specific UML activity diagrams having certain
features, elements, and constructs, it should be understood
that the proposed algorithm(s) for input sets generation may
be extended or modified to cover a larger set of process
modeling constructs, such as signals in UML activity dia
grams or advanced control-flow constructs.
0146 Implementations of the various techniques
described herein may be implemented in digital electronic
circuitry, or in computer hardware, firmware, Software, or in
combinations of them. Implementations may be implemented
as a computer program product, i.e., a computer program
tangibly embodied in an information carrier, e.g., in a
machine-readable storage device or in a propagated signal,
for execution by, or to control the operation of data process
ingapparatus, e.g., a programmable processor, a computer, or
multiple computers. A computer program, Such as the com
puter program described above, can be written in any form of
programming language, including compiled or interpreted
languages, and it can be deployed in any form, including as a
stand-alone program or as a module, component, Subroutine,
or other unit Suitable for use in a computing environment. A
computer program can be deployed to be executed on one
computer or on multiple computers at one site or distributed
across multiple sites and interconnected by a communication
network.
0147 Method steps may be performed by one or more
programmable processors executing a computer program to
perform functions of the invention by operating on input data
and generating output. Method steps also may be performed
by, and an apparatus may be implemented as, special purpose
logic circuitry, e.g., an FPGA (field programmable gate array)
or an ASIC (application-specific integrated circuit).
0148 Processors suitable for the execution of a computer
program include, by way of example, both general and special
purpose microprocessors, and any one or more processors of
any kind of digital computer. Generally, a processor will
receive instructions and data from a read-only memory or a
random access memory or both. Elements of a computer may
include at least one processor for executing instructions and
one or more memory devices for storing instructions and data.

Dec. 1, 2011

Generally, a computer also may include, or be operatively
coupled to receive data from or transfer data to, or both, one
or more mass storage devices for storing data, e.g., magnetic,
magneto-optical disks, or optical disks. Information carriers
Suitable for embodying computer program instructions and
data include all forms of non-volatile memory, including by
way of example semiconductor memory devices, e.g.,
EPROM, EEPROM, and flash memory devices; magnetic
disks, e.g., internal hard disks or removable disks; magneto
optical disks; and CD-ROM and DVD-ROM disks. The pro
cessor and the memory may be Supplemented by, or incorpo
rated in special purpose logic circuitry.
0149. To provide for interaction with a user, implementa
tions may be implemented on a computer having a display
device, e.g., a cathode ray tube (CRT) or liquid crystal display
(LCD) monitor, for displaying information to the user and a
keyboard and a pointing device, e.g., a mouse or a trackball,
by which the user can provide input to the computer. Other
kinds of devices can be used to provide for interaction with a
user as well; for example, feedback provided to the user can
be any form of sensory feedback, e.g., visual feedback, audi
tory feedback, or tactile feedback; and input from the user can
be received in any form, including acoustic, speech, or tactile
input.
0150. The invention can be implemented in a computing
system that includes a back-end component, e.g., as a data
server, or that includes a middleware component, e.g., an
application server, or that includes a front-end component,
e.g., a client computer having a graphical user interface or a
Web browser through which a user can interact with an imple
mentation, or any combination of Such back-end, middle
ware, or front-end components. Components may be inter
connected by any form or medium of digital data
communication, e.g., a communication network. Examples
of communication networks include a local area network
(LAN) and a wide area network (WAN), e.g., the Internet.
0151. While certain features of the described implemen
tations have been illustrated as described herein, many modi
fications, Substitutions, changes and equivalents will now
occur to those skilled in the art. It is, therefore, to be under
stood that the appended claims are intended to cover all Such
modifications and changes as fall within the true spirit of the
embodiments of the invention.

What is claimed is:
1. A computer program product tangibly embodied on a

computer-readable medium and including executable code
that, when executed, is configured to cause a data processing
apparatus to

read a first task completion event from a memory space
using a router object, the first task completion event
indicating completion of a first task of an executing
instance of a process model;

write a first task-enabling event to the memory space using
the router object;

read the first task-enabling event at a connector object and
coordinate performance of a second task of the process
model based thereon and using the connector object; and

write a second task completion event to the memory space
using the connector object and signifying completion of
the second task.

US 2011/02964. 19 A1

2. The computer program product of claim 1 wherein the
executable code, when executed, causes the data processing
apparatus to:

read a plurality of task-completion events from the
memory space, including the first task completion event;
and

evaluate conditions associated with the plurality of task
completion events to determine whether the task
completion events match an input set of the router object
that is defined with respect to a path through the instance
of the process model.

3. The computer program product of claim 1 wherein the
executable code, when executed, causes the data processing
apparatus to:

read the first task completion event from the memory space
at the router object and within the instance of the process
model; and

write a modified first task-enabling event to the memory
space, in response to the reading of the first task comple
tion event, in order to execute the instance of the process
model.

4. The computer program product of claim 1 wherein the
instance of the process model includes a plurality of tasks,
including the first task and the second task, and wherein each
task is associated with a connector object configured to read
task-enabling events from the memory space and determine
whether any of the task-enabling events enable execution of
its corresponding task, and, if so, to thereafter write task
completion events to the memory space to thereby trigger
execution of a Subsequent task within the instance of the
process model.

5. The computer program product of claim 1 wherein at
least two of the connector objects are associated with corre
sponding external Software applications, and are configured
to complete their corresponding tasks including executing the
corresponding external Software applications.

6. The computer program product of claim 5 wherein the
instance of the process model executes a packaged composite
application that is defined by the process model and that
includes functionality of the external applications to perform
their corresponding tasks.

7. The computer program product of claim 6 wherein the
executable code, when executed, causes the data processing
apparatus to:

modify the instance of the process model by adding and/or
changing an aspect of one or more of the router object
and/or the connector object, based on a context of the
packaged composite application.

8. The computer program product of claim 6 wherein the
instance of the process model is created in response to receipt
of a user stimulus from a user of the packaged composite
application.

9. The computer program product of claim 1 wherein the
executing instance of the process model represents an event
based version of an underlying initial version of the process
model in which the process model is represented as a directed
graph in which a plurality of tasks are connected by a plurality
of directed edges.

10. The computer program product of claim 9, wherein
connector objects of the event-based version, including the
connector object, represent the plurality of tasks and router
objects of the event-based version, including the router
object, implement the directed edges.

13
Dec. 1, 2011

11. An apparatus comprising:
means for reading a first task completion event from a
memory space using a router object, the first task
completion event indicating completion of a first task of
an executing instance of a process model;

means for writing a first task-enabling event to the memory
space using the router object;

means for reading the first task-enabling event at a connec
tor object and coordinate performance of a second task
of the process model based thereon and using the con
nector object; and

means for writing a second task completion event to the
memory space using the connector object and signifying
completion of the second task.

12. The apparatus of claim 11 wherein the executable code,
when executed, causes the data processing apparatus to:

read a plurality of task-completion events from the
memory space, including the first task completion event;
and

evaluate conditions associated with the plurality of task
completion events to determine whether the task
completion events match an input set of the router object
that is defined with respect to a path through the instance
of the process model.

13. The apparatus of claim 11 wherein the executable code,
when executed, causes the data processing apparatus to:

read the first task completion event from the memory space
at the router object and within the instance of the process
model; and

write a modified first task-enabling event to the memory
space, in response to the reading of the first task comple
tion event, in order to execute the instance of the process
model.

14. The apparatus of claim 11 wherein the instance of the
process model includes a plurality of tasks, including the first
task and the second task, and wherein each task is associated
with a connector object configured to read task-enabling
events from the memory space and determine whether any of
the task-enabling events enable execution of its correspond
ing task, and, if so, to thereafter write task completion events
to the memory space to thereby trigger execution of a Subse
quent task within the instance of the process model.

15. The apparatus of claim 11 wherein the executing
instance of the process model represents an event-based ver
sion of an underlying initial version of the process model in
which the process model is represented as a directed graph in
which a plurality of tasks are connected by a plurality of
directed edges.

16. The apparatus of claim 15, wherein connector objects
of the event-based version, including the connector object,
represent the plurality of tasks and router objects of the event
based version, including the router object, implement the
directed edges.

17. A method comprising:
reading a first task completion event from a memory space

using a router object, the first task completion event
indicating completion of a first task of an executing
instance of a process model;

writing a first task-enabling event to the memory space
using the router object;

reading the first task-enabling event at a connector object
and coordinating performance of a second task of the
process model based thereon and using the connector
object; and

US 2011/02964. 19 A1

writing a second task completion event to the memory
space using the connector object and signifying comple
tion of the second task.

18. The method of claim 17 wherein the instance of the
process model includes a plurality of tasks, including the first
task and the second task, and wherein each task is associated
with a connector object configured to read task-enabling
events from the memory space and determine whether any of
the task-enabling events enable execution of its correspond
ing task, and, if so, to thereafter write task completion events
to the memory space to thereby trigger execution of a Subse
quent task within the instance of the process model.

Dec. 1, 2011

19. The method of claim 17 wherein the executing instance
of the process model represents an event-based version of an
underlying initial version of the process model in which the
process model is represented as a directed graph in which a
plurality of tasks are connected by a plurality of directed
edges.

20. The method of claim 19, wherein connector objects of
the event-based version, including the connector object, rep
resent the plurality of tasks and router objects of the event
based version, including the router object, implement the
directed edges.

