METHOD, NETWORK ENTITY, TELECOMMUNICATIONS NETWORK AND COMPUTER PROGRAM PRODUCT FOR HANDLING SUBSCRIPTION DATA IN A TELECOMMUNICATIONS NETWORK

Handling subscription data in a telecommunications network, wherein the telecommunications network comprises a first network entity providing the functions of a Home Subscriber Server (HSS) and/or of a Home Location Register (HLR), wherein the telecommunications network comprises a third network entity providing the functions of a Visitor Location Register (VLR) and/or of a Mobile Management Entity (MME), wherein the telecommunications network comprises a fifth network entity providing a routing functionality, wherein the method comprises the steps of: storing first subscription data in a subscriber database, the first subscription data being provisional subscription data of a subscriber not yet active in the telecommunications network - the fifth network entity receiving a first message with regard to the subscriber, the first message being sent by the third network entity and being directed to the first network entity; the fifth network entity sending a second message to the first network entity, the second message comprising only an indication that a subscription of the subscriber is a provisional subscription, where-in the first network entity comprises a profile information such that the subscriber becomes an active subscriber.
Method, Network Entity, Telecommunications Network and Computer Program Product for handling subscription data in a Telecommunications Network

BACKGROUND

[0001] The present invention relates to a method, a network entity, a telecommunications network, and a computer program product for handling subscription data in a telecommunications network, wherein the telecommunications network comprises a first network entity providing the functions of a Home Subscriber Server (HSS) and/or of a Home Location Register (HLR), wherein the telecommunications network is preferably a cellular mobile network like, GERAN, UTRAN, LTE / E-UTRAN, LTE-Advanced, cdma2000, WiMAX, WiBro, or a fixed network (e.g. SIP telephony) etc. The invention is particularly to methods, network entities, telecommunications networks and computer program products for provisioning network entities, such as a Home Location Register (HLR) and/or a Home Subscriber Server (HSS) with mobile subscriber information.

[0002] In mobile telecommunications networks, it is necessary for subscriptions to be set up before they can be put in use, that is before they are activated. Setting up a subscription is referred to as "provisioning" and involves creating a complete subscription which is active in the relevant network database/register, e.g. a Home Location Register (HLR). Prior to being an active (or complete) subscription, a subscription is - in the context of the present invention - also called to be a provisional subscription or a pre-provisioned subscription. It is typical for a significant number of subscribers to a wireless network service to be pre-paid subscribers with the others being post-paid subscribers. Network operators use methods of pre-provisioning of subscriptions to create the subscriptions in the network system before they are handed over to subscribers to enable flexible SIM card delivery via appropriate retail chains. This means that subscribers need to be pre-provisioned in Core Elements of mobile telecommunications networks as well as in Service Elements of mobile telecommunications networks before the SIM card (Subscriber Identity Module card) can actually be used for the first time in the network. In a mobile network, storage of subscriber-related data is costly due to associated fees like licence fees, hardware requirements and system performance requirements. Most operators of mobile telecommunications networks pre-provision the Home Location Register (HLR) with a default profile as part of the logistics / supply-chain of SIM cards. Pre-provisioning means the main parts (at least the required identities and the authentication data) of a subscription are created in the network, either in a back-end repository or even directly in an HLR. The subscription data is valid but the subscription is not yet active, i.e. the subscription is provisional. Such methods are, e.g., known from European Patent Application EP 2 114 063 A1.
[0003] All the systems and methods as of today require a routing node (typically called an STP or SRR) to route the messages related to pre-provisioned inactive subscribers to a pre-provisioning system/center for the purpose of provisioning the subscriber in the commercial HLR/HSS and the Service Nodes. A routing node contains a database that maps the IMSI of active subscribers to the correct HLR/HSS. In this way the routing node is able to route the messages for active subscribers to the HLR that contains subscription data of that specific subscriber.

[0004] Such a routing node can also be extended by a second database containing IMSIs of pre-provisioned not yet active subscribers. The IMSIs for these subscribers are then mapped to a pre-provisioning system/center. Messages related to pre-provisioned not yet active subscribers can then be routed to a pre-provisioning system/center (like described in WO 2002/098156 A1, US 2006/058028 or WO 2009/053918 A2) or a system that combines HLR functionality with a provisioning capability (like in WO 2004/028191 A1).

[0005] According to other existing methods and systems, the Home Location Register (HLR) is required to perform additional operations compared to the standard Home Location Register (HLR). This requires development efforts and associated costs on existing Home Location Register (HLR) platforms. Such a modification is costly as a multitude of existing interfaces between existing network entities would need to be modified and kept up to date. Furthermore, existing solutions related to pre-provisioning are restricted to the pre-provisioning of the Home Location Register (HLR), i.e. the pre-provisioning of the Home Subscriber Server (HSS) and other service nodes (e.g. IN/SCP) are not addressed.

[0006] Most systems and methods as of today require storing subscriber information related to pre-provisioned subscribers on the pre-provisioning center. Furthermore, all systems and methods of today require the routing node to inform the pre-provisioning center/system to provision the HLRs if a subscriber becomes active on the network.

[0007] Some systems and methods of today require even the provisioning of provisional subscriber information both on a routing node as well as on a pre-provisioning system/center.

[0008] Some systems and methods of the existing art provide a temporary restricted service as part of the provisioning process after the subscriber attempts to access the network for the first time. Other systems and methods require the subscriber to switch-off and switch on the device to complete the provisioning process.
SUMMARY

[0009] An object of the present invention is to provide a method, a network entity, a telecommunications network, and a computer program product for handling subscription data in a telecommunications network such that the costs and the complexity of the pre-provisioning process and of the provisioning process of subscriber data is reduced.

[0010] According to a first and second embodiment, the object of the present invention is achieved by a method for handling subscription data in a telecommunications network, wherein the telecommunications network comprises a first network entity providing the functions of a Home Subscriber Server (HSS) and/or of a Home Location Register (HLR), wherein the telecommunications network comprises a second network entity providing a subscription management function, wherein the telecommunications network comprises a third network entity providing the functions of a Visitor Location Register (VLR) and/or of a Mobile Management Entity (MME), wherein the method comprises the steps of:

- storing first subscription data in a subscriber database assigned to the second network entity, the first subscription data being provisional subscription data of a subscriber not yet active in the telecommunications network;
- the second network entity receiving a first message directed to the first network entity and sent by the third network entity with regard to the subscriber;
- the second network entity sending a second message to the first network entity, the second message comprising the first subscription data such that the subscriber becomes an active subscriber and that second subscription data are stored in a further subscriber database assigned to the first network entity.

[0011] According to a third embodiment, the object of the present invention is achieved by a method for handling subscription data in a telecommunications network, wherein the telecommunications network comprises a first network entity providing the functions of a Home Subscriber Server (HSS) and/or of a Home Location Register (HLR), wherein the telecommunications network comprises a third network entity providing the functions of a Visitor Location Register (VLR) and/or of a Mobile Management Entity (MME), wherein the telecommunications network comprises a fifth network entity providing a routing functionality, wherein the method comprises the steps of:

- storing first subscription data in a subscriber database, the first subscription data being provisional subscription data of a subscriber not yet active in the telecommunications network;
- the fifth network entity receiving a first message with regard to the subscriber, the first message being sent by the third network entity and being directed to the first network entity;
- the fifth network entity sending a second message to the first network entity, the second
message comprising only an indication that a subscription of the subscriber is a provisional subscription, wherein the first network entity comprises a profile information such that the subscriber becomes an active subscriber.

[0012] According to all embodiments of the present invention, it is provided a system and a method for intelligent management of subscriber information in the Home Location Register (HLR), the Home Subscriber Server (HSS) and other Service Nodes in a mobile telecommunications network environment. Thereby, it is possible to reduce the required Home Location Register (HLR), Home Subscriber Server (HSS) and Service Node database space and consequently, it is possible to avoid negative performance impact due to pre-provisioning of subscribers. According to the present invention, a cost-effective system and method for intelligent subscription management in a mobile communications network operator environment is possible. The method and system according to the present invention decreases licence/database based capacity requirements in telecommunications core network and services network.

[0013] Furthermore according to all embodiments of the present invention, it is advantageously possible that no change to the respective interfaces and to the mode of operation of the existing network entities like Home Location Register (HLR), Home Subscriber Server (HSS) or Service Nodes needs to be realized. In a mobile telecommunications network environment, more and more access technologies as well as more and more service nodes are added to the telecommunications network. These technology changes come with their specific subscriber databases. As the system and the method according to the present invention do not require development on existing standard components, it allows an easy expansion to cope with new networks and new service nodes.

[0014] According to a first and second embodiment of the present invention, instead of pre-provisioning the commercial Home Location Register (HLR), Home Subscriber Server (HSS) and Service Nodes as part of the logistical process, it is proposed to pre-provision the second network entity, which is hereinafter also called an Intelligent Subscription Management Center (ISMC).

[0015] According to the first and second embodiment of the present invention, it is not only possible to reduce the complexity of the pre-provisioning process within the telecommunications network, i.e. between the different network entities requiring subscription information, but also to reduce the required memory space for pre-provisioned subscribers, also called provisional subscription data. This is possible by storing for at least a certain number of provisional subscribers identical profile information in the subscriber database of the second network entity. If, e.g., all pre-provisioned subscribers should have an identical profile (i.e. identical profile
information of the kind of "having Multimedia Message Service (MMS) functionality" or "not having MMS functionality") then only one default set of profile information is to be stored. This largely reduces the required memory resources for such pre-provisioned subscribers. If, on the other hand, a plurality of different groups of pre-provisioned subscribers should be provided (e.g. different groups related to different advertising or other marketing efforts targeting different types of users and therefore providing differently featured functionality regarding the proposed network access and hence different profile information), then a plurality of different default profiles (like a first profile, a second profile or the like) is to be stored in the subscriber database of the second network entity (i.e. in the Intelligent Subscription Management Center (ISM)). However, even in the second case, the number of different default profile types (for specific groups of pre-provisioned subscribers) being low compared to the total number of pre-provisioned subscribers, the present invention provides for reduced memory requirements with respect to storing pre-provisioned subscribers compared to storing such pre-provisioned subscribers in a Home Location Register (HLR) or Home Subscriber Server (HSS) where every subscribers needs to have its profile information related to its individual profile.

[0016] According to the first and a second embodiment of the present invention all messages from the third network entity need to be handled either by the second network entity or by the fifth network entity.

[0017] According to a third embodiment of the present invention, there is no need to provision any pre-provisioning system with initial provisional subscriber information that are subscriber specific. The presented pre-provisioning system, which is hereinafter called an Intelligent Subscription Management Center (ISM), is only containing default profiles related to the provisioning of the fourth network entity (or plurality of fourth network entities, also called service nodes). Furthermore according to the third embodiment of the present invention, there is no need for the subscriber to perform any action as part of the activation process (e.g. switch off the device and switch it on again or wait for couple of minutes before the subscriber can get access to the services).

[0018] Furthermore, in the third embodiment it is not necessary for the second entity to scan all the messages between the third and the first network entity.

[0019] Furthermore and according to all three embodiments of the present invention, the first network entity (Home Location Register (HLR) and/or Home Subscriber Server (HSS)) is provided with the necessary information in order to generate the subscriber information in the situation where the respective subscriber attempts to have a network access for the first time. This means that according to the present invention, it is not the first network entity (Home Location Register (HLR) or Home Subscriber Server (HSS)) that retrieves the needed subscriber information related to a subscriber that is - at a specific point in time - unknown to
the first network entity (Home Location Register (HLR) or Home Subscriber Server (HSS)), but
- according to the first and second embodiment, for every subscriber that is unknown to the
 first network entity (Home Location Register (HLR) or Home Subscriber Server (HSS)) these
 subscriber data are provided once the second (or fifth) network entity has detected that the third
 network entity (Visitor Location Register (VLR) or Mobile Management Entity (MME)) attempted
 to send the first message to the first network entity (Home Location Register (HLR) or Home
 Subscriber Server (HSS)) in order to realize a network contact of an (at this time) unknown
 subscriber
- according to the third embodiment, for every subscriber that is only pre-provisioned in the
 telecommunications network, the first network entity (Home Location Register (HLR) or Home
 Subscriber Server (HSS)) receives the second message from the fifth network entity and the
 second message comprises an indication that the subscription of the subscriber is a provisional
 subscription, wherein the first network entity comprises a profile information such that the
 complete subscriber information (including the profile of the generated subscriber) can be
 generated and the subscriber becomes an active subscriber.
This means that according to all embodiments of the present invention, the first message serves
as a trigger (to the second network entity or Intelligent Subscription Management Center (ISMC)
or to the fifth network entity) to provision the subscriber in the first network entity (Home
Location Register (HLR) or Home Subscriber Server (HSS)). By this provisioning, the
(previously provisional or pre-active) subscriber becomes an active subscriber in the
telecommunications network, i.e. from that time on, the subscriber is known to the first network
entity (i.e. the Home Location Register (HLR) or Home Subscriber Server (HSS)). The
provisioning of the first network entity (Home Location Register (HLR) or Home Subscriber
Server (HSS)) with the subscription information of such a subscriber is made (or such that the
subscriber information are generated) by means of the second message, i.e. the second
message either comprises the relevant subscription information (first and second embodiment
of the present invention) or the second message refers to the relevant subscription information
(third embodiment of the present invention). The first message is very preferably a message
requesting a first time network contact for a specific subscriber, such as a location update
message.

[0020] According to the first embodiment, all such messages requesting network contact
are scanned by the second network entity such that for subscribers unknown to the first network
entity a provisioning procedure can be initiated by the second network entity. Very preferably,
the first message is a Location Update message associated with the (initial non-provisional)
subscription of the subscriber to the telecommunications network.

[0021] According to the first and second embodiment, the subscription data of the pre-
provisioned subscribers, i.e. the subscriber-specific data (including subscriber specific profile
data or the like) are stored in the second network entity or in a device or a location dependent on the second network entity. According to the third embodiment, the subscription data of the pre-provisioned subscribers (including subscriber specific profile data or the like) are not stored in the second network entity but - besides being stored in the IT provisioning system - there is a subscriber specific routing information stored in the fifth network entity (Signal Transfer Point).

[0022] According to the present invention, it is preferred that the telecommunications network comprises a fourth network entity providing the functions of a Service Node, wherein the method further comprises the steps of:

- the second network entity sending a third message to the fourth network entity, the third message comprising at least partly the first subscription data such that the subscriber becomes a subscriber enabled for the service provided by the fourth network entity.

[0023] Thereby, it is advantageously possible to also provision the fourth network entity (i.e. Service Nodes providing network services such as Voice Messaging, Multimedia Messaging, IN services (Intelligent Network services) or the like) by the second network entity such that no specific pre-provisioning database and pre-provisioning procedure is required for such Service Nodes. This means that additionally to (pre-)provision the Home Location Register (HLR), mobile telecommunications network operators might also have to pre-provision so-called network entities, hereinafter also called service nodes or fourth network entity or entities. Such service nodes (or fourth network entities) are network entities that provide a service (or functionality) to the subscriber and/or to another network entity and such service nodes (or fourth network entities) require the provision of subscriber data for this service (or functionality) to work. This means that such a fourth network entity comprises or is assigned to any generic services profile database that hold specific subscriber profile information for a mobile service or another functionality. Such services nodes or fourth network entities include but are not limited to:

- the Intelligent Network Service Control Point (IN/SCP): e.g. for the subscriber identity, the type of subscriber, initial balance, status, or the like,
- the Voice Messaging System (VMS): e.g. for the subscriber identity, the type of subscriber, Default Languages, or the like,
- the Multimedia Message Service Center (MMSC): e.g. for the subscriber identity, the type of subscriber, Default Languages, or the like,
- other service nodes that require pre-provisioning of some subscriber data for the service to work.

[0024] Likewise to the provisioning of the first network entity with the subscription information by means of the second message, also the fourth network entity is provisioned (by the second network entity) with the relevant subscription information by means of a third
message, i.e. the third message either comprises the relevant subscription information or the third message refers to the relevant subscription information.

[0025] According to the third embodiment of the present invention, it is preferred that the profile information (that is stored in the first network entity) is unspecific of the subscriber. This means that there is one or a plurality of different possible subscriber profiles stored in the first network entity but these possible subscriber profiles are not related specifically to a given subscriber (or International Mobile Subscriber Identity (IMSI) number). In case that the second message (from the fifth network entity to the first network entity) concerns a subscriber that is not an active subscriber (i.e. an International Mobile Subscriber Identity (IMSI) of a pre-provisioned subscriber), the second message comprises an indication — that this specific subscriber is not yet active (i.e. the subscription is a provisional subscription) and
- which one of the different possible (standard) subscriber profiles is to be used to generated the subscriber information for that given subscriber.

[0026] Furthermore, it is preferred according to the third embodiment of the present invention that the second message to the first network entity comprises:
- a Global Title of the type MGT (Mobile Global Title, E.214) in case of a non-provisional subscription of the subscriber, and
- a Global Title of the type Mobile Station International Subscriber Directory Number (MSISDN, E.164) or of the type International Mobile Subscriber Identity (IMSI, E.212) in case of a provisional subscription of the subscriber 11.

[0027] According to the third embodiment of the present invention, it is furthermore preferred that as part of the Global Title of the second message, digits are used to convey a profile ID information to the first network entity.

[0028] Thereby, it is advantageously possible to use digits, i.e. a part of the Global Title, to convey the profile ID information to the first network entity 1 allowing the first network entity 1 to find the right profile for the subscriber indicated in or concerned by the message.

[0029] Furthermore, it is preferred according to the third embodiment of the present invention that the type of the Global Title depends on the subscription status of the subscriber.

[0030] Thereby, it is advantageously possible that the type of the Global Title is used as a mechanism to inform the first network entity about the subscription status of the subscriber.

[0031] Furthermore, it is preferred according to the third embodiment of the present invention that the telecommunications network comprises a second network entity and a fourth network entity, wherein the second network entity provides a subscription management
function, wherein the fourth network entity provides the functions of a Service Node providing a service, wherein the method further comprises the steps of:
- the first network entity sending a third message (1) to the second network entity;
- the second network entity sending a fourth message to the fourth network entity, the fourth message comprising at least partly the first subscription data such that the subscriber becomes a subscriber enabled for the service provided by the fourth network entity.

[0032] It is furthermore preferred according to the present invention that the subscription is a pre-paid subscription. This is particularly important as there is a higher probability (compared to post-paid subscriptions) that a pre-paid subscription is not put in active use after initial pre-provisioning. Alternatively, it is also preferred according to the present invention that the subscription is a post-paid subscription and/or that the inventive method is applied to a plurality of subscriptions where part of this plurality of subscriptions are pre-paid subscriptions and another part of this plurality of subscriptions are post-paid subscriptions.

[0033] The present invention also relates to a network entity providing a subscription management function in a telecommunications network, wherein the telecommunications network comprises a first network entity providing the functions of a Home Subscriber Server (HSS) and/or of a Home Location Register (HLR), wherein the telecommunications network comprises the network entity as a second network entity, wherein the telecommunications network comprises a third network entity providing the functions of a Visitor Location Register (VLR) and/or of a Mobile Management Entity (MME), wherein a subscriber database is assigned to the second network entity, wherein first subscription data are stored in the subscriber database, wherein the first subscription data are provisional subscription data of a subscriber not yet active in the telecommunications network, wherein for a first message which is sent by the third network entity with regard to the subscriber and which is directed to the first network entity the second network entity is an intermediate network entity such that the second network entity sends a second message to the first network entity, the second message comprising the first subscription data such that the subscriber becomes an active subscriber and that second subscription data are stored in a further subscriber database assigned to the first network entity.

[0034] The present invention - especially according to the third embodiment - also relates to a network entity providing routing functionality in a telecommunications network, wherein the telecommunications network comprises a first network entity providing the functions of a Home Subscriber Server (HSS) and/or of a Home Location Register (HLR), wherein the telecommunications network comprises the network entity as a fifth network entity, wherein the telecommunications network comprises a third network entity providing the functions of a Visitor Location Register (VLR) and/or of a Mobile Management Entity (MME), wherein first
subscription data are stored in a subscriber database, the first subscription data being provisional subscription data of a subscriber not yet active in the telecommunications network, wherein the fifth network entity is adapted for receiving a first message with regard to the subscriber, the first message being sent by the third network entity and being directed to the first network entity, wherein the fifth network entity is furthermore adapted for sending a second message to the first network entity, the second message comprising only an indication that a subscription of the subscriber is a provisional subscription, wherein the first network entity comprises a profile information such that the subscriber becomes an active subscriber.

[0035] According to the present invention, it is advantageously possible that an intermediate layer is created between the third network entity (Visitor Location Register (VLR) or Mobile Management Entity (MME)) on the one hand and the first network entity (Home Location Register (HLR) or Home Subscriber Server (HSS)) on the other hand. Thereby, it is possible to detect the first messages relating to a first-contact of pre-provisioned subscribers to the telecommunications network.

[0036] It is furthermore preferred that the telecommunications network comprises a fourth network entity providing the functions of a Service Node, wherein the second network entity sends a third message to the fourth network entity, the third message comprising at least partly the first subscription data such that the subscriber becomes a subscriber enabled for the service provided by the fourth network entity. According to the present invention, the fourth network entity is preferably a Service Node providing the functions of a Multimedia Message Service Center (MMSC) and/or of a Voicemailbox Service Node and/or of an Intelligent Network Service Control Point (IN/SCP).

[0037] The present invention also relates to a telecommunications network comprising:
- a first network entity providing the functions of a Home Subscriber Server (HSS) and/or of a Home Location Register (HLR),
- a second network entity providing a subscription management function,
- a third network entity providing the functions of a Visitor Location Register (VLR) and/or of a Mobile Management Entity (MME),
wherein a subscriber database is assigned to the second network entity, wherein first subscription data are stored in the subscriber database, wherein the first subscription data are provisional subscription data of a subscriber not yet active in the telecommunications network, wherein for a first message which is sent by the third network entity with regard to the subscriber and which is directed to the first network entity the second network entity is an intermediate network entity such that the second network entity sends a second message to the first network entity, the second message comprising the first subscription data such that the
subscriber becomes an active subscriber and that second subscription data are stored in a further subscriber database assigned to the first network entity.

[0038] The present invention - especially according to the third embodiment - also relates to a telecommunications network comprising:
— a first network entity providing the functions of a Home Subscriber Server (HSS) and/or of a Home Location Register (HLR),
— a third network entity providing the functions of a Visitor Location Register (VLR) and/or of a Mobile Management Entity (MME),
— a fifth network entity providing a routing functionality,
wherein first subscription data are stored in a subscriber database, the first subscription data being provisional subscription data of a subscriber not yet active in the telecommunications network, wherein the fifth network entity is adapted for receiving a first message with regard to the subscriber, the first message being sent by the third network entity and being directed to the first network entity, wherein the fifth network entity is furthermore adapted for sending a second message to the first network entity, the second message comprising only an indication that a subscription of the subscriber is a provisional subscription, wherein the first network entity comprises a profile information such that the subscriber becomes an active subscriber.

[0039] Furthermore, the present invention relates to
— a program comprising a computer readable program code for controlling a second network entity providing a subscription management function according to the present invention or for controlling a telecommunications network according to the present invention, and to
— a computer program product comprising a computer readable software code that when executed on a computing system performs a method for handling subscription data in a telecommunications network according to the present invention.

BRIEF DESCRIPTION OF THE DRAWINGS

[0040] Figure 1 schematically illustrates a part of a telecommunications network comprising different network entities according to a first embodiment of the present invention.

[0041] Figures 2 and 3 schematically illustrate flow diagrams representing the flow of operations according to the first embodiment of the present invention.

[0042] Figures 4, 5 schematically illustrate communication diagrams according to a first embodiment of the present invention for a pre-provisioned subscriber and for an active subscriber.
Figure 6 schematically illustrates a communication diagram according to a second embodiment of the present invention.

Figure 7 schematically illustrates a part of a telecommunications network comprising different network entities according to the second embodiment.

Figure 8 schematically illustrates a communication diagram according to a third embodiment of the present invention.

Figure 9 schematically illustrates a part of a telecommunications network comprising different network entities according to the third embodiment.

Figure 10 schematically illustrates a communication diagram according to a variant of the third embodiment of the present invention.

Figures 11 to 12 schematically illustrate flow diagrams representing the flow of operations according to the third embodiment of the present invention.

DETAILED DESCRIPTION

The present invention will be described with respect to particular embodiments and with reference to certain drawings but the invention is not limited thereto but only by the claims. The drawings described are only schematic and are non-limiting. In the drawings, the size of some of the elements may be exaggerated and not drawn on scale for illustrative purposes.

Where an indefinite or definite article is used when referring to a singular noun, e.g. "a", "an", "the", this includes a plural of that noun unless something else is specifically stated.

Furthermore, the terms first, second, third and the like in the description and in the claims are used for distinguishing between similar elements and not necessarily for describing a sequential or chronological order. It is to be understood that the terms so used are interchangeable under appropriate circumstances and that the embodiments of the invention described herein are capable of operation in other sequences than described of illustrated herein.

The techniques described herein may be implemented by various means. For example, these techniques may be implemented in hardware (one or more devices), firmware (one or more devices), software (one or more modules), or combinations thereof. For a firmware or software, implementation can be through modules (for example, procedures, functions, or the like) that perform the functions described herein. The software codes may be stored in any suitable, processor/computer-readable data storage medium(s) or memory unit(s) and executed.
by one or more processors/computers. The data storage medium or the memory unit may be implemented within the processor/computer or external to the processor/computer, in which case it can be communicatively coupled to the processor/computer via various means as is known in the art. Additionally, components of systems described herein may be rearranged and/or complimented by additional components in order to facilitate achieving the various aspects, goals, advantages, etc., described with regard thereto, and are not limited to the precise configurations set forth in a given figure, as will be appreciated by one skilled in the art.

[0053] Figure 1 schematically illustrates a part of a telecommunications network 10 comprising different network entities according to a first embodiment of the present invention. A first network entity 1 provides the functions of a Home Location Register (HLR) and/or of a Home Subscriber Server (HSS). A third network entity 3 provides the functions of a Visitor Location Register (VLR) and/or a Mobile Management Entity (MME). A fourth network entity 4 provides the functions of a Service Node such as an Intelligent Network Service Control Point (IN/SCP) and/or a Voice Messaging System (VMS) and/or a Multimedia Message Service Center (MMSC) and/or any other service node in the telecommunications network 10. A second network entity 2 is configured as an Intelligent Subscription Management Center (ISMC) according to the present invention and serves as a provisioning entity for subscriber-related provisioning information to the first network entity 1 and to the fourth network entity 4. The origin of the subscriber information is a so-called IT provisioning system 25 linked to the Intelligent Subscription Management Center (ISMC) or second network entity 2.

[0054] The second network entity 2 comprises a subscriber database 21, a first module 22 and a second module 23. The first module 22 is preferably configured as a Signalling Analysis and Transfer Module 22 comprising a multitude of interfaces, especially an interface according to the MAP protocol (for GSM/UMTS messages) and an interface for the DIAMETER protocol (for LTE messages). The second module 23 is preferably configured as a Subscription Management Module 23 comprising a Provisioning module 24. Preferably MAP/DIAMETER signalling interfaces are provided between the third network entity 3 and the first module 22 on the one hand and between the first module 22 and the first network entity 1 on the other hand. A database query and modification interface is provided preferably between the first module 22 and the subscriber database 21 (used by the second module 23 of the second network entity 2 to query, create, modify and delete a subscriber in the subscriber database 21) on the one hand and the subscriber database 21 and the Provisioning module 24 (used by the first module 22 of the second network entity 2 to query the subscriber in the subscriber database 21) on the other hand. A provisioning interface is provided preferably between
 - the IT provisioning system 25 and the second module 23,
 - the second module 23 and the first network entity 1,
 - the second module 23 and the fourth network entity 4,
- the first module 22 and the Provisioning module 24.

The subscriber database 21 comprises first subscription data 100 corresponding to the data stored with regard to pre-provisioned subscribers 11. Furthermore the database 21 comprises profile data 120 corresponding to configuration of the network access of the pre-provisioned subscribers 11.

[0055] The Intelligent Subscription Management Center (ISM C) or second network entity 2 provides three main functions and acts as a Home Location Register (HLR) / Home Subscriber Server (HSS) in the network for the pre-provisioned subscribers before they become active.

[0056] The situation represented in Figure 1 corresponds to a subscriber 11 (i.e. being, e.g., represented by any mobile terminal 11 having as SIM card (Subscriber Identity Module) or another identity module) attempting to have access to the communications network 10 for the first time (i.e. the SIM card or other identity module never had a telecommunications service requested from the network 10 before). In such a situation, the mobile terminal 11 (i.e. the subscriber 11) sends a message to the third network entity 3. The third network entity 3 sends a first message which is directed to the first network entity 1 and which is especially a Location Update message. According to the present invention, this first message (i.e. generally a Location Update message) is captured or intercepted by the second network entity 2. The second network entity 2 recognizes that the first message has been sent by a (pre-provisioned, i.e. provisional) subscriber 11 attempting to have access to the network for the first time and that therefore, the first network entity 1 does not know the subscriber 11 yet (i.e. in a further subscriber database assigned to the first network entity 1, the subscriber 11 is not yet registered as an active subscriber). By means of a second message, the second entity 2 transmits an instruction to the first network entity 1 to provision the subscriber 11. After this subscription is completed in the first network entity 1, the subscriber 11 is an active subscriber in the telecommunications network 10. On the other hand, messages sent by the third network entity 3 to the first network entity 1 that are either
- messages not related to a first contact or attempt to contact the communications network 10 (e.g. messages that are no Location Update messages), or
-- messages related to other subscribers that are known to the first network entity 1 as active subscribers
are not intercepted by the second network entity 2 but forwarded to the first network entity 1.

[0057] Figures 2 and 3 schematically illustrate flow diagrams representing the flow of operations according to the present invention.

[0058] The diagram shown in Figure 2 shows a workflow diagram for the operation of the second network entity 2 according to the first embodiment of the present invention, i.e. the Intelligent Subscription Management Center (ISM C), and especially the first module 22 of the
second network entity 2. Initially (represented by reference numeral 510 in Figure 2), the second network entity 2 waits for messages. In case an incoming message is received (represented by reference numeral 520 in Figure 2) from the third network entity 3 (Visitor Location Register (VLR) or Mobile Management Entity (MME)), it is decided whether the message is a first message, i.e. especially whether the message is a Location Update message (represented by reference numeral 530 in Figure 2). If the message is no first message (e.g. not a Location Update message), the message is transferred (represented by reference numeral 540 in Figure 2) to the message destination, e.g. the first network entity 1 (Home Location Register (HLR) or Home Subscriber Server (HSS)) in which case the handling of this message is terminated (represented by reference numeral 599 in Figure 2). If in step 530 the message is possibly a first message (e.g. a Location Update message), the subscriber database 21 of the second network entity 2 is searched (represented by reference numeral 550 in Figure 2) and decided whether the subscriber 11 is a pre-active or pre-provisioned subscriber 11 (represented by reference numeral 560 in Figure 2). If this is not the case (i.e. the identity of the subscriber 11 detected by means, e.g., of the International Mobile Subscriber Identity (IMSI) number and/or of the Mobile Subscriber Integrated Services Digital Network (MSISDN) number and/or of another identification information), the second network entity 2 knows that the subscriber 11 is known to the first network entity 1 and transfers the Location Update message to its destination, e.g. the first network entity 1 (represented by reference numeral 570 in Figure 2) in which case the handling of this message is terminated (represented by reference numeral 599 in Figure 2).

If in step 560 it is detected that the subscriber 11 is a pre-active or pre-provisioned subscriber 11 (i.e. in the subscription database 21 of the second network entity 2 the identity of the subscriber 11 is found and therefore, the second network entity 2 knows that this subscriber 11 would not be recognized by the first network entity 1), the second message is generated by the second network entity 2 and transmitted to the first network entity 1 (represented by reference numeral 580 in Figure 2) such that the subscriber 11 is provisioned by the first network entity 1. If the corresponding response from the first network entity 1 is positive (acknowledgment of the subscription procedure) (represented by reference numeral 590 in Figure 2) the initial first message is transferred to its destination, i.e. for example the first network entity 1 and the handling of this message is terminated (represented by reference numeral 599 in Figure 2). Alternatively, as an alternative variant on the operation of reference numeral 580, the initial first message is not transferred to its destination, i.e. for example the first network entity 1. In this case the third network entity 3, and subsequently the terminal 11 will not get a response on the initial first message (typically a Location Update). According to the standard the terminal 11 will retry after a certain time period. This retry will be successfully acknowledged as the subscriber is already in active state.
The diagram shown in Figure 3 shows a workflow diagram for the operation of the second network entity 2 according to the first embodiment of the present invention, i.e. the Intelligent Subscription Management Center (ISMC), and especially the second module 23 of the second network entity 2. Initially (represented by reference numeral 610 in Figure 3), the workflow waits for messages and commands. In case an initial provisioning message is received (represented by reference numeral 620 in Figure 3) from the IT Provisioning System 25, this message or corresponding information is stored in the subscriber database 21. In case a provisioning instruction is received from the first module 22 of the second network entity 2 (represented by reference numeral 630 in Figure 3), the first and fourth network entities 1, 4 are provisioned using default profiles 120. In a further step 650, it is decided whether this provisioning of the first and fourth network entities 1, 4 has been successful. If in step 650 the provision was not successful, the provisioning is performed again (represented by reference numeral 660 in Figure 3). If in step 650 the provision was successful, a positive acknowledgement message is sent to the first module 22 of the second network entity 2 (represented by reference numeral 670 in Figure 3). In a further step (represented by reference numeral 670 in Figure 3), the respective subscriber 11 is deleted from the subscriber database 21 (as it is now an active subscriber).

Generally speaking, the first module 22 of the second network entity 2 acts as a signalling transfer point. MAP and DIAMETER messages related to active subscribers are transferred directly to the commercial Home Location Register (HLR) / Home Subscriber Server (HSS) (first network entity 1) that holds data for active subscribers. MAP and DIAMETER messages for pre-provisioned subscribers are intercepted and used to trigger the second module 23 to provision the first network entity 1 (and the fourth network entity 4), i.e. the commercial network nodes. The messages are then transferred to the commercial nodes after successful provisioning. The second module 23 of the second network entity 2 provisions the first network entity 1 and the fourth network entity 4 (or a plurality thereof) and provides an interface to the IT Provisioning System 25 to receive initial provisioning commands for pre-active customers. The second module 23 can also query the subscriber database 21 and delete/modify subscriber data. The subscriber database 21 holds some basic information about pre-provisioned subscribers, e.g. the MSISDN, the International Mobile Subscriber Identity (IMSI), the subscriber type, the Long Term Evolution (LTE) identity. If a subscriber is not present in the subscriber database 21 (for pre-provisioned subscribers), the second network entity 2 assumes that such a subscriber is an active subscriber of the communications network 10. The IT Provisioning System 25 provisions the Intelligent Subscription Management Center (ISMC) or second network entity 2 with pre-active customers. Modifications of profiles for active subscribers are assumed to be done directly on the commercial nodes such as the first network entity 1 (e.g. the Home Location Register (HLR), Home Subscriber Server (HSS) and other
service nodes). Alternatively to such an embodiment, the Intelligent Subscription Management Center (ISMC) can be used as a Gateway for subscriber modifications commands towards the first and fourth network entities. The Service Nodes hold subscriber related profiles or profile information for active subscribers.

[0061] In Figures 4 and 5 communication diagrams according to the first embodiment of the present invention for a pre-provisioned subscriber and for an active subscriber are schematically illustrated. Both communication diagrams of Figures 4 and 5 show the message exchange between the mobile station of subscribers 11, 12, the third network entity 3 (usually a Visitor Location Register (VLR) / Mobile Management Entity (MME)), the second network entity 2, the first network entity 1 (usually a Home Location Register (HLR) / Home Subscriber Server (HSS)), the fourth network entity 4 and the IT Provisioning System 25.

[0062] In Figure 4, the communication diagram for the first network contact of a pre-provisioned subscriber 11 is shown. Initially, the subscriber (pre-)provisioning is realized by a message 211 from the IT Provisioning System 25 to the second network entity 2. The subscriber database 21 then comprises an entry regarding the subscriber 11. The subscriber 11 attempts to contact the network by means of a message 221 to the third network entity 3. This message is usually a Location Update message. The third network entity 3 sends the Location Update message as the first message 222 to the second network entity 2. In a step 230, the second network entity 2 (or Intelligent Subscription Management Center (ISMC)) validates that the subscriber 11 is a pre-active subscriber. The second network entity 2 then sends a Create subscriber message as a second message 241 to the first network entity 1, which is acknowledged by a return message 241. The second network entity 2 then sends a Create subscriber message as a third message 243 to the fourth network entity 4, which is acknowledged by a return message 244. In a step 250, the second network entity 2 receives the successful acknowledgement messages from the first and fourth network entities 1, 4 for the provisioning and sends a delayed Location update message 261 to the first network entity 1, this message being acknowledged by Location update responses 262 (from the first network entity 1 to the third network entity 3) and 263 (from the third network entity 3 to the subscriber 11). In a step 270, the subscriber 11 is deleted from the subscriber database 21 meaning the subscriber 11 is active.

[0063] According to an alternative of the first embodiment, the delayed Location update message 261 as well as the Location update responses 262 (from the first network entity 1 to the third network entity 3) and 263 (from the third network entity 3 to the subscriber 11) are omitted. However, also in this alternative of the first embodiment, the subscriber 11 is deleted from the subscriber database 21 in step 270. The omission of the delayed Location update message 261 results in not forwarding the initial first message to its destination, i.e. for example...
the first network entity 1. In this case the third network entity 3, and subsequently the terminal 11 will not get a response (Location update responses 262, 263) on the initial first message (typically a Location Update). According to the standard the terminal 11 will retry after a certain time period. This retry will be successfully acknowledged as the subscriber 11 is already in active state.

[0064] In Figure 5, the communication diagram for a network contact of an active subscriber 12 is shown. Initially, the subscriber provisioning has been performed by a message 311 from the IT Provisioning System 25 to the second network entity 2. The subscriber 12 attempts to contact the network 10 by means of a message 321 to the third network entity 3. This message is usually a Location Update message. The third network entity 3 sends the Location Update message 322 to the second network entity 2. In a step 330, the second network entity 2 (or Intelligent Subscription Management Center (ISMC)) validates that the subscriber 12 is not a pre-active subscriber. The second network entity 2 then sends a Location update message 341 to the first network entity 1, this message being acknowledged by Location update responses 361 (from the first network entity 1 to the third network entity 3) and 362 (from the third network entity 3 to the subscriber 12).

[0065] Figure 6 schematically illustrates a communication diagram according to the second embodiment of the present invention. In Figure 6, the message exchange between the mobile station of the subscriber 11, the third network entity 3 (usually a Visitor Location Register (VLR) / Mobile Management Entity (MME)), a fifth network entity 5, the second network entity 2, the first network entity 1 (usually a Home Location Register (HLR) / Home Subscriber Server (HSS)), the fourth network entity 4 and the IT Provisioning System 25 is shown. According to the second embodiment of the present invention, the fifth network entity 5 provides for a reduced traffic within the second network entity as all such messages sent from subscribers known to be active subscribers are not handled by the second network entity 2 but is routed directly to the first network entity 1.

[0066] In Figure 6, the communication diagram for the first network contact of a pre-provisioned subscriber 11 is shown. Initially, the subscriber (pre-)provisioning is realized by a message 211 from the IT Provisioning System 25 to the second network entity 2. The subscriber database 21 then comprises an entry regarding the subscriber 11. The second network entity 2 then notifies the fifth network entity 5 that the subscriber 11 is pre-active (or pre-provisioned). The subscriber 11 attempts to contact the network by means of a message 221 to the third network entity 3. This message is usually a Location Update message. The third network entity 3 sends the Location Update message as the first message 222 to the fifth network entity 5. In a step 235, the fifth network entity 5 determines that the International Mobile Subscriber Identity (IMSI) and/or the MSISDN number of the subscriber 11 points to the second
network entity 2. The fifth network entity 5 then sends a Location Update message 236 to the second network entity 2. In a step 230, the second network entity 2 (or Intelligent Subscription Management Center (ISMC)) validates that the subscriber 11 is a pre-active subscriber. The second network entity 2 then sends a Create subscriber message as a second message 241 to the first network entity 1, which is acknowledged by a return message 241. The second network entity 2 then sends a Create subscriber message as a third message 243 to the fourth network entity 4, which is acknowledged by a return message 244. In a step 250, the second network entity 2 receives the successful acknowledgement messages from the first and fourth network entities 1, 4 for the provisioning, deletes the subscriber 11 from the subscriber database 21 and sends a Location update message 266 to the first network entity 1, this message being acknowledged by Location update responses 268 (from the first network entity 1 to the third network entity 3) and 269 (from the third network entity 3 to the subscriber 11). Furthermore after step 250, the second network entity 2 sends a message to the fifth network entity 5 so that the pointer registered in the fifth network entity (regarding Location Update messages from subscriber 11) is set to the first network entity 1 such that a subsequent Location Update message from the subscriber 11 is directly sent to the first network entity 1 and not routed through the second network entity 2. In a step 270, the subscriber 11 is deleted from the subscriber database 21 meaning the subscriber 11 is active. According to an alternative of the first embodiment which also applies in the second embodiment, the delayed Location update message 266 as well as the Location update responses 268 (from the first network entity 1 to the third network entity 3) and 269 (from the third network entity 3 to the subscriber 11) are omitted. However, also in this alternative of the second embodiment, the subscriber 11 is deleted from the subscriber database 21 in step 270.

The first, third and fourth network entity 1, 3, 4 as well as the IT provisioning system 25 correspond to the first embodiment of the present invention (cf. Figure 1). The second network entity 2 according to the second embodiment corresponds mainly to the second network entity 2 according to the first embodiment. The difference is that in the second embodiment, the fifth network entity, a so-called STP (Signalling transfer point) which is provided external to the second network entity 2, is used to reduce the traffic through the second network entity 2.

Also according to the second embodiment, the second network entity 2 comprises a subscriber database 21, a first module 22 and a second module 23. The first module 22 is preferably configured as a Signalling Analysis and Transfer Module 22 comprising a multitude of interfaces, especially an interface according to the MAP protocol (for GSM/UMTS messages) and an interface for the DIAMETER protocol (for LTE messages). Parts of the functions of the first module 22 (according to the first embodiment) are realized according to the second
embodiment by the fifth network entity 5. The second module 23 is unchanged according to the second embodiment. Preferably SS7/MAP/DIAMETER signalling interfaces are provided between the third network entity 3 and the first module 22/fifth network entity 5 on the one hand and between the first network entity 1 and the first module 22/fifth network entity 5 on the other hand.

[0069] Figure 8 schematically illustrates a part of a telecommunications network 10 comprising different network entities according to the third embodiment of the present invention. A first network entity 1 provides the functions of a Home Location Register (HLR) and/or of a Home Subscriber Server (HSS). A third network entity 3 provides the functions of a Visitor Location Register (VLR) and/or a Mobile Management Entity (MME). A fourth network entity 4 provides the functions of a Service Node such as an Intelligent Network Service Control Point (IN/SCP) and/or a Voice Messaging System (VMS) and/or a Multimedia Message Service Center (MMSC) and/or any other service node in the telecommunications network 10. A second network entity 2 is configured as an Intelligent Subscription Management Center (ISM) according to the third embodiment of the present invention and serves as a provisioning entity for subscriber-related provisioning information to the fifth network entity 5 and to the fourth network entity 4. The origin of the subscriber information is a so-called IT provisioning system 25 linked to the Intelligent Subscription Management Center (ISM) or second network entity 2.

[0070] According the third embodiment of the present invention, the second network entity 2 comprises a profile database 21', a first module 22 and a second module 23. The first module 22 is preferably configured as an STP Provisioning Module for provisioning the fifth network entity 5. The second module 23 is preferably configured as a Subscription Management Module 23 comprising a Provisioning module 24. A database query and modification interface is provided preferably between the second module 23 and the profile database 21' (used by the second module 23 of the second network entity 2 to query, create, modify and delete a profile in the profile database 21'). A provisioning interface is provided preferably between:

- the IT provisioning system 25 and the second module 23,
- the first network entity 1 and the second module 23,
- the second module 23 and the fourth network entity 4,
- the first module 22 and the fifth network entity 5.

To the contrary of the first embodiment of the present invention, the interface between the first module 22 and the profile database 21' of the second network entity 2 is not required.

[0071] The fifth network entity 5 (STP) is provisioned by the IT provisioning system 25, via the second network entity (ISM). As a minimum, the following subscriber information is stored as part of the database of the fifth network entity 5 (STP):

- IMSI
- MSISDN
- HLR ID

The database of the fifth network entity 5 is especially a routing database or a routing table indicating a target (to route a message to) for each International Mobile Subscriber Identification (IMSI).

[0072] In the context of the third embodiment of the present invention, the HLR ID is a Global Title. For active subscribers, the Global Title is of type 3 MGT (Mobile Global Title) which is unique per active subscriber as it is derived from IMSI and MSISDN. For pre-provisioned subscribers, the Global Title is of a different type (MSISDN/type1 or IMSI/type2). The STP uses the SN/MSIN part of the Global Title to route the message to the right HLR.

[0073] The HLR ID for pre-provisioned subscribers (being of type 1 or 2) contains an identifier related to the default HLR profile to be used for this specific subscriber. In preferred variants of the third embodiment of the present invention, a specific digit or a plurality of specific digits of the SN/MSIN part of the GT are used for transferring the identifier related to the default HLR profile to be used for this specific subscriber. The Home Location Register (HLR) profile is the profile information to be used to generate the subscriber in the first network entity 1. Other digits of the SN/MSIN are preferably used to indicate the right Home Location Register (HLR) (especially in case of a plurality of different HLRs).

[0074] Changing the state of the subscriber in the STP is done by means of changing the HLR ID for that specific subscriber.

[0075] The profile database 21' as part of the second network entity 2 comprises profile data 120 corresponding to services provided by the service node (i.e. network entity 4). Profile data 120 contains a limited set of default profiles related to the service nodes. It is no necessary for the correct functioning of the third embodiment to store subscriber-specific subscription data 100 within the second network entity 2. According to the third embodiment, the subscription data 100 of the pre-provisioned subscribers (including subscriber specific profile data or the like) are not stored in the second network entity 2 but - besides being stored in the IT provisioning system 25 - there is a subscriber specific routing information stored in the fifth network entity 5 (Signal Transfer Point). The following information is stored in the profile data 120:

- HLR ID #1:
 - STANDARD SERVICE PROFILE 11
 - STANDARD SERVICE PROFILE 12
 - STANDARD SERVICE PROFILE 1n
- HLR ID #2:
 - STANDARD SERVICE PROFILE 21
 - STANDARD SERVICE PROFILE 22
- STANDARD SERVICE PROFILE 23
-- HLR ID #m:
- STANDARD SERVICE PROFILE m1
- STANDARD SERVICE PROFILE m2
- STANDARD SERVICE PROFILE mn
wherein n identifies the number of different standard service profiles related to service nodes and m represents the number of different HLR ID's.

[0076] The first network entity (HLR/HSS) contains a limited set of default HLR/HSS profiles (profile information). The following is stored on the first network entity (HLR):
- HLR ID #1:
 STANDARD HLR PROFILE 1
- HLR ID #2:
 STANDARD HLR PROFILE 2
-- HLR ID #m:
 STANDARD HLR PROFILE m

[0077] In the context of the third embodiment of the present invention, the HLR ID is a Global Title. For active subscribers, the Global Title is of type MGT (Mobile Global Title) which is unique per active subscriber as it is derived from IMSI and MSISDN. For pre-provisioned subscribers, the Global Title is of a different type 1 or 2 (MSISDN or IMSI). The HLR can differentiate the actions to be taken by analyzing the SCCP Called Party Address (CdPA), which includes the Global Title as well as the type of the Global Title (e.g. E.214 or E.164). If the Global Title is, e.g., of type 1 (i.e. E.164) then the HLR concludes that the subscriber is a pre-active subscriber. If the Global Title is of type 3 (i.e. E.214) then the HLR concludes that the subscriber is an active subscriber.

[0078] Figure 9 schematically illustrates a communication diagram according to the third embodiment of the present invention. In Figure 9, the message exchange between the mobile station of the subscriber 11, the third network entity 3 (usually a Visitor Location Register (VLR) / Mobile Management Entity (MME)), a fifth network entity 5, the second network entity 2, the first network entity 1 (usually a Home Location Register (HLR) / Home Subscriber Server (HSS)), the fourth network entity 4 and the IT Provisioning System 25 is shown. According to the third embodiment of the present invention, the fifth network entity 5 provides for a reduced traffic within the second network entity 2 as all such messages sent from subscribers (both active and pre-provisioned) are not handled by the second network entity 2 but are routed directly to the first network entity 1.

[0079] In Figure 9, the communication diagram (according to the third embodiment of the present invention) for the first network contact of a pre-provisioned subscriber 11 is shown.
Initially, the subscriber (pre-)provisioning is realized by a message 211 from the IT Provisioning System 25 to the second network entity 2. The second network entity 2 then notifies the fifth network entity 5 that the subscriber 11 is pre-active (or pre-provisioned) by means of message 212. The subscriber 11 attempts to contact the network by means of a message 221 to the third network entity 3. This message is usually a Location Update message. The third network entity 3 sends the Location Update message as the first message 222 to the fifth network entity 5. In a step 235, the fifth network entity 5 determines the information to be forwarded to the first network entity 1 based on the (routing) database within the fifth network entity 5. The information stored in this database of the fifth network entity 5 indicates whether the International Mobile Subscriber Identity (IMSI) and/or the MSISDN number of the subscriber 11 is related to a pre-provisioned subscriber or to an active subscriber. Furthermore, the information stored in the database of the fifth network entity 5 indicates the first network entity 1 that should be used to route the message to. The fifth network entity 5 then sends the Location Update message 236 as a second message to the correct first network entity 1. The second message 236 (according to the third embodiment) includes the indication that the subscriber is a pre-provisioned (not yet an active) subscriber and comprises the HLR PROFILE ID for this specific subscriber. In a step 230, the first network entity 1 (or HLR/HSS) validates that the subscriber 11 is a pre-active subscriber and creates and activates the subscriber in the HLR database using the profile belonging to the HLR PROFILE ID received in the second message 236. The first network entity 1 then sends a Create subscriber message 241 (fifth message) to the second network entity 2. The second network entity 2 then sends a Create subscriber message 243 (sixth message) to the fourth network entity 4, which is acknowledged by a return message 244. In a step 250, the second network entity 2 receives the successful acknowledgement messages from the fourth network entity 4 for the provisioning of the subscriber 11. The second network entity 2 then sends a Change subscriber status as a seventh message 242 to the fifth network entity 5 (which is acknowledged by a return message 245) and sends message 246 to the first network entity 1 indicating that the provisioning of the fourth network entity 4 is realised and that the subscriber has been activated in the fifth network entity 5. The first network entity 1 then sends an acknowledgment message related to the first message 222 by Location update responses 268 (from the first network entity 1 to the third network entity 3) and 269 (from the third network entity 3 to the subscriber 11).

In Figure 9 the subscriber 11 attempts to contact the network by means of a message 221 to the third network entity 3. This message is usually a Location Update message. The third network entity 3 sends the Location Update message 222 via the fifth network entity 5 to the right first network entity 1. Location Update messages use the SS7 MAP Protocol which in turn relies on SCCP layer of the SS7 protocol stack.
A Global Title (GT) is an address used in the SCCP protocol for routing signaling messages on telecommunications networks. In theory, a global title is a unique address which refers to only one destination (i.e. a network entity in a mobile network), though in practice different global titles (GT's) can be allocated to one destination (i.e. a network entity in a mobile network).

Mainly there are three types of GT in use in mobile networks known as E.164 (MSISDN), E.212 (IMSI) and E.214 (Mobile Global Title):
- Type 1: E.164(MSISDN) = CC+NDC+SN
- Type 2: E.212(IMSI) = MCC+MNC+MSIN
- Type 3: E.214(MGT) = combination of E.212 and E.164 (e.g CC+NDC+MSIN)

In a mobile network, for the purpose of routing messages, the third network entity (MSC/VLR) converts the IMSI to a Mobile Global Title (MGT).

Figures 11 and 12 schematically illustrate flow diagrams representing the flow of operations according to the third embodiment of the present invention.

The diagram shown in Figure 11 shows a workflow diagram for the operation of the first network entity 1 according to the third embodiment of the present invention.

The diagram shown in Figure 12 shows a workflow diagram for the operation of the second network entity 2 according to the third embodiment of the present invention.

Figure 11 shows that the first network entity 1 receives a location update message (represented by means of reference numeral 810 in Figure 11) as second message from the fifth network entity 5) and analyses the global title type on the SCCP layer (represented by means of reference numeral 820 in Figure 11). The first network entity 1 checks whether the subscriber 11 is an active subscriber (i.e. whether the message is related to an active subscriber (Global Title of Type 3)), which is represented by reference numeral 830 in Figure 11. If the second message received by the first network entity 1 comprises a global title of a specified type (in the example of Type 3), the first network entity 1 proceeds with its normal operation, sends a positive acknowledgment to the third network entity 3 (via the fifth network entity 5), which is represented by reference numeral 840 in Figure 11, and terminates the processing (represented by means of reference numeral 899 in Figure 11). If the second
message received by the first network entity 1 comprises a global title of another specified type (in the example of Type 1 or 2), the first network entity 1 creates and activates the subscriber using the correct profile based on the profile information (profile ID) received in the second message, which is represented by reference numeral 850 in Figure 11. Then, the first network entity 1 sends a message (fifth message) to the second network entity 2 (ISMC) indicating the successful activation of the subscriber in the first network entity 1 (typically Home Location Register). After receiving a positive message from network entity 2 about the successful creation of the profiles of the fourth network entity 4 and the successful change of subscriber state in the fifth network entity 5, the first network entity 1 consequently sends a positive acknowledgment to the third network entity 3 (via the fifth network entity 5), which is represented by reference numeral 860 in Figure 11, and terminates the processing (represented by means of reference numeral 899 in Figure 11).

[0088] Figure 12 shows that the second network entity 2 receives the fifth message from the first network entity 1 (represented by means of reference numerals 910 and 920 in Figure 11) containing an information about an activated subscriber (International Mobile Subscriber Identification (IMSI), MSISDN, Home Location Register (HLR) ID). In a step represented by reference numeral 930, a provisioning message is sent to all service nodes (fourth network entities 4) using the correct profile based on the Home Location Register (HLR) ID received from the first network entity 1. In a further step represented by reference numeral 940, a message is sent to the fifth network entity 5 (Signal Transfer Point) instructing the fifth network entity 5 to change the routing information contained in its database related to the subscriber (e.g. move the subscriber from a pre-active state to an active state). As part of the same step 940, the second network entity 2, informs the first network entity 1 about the successful creation of the profiles of network entity 4 and the successful change of subscriber state in the fifth network entity 5. Then, the processing is terminated (represented by means of reference numeral 999 in Figure 11).

[0089] The processing flow preferably branches from the step represented by reference numeral 940 of Figure 12 (indicated by an arrow) to the step represented by reference numeral 860 of Figure 11 (also indicated by an arrow).

[0090] In a second variation of the third embodiment shown in Figure 10, the second network entity 2 (ISMC or any other pre-provisioning system) is not required at all. This is the case if the provisioning of the service nodes (fourth network entity 4) is not required. In this case the IT provisioning system 25 provisions the STP database (database of the fifth network entity 5) directly and the HLR (first network entity 1) provides the interface to the STP (fifth network entity 5) for instructing the STP to change the status of a subscriber from pre-active to an active state.
1. Method for handling subscription data (100) in a telecommunications network (10), wherein the telecommunications network (10) comprises a first network entity (1) providing the functions of a Home Subscriber Server (HSS) and/or of a Home Location Register (HLR), wherein the telecommunications network (10) comprises a third network entity (3) providing the functions of a Visitor Location Register (VLR) and/or of a Mobile Management Entity (MME), wherein the telecommunications network (10) comprises a fifth network entity (5) providing a routing functionality, wherein the method comprises the steps of:
 - storing first subscription data (100), the first subscription data (100) being provisional subscription data (100) of a subscriber (11) not yet active in the telecommunications network (10);
 - the fifth network entity (5) receiving a first message (222) with regard to the subscriber (11), the first message (222) being sent by the third network entity (3) and being directed to the first network entity (1);
 - the fifth network entity (5) sending a second message (236) to the first network entity (1), the second message (236) comprising only an indication that a subscription of the subscriber (11) is a provisional subscription,
wherein the first network entity (1) comprises a profile information such that the subscriber (11) becomes an active subscriber.

2. Method according to claim 1, wherein the profile information is unspecific of the subscriber (11).

3. Method according to one of the preceding claims, wherein the second message (236) to the first network entity (1) comprises:
 - a Global Title of the type MGT (Mobile Global Title, E.214) in case of a non-provisional subscription of the subscriber (11), and
 - a Global Title of the type Mobile Station International Subscriber Directory Number (MSISDN, E.164) or of the type International Mobile Subscriber Identity (IMSI, E.212) in case of a provisional subscription of the subscriber 11.

4. Method according to one of the preceding claims, wherein as part of the Global Title of the second message (236), digits are used to convey a profile ID information to the first network entity (1).
5. Method according to one of the preceding claims, wherein the type of the Global Title depends on the subscription status of the subscriber (11).

6. Method according to one of the preceding claims, wherein the telecommunications network (10) comprises a second network entity (2) and a fourth network entity (4), wherein the second network entity (2) provides a subscription management function, wherein the fourth network entity (4) provides the functions of a Service Node providing a service, wherein the method further comprises the steps of:
- the first network entity (1) sending a fifth message to the second network entity (2);
- the second network entity (2) sending a sixth message (243) to the fourth network entity (4), the sixth message (243) comprising at least partly the first subscription data (100) such that the subscriber (11) becomes a subscriber enabled for the service provided by the fourth network entity (4).

7. Method according to one of the preceding claims, wherein the fourth network entity (4) is a Service Node providing the functions of a Multimedia Message Service Center (MMSC) and/or of a Voicemailbox Service Node and/or of an Intelligent Network Service Control Point (IN/SCP) or any generic services profile database that hold specific subscriber profile information for a mobile service.

8. Method according to any of the preceding claims, wherein the first message (222) is a Location Update message associated with the subscription of the subscriber (11) to the telecommunications network (10).

9. Network entity (5) providing routing functionality in a telecommunications network (10), wherein the telecommunications network (10) comprises a first network entity (1) providing the functions of a Home Subscriber Server (HSS) and/or of a Home Location Register (HLR), wherein the telecommunications network (10) comprises the network entity (5) as a fifth network entity (5), wherein the telecommunications network (10) comprises a third network entity (3) providing the functions of a Visitor Location Register (VLR) and/or of a Mobile Management Entity (MME), wherein first subscription data (100) are provisional subscription data (100) of a subscriber (11) not yet active in the telecommunications network (10), wherein the fifth network entity (5) is adapted for receiving a first message (222) with regard to the subscriber (11), the first message (222) being sent by the third network entity (3) and being directed to the first network entity (1), wherein the fifth network entity (5) is furthermore adapted for sending a second message (236) to the first network entity (1), the second message (236) comprising only an indication that a subscription of the subscriber (11) is a provisional subscription, wherein the first network entity (1) comprises a profile
information such that the subscriber (11) becomes an active subscriber.

10. Network entity (5) according to claim 9, wherein the profile information is unspecific of the subscriber (11).

11. Network entity (5) according to claim 9 or 10, wherein the second message (236) to the first network entity (1) comprises:
 - a Global Title of the type MGT (Mobile Global Title, E.214) in case of a non-provisional subscription of the subscriber (11), and
 ~ a Global Title of the type Mobile Station International Subscriber Directory Number (MSISDN, E.164) or of the type International Mobile Subscriber Identity (IMSI, E.212) in case of a provisional subscription of the subscriber 11.

12. Telecommunications network (10) comprising:
 - a first network entity (1) providing the functions of a Home Subscriber Server (HSS) and/or of a Home Location Register (HLR),
 ~ a third network entity (3) providing the functions of a Visitor Location Register (VLR) and/or of a Mobile Management Entity (MME),
 ~ a fifth network entity (5) providing a routing functionality,

wherein first subscription data (100), the first subscription data (100) being provisional subscription data (100) of a subscriber (11) not yet active in the telecommunications network (10), wherein the fifth network entity (5) is adapted for receiving a first message (222) with regard to the subscriber (11), the first message (222) being sent by the third network entity (3) and being directed to the first network entity (1), wherein the fifth network entity (5) is furthermore adapted for sending a second message (236) to the first network entity (1), the second message (236) comprising only an indication that a subscription of the subscriber (11) is a provisional subscription, wherein the first network entity (1) comprises a profile information such that the subscriber (11) becomes an active subscriber.

13. Telecommunications network (10) according to claim 12, wherein the second message (236) to the first network entity (1) comprises:
 -- a Global Title of the type MGT (Mobile Global Title, E.214) in case of a non-provisional subscription of the subscriber (11), and
 ~ a Global Title of the type Mobile Station International Subscriber Directory Number (MSISDN, E.164) or of the type International Mobile Subscriber Identity (IMSI, E.212) in case of a provisional subscription of the subscriber (11).
14. Telecommunications network (10) according to claim 13, wherein the telecommunications network (10) comprises a second network entity (2) and a fourth network entity (4), wherein the second network entity (2) provides a subscription management function, wherein the fourth network entity (4) provides the functions of a Service Node providing a service, wherein the telecommunications network (10) is provided such that
- the first network entity (1) sends a fifth message (241) to the second network entity (2),
- the second network entity (2) sends a sixth message (243) to the fourth network entity (4), wherein the sixth message (243) comprises at least partly the first subscription data (100) such that the subscriber (11) becomes a subscriber enabled for the service provided by the fourth network entity (4).

15. A computer program product comprising software code that when executed on a computing system performs a method for handling subscription data (100) in a telecommunications network (10) according to any of claims 1 to 8.
INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2011/000067

A. CLASSIFICATION OF SUBJECT MATTER

H04W8/26

H04W8/04

H04W8/20

H04W8/18

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

H04W

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database consulted during the international search (name of database and, where practical, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>wo 2004/0281911 AI (NOKIA CORP [FI] ; WARSTA MARKUS [FI] ; ANAPLIOTIS MARIOS [FI] ; DOELKER A) 1 April 2004 (2004-04-01) cited in the application on page 2, line 1 - line 6 page 6, line 17 - page 15, line 2; figures 1,3-6 -----</td>
<td>1-15</td>
</tr>
<tr>
<td>A</td>
<td>wo 02/098156 AI (NOKIA CORP [FI] ; SIKFVERBERG KARI [FI] ; AALTONEN TIMO [FI] ; HAVELA ANN) 5 December 2002 (2002-12-05) cited in the application on page 10, line 14 - page 13, line 7; figure 1 page 14, line 34 - page 21, line 34; figures 2-3 -----</td>
<td>1-15</td>
</tr>
</tbody>
</table>

X Further documents are listed in the continuation of Box C. X See patent family annex.

* Special categories of cited documents:

- "X" document defining the general state of the art which is not considered to be of particular relevance
- "A" document earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which was filed after the specification of another application.
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

Date of the actual completion of the international search

23 March 2011

Date of mailing of the international search report

30/03/2011

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer

Fischer, Erik

Form PCT/ISA2/10 (second sheet) (April 2005)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cited in the application page 1, paragraph 2 - page 2, paragraph 12; figure 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>page 2, paragraph 21 - page 5, paragraph 40; figures 2-6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>cited in the application on the whole document</td>
<td></td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>WO 2004028191 A1</td>
<td>01-04-2004</td>
<td>AT 456910 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2002325960 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 0215856 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1669349 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1552714 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 4153488 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2005539446 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2005202816 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WO 02098156 A1</td>
<td>05-12-2002</td>
<td>CN 1568629 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1396166 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2004157601 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WO 2009053918 A2</td>
<td>30-04-2009</td>
<td>NONE</td>
</tr>
</tbody>
</table>