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(57) Abstract: An image registration system and method employ a registration processor (130) for optimal registration of images
(110, 112) by finding a spatial orientation optimizing the statistical measure of cross-entropy. The cross-entropy is minimized where
one or more reasonably good a prior estimation of the true probability density function of voxel value pairs are available. Where
such an estimate is unavailable, the joint pdf for one or more known incorrect spatial arrangement (e.g., based on prior misregistra-

tions) is used as the prior pdf estimate(s) and a spatial orientation

maximizing cross-entropy is found. Likely and unlikely prior pdf

estimations can also be used together to register images. The transformation that optimizes the cross entropy provides an optimal
registration, and the parameters for the optimized transform are output to memory (150) for use by a display system (160) in aligning

the images for display as a fused or composite image.
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IMAGE REGISTRATION SYSTEM AND
METHOD USING CROSS-ENTROPY OPTIMIZATION

BACKGROUND OF THE INVENTION

The present invention relates to image processing
systems and methods and, more particularly, to image
registration systems that combine two or more images into a
compogite image. The present invention finds particular
application in the field of medical imaging, however, it will
be appreciated that the present invention is also applicable to
other types of imaging systems in which multiple images are
correlated and combined into a composite image.

The acquisition of volume images via a variety of
imaging modalities is well known in the medical field. Such
modalities include, for example, magnetic resonance imaging
(MRI) techniques, x-ray computed tomography (CT), nuclear
imaging techniques such as positron emission tomography (PET)

and single photon emission computed tomography (SPECT),

ultrasound, and so forth. Volume images so acquired are
typically stored digitally, e.g., in a computer memory, as
arrays of wvoxel values. Each voxel is associated with a
location in 3D space (e.g., X, y, and z coordinates), and is

assigned a color value, typically a gray scale intensity value.

Image fusion, or the combination of multiple
associated images to form a composite image integrating the
data therefrom, is often desirable in a clinical setting. 1In
many cases, combined images might provide insights to the
diagnostician that could not be obtained by viewing the images
separately. Multi-modality image fusion is often useful since
different imaging modalities provide information that tends to
be complimentary in nature.. For example, computed tomography
(CT) and magnetic resonance (MR) imaging primarily provide
anatomic or structural information while single photon emission
computed tomography (SPECT) and positron emission tomography
(PET) provide functional and metabolic information. The
combination of a functional or metabolic image with a
structural or anatomical image aids in localizing the

functional image, thus improving diagnostic accuracy. For
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example, in the area of oncology, precise positioning of
localization of functional images enables a clinician to assess
lesion progression and/or treatment effectiveness. Also, such
diagnostic studies are used in surgical and/or radiotherapeutic
planning, where precise positioning is necessary to minimize
the effect on healthy cells surrounding the target cells. It
is also desirable at times to combine images from the same
modality. For example, it may be desirable to combine the
results of multiple MR scans, such as an MR angiograph, a
contrast-enhanced MR image, or a functional MRI (fMRI) image,
with another MR image, such as an anatomical MR image.

For the meaningful integration of data from multiple
images, it is important that the images be properly registered.
Image registration involves bringing the images into gpatial
alignment such that they are unambiguously linked together. A
number of image registration techniques are known in the art.

One image registration technique requires that an
individual with expertise in the structure of the object
represented in the images label a set of landmarks in each of
the images that are to be registered. The two images are then
registered by relying on a known relationship among the
landmarks in the two images. One limitation of this approach
to image registration is that the registration accuracy depends
on the number and location of landmarks selected. Selecting
too few landmarks may result in an inaccurate registration.
Selecting too many landmarks does not necessarily guarantee
accurate registration, but it does increase the computational
complexity of registration. Also, the manual operations
required are time consuming. Furthermore, it is not always
possible to identify appropriate structural landmarks in all
images.

Recently, two different imaging modalities have been
combined in a single imaging device. This integrated hardware
approach to image registration is a less than optimal solution
to the problem of image registration due to cost and logistical
reasons. In many cases, hardware registration is impractical
or impossible and one must rely on software-based registration

techniques. For example, such a hardware approach i1s mnot
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applicable to the registration of images acquired at different
times or from different subjects, e.g., when monitoring
treatment effectiveness over time, or for applications
involving inter-subject or atlas comparisons. Software
registration would also be necessary in some cases, even if a
hardware-based approach to registration is used. For example,
software registration would be needed for the correction of
motion that occurs between sequential scans taken on the same
machine, such as transmission and emission scans in PET and
SPECT, and for the positioning of patients with respect to
previously determined treatment plans.

In recent vyears, full volume-based registration
algorithms have become popular since they do not rely on data
reduction, require no segmentation, and involve little or no
user interaction. More importantly, they can be fully
automated and provide quantitative assessment of registration
results. Entropy-based algorithms, the mutual information
approach in particular, are among the most prominent of the
full volume-based registration algorithms. Most of these
algorithms optimize some objective function that relates the
image data from two modalities. However, these techniques are
limited because they lack a systematic way of taking into
account a priori knowledge of the image pairs to be registered
and for combining multiple prior estimations.

Cross-entropy (CE), also known as relative entropy
and Kullback-Leibler distance, is a measure quantifying the
difference between two probability density functions of random
variables. Although cross-entropy has been applied to areas
including spectral analysis, image reconstruction,
biochemistry, process control, non-linear programming, and
electron density estimation, among many others, cross-entropy
as a measure has not heretofore been applied to image
registration.

Accordingly, the present invention contemplates a new
and improved image procegsing system and method which overcome

the above-referenced problems and others.
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SUMMARY OF THE INVENTION
In accordance with a £first aspect, a method for
registering first and second volume images, each image
comprising a three-dimensional array of gray scale voxel
values, is provided. One or more prior voxel wvalue joint

probability density functions are determined for the first and

second images to provide a corresponding one or more prior pdf

estimates. A transform defining a geometric relationship of
the second image relative to the first image is selected and a
measure of the cross-entropy for the selected geometric
relationship is calculated using the one or more prior pdf
estimates. The cross-entropy calculation is then repeated in
iterative fashion for a plurality of different transform until
an optimal transform, corresponding to a geometric relationship
providing an optimized measure of the cross-entropy, is
calculated.

In another aspect, an image processing system for
registering first and second volumetric images includes a
registration processor and associated memory for storing a
plurality of volumetric image representations to be registered,
the registration processor (1) determining one or more prior
joint probability density functions for the first and second
images to provide a corresponding one or more prior probability
densgity function (pdf) estimates; (2) calculating a measure of
the cross-entropy for a plurality of geometric relationships
between the first and second images using the one or more prior
pdf estimates; and (3) optimizing the measure of the cross-
entropy to find an optimal transform defining a geometric
relationship between the first and second images. The image
processing system further includes a memory coupled to the
registration processor for storing parameters representative of
the optimal transform and a display system for forming a
composgite image representation from the first and second
images.

One advantage of the present invention is that it
does not use data reduction and requires no segmentation or

user interactions.
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Another advantage of the present invention is that it
provides flexibility in the number and kinds of prior
probability density function estimations that can be used.

Another advantage of the present invention is that
its accuracy and robustness are comparable to, and in some
cases better than, prior art techniques.

Still further advantages and benefits of the present
invention will become apparent to those of ordinary skill in
the art upon reading and understanding the following detailed

description of the preferred embodiments.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention may take form in various components and
arrangements of components, and in various steps and
arrangements of steps. The drawings are only for purposes of
illustrating preferred embodiments and are not to be construed
as limiting the invention.

FIGURE 1 is a block diagram of an image capture and
processing system according to the present invention.

FIGURE 2 is a block diagram illustrating the various
modules of a software implementation of a volume image
registration program according to the present invention.

FIGURES 3-7 are flow charts outlining image

registration methods according to the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
The cross-entropy can be defined for probability
density functions of any-dimensional random variables. For the
present image registration system and method, a vector variable

(u, v) is considered, where u and v are voxel gray scale or

intensity values at the corresponding points of two images,

flx, y, 2z) and g(x, ¥, 2).

The present invention requires that there is some
prior information about the involved images. Specifically, the
prior information is one or more estimates of the joint voxel
value probability density function (pdf) of the two images.
This prior pdf estimate can either be a likely pdf estimate or
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an unlikely pdf estimate. A prior pdf estimate is referred to
as "likely" if it can reasonably be expected to be close to the
"true" (but, in the case of image registration, unknown) pdf,
the true pdf being the joint pdf of the images when aligned
correctly, i.e., in accordance with the true (but, again,
unknown in the case of image registration) relationship between
the two images. A likely prior pdf estimate can be determined,
for example, from the joint distribution of voxel values for a
previous registration, e.g., a manual or software registration
in which the images appear to be close to proper alignment.
When a 1likely prior pdf is used, a spatial orientation that
minimizes cross-entropy is sought.

A prior pdf estimate is referred to as "unlikely" if
can reasonably be expected not to be close to the true pdf,
i.e., likely to be a poor estimate of the true pdf. An
unlikely prior pdf is based on a spatial orientation defining
conditions under which the images are definitely not, or
unlikely to be, related. An unlikely prior pdf estimate can be
obtained from the joint distribution of the voxel values for a
misalignment, for example, from a prior registration attempt
resulting in misregistration. Also, unlikely prior pdf
estimates can be calculated from randomly selected spatial
orientations of the images. When an unlikely prior pdf is
used, a spatial orientation that maximizes cross-entropy is
sought.

Three special cases can arise when an unlikely priorxr
pdf is used. The first special case arises when the unlikely
pdf is a uniform distribution, and cross-entropy maximization
reduces to joint entropy minimization. The second special case
arises when the unlikely pdf is proportional to one of the
marginal distributions, in which case cross-entropy
maximization reduces to conditional entropy minimization. The
third special case results when the unlikely distribution is
the product of the two marginal distributions, in which case
cross-entropy maximization degenerates to mutual information
maximization.

In certain embodiments, each of the different cross-

entropies are optimized individually, and the individually
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optimized cross-entropies are considered separately as criteria
for image registration. In alternative embodiments, two or
more of the different cross-entropies are considered together
as criteria for image registration, using a multiobjective
optimization scheme, e.g., by optimizing the sum and/or
difference of the cross-entropy values.

With reference to FIGURE 1, an image processing

system 100 includes a first image source 110 and a second image
source 112 for acquiring and/or storing volumetric image data.
The first and second image sources 110 and 112 are preferably

medical diagnostic imaging scanners, such as MR scanners, xX-ray
CT scanners, nuclear cameras (e.g., PET and/or SPECT scanners),
ultrasound scanners, and the 1like, and associated image

memories. The first and second image sources 110 and 112 may

be of the same or different imaging modality, and may be
obtained from different scanning hardware or from the same

hardware. For example, the first and second image sources 110
and 112 can be a single apparatus including plural imaging
modes. Also, the first and second image sources 110 and 112

can be a single apparatus wherein plural images are acquired at
different times.
In certain embodiments, both of the first and second

image sources 110 and 112 includes sensors, data acquisition

circuitry, and image reconstruction circuitry as appropriate
for generating the images to be registered, as is well known to
those sgkilled in the art pertaining to diagnostic imaging.
However, in other contemplated embodiments, one or both of the

image sources 110 and 112 may be a previously acquired image,

for example, an image representation that has been saved in an
electronic memory or computer readable storage medium, such as
computer memory, random access memory (RAM), disk storage, tape
storage, or other magnetic or optical medium, at a storage
Jocation on a computer network, other sources of archived
images, and the like. Thus, although the image processing

system of the present invention may be interfaced directly to
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the scanning hardware that acquired one or both of the images
to be registered, it is not necessary that it is so.

The image processing system 100 further includes an
image memory 120 for storing image data from the image sources
110 and 1127 A registration processor 130 reads the two volume
images from the image memory 120 and registers the images using

a cross-entropy optimization algorithm to produce a
registration transformation matrix relating the two images, the
cross-entropy being a measure quantifying the difference

between two pdf's of random variables. An optional memory 140

is provided for storage of prior pdf statistics of the two
images for calculating one or more prior pdf estimates.
Alternatively, the prior pdf can be calculated from the image
data, for example, if the prior pdf is related to the marginal

pdf of one or both of the input images, or otherwise related to

- the images under study. The cross-entropy is calculated using

this prior pdf estimate, and an optimal registration is found
iteratively calculating the cross-entropy for a plurality of
registration or transformation parameters, using an
optimization routine, until the cross-entropy is optimized.
Conventional optimization techniques are used, including, for

example, those described by Press et al., Numerical Recipes in
C: the Art of GScientific Computing, 2nd ed., Cambridge:
Cambridge Univ. Press, 1999, Chapter 10.

Again, when a likely prior pdf estimate is used, the
optimal registration is determined by iteratively determining
the transform that minimizes the cross-entropy. When an
unlikely prior pdf estimate is used, the optimal registration
is determined by iteratively determining the transform that
maximizes the cross-entropy.

The optimized registration transformation matrix is

stored in a memory 150. The registration transformation

matrix, so determined, is used by a display or video processor

160 to align the two images read from the image memory 120 and
display them on computer or other human-readable display 162 as

a composite image as prescribed by the registration
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transformation matrix. Standard data processing and
programming techniques are used to store images and associated
matrices, as well as likely or unlikely pdfs, segmentation
limites, etc., with the appropriate images, such as indexing,
the use of pointers, and the like.

As an alternative to or in addition to storing the
transformation matrix, once the optimal registration is
determined, a composite image is formed from the two images and

stored in the image memory 120. However, it is generally

preferred to store the transformation matrix. Also, one image
can be reformatted in the space of another image based on the
registration parameters and then stored.

Image registration for purposes other than image
fusion is also contemplated. For example, image registration
in accordance with this teaching may be performed for multiple
partially overlapping images for the purpose of generating a
single larger volume image therefrom.

In certain embodiments, the registration processor

130 and the display processor 160 are implemented in software

on a conventional computer coupled to a conventional display.
Referring now to FIGURE 2, a module diagram of the

registration processor 130 is illustrated. As shown in FIGURE
1, the inputs to the registration processor 130 are the first
and second images 110 and 112 to be registered and prior pdf
statistics from memory 140. The output of registration
processor 130 is a set of registration parameters 150, i.e.,

the coefficients of a transformation matrix which, when applied
to one of the images, will transform that image relative to
gsome fixed coordinate system to bring the two images into
alignment.

The registration processor 130 includes frame
memories 132 and 134, a‘éross-entropy calculator 136 and an
optimization processor or engine 138. The cross-entropy
calculator 136 and optimization processor 138 can be modules of
an integrated processing system or, alternatively, can be

distributed over multiple processors to obtain the benefits of

- 9 -
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parallel processing. In operation, the registration processor

130 reads two images into the frame memories 132 and 134 and

calculates a cross-entropy value for the current registration.

The optimization processor 138 then transforms the image in the
frame memory 134 and the cross-entropy is again calculated by
the cross-entropy calculator 136. The steps are iteratively

repeated until the cross-entropy is optimized and the
transformation parameters for the registration providing the

optimal cross-entropy are output to the memory 150.

The c¢ross-entropy, calculated by cross-entropy

calculator 136, can be calculated by a number of methods, as

described below. The calculation used depends on the type of
prior information available about the relationship between the
involved images.

The joint pdf of random variables (u, v) is assumed
to be p(u, v). Also, a prior estimation, g(u, v), of the pdf

is assumed to be available. The cross-entropy is thus defined

on a compact support D = D, x D, (where D, and D, are supports

of u and v, respectively) as:

ﬂ(p;q)=fp(u,v)logéigiCZldudv. (1)
5 q(u,v)

It is noted that given a prior estimation of the true
pdf and a set of observations on the true pdf, one can find an
optimal estimation of the true pdf by minimizing the above
defined cross-entropy, subject to the observations. However,
in the image registration context, one does not have any
observations on the true pdf. Therefore, some estimate of the
pdf must be used.

In a first aspect, a system and method employing

cross-entropy minimization is provided. A prior estimation g
is based on previous statistics on (u, v) of two registered

images. In such a case, different relative transformations of
the images give different estimations of the true joint pdf.
Using one of the conventional optimization algorithms, the

estimated joint pdf is calculated for a plurality of

- 10 -
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transformations in iterative fashion, until the transformation
providing an estimation of the joint pdf which minimizes the
cross-entropy, as defined in Eq. 1, is found. This
transformation is regarded as providing an optimal
registration.

In a further aspect of the present invention, a
system and method using cross-entropy maximization is provided.
In this aspect, a prior estimation that is likely to be close
to the true pdf is not necessary. For example, in some cases,
a priori knowledge is not available. In other cases, prior
information may be available but not applicable, e.g., where
the prior pdf estimate is image-content dependent, as is the
case for nuclear medicine images (such as PET and SPECT images)
in which the voxel value is proportional to the acquisition
time.

For cross-entropy maximization, some conditions are
identified in which the two images are definitely not, or are
unlikely to be, related (or in which they are related, but not
in the expected way). Their joint pdf's under such conditions
are calculated and used asg undesirable, unexpected, or unlikely
prior estimates. Different relative transformationg of the
images are examined and the transformation providing an
estimation of the joint pdf which maximizes the cross-entropy,
i.e., in which the pdf differs, in terms of cross-entropy, from
the unlikely prior pdf's by as much as possible.

A first undesirable pdf may be a uniform

distribution. Assuming that the pdf is g = ¢, satisfying

fcdudv=l,

D

and substituting g into Eg. 1, gives:
Ny (pra) =fp(u,v)logp(u,V>dudV—lOQC- (2)
D

Maximizing Eg. 2 is equivalent to minimizing

H(U,V)=fp(u,v)logp(u,v)dudv,
D
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which is the entropy of the joint pdf. H is used to denote the

entropy of random variable (s).

If the voxel gray values 1in two images are
statistically independent, these two images can not be
registered since there 1is no ground for registration.
Statistically, the voxel values are independent if and only if
the joint pdf is the product of their marginal pdf's. Assume

the marginal pdf's of u and v are h.(u) and h,(v) respectively.

Putting g = he(u)hy(v) into Eqg. 1, one arrives at

- p(u,v)
Ra=[p () Jog o oy dud (3)

which is the definition of mutual information. That is to say,
maximizing the cross-entropy under this prior estimation
reduces to the maximization of mutual information.

When two images are registered, one wants to use one
image to interpret the other image. If neither image can
account for the other image, they cannot be registered. If the

joint pdf is proportional to the marginal pdf h.(u), i.e., g =
cyhs(u) , where

fcgdv=1,

D

v

image f cannot be used to interpret image g since a voxel value

in f can correspond to any voxel value in image g with equal

probability. To avoid that case, the cross-entropy is
maximized:
- p(u,v)
= u,v)log=——-"——dudv.
N3 £p< ) ghf(u)cg (4)

Eg. 4 can be reduced to

n3=fp(u,v)logp(ulv)dudv—logcg=-H(V|U)—logcg.
D

Thus, maximizing Eq. 4 1is equivalent to minimizing the

conditional entropy H(V|U).

Similarly, one can also maximize
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_ p(u,v)
n4—£p(ulv)logz;E_T;_

dudv, (5)
f g )

where

fcfdu=1.

Du

Maximizing Eg. 5 is equivalent to minimizing the conditional
entropy H(U|V).

Each of these cross-entropies, n;, 1n,, N3, and n,, can
be maximized independently to seek an optimal registration.
Alternatively, any combination of n,, n,, ns;, and n, can be
maximized. Where a combination of these cross-entropies are to
be optimized, a multiobjective optimization approach can be
used. To simplify the matter, the equally-weighted sum is
used, although multiobjective optimization using weighting of
the objectives is also contemplated.

For example, to make both images interpret each other

well, n; and n, can be added, i.e.,

n°* = n; + . (6)
Here the superscript works like a bit pattern and if the bit is
set, the corresponding cross-entropy is included. According to
the image resolution and other image-related factors, they may
be weighted differently. If it is required that the true pdf

be different from the latter three cases, then

n®* = n, + nz + ng. (7)
0011 0111

n or 1 can be maximized to seek the optimal registration
under these requirements. Note that n''*! is equivalent to n°™*'.

As can be seen, no matter which type of prior
estimation is used, the cross-entropy to be optimized has a
gsimilar structure. Thus, they can be implemented in the same
way, and the discussion herein applies to them equally well.
Since the formulas given are in a continuous form, they must be
discretized to be solved numerically.

FIGURES 3-5 illustrate exemplary processes 300, 400,
and 500 for combining two images using cross-entropy

optimization. The processes may be implemented in software as

part of an integrated scanner/image processing system, or in a

- 13 -
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separate image processing system implemented on a standalone
computer such as a personal computer, work station, or other
type of information handling system. Although the process is
described primarily in reference to combining two images, the
process can readily be adapted to combining more than two
images, for example, by repeating the process in accordance
with this teaching serially until all of the images are
registered, or, via multi-variate cross-entropy optimization
since, as stated above, cross-entropy applies to any
dimensional variables.

FIGURE 3 is a flow chart illustrating a first

exemplary method 300 for registering two images using cross-

entropy minimization. Two images to be registered are

initially acquired (steps 304 and 308). In step 312, the

initial relative orientation of the two images is set in
accordance with some prespecified parameters or some initial

transform applied to image 2. In step 316, at least one prior

estimation of the true pdf that is likely or reasonably close

to the unknown true pdf is input, e.g., from the memory 140

(FIGURE 1). Again, the images may be of the same or different
imaging modalities. The cross-entropy is calculated in step

320 for the current spatial orientation. It is determined in
step 328 whether the current spatial orientation yields a

minimized cross-entropy.

If a single likely prior pdf estimate is used, the
cross-entropy value to be minimized is the cross-entropy
calculated in accordance with Eqg. 1.

If more than one prior pdf estimate is used, a
multiobjective optimization scheme is used. The cross-entropy
is calculated in accordance with Eq. 1 for each prior pdf and
the values are summed, and the value to be minimized is the sum
of the individual cross-entropy values. The sum can be an
unweighted sum. Alternatively, a weighted sum can be used,
e.g., where it is desired to set the relative emphasis of the
prior pdf estimates. Equivalently, the value to be minimized
can be an unweighted or weighted average of the individual

cross-entropy values.
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If a minimized cross-entropy wvalue is not vyet

obtained, the process proceeds to step 332 and a transform

corresponding to a different spatial arrangement is selected in
accordance with an optimization algorithm. The pdfs are
updated if necessary, e.g., if they are related to the images
under study, and the process returns to step 320. Steps 320,

328, and 332 are repeated iteratively until a transform that

minimizes the cross—enbropy is found. If it is determined that

the cross-entropy is minimized (step 328), the transformation

parameters yielding the minimized cross-entropy, thus providing

an optimal registration, are output (step 344).

FIGURE 4 1is a flow chart illustrating a second

exemplary method 400 for registering two images using cross-

entropy maximization. Two images to be registered are

initially acquired (steps 404 and 408). In step 412, the

initial relative orientation of the two images 1s set in
accordance with some prespecified parameters or some initial

transform is applied to image 2. In step 416, one or more

prior pdf estimations that are unlikely to be close to the
unknown true pdf are input, e.g., from the memory 150 (FIGURE

1). The unlikely pdf estimations can be based on the voxel
statistics for prior known misregistrations or conditions
otherwise known to represent a misalignment of the images.
Again, the images may be of the same or different imaging

modalities. The cross-entropy is calculated in a step 420 for

the current spatial orientation and it is determined in a step

436 whether a spatial orientation yielding a maximized cross-

entropy has been found.

If a single unlikely prior pdf estimate is used, the
cross-entropy value to be maximized 1is the cross-entropy
calculated in accordance with Eg. 1.

If more than one prior pdf estimate is used, the
cross-entropy is calculated in accordance with Eg. 1 for each
prior pdf and the values are summed, and the value to be
maximized is the sum of the individual cross-entropy values.

The sum can be an unweighted sum or, alternatively, a weighted

_15_
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sum caﬁ be used, e.g., where it is desired to set the relative
emphasis of the prior pdf estimates. Likewise, the value to be
maximized can be an unweighted or weighted average of the
individual cross-entropy values.

If the cross-entropy has not yet been maximized in

step 436, the process proceeds to a step 440 and a transform

corresponding to a different spatial arrangement is selected in
accordance with an optimization algorithm. The pdfs are
updated if necessary, e.g., if they are related to the images
under study, and the process returns to step 420. Steps 420,

436, and 440 are iteratively repeated until a transform that

maximizes the cross-entropy is found. If it is determined that

the cross-entropy is maximized (step 436), the transformation

parameters yielding the maximized cross-entropy, thus providing

an optimal registration, are output (step 444).

FIGURE 5 is a flow chart illustrating a third

exemplary method 500 for registering two images using either

cross-entropy minimization or cross-entropy maximization. Two

images to be registered are initially acquired (steps 504 and
508). In step 512, the initial relative orientation of the two

images is set in accordance with some prespecified parameters

or some initial transform is applied to image 2. In step 516,

one or more prior estimations of the true pdf, that are likely

or unlikely, are input, e.g., from the memory 150 (FIGURE 1).

Again, the images may be of the same or different imaging

modalities. The cross-entropy is calculated in a step 520.
Next, in step 524, it is determined whether the prior

pdf estimate or estimates are likely or unlikely. If the prior

pdf estimate is likely, the process proceeds to step 528 and

cross-entropy minimization is used as the optimization scheme.
If the current spatial orientation has not been determined to

be one that minimizes the cross-entropy (step 528) in

accordance with the optimization scheme, the process proceeds

to step 532 and a transform corresponding to a different

spatial arrangement is selected 1in accordance with the
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optimization algorithm. The pdfs are updated i1f necessary,
e.g., if they are related to the images under study, and the

process returns to the step 520. Again, in the event that

multiple likely prior pdf estimates are wused, the sum or
average (weighted or unweighted) of the individual cross-

entropy values is minimized as described above. Steps 520,
524, 528, and 532 are iteratively repeated until a transform
that minimizes the cross-entropy is found. Once it is
determined that the cross-entropy is minimized (step 528), the
transformation parameters yielding the minimized cross-entropy,
thus providing an optimal registration, are output (step 544).

If the prior estimation(s) are unlikely to be close
to the true pdf in step 524, the process proceeds to step 536,
and cross-entropy maximization is used. It is determined in
step 536 whether a spatial orientation yielding a maximized
cross-entropy, based on the cross-entropy calculation of step
520, has been found. If the cross-entropy has not yet been
maximized, the process proceeds to step 540 and a transform

corresponding to a different spatial arrangement is selected in
accordance with the optimization algorithm. The pdfs are
updated if necessary, e.g., if they are related to the images

under study, and the process returns to step 520. Again, where

multiple unlikely prior pdf estimates are used, the sum or
average (weighted or unweighted) of the individual cross-

entropy values is maximized as described above. Steps 520,
524, 536, and 540 are iteratively repeated until a transform

that maximizes the cross-entropy is found. If it is determined

that the cross-entropy is maximized (step 536), the
transformation parameters yielding the maximized cross-entropy,
thus providing an optimal registration, are output (step 544).

FIGURE 6 1is a flow chart illustrating a fourth
exemplary method 600 for registering two images using both

cross-entropy minimization and cross-entropy maximization. Two

images to be registered are initially acquired (steps 604 and
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608). In step 612, the initial relative orientation of the two

images is set in accordance with some prespecified parameters

or some initial transform is applied to image 2. In step 616,

one or more prior unlikely pdf estimations and one or more
likely prior pdf estimations are input, e.g., from the memory
150 (FIGURE 1). The likely and unlikely pdf estimations can be

based on the wvoxel statistics for prior known conditions as
described above. Again, the images may be of the same or
different imaging modalities. The cross-entropies are

calculated for each pdf in a step 620 for the current spatial
orientation. In step 622, the difference between the cross-

entropy value for likely and unlikely prior pdf estimates is

calculated and the process proceeds to step 630 for

optimization of the cross-entropy difference (ACE).

This difference between likely and unlikely cross-
entropies, ACE, can be calculated in two ways. In the first
method, the unlikely cross-entropy value is subtracted from the

likely cross-entropy value, i.e.,

ACE = [CE(likely); + . . . + CE(likely),] -
[CE(unlikely); + . . . + CE(unlikely),], wherein
n and m are integers greater than or equal to one. in the

first method, the crosgss-entropy is optimized by minimizing ACE.
In the second method, the likely cross-entropy value
is subtracted from the unlikely cross-entropy value, i.e.,
ACE = [CE(unlikely); + . . . + CE(unlikely),] -
[CE(likely); + . . . + CE(likely),l.
and the cross-entropy is optimized by maximizing ACE.

In an alternative embodiment, the summed portions may be
weighted. In another alternative embodiment a weighted
difference is used. 1In another alternative embodiment, the
summed portions may be replaced with weighted or unweighted
averages.

After calculating the difference (step 622), the

procesg proceeds to step 630 to determine whether a spatial

orientation yielding an optimized cross-entropy has been found,
i.e., minimized ACE where the first method described above is
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used, or maximized ACE where the second method described above
is used.

If ACE has not yet been optimized in step 630, the
process proceeds to a step 632 and a transform corresponding to

a different spatial arrangement is selected in accordance with
an optimization algorithm. The pdfs are updated if necessary,
e.g., 1if they are related to the images under study, and the
process returns to step 620. Steps 620, 622, 630, and 632 are

iteratively repeated until a transform that optimizes ACE is
found. If it is determined that ACE is optimized (step 630),

the transformation parameters yielding the optimized ACE, thus

providing an optimal registration, are output (step 644).
FIGURE 7 illustrates a £ifth exemplary embodiment 700

in accordance with the present invention which is adaptable to
perform each of the processes illustrated in FIGURES 3-6. Two

images to be registered are initially acquired (steps 704 and
708). In step 712, the initial relative orientation of the two

images 1s set in accordance with some prespecified parameters

or some initial transform applied to image 2. In step 716, one

or more likely prior pdf estimates and/or one or more unlikely

prior pdf estimates are input, e.g., from the memory 140

(FIGURE 1). Again, the images may be of the same or different
imaging modalities. The cross-entropy is calculated in step

720 for the current spatial orientation. In step 724, it is

determined whether at least one of the prior pdf estimates is
a likely prior estimate. If it determined that at least one of
the prior pdf estimates is a likely prior estimate, the process
proceeds to step 726 and it is determined whether any of the

input prior pdf estimates are unlikely estimates. If none of
the prior pdf estimates is an unlikely estimate, the process
proceeds to step 728, and cross-entropy minimization is used as
described in reference to FIGURE 3.

If a minimized cross-entropy value (which may be
summed or averaged as described above in the case of multiple

likely prior pdf estimates) is not yet obtained, the process
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proceeds to step 732 and a transform corresponding to a

different spatial arrangement is selected in accordance with
the optimization algorithm. The pdfs are updated if necessary,
e.g., 1f they are related to the images under study, and the
process returns to step 720. Steps 720, 726, 728, and 732 are

iteratively repeated until a transform that minimizes the
cross-entropy is found. If it is determined that the cross-
entropy is minimized (step 728), the transformation parameters
yvielding the minimized cross-entropy, thus providing an optimal
registration, are output (step 744).

If, however, there is at least one likely prior pdf

estimate (step 724) and one unlikely prior pdf estimate (step
726) , the process proceeds to step 722, and ACE is calculated
in the manner described above in reference to FIGURE 6. After

calculating ACE by one of the above-described methods (step

722) , the process proceeds to step 730 to determine whether a

spatial orientation yielding an optimized cross-entropy has
been found.

If ACE has not yet been optimized in step 730, the
process proceeds to a step 732 and a transform corresponding to
a. different spatial arrangement is selected in accordance with
an optimization algorithm. The pdfs are updated if necessary,
e.g., 1f they are related to the images under study, and the
process returns to the step 720. Steps 720, 724, 726, 722,

730, and 732 are iteratively repeated until a transfoxrm that
optimizes ACE is found. If it is determined that ACE is
optimized (step 730), the transformation parameters yielding
the optimized ACE, thus providing an optimal registration, are
output (step 744).

If, in step 724, it is determined that no prior pdf

estimate 1s a likely estimate, then the pdf estimate or
estimates are unlikely estimates and the process proceeds to

step 736 and cross-entropy maximization is used as described in

reference to FIGURE 4.



10

15

20

25

30

35

WO 02/27660 PCT/US01/30278

If a maximized cross-entropy value (which may be
summed or averaged as described above in the case of multiple
unlikely prior pdf estimates) is not yet obtained, the process

proceeds to step 740 and a transform corresponding to a

different spatial arrangement is selected in accordance with
the optimization algorithm. The pdfs are updated if necessary,
e.g., 1f they are related to the images under study, and the
process returns to the step 720. Steps 720, 724, 736, and 740

are iteratively repeated until a transform that maximizes the
cross-entropy is found. If it is determined that the cross-

entropy is maximized (step 736), the transformation parameters

yielding the maximized cross-entropy, thus providing an optimal

registration, are output (step 744).

The present invention is illustrated using rigid-body
geometric transformations, however, the present invention is
applicable to more general transformations, including, for
example, nonlinear transformationsg, affine transformations,
warping transformation, and so forth.

For a rigid-body transformation, the registration

parameter is a six-dimensional vector, (6., 6,, 6,, t,, t,, t,),

v

where 6,, 6, and 6, are rotation angles in degrees around the

yI

Xx-, vy-, and z-axes, respectively, and ¢t,, ¢t and t, are

yr
translational offsets along the =x-, V-, and z-axes,
respectively. For each rotation, there is a 4 x 4 matrix
corresponding to it in a homogeneous coordinate system. A
successive application of the rotation amounts to matrix
multiplication. Since in general the matrix multiplication is
not commutable, the order of these rotations is important. An
Euler rotation is assumed. It is also assumed that the
rotation happens before translation.

As stated above, it is necessary to estimate the
marginal and joint distribution of gray value pairs in the
overlapping volume of the two images. The following
illustrates an exemplary method for estimating marginal and

joint probabilities.
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The maximum voxel value of image f is first found.
The voxel values in image f are then divided into n, discrete
levels. Similarly, the voxel values in image g are divided
into n, discrete levels. Here, n, and n, can be the same or

different. 1In the overlapping volume under a transformation,

the histograms of voxel values in images f and g, and of the

voxel palrs are calculated by binning the voxel values and

value pairs. The number of bins of the histogram for f is ng,
the number of bins of the histogram for g is n,, and the number
of bins of the joint histogram is n, x n,. The normalized

histograms then give the marginal as well as the joint
distributions.

After transformation, a grid point in one volume
will, in general, not exactly coincide with another grid point
in the transformed space. Thus, before binning the voxel
values and voxel value pairs, interpolation is performed in
order to obtain the voxel value at the grid in the transformed
space. There are a number of interpolation methods that can be
used, including, but not limited to nearest neighbor, tri-
linear, and tri-linear partial volume distribution. Note that
the nearest neighbor interpolation is not sufficient to achieve
sub-voxel accuracy since it is insensitive to the translation
up to one voxel. For simplicity the tri-linear interpolation
was performed.

Under a transformation, a multidimensional direction
set optimization is used to minimize the negated cross-entropy
(i.e., maximize the cross-entropy) if undesirable priors are
used, or to minimize the cross-entropy directly if a good prior
is available. The direction matrix is initialized to a unitary
e, 6

matrix. The vector is (6 v Gzt ty t)), as explained

1
above. The angles are in degrees and the translations are in
mm. ‘

To find a true global optimal value, simulated
annealing can be exploited. Simulated annealing has been
successfully applied to 2-dimensional image registration. It

is a stochastic method and is slow, which limits its
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application to 3-dimensional image registration. 1In practice,
the multiresolution or subsampling approach proves to be
helpful. It can improve the optimization speed, increase the
capture range and the algorithm is relatively robust.

The multiresolution optimization is preferred in this
impleﬁentation. The images are folded down to an 8 x 8 x 8
image as the most coarse image. The resolutions of the
guccessive images are doubled until the full image resolution
or 64 x 64 x 64 is reached in all three dimensions, whichever
comes first. Fine resolutions beyond 64 x 64 x 64 can be used,
but in most cases do not exhibit any sizable improvements on
the registration accuracy and there is almost no effect on the
succegs rate. To obtain the coarse images, the voxel values
within a sampling volume are averaged. Although it is a little
slower than the subsampling approach, in practice it results in
a better registration.

When estimating the joint 2-dimensional histogram,
the gray values are paired to different bins. Since the joint
distribution is estimated by the normalized 2-dimensional
histogram, from a statistical point of view, a large sample
gsize is desired. In the multiresolution optimization strategy,
when coarse images are used, however, the number of gray value
pairs is small. One would expect that the statistical bias is
large.

Suppose the image size is 8 x 8 x 8. Then there are
at most 512 gray value pailrs (when all voxels overlap). For 8-
bit gray data, the number of bins can be as large as 256. 256
is certainly not good since, on average, there are at most 2
pairs in each bin. The statistical error in the joint
probability would render a poor result. In this situation, a
smaller number of bins is desirable.

If the number of binsg is fixed at a small value, in
the fine resolution step, there are enough gray value pairs in
each bin. One can have a better estimation of the joint
probability at the expense of lower sensitivity. This paradox
suggests that fixing the number of bins is not ideal and an
adaptive number of bins, i.e., the number of bins changes with

the resolution, is better.
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In tests, an adaptive number of bins was used. The
number of bins was heuristically set to the wvalue of the
resolution, i.e., if the resolution is 32, the number of bins
is also 32. No attempt was made to optimize the number of bins
at each resolution.

EMPIRICAL TESTS

The accuracy and robustness of the cross-entropy
optimization methods of the present invention have been
demonstrated in the following tests. In particular, both
cross-entropy minimization using a reasonable or likely prior
estimation and cross-entropy maximization wusing different
undesirable prior estimations are evaluated in this section.

MR/SPECT and CT/PET image pairs were used as test
volumes. The test images were primary brain images, with some
inclusion of neck and chest.

The image data consisted of slices. The x-axis was
directed horizontally from right to 1left, the y-axis
horizontally from front to back, and the z-axis vertically from
bottom to top.

Image pair 1 (MR/SPECT): The MR image (Tl sagittal)
had a size of 256 x 256 x 128 voxels with a voxel size of

1.0 x 1.0 x 1.5 mm’. The minimum voxel value was 0 and the
maximum voxel value was 504. Technetium-99m hexamethyl-
propyleneamine-oxime (Tc-99m  HMPAO) was used as the

pharmaceutical for the SPECT image acquisition. The SPECT
image had a size of 64 x 64 x 24 voxels with a voxel size of
7.12 x 7.12 x 7.12 mm®’. The minimum voxel value was 0 and the

maximum voxel value was 5425.

Image pair 2 (CT/PET): The CT image had a size of
512 x 512 x 31 voxels with a voxel size of 0.47 x 0.47 x 4.99
mm®. The minimum voxel value wag 0 and the maximum voxel value

was 819. The CT image was rescaled to accommodate the digplay
characteristics on a nuclear workstation. F" was used as the
pharmaceutical for the PET image acquisition. The PET image
had a size of 128 x 128 x 127 voxels with a voxel size of
2.34 x 2.34 x 2.34 mm’. The minimum voxel gray value was 0 and

the maximum voxel value was 745.
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In all experiments, MR or CT images were used as a
reference and the SPECT or PET as a floating image, i.e., they
were transformed to the space of the MR or CT images.

For the multimodality registration, the correct
registration parameters are unknown. Various evaluation
methods have been used to assess registration accuracy,
including phantom validation, observer assessment, and fiducial
marks, among others. Here a modified observer assessment
approach was used.

Those image pairs were first registered by four
clinical experts wusing an interactive (manual) software
registration method. The standard deviations of those four
independent registration results for each image pairs are, in

a vector (i.e., (6,, 6,, 6, t, ¢t, t;)) form: image pair 1

(MR/SPECT) : (3.48, 0.53, 3.11, 1.68, 2.98, 1.83); and image
pair 2 (CT/PET): (2.71, O, 0, 1.45, 4.36, 3.93). Again, the
angles are in degrees and the translations are in mm. Despite
the disparity among the clinicians' registrations, the average
of their registration parameters were used as the standard, and
the registration results of the cross-entropy optimizations
were compared against those standard results.

To assess the robustness of the present method, three
sets of misregistrations were randomiy generated as initial
registrations for each image pair. In the first set of 50
misregistrations (Set 1), the differences between the rotation
angles and the standard rotation angles were uniformly
distributed over -10 to 10 degrees and the differences between
the translational offsets were uniformly distributed between -
10 to 10 mm. For the second set of 50 misregistrations (Set
2), the distributions were uniformly distributed over -20 to 20
degrees and the differences between the translational offsets
were uniformly distributed between -20 to 20 mm. For the third
set of 50 misregistrations (Set 3), the distributions were
uniformly distributed over -30 to 30 degrees and the
differences between the translational offsets were uniformly
distributed between -30 to 30 mm.

It has been reported that clinicians can detect the

registration parameter differences by 4° in the x. and vy
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rotation angles, 2° in the z-rotation angle, 2 mm in the x and
y translationsg, and 3 mm in the z translation angle. Since the
true registration parameters were unknown, large thresholds
were set for the differences between the computed ones and the
standard when judging whether a registration was successful.
The thresholds were set to twice the detection thresholds set

° in the =z

forth above, i.e., 8° in x and y rotation angles, 4
rotation angle, 4 mm in the x and y translations, and 6 mm in
z translation, so that there was a fair amount of coverage of
the "true" parameters.

The algorithms maximizing cross-entropy given in Egs.
6 and 7 are denoted by bit patterns 0011 and 0111,
respectively. For comparison, the mutual information

maximization is denoted as 0100.

Cross-Entropy Maximization.

The statistics of the misregistration parameters are
tabulated in TABLES 1 and 2, for two image pairs under three
sets of misregistrations, where a misregistration is defined as
the difference between the actual registration result and the
standard one. The angles are in degrees, translation offsets

in mm, and the time in seconds.
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TABLE 1
Average and standard deviation of the misregistration parameters for the MR/SPECT image pair.
Algorithm 6, 0, 6, t, t, t, Time Success
Set 1:

0100 -2.30£0.48 3.68+0.42 2814043 0095+0.26 0.22+0.40 -3.33+0.59 52.8£7.0  100%
0011 0.65+0.38 3.76+0.35 2.95+0.30 1.08+0.16 -1.61+0.29 -4.35+0.30 46.1x10.3 94%
0111 -0.85£0.79 3.75+0.52 2.98+0.47 1.05+0.28 -0.63+0.64 -3.53+0.83 58.2+14.8 100%

Set 2:

0100 -2.20£0.44 3.80£0.55 2.90+0.46 1.02+0.28 0.17+0.43 -3.36+0.54 57.8+10.8 100%
0011 0.80+0.47 3.93+0.45 2994044 1134021 -1.66+0.36 -4.41+0.31 49.649.6 96%
0111 -0.21£0.67 3.74x0.45 2924040 1.0420.21 -1.23+0.37 -4.21+0.29 52.1£10.3 94%

Set 3

0100 -2.27+£0.61 3.79+0.45 2.92+4040 1.03£0.27 0.21+0.57 -3.30%0.70 64.2+17.0 98%
0011 0.70x0.61 3.78+0.47 291+052 1.07+0.22 -1.67+0.45 -4.43+0.36 57.8+21.9 86%
0111 -0.22+0.73 3.82+0.40 2.97+042 1.08+0.20 -1.15+0.37 -4.17+0.27 56.0+17.3 92%

TABLE 2
Average and standard deviation of the misregistration parameters for the CT/PET image pair.

Algorithm 6, 6 6, t t t, Time  Success

Y Y
Set 1:
0100 -3.50+1.93 0.23+0.78 0.54+0.86 1.17+1.24 -1.88+2.23 0.18+1.13 54.047.9 8%
0011 -240£1.23 -0.07+0.46 -0.78+1.27 0.98+0.80 1.38+1.48 1.26£0.21 34756  40%
0111 -3.27+1.33 -0.11£0.63 -0.35%1.28 1.17£1.20 -0.29+1.84 1.06+0.43 355453  80%

Set 2:

0100 -4.72 0.07 2.81 2.63 -3.38 0.09 57.0 2%
0011 -2.65+1.04 0.10£0.66 -1.36+1.63 0.61+1.29 1.07x1.52 1.34+0.37 40.3:7.8 28%
0111 -3.13x1.67 0.10+0.71 -0.27+1.45 0.91+1.00 -0.04+2.16 1.28+0.74 44.4+100 58%

Set 3:

0100 -3.70+1.73 -1.16+0.10 0.34+2.03 3.26£046 -2.40+1.35 1.14x0.07 73.5%43.1 4%
0011 -2.80+1.48 0.00£1.10 -1.47+145 0.57+1.89 0.58+1.94 1.42+0.31 43.0+138 18%
0111 -2.76+1.24 0.10£0.49 -0.97+1.01 077:x0.84 0.19+141 079x065 4531108 46%

For the MR/SPECT image pair, the success rates for

the three criteria were comparable. Although some speed
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difference of these criteria is seen, it is not significant.
All of these techniques showed systematic and reasonable
deviations from the manual registration. The rotation angle
differences around the x- and yv-axes and the translation
differences along the x- and vy-axes were less than the
detection thresholds of a trained clinician. Other differences
were just a bit larger than the detection thresholds. The
registration parameters were consistent across these three
algorithms. The difference of x-rotation angles was about 3
degrees, the y- and z-translation differences were about 2 mm
and 1 mm respectively. There was almost no differences in the
y- and z-rotation angles and in the =x-translation.
Nevertheless, the registration parameters produced by 0111 are
gsome compromised values of those given by 0100 and 0011 which
is understandable gince the 011l criterion is made up of those
of 0100 and 0011. Considering the relatively large voxel size,
this accuracy is acceptable.

For the CT/PET image pair, the success rates of 0011
and 0111 consistently outperformed that of mutual information.
The mutual information method was the slowest. Since the
mutual information method had high failure rate, the statistics
on it have a low confidence. In particular, mutual information
only succeeded once in Set 2 and thus standard deviation for
Set 2 is not included in TABLE 2. Again, these algorithms show
systematic and <reasonable deviations from the manual
registration. All the differences are less than the detection
thresholds of a trained technician except the mutual
information cases where the success rate is low. The
registration parameters are also consistent across them. The
differences in x-, y-, and z-rotation angles and in x-, y-, and
z-translationg are about 2, 1, 2 degrees and 2, 3, and 1.5 mm,

respectively.

Crosgs-Entropy Minimization.

If one has a good estimation of the joint voxel value
distribution, then cross-entropy can be minimized to find the
optimal registration. Although a reasonably good prior

estimation is, in practice, generally hard to obtain, the
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results here wvalidate the technique. The experiment was
performed on image pair 1 (MR/SPECT) only.

The joint voxel value distribution was calculated
under the averaged manual registration parameters. This
distribution was then used as the prior. As one may expect,
this distribution has a lot of zero components which can cause
trouble in cross-entropy computation during the optimization
process. For example, if prior distribution is zero and the
joint distribution is not zero, the cross-entropy is infinite.
To cope with this situation, one can assign a large value to
the cross-entropy under this situation. When picking such a
large value, the stop condition of the optimization process
should be taken into account. If the assigned value 1is too
large, then the optimization can prematurely terminate. Here,
such terms were ignored, which amounted to setting that wvalue
to 0. Ideally one should penalize them. If they are penalized
using some positive value, then cross-entropy minimization has
a small capture range.

TABLE 3 lists the average and standard deviation of
the misregistration parameters. The angles are in degrees,
translation offsets in mm, and the time in seconds. As TABLE
3 reveals, the registration parameters were very close to those
of the manual results and the differences of these registration
parameters were well below the detection threshold of a trained
technician, which is expected since the prior was calculated
based on the manual registration results. This implementation
of this minimization process can be further optimized, e.g., by
using Paren density estimation with a Gaussian kernel to add

some smoothness and stability to the cross-entropy function.

TABLE 3

MR/SPECT pair registration by cross-entropy minimization.

Set 8, 6, 8, t t, t, Time  Success
1 -041+127 046+159 -0.30+1.14 0.12£0.85 0.24+0.81 -0.10£0.22 11444254 78%
2 013£1.13 057£2.12 -0.13£113 0.08+0.97 -0.09+0.90 -0.14+0.38 12544200 68%

3 057+216 0.08+1.78 -0.42%149 -0.15+0.75 -0.25+1.44 -0.21x0.35 132.1+258 44%
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There has thus been described an image processing
system and method employing image registration using cross-
entropy optimization to find an optimal registration of two
images. The experimental results indicate that the present
cross-entropy optimization technique has comparable, and in
some cases better, accuracy and robustness than that of the
mutual information maximization approach.

Although the invention has been described with a
certain degree of particularity, it should be recognized that
elements thereof may be altered by persons skilled in the art
without departing from the spirit and scope of the invention.
One of the embodiments of the invention can be implemented as
sets of instructions resident in the main memory of one or more
computer systems. Until required by the computer system, the
set of instructions may be stored in another computer readable
memory, for example in a hard disk drive or in a removable
memory such as an optical disk for utilization in a CD-ROM or
DVD drive, a floppy disk for utilization in a floppy disk
drive, a floptical disk for utilization in a floptical drive,
or a personal computer memory card for utilization in a
personal computer card slot. Further, the set of instructions
can be stored in the memory of another computer and transmitted
over a local area network or a wide area network, such as the
Internet, when desired by a user. Additionally, the
instructions may be transmitted over a network in the form of
an applet that is interpreted after transmission to the
computer system rather than prior to transmission. One skilled
in the art would appreciate that the physical storage of the
sets of instructions or applets physically changes the medium
upon which it is stored electrically, magnetically, chemically,
physically, optically, or holographically, so that the medium

carries computer readable information.
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Having thus described the preferred embodiments, the

invention is now claimed to be:

1. A method for registering a first volumetric

image (110) and a second volumetric image (112), each image

comprising a three-dimensional array of gray scale voxel

values, and each image having a marginal probability density

function (pdf) of voxel values, the method comprising:

(a) determining one or more prior joint voxel wvalue
probability density functions for the first and second
images to provide a corresponding one or more prior pdf
estimates;

(b) selecting (312, 412, 512, 612, 712) a first transform

defining a geometric relationship of the second image
relative to the first image;
(¢) calculating (320, 420, 520, 620, 720) a measure of the

cross-entropy for the geometric relationship using the one
or more prior pdf estimates;
(d) selecting (332, 440, 532, 540, 632, 732, 740) a different

transform defining a geometric relationship of the second
image relative to the first image; and

(e) iteratively repeating steps (c¢) and (d) until an optimal
transform is calculated, the optimal transform
corresponding to a geometric relationship providing an

optimized measure of the cross-entropy.

2. The method of claim 1, further including at
least one the step selected from:

storing data representative of the optimal transform;
and

registering the first and second images using the

optimal transform.

3. The method of.either one of claims 2 or 3,
further including the step of:
displaying a composite image formed from the first

and second images.

- 31 -
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4. The method of any one of claims 1-3, wherein the
number of prior pdf estimates is one, and further wherein

wherein the prior pdf estimate is a likely pdf estimate (316)

and the optimized measure of the cross-entropy is a minimized

measure of the cross-entropy.

5. The method of any one of claims 1-3, wherein the

prior pdf estimate is an unlikely (416) pdf estimate and the

optimized measure of the cross-entropy is a maximized measure

of the cross-entropy.

6. The method of any one of claims 1-3, wherein the

number of prior pdf estimates is at least two.

7. The method of claim 6, wherein each of the at

least two prior pdf estimates is a likely pdf estimate (316)

and wherein the optimized measure of the cross-entropy is a
minimized measure of the cross-entropy, the step of calculating
a measure of the cross-entropy comprising:

using each prior pdf estimate to calculate an
individual cross-entropy value; and

calculating a sum of the individual cross-entropy

values.

8. The method of claim 6, wherein each of the at

least two prior pdf estimates is an unlikely pdf estimate (416)

and wherein the optimized measure of the cross-entropy is a
maximized measure of the cross-entropy, the step of calculating
a measure of the cross-entropy comprising:

using each prior pdf estimate to calculate an
individual cross-entropy value; and

calculating a sum of the individual cross-entropy

values.
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9. The method of claim 6, wherein one or more of

the prior pdf estimates (616, 716) are likely pdf estimates,

and wherein one or more of the prior pdf estimates are unlikely
pdf estimates, the step of calculating a measure of the cross-
entropy comprising:

using each prior pdf estimate to calculate (520, 620,
720) an individual cross-entropy;

calculating a first sum, the first sum being the sum
of the individual cross-entropies for the one or more likely
pdf estimates;

calculating a second sum, the sgecond sum being the
sum of the individual cross-entropies for the one or more
unlikely pdf estimates; and

calculating the difference (622, 722) between the

first and second sums.

10. The method of claim 9, wherein the difference is
calculated by subtracting the second sum from the first sum,
and further wherein the optimized measure of the cross-entropy

is a minimized measure of the cross-entropy.

11. The method of claim 9, wherein the difference is
calculated by subtracting the first sum from the second sum,
and further wherein the optimized measure of the cross-entropy

is a maximized measure of the cross-entropy.

12. The method of any one of claims 1-11, wherein

the optimal transform is a rigid-body transform.

13. The method of any one of claims 1-12, wherein at
least one of the prior pdf estimates is an unlikely pdf

estimate that is a uniform distribution.

14. The method of any one of claims 1-13, wherein at
least one of the prior pdf estimates is an unlikely pdf
estimate that is the product of the marginal probability

density functions.



10

15

20

25

30

35

WO 02/27660 PCT/US01/30278

15. The method of any one of claims 1-14, wherein at
least one of the prior pdf estimates is an unlikely pdf
estimate that is proportional to the marginal pdf of one of the

first and second images.

16. The method of claim 15, wherein:

at least one prior pdf estimate is an unlikely pdf
estimate that is proportional to a marginal pdf of the first
image;

at least one prior pdf estimate is an unlikely pdf
estimate that is proportional to a marginal pdf of the second
image; and

the measure of the cross-entropy that is optimized is
the sum of: (1) the cross-entropy calculated using the at least
one prior pdf estimate proportional to the marginal pdf of the
first image; and (2) the cross-entropy calculated using the at
least one prior pdf estimate proportional to the marginal pdf

of the second image.

17. The method of claim 15, wherein:

at least one prior pdf estimate is the product of the
marginal probability density functions of the first and second
images;

at least one prior pdf estimate is proportional to
the marginal pdf of the first image;

at least one prior pdf estimate is proportional to
the marginal pdf of the second image; and

the measure of the cross-entropy that is optimized is
the sum of: (1) the cross-entropy calculated using the at least
one prior pdf estimate that is the product of marginal pdf's;
(2) the cross-entropy calculated using the at least one prior
pdf estimate proportional to the marginal pdf of the first
image; and (3) the cross-entropy calculated using the at least
one prior pdf estimate proportional to the marginal pdf of the

second image.

- 34 -
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18. An image processing system (100) for registering
a first volumetric image (110) and a second volumetric image
(112) , each image comprising a three-dimensional array of gray

scale voxel values, comprising:

a registration processor (130) and associated memory

for storing a plurality of volumetric image representations to
be registered, the registration processor comprising:
means for determining one or more prior
joint probability density functions for the first and
second images to provide a corresponding one or more
prior probability density function (pdf) estimates;

a cross-entropy calculator (136) for

calculating a measure of the cross-entropy for a
plurality of geometric relationships between the
first and second images using the one or more prior
pdf estimates; and

an optimization processor  (138) for

optimizing the measure of the cross-entropy to find
an optimal transform defining a geometric
relationship between the first and second images;

a memory (150) coupled to the registration processor

for storing parameters representative of the optimal transform;
and

a display system (160) for forming a composite image

representation from the first and second images.

19. The image processing system of claim 18, further
comprising at least one of:

a diagnostic imaging scanner;

a display (162) on which a composite image of the
first and second images is digplayed; and

a memory (140) for storing prior joint probability

.statistics for one or more spatial arrangements of the first

and second images.



WO 02/27660 PCT/US01/30278

20. The image processing system of claim 19, wherein

the diagnostic imaging scanner is selected from an MR scanner,
an x-ray CT scanner,

and PET scanner, a SPECT scanner,
ultrasound scanner,

or a combination thereof.

an
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