
United States Patent (19)
Port et al.

(54) NETWORK ARCHITECTURE SUITABLE
FOR MULTCASTING AND RESOURCE
LOCKING

75) Inventors: Adrian G. Port, Lansdale; Charles D.
Spackman, Chester Springs, both of
Pa.; Nicholas R. Steele, Nirnberg,
Fed. Rep. of Germany; Jonathan R.
Wells, Victoria, Australia
Fischer & Porter Company,
Warminster, Pa.

21 Appl. No.: 853,551

73) Assignee:

22) Filed: Mar. 18, 1992
51 Int. C. ... H04L 12/56
52 U.S. Cl. 370/94.1; 370/60
(58) Field of Search 370/16, 13, 85.13, 85.14,

370/85.1, 60, 60.1, 94.1, 94.2
56) References Cited

U.S. PATENT DOCUMENTS

3,781,815 12/1973 Boudreau et al. 340/172.5
4,396,983 8/1983 Segarra et al..... ... 364/200
4,453,247 6/1984 Suzuki et al. 370/94
4,475,192 10/1984 Fernow et al. 370/94
4,500,987 2/1985 Hasegawa 370/60
4,503,533 3/1985 Tobagi et al.......................... 370/85
4,558,428 12/1985 Matsumura et al. 364/900
4,566,098 1/1986 Gammage et al. 370/89
4,593,280 6/1986 Grow 340/825.05
4,597,078 6/1986 Kempf................................... 370/94
4,644,470 2/1987 Feigenbaum et al. 364/200
4,709,364. 11/1987 Hasegawa et al. - - - - 370/85

4,740,954 4/1988 Cotton et al.
4,759,015 7/1988 Takai et al. 370/86
4,760,572 7/1988 Tomikawa 370/94
4,768, 190 8/1988 Giancarlo .
4,769,813 9/1988 Lenart 370/86
4,780,821 10/1988 Crossley ...
4,807,224 2/1989 Naron et al. 370/94
4,813,039 3/1989 Yoshihiro 370/89
4,815,071 3/1989 Shimizu..... 370/60
4,849,968 7/1989 Turner
4,866,702 9/1989 Shimizu et al. 370/60
4,881,074 11/1989 Reichbauer et al. 340/825.05
4,896,934 1/1990 Arthurs et al.................... 350/96.16
4,930,122 5/1990 Takahashi et al. 370/85.15
4,935,922 6/1990 Wicklund et al. 370/60

|||||||||||||
US005243596A

11 Patent Number: 5,243,596
45 Date of Patent: Sep. 7, 1993

4,949,083 8/1990 Hirabayashi 340/825
4,970,720 1 1/1990 Esaki 370/85.2
4,979,167 12/1990 McCool 370/85.4
4,993,024 2/1991 Quinquis et al. 370/94.1
5,003,536 3/1991 Tanaka et al. 370/94.1
5,031,175 7/1991 Tanaka et al. 370/85.1
5,119,372 6/1992 Verbeek 370/94.1

OTHER PUBLICATIONS
XTP Multicase Mechanisms-Alfred C. Weaver et al
-Information Transfer-pp. 3-12.
Patent Application of O'Dowd-Ser. No. 296,524-filed
Jan. 6, 1989-54 pages. .
IEEE 1985 National Aerospace & Electronics Confer
ence vol. 1, May 1985, IEEE New York pp. 91-94-by
R. J. Folmar "Distributed Memory Netword: An 8
Gigabit Fiber Optic Tightly Coupled System'.
Primary Examiner-Wellington Chin
Attorney, Agent, or Firm-Ratner & Prestia
57 ABSTRACT
A data communications network in which multiple host
processors are linked in a ring network by respective
network interface processors or nodes includes cir
cuitry in each of the nodes which aids in the implemen
tation of a distributed resource locking scheme and a
reliable multicasting system. The circuitry includes a
packet generator which automatically generates spe
cialized packets that are used to procure resource locks
and to implement the multicast system. In addition, the
node includes circuitry which may be used to modify
the contents of a received packet and circuitry which
automatically retransmits the packet onto the network.
The node is controlled by a set of state machines which
implement the resource locking and multicasting proto
cols. In addition, the nodes include circuitry which
detects congestion in the node and in the network and
acts automatically to relieve the congestion. This cir
cuitry notifies other nodes when a receive queue in the
node is almost full so that the other nodes can suspend
communications with the node. Other circuitry detects
when the node is unable to transmit a message to cause
the node to allocate an owned packet which may be
used only by the node to transmit data.

26 Clairns, 24 Drawing Sheets

U.S. Patent Sep. 7, 1993 Sheet 1 of 24 5,243,596

18

.." . "
8M 7M 6M

FIG. I

U.S. Patent Sep. 7, 1993 Sheet 2 of 24 5,243,596

24 MEM

FIG. 2

U.S. Patent Sep. 7, 1993 Sheet 4 of 24 5,243,596

SOCKETD

DEST LA SOURCE LA

trE pro
DATA WORD

DATA WORD 2

trE pro

FG. AA

DATA WORD 6

FG. AB

Sheet 5 of 24 5,243,596 Sep. 7, 1993 U.S. Patent

dlHSHENMO Q ETWONVH

NO SSVd $118 dl}}] QN008 13S

019

Sheet 6 of 24 5,243,596 Sep. 7, 1993 U.S. Patent

d|HSHENMO (IN ETON WH $118 dlèj 1 QNIYON LES

U.S. Patent

FIG.

Sep. 7, 1993

532

RECEIVE QUEUE
ABOVE HIGH
WATER MARK

FORMAT AND
TRANSMT
STOP PACKET
FOR NODE;
STOPPEDTRUE

550

SOURCE ID

MY D
N

UPDATE
STARTISTOP TABLE

SEND TO HOST

PASS ON

Sheet 7 of 24

RECEIVE QUEE
BELOWLOW
WATER MARK

FORMAT AND
TRANSMIT
START PACKET
FOR NODE
STOPPEDTRUE

52 5

DELETE
PACKET

FIG. 5D

5,243,596

52

U.S. Patent Sep. 7, 1993 Sheet 8 of 24 5,243,596

60

PACKETOWNED
AND

SOURCE LAMY LA
AND

NOT OWNERSHIP

650

SOURCE A-MYLA;
DEST LA-MYLA;
OWNED-TRUE

U.S. Patent Sep. 7, 1993 Sheet 9 of 24 5,243,596

PEND

SOCKET
D

PEND Lock DLC E
PEND

PEND Lo DiC E
SOCKET

D

FIG. 7A

FG, 7B

Sheet 11 of 24 5,243,596 Sep. 7, 1993 U.S. Patent

01 BdAl 39NN/H0

NO SSVd

U.S. Patent Sep. 7, 1993 Sheet 13 of 24 5,243,596

CHANGE PACKET TO
WAKEUPTOKEN:
DEST LACMYLA;
SOURCE LACMYLA
SET ROUNDTRIP BIT

800

FIG. 8G

LCLOCKED OR
LC=SLEEPING OR
LCEPENDING 8.

HIGHER PRIORITY

880

GRABLOCK

CHANGE TYPE
TO MODIFIED
LOCK REQUEST

FIG. BD

U.S. Patent Sep. 7, 1993 Sheet 14 of 24 5,243,596

LC-SLEEPING;
DELETE PACKET

GRABLOCK

FIG. 8F

U.S. Patent Sep. 7, 1993 Sheet 15 of 24 5,243,596

902

TRANSMT
MULTICAST SINGLE

PACKET

SEFFER X RE
LOCK PACKET MULTICAST SINGLE

PACKET

RECEIVE

LOCK PACKET

TRANSMT
MULTICAST BUFFER

PACKET

TRANSMT
MULTICAST END OF
BLOCK PACKET

97
RECEIVE

MULTICAST END OF
BLOCK PACKET

FIG. 9A

U.S. Patent Sep. 7, 1993 Sheet 16 of 24 5,243,596

920
NZ Y

MULTICAST BUFFER HANETICAST
922

N 924 Y

MULTICAST SINGLE PACKET SEESAST
926

N 928 Y

MULTICAST END OF BOCK ESIST
N 930

952
MULTICAST BUFFERLOCK EAST

N 9Sl
936

REQUEST MULTICAST Y HANDLEREQUEST

BUFFER MLTCASTBFFER
N 940

REQUEST MULTICAST Y HAESFST
SINGLE PACKET 92/ SINGLE PACKET

N 3, HANDLEREQUEST REQUEST MULTICAST
END OF BLOCK MLSPDOF

N 96
REQUEST MULTICAST NY HESFST
BUFFERLOCK BUFFER LOCK

N 950
952

ERROR
FIG. 9B

5,243,596 Sheet 17 of 24 Sep. 7, 1993 U.S. Patent

!+ Nossae
1SVO LITW 1SEÑOS, 01 EkHA139NVHO

5,243,596 Sheet 18 of 24 Sep. 7, 1993 U.S. Patent

1SVOJITW 01 Ek?A1 BØNN/H0

NO SSVd !118 dièl QNIYON LES

Sheet 19 of 24 5,243,596 Sep. 7, 1993 U.S. Patent

· NO SSWd SWT AWH, VT 1S30 -! 118 dièll

5,243,596 Sheet 20 of 24 Sep. 7, 1993 U.S. Patent

0206

NO SSVd

NO SSVd $118 dle|| QN00}} |ES
*7106

9206

d?HSHENMO ON ETONNIH !118 dle|| QNIYOR. LESER! WT MW VT EORTOS
2106

d|HSÈJENIMO Q ETKONVH 8206

U.S. Patent Sep. 7, 1993 Sheet 21 of 24 5,243,596

900.

SOURCELA Ny HANDLE 902
DOWNERSHIP

MYLA
N

905.

CAMHIT NY
AND 9056

INGROUP

N Y
906 9058

PASS ON

FIG. 9 CHANGE TYPE TO 9G REQUEST
MULTICAST SINGLE

PACKET;
DEST LACMYLA;

PASS ON

5,243,596 Sheet 22 of 24 Sep. 7, 1993 U.S. Patent

- 1SVOJITVN 01 Ek?Al 39NWHO $118 dièll ONTOH 1BSER, 9906Å No., Nossvº <!»Å 29060906
0906

U.S. Patent Sep. 7, 1993 Sheet 24 of 24 5,243,596

9090
9092

' pso,
Y 9.096

909,

CHANGE TYPE
E. N TO MULTICAS
FULL END OF BLOCK;

RECEIVE

9098

SOURCE LA

MY A
902

Y 900
HANDLE

NDOWNERSHIP DELETE PACKET

FIG. 9J

5,243,596
1

NETWORK ARCHITECTURE SUITABLE FOR
MULTICASTING AND RESOURCE LOCKING

BACKGROUND OF THE INVENTION

This invention concerns data communications net
works and in particular a network having architectural
features which facilitate the implementation of an effi
cient resource locking mechanism and a reliable mul
ticasting system.
A typical communications network includes multiple

data processing systems which are interconnected by
one or more data paths. Networks are usually described
by their topology (e.g. ring or star), by the set of proto
cols that control network resources, by the communica
tions services that are provided to the host data process
ing systems and by the implemented applications.
A network is judged by how efficiently it can trans

port data between two host processors. There may be
large variations in efficiency even among networks
having a single topology. For example, a ring network
system which implements a slotted ring protocol, oper
ates well when the applications communicate fre
quently using short, single packet messages, but is less
efficient with applications that routinely transmit larger
amounts of data. A ring network which uses a token
ring protocol, however, is more efficient when large
blocks of data are routinely transferred.
A key factor affecting the performance of a data

communications network is the level of involvement of
the host processors. This, in turn, depends on how
much of the protocol is implemented in hardware and
how much is implemented in software. Viewed, for
example, in terms of the Open Systems Interconnection
(OSI) model, a typical network may be defined as hav
ing seven layers: physical, data link, network, transport,
session, presentation and application. Although many
networks cannot be easily classified in terms of the OSI
layers, it is often convenient to describe their network
functions in terms of the analogous OSI layers.

Generally, the standards organizations have been
concerned mainly with the lower layers of the network
architecture, corresponding to the physical and data
link layers of the OSI model. The higher layers such as
the OSI network, transport, session and presentation
layers have, for the most part, been left to be defined by
the various network providers.
Although some providers have implemented some

functional elements of these higher layers in hardware,
the more typical implementation provides these func
tions through software running on the host data proces
sors. Although these software defined protocols may
provide greater flexibility than an equivalent network
implemented in hardware, they are inherently slower.
A system in which the physical, data-link, network

and transport protocols may be implemented in hard
ware is disclosed in allowed U.S. patent application Ser.
No. 07/296,524 entitled PACKET SWITCHING,
which is hereby incorporated by reference for its teach
ings on network architecture. In this system, several
host processors are connected in a star configuration
having a compact ring network at the hub of the star.
The ring network transmits data via a 16 bit parallel
data path among multiple network interface circuits, or
nodes, which are connected by segments of the data
path to form a ring. Because of its compact size and

5

10

15

20

25

30

35

45

50

55

65

2
parallel data paths, this ring network has a relatively
large effective bandwidth (e.g. 3.2 Gb/s).
Each star connection from the hub to one of the host

processors has a lower effective data bandwidth. These
connections may be, for example, twisted pair transmis
sion lines having data bandwidths of as much as 100
Mb/s.

In addition to the relatively high aggregate band
width achieved by its architecture, the system has fur
ther advantages over conventional ring networks since
a portion of the transport and network layers of the
protocol is implemented in hardware. This hardware is
in the ring nodes and in switch interface circuitry which
couple each ring node to its respective host processor.

In the system described in the above referenced U.S.
patent application, a process running on the host pro
cessor provides a block of data to be transferred to
another process running on another host. This destina
tion process is identified by a node address and a socket
number. The node and socket identifiers may be pro
vided, for example, from a network description data
base, a copy of which may be accessible by any host
from the session layer of the protocol.
The switch interface circuitry of the node receives

the block of data from the application and formats it
into multiple smaller packets, each of which identifies a
particular data buffer and an offset in that buffer as the
destination of the data in the packet.
When these packets are received at the destination

node, the switch interface circuitry coupled to the desti
nation host processor unpacks the data and stores it in
the designated destination buffer. The last packet
formed by the source switch interface circuitry includes
a checksum for all of the packets in the block. The
destination switch interface circuitry compares this
checksum to one that it has calculated from the re
ceived data. If the two checksums match, an acknowl
edge (ACK) packet is sent through the network to the
source switch interface circuitry. Otherwise, a negative
acknowledge (NAK) packet is sent, to cause the sender
to retry sending the block of data.

Using this hardware-implemented protocol, the
source host processor is only involved with the data
transport protocol when the data is initially supplied to
the network and when the entire block of data has been
received at the destination processor. The minimal in
volvement of the host processor in this network proto
col increases system performance relative to a conven
tional software implemented protocol, since the host
processors are not interrupted when each packet is sent
and received. In addition, the efficiency of the data
transport is increased since the packeting and depacket
ing operations are performed by application specific
hardware rather than by software running on a general
purpose computer.
The above referenced U.S. patent application does

not, however, address other aspects of the protocol in
the transport layer. In particular, no methodology for
communication among multiple processes, running on
different host processors as a multicast group, is dis
closed.

SUMMARY OF THE INVENTION

The present invention is embodied in a data commu
nications network which includes specialized circuitry
for implementing a distributed resource locking scheme
and a reliable multicasting system. In addition, the net
work circuitry regulates traffic among the nodes to

5,243,596
3

prevent any one node from being saturated and to en
sure that all nodes may send data irrespective of the
total volume of data being transferred by the network.
The present invention is embodied in a packet

switched network which includes a plurality of inter
connected nodes coupled to respective host data pro
cessors. Each node includes a memory which may be
addressed by the contents of a predetermined address
field in the packet and which provides information
relevant to how the packet is to be handled. Circuitry in
the node is Responsive to this information to change the
type of a received packet and transmit it back onto the
network without intervention from the host processor.
According to one aspect of the invention, the packet

includes a request for a resource lock. The node mem
ory is addressed by the lock identifier and provides
information on the status of the lock. This information is
used by circuitry in the node to selectively procure the
lock for the requesting process and to notify the process
when the lock has been procured.
According to another aspect of the invention, this

packet includes data to be transmitted to all members of
a multicast group. The node memory is addressed by
the group identifier and provides information indicating
whether a process running on the associated host pro
cessor is a member of the group. Circuitry in each of the
nodes is responsive to the information in the packet and
in the node memory to route individual packets to the
respective processes in the multicast group identified by
the packets.
According to yet another aspect of the invention, the

node memory is addressed by the destination node of a
packet to be transmitted by the associated host proces
sor. The memory provides an indication of the status of
the destination node. Circuitry in the node is responsive
to this information to selectively inhibit data transmis
sion to a busy node.
According to another aspect of the invention, the

node includes a packet buffer which may hold one or
two packets or parts thereof received from source
nodes for transmission to destination nodes. During
normal operation, circuitry in the node allows only a
preset number of packets in the packet buffer. When the
volume of data being transferred through the network is
large and the host processor has data to transfer, the
node allows an additional packet to be stored in the
packet buffer. While this packet is stored, circuitry in
the node transmits a pending packet from the host pro
cessor and marks this packet for exclusive use of the
node.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of an exemplary data com
munications network which may include an embodi
ment of the invention.
FIG. 2 is a block diagram of circuitry suitable for use

as one of the nodes in the data communications network
shown in FIG. 1.

FIG. 3 is a block diagram of circuitry which shows
details of portions of the node circuitry shown in FIG.
2.
FIGS. 4a and 4b are data structure diagrams which

illustrate exemplary packets suitable for use with the
circuitry shown in FIGS. 1-3.
FIGS. 5a and 5b are a flow-chart diagrams which

illustrate the operation of the node circuitry shown in
FIGS. 1-3 when a data packet is received.

10

15

20

25

30

35

45

50

55

65

4.
FIGS. 5c and 5d are flow-chart diagrams which illus

trate the operation of the node circuitry shown in
FIGS. 1-3 when message traffic to that node becomes
excessive.
FIGS. 6a and 6b are flow-chart diagrams which illus

trate the operation of the circuitry shown in FIGS. 1-3
when the network is congested and the node needs to
transmit a packet.

FIGS. 7a and 7b are data structure diagrams which
illustrate the format of the data held by the content
addressable memory (CAM) and the start/stop men
ory, respectively, shown in FIG. 2.
FIGS. 8a through 8g are flow-chart diagrams which

illustrate the operation of an exemplary distributed re
source locking system according to the present inven
tion.
FIGS. 9a through 9j are flow-chart diagrams which

illustrate the operation of a reliable multicast system
that uses the network shown in FIGS. 1-3.

DETALED DESCRIPTION OF THE
NVENTION

The embodiments of the invention described below
are in the context of a ring network having many of the
characteristics of the network described in the above
referenced U.S. patent application. It is contemplated,
however, that the invention may be practiced using
other network configurations, such as other types of
ring or bus oriented networks or even traditional star
networks.

Overview

FIG. 1 is a block diagram of a ring network which
includes an embodiment of the present invention. This
network has several features, realized in hardware in
each of the nodes, which assist in the implementation of
a fully distributed resource locking scheme and a mul
ticasting system and which prevent any one node from
becoming saturated. In addition, each node includes
circuitry which, when data flow through the network is
very heavy, allocates and marks a packet for the exclu
sive use of the node to ensure that the processes coupled
to the node can communicate with processes coupled to
other nodes.
A key feature of this architecture is the ability of each

node to recognize and process different types of packets
without assistance from the host processor. In addition,
each node maintains a memory which holds data relat
ing to active system locks and multicast groups. Using
this memory and a number of predefined packet types,
the collective nodes implement a distributed resource
locking scheme and a substantial portion of a reliable
multicasting scheme.
A resource locking system controls access to a re

source from among several competing requestors. The
resource may be a printer which processes running on
two hosts want to use or it may be a database record
containing the account information of a bank customer.
In either of these examples, only one processor should
be allowed to access the resource at any one time. To
prevent multiple simultaneous accesses, a process may
only be allowed to use the resource when it has pro
cured a lock. e

Conventional resource locking schemes localize each
lock to a single host processor or some central location
and require each requesting process to obtain the lock
through a process which is active on the respective
processor. The exemplary resource locking scheme is

5
more efficient than these conventional schemes since
many of the operations involved in procuring and liber
ating a resource lock are implemented in the circuitry of
the network nodes.
To procure a lock, a host processor sends a lock

request to the node. The node sends a first packet to
ensure that no other node is attempting to procure the
lock and then sends a second packet to determine if any
other node already has the lock. If so, the node sets the
context of the lock to SLEEPING, that is to say, it
indicates to whatever local process may be requesting
the lock that it must wait for another process or pro
cesses to release the lock. Otherwise, it grabs the lock
and notifies the requesting process that it has procured
the lock. The distributed locking system is described in
greater detail below with reference to FIGS. 8a
through 8g.
The multicasting system provides a method of trans

mitting messages to a group of host processors on the
ring. A host processor in a multicast group may either
send a single packet message or a multiple packet mes
sage to the other host processors in the group. The
exemplary system ensures reliable delivery of multiple
packet messages by pre-allocating a receive buffer at
each node before the transmission begins. Conversely,
single packet messages may be sent at any time by any
member of the group without pre-allocating a buffer.
To send a multiple packet message, the transmitting

host processor first sends a message to all members of
the group requesting that they allocate a buffer for the
multi-packet message. When this message returns to the
sender, all other hosts in the multicast group are guaran
teed to have a buffer available to receive the multi
packet message. Once it has received this assurance, the
transmitting node sends all of the packets in the multi
packet message. If the sending host has another multi
packet message to send, it sends a new message to all of
the members of the group requesting a new buffer be
fore it sends the next multi-packet message.
A typical sequence of multiple packet messages may

be, for example, a continuous motion video signal being
sent from one host to a group of other hosts in a mul
ticast group. In this instance, each video frame may be
a new multiple packet message.

Beyond resource locking and multicasting, each node
includes a second memory which keeps track of the
ability of all of the other nodes to receive data packets.
If the number of packets waiting in the node to be trans
ferred to the host becomes large, the node automatically
formats and transmits a stop packet to every other node
in the network. This stop packet conditions the other
nodes to mark their local memory cells to indicate that
the congested node unable to receive data packets. Re
sponsive to this entry, the receiving nodes will not
transmit data packets to the congested node until a start
packet is received and the memory cell for the con
gested node is cleared. This start packet is sent by the
congested node after the congestion on the link to its
host processor has been relieved and the number of
packets waiting to be sent to the host falls below a pre
set threshold.

Finally, each node includes a transfer buffer which
holds any packets that may be received from upstream
nodes while the node is transferring data to a down
stream node. This transfer buffer normally holds at most
one full packet. When the network becomes congested,
however, the buffer may be expanded to hold an addi
tional packet. This additional packet creates a slot on

5,243,596

5

10

15

20

25

30

35

45

50

55

60

65

6
the loop into which the node may insert a transmitted
packet.
To ensure that the node can continue to communi

cate, this packet is marked as being owned exclusively
by the transmitting node. Thus, it continually circulates
around the loop until either the data traffic becomes less
congested or the node no longer needs to transmit data.
At this point, the owned packet is deallocated and the
transfer buffer is collapsed to its original size.

DETAILED DESCRIPTION OF THE
EXEMPLARY EMBODIMENTS

In the network shown in FIG. 1, multiple host pro
cessors 111-118, having associated memories
111 M-118M, are coupled to the ring network via re
spective host interface circuits INT which communi
cate directly with respective network interface proces
sors, or nodes, 101-108, respectively. Each node in the
network is connected to the next sequential node via a
19-bit unidirectional data communications path. Node
101 is connected to node 102 via the path 121, nodes 102
and 103 are connected via the path 122, and so on until
the path 128 from node 108 to node 101 completes the
ring.

In normal operation, a process being executed on one
host processor, for example 111, needs to transfer a
block of data to another process being executed on a
different host processor, say 114. To effect this transfer,
the host 111 sends a message to its interface circuit
identifying the block of data, the node to which the
other processor is connected, and the identity of the
process which is to receive the data. The interface cir
cuit takes 16-bit data words from the block, 16 words at
a time, formats them into a packet, such as is shown in
FIG. 4b, and sends the packet to the node 101.

In this packet, a 16-bit socket identifier (SOCKET
ID) identifies the destination process and a buffer desig
nated by that process to receive the data, an eight-bit
destination loop address (DEST LA) identifies the node
104 which is to receive the packet and an eight-bit
source loop address (SOURCE LA) identifies the node
101 from which the packet is sent. A ten-bit packet type
field (TYPE) identifies the packet as containing data.
Also included in the third word are three one-bit flags,
deletable (D), round-trip (R) and owned (O). The func
tion of these flag bits is described below in greater de
tail. Finally, a 16-bit field (OFFSET) is interpreted to
identify an offset into the designated buffer area, in the
memory 114M into which the sixteen 16-bit data words
in the packet are to be written.
As described below, node 101 places the formatted

packet onto the ring where it passes, via the data paths
121, 122 and 123 through the nodes 102 and 103 until it
reaches the destination node 104.
When the packet is received at node 104, it is trans

ferred to the interface circuitry INT which couples host
processor 114 to the network. This circuitry generates a
destination address in the memory 114M for the 16 data
words in the packet. The destination address is gener
ated from the information in the SOCKET ID and
OFFSET fields of the packet which identify the desti
nation buffer and the offset into that buffer. The inter
face circuitry then transfers the sixteen words of data
from the packet to the addressed locations in the men
ory 114.M.
As shown in FIG. 4a, a short packet comprising only

four words may also be transmitted between hosts or
between nodes. Short packets are sent, as described

5,243,596
7

below, to procure and liberate resource locks, to guar
antee that multicast buffers are allocated and to control
the volume of data being sent to any one node. A short
packet may originate from a host or from a node, de
pending on how it is to be used.

FIG. 2 is a block diagram which shows details of the
structure of one of the switch nodes 101 through 108. In
the circuitry shown in FIG. 2, a 19-bit bus connects the
output of the previous node on the loop (not shown) to
the input register 210. Of these 19 bits, 16 are data, two
are parity and one, FIRST IN (shown in FIG. 3) is a
pulse signal which indicates that the first word of a
packet is being applied to the register 210.

Responsive to the FIRST IN signal, the input register
210 loads the 18-bit first word of the packet and applies
it to the parity checking circuitry 212. The 16 bits of
data from this first word are simultaneously applied to
control circuitry 214 and to a modify register 216. After
this first word of the packet has been processed, the
remainder of the data values in the packet are loaded in
sequence into the input register 210. These words are
loaded in response to a clock signal (not shown) which
is distributed to all of the nodes.
The parity checking circuitry 212 calculates the par

ity of the 16 data bits and compares it to the two re
ceived parity bits. If differences are found, a parity error
is indicated to the control circuitry 214.
The control circuitry 214 is a finite state machine, or

more properly, a group of interconnected finite state
machines, which control the remainder of the node
circuitry in response to the first four words of the
packet, to commands and data provided by the host
processor and to various internally generated signals.
The functions performed by the control circuitry are
described below with reference to FIGS. 5a through 9i
To perform these functions, the control circuitry 214

is coupled to a start/stop memory 220 and to a content
addressable memory (CAM) 222. The function of the
start/stop memory 220 is described below with refer
ence to FIGS. 5c, 5d and 7b, while the function of the
CAM 222 is described below with reference to FIGS.
7a and 8a through 9j. The control circuitry 214 also
includes various state variables, such as OWNERSHIP
and STOPPED, which are used as described below.
These state variables may be one-bit boolean values
which are accessible to one or more of the individual
state machines that constitute the control circuitry 214.
The modify register 216 is responsive to a 16-bit

value, RVAL, provided by the control circuitry 214 to
selectively change individual bits of the 16-bit data
values provided by the input register 210. Using this
register, the control circuitry 214 can change individual
bits in packet header words while the packets are being
transferred through the node. The function of the mod
ify register 216 is described below in greater detail with
reference to FIGS. 3 and 8a through 9i

Data values provided by the modify register 216 are
applied to a register 224 which holds the data value
while the control circuitry 214 determines if the packet
is to be placed into the receive queue 226 and trans
ferred to the host processor. In this embodiment of the
invention, the control circuitry 214 examines the first
three words of the packet to make this determination.
While these words are being examined by the control
circuitry 214, they are provisionally stored in available
space in the receive queue 226. If it is later determined
that the packet should not be received, these words in
the receive queue 226 are invalidated and made avail

10

15

20

25

30

35

45

50

55

65

8
able. If it is determined that this packet is to be received,
the control circuitry 214 continues to store the words in
the receive queue 226, in sequence from the register
224.

In this embodiment of the invention, the receive
queue 226 contains sufficient storage space for 25 pack
ets. When all 25 packet positions are occupied, the
queue 226 sends a signal RQFULL to the control cir
cuitry 214. As set forth below, this signal conditions the
control circuitry to stop sending data to the receive
queue.
The receive queue is organized as a first-in first-out

(FIFO) memory where each packet position may be
considered a separate cell of the memory. As multiple
packets are received they are shifted into respective
packet positions. When a given packet position is filled,
the packet is transferred to a transmit buffer 227. The
buffer 227 includes 15 packet buffers, each coupled to a
respectively different logical channel to the host pro
cessor. In the exemplary embodiment of the invention,
these logical channels are time-division multiplexed
onto the signal transmitted from the node to the host via
the twisted pair data path. It is contemplated, however,
that multi-bit data paths between the node and the host
may also be used. In either instance, in the exemplary
embodiment of the invention, as many as i5 stored
packets may be transferred according to a time-division
multiplex protocol from the transmit buffers 227 of the
node to the associated host processor.
The receive queue provides two other signals, a high

water mark signal RQHWM and a low-water mark
signal RQLWM. These signals indicate respectively,
when the number of packets held by the queue is greater
than a first predetermined number and less than a sec
ond predetermined number. The signal RQHWM is
used by the control circuitry 214 to selectively inhibit
other nodes and their hosts from sending packets to the
node while the signal RQLWM is used to release the
inhibition. This process is described below in detail with
reference to FIGS. 5c, 5d and 7b,

In addition to the receive queue, the modify register
applies the received packet words to a pass though
FIFO memory 228. This memory provides storage for
packets being transferred around the ring. If the node is
transmitting a packet while another packet-which is
merely being passed through the node-is being re
ceived, the words of the received packet are stored in
the FIFO 228 until the packet being transmitted has
been sent. Then, the stored message is shifted out of the
FIFO 228 and onto the ring. The operation of the FIFO
228 is described below in greater detail with reference
to FIG. 3.
The node transmits packets provided by the host via

a transmit queue 232. This queue holds as many as 15
packets to be transmitted to other nodes via the ring
network. When packets are waiting in the transmit
queue to be sent, the control circuitry 214 senses either
a gap in the data being transferred through the node
and/or, that the pass-through FIFO 228 has sufficient
free space to hold a full packet. The control circuitry
then conditions an output state machine 230 to transmit
one of the packets which is waiting in the transmit
queue. Alternatively, the control circuitry 214 may
condition the state machine 230 to transmit a packet
from the pass-through through FIFO, or one of two
short packets, generated by the lock packet generator
234 or start/stop packet generator 236. The operation of
the output state machine 230 is described in more detail

5,243,596
9

below with reference to FIG. 3. The operation of the
lock packet generator 234 is described below with refer
ence to FIGS. 8a through 8g and the operation of the
start/stop packet generator 236 is described below with
reference to FIGS. 5c and 5d.
FIG. 3 is a block diagram which illustrates a a portion

of the node circuitry shown in FIG. 2 in greater detail.
The 16 data bits loaded into the input register 210 are
applied to a delay element 310 of the modify register
216. This delay element delays the word by a number of
clock periods sufficient to allow the control circuitry
214 to determine if any bits in the word need to be
changed. From the delay element 310, the word is
loaded into a stage D of a three stage register 312.
The other two stages of the register, N and M are

loaded by the control circuitry 214 via the 16 bit data
path RVAL. Stage N holds the new value for selected
bits of the word which are to be modified. Stage M
holds a mask in which only those bits that are to be
modified are set. In operation, the bits of stage N which
to the bits of stage Mare selectively loaded into stage D
to produce the modified word.
From the modify register 216, the packet words are

applied to the pass-through FIFO 228. As shown in
FIG. 3, the FIFO 228 includes four separate storage
areas: a timing buffer 314, a short packet buffer 316, a
full packet buffer 318 and an auxiliary packet buffer 320.
As 16-bit words from the modify register 216 are ap
plied to the FIFO 228, they are stored synchronous
with a data input clock signal, DIN, provided by the
control circuitry 214.
When the FIFO is empty, each packet word is stored

in the timing buffer 314 before it is transferred, synchro
nous with a data output clock signal DOUT, to the
output state machine 230. If the output state machine
230 is busy as data is being shifted into the FIFO 228,
the incoming data words are stored in the short packet
buffer 316 and, if necessary in a portion of the full
packet buffer 318. The combination of these two buffers
allows the node to transmit a full packet and a short
packet while packets are being received from the up
stream node. In normal operation, if a full packet is
waiting in the pass-through FIFO 228, the control cir
cuitry 214 inhibits the transmit queue 232 from sending
any packets onto the network through the output state
machine. This inhibition is removed when the pass
through through FIFO 228 is empty or contains only a
short packet.
The auxiliary packet buffer is used only when the

network is so congested that the pass-through FIFO
228 does not become empty, and because of this, a mes
sage remains waiting in the transmit queue for a prede
fined interval. When these conditions have been met,
the control circuitry 214 allows this area of the pass
through FIFO to be filled with an incoming packet
while one of the packets in the transmit queue is sent
over the network. This transmitted packet is "owned'
by the node and remains active for the exclusive use of
the node until either the network congestion eases or
the number of packets waiting in the transmit queue
falls below a preset threshold. The use of this buffer and
the handling of owned packets is described in greater
detail below with reference to FIGS. 6a and 6b.
The host processor sends packets, which are to be

transmitted to another host processor, to the input
switch 326 of the node. Like the data path from the
node to the host, the data path from the host to the node
includes 15 logical channels, each of which may be

O

15

20

25

30

35

45

50

55

60

65

10
sending one packet from the host to the node. Each of
these packets may be associated with a respectively
different process running on the host.
The input switch 326 converts the received signals

into packets of 16-bit words and transfers these packets
to a receive buffer 328. The receive buffer provides the
oldest packet in the queue to the input port of a demulti
plexer 330 and simultaneously provides the packet
header information to the control circuitry 214 via the
data path PKH. The demultiplexer 330 routes the
packet from the receive buffer 328 to one of two packet
buffers 332 and 334. The output ports of these buffers 10
are coupled to the input ports of a multiplexer 336. Both
the demultiplexer 330 and the multiplexer 336 are con
trolled by a signal provided by the receive buffer 328.
The packet buffers 332 and 334 implement a double

buffering scheme in which a packet in one of the buff
ers, e.g. 332, may be sent onto the network through the
output state machine 230 while another packet is being
loaded, from the receive buffer 328, into the other
buffer e.g. 334. Thus, the control signal for the demulti
plexer 330 conditions it to direct packet words into one
of the buffers 332 and 334 while the control signal for
the multiplexer 336 conditions it to extract words from
the other buffer.

Packet words which are to be sent onto the network
are applied to a multiplexer 322 and to a controller 324.
The controller 324 selects which of the packets from
four competing sources is sent onto the network. It also
calculates the parity for each packet word and gener
ates a signal FIRST OUT which becomes the FIRST
IN signal for the next node. In addition, the control
circuitry 324 causes the OWNED bit of the packet to be
set if, as described below, an owned packet is needed by
the node. The four packet sources are the transmit
queue 232, the pass-through FIFO 228, the lock packet
generator 234 and the start/stop packet generator 236,
all shown in FIG. 2.

In normal operation, when the pass-through FIFO
228 is empty, the priority for selecting a packet for
transmission assigns the highest priority to packets from
the start/stop generator 236 and progressively lower
priority values to packets from the transmit queue 232,
the, lock packet generator 234 and the pass-through
FIFO 228. When, however, the pass-through FIFO
contains a full packet or more than one short packet, it
is assigned the highest priority.
The following is a description of the operation of the

network in terms of flow-chart diagrams. This descrip
tion refers to the hardware elements of the system,
described above. While the flow-chart diagrams used to
explain these functions are commonly used to describe
control software for a programmed processor, in this
embodiment of the invention, they describe functions
which are implemented as various finite state machines.
Thus, these flow-chart diagrams describe control flow
implemented in the control circuitry 214, shown in RE
2. It is well known that a software programmed general
purpose computer may be replaced by an equivalent
hard-wired finite-state machine. It is contemplated,
therefore, that the control circuitry 214 may be re
placed by one or more equivalent programmed com
puter processors.
These flow-chart diagrams are not in their simplest

form. They are, however, in a form which produces a
relatively compact hardware implementation of the
state machines. A key factor in producing compact state
machines is the sharing of portions of the machines.

5,243,596
11

This manifests itself in the flow-chart diagrams as simi
lar or identical sequences of steps in the diagrams which
describe the operation of different state machines. An
example of this is the use of the round-trip bit in the
multicasting state machines. As described below, it is
not necessary to use this bit, however, it is economical
to do so.
A processing step which precedes any of these flow

chart diagrams is the receipt and classification of the
packet. Packets are classified by the SOCKET ID,
DEST LA, SOURCE LA and TYPE fields appearing
in the first three words. The flow-charts below are
segregated based on the TYPE field of the packet.
FIGS. 5a and 5b concern packets having a type of
"normal." FIGS. 5c and 5d relate to "start" and "stop'
packet types. FIGS. 8a through 8g concern packets
having types related to a distributed locking scheme
which is implemented using the network nodes. FIGS.
9a through 9j concern packets having types related to a
reliable multicasting scheme.
FIGS. 5a and 5b concern the steps taken by a node

when a packet having a TYPE field of "normal' is
received. Packets of this type carry data from a first
process, coupled to one node, to a second process, cou
pled to a different node. In an efficient network which
is not used primarily for multicasting, this should be the
most common type of packet.
The first step in FIG. 5a, step 502, determines if the

source loop address (SOURCE LA) field of the packet
designates this node and if the destination loop address
(DEST LA) does not designate this node. If both of
these conditions are met, step 504 is executed which
determines if the round-trip bit (R) is set in the third
word of the packet.

If the bit R is set, then this packet was previously sent
by this node to the designated destination node. That
node, however, was temporarily unable to receive the
packet, perhaps because its receive queue was full. To
delay receiving the packet, it set the round-trip bit and
passed the packet back on to the loop. This is the packet
that is now being received by the source node. In this
instance, the source node, at step 506, resets the R bit
and, at step 508, places the packet back on the loop to
once again be received by the destination node. The
step 508 invokes a state machine which implements a
procedure, HANDLEND OWNERSHIP, that is de
scribed below with reference to FIG. 6a. In addition to
passing the packet back onto the loop, this state ma
chine causes the output state machine 230 to mark the
packet as owned by the source node if, as set forth
below, the packet was previously owned and an owned
packet is still required.

If, however, at step 504, the round-trip bit (R) is not
set, step 510 is executed which invokes the state ma
chine HANDLE DOWNERSHIP. This state machine
deletes the packet unless it is an owned packet which is
still needed.
A node may require an owned packet when so many

packets are being transferred around the network, that
the pass-through FIFO 228 of the node never contains
at least one full packet for a predetermined time inter
val. As set forth above, in this instance packets in the
transmission queue 232 of the node cannot be sent be
cause packets from the pass-through FIFO 228 have a
higher priority.
When, due to network congestion, the transmit queue

has been full for an amount of time greater than a preset
threshold, the node sets an internal logical value OWN

O

15

25

30

35

45

50

55

65

12
ERSHIP in the memory 218 and activates the signal
DIN to store the next incoming packet into the auxiliary
packet buffer area 320. While these data words are
being stored, a packet from the transmit queue is
marked as being owned, by setting the bit 0 in the third
word of the packet, and sent over the network by the
output state machine 230. The source loop address
(SOURCE LA) field of this packet contains an identi
fier (MY LA) which designates this node as the source
of the packet.
When this packet returns to the node after traveling

around the loop, the control circuitry detects that this
node was the source of the packet and after handling the
data in the packet, invokes HANDLE DOWNER
SHIP or HANDLEND OWNERSHIP to handle the
packet. While OWNERSHIP is set in the node, this
packet continually circulates around the loop for the
exclusive use of its identified node.
When this packet is received by its originating node,

the control circuitry 214 sets a state variable to indicate
that the packet is the owned packet for the node. As this
packet progresses through the pass-through FIFO 228
and into the output state machine 230, the control cir
cuitry 214 causes the output state machine to substitute
a packet from the transmit queue 232 for the owned
packet and to set the owned bit (bit 0 in the third word)
to mark this substituted packet as the new owned
packet. In the exemplary embodiment of the invention,
a node may have only one owned packet at any given
time.
When the number of packets waiting to be trans

ferred falls below a threshold, the state variable OWN
ERSHIP is reset. The next time that the packet is re
ceived by the node, either the state machine HANDLE
DOWNERSHIP deletes it, causing the node to send a
packet from the FIFO 228 over the network in its place,
or the state machine HANDLE ND OWNERSHIP
resets its owned bit, causing it to be deleted in the nor
mal operation of the network as described below- De
leting this packet empties the auxiliary packet buffer
320, returning the node to its original state.

Returning to FIG. 5a, if one of the conditions at step
502 is not met, step 512 is executed. This step determines
if the SOURCE LA field does not designate this node
while the DEST LA field does. If so, then this packet
was sent by another node to be received by this node.
Step 514 checks the state of the signal RQFULL which
indicates if the data can be stored in the receive queue.
If the receive queue cannot accept a packet, step 516 is
executed which sets the round-trip bit (R) in the packet
and sends the packet around the loop again. This opera
tion delays the receipt of the packet by one trip around
the loop in hope that space for at least one packet will
be available in the receive queue when the packet re
turns.

If, at step 514, the receive queue for the node is not
full, step 518 is executed. This step conditions the re
ceive queue 226 to accept the packet and, by invoking
the state machine HANDLE DOWNERSHIP, either
deletes the packet or, if it is an owned packet and OWN
ERSHIP is set, retains it as an owned packet.

If the conditions at step 512 are not met, the process
for handling a normal packet continues through the
off-page connector A to FIG. 5b. In FIG. 5b, if neither
the source loop address (SOURCE LA) nor the destina
tion loop address (DEST LA) of the received packet
indicate this node, then step 522 is executed which
passes the packet without modification through the

5,243,596
13

pass-through FIFO 228 and the output state machine
230 and onto the network.

If the conditions at step 520 are not met then, both the
SOURCE LA and the DEST LA of the received
packet indicate this node. In this instance, step 524 de
termines if the round-trip bit (R) is set. If not, step 526
deletes this packet unless it is an owned packet which is
still needed.

If, at step 524, the round-trip bit (R) is set, then this
packet was previously processed but there was no room
in the receive queue. Step 527 determines if there is now
room for the packet in the receive queue 226. If so, step
530 is executed which transfers the packet to the receive
queue and invokes the state machine HANDLE D
OWNERSHIP.

Otherwise, step 528 conditions the modify register
216 to set the round-trip bit, R, in the third word of the
packet and transfers the packet back on to the loop by
invoking the state machine HANDLE NDOWNER
SHIP. This state machine transmits the packet onto the
loop and causes the output state machine 230 to set the
owned bit, O, in the third word of the packet if the
packet is owned and the state variable OWNERSHIP is
currently set for the node.

FIG. 5c illustrates the operation of a node when data
traffic to the node threatens to fill up the receive queue
226. As set forth at several places in the detailed de
scription, when a packet is received having its DEST
LA field equal to MYLA and the receive queue 226 is
full, the round-trip bit (R) of the packet is set and the
packet is sent around the loop to be received at a later
time. While this scheme ensures that the packet will be
received eventually, it tends to waste network band
width. The stop/start state machine illustrated in FIGS.
5c and 5d mitigates this effect by notifying each of the
other nodes in the system that this node will soon be
unable to receive packets. In response to this notifica
tion, the other nodes hold the pending packets ad
dressed to this node until they receive a message indi
cating that the node is again ready to receive packets.

FIG. 5c illustrates a state machine in a node which
generates start and stop packets for the node to be sent
to the other nodes in the network. FIG. 5d illustrates a
state machine in a node which responds to start and stop
packets received from other nodes in the network. The
start and stop packets are short packets generated by the
start/stop packet generator 236, shown in FIG. 2, under
control of the state machine described below with refer
ence to FIG. 5c.
The state machine in FIG. 5c is invoked in two in

stances, 1) if the state variable STOPPED is reset and
the receive queue asserts the high water mark signal
RQHWM and 2) if the state variable STOPPED is set
and the receive queue asserts the low water mark signal
RQLWM. This is illustrated by the steps 532, 534 and
540 of FIG.Sc.

If, at step 534, the state variable STOPPED is reset
and the signal RQHWM is asserted, then the receive
queue is almost full and other nodes may be sending
packets to the node. In this instance, step 536 is exe
cuted in which the control circuitry conditions the
start/stop packet generator 236 to send a stop packet to
all of the other nodes. This is a short packet having the
node loop address (MY LA) in both the SOURCE LA
and DEST LA fields and a TYPE field indicating that
it is a stop packet. This step also sets the state variable
STOPPED.

10

15

20

25

30

35

45

50

55

65

14
If the variable STOPPED is set and the low water

mark signal, RQLWM, is asserted, step 542 is executed.
This step resets the state variable STOPPED and condi
tions the start/stop packet generator 236 to send a start
packet to the other nodes on the network. This packet is
identical to the stop packet except that the type field is
that of a start packet.

After step 536 or 542, step 538 is executed which
notifies the host that data traffic to this node has either
been stopped or restarted.
FIG. 5d illustrates the operation of the state machine

which receives a start or stop packet from one of the
other nodes. When the control circuitry 214 recognizes
the incoming packet as a start packet or a stop packet, it
invokes this state machine. As illustrated by step 550 of
FIG. 5d, If the packet originated from this node, step
552 is executed which deletes the packet. Otherwise,
step 554 is executed which updates the start/stop mem
ory 220 with the information contained in the packet,
sends the updated start/stop table to the host processor
and, at step 556, sends the start/stop packet to the next
node on the loop.

In this embodiment of the invention, the high water
mark is set at 20 so that five packets may be received by
a node even after it has issued a stop message. This
number is selected to allow packets which have already
been transmitted from a host processor to proceed with
out intervention (i.e. round tripping) by the node. Only
pending packets, that is to say, those which have not yet
been transmitted onto the network are affected by the
start/stop mechanism. Packets which have already been
transmitted by their source nodes continue to travel
through the network until they reach their destination
nodes.

In the exemplary embodiment of the invention, the
low water mark is set at five so that the host is not idled
while it is waiting to receive packets after the node has
issued the start packet.

In the exemplary embodiment of the invention, the
network is initialized with the state variable STOPPED
set for each node. Each active node then detects that
the state variable is set and that the RQLWM signal is
asserted and sends a start packet to each other node.
The data from these start packets is collected into the
start/stop memory 220. The data in this memory is then
transmitted, by each active node to its host processor.
FIG.7b is a data structure diagram which illustrates

the start/stop memory 220 for the node 101, labeled
NODE 1. This memory has an entry, STOP, for each of
the other nodes in the system. This entry is set if the
node is unable to receive data and is reset if the node is
able to receive data.
FIGS. 6a and 6b are flow-chart diagrams which illus

trate the operation of the respective state machines,
HANDLE ND OWNERSHIP and HANDLE D
OWNERSHIP. The State machine HANDLE ND
OWNERSHIP is invoked to change or retain the status
of an owned packet when the packet is to be passed
onto the network. The state machine HANDLE D
OWNERSHIP is invoked to change or retain the
owned status of a packet which would otherwise be
deleted by the node.

In step 610 of FIG. 6a, the state machine HANDLE
ND OWNERSHIP determines if the owned bit, O, is
set in the third word of the packet, if the packet origi
nated from this node and if the OWNERSHIP state
variable is reset. If all of these conditions are net, then
step 612 causes the owned bit of the packet to be reset.

5,243,596
15

If the conditions of step 610 are not met or after step
612, step 614 is executed which passes the packet onto
the network through the pass-through FIFO 228 and
output state machine 230 of FIG. 2. In this embodiment
of the invention, the owned bit is reset by the output
state machine 230, responsive to the signal OWNED
BIT provided by the control circuitry 214.
At step 620 of FIG. 6b, the state machine HANDLE

DOWNERSHIP determines if the owned bit (O) is set
in the packet. If not, step 628 is executed which deletes
the packet. Otherwise, step 621 is executed which deter
mines if the packet originated from this node. If the
packet originated from another node, it is passed onto
the network at step 622. Otherwise, step 624 determines
if the state variable OWNERSHIP is set for the node. If
not, then, at step 624, the state machine, using the mod
ify register 216 causes the owned bit, O, of the packet to
be reset and, at step 628, causes the packet to be deleted.
If, at step 624, the state variable. OWNERSHIP is set,
then the node still needs an owned packet. Step 630 is
executed which sets the source and destination loop
addresses of the packet to indicate this node and causes
the output state machine 230 to set the owned bit to
true. Step 632 then passes the packet back on to the
network through the pass through FIFO 228 and output
state machine 230.
When this packet is received by the node after mak

ing a trip around the loop, the control circuitry 214
causes it to be overwritten by the next packet in the
transmit queue 232. The control circuitry also causes
the output state machine 230 to set the OWNED bit for
the packet before it is transmitted onto the network.

FIG. 7a is a data structure diagram which illustrates
the structure of the content addressable memory
(CAM) 222. This is an associative memory which in
cludes three types of records: lock records, multicast
group records, and null records. The field which is
searched to address the CAM 222 contains either a lock
identifier (LOCK ID), a multicast group identifier
(GROUP ID), or a value (NULL) indicating that the
record is available. If a match is found between this field
and the SOCKET ID field of a received packet, the
other fields in the record are made available to the
system as state variables. These fields are described in
greater detail below with reference to FIGS. 8a
through 9i
FIG. 8a is a flow-chart diagram which illustrates the

normal control flow involved in grabbing and releasing
a lock using the exemplary resource locking scheme. A
resource lock request begins when, at step 802, one of
the host processors requests a particular lock. In the
exemplary embodiment of the invention, this request is
made via a control channel (not shown) which is imple
mented with the data transfer channels between the host
computer and the receive buffers 328.
When the node receives the request, it checks its

CAM 222 to determine if an entry for the lock exists. If
not, step 806 establishes an entry in one of the NULL
records and sets the lock context (LC) for the node to
IDLE. Since the locking system is distributed across the
nodes, the state of any lock may only be determined by
examining the lock context of each node.
At step 808, the control circuitry 214 conditions the

lock packet generator 234 to send a LOCK TOKEN
packet around the ring. If the node receives the LOCK
TOKEN packet and it was modified as it traveled
around the ring, as in step 810, the original sending node
knows that other nodes are also in the process of mak

O

15

20

25

30

35

45

50

55

65

16
ing a request for the lock. In this case, the sending node
re-transmits the LOCK TOKEN packet until the
packet returns unmodified.
Once an unmodified LOCK TOKEN packet is re

ceived, the node, at step 812, adjusts the lock context to
PENDING and, at step 814, transmits a LOCK RE
QUEST packet around the ring to gain the lock. If, at
step 816, the LOCK REQUEST packet returns to the
node modified then another node either has the lock or
will imminently be given the lock. In this instance, the
lock context is set to SLEEPING at step 818. Eventu
ally, the node will receive a WAKEUP TOKEN
packet, at step 820, indicating that the other node has
released possession of the lock. The generation of a
WAKEUPTOKEN packet is discussed below.

If the lock context was PENDING and an unmodi
fied LOCK REQUEST packet is received or if the lock
context was SLEEPING and a WAKEUP TOKEN
packet is received then, in step 822, the node grabs the
lock by updating the lock context in the CAM 222 to
LOCKED. The node then sends the packet to the host.
Under the exemplary scheme, the host has procured the
lock and may then assume exclusive use of the resource.
The host computer sends a lock release request to the

node at step 824 when the lock is to be released. This
request is made via the control channel (not shown) in
the data transfer channels between the host and the
receive buffers 328. In response to this request, the node
conditions the lock packet generator 234 to transmit a
LOCK TOKEN packet around the ring at step 826.
When the packet is returned to the node at step 828,
with or without modification, the node, at step 830, sets
the lock context to IDLE and sends the packet to the
host to indicate that the lock is released. The node then
transmits a WAKEUPTOKEN packet, at step 832, to
awaken one of the nodes that may be waiting for the
lock.
FIG. 8a describes a typical flow for grabbing and

releasing a lock. This is accomplished using multiple
state machines. Each of the relevant state machines is
described below with reference to FIGS. 8b through 8f
FIG. 8b concerns the steps taken by a node operating

under control of a HANDLE LOCK TOKEN state
machine upon receipt of a LOCK TOKEN packet from
the ring. If, at step 834, the SOURCE LA of the packet
matches MY LA, then this node originally transmitted
the packet. In this instance, the state machine proceeds,
at step 836, to test the current lock context in the CAM
222. An IDLE lock context, at step 838, indicates that
this node is attempting to request the lock. If so, the
state machine changes the lock context in the CAM 222
to PENDING to indicate to the other nodes that this
node will attempt to procure the lock. The state ma
chine then changes the type of the packet to a LOCK
REQUEST packet using the modify register 216 and
sends the packet back onto the ring to gain the lock.

If, at step 836, the state machine finds that the lock
context is not IDLE but is instead LOCKED, at step
846, the state machine attempts to receive the packet
into the receive queue 226. This state occurs when the
host has requested that the lock be released. Since the
lock can now be released by the node, the host should
be notified. If the receive queue is full, at step 850, then
the host cannot be notified. Here, at step 852, the state
machine sets the round-trip bit (R) and retransmits the
packet onto the ring to wait for space to become avail
able in the receive queue 226.

5,243,596
17

If the receive queue is not full in step 850, the state
machine releases the lock at step 854. To do this, the
state machine sets the lock context in the CAM 222 to
IDLE, changes the packet type to WAKEUP using the
modify register 216 and notifies the host that the lock
has been released by receiving the packet into the re
ceive queue 226. By passing the WAKEUP TOKEN
packet onto the ring, at step 856, the state machine
awakens another node that may be have been waiting
(i.e. LC = SLEEPING) for the lock to be released. The
packet is deleted at step 848 if the node is not grabbing
or releasing the lock; this is an error condition and
should not occur in the normal operation of the net
work.
When, at step 834, the SOURCE LA of the LOCK

TOKEN packet is not the loop address of the node, the
state machine checks, at step 840, the lock context in the
CAM 222 to determine if this node is also interested in
the lock (i.e. if LC=PENDING). If so, at step 844, the
state machine changes the packet type to MODIFIED
LOCK TOKEN and transmits the packet back onto the
ring to notify the source node that this node is interested
in the lock. If, at step 840, the node is not interested in
the lock, the state machine simply transmits the packet
to the next node in step 842.

FIG. 8c illustrates the operation of the HANDLE
MODIFIED LOCK TOKEN state machine, which
controls the node when a MODIFIED LOCK
TOKEN packet is received. If, at step 858, the
SOURCE LA of the received packet matches MYLA,
then this node generated the LOCK TOKEN packet
which became a MODIFIED LOCK TOKEN packet.
In this instance, a node lock context of IDLE, at step
862, indicates that this node along with at least one
other node is interested in the gaining the lock. At step
874, the state machine changes the packet type back to
LOCK TOKEN and retransmits the packet back onto
the ring. The state machine then transmits this packet
back onto the ring, waiting to become the only node
interested in procuring the lock.

If, at step 862, the lock context at the node is not
IDLE but is, at step 864, LOCKED, the state machine
is attempting to release the lock. Here, the host should
be notified that the lock has been successfully released.
Since a MODIFIED LOCK TOKEN packet was re
ceived, there must be another node interested in procur
ing the lock. When the receive queue is full at step 868,
the state machine cannot notify the host. In this in
stance, the state machine, at step 870, sets the packet
round-trip bit (R) and transmits the packet back onto
the ring to allow time for space to become available in
the receive queue.
At step 872, the receive queue is not full so the lock

can be released. The state machine, at this step, sets the
lock context in the CAM 222 to IDLE and changes the
packet type to a WAKEUP TOKEN packet using the
modify register 216. The state machine transmits the
packet to the host through the receive queue 222 as
notification of the release. In addition, the state machine
passes the packet on the ring through the pass through
FIFO 228 and output state machine 230 to notify any
node for which the lock context is SLEEPING, if there
is such a node, that the lock has been released. At step
866, the state machine deletes the packet if the lock
context indicates no attempt at a grab or release of the
lock. This is a condition that should not occur in normal
operation of the network.

10

5

20

25

30

35

45

50

55

65

18
Should the SOURCE LA of the packet not match

MY LA at step 858, the packet is simply passed on at
step 860. Even if the node is interested in gaining the
lock, another node already changed the packet type to
show interest in the lock.
The flow-chart diagram in FIG. 8d illustrates the

operation of the HANDLE LOCK REQUEST state
machine, which controls the node when a LOCK RE
QUEST packet is received. If, in step 876, the destina
tion loop address (DEST LA) of the packet matches
MYLA, then this node is trying to grab the lock. Since
the packet returned unmodified, no other node has
grabbed the lock, is sleeping, waiting to procure the
lock, or is interested in procuring the lock and has
higher priority. In this instance, at step 884, the state
machine attempts to grab the lock. The flow-chart in
FIG. 8g, described below, diagrams the grab lock oper
ation.
When, at step 876, the node did not originally trans

mit the received packet, the state machine, at step 878,
determines if the packet should be modified based on
the lock context. Step 882 modifies the packet if the
lock is already allocated (lock context is LOCKED),
the node is waiting for another node to release the lock
(lock context is SLEEPING), or the node is a higher
priority and is waiting for return of a LOCK TOKEN
packet that it generated (lock context is PENDING and
higher priority). In all cases, the state machine transmits
the packet on the ring at step 880. In the exemplary
embodiment of the invention, node priority is arbitrarily
assigned based on by the node loop address. The higher
the node loop address, the higher the priority. It is
contemplated that other priority schemes may be used.
FIG. 8e diagrams the node operation upon receipt of

a MODIFIED LOCK REQUEST packet from the
ring. This flow-chart diagram illustrates the operation
of the HANDLE MODIFIED LOCK REQUEST
state machine. If, at step 886, the SOURCE LA of the
packet is MYLA, then this node originally transmitted
the packet as a LOCK REQUEST packet. In this in
stance, another node modified the packet since this
node was not entitled to the lock at this time. This oper
ation is explained above at step 878 of FIG. 8d. Here, at
step 890, the state machine changes the lock context to
SLEEPING and deletes the packet. The node lock
context stays SLEEPING until a WAKEUP TOKEN
packet is received from the ring.

If, at step 886, the node did not originally transmit the
LOCK REQUEST packet, the packet is simply passed
on the ring. The packet is already modified so the state
machine has no need to check node lock context and
possibly modify the packet.
FIG. 8f concerns the HANDLE WAKEUP

TOKEN state machine which controls the steps taken
by the node when a WAKEUP TOKEN packet is re
ceived from the ring. If, at step 892, the lock context of
the node is SLEEPING, the state machine attempts to
grab the lock by invoking the GRAB LOCK state ma
chine at step 8000. The GRAB LOCK state machine is
described below with respect to FIG. 8g. Otherwise, at
step 894, if the SOURCE LA of the packet matches MY
LA, then this node originally transmitted the
WAKEUP TOKEN packet. In this instance, the state
machine deletes the packet at step 898 since no other
node had a lock context of SLEEPING for the lock. If,
at step 894, the node did not originally transmit the
packet, the packet is passed onto the ring.

5,243,596
19

FIG. 8g illustrates the GRAB LOCK state machine.
Here, the lock is available since an appropriate packet
has been received, but the host has not been notified. If,
at step 8002, the receive queue is not full, the state ma
chine, at step 8004, changes the lock context to
LOCKED, receives the packet, to notify the host, and
deletes the packet. Under the exemplary scheme, the
host assumes exclusive use of the resource controlled by
the lock.

Alternately, if, at step 8006, the receive queue is full,
the state machine does not grab the lock, since its host
is unable to receive a message indicating that the lock
has been procured. In this instance, the state machine
changes the lock context to SLEEPING, at step 8006.
In step 8008, the state machine changes the packet type
to a WAKEUPTOKEN packet, sets the SOURCE LA
and DEST LA to MY LA and sets the round-trip bit
(R). The state machine then sends the changed packet at
step 8010 thereby giving other SLEEPING nodes an
opportunity to procure the lock, or giving this node
time to empty at least one packet from its receive queue.
The resource locking scheme described above with

reference to FIGS. 8a through 8g as being implemented
in hardware on a ring network can be implemented in
software, without specialized hardware, on other physi
cal types of networks. In addition, it is contemplated
that the scheme can protect many contentious resources
on a single network such as a database, a non. spooling
printer and a plotter.

In this alternative embodiment, the scheme can be
embedded in an application program or integrated into
a custom transport protocol layer for the network. In
the application program embodiment, the program exe
cutes with a reliable transport protocol (e.g. transmis
sion control protocol/internet protocol (TCP/IP)). In
the custom transport protocol embodiment, the exem
plary resource locking scheme is fully integrated into
the transport protocol layer of the network.
The custom transport protocol embodiment may be

more efficient because it combines all of the application
program functions and the transport protocol functions
into a single transport protocol. It also provides the
easiest method for integrating sophisticated error re
porting functions into the network. Note that the fol
lowing discussion describes the application program
embodiment, but all of the described functions can be
integrated into the custom transport protocol embodi
nent.

In the contemplated alternative embodiment, the
reliable transport protocol ensures that messages will
not be lost, duplicated or received out of order while
the application program provides queuing of incoming
messages so that the order of the messages is preserved.
The application program on each node sends messages
to a pre-defined downstream node and receives mes
sages from a pre-defined upstream node. Once all the
participating nodes have made these predetermined
connections, they form a unidirectional logical loop on
the network. In this embodiment of the invention, each
node participating in the scheme runs the application
program. Non. participating nodes never attempt to
access the contentious resource.
The exemplary embodiment represents all five re

source locking packet types in a single LOCKING
MESSAGE. LOCK TOKEN, MODIFIED LOCK
TOKEN, LOCK REQUEST, MODIFIED LOCK
REQUEST and WAKEUP are indicated in a type field
in the LOCKING MESSAGE. A source address field

10

15

20

25

30

35

45

SO

55

65

20
in the LOCKING MESSAGE provides a method for
the node to determine which node originated the mes
sage. In addition, the LOCKING MESSAGE provides
a resource identifier field (i.e. LOCK ID) to use the
exemplary scheme when the system contains multiple
contentious resources. In this case, each resource in the
network is assigned a unique resource identifier value.

It is contemplated that the alternative embodiment
resolves simultaneous locking requests with an agreed
upon priority algorithm. Under this scheme, a unique
priority value is assigned to each node in the system.
The priority value can be a network address, such as a
partial internet protocol (IP) address, or a network
hardware address, such as an Ethernet address. The
agreed upon algorithm can be as simple as giving prior
ity to a higher address value over a lower value.

In this alternative embodiment, the functions per
formed by the node state machines are implemented in
the application programs running at the participating
nodes of the alternative network. Each application pro
gram maintains a lock context (LC) for each defined
resource identifier. All of the previously described lock
contexts (i.e. IDLE, LOCKED, PENDING and
SLEEPING) found in the CAM 222 are implemented
in the application program of this embodiment.

In this alternative embodiment, a process that needs a
contentious resource requests a lock from the applica
tion program and waits for the application program to
indicate that the lock has been procured. Once the pro
cess has been notified, it has exclusive use of the re
source. No other process may access the resource until
the lock is released. After the process has completed use
of the resource, it frees the lock by notifying the appli
cation program.

It is contemplated that the software resource locking
scheme can be integrated directly into the software
process managing the contentious resource (i.e. a print
ing process). In this way, the managing process can
limit the use of the resource, detect errors and provide
error recovery in addition to the exemplary locking
scheme.

This alternative embodiment can be modified to en
sure proper initialization of all nodes by adding an INIT
TOKEN message. The INIT TOKEN message is trans
mitted by a node after the node connections to the pre
defined upstream and downstream node have been es
tablished. These logical connections are established by
operator intervention, by executing a dedicated set-up
routine or through the underlying physical network. In
any case, the node begins the exemplary initialization
scheme by setting the initialization context to PEND
ING and transmitting the INIT TOKEN message onto
the network.
When a node receives the INIT TOKEN message, it

determines if it is the source of the message. If so, the
node deletes the message and sets the initialization con
text to IDLE to indicate that all nodes in the logical
loop have completed initialization. If the node did not
originate the INIT TOKEN message, the node attempts
to transmit the message to the next predefined down
stream node. When a node cannot transmit a message,
perhaps due to a missing connection, the it simply de
letes the message.

In this alternative embodiment, the originating node
of the INIT TOKEN message allows time for the mes
sage to be returned. If the message does not return
within the allotted time, another node may have deleted

5,243,596
21

the message. In this instance, the originating node re
transmits the INIT TOKEN message onto the network.

It is possible under the exemplary scheme that several
INIT TOKEN messages from one node may be on the
network at the same time, the multiple message presents
no problem since a node considers initialization com
plete as soon as one message returns (initialization con
text=IDLE). After this point, a node that receives
another INIT TOKEN simply deletes the message from
the network.
Once the logical ring configuration is established, the

locking scheme is implemented as set forth above with
reference to FIGS. 8a through 8g, where each of the
state machines are implemented as programmed func
tions in the custom transport protocol.
The contemplated alternative embodiment can be

modified in yet another way. This modification pro
vides a method for nodes to be added and removed from
the logical loop network after the system has been ini
tialized. The scheme adds a RECONFIG TOKEN
message to notify a node of a change in the upstream or
downstream node.

In this alternative embodiment, a node that has no
locks allocated may remove itself from the network by
transmitting a RECONFIG TOKEN message. The
node stores the loop address of the downstream node in
the RECONFIG TOKEN message and sends the mes
sage to the upstream node. Under the exemplary
scheme, the downstream node becomes the new down
stream node of the node that receives the RECONFIG
TOKEN message.
When the upstream node receives the message, it

disconnects the connection to the downstream node
that sent the RECONFIG TOKEN message. A logical
connection is modified, that is connected or discon
nected, by operator intervention or through the under
lying physical network. After the disconnect, the up
stream node attempts to connect to the node indicated
in the RECONFIG TOKEN message.

During this time, the node leaving the network fin
ishes processing all messages in its message queue and
disconnects from the logical ring. It is only after the
leaving node disconnects, that the upstream node is able
to connect to the node indicated in the RECONFIG
TOKEN message. After the connection is made, the
network logical loop reconfiguration is again complete.
The upstream node deletes the RECONFIG TOKEN
message and sends all future messages to its new down
stream node.

In this alternative embodiment, a node may be added
to the network by using the RECONFIG TOKEN
message as well. Under the exemplary scheme, the node
which is upstream of the node to be added disconnects
from its downstream node. Next, the upstream node
connects to the node to be added so that the added node
is now the downstream node. At this point, the up
stream node stores the loop address of the old down
stream node in the RECONFIG TOKEN message and
sends the message to the new node.
When the new node receives the RECONFIG

TOKEN message, it attempts to connect to the node
indicated in the message. After this connection is made,
the logical loop reconfiguration is complete with the
new node added to the network. The new node then
deletes the RECONFIG TOKEN message.

It is also contemplated that a resource lock could be
used to control the orderly addition and removal of
nodes using the RECONFIG TOKEN message scheme

10

15

20

25

30

35

45

50

55

65

22
described above. The lock provides a method to ensure
that multiple changes in the network logical loop con
figuration do not occur at the same time. It is contem
plated that the lock could be grabbed by a node, using
the exemplary resource locking scheme, before the
reconfiguration process begins. After reconfiguration is
completed, the node would then release the lock.

It is further contemplated that reconfiguration of the
network can be facilitated through the underlying phys
ical network. The scheme uses broadcast messages
available on many networks to announce the nodes that
are part of the network logical loop. The new node to
be added to the logical loop uses the broadcast message
from the first responding node as its upstream node.
Using the RECONFIG TOKEN message scheme de
scribed above, the new node is inserted in the logical
loop after the first responding node.
FIGS. 9a through 9j concern a multicasting system

which uses the embodiment of the invention described
above with reference to FIGS. 1-7b. FIG. 9a is a flow
chart which illustrates the normal control flow in
volved in transmitting a multicast message using the
exemplary multicast system. The transmission process
begins at step 900 when the host requests that a mul
ticast message be sent. If, at step 900, the entire message
can be transmitted in a single packet, the node, at step
902, transmits the MULTICAST SINGLE packet re
quest from the host without using the exemplary buffer
lock scheme described below. In this instance, at step
904, when the originating node receives its own MUL
TICAST SINGLE packet, the multicast message trans
mission has been completed.
When the message, at step 900, cannot be contained in

a single packet, the host breaks the message to fit into
one or more MULTICAST BUFFER packets and one
MULTICAST END OF BLOCK packet. In this case,
the host first transmits, at step 906, a MULTICAST
BUFFERLOCK packet to cause the other nodes in the
multicast group to pre-allocate a buffer to receive the
message. This is a short packet which is sent by the host
onto the loop via the transmit queue 232 and output
state machine 230 of the node. In response to this
packet, the other nodes in the multicast group (i.e. those
having the SOCKET ID of the multicast buffer socket
in their CAM's) allocate a buffer to receive the message
and then pass the MULTICAST BUFFER LOCK
packet back onto the ring. Once the MULTICAST
BUFFER LOCK packet returns on the ring to the
originating node, at step 908, all receiving multicast
nodes in the group have a buffer allocated for the mes
sage. That is to say, that the message has been transmit
ted and that it has been received by all members of the
multicast group.

It is contemplated that the size of the buffer will
either be established by convention among the members
of the group or encoded in the parameter field of the
packet. The node begins sending the MULTICAST
BUFFER packet at step 910. The MULTICAST
BUFFER packet is used to pass the message until the
last packet is ready to be sent at step 912. Here, at step
914, the MULTICAST END OF BLOCK packet is
sent by the node to indicate the end of the multicast
message. When the MULTICAST END OF BLOCK
packet is returned to the node unmodified, at step 916,
all multicast nodes in the group have received the mes
sage. At step 917, the host is then notified that the mes
sage has been received.

5,243,596
23

For each of the multicast packet types, there is a
corresponding REQUEST type (e.g. MULTICAST
SINGLE PACKET and REQUEST MULTICAST
SINGLE PACKET). A packet is converted into its
corresponding REQUEST type if one member of the
multicast group cannot receive the packet.
FIG. 9a describes a typical flow for transmitting a

multicast message using the exemplary multicast sys
tem. FIG.9b shows the multiple state machines used to
implement the exemplary scheme. The FIGURE shows
the state machines which are activated by the control
circuits upon receipt of each type of multicast packet.
FIGS. 9c through 9j together with the following discus
sion, further outline the processing of the state machines
in FIG. 9b.
The flow-chart diagram in FIG. 9c illustrates the

node operation upon receipt of a MULTICAST
BUFFER LOCK packet from the ring. If, at step 954,
the SOURCE LA of the packet is MY LA, then this
node originally transmitted the packet. In this instance,
all nodes in the group have allocated a buffer in antici
pation of a multiple packet message, but the host has not
been notified that the packets can now be sent. If, at step
968, the receive queue 226, shown in FIG. 2, is not full,
the host can be notified, at step 970, by receiving the
packet.

Alternatively, if the receive queue is full at step 968,
the node allows time for space to become available in
the queue by sending the packet around the ring again.
In this instance, at step 972, the HANDLE MUL
TCAST BUFFERLOCK state machine uses the mod
ify register 216 to change the packet type to REQUEST

i MULTICAST BUFFER LOCK, adjusts the desti
nation loop address (DESTLA) to MYLA and sets the
round-trip bit (R), also using the modify register 216. In
step 974, the state machine sends the packet onto the
ring through the pass-through FIFO 228.

If this node did not originally transmit the MUL
TICAST BUFFERLOCK packet at step 954, the state
machine, at step 956, determines if it is to receive the
ensuing multicast message. Here, at step 956, the state
machine checks the CAM 222 to determine if the
SOCKET ID in the packet matches a GROUP ID in
the CAM 222 (CAMHIT) and if the CAM entry indi
cates that this node is in the group (IN GROUP). If not,
the packet is passed onto the ring at step 966 since the
node is not included in the multicast.

If the node is included in the multicast group, at step
956, the state machine attempts to allocate the multicast
buffer. At step 958, the state machine determines if the
buffer is both present and available for use (BUFFER
PRES. and AVAIL). If the test at step 958 is satisfied,
the state machine can allocate the buffer for the upcom
ing MULTICAST BUFFER packet by simply marking
the buffer as being no longer available and passing the
packet onto the ring at step 960.
When the buffer is unavailable at step 958, the state

machine attempts to notify the host of the condition.
This gives the host an opportunity to free the buffer or
to allocate a new buffer. The host is notified, at step 964
by receiving the packet, if, at step 962, the receive
queue is not full. In the event that the receive queue is
full, at step 962, the node sends the packet around the
ring to allow time for space to become available in the
queue or for the buffer to become available. By chang
ing the packet type to REQUEST MULTICAST
BUFFER LOCK, replacing the destination loop ad
dress (DEST LA) with MYLA, and setting the round

10

15

20

25

30

35

45

50

55

65

24
trip bit (R), the node, at step 972, ensures that the packet
will return from the ring at a later time. At step 974, the
packet is retransmitted onto the ring.

In multicast transactions, the round-trip bit provides
redundant information since it is only set for RE
QUEST packet types. Unless it is to receive the packet,
a node should retransmit any packet having a RE
QUEST type irrespective of the state of its round trip
bit. In this embodiment of the invention, however, the
round-trip bit is used to simplify the various state ma
chines. A single shared test to determine whether a
packet should be deleted or transmitted back onto the
network may be more efficiently implemented than a
number of individual tests which cannot be shared.
FIG. 9dconcerns the steps taken by a node upon

receipt of a REQUEST MULTICAST BUFFER
LOCK packet (i.e. operating under control of the
HANDLE REQUEST MULTICAST BUFFER
LOCK state machine). When the SOURCE LA of the
packet matches MYLA at step 976 then this node origi
nally transmitted the MULTICAST BUFFER LOCK
packet, but the node was unable to notify the host ear
lier that the packet had returned. If, at step 992, the
receive queue is not full, the host can now be notified.
The state machine changes the packet type back to
MULTICAST BUFFER LOCK and receives the
packet for the host.
A full receive queue, at step 992, causes the state

machine to retransmit the packet back onto the ring to
wait for space to become available in the queue. At step
996, the state machine sets the round-trip bit (R) and
retransmits the packet.
When, at step 976, the node did not originally trans

mit the packet, the state machine, at step 978, checks the
destination loop address (DESTLA) to determine if the
node transmitted the packet to itself. In this instance,
the node was either waiting for the multicast buffer to
become usable or waiting for the receive queue to have
room to receive the message for the host. At step 982,
the state machine verifies that the packet is directed to
this node (CAMHIT and IN GROUP) and checks that
the multicast buffer is usable (BUFFER PRESENT and
AVAILABLE). If all conditions are met at step 982,
the state machine, at step 984, changes the buffer flag to
unavailable, changes the packet type back to MUL
TICAST BUFFER LOCK and retransmits the packet
back onto the ring.
At step 986, the state machine could not allocate the

multicast buffer. Here, the state machine notifies the
host to allow the host to free or allocate a buffer. If, at
step 986, the receive queue is full, the state machine
cannot notify the host. The state machine, at step 990,
transmits the packet back onto the ring to wait for the
host to free the buffer space by itself or for space to
become available in the receive queue by passing the
packet. If the host can receive the packet at step 986, the
state machine changes the packet type back to MUL
TICAST BUFFER LOCK and receives the packet at
step 988.

FIG. 9e illustrates the opera ion of the node when a
MULTICAST BUFFER packet is received, that is to
say, under the control of the REQUEST MUL
TICAST BUFFER state machine. When, at step 998,
the SOURCE LA of the packet matches MY LA, this
node generated the packet, so this packet indicates that
all nodes in the multicast have received the packet. At
step 9010, the state machine invokes the HANDLED
OWNERSHIP operation to delete the packet unless it

5,243,596
25

is an owned packet which is needed. The HANDLED
OWNERSHIP function is described above with refer
ence to FIG. 6b.

If, at step 998, the node did not originate the packet,
the state machine determines, at step 9000, if it is to
receive the packet and if it is ready to do so. When there
is a CAM HIT (i.e. SOCKET ID = GROUP ID) and
the node is IN GROUP, the node is a member of the
multicast group. Provided the node received the earlier
MULTICAST BUFFER LOCK packet, the state ma
chine should find the multicast buffer present, but not
available at step 9000.
The state machine, at step 9002, transmits the packet

back onto the ring if any condition in step 9000 is not
met. Alternately, if all conditions at step 9000 are met,
the state machine attempts to receive the multicast
packet for the host. In this instance, the state machine
checks the receive queue at step 9004. If the receive
queue is not full, the state machine, at step 9008, both
receives the MULTICAST BUFFER packet and
passes it back onto the network. Should the queue be
full at step 9004, the state machine transmits the packet
back onto the ring to allow time for space to become
available in the queue. Here, at step 9006, the state
changes the packet type to REQUEST MULTICAST
BUFFER, sets the round-trip bit (R), adjusts the desti
nation loop address (DESTLA) to MYLA and retrans
mits the packet back onto the ring.

FIG.9fillustrates the operation of the node when a
REQUEST MULTICAST BUFFER packet is re
ceived. If, at step 9012, the SOURCE LA in the packet
is MY LA, the node originated the MULTICAST
BUFFER packet. In this instance, the HANDLE RE
QUEST MULTICAST BUFFER state machine
checks the round-trip bit (R) of the packet at step 9024.
A set round-trip bit indicates that the packet was sent
around the ring by a node which was designated to
receive the multicast packet but, perhaps due to a full
receive queue, the node could not receive the packet.
Here, at step 9026, the state machine resets the round
trip bit (R) and invokes the HANDLEND OWNER
SHIP operation described above with reference to FIG.
6a.

If the round-trip bit, at step 9024, is not set, the state
machine removes the packet since it is an error condi
tion. To remove the packet, the state machine invokes
the HANDLE DOWNERSHIP operation at step
9028.
When the node did not originate the REQUEST

MULTICAST BUFFER packet (SOURCE LA is not
MY LA), at step 9012, the state machine examines the
destination loop address to determine if the node sent
the packet to itself (DEST LA is MY LA). In this in
stance, the node could not receive an earlier MUL
TICAST BUFFER packet due to a full receive queue.
If, at step 9018, the receive queue is no longer full, the
state machine, at step 9020, changes the packet type
back to MULTICAST BUFFER, receives the packet
for the host and transmits the packet onto the ring to be
received by the next node.
When, at step 9018, the receive queue 226 is still full,

the node allows more time for space to become avail
able in the queue by passing the packet around the ring
once again. At step 9022, the node sets the round-trip bit
and retransmits the packet back onto the network.
Nodes that receive packets having a destination loop

address (DEST LA) which does not match MYLA, at
step 9014, simply retransmit the packets back onto the

O

15

20

25

30

35

45

50

55

65

26
network at step 9016. Here, another node is waiting
until its receive queue is no longer full so that it can
receive the packet.
The flow-chart diagram in FIG. 9g illustrates the

HANDLE MULTICAST SINGLE state machine,
that is to say, the operation of the node when a MUL
TICAST SINGLE packet is received. When the
SOURCE LA of the packet matches MY LA, at step
9030, then this node originally transmitted the multicast
packet and all nodes in the multicast have received the
packet. At step 9032, the state machine invokes the
HANDLEDOWNERSHIP operation, as illustrated in
FIG. 6b, to handle removal of the packet.

If the node was not the originator of the MUL
TICAST SINGLE packet at step 9030, the state ma
chine determines if it is a member of the multicast group
at step 9034. When the CAM 222 of the node has an
entry for this group (CAMHIT) and the entry indicates
that the node is a member of the group (IN GROUP),
the state machine attempts to receive the packet for its
host. Otherwise, at step 9046, the state machine retrans
mits the packet back onto the ring since this node is not
a member of the multicast group,

If the node is to receive the MULTICAST SINGLE
packet, at step 9034, the state machine checks the re
ceive queue for space at step 9036. If the queue is not
full, the state machine receives the packet and retrans
mits it back onto the ring at step 9044. Should the re
ceive queue be full at step 9036, the state machine, at
step 9038, determines if the packet is deletable. Deleta
ble packets are either not critical, expendable or are
time sensitive because they contain data which becomes
obsolete very quickly. In this embodiment of the inven
tion, deletable packets are simply passed back onto the
ring if they cannot be received immediately by the host.
Exemplary deletable packets may contain speech or
video information. This type of information is suffi
ciently redundant that it is not significantly degraded by
an occasional missing packet. At step 9040, the state
machine retransmits the deletable packet without re
ceiving it.
Any non-deletable packet received by the state ma

chine, at step 9038, is changed to a REQUEST MUL
TICAST SINGLE packet at step 9042 and passed
around the ring to wait for the receive queue of the
node to have room for the packet.
FIG. 9h diagrams the node operation when a RE

QUEST MULTICAST SINGLE packet is received
from the ring. If the SOURCE LA matches MYLA, at
step 9048, the node generated the original MUL
TICAST SINGLE packet. In this instance, the state
machine checks the round trip bit (R). If the round-trip
bit is set at step 9060, another node passed the packet to
allow a delay until its host could receive the packet.
Here, the state machine resets the round-trip bit (R), at
step 9062, and invokes the HANDLE ND OWNER
SHIP operation, at step 9064, to transmit the packet
back onto the ring.
When the round-trip bit is not set at step 9060, the

state machine is notified that the packet has seen by all
nodes in the multicast group. The state machine, at step
9066, invokes the HANDLE DOWNERSHIP opera
tion of FIG. 6b to handleremoval of the packet.

If the SOURCE LA does not match MY LA at step
9048, the state machine, at step 9050, determines if this
packet is to be received for the host. When DEST LA
is MY LA, the node was to receive the packet earlier,
but its receive queue was full. At step 9054, the state

5,243,596
27

machine checks the receive queue. If the receive queue
10 is still full, the state machine, at step 9058, sets the
round-trip bit and retransmits the packet around the
ring.

Alternately, if the receive queue is no longer full, the
state machine can receive the packet for the host. At
step 9056, the state machine resets the round-trip bit
(R), changes the packet back to a MULTICAST SIN
GLE packet, and both receives the packet for the host
and transmits the packet back onto the ring.
FIG. 9i concerns the steps taken by a node when a

MULTICAST END OF BLOCK packet is received.
When the SOURCE LA is MYLA, the node sent the
original MULTICAST END OF BLOCK packet. In
this instance, the HANDLE MULTICAST END OF
BLOCK state machine attempts to receive the packet to
notify the host that all multicast nodes have received
the packet. At step 9082, the state machine checks that
the receive queue for the host is not full. If the queue is
not full, the state machine sends the packet to the host
by receiving the packet, and the state machine performs
the HANDLE D OWNERSHIP operation at step
9088.
When the receive queue is full, at step 9082, the state

machine allows time for space to become available in
the queue by sending the packet back around the ring.
Here, at step 9084, the state machine ensures that the
packet will return by setting the round trip bit (R),
changing the packet type to REQUEST MULTICAST
END OF BLOCK and replacing DEST LA with MY
LA. The state machine invokes the HANDLE ND
OWNERSHIP operation at step 9086 to retransmit the
packet onto the ring.
When the node did not originate the MULTICAST

END OF BLOCK packet at step 9068, the state ma
chine determines if it is included in the multicast group.
If, at step 9070, the state machine has a CAM HIT
which indicates that the node is INGROUP, the packet
is directed to this node. In this instance, the multicast
buffer should have been reserved (BUFFER PRES
ENT but NOT AVAIL) by an earlier MULTICAST
BUFFER LOCK packet. At step 9072, the state ma
chine transmits the packet back onto the ring if any of
the conditions of step 9070 are not met.
When the conditions of step 9070 are met, the state

machine checks the receive queue, at step 9074, since
the packet should be received by the host. If the receive
queue is full, the state machine allows a delay for the
host to make space available in the queue by sending the
packet around the ring as a REQUEST MULTICAST
END OF BLOCK packet. In this instance, at step 9076,
the state machine, using the modify register 216, adjusts
the packet to ensure that it will return. The state ma
chine transmits the packet onto the ring at step 9078. If
the packet can be received by the host at step 9074, the
state machine at step 9080 receives the packet and
passes it on the ring.
FIG. 9j illustrates the node operation when a RE

QUEST MULTICAST END OF BLOCK packet is
received. If the destination loop address (DEST LA) is
MY LA, the node sent this packet around the ring to
delay receipt of the packet until the receive queue is no
longer full. At step 9094, the HANDLE REQUEST
MULTICAST END OF BLOCK state machine checks
the receive queue status.

If the receive queue is not full, at step 9096, the state
machine changes the packet type back to MUL
TICAST END OF BLOCK and receives the packet for

10

5

20

25

30

35

45

50

55

65

28
the host. At step 9098, the state machine checks the
SOURCE LA to determine if the packet should be
removed or passed onto the ring. If, at step 9098, the
SOURCE LA matches MY LA, the state machine, at
step 9100, deletes the packet since this node sent the
packet around the ring to wait for space in the receive
queue.
When the SOURCE LA does not match MY LA at

step 9098, the state machine retransmits the MUL
TICAST END OF BLOCK packet onto the ring to be
received by the next node. The state machine transmits
the packet back onto the network by performing the
HANDLEND OWNERSHIP operation as described
above with reference to FIG. 6a.

If, at step 9094, the receive queue is still full, the state
machine waits again for the receive queue to have room
by sending the REQUEST MULTICAST END OF
BLOCK packet around the ring. At step 9102, the state
machine transmits the packet onto the network by per
forming the HANDLEND OWNERSHIP operation.
While the invention has been described in terms of

exemplary embodiments, it is contemplated that it may
be practiced as outlined above within the spirit and
scope of the appended claims.
The invention claimed is:
1. A network interface processor suitable for use in

coupling a host processor to a packet switched data
communications network which conveys packets hav
ing a type field, a source network address field and an
identifier field, wherein the network interface processor
has a unique address, the network interface processor
comprising:
means for receiving a packet from the network;
memory means for holding a plurality of data values

representing values which may be held in the iden
tifier field of the packet;

means for comparing the source address field of the
received packet to the address of the network inter
face processor to generate a packet source control
value;

means for determining if the identifier field of the
received packet matches one of the values held in
the memory means to generate an in-memory con
trol value; and

packet forwarding means, responsive to the type
field, to the packet source control value and to the
in-memory control value, for conditionally chang
ing the type field of the received packet and trans
mitting the packet onto the network.

2. A network interface processor according to claim
1, further comprising:
means for receiving a message from the host proces

sor containing a data value to be entered in the
memory means; and

means, responsive to the message, for entering the
data value in the memory means.

3. A network interface processor according to claim
2, further comprising receive queue means, responsive
to the type field, and to the packet source control value
and the in-memory control value for conditionally send
ing the received packet to the host processor.

4. A network interface processor according to claim
3, wherein the network interface processor further
comprises packet deleting means for conditionally re
moving the received packet from the network respon
sive to the packet source control value.

5. A network interface processor according to claim
4, wherein the message received from the host proces

5,243,596
29

Sor is a request to enter a multicast group identifier into
the memory means and the data value identifies the
multicast group.

6. A network interface processor according to claim
5, further comprising:
means for determining if the receive queue means can

receive a packet to generate a host receive control
value;

means for determining if, responsive to the in-mem
ory control value, the network interface system is
in the multicast group to receive the packet to
generate an in-group control value;

wherein the receive queue means includes means
responsive to the type field, to the host receive
control value and to the in-group control value for
conditionally transmitting the received packet to
the host processor.

7. A network interface processor according to claim
6, further comprising means for conditioning the packet
forwarding means, responsive to the type field of the
received packet, the host receive control value and the
in-group control value, to conditionally transmit the
received packet back onto the network.

8. A network interface processor according to claim
2, further comprising packet generation means, respon
sive to the message received from the host processor,
for generating a packet containing the data value and
for transmitting the generated packet onto the network.

9. A network interface processor according to claim
8, wherein:

the message received from the host processor is a
request to procure a lock and the data value identi
fies the lock; and

the packet generation means inserts the unique ad
dress of the network interface processor into the
address field and the data value identifying the lock
into the identifier field of the generated packet.

10. A network interface processor according to claim
9, wherein the packet forwarding means changes the
type field of the received packet and transmits the
packet back onto the network if the packet source con
trol value indicates that the address field of the packet
matches the address of the network processor and the
in-memory control value indicates that the value in the
identifier field of the received packet exists in the mem
ory means.

11. A network interface processor according to claim
8, wherein:

the message received from the host processor is a
request to send a multiple packet message to mem
bers of the multicast group and the data value iden
tifies the group;

the packet generation means, responsive to the mul
ticast packet message request, inserts the group
identifier into the identifier field and a buffer pre.
allocation packet type value into the type field of
the generated packet.

12. A network interface processor according to claim
11, wherein the value in the type field of the received
packet includes the buffer pre-allocation packet type
value, further comprising:
means for determining, responsive to the packet

source, in-memory and in-group control values, if
the host processor has a buffer available for the
multiple packet message to generate a buffer avail
able control value; and

means for allocating the buffer responsive to the
buffer available control value;

5

O

15

20

25

30

35

45

50

55

60

65

30
wherein the packet forwarding means is responsive to

the buffer available control value for conditionally
transmitting the received packet back onto the
network.

13. A network interface processor according to claim
12, further comprising receive queue means responsive
to the packet source control value, the in-memory con
trol value, the in-group control value, the buffer avail
able control value and the host receive control value for
conditionally transmitting the received packet to the
host.

14. A network interface processor according to claim
11, wherein the type field of the received packet in
cludes the buffer pre-allocation packet type, further
comprising receive queue means responsive to the
packet source control value and the host receive con
trol value for conditionally transmitting the received
packet to the host.

15. A method of controlling congestion in a packet
switched communication system which includes a plu
rality of host computers, each coupled to a respective
network interface processor, wherein the network in
terface processors are interconnected via a network and
each network interface processor includes a receive
buffer, the method comprising the steps of:

receiving packets from the network at one of the
network interface processors, which packets are
addressed to the one network interface processor; 1
storing the received packets in the receive buffer;

detecting when the receive buffer contains a number
of packets greater than a predetermined high
threshold value to produce a high status signal; and

responsive to the high status signal, transmitting a
stop packet onto the network to cause all of the
other network interface processors to suspend
transmission of packets addressed to the one net
work interface processor.

16. A method according to claim 15, further includ
ing the steps of: -

detecting when the receive buffer contains a number
of packets less than a predetermined low threshold
value, wherein the low threshold value is less than
the high threshold value, to produce a low status
signal; and

responsive to the low status signal, transmitting a
start packet onto the network to cause all of the
other network interface processors to resume any
pending packets addressed to the one network
interface processor.

17. A method according to claim 16, wherein the
network interface processor further includes a memory
having a storage cell for each of the other ones of the
network interface processors, the method further com
prising the steps of:

storing a first status value in the memory element
associated with one of the other network interface
processors responsive to receiving the stop packet
transmitted by the one other network interface
processor;

storing a second status value in the memory element
associated with the one other network interface
processor responsive to receiving the start packet
transmitted by the one other network interface
processor; and

checking the memory element associated with the
one other network interface processor prior to
sending a packet to the one other network interface

5,243,596
31

processor and sending the packet only if the mem
ory element contains the second status value.

18. A method of controlling congestion in a... packet
switched data communications system which includes a
plurality of host computers, each coupled to a respec- 5
tive network interface processor, wherein the network
interface processors are interconnected via a network
for transferring packets of data among the host comput
ers, each network interface processor includes a trans
mit queue which holds packets to be transmitted onto
the network, a transfer packet buffer which holds a
single packet received from the network, that is to be
transmitted onto the network and an auxiliary transfer
packet buffer, and each packet has an owned packet
field, the method comprising the steps of:

a) detecting, at one of the network interface proces
sors, that at least one of the transfer buffer and the
transmit queue of the one network interface pro
cessor is full for a predefined amount of time to
generate an ownership control value;

b) conditionally storing a packet received from the
network to in the auxiliary transfer buffer respon
sive to the ownership control value;

c) responsive to the ownership control value, storing
a value in the owned packet field of a next packet
to be transmitted from the transmit queue to indi
cate that the packet is for exclusive use of the one
network interface processor;

d) responsive to the ownership control value, trans
mitting the next packet in the transmit queue onto
the network.

19. A method of controlling congestion in a net
worked computer system according to claim 18,
wherein the step a) includes the step of detecting that
the transfer buffer is full and that the transmit queue is
full for a predefined amount of time to produce the
ownership control value.

20. A method according to claim 19, further includ
ing the steps of:

deleting the packet from the network if the packet is
no longer needed, responsive to the ownership
control value, owned control value and packet
source control value.

21. Apparatus which controls congestion in a packet
switched communication system that includes a plural
ity of host computers, each coupled to a respective
network interface processor, wherein the network in
terface processors are interconnected via a network and
each network interface processor includes a receive
buffer, the apparatus comprising:
means for receiving packets from the network at one
of the network interface processors;

means for storing received packets addressed to the
one network interface processor in the receive
buffer;

means for detecting when the receive buffer contains
a number of packets greater than a predetermined
high threshold value to produce a high status sig
nal; and

means, responsive to the high status signal, for trans
mitting a stop packet onto the network to cause all
of the other network interface processors to sus
pend transmitting pending packets addressed to the
one network interface processor.

22. Apparatus according to claim 21, further compris
1ng:
means for detecting when the receive buffer contains
a number of packets less than a predetermined low
threshold value, wherein the low threshold value is
less than the high threshold value, to produce a low
status signal; and

O

15

20

25

30

35

45

SO

55

65

32
means, responsive to the low status signal, for trans

mitting a start packet onto the network to cause the
other network interface processors to resume
transmitting the pending packets addressed to the
one network interface processor.

23. Apparatus according to claim 22 further compris
Ing:
a memory having a respective storage cell for each of

the other ones of the network interface processors;
means for storing a first status value in the memory

element associated with the one network interface
processor responsive to receiving a stop packet
transmitted by the one network interface proces
sor;

means for storing a second status value in the memory
element associated with the one network interface
processor, responsive to receiving a start packet
transmitted by the one network interface proces
sor;

means for checking the memory element for the one
network interface processor prior to transmitting a
data packet to the one network interface processor;
and

means for transmitting the data packet only if the
memory element contains the second status value.

24. Apparatus which controls congestion in a packet
switched data communications system that includes a
plurality of host computers, each coupled to a respec
tive network interface processor, wherein the network
interface processors are interconnected via a network
for transferring packets of data among the host comput
ers, each network interface processor includes a trans
mit queue which holds at least one packet to be trans
mitted onto the network and a transfer packet buffer
which holds a single packet received from the network,
that is to be transmitted onto the network, said appara
tus being coupled to each network interface processor
and comprising:
an auxiliary transfer packet buffer for holding a fur

ther packet which is received from the network;
means for detecting that the transfer buffer has not
had available space sufficient to hold one packet
for a predefined amount of time, to generate an
ownership control value;

means, responsive to the ownership control value, for
conditionally storing a packet received from the
network into the auxiliary transfer buffer;

packet modifying means, responsive to the ownership
control value, for modifying the packet in the
transmit queue to indicate that the packet in the
transmit queue is reserved for exclusive use of the
network interface processor;

packet transmission means, responsive to the owner
ship control value, for transmitting the modified
packet onto the network.

25. Apparatus according to claim 24, wherein the
means for detecting further includes means for detect
ing that the transfer buffer is full and that the transmit
queue is full for a predefined amount of time to produce
the ownership control value.

26. Apparatus according to claim 25, further includ
ing:
means for detecting that the transfer buffer is less than

full for a further predefined amount of time to
change the ownership control value;

means, responsive to the change in the ownership
control value, for changing the value in the modi
fied packet to indicate that the modified packet is
no longer reserved for the exclusive use of the
network interface processor.

k k k sk s

UNITED STATES PATENT ANDTRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 5,243,596
DATED

INVENTOR(S) :
September 7, 1993
Port et al.

It is certified that error appears in the above-indentified patent and that said Letters Patent is hereby
Corrected as shown below:

Column 30, line 28, claim 15, please delete "1".

Column 30, line 48, claim 16, insert --sending-- before the word
"any"

Signed and Sealed this
Twenty-ninth Day of March, 1994

BRUCELEHMAN

Attesting Officer Commissioner of Patents and Trademarks

