METHOD FOR OPERATING EXECUTION
ICON OF MOBILE TERMINAL

Inventor: Sang-Won KIM, Seoul (KR)

Correspondence Address:
LEE, HONG, DEGERMAN, KANG & WAIMEY
660 S. FIGUEROA STREET, Suite 2300
LOS ANGELES, CA 90017 (US)

Assignee: LG ELECTRONICS INC.

Appl. No.: 12/624,196

Filed: Nov. 23, 2009

Foreign Application Priority Data

Publication Classification
Int. Cl.
G06F 3/048 (2006.01)

U.S. Cl. ..................... 715/765; 715/810; 715/811

ABSTRACT

Functional applications (e.g., widgets) in the form of an icon are implemented to be merged or demerged, and a method for displaying, operating, and managing the widgets in a mobile terminal is disclosed. The concept of UI-wise merging and demerging is applied to the simple widget functions to update the widget functions. Also, widgets can be effectively managed through various scenarios of widget operations. The mobile terminal including: an input unit configured to detect an external input; a display unit configured to display a plurality of widgets; and a controller configured to merge or demerge widgets or execute an integrated function based on merged widgets according to an external input.
FIG. 1

POWER SUPPLY UNIT

WIRELESS COMMUNICATION UNIT
- BROADCAST RECEIVING MODULE
- MOBILE COMMUNICATION MODULE
- WIRELESS INTERNET MODULE
- SHORT-RANGE COMMUNICATION MODULE
- LOCATION INFORMATION MODULE

MULTIMEDIA MODULE
- A/V INPUT UNIT
  - CAMERA
  - MICROPHONE
- USER INPUT UNIT
- SENSING UNIT
  - PROXIMITY SENSOR

CONTROLLER

OUTPUT UNIT
- DISPLAY UNIT
- AUDIO OUTPUT MODULE
- ALARM UNIT
- HAPTIC MODULE

INTERFACE UNIT

MEMORY
FIG. 10D

FIG. 11

START

S101 DISPLAY A PLURALITY OF ICONS RELATED TO CERTAIN FUNCTIONS ON IDLE SCREEN

S102 RECEIVE SIGNAL DESIGNATING TWO OR MORE ICONS AMONG DISPLAYED ICONS FROM USER

S103 GENERATE INTEGRATED ICON BY MERGING DESIGNATED ICONS

S104 DISPLAY GENERATED INTEGRATED ICON ON IDLE SCREEN

END
FIG. 12E

FIG. 12F

B10

B10

OR

1. CLOCK WIDGET
2. E-MAIL WIDGET
3. CALENDAR WIDGET
4. ...

WIDGET CONFIGURATION
FIG. 14

EXECUTE GAME FUNCTION OF INTEGRATED WIDGET
FIG. 15

INTERVAL OF GRID
CONTACT POINT (CP)

FIG. 16

<ONE-ROW DISPOSITION>

<ONE-COLUMN DISPOSITION>

UP/DOWN/LEFT/RIGHT CORNER POINT DISPOSITION
USER SET COORDINATES
UP/DOWN/LEFT/RIGHT END POINT DISPOSITION
FIG. 17

LOCATION DESIGNATION (COORDINATES)

LOCATION DESIGNATION (COORDINATES)

FIG. 18

SCREEN CHANGE BUTTON (B20)

GRID OUTPUT WHEN BUTTON (B20) IS TOUCHED

WHEN GRIDS APPEAR, BACKGROUND PICTURE IS PROCESSED THROUGH ALPHA BLENDING
FIG. 19

FIG. 20

POSITION OF NEWLY ADDED WIDGET CAN BE SET AT DESIRED COORDINATES

WIDGET GENERATION

HEART SHAPE SELECT

WIDGET(W) GENERATION
FIG. 23

(A) Display illustration.

(B) Display usage availability:
- Number of times: 10 times
- Available period: 5 dates

(C) Available period (number) has lapsed.

(D) Masked shape.

Colors:
- Blue
- Yellow
- Green
- Reference number (five times/week)
- Light gray
- Dark gray
FIG. 24

FIXED DATA ARRIVES

CALENDAR WIDGET

NOTE PAD WIDGET

CALENDAR WIDGET

NOTE PAD WIDGET
FIG. 25

(A)  < TILTING >

(B)  < TILTING >
FIG. 26

(A) START POINT MOTION PATH

(B) MIDNIGHT POSITION NOON POSITION
9:00 PM POSITION 3:00 PM POSITION
6:00 PM POSITION

< TIME LAPSE MOTION PATH >

RELEASE OF PRODUCT ORDER RESEARCH AND DEVELOPMENT
SECONDARY PROCESS COMPLETED PRIMARY PROCESS COMPLETED

< PROJECT LAPSE MOTION PATH >
METHOD FOR OPERATING EXECUTION ICON OF MOBILE TERMINAL

CROSS REFERENCE TO RELATED APPLICATIONS


BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to a mobile terminal and, more particularly, to a user interface (UI) of a mobile terminal.

2. Description of the Related Art

A mobile terminal is a portable device having one or more functions of voice and video communications, inputting/outputting information, storing data, or the like.

As mobile terminals have various functions besides communication, such as capturing images and video via a camera, playing music files or video, playing games, receiving broadcasts, or the like, mobile terminals are implemented in the form of comprehensive multimedia players.

Efforts are ongoing to support and increase the complicated functions of the multimedia players. Such efforts include a touch screen and a user interface (UI) allowing a user to easily and conveniently manipulate and select menus.

SUMMARY OF THE INVENTION

Accordingly, one object of the present invention is to address the above-noted and other problems.

Another object of the present invention is to provide a mobile terminal capable of merging and demerging functional applications in the form of icons.

Still another object of the present invention is to provide a mobile terminal for managing execution and displaying of functional applications in the form of icons.

To achieve these and other advantages and in accordance with the purpose of the present invention, as embodied and broadly described herein, the present invention provides in one aspect a mobile terminal including: an input unit configured to detect an external input; a display unit configured to display a plurality of widgets; and a controller configured to merge or demerge widgets or execute an integrated function based on merged widgets according to an external input.

To achieve these and other advantages and in accordance with the purpose of the present invention, as embodied and broadly described herein, the present invention provides in another aspect a method for operating a widget of a mobile terminal, including: coupling two or more widgets according to a user selection; displaying an integrated widget according to the merged widgets; and selectively executing one of functions of the integrated widget according to a user input.

Further scope of applicability of the present invention will become apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will become more fully understood from the detailed description given hereinbelow and the accompanying drawings, which are given by illustration only, and thus are not limiting of the present invention, and wherein:

FIG. 1 is a schematic block diagram of a mobile terminal implementing an embodiment of the present invention;

FIG. 2A is a front perspective view of a mobile terminal implementing an embodiment of the present invention;

FIG. 2B is a rear perspective view of a mobile terminal implementing an embodiment of the present invention;

FIGS. 3A and 3B are front views for explaining an operational state of the mobile terminal according to an exemplary embodiment of the present invention;

FIG. 4 is a conceptual view for explaining a proximity depth of a proximity sensor;

FIGS. 5A to 5D are views of display screens illustrating merged icons in the mobile terminal according to an exemplary embodiment of the present invention;

FIGS. 6A to 6C are views of display screens illustrating merging of an already combined icon with another icon and displaying the same in the mobile terminal according to an exemplary embodiment of the present invention;

FIGS. 7A to 7D are views of display screens illustrating merging of one already merged icon and another already merged icon and displaying the same in the mobile terminal according to an exemplary embodiment of the present invention;

FIGS. 8A to 8D are views of display screens illustrating merging icons in the mobile terminal according to an exemplary embodiment of the present invention;

FIGS. 9A to 9D are views of display screens illustrating storing of information related to icons in the mobile terminal according to an exemplary embodiment of the present invention;

FIGS. 10A to 10D are views of display screens illustrating transmission of information related to icons in the mobile terminal according to an exemplary embodiment of the present invention;

FIG. 11 is a flow chart illustrating the process of a user interface method of the mobile terminal according to an exemplary embodiment of the present invention;

FIGS. 12A to 12F are views of display screens illustrating merging and demerging widgets each having different themes;

FIG. 13 is an overview of a display screen illustrating an example of merging and demerging of widgets having particular themes;

FIG. 14 is views of display screens illustrating another example of merging and demerging of FIG. 13

FIG. 15 is an overview of a display screen illustrating disposition of automatically aligned widgets according to an exemplary embodiment of the present invention;

FIG. 16 is an overview of a display screen illustrating disposition of manually aligned widgets according to an exemplary embodiment of the present invention;
FIG. 17 is an overview of a display screen illustrating disposition of fixedly designated widgets according to an exemplary embodiment of the present invention;

FIG. 18 is overviews of display screens set for widget disposition;

FIG. 19 is overviews of display screens of widget disposition for transferring a particular message;

FIG. 20 is overviews of display screens illustrating locations of widgets newly added to the screen;

FIG. 21 illustrates the space between widgets;

FIG. 22 is overviews of display screens illustrating a widget management tool for a screen display;

FIGS. 23(A) to 23(D) illustrate a method for discriminating widgets based on color;

FIG. 24 illustrates is overviews of display screens illustrating a function connection between widgets;

FIGS. 25(A) and 25(B) are overviews of display screens illustrating a mass sense of widgets; and

FIGS. 26(A) and 26(B) illustrate a method for displaying widgets by using motion paths.

DETAILED DESCRIPTION OF THE INVENTION

The mobile terminal according to an exemplary embodiment of the present invention will now be described with reference to the accompanying drawings. In the following description, usage of suffixes such as ‘module’, ‘part’ or ‘unit’ used for referring to elements is given merely to facilitate explanation of the present invention, without having any significant meaning by itself.

FIG. 1 is a schematic block diagram of a mobile terminal implementing an embodiment of the present invention.

The mobile terminal described in the present invention may include mobile phones, smart phones, notebook computers, digital broadcast receivers, PDAs (Personal Digital Assistants), PMPs (Portable Multimedia Players), navigation devices, and the like. It would be understood by a person in the art that the configuration according to the embodiments of the present invention can be also applicable to the fixed types of terminals such as digital TVs, desktop computers, or the like, except for any elements especially configured for a mobile purpose.

The mobile terminal according to an embodiment of the present invention will now be described with reference to FIG. 1.

The mobile terminal 100 may include a wireless communication unit 110, an AV (Audio/Video) input unit 120, a user input unit 130, a sensing unit 140, an output unit 150, a memory 160, an interface unit 170, a controller 180, and a power supply unit 190, etc.

FIG. 1 shows the mobile terminal as having various components, but it is should be understood that implementing all of the illustrated components is not a requirement. Greater or fewer components may alternatively be implemented.

The elements of the mobile terminal will be described in detail as follows.

The wireless communication unit 110 may receive information related to an icon via a network (e.g., a mobile communication network, a broadcast network, the Internet, a short-range communication network, etc.). Also, the wireless communication unit 110 transmits data including information related to a merged icon to other terminal or to a network server. Also, the wireless communication unit 110 may transmit information related to the merged icon via a wireless Internet network or a mobile communication network.

The wireless communication unit 110 typically includes one or more components allowing radio communication between the mobile terminal 100 and a wireless communication system or a network in which the mobile terminal is located. For example, the wireless communication unit may include at least one of a broadcast receiving module 111, a mobile communication module 112, a wireless Internet module 113, a short-range communication module 114, and a location information module 115.

The broadcast receiving module 111 receives broadcast signals and/or broadcast associated information from an external broadcast management server (or other network entity) via a broadcast channel.

The broadcast channel may include a satellite channel and/or a terrestrial channel. The broadcast management server may be a server that generates and transmits a broadcast signal and/or broadcast associated information or a server that receives a previously generated broadcast signal and/or broadcast associated information and transmits the same to a terminal. The broadcast signal may include a TV broadcast signal, a radio broadcast signal, a data broadcast signal, and the like. Also, the broadcast signal may further include a broadcast signal combined with a TV or radio broadcast signal.

The broadcast associated information may refer to information associated with a broadcast channel, a broadcast program or a broadcast service provider. The broadcast associated information may also be provided via a mobile communication network and, in this case, the broadcast associated information may be received by the mobile communication module 112.

The broadcast signal may exist in various forms. For example, it may exist in the form of an electronic program guide (EPG) of digital multimedia broadcasting (DMB), electronic service guide (ESG) of digital video broadcast-handheld (DVB-H), and the like.

The broadcast receiving module 111 may be configured to receive signals broadcast by using various types of broadcast systems. In particular, the broadcast receiving module 111 may receive a digital broadcast by using a digital broadcast system such as multimedia broadcasting-terrestrial (DMB-T), digital multimedia broadcasting-satellite (DMB-S), digital video broadcast-handheld (DVB-H), the data broadcasting system known as media forward link only (MediFlo®), integrated services digital broadcast-terrestrial (ISDB-T), etc. The broadcast receiving module 111 may be configured to be suitable for every broadcast system that provides a broadcast signal as well as the above-mentioned digital broadcast systems. Broadcast signals and/or broadcast-associated information received via the broadcast receiving module 111 may be stored in the memory 160 (or another type of storage medium).

The mobile communication module 112 transmits and/or receives radio signals to and/or from at least one of a base station (e.g., access point, Node B, etc.), an external terminal (e.g., other user devices) and a server (or other network entities). Such radio signals may include a voice call signal, a video call signal or various types of data according to text and/or multimedia message transmission and/or reception.

The wireless Internet module 113 supports wireless Internet access for the mobile terminal. This module may be
internally or externally coupled to the terminal. The wireless Internet access technique implemented may include a WLAN (Wireless LAN) (Wi-Fi), WiBro (Wireless broadband), Wimax (World Interoperability for Microwave Access), HSDPA (High Speed Downlink Packet Access), or the like.  

The short-range communication module 114 is a module for supporting short range communications. Some examples of short-range communication technology includes Bluetooth™, Radio Frequency Identification (RFID), Infrared Data Association (IrDA), Ultra-WideBand (UWB), ZigBee™, and the like.

The location information module 115 is a module for checking or acquiring a location (or position) of the mobile terminal. For example, the location information module 115 may be embodied as a GPS (Global Positioning System) module.

With reference to FIG. 1, the A/V input unit 120 is configured to receive an audio or video signal. The NV input unit 120 may include a camera 121 (or other image capture device) and a microphone 122 (or other sound pick-up device). The camera 121 processes image data of still pictures or video obtained by an image capture device in a video capturing mode or an image capturing mode. The processed image frames may be displayed on a display unit 151 (or other visual output device).

The image frames processed by the camera 121 may be stored in the memory 160 (or other storage medium) or transmitted via the wireless communication unit 110. Two or more cameras 121 may be provided according to the configuration of the mobile terminal.

The microphone 122 may receive sounds (audible data) via a microphone (or the like) in a phone call mode, a recording mode, a voice recognition mode, and the like, and can process such sounds into audio data. The processed audio (voice) data may be converted for output into a format transmittable to a mobile communication base station (or other network entity) via the mobile communication unit 112 in case of the phone call mode. The microphone 122 may implement various types of noise canceling (or suppression) algorithms to cancel (or suppress) noise or interference generated in the course of receiving and transmitting audio signals.

The user input unit 130 (or other user input device) may generate key input data from commands entered by a user to control various operations of the mobile terminal.

The user input unit 130 may receive a signal for designating two or more icons among icons displayed according to an exemplary embodiment of the present invention from the user. The signal for designating two or more icons may be received through a touch input or through a hard key and soft key input.

The user input unit 130 may receive an input for selecting a plurality of icons or a merged icon from the user. Also, the user input unit 130 may receive an input for generating an icon related to a function that can be performed by the mobile terminal from the user. In an exemplary embodiment of the present invention, besides icons previously set in manufacturing the mobile terminal 100 or an icon received via a network, the user can generate a desired icon by himself and display it on a standby screen (i.e., idle screen).

The user input unit 130 may include a keypad, a dome switch, a touch pad (e.g., a touch sensitive member that detects changes in resistance, pressure, capacitance, etc. due to being contacted) a jog wheel, a jog switch, and the like. In particular, when the touch pad is overlaid on the display unit 151 in a layered manner, it may form a touch screen.

The sensing unit 140 (or other detection means) detects a current status (or state) of the mobile terminal 100 such as an opened or closed state of the mobile terminal 100, a location of the mobile terminal 100, the presence or absence of user contact with the mobile terminal 100 (i.e., touch inputs), the orientation of the mobile terminal 100, an acceleration or deceleration movement and direction of the mobile terminal 100, etc., and generates commands or signals for controlling the operation of the mobile terminal 100. For example, when the mobile terminal 100 is implemented as a slide type mobile phone, the sensing unit 140 may sense whether the slide phone is opened or closed. In addition, the sensing unit 140 can detect whether or not the power supply unit 190 supplies power or whether or not the interface unit 170 is coupled with an external device. The sensing unit 140 may include a proximity sensor 141, which will be described in association with the touch screen.

The interface unit 170 (or other connection means) serves as an interface by which at least one external device may be connected with the mobile terminal 100. For example, the external devices may include wired or wireless headset ports, an external power supply (or battery charger) ports, wired or wireless data ports, memory card ports, ports for connecting a device having an identification module, audio input/output (I/O) ports, video I/O ports, or earphone ports, or the like.

The identification module may be a memory chip (or other element with memory or storage capabilities) that stores various information for authenticating user’s authority for using the mobile terminal 100 and may include a user identity module (UIM), a subscriber identity module (SIM) a universal subscriber identity module (USIM), and the like. In addition, the device having the identification module (referred to as the ‘identifying device’, hereinafter) may take the form of a smart card. Accordingly, the identifying device may be connected with the terminal 100 via a port or other connection means.

In addition, when the mobile terminal 100 is connected with an external cradle, the interface unit 170 may serve as a conduit to allow power from the cradle to be supplied therethrough to the mobile terminal 100 or may serve as a conduit to allow various command signals inputted from the cradle to be transferred to the mobile terminal therethrough. Various command signals or power inputted from the cradle may operate as signals for recognizing when the mobile terminal is properly mounted on the cradle.

The output unit 150 is configured to provide outputs in a visual, audible, and/or tactile manner (e.g., audio signal, video signal, alarm signal, vibration signal, etc.). The output unit 150 may include the display unit 151, an audio output module 152, an alarm unit 153, a haptic module 154, and the like.

The display unit 151 may display information processed in the mobile terminal 100. For example, when the mobile terminal 100 is in a phone call mode, the display unit 151 may display a User Interface (UI) or a Graphic User Interface (GUI) associated with a call or other communication (such as text messaging, multimedia file downloading, etc.). When the mobile terminal 100 is in a video call mode or image capturing mode, the display unit 151 may display a
captured image and/or received image, a UI or GUI that shows videos or images and functions related thereto, and the like.

[0073] The display unit 151 may display a plurality of icons related to a certain function or a merged icon generated by merging designated icons among the plurality of icons on the idle screen image.

[0074] The idle screen image may be a screen image initially displayed when the user manipulates the mobile terminal 100. Information such as the amount of power supply of the mobile terminal 100, date, time, a received signal strength indication (RSSI), etc., may be displayed on the idle screen.

[0075] The icon may be related to a certain function provided by the mobile terminal. The icon may be implemented in the form of a graphic user interface (GUI). Icons related to the certain function may be implemented in the form of widgets.

[0076] The GUI or the widgets may function to display information related to time or date (including time or date of an area using different standard time from that of an area in which the mobile terminal 100 is located), a D-day, weather, a geographical feature, economy information (including the exchange rate, stock prices, and various economic indexes), a schedule, search information (including search frequency information of each search word provided in a Web page of a search engine of the Internet), and the like.

[0077] Or, the GUI or the widgets may function to guide the user to execute functions of the mobile terminal, such as functions related to a calculator, an e-dictionary, a scratch pad, alarm, schedule management, access to a previously designated Web page, a tool bar for Internet search, a photo album, etc.

[0078] The icons may be received via a network or may be previously stored in the mobile terminal 100.

[0079] The merged icon may be generated by merging the two or more icons, or the icon with any merged icon. Merging of icons refers to displaying two or more designated icons or a merged icon, as a single merged icon, on the screen and associating a function related to the two or more merged icons to the displayed merged icon.

[0080] Associating the function related to the two or more merged icons to the merged icon means that when the merged icon is selected, the mobile terminal performs the function associated with the merged icon.

[0081] The location or the size of the plurality of icons or the merged icon displayed on the display unit 151 may be changed on the screen by the user.

[0082] The display unit 151 may display the merged icon on an area smaller than the sum of the areas of the two or more designated icons displayed on the idle screen.

[0083] When a plurality of icons are displayed on the idle screen, icons with a low use frequency are merged to generate a merged icon, and the area taken by the merged icon on the screen is set to be smaller than the sum of the areas of the designated icons, to thereby lower the area ratio of the icons on the idle screen. Thus, the idle screen can be effectively used.

[0084] The display unit 151 may demerge the merged icon two or more icons and display the same according to a user selection. The separately displayed two or more icons may be the two or more icons designated to generate the merged icon.

[0085] The display unit 151 may include at least one of a Liquid Crystal Display (LCD), a Thin Film Transistor-LCD (TFT-LCD), an Organic Light Emitting Diode (OLED), a flexible display and a three-dimensional (3D) display. Some of them may be configured to be transparent to allow viewing of the exterior therethrough, which may be called transparent displays. A typical transparent display may be, for example, a TOLED (Transparent Organic Light Emitting Diode), or the like. The rear structure of the display unit 151 may include the light transmissive structure. With such a structure, the user can view an object located at a rear side of the terminal body through the region occupied by the display unit 151 of the terminal body.

[0086] The mobile terminal 100 may include two or more display units according to its embodiment. For example, a plurality of display units may be separately or integrally disposed on one surface or disposed on both surfaces of the mobile terminal, respectively.

[0087] Meanwhile, when the display unit 151 and a sensor (referred to as a ‘touch sensor’, hereinafter) are overlaid in a layered manner (referred to as a ‘touch screen’, hereinafter), the display unit 151 may be used as both an input device and an output device. The touch sensor may have the form of, for example, a touch film, a touch sheet, a touch pad, etc.

[0088] The touch sensor may be configured to convert a pressure applied to a particular portion of the display unit 151 or a change in capacitance at a particular portion of the display unit 151 into an electrical input signal. The touch sensor may be configured to detect the pressure when a touch is applied, as well as a touched position or area.

[0089] When a touch with respect to the touch sensor is inputted, corresponding signal (signals) are transmitted to a touch controller. The touch controller processes the signal (signals) and transmit corresponding data to the controller 180. Thus, the controller 180 can recognize which portion of the display unit 151 has been touched.

[0090] With reference to FIG. 1, a proximity sensor 141 may be disposed within the mobile terminal covered by the touch screen or near the touch screen. The proximity sensor 141 refers to a sensor for detecting the presence or absence of an object that accesses a certain detect surface or an object that exists nearby by using the force of electromagnetism or infrared rays without a mechanical contact. Thus, the proximity sensor 141 has a longer life span compared with a contact type sensor, and it can be utilized for various purposes.

[0091] The example of the proximity sensor 141 may be a transmission type photo sensor, a direct reflection type photo sensor, a mirror-reflection type photo sensor, an RF oscillation type proximity sensor, a capacitance type proximity sensor, a magnetic proximity sensor, an infrared proximity sensor. When the touch screen is an electrostatic type touch screen, an approach of the pointer is detected based on a change in an electric field according to the approach of the pointer. In this case, the touch screen (touch sensor) may be classified as a proximity sensor.

[0092] In the following description, for the sake of brevity, recognition of the pointer positioned to be close to the touch screen without being contacted will be called a ‘proximity touch’, while recognition of actual contacting of the pointer on the touch screen will be called a ‘contact touch’. In this case, when the pointer is in the state of the proximity touch, it means that the pointer is positioned to correspond vertically to the touch screen.

[0093] The proximity sensor 141 detects a proximity touch and a proximity touch pattern (e.g., a proximity touch distance, a proximity touch speed, a proximity touch time, a proximity touch position, a proximity touch movement state,
The audio output module 152 may output audio data received from the wireless communication unit 110 or stored in the memory 160 in a call signal reception mode, a call mode, a record mode, a voice recognition mode, a broadcast reception mode, and the like. Also, the audio output module 152 may provide audible outputs related to a particular function (e.g., a call signal reception sound, a message reception sound, etc.) performed in the mobile terminal 100. The audio output module 152 may include a receiver, a speaker, a buzzer, etc.

The alarm unit 153 outputs a signal for informing about an occurrence of an event of the mobile terminal 100. Events generated in the terminal may include call signal reception, message reception, key signal inputs, a touch input, etc. In addition to video or audio signals, the alarm unit 153 may output signals in a different manner, for example, to inform about an occurrence of an event. The video or audio signals may also be output via the audio output module 152, so the display unit 151 and the audio output module 152 may be classified as a part of the alarm unit 153.

A haptic module 154 generates various tactile effects the user may feel. A typical example of the tactile effects generated by the haptic module 154 is vibration. The strength and pattern of the haptic module 154 can be controlled. For example, different vibrations may be combined to be outputted or sequentially outputted.

Besides vibration, the haptic module 154 may generate various other tactile effects such as an effect by stimulation such as a pin arrangement vertically moving with respect to a contact skin, a spray force or suction force of air through a jet orifice or a suction opening, a contact on the skin, a contact of an electrode, electrostatic force, etc., an effect by reproducing the sense of cold and warmth using an element that can absorb or generate heat.

The haptic module 154 may be implemented to allow the user to feel a tactile effect through a muscle sensation such as fingers or arm of the user, as well as transferring the tactile effect through a direct contact. Two or more haptic modules 154 may be provided according to the configuration of the mobile terminal 100.

The memory 160 may store software programs used for the processing and controlling operations performed by the controller 180, or may temporarily store data (e.g., a phonebook, messages, still images, video, etc.) that are inputted or outputted. In addition, the memory 160 may store data regarding various patterns of vibrations and audio signals outputted when a touch is inputted to the touch screen.

The memory 160 may store information related to an icon or a merged icon according to an exemplary embodiment of the present invention. The information related to the icon or the merged icon may include graphic information for displaying the icon or the merged icon on the screen, information regarding functions related to the icon or the merged icon, and the like.

The memory 160 may store information related to an icon generated through the user input unit 130 or a merged icon generated by merging a plurality of icons.

The memory 160 may include at least one type of storage medium including a flash memory, a hard disk, a multimedia card micro type, a card-type memory (e.g., SD or DX memory, etc.), a Random Access Memory (RAM), a Static Random Access Memory (SRAM), a Read-Only Memory (ROM), an Electrically Erasable Programmable Read-Only Memory (EEPROM), a Programmable Read-Only memory (PROM), a magnetic memory, a magnetic disk, and an optical disk. Also, the mobile terminal 100 may be operated in relation to a web storage device that performs the storage function of the memory 160 over the Internet.

The controller 180 typically controls the general operations of the mobile terminal. For example, the controller 180 performs controlling and processing associated with voice calls, data communications, video calls, and the like. The controller 180 may include a multimedia module 181 for reproducing multimedia data. The multimedia module 181 may be configured within the controller 180 or may be configured to be separated from the controller 180.

The controller 180 may perform a pattern recognition processing to recognize a handwriting input or a picture drawing input performed on the touch screen as characters or images, respectively.

The controller 180 may merge a plurality of icons designated by the user to generate a merged icon. The controller 180 may control the display unit 151 to display the merged icon.

When the merged icon is selected by the user, the controller 180 may perform two or more functions related to two or more icons designated for generating the merged icon. The two or more icons designated for generating the merged icon may include a merged icon. Thus, the two or more functions related to the designated two or more icons may include functions related to another two or more icons designated to generate the merged icon.

The power supply unit 190 receives external power or internal power and supplies appropriate power required for operating respective elements and components under the control of the controller 180.

Various embodiments described herein may be implemented in a computer-readable or its similar medium using, for example, software, hardware, or any combination thereof.

For hardware implementation, the embodiments described herein may be implemented by using at least one application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field-programmable gate arrays (FPGAs), processors, controllers, micro-controllers, microprocessors, electronic units designed to perform the functions described herein. In some cases, such embodiments may be implemented in the controller 180.

For software implementation, the embodiments such as procedures or functions may be implemented together with separate software modules that allow performing of at least one function or operation. Software codes can be implemented by a software application (or program) written in any suitable programming language. The software codes may be stored in the memory 160 and executed by the controller 180.

So far, the mobile terminal has been described from the perspective of its functions. Hereinafter, external elements of the mobile terminal will be described from the perspective of their functions with reference to FIGS. 2 and 3.

The mobile terminal may be implemented in a variety of different configurations. Examples of such configurations include folder-type, bar-type, swing-type, a slide type,
as well as various other configurations. The following description will primarily relate to a slide-type mobile terminal. However, such description can equally apply to other types of mobile terminals.

[0113] FIG. 2A is a front perspective view of the mobile terminal according to an embodiment of the present invention. The mobile terminal has a bar type terminal body. However, the present invention is not limited thereto and may be applicable to a slide type mobile terminal, a folder type mobile terminal, a swing type mobile terminal, a swivel type mobile terminal, etc., in which two or more bodies are combined to be relatively movable.

[0115] The body includes a case (or casing, housing, cover, etc.) constituting the external appearance. In this embodiment, the case may include a front case 101 and a rear case 102. Various electronic components are installed in the space between the front case 101 and the rear case 102. One or more intermediate cases may be additionally disposed between the front case 101 and the rear case 102.

[0116] The cases may be formed by injection-molding a synthetic resin or may be made of a metallic material such as stainless steel (STS) or titanium (Ti), etc.

[0117] The display unit 151, the audio output module 152, the camera 121, the user input unit 130, 131, 132, the microphone 122, the interface unit 170, etc. may be disposed mainly on the front case 101.

[0118] The display unit 151 takes most portion of a circumferential surface of the front case 101. The audio output unit 151 and the camera 121 are disposed at a region adjacent to one end portion among the end portions of the display unit 151, and the user input unit 131 and the microphone 122 are disposed at a region adjacent to another end portion. The user input unit 132 and the interface unit 170 may be disposed at the sides of the front case 101 and the rear case 102.

[0119] The user input units 130 is manipulated to receive a command for controlling the operation of the mobile terminal 100 and may include a plurality of manipulation units 131 and 132. The manipulation units 131 and 132 may be generally referred to as a manipulating portion, and various methods and techniques can be employed for the manipulation portion so long as they can be operated by the user in a tactile manner.

[0120] Content inputted by the first and second manipulation units 131 and 132 can be variably set. For example, the first manipulation unit 131 may receive a command such as staring, ending, scrolling, etc. and the second manipulation unit 132 may receive a command such as controlling the size of a sound outputted from the audio output unit 152 or conversion into a touch recognition mode of the display unit 151.

[0121] FIG. 2B is a rear perspective view of the mobile terminal as shown in FIG. 2A.

[0122] With reference to FIG. 2B, a camera 121' may additionally be disposed on the rear surface of the terminal body, namely, on the rear case 102. The camera 121' may have an image capture direction which is substantially opposite to that of the camera 121 (See FIG. 2A), and have a different number of pixels than the camera 121.

[0123] For example, the camera 121 may have a smaller number of pixels to capture an image of the user’s face and transmit such image to another party, and the camera 121' may have a larger number of pixels to capture an image of a general object and not immediately transmit it in most cases. The cameras 121 and 121' may be installed on the terminal body such that they can be rotatable or popped up.

[0124] A flash 123 and a mirror 124 may be additionally disposed adjacent to the camera 121'. When an image of a subject is captured with the camera 121', the flash 123 illuminates the subject. The mirror 124 allows the user to see himself when he wants to capture his own image (i.e., self-image capturing) by using the camera 121'.

[0125] An audio output unit 152 may be additionally disposed on the rear surface of the terminal body. The audio output module 152 may implement stereophonic sound functions in conjunction with the audio output module 152 (See FIG. 2A) and may also be used for implementing a speaker phone mode for call communication.

[0126] A broadcast signal receiving antenna 124 may be disposed at the side of the terminal body, in addition to an antenna that is used for mobile communications. The antenna 124 constitutes a portion of the broadcast receiving module 111 (See FIG. 1) can also be configured to be retractable from the terminal body.

[0127] The power supply unit 190 for supplying power to the mobile terminal 100 is mounted on the terminal body. The power supply unit 190 may be installed within the terminal body or may be directly attached to or detached from the exterior of the terminal body.

[0128] A touch pad 135 for detecting a touch may be additionally mounted on the rear case 102. The touch pad 135 may be configured to be light transmissive like the display unit 151. In this case, when the display unit 151 is configured to output visual information from both sides thereof, the visual information may be recognized also via the touch pad 135. The information outputted from both sides may be all controlled by the touch pad 135. Alternatively, a display may be additionally mounted on the touch pad so that a touch screen may be disposed also on the rear case 102.

[0129] The touch pad 135 is operated in association with the display unit 151 of the front case 101. The touch pad 135 may be disposed to be parallel on the rear side of the display unit 151. The touch pad 135 may have the same size as the display unit 151 or smaller.

[0130] The associated operation method of the display unit 151 and the touch pad 135 will now be described with reference to FIGS. 3A and 3B.

[0131] FIGS. 3A and 3B are front views of the mobile terminal for explaining an operating state of the mobile terminal according to the present invention.

[0132] Various types of visual information may be displayed on the display unit 151. The information may be displayed in the form of character, number, symbol, graphic, icon, etc. In order to input the information, at least one of the character, number, symbol, graphic and icon is displayed in a certain arrangement so as to be implemented in the form of a keypad. Such keypad may be so-called ‘soft key’.

[0133] FIG. 3A shows receiving a touch applied to a soft key on the front surface of the terminal body.

[0134] The display unit 151 may be operated as a whole region or may be divided into a plurality of regions and accordingly operated. In the latter case, the plurality of regions may be operation in association with each other.

[0135] For example, an output window 151a and an input window 151b may be displayed at upper and lower portions of the display unit 151, respectively. Soft keys 151c including numbers for inputting a phone number or the like are outputted on the input window 151b. When the soft key 151c is touched, a number corresponding to the touched soft key is displayed on the output window 151a. When the first manipu-
lation unit 131 is manipulated, a call connection with respect to a phone number displayed on the output window 151a is attempted.

[0136] FIG. 3B shows receiving of a touch applied to the soft key through the rear surface of the terminal body. FIG. 3A shows a portrait in which the terminal body is disposed vertically, FIG. 3B shows a landscape in which the terminal body is disposed horizontally. The display unit 151 may be configured to convert an output screen image according to the disposition direction of the terminal body.

[0137] FIG. 3B shows an operation of a text input mode in the mobile terminal. An output window 151a and an input window 151b are displayed on the display unit 151. A plurality of soft keys 151c including at least one of characters, symbols and numbers may be arranged on the input window 151b. The soft keys 151c may be arranged in the form of Qwerty keys.

[0138] When the soft keys 151c are touched through the touch pad 135 (See FIG. 2B), characters, numbers, symbols, or the like, corresponding to the touched soft keys are displayed on the output window 151a. Compared with a touch input through the display unit 151, a touch input through the touch pad 135 can advantageously prevent the soft keys 151c from being covered by user’s fingers when touching is made. When the display unit 151 and the touch pad 135 are formed to be transparent, the user’s fingers put on the rear surface of the terminal body can be viewed with naked eyes, so the touch input can be more accurately performed.

[0139] Besides the input methods presented in the above-described embodiments, the display unit 151 or the touch pad 135 may be configured to receive a touch through scrolling. The user may move a cursor or a pointer positioned on an entity, e.g., an icon or the like, displayed on the display unit 151 by scrolling the display unit 151 or the touch pad 135. In addition, when the user moves his fingers on the display unit 151 or the touch pad 135, the path along which the user’s fingers move may be visually displayed on the display unit 151. This would be useful in editing an image displayed on the display unit 151.

[0140] One function of the terminal may be executed in case where the display unit 151 (touch screen) and the touch pad 135 are touched together within a certain time range. The both touch may be clamping the terminal body with the user’s thumb and index finger. The one function may be, for example, activation or deactivation of the display unit 151 or the touch pad 135.

[0141] FIG. 4 is a conceptual view for explaining the depth of proximity of the proximity sensor.

[0142] FIG. 4 is a conceptual view for explaining the depth of proximity of the proximity sensor.

[0143] The proximity sensor 141 will now be described in detail with reference to FIGS. 1 and 4.

[0144] As shown in FIG. 4, when a pointer such as the user’s finger, a pen, or the like, approaches the touch screen, the proximity sensor 141 disposed within or near the touch screen detects it and outputs a proximity signal.

[0145] The proximity sensor 141 may be configured to output a different proximity signal according to the distance (referred to as a ‘proximity depth’, hereinafter) between the closely touched pointer and the touch screen.

[0146] FIG. 4 shows the section of the touch screen with the proximity sensor for detecting, for example, three proximity depths. The proximity sensor may detect three or less or four or more proximity depths.

[0147] In detail, when the pointer is perfectly brought into contact with the touch screen d0, it is recognized as a contact touch. When the pointer is positioned to be spaced apart by shorter than a distance d1 on the touch screen, it is recognized as a proximity touch with a first proximity depth. If the pointer is positioned to be spaced apart by the distance longer than the distance d1 but shorter than a distance d2 on the touch screen, it is recognized as a proximity touch with a second proximity depth. If the pointer is positioned to be spaced apart by the distance longer than the distance d2 but shorter than a distance d3, it is recognized as a proximity touch with a third proximity depth. If the pointer is positioned to be spaced apart by longer than the distance d3 on the touch screen, it is recognized that the proximity touch has been released.

[0148] Accordingly, the controller 180 may recognize the proximity touches as various input signals according to the proximity depths and proximity positions of the pointer, and may control various operations according to the various input signals.

[0149] Exemplary embodiments of the present invention will now be described with reference to the accompanying drawings. The present invention is to implement functional applications (referred to as ‘widgets’, hereinafter) in the form of icons such that they are merged (i.e. combined, consolidated, etc.) or demerged (i.e. divided, separated, etc.), and implement a method for managing displaying of widgets.

[0150] FIGS. 5A to 5D are overviews of display screens illustrating merged icons in the mobile terminal according to an exemplary embodiment of the present invention.

[0151] As shown in FIG. 5A, a plurality of icons W1, W2, W3, W4, and W5 may be displayed on the display unit 151 of the mobile terminal 100. The icons may be related to functions such as displaying time (W1), displaying weather (W2), activating the function of an e-dictionary of the mobile terminal (W3), activating music play function of the mobile terminal (W4), or guiding subway lines (W5), and the like.

[0152] As shown in FIG. 5B, the mobile terminal 100 may receive an input for selecting at least one (W1) of the plurality of icons displayed on the screen from the user. As shown in FIG. 5B, the input for selecting at least one icon W1 may be a touch input. Alternatively, the input for selecting at least one icon W1 may be received by using a keypad, a dome switch, a touch pad (e.g., a touch sensitive member that detects changes in resistance, pressure, capacitance, etc. due to being contacted) a jog wheel, a jog switch, and the like.

[0153] The user may select at least one icon W2 to be merged with the selected one icon W1.

[0154] FIG. 5B illustrates that the icon W2 is selected to which the icon W1 first selected by the user is dragged and merged. Besides, a touch input may be simultaneously applied to select a plurality of icons desired to be merged.

[0155] The plurality of icons selected by the user to generate a merged icon may be simultaneously selected, or may be sequentially selected as shown in FIG. 5B.

[0156] Three or more icons may be selected by the user in order to generate a merged icon.

[0157] As shown in FIG. 5C, the mobile terminal 100 may display the state of merging of the plurality of icons W1 and W2 selected by the user. The state of merging of the plurality of icons W1 and W2 may be displayed by using an icon M1 in the merging.

[0158] As shown in FIG. 5D, the mobile terminal 100 may display a merging-completed icon M2 on the screen. The
merged icon M2 may function two or more functions related to the two or more icons designated to generated the merged icon.

[0159] For example, it is assumed that the icon W1 displaying time and the icon W2 displaying weather have been selected in order to generate the merged icon M2.

[0160] In this case, as shown in FIG. 5D, the merged icon M1 may display both time and weather. The shape of the merged icon M1 may be stored in the memory 160 or may be displayed by using data received by the wireless communication unit 110 via a network.

[0161] For another example, when two applications have already been performed, if a user activates other application by selecting one widget, two widgets related to the performed applications are merged and then displayed on at least part of a display. The display may further include a displaying portion of the other application.

[0162] At this time, an operation of the performed applications may be stopped. The merged widgets may be lower layer menu of a specific menu.

[0163] FIGS. 6A to 6C are overviews of display screens illustrating merging of an already combined icon with another icon and displaying the same in the mobile terminal according to an exemplary embodiment of the present invention.

[0164] The plurality of icons selected to a merged icon may include an already merged icon.

[0165] As shown in FIG. 6A, in order to generate a merged icon, the mobile terminal may receive an input for selecting the previously merged icon M2 from the user.

[0166] The user may drag the initially selected merged icon M1 to the location of another icon W3, with which the merged icon M1 to be merged, to select the icon W3.

[0167] As shown in FIG. 6B, the mobile terminal 100 may display the state in which the plurality of icons M2 and W3 selected by the user are merged. The state in which the plurality of icons M2 and W3 are merged may be expressed by displaying an icon M3 in the merging.

[0168] As shown in FIG. 6C, the mobile terminal 100 may display the merged icon M4.

[0169] FIGS. 7A to 7D are overviews of display screens illustrating merging of one already merged icon and another already merged icon and displaying the same in the mobile terminal according to an exemplary embodiment of the present invention.

[0170] As shown in FIG. 7A, the mobile terminal may select a plurality of icons W4 and W5.

[0171] As shown in FIG. 7B, the mobile terminal may display a merged icon M5 in addition to the merged icon M2.

[0172] As shown in FIG. 7C, the mobile terminal 100 may receive an input for selecting the merged icon M5 different from the merged icon M2.

[0173] As shown in FIG. 7D, the mobile terminal may merge the merged icon M2 and another merged icon M5 to generate a merged icon M6 and display the merged icon M6 on the screen.

[0174] FIGS. 8A to 8D are overviews of display screens illustrating demerging icons in the mobile terminal according to an exemplary embodiment of the present invention.

[0175] As shown in FIG. 8A, the mobile terminal 100 may receive an input for selecting at least one merged icon M2 from among merged icons displayed on the screen. When the merged icon M2 is selected by the user, the user may display a function applicable to the merged icon on the screen.

[0176] As shown in FIG. 8B, the mobile terminal 100 may receive an input for demerging the selected merged icon M2 from the user.

[0177] As shown in FIG. 8C, the mobile terminal 100 may display a state in which the merged icon M2 selected by the user is demerged. The state in which the merged icon M2 is demerged may be expressed by displaying the icon M1 in the demerging.

[0178] As shown in FIG. 8D, the mobile terminal 100 may display a plurality of demerged icons W1 and W2 on the screen. When the icons are separately displayed, the functions corresponding to the merged icons can be separated.

[0179] FIGS. 9A to 9D are overviews of display screens illustrating storing of information related to icons in the mobile terminal according to an exemplary embodiment of the present invention.

[0180] As shown in FIG. 9A, the mobile terminal 100 may receive an input for selecting at least one merged icon M2 from among a plurality of merged icons displayed on the screen. If at least one merged icon M2 is selected by the user, the mobile terminal can display a function applicable to the merged icon on the screen.

[0181] As shown in FIG. 9B, the mobile terminal 100 may receive an input for storing the selected merged icon M2 from the user.

[0182] When the input for storing the merged icon M2 is received, the mobile terminal 100 may store information about the merged icon M2 or an icon in the memory 160. The information related to the icon or the merged icon may include at least one of graphic information, a combination information of menus (applications), an URL information related to merged widget for displaying the icon or the merged icon on the screen or information regarding a function related to the icon or the merged icon, and the like.

[0183] The memory may be a SIM card.

[0184] As shown in FIG. 9C, the mobile terminal 100 may receive the name for identifying information related to the icon or the merged icon. The name for identifying the information may include a file name.

[0185] As shown in FIG. 9D, the mobile terminal 100 may display the fact that the information related to the icon or the merged icon has been stored in the memory 160, on the screen.

[0186] FIGS. 10A to 10D are overviews of display screens illustrating transmission of information related to icons in the mobile terminal according to an exemplary embodiment of the present invention.

[0187] As shown in FIG. 10A, the mobile terminal may receive an input for selecting at least one M2 of the merged icons displayed on the screen. When the at least one merged icon M2 is selected by the user, the mobile terminal may display a function applicable to the merged icon on the screen.

[0188] As shown in FIG. 10B, the mobile terminal 100 may receive an input for selecting transmission of the information related to the selected merged icon M2 from the user.

[0189] As shown in FIG. 10C, the mobile terminal 100 may receive an input for designating a terminal to which the information related to the selected merged icon from the user.

[0190] As shown in FIG. 10D, the mobile terminal 100 may display the fact that the information related to the merged icon has been transmitted to the designated terminal, on the screen.

[0191] At this time, the information related to the merged icon may include at least one of graphic information, a combination information of menus (applications), an URL inform-
information related to merged widgets for displaying the merged icon on the screen or information regarding a function related to the merged icon, and the like.

0192] FIG. 11 is a flow chart illustrating the process of a user interface method of the mobile terminal according to an exemplary embodiment of the present invention.

0193] The mobile terminal 100 may display a plurality of icons related to certain functions on the idle screen (S101). The user may select two or more icons desired to be merged from among the plurality of icons displayed on the idle screen, and the mobile terminal may receive an input for selecting two or more icons from the user (S102).

0194] The mobile terminal 100 may generate a merged icon by merging designated icons (S103).

0195] When the mobile terminal 100 generates the merged icon, the mobile terminal may display the generated merged icon on the idle screen (S104).

0196] Examples of merging and demerging widgets in a functional aspect and widget display methods in the aspect of management, in a physical aspect and in a visual aspect according to exemplary embodiments of the present invention will now be described.

0197] The merging and demerging of widgets in the functional aspect according to a first exemplary embodiment of the present invention will now be described.

0198] FIGS. 12A to 12F are overviews of display screens illustrating merging and demerging widgets each having different theme.

0199] A widget is a functional application that can be activated to execute various functions related to a mobile terminal. Such widgets may be in the form of a graphical icon (e.g., a short-cut button) with a functional application related thereto already stored in the mobile terminal or newly downloaded from a network.

0200] As shown in FIG. 12A, in an exemplary embodiment of the present invention, various widgets for executing a time display (W1), a weather display (W2), an e-dictionary (W3), a music player (W4), a subway guide (S5), and the like, on the screen (i.e., the display unit 151) of the terminal. A user input for selecting a widget is received through the screen 151, and the corresponding function is executed. The user input for selecting the widget may be received by using a keypad, a dome switch, a touch pad (e.g., a touch sensitive member that detects changes in resistance, pressure, capacitance, etc. due to being contacted) a jog wheel, a jog switch, and the like.

0201] Widget icons regarding a phone book (phone book, speed number, group management, etc.), a voice call (dial, call list, etc.), a video call, a message, an alarm, a schedule, setting/locking (screen, sound, touch, lock, etc.), a camera (image capture, gallery, etc.), an MP3, a broadcast (TV) contents search, MT (multi-tasking), BT (Bluetooth), Web/browser, viewer (text viewer, file viewer, etc.), e-dictionary, integrated data search, a subway line map, weather, stocks, e-book update (update information regarding new book of the week, steady-seller, best-seller, etc.), and the like, may be present on the idle screen of the mobile terminal.

0202] FIG. 12B illustrates merging of widgets.

0203] As shown in FIG. 12B, at least two widget icons simultaneously selected by a multi-touch input may be dragged (e.g., collide) to be merged. In this case, the integrated icon generated from the merging may be displayed to have a changed form and may simultaneously select/display or select/execute at least two or more functions according to a user selection.

0204] In the exemplary embodiment of the present invention, the user can easily recognize whether or not two widgets can be merged. If two widgets can be merged, the controller 180 may provide control such that a new-shaped widget appears when widgets overlap.

0205] Meanwhile, two widgets cannot be merged, the controller 180 does not change the shape of the widgets. When a new widget is downloaded, the user may previously check which widgets can be merged with reference to widget installation information. In an exemplary embodiment of the present invention, three or more widgets may be merged.

0206] FIG. 12C illustrates an integrated widget M2 generated by merging a widget W1 having a clock display function and a widget W2 having a weather display function. FIG. 12D illustrates an integrated widget M3 generated by merging a widget W6 having an e-mail transmission function and a widget W7 having a function of loading and displaying a file as displayed on the screen of the terminal.

0207] The integrated widgets M2 and M3 perform not only the integrated functions generated through the merging but the function of the individual widgets of the integrated widget.

0208] FIGS. 12E to 12F illustrate integrated widgets and its management method.

0209] As mentioned above, the integrated widget may perform an integrated function generated through the merging or execute the function of the individual widgets of the integrated widget according to a user selection.

0210] In order to perform the function of the individual widgets, the integrated widget may include a button B10 as shown in FIG. 12E. When the button B10 is selected (touched), the controller 180 makes the individual widgets appear near the integrated widget, so that the user can select (or execute) of the individual widgets. The controller 180 provides control such that the individual widgets near the integrated widget icon appears only while the button B10 is being touched.

0211] In addition, it may be implemented such that the individual widgets near the integrated widget icon may appear during a certain time period and then disappear when the button B10 is touched.

0212] Another embodiment of the integrated widget illustrated in FIG. 12 will now be described.

0213] When an integrated widget icon is generated by merging a video call icon and a message icon and the user touches the integrated widget icon for a prolonged duration (i.e., for a long term), the controller 180 may execute a menu in which the user can perform text chatting (the user can make conversation in real time with a counterpart of a video call or a third party by using messages or a messenger, and content of exchanged text is accumulatively displayed on the screen) during video call communication. However, if the user touches the integrated widget icon for a short term, the individual widget icons of the integrated widget icon may be discriminately displayed and one of the menus of them may be selectively executed.

0214] For another example, when an integrated widget icon is generated by merging a camera icon and a broadcast icon and the user touches it for a long term, the controller 180 may display a screen image for allowing for simultaneous
execution of camera-related image capturing, a photo album view or a broadcast view. If, however, the user touches the integrated widget icon for a short term, the individual widget icons of the integrated widget icon can be discriminated displayed and one of the menus of them may be selectively executed.

[0215] For another example, when an integrated widget icon is generated by merging the weather icon, the weather icon, the e-book update icon, and the like, and the user touches it for a long term, the controller 180 may update relevant information of the individual icons constituting the merged integrated icon and display the updated information all together on the screen. If, however, the user touches the integrated widget icon for a short term, the individual widget icons of the integrated widget icon can be discriminated displayed and one of the menus of them may be selectively executed.

[0216] For another example, when an integrated widget icon is generated by merging password-set widgets icons (e.g., certain programs for which a password has been set) and the user touches it for a long term, the controller 180 may display a password input window, and when a corresponding password is inputted, the controller 180 unlocks all the merged icons. However, if the user touches the integrated widget icon for a short terminal, the individual icons constituting the merged icon are discriminated displayed. When the user selects one of menus of them, the controller 180 displays the password input window, and when a corresponding password is inputted, the controller executes the selected menu.

[0217] For another example, when an integrated widget icon is generated by merging a file viewer (include a viewer allowing viewing of e-book contents) icon and an e-dictionary-related icon and the user touches it for a long term, the controller 180 may execute the function (menu) of each icon constituting the integrated merged icon. If the user wants to search for a word while reading particular contents, he may immediately check a search result through an e-dictionary function which is simultaneously executed. Meanwhile, when the user touches the integrated widget icon for a short term, the individual widget icons constituting the integrated widget icon may be discriminitely displayed and one of the menus of them may be selectively executed.

[0218] For another example, when an integrated widget icon is generated by merging the camera icon and a schedule-related icon and the user touches it for a long term, the controller 180 may execute the function (menu) of the individual icons constituting the merged integrated icon and adds photo images captured through the camera function to a corresponding date of a schedule in synchronization with the date at which the images were captured. The user can immediately check the captured photo images by the date through the schedule function, and view a screen image related to the schedule in synchronization with the capture date (or reception date) of a corresponding photo image. However, when the user touches the integrated widget icon for a short term, the individual icons constituting the integrated widget icon may be discriminally displayed and one of the menu of them may be selectively executed.

[0219] In each embodiment, the simultaneously executed menus can be displayed on a single screen in a divided manner, may be displayed in an overlaid manner in the form of a foreground or a background, or may be displayed in a dual-display window in a divided manner.

[0220] FIG. 12F illustrates an integrated widget generated by merging three or more widgets.

[0221] As shown in FIG. 12F, the controller 180 may display individual widgets around an icon or may display the individual widgets in the form of a pop-up list.

[0222] When the button B10 is selected (touched), the controller 180 displays the individual widgets as shown in FIG. 12F. The user may assign a priority level (or use frequency) to the individual widgets to designate locations of the individual widgets displayed around a widget icon.

[0223] The controller 180 may display the number of individual widgets constituting the corresponding integrated widget on the icon of the integrated widget. The user may recognize how many widgets have been merged into the corresponding integrated widget through the number displayed on the icon of the integrated widget.

[0224] If the user wants to demerge a particular widget from the integrated widget, the user may separate the corresponding widget from the integrated while the individual widgets appear around the icon of the integrated widget.

[0225] The user may conceal widgets with a low use frequency by using merging of widgets. Namely, the user may collect widgets with a low use frequency and merge them to implement a widget concealment function.

[0226] FIG. 13 is an overview of a display screen illustrating an example of merging and demerging of widgets having particular themes.

[0227] Merging and demerging of widgets each having a particular theme are similar to the cases illustrated in FIGS. 12A to 12F in that several widgets are combined (merged) to perform a single integrated function but different in that the merged individual widgets have a common theme (e.g., a camera function, etc.)

[0228] With reference to FIG. 13, when more than a certain number of widgets having a particular common theme are collected, the controller 180 may combine the collected widgets to perform an integrated function.

[0229] As shown in FIG. 13, in case of an integrated widget that can be integrated when four widgets (i.e., a body widget C10 based on a theme of a camera function, a flash widget C20, a lens widget C30, and a tripod widget C40) are gathered, whenever widgets are merged, the camera-related functions are increasingly added. When the four widgets C10 to C40 are all merged, the integrated widget that perform a full camera function can be generated.

[0230] The body widget C10 provides a camera filter function allowing for taking an image with a vintage touch like a manual camera. The lens widget C20 provides a camera zoom (zoom-in or zoom-out) function like a telephoto lens. The flash widget C30 provides a clear, bright camera filter function like a flash of a camera. The tripod widget C40 provides a correction function of preventing hand-shaking as if a tripod was used.

[0231] As shown in FIG. 13, when the lens widget C20 and the body widget C10 are merged, the merged integrated widget C50 has a camera zoom (zoom-in, zoom-out) function in addition to the camera filter function allowing for taking an image with a vintage touch.

[0232] When the flash widget function C30 is merged to the integrated widget C50, the merged integrated widget C60 can have the clear, bright camera filter function like a camera flash.

[0233] When the tripod widget C40 is merged into the integrated widget C60, the merged integrated widget C70 can
provide a full camera function by additionally having the correction function of preventing hand-shaking.

The integrated widgets C50, C60, and C70 can be downloaded as a single package from a server. Also, the integrated widgets C50, C60, and C70 can be shared as a single package with other terminals.

FIG. 14 is an overview of displays screens illustrating another example of merging and demerging of FIG. 13. When more than a certain number of widgets having a particular common theme are collected, the controller 180 may register and operate merged collected widgets in the form of applications and utilize them as items of games (e.g., Tetris, a combative sport game, etc.).

Tetris game will now be described as an example.

Tetris game is a game with a simple principle of heap up pattern blocks each having a different shape.

A service provider may distribute or sell six widgets W11, W12, W13, W14, W15, and W16 having the same shape as those six figures constituting Tetris. The user may download the six widgets as a package at a time, or may download one by one whenever required, from the service provider.

When the user collects and combines all the six widgets W11, W12, W13, W14, W15, and W16, an integrated widget available for executing the Tetris game can be created. Each function of the six widgets may have a common theme or may be completely different.

As shown in FIG. 14, the functions of the six widgets W11, W12, W13, W14, W15, and W16 having the same shapes as those of the six figures constituting the Tetris may be related to each other or may have a common theme, or may be completely different.

The user purchases the widgets whenever necessary, so currently, if the user has collected five widgets related to the Tetris, the game function of the integrated widget according to the present exemplary embodiment stimulates the purchase the user's desire with respect to the remaining single widget. Namely, the user would purchase the remaining single widget according to his desire for enjoying the Tetris game regardless of its necessity.

When the six widgets W11, W12, W13, W14, W15, and W16 are merged to create an integrated widget, the user may operate the integrated widget in the same manner as the case illustrated in FIG. 12E.

As described above with reference to FIG. 12E, the integrated widget may perform the game function or may perform the functions of the individual widgets W11, W12, W13, W14, W15, and W16 constituting the integrated widget according to a user selection.

In order to perform the functions of the individual widgets W11, W12, W13, W14, W15, and W16, the integrated widget may have the button B10 on its icon. When the button B10 is selected (touched), the controller 180 may provide control to make the individual widgets W11, W12, W13, W14, W15, and W16 appear around the icon of the integrated widget, so that the user can select (and execute) one of the individual widgets. The controller 180 may provide to control such that the individual widgets W11, W12, W13, W14, W15, and W16 appear around the icon of the integrated widget appear only while the user touches the button B10.

Also, the individual widgets around the icon of the integrated widget may be implemented such that they appear during a certain time when the button B10 is touched, and then disappear. Also, like the case as shown in FIG. 12E, when the user separates a particular widget from the integrated widget while the individual widgets appear around the icon of the integrated widget, the corresponding widget is demerged from the integrated widget.

In the exemplary embodiment illustrated in FIG. 14, the game function can be executed only when all of the certain number (e.g., fix ones) of widgets are merged. Meanwhile, the game level may be updated or the number of rounds may be increased each time widgets are merged.

For example, in case of a combative sport game, if the service provider distributes or sells widgets related to the combative sport game, the user may execute the combative game by simply generating an integrated widget by merging two widgets. In this case, however, the level of the game or its number of rounds may be limited.

In order to update the level of the combative sport game or increase the number of rounds, the user may additionally purchase or download relevant widgets.

Alternatively, when an integrated widget is generated by merging two widgets, authority for using the same may be limited in the form of a light version. An integrated widget may be implemented to notify about purchasing or downloading the remaining widgets when a predetermined time lapses in a state that a usage term or the number are set to be limited.

A widget display method in the aspect of management according to a second exemplary embodiment of the present invention will now be described.

In terms of the characteristics of the mobile terminal that needs to be easily carried around and portable, there is a spatial limitation in displaying widgets on the display device. Hereinafter, various widget management methods utilizing a limited space will be described.

FIG. 15 is an overview of a display screen illustrating disposition of automatically aligned widgets according to an exemplary embodiment of the present invention. Grids having certain intervals is displayed on the screen of the terminal and widgets are aligned according to a user setting (e.g., automatic alignment or manual alignment (or automatic sorting or manual sorting)). Horizontal and vertical intervals of the grids may be changed arbitrarily by the user.

When the alignment of the user is set as automatic alignment, the controller 180 moves the widgets displayed on the screen to contact points of the nearest grids, respectively, as shown in FIG. 15.

FIG. 16 is an overview of a display screen illustrating disposition of manually aligned widgets according to an exemplary embodiment of the present invention.

When the alignment of the widgets is set as a manual alignment, the user may concretely set a widget alignment such as a one-column disposition, one-row disposition, vertical/horizontal corner (or end) point disposition, a coordinates setting disposition, and the like.

FIG. 17 is an overview of a display screen illustrating disposition of fixedly designated widgets according to an exemplary embodiment of the present invention.

As shown in FIG. 17, the user can fix the widgets at locations of particular coordinate points. The user may fix the widgets with a high use frequency at locations (e.g., points that can be easily recognized by the user). In the present exemplary embodiment, even when a large number of widgets are aligned on the screen, the user can quickly find and execute desired widgets.

With reference to FIG. 17, when the user shakes the terminal by more than a certain number of times, the control-
ler 180 may recognize it through a certain sensor (e.g., a gyro sensor, or the like) of the terminal and positions the widgets with a high use frequency at predetermined designated coordinates.

[0259] FIG. 18 is overviews of display screens set for widget disposition.

[0260] As shown in FIG. 18, when widgets are displayed, the display unit 151 may display a software button B20 for displaying grids.

[0261] When an input (e.g., pressing) of the software button B20 is detected, the controller 180 displays (or removes) the horizontal and vertical grids at certain intervals on the screen and applies a special effect (e.g., alpha blending) to the background image so that the widgets and the grids can be more emphasized (or conspicuous).

[0262] FIG. 19 is overviews of display screens of widget disposition for transferring a particular message.

[0263] The controller 180 may dispose widgets such that a particular message can be transmitted. For example, when the user selects one (e.g., heart-like shape) of various shapes provided from the terminal, the controller 19 disposes the widgets in the heart-like shape as shown in FIG. 19, thereby expressing the user's intention (message) with the widget disposition.

[0264] FIG. 20 is overviews of display screens illustrating locations of widgets newly added to the screen.

[0265] In the present exemplary embodiment, the controller 180 generates a newly added (or downloaded) widget at designated coordinates. As the newly added widget is displayed at the designated coordinates, the user can easily recognize it. The user can change the designated coordinates.

[0266] When a new widget (e.g., a widget-2) is added, if a certain widget (e.g., a widget-1) has already been added to the designated coordinates, the controller 180 pushes out the existing widget (i.e., the widget-1) and displays the new widget (i.e., the widget-2) at the designated coordinates. This display method is applied in the same manner when several widgets are generated all together at a time. When the new widget (i.e., widget-2) appears at the designated coordinates, the controller 180 pushes out the existing widget (i.e., the widget-1) out of the designated coordinates as if a magnet is thrust out by a magnet having the same polarity.

[0267] FIG. 21 illustrates the space between widgets.

[0268] In the present exemplary embodiment, the controller 180 may set the interval (i.e., space or gap) between the widgets. By setting a minimum space between the widgets, the widgets can be easily discriminated in terms of user interface.

[0269] The space setting function of the widget is to maintain more than a certain distance between the widgets when the widgets are aligned automatically or manually. When the user shakes the terminal by more than a certain number of times, the controller 180 may recognize it through the sensor (e.g., the gyro sensor, or the like) provided in the terminal and perform automatic alignment. Also, when the user directly moves a widget through a touch input (e.g., drag-and-drop), the widgets can be maintained at a certain interval from each other without overlapping with each other. The user may change the space setting between the widgets. Also, the user may release the function of setting a space between the widgets. When the space setting function is released, two or more widgets may be displayed in an overlap manner.

[0270] FIG. 22 is overviews of display screens illustrating a widget management tool for a screen display.

[0271] As shown in FIG. 22, a widget management tool according to the present exemplary embodiment may be displayed in the form of a pop-up window or in the form of a menu setting window.

[0272] The user may select a widget alignment method with respect to a list view through the widget management tool.

[0273] Namely, according to the user setting, the widget management tool aligns widgets in the order of download or generation date and time. Also, the widget management tool can align the widgets discriminately according to an old list or the latest list. Also, the widget management tool may discriminately align frequently used widgets and infrequently used widgets. In this case, the widget management tool may also display the number of calls. Also, when the user shakes the mobile terminal by more than a certain number of times, the controller 180 may recognize it and perform automatic alignment through the sensor (e.g., the gyro sensor or the like) provided in the terminal.

[0274] Also, the widget management tool can align the widgets according to categories having a similar function. For example, time-related widgets such as a digital clock, an analog clock, a dual-time, and the like, may be separately displayed, calendar-related widgets such as a monthly calendar, a daily calendar, an annual calendar, and the like, may be separately displayed, or camera-related widgets such as a flash, zoom, a filter, and the like, may be separately displayed.

[0275] Also, the widget management tool may provide a widget concealment function according to a user setting. When the user selects a check box of a particular category, widgets of the corresponding category can be concealed from the screen. The concealment function may be applied by the category or may be more concretely applied by the widget.

[0276] FIG. 23 illustrate a method for discriminating widgets based on color.

[0277] As shown in FIG. 23, the widget management tool according to the present exemplary embodiment may display widgets in the form of a pop-up window or a menu setting window.

[0278] The controller 180 may display the widgets in different colors according to their use frequency. The user may recognize the call (i.e., retrieval, use) frequency of corresponding widgets based on the color of the widgets displayed on the screen.

[0279] For example, based on the use frequency of widgets (e.g., five times per week), if widgets have been called (used) by five times or less per week, the controller may display them in light gray, and if widgets have been called (used) by three times or less per week, the controller 180 may display them in dark gray. In addition, a use reference date of widgets may be determined, and different colors may be applied to widgets according to the call or use frequency after the reference date.

[0280] In the present exemplary embodiment, the controller 180 may apply the “method for discriminating widgets based on color” to widgets of a light version (sample or shareware) having a limited usage number of times or usage period.

[0281] If a usage number of times or a usage period of a widget is impending, the color of the widget may be changed to a black and white color (e.g., a light gray color tone) to allow the user to recognize the fact that the usage available number of times or period of the corresponding widget is at hand.

[0282] In case of a widget whose usage number of times or period has expired, the widget may be displayed in a dark gray
color tone and a portion of the function of the corresponding widget may be paralyzed, thus limiting execution of the widget.

[0283] As for the limitation of the usage number of times or period of widgets, another discriminating method can be applied.

[0284] For example, as shown in FIG. 23(B), the controller may display an available period (date or time) or an available number of a widget on the corresponding widget icon. Looking at the number, displayed on the widget icon, gradually decreasing, the user can recognize the fact that the available number or period of the widget is limited.

[0285] Also, as shown in FIGS. 23(C) and 23(D), the widget icon may have a certain look (e.g., an emotion of a depressed (or sad) look) to allow the user to recognize the fact that the available number or period of the widget is limited.

[0286] FIG. 24 illustrates is overviews of display screens illustrating a function connection between widgets.

[0287] According to the present exemplary embodiment, the connection function between widgets is that when a particular condition is met, an already executed widget calls a certain widget.

[0288] For example, it is assumed that the user make a note of an important event for a particular date (e.g., 15th, August). Then, the user, who should necessarily remember the important event, may set the connection function between a calendar widget and a note pad widget.

[0289] When the particular date (e.g., 15th, August) arrives, the calendar widget may call the note pad widget and the called note pad widget may display the event which has been made a note in a manner the user can recognize it (e.g., alarm sound, vibration, screen image blinking, etc.)

[0290] A widget display method in a physical aspect of the mobile terminal according to a third exemplary embodiment of the present invention will now be described.

[0291] In the third exemplary embodiment, in order to allow widgets to have a mass sense, physical factors are applied to a widget operation (or driving).

[0292] FIGS. 25(A) and 25(B) are overviews of display screens illustrating a mass sense of widgets.

[0293] As shown in FIG. 25(A), the controller 180 may output physical factors regarding the sense of hearing (e.g., sound), the sense of touch (e.g., vibration), the sense of sight, etc., along with execution of a corresponding widget in consideration of the size, volume, shape, and quantity of the widgets. The strength of the physical factors (e.g., the size of a sound, the strength or duration of vibration, the speed of a movement (or wobbling), etc.) transferred to the user may vary depending on the size, volume, shape and quantity of the widgets.

[0294] In the present exemplary embodiment, the size of a widget may be set to be proportional to the usage frequency or importance. Also, the strength of the physical elements (e.g., the size of a sound, the strength or duration of vibration, the speed of a movement (or wobbling), etc.) outputted when the widget is executed may be implemented to be proportional to the size of the corresponding widget.

[0295] In the present exemplary embodiment, when the user shakes the terminal, the controller 180 detects it and may provide control to shake the widgets according to the degree of shaking. Also, the controller 180 may output the physical factors (e.g., sound, vibration, etc.) along with the shaking of the widgets.

[0296] FIG. 25(B) illustrates the movement of widgets reacting with gravity.

[0297] As shown in FIG. 25(B), the controller 180 controls the movement of widgets such that they react on the tilting of the terminal. Like the marbles within a box collide and roll, the widgets on the screen may make the same movement as the marbles within the box.

[0298] When the widgets collide with each other or collide with a wall surface of the screen, the controller 180 outputs physical factors (e.g., sound, vibration, etc.) indicating the degree of collision. Of course, in this case, the strength (e.g., the size of a sound, the strength or duration of vibration, the speed of a movement (or wobbling), etc.) of the physical factors transferred to the user may vary according to the size, volume, shape, and quantity of the widgets.

[0299] A widget display method in a visual aspect according to a fourth exemplary embodiment of the present invention will now be described.

[0300] In the fourth exemplary embodiment of the present invention, a motion path regarding a widget movement is set, so that widgets can move along the motion path at certain periods. In the present exemplary embodiment, the user may recognize a current time, an event (or a project), a proceeding situation based on the movement of locations of widgets appearing on the screen of the terminal.

[0301] FIGS. 26(A) and 26(B) illustrate a method for displaying widgets by using motion paths, in which a motion path indicating a time lapse and a motion path indicating a project status are shown.

[0302] In case of the time lapse motion path, as shown in FIG. 26(B), the location of a widget may move with the lapse of time. The user may estimate a current time zone of the day through the movement and location of the widget on the motion path.

[0303] In case of the motion path indicating a project status, the user may set a start point (e.g., an ordering time point) for a widget movement, the shape of a motion path, an overall lapse time (e.g., an overall project period), a time duration of each section (e.g., a scheduled performing period of each process), and the like. When the user setting is completed, the controller 180 locates the corresponding widget at coordinates corresponding to a current time point among the overall lapse time, and moves the widget with time.

[0304] The user may check whether or not each process of the project is proceeding as planned through the movement or the location of the widget moving on the motion path.

[0305] In the present exemplary embodiment, the setting of the motion path and the movement of the widget may be implemented according to a method for recognizing a motion pattern of a flash.

[0306] A mobile terminal according to the present invention comprises an input unit configured to detect an external input, a display unit configured to display a plurality of widgets, and a controller configured to merge/demerge the plurality of widgets and execute an integrated function based on an integrated widget.

[0307] when the integrated widget is generated by merging the plurality of widgets, the controller assigns a new function to the generated integrated widget.

[0308] when the integrated widget is selected, the controller displays widgets constituting the integrated widget or the number of widgets constituting the integrated widget.
when more than a certain number of widgets having at least one of a common theme, a common menu category, and a simultaneously-performed menu are merged into the integrated widget.

As described above, the widget display method according to the exemplary embodiments of the present invention may be implemented by computer-readable codes in a program-recorded medium. The computer-readable medium includes any kind of recording device in which data that can be read by a computer system is stored.

The computer-readable medium may include a ROM, a RAM, a CD-ROM, a magnetic tape, a floppy disk, an optical data storage device, and the like. The computer-readable medium also includes implementations in the form of carrier waves or signals (e.g., transmission via the Internet). In addition, the computer may include the controller 180 of the terminal.

As far described, according to the exemplary embodiments of the present invention, widgets are implemented to be merged and demerged, and the mobile terminal can display, operate and manage the widgets.

The concept of UI-wise merging and demerging is applied to the simple widget functions to update the widget functions. Also, widgets can be effectively managed through various scenarios of widget operations.

In addition, the mass sense of widgets are expressed by using physical factors, and an autonomous movement are given by a motion pattern recognition.

As the exemplary embodiments may be implemented in several forms without departing from the characteristics thereof, it should also be understood that the above-described embodiments are not limited by any of the details of the foregoing description, unless otherwise specified, but rather should be construed broadly within its scope as defined in the appended claims. Therefore, various changes and modifications that fall within the scope of the claims, or equivalents of such scope are therefore intended to be embraced by the appended claims.

What is claimed is:

1. A mobile terminal comprising:
   - an input unit configured to detect an external input;
   - a display unit configured to display a plurality of widgets;
   - and a controller configured to merge/demerge the plurality of widgets and execute an integrated function based on an integrated widget.

2. The mobile terminal of claim 1, wherein when the integrated widget is generated by merging the plurality of widgets, the controller assigns a new function to the generated integrated widget.

3. The mobile terminal of claim 2, wherein when the integrated widget is selected, the controller displays widgets constituting the integrated widget or the number of widgets constituting the integrated widget.

4. The mobile terminal of claim 1, wherein when more than a certain number of widgets having at least one of a common theme, a common menu category, and a simultaneously-performed menu are merged into the integrated widget.

5. The mobile terminal of claim 1, wherein when particular conditions are met, the controller controls such that the display unit displays grids at certain intervals and performs automatic alignment or manual alignment of the widgets.

6. The mobile terminal of claim 1, wherein when specific conditions are met, the controller controls such that a widget being executed calls a certain widget.

7. The mobile terminal of claim 1, wherein when an external impact on the mobile terminal is detected, the controller outputs at least one of vibration, a sound, and image shaking as a physical factor applied to each widget.

8. The mobile terminal of claim 1, wherein the controller controls such that a widget designated by a user moves along a particular path with time.

9. The mobile terminal of claim 1, wherein a usage limitation period or a usage limitation number of a widget is displayed at one side of the widget.

10. The mobile terminal of claim 9, wherein when a widget limited in its use frequency or a usage period is displayed, different colors are applied to the widget based on the usage reference number or before or after a reference date of the widget.

11. A method for operating a widget of a mobile terminal, the method comprising:
   - coupling two or more widgets according to a user selection;
   - displaying an integrated widget according to the merged widgets; and
   - selectively executing one of functions of the integrated widget according to a user input.

12. The method of claim 11, wherein the integrated widget generated by merging the certain number of widgets is assigned a new function.

13. The method of claim 11, further comprising:
   - when a certain input is detected, displaying individual widgets of the integrated widget or the number of individual widgets of the integrated widget.

14. The method of claim 11, wherein, in displaying the integrated widget, a usage limitation period or a usage limitation number are displayed at one side of the integrated widget.

15. The method of claim 14, wherein, in displaying the integrated widget, different colors are applied to the integrated widget based on the usage limitation number or before and after a usage limitation date of the integrated widget.

16. The method of claim 11, wherein, in displaying the integrated widget, when an external impact applied on the mobile terminal is detected, the controller outputs at least one of vibration, a sound, and image shaking as a physical factor applied to each widget.

17. The method of claim 11, wherein, in displaying the integrated widget, the integrated widget is displayed such that it moves along a particular path with time.