wo 2014/126909 A 1[I NDFV 00O O O 0 AR O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2014/126909 A1

(51

eay)

(22)

(25)
(26)
(30)

1

(72

74

31

21 August 2014 (21.08.2014) WIPOIPCT
International Patent Classification:
HO4L 12/26 (2006.01)
International Application Number:
PCT/US2014/015771

International Filing Date:
11 February 2014 (11.02.2014)

Filing Language: English
Publication Language: English
Priority Data:

61/764,794 14 February 2013 (14.02.2013) US
13/834,491 15 March 2013 (15.03.2013) US

Applicant: AB INITIO TECHNOLOGY LLC [US/US];
201 Spring Street, Lexington, Massachusetts 02421 (US).

Inventors: BUXBAUM, Mark; 32 Brucewood Road, Ac-
ton, Massachusetts 01720 (US). WAKELING, Tim; 11
Abbot Street, Andover, Massachusetts 01810 (US).

Agents: FEIGENBAUM, David L. et al.; Fish & Richard-
son P.C., P.O. Box 1022, Minneapolis, MN 55440-1022

(US).
Designated States (unless otherwise indicated, for every

kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,

(84)

BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:

with international search report (Art. 21(3))

before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

(54) Title: QUEUE MONITORING AND VISUALIZATION

Queue monitoring
submedule
406

" ppplication 17
Lo

Visualization module 150

7 Web

poiting
¢+ submodule
g 408

& ﬁ’ iy

submodule
410

o browser /
414/

.

|

|

|

|

|

|

|

|

|

|

|

I

|
I

. e

‘Application N~ |

L M |

i |

|

|

|

|

I

|

¥

R

Database
412

FIG. 4

(57) Abstract: A method includes receiving information provided by a data processing application during execution of the data pro -
cessing application. The information is indicative of at least one of a source of data for the data processing application and a destina -
tion of data from the data processing application. The method includes dynamically analyzing the information during execution of
the data processing application to identify a queue in communication with the data processing application; and dynamically analyz-
ing the information during execution of the data processing application to identify a relationship between the data processing applic -
ation and the queue, including at least one of identitying that the queue is the source of data for the data processing application and
identifying that the queue is the destination of data from the data processing application.

WO 2014/126909 PCT/US2014/015771

QUEUE MONITORING AND VISUALIZATION

CLAIM OF PRIORITY
This application claims priority to U.S. Patent Application Serial No. 61/764,794,
filed on February 14, 2013, and to U.S. Patent Application Serial No. 13/834,491, filed
March 15, 2013, the entire contents of both of which are hereby incorporated by

reference.

BACKGROUND

This description relates to queue monitoring and visualization, for instance in a
data processing environment.

Enterprises use complex data processing systems, such as data warchousing,
customer relationship management, and data mining, to manage data. In many data
processing systems, data are pulled from many different data sources, such as database
files, operational systems, flat files, the Internet, etc, into a central repository. Often, data
are transformed before being loaded in the data system. Transformation may include
cleansing, integration, and extraction. To keep track of data, its sources, and the
transformations that have happened to the data stored in a data system, metadata can be
used. Metadata (sometimes called “data about data”) are data that describe other data’s
attributes, format, origins, histories, inter-relationships, etc. Metadata management can
play a central role in complex data processing systems.

Sometimes a database user may want to investigate how certain data are derived
from different data sources. For example, a database user may want to know how a
dataset or data object was generated or from which source a dataset or data object was
imported. Tracing a dataset back to sources from which it is derived is called data
lineage tracing (or “upstream data lincage tracing”). Sometimes a database user may
want to investigate how certain datasets have been used (called “downstream data lincage
tracing” or “impact analysis”), for example, which application has read a given dataset.

A database user may also be interested in knowing how a dataset is related to other

WO 2014/126909 PCT/US2014/015771

datasets. For example, a user may want to know if a dataset is modified, what tables will

be affected, etc.

SUMMARY

In a general aspect, a computer-implemented method includes receiving
information provided by a data processing application during execution of the data
processing application. The information is indicative of at least one of a source of data for
the data processing application and a destination of data from the data processing
application. The method includes dynamically analyzing the information during
execution of the data processing application to identify a queue in communication with
the data processing application. The method includes dynamically analyzing the
information during execution of the data processing application to identify a relationship
between the data processing application and the queue, including at least one of
identifying that the queue is the source of data for the data processing application and
identifying that the queue is the destination of data from the data processing application.

Embodiments may include one or more of the following.

The information indicative of at least one of the source of data and the destination
of data includes an identifier of the queue.

The method includes dynamically determining a status of the queue during
execution of the data processing application. In some cases, the method includes
providing a notification based on the status of the queue. In some cases, the status
includes at least one of number of records in the queue and an elapsed time associated
with the queue.

The method includes determining a status of the data processing application.

The method includes receiving an input identifying the queue. In some cases, the
method includes identifying the data processing application based on the processing and
based on the input identifying the queue.

The one or more data processing applications include computation graphs.

The method includes generating a visual representation of the data processing
application, the queue, and the relationships between the data processing application and

the queue. In some cases, the method includes displaying the visual representation on a

WO 2014/126909 PCT/US2014/015771

user interface. In some cases, the visual representation includes a representation of a
status of the queue.

In a general aspect, software stored on a computer-readable medium includes
instructions for causing a computer system to receive information provided by a data
processing application during execution of the data processing application. The
information is indicative of at least one of a source of data for the data processing
application and a destination of data from the data processing application. The software
includes instructions for causing the computer system to dynamically analyze the
information during execution of the data processing application to identify a queue in
communication with the data processing application; and dynamically analyze the
information during execution of the data processing application to identify a relationship
between the data processing application and the queue, including at least one of
identifying that the queue is the source of data for the data processing application and
identifying that the queue is the destination of data from the data processing application.

In a general aspect, a computing system includes an input port configured to
receive information provided by a data processing application during execution of the
data processing application. The the information is indicative of at least one of a source
of data for the data processing application and a destination of data from the data
processing application. The system includes at least one processor configured to
dynamically analyze the information during execution of the data processing application
to identify a queue in communication with the data processing application; and
dynamically analyze the information during execution of the data processing application
to identify a relationship between the data processing application and the queue,
including at least one of identifying that the queue is the source of data for the data
processing application and identifying that the queue is the destination of data from the
data processing application.

In a general aspect, a system includes means for receiving information provided
by a data processing application during execution of the data processing application. The
information is indicative of at least one of a source of data for the data processing
application and a destination of data from the data processing application. The system

includes means for dynamically analyzing the information during execution of the data

WO 2014/126909 PCT/US2014/015771

processing application to identify a queue in communication with the data processing
application; and means for dynamically analyzing the information during execution of the
data processing application to identify a relationship between the data processing
application and the queue, including at least one of identifying that the queue is the
source of data for the data processing application and identifying that the queue is the
destination of data from the data processing application.

In a general aspect, a computer-implemented method includes receiving, from a
data processing application during execution of the data processing application,
information indicative of a relationship between the data processing application and a
queue. The relationship includes at least one of the queue being a source of data for the
data processing application and the queue being a destination of data from the data
processing application. The method includes generating a graphical representation of the
data processing application, the queue, and the relationship between the data processing
application and the queue; and displaying the graphical representation on a user interface
during execution of the data processing application.

Embodiments may include one or more of the following.

The graphical representation includes a first node to represent the data processing
application, a second node to represent the queue, and a connection between the data
processing application and the queue to represent the relationship. In some cases, the
method includes displaying information about the data processing application responsive
to user selection of the first node. In some cases, the method includes displaying
information about the queue responsive to user selection of the second node.

The method includes dynamically determining a dynamic status of the queue
during execution of the data processing system. In some cases, the graphical
representation includes a representation of the status of the queue. In some cases, the
method includes providing a notification based on the status of the queue. In some cases,
the status of the queue includes at least one of a number of records in the first queue and
an elapsed time associated with the first queue.

The method includes dynamically determining a status of the data processing

application during execution of the data processing application. In some cases, the

WO 2014/126909 PCT/US2014/015771

graphical representation includes a representation of the status of the data processing
application.

The method includes receiving, from a plurality of data processing applications,
information indicative of a relationship between each data processing application and at
least one corresponding. Generating a graphical representation includes generating a
graphical representation of the plurality of data processing applications, the plurality of
queues, and the relationships.

Receiving information includes receiving information provided by the data
processing application during execution of the data processing application. The
information is indicative of at least one of a source of data for the data processing
application and a destination of data from the data processing application. Receiving
information includes dynamically analyzing the information during execution of the data
processing application to identify the queue and the relationship.

In a general aspect, software stored on a computer-readable medium includes
instructions for causing a computing system to receive, from a data processing
application during execution of the data processing application, information indicative of
a relationship between the data processing application and a queue. The relationship
includes at least one of the queue being a source of data for the data processing
application and the queue being a destination of data from the data processing
application. The software includes instructions for causing the computing system to
generate a graphical representation of the data processing application, the queue, and the
relationship between the data processing application and the queue; and display the
graphical representation on a user interface during execution of the data processing
application.

In a general aspect, a computing system includes an input port configured to
receive, from a data processing application during execution of the data processing
application, information indicative of a relationship between the data processing
application and a queue. The relationship includes at least one of the queue being a
source of data for the data processing application and the queue being a destination of
data from the data processing application. The computing system includes a processor

configured to generate a graphical representation of the data processing application, the

WO 2014/126909 PCT/US2014/015771

queue, and the relationship between the data processing application and the queue; and
display the graphical representation on a user interface during execution of the data
processing application.

In a general aspect, a computing system includes means for receiving, from a data
processing application during execution of the data processing application, information
indicative of a relationship between the data processing application and a queue. The
relationship includes at least one of the queue being a source of data for the data
processing application and the queue being a destination of data from the data processing
application. The computing system includes means for generating a graphical
representation of the data processing application, the queue, and the relationship between
the data processing application and the queue; and means for displaying the graphical
representation on a user interface during execution of the data processing application.

In a general aspect, a computer-implemented method includes receiving
information provided by a data processing application during execution of the data
processing application. The information is indicative of at least one of a source of data for
the data processing application and a destination of data from the data processing
application. The method includes dynamically analyzing the information during
execution of the data processing application to identify a queue in communication with to
the data processing application and hosted on a third computer system. The method
includes dynamically analyzing the information during execution of the data processing
application to identify a relationship between the data processing application and the
queue, including at least one of identifying that the queue is the source of data for the
data processing application and identifying that the queue is the destination of data from
the data processing application. The method includes generating a graphical
representation of the data processing application, the queue, and the relationship between
the data processing application and the queue; and displaying the graphical representation
on a user interface during execution of the data processing application.

Aspects can have one or more of the following advantages. The approach to
queue monitoring and visualization described herein presents a visual representation of
data processing occurring on one or more disparate computing systems. The visual

representation of relationships between data processing applications and queues can be

WO 2014/126909 PCT/US2014/015771

casy to understand and manipulate. If an error occurs during execution of a job, the status
of the data processing applications and queues involved in processing the job can be

visualized so that the user can understand the nature of the error.

DESCRIPTION OF DRAWINGS
FIG. 1 is a block diagram of a computing system.
FIG. 2 is a diagram of relationships between data processing applications and a
queue.
FIG. 3 is a diagram of a queue.
FIG. 4 is a block diagram of a visualization system.
FIGS. 5-10 are example visual representations of a data processing environment.

FIGS. 11 and 12 are flowcharts.

DESCRIPTION

In a data processing environment, data processing applications perform various
processes on input data, e.g., to analyze or manipulate the data. Data processing
applications in a data processing environment may read input data from a queue and/or
write output data to a queue, which can act as a buffer to control the flow of data between
data processing applications. Relationships between data processing applications and
queues can be automatically and dynamically detected in real time, i.¢., during execution
of the data processing applications. A visual representation can be generated that depicts
the data processing applications, the queues, and their relationships in real time, i.¢.,
during execution of the data processing application. Real time status information
indicative of the performance of the data processing applications and/or the queues can
also be dynamically detected and displayed in the visual representation.

FIG. 1 shows an example data processing system 100 in which the monitoring and
visualization techniques described herein can be used. The system 100 includes a data
source 102 that may include one or more sources of data such as storage devices or
connections to online data streams, each of which may store or provide data in any of a
variety of formats (e.g., database tables, spreadsheet files, flat text files, or a native
format used by a mainframe). An execution environment 104 includes a pre-processing

module 106 and an execution module 112. The execution environment 104 may be

WO 2014/126909 PCT/US2014/015771

hosted on a computer system 130, for example, on one or more general-purpose
computers under the control of a suitable operating system, such as a version of the
UNIX operating system. For example, the execution environment 104 can include a
multiple-node parallel computing environment including a configuration of computer
systems using multiple central processing units (CPUs) or processor cores, either local
(e.g., multiprocessor systems such as symmetric multi-processing (SMP) computers), or
locally distributed (e.g., multiple processors coupled as clusters or massively parallel
processing (MPP) systems, or remote, or remotely distributed (e.g., multiple processors
coupled via a local area network (LAN) and/or wide-area network (WAN)), or any
combination thereof.

The pre-processing module 106 reads data from the data source 102. Storage
devices providing the data source 102 may be local to the execution environment 104, for
example, being stored on a storage medium connected to a computer hosting the
execution environment 104 (e.g., hard drive 108), or may be remote to the execution
environment 104, for example, being hosted on a remote system (e.g., mainframe 110) in
communication with a computer hosting the execution environment 104, over a remote
connection (e.g., provided by a cloud computing infrastructure).

The execution module 112 processes the data read from the data source by the
pre-processing module 106. The execution module 112 includes one or more data
processing applications to execute jobs, i.e., to perform particular processes on the data.
Metadata associated with the data processing applications of the execution module 112
can be stored in a data repository 152, such as a database, a data table, or another type of
data structure. The resulting output data 114 from the execution module 112 may be
stored back in the data source 102 or in a data storage system 116 accessible to the
execution environment 104, or otherwise used.

The data processing applications of the execution module 112 may read data from
and/or write data to one or more queues 154. Queues 154 can be considered data
structures that provide a mechanism to manage the exchange of data between data
processing applications. Metadata associated with a data processing application (e.g.,
stored in the repository 152) identifies the queue(s) from which the data processing

application reads data (also referred to as “subscribing”) and to which the data processing

WO 2014/126909 PCT/US2014/015771

application writes data (also referred to as “publishing”). In some examples, metadata
associated with a queue 154 may identify the data processing applications publishing
and/or subscribing to that queue. In the example shown, the queues 154 are hosted on a
computer system 132 different from the computer system 130 hosting the execution
environment 104. In some examples, the queues 154 may be hosted on the same
computer system as the execution environment 104.

The data storage system 116 may be accessible to a development environment
118 in which a developer 120 is able to configure the data processing applications and/or
the queues. The development environment 118 is, in some implementations, a system for
developing applications as dataflow graphs that include vertices (representing data
processing components or datasets) connected by directed links (representing flows of
work elements, i.e., data) between the vertices. For example, such an environment is
described in more detail in U.S. Publication No. 2007/0011668, titled “Managing
Parameters for Graph-Based Applications,” incorporated herein by reference. A system
for executing such graph-based computations is described in U.S. Patent 5,966,072, titled
“EXECUTING COMPUTATIONS EXPRESSED AS GRAPHS,” incorporated herein by
reference. Dataflow graphs made in accordance with this system provide methods for
getting information into and out of individual processes represented by graph
components, for moving information between the processes, and for defining a running
order for the processes. This system includes algorithms that choose interprocess
communication methods from any available methods (for example, communication paths
according to the links of the graph can use TCP/IP or UNIX domain sockets, or use
shared memory to pass data between the processes).

A visualization module 150 generates a visual representation of the data
processing applications executed by the execution module 112 and the associated queues
154 (referred to herein as a “data processing environment”) during execution of the data
processing applications. The visual representation may be a graphical representation, a
tabular representation, or another type of representation. The visual representation may
include, for instance, representations of data processing applications, queues,
relationships between data processing applications and queues, status information about

data processing applications and/or queues, or other information. In the example shown,

WO 2014/126909 PCT/US2014/015771

the visualization module 150 is are hosted on a computer system 134 different from the
computer system 130 hosting the execution environment 104 and the computer system
132 hosting the queues 154. In some examples, the visualization module 150 may be
hosted on the same computer system as the execution environment 104 and/or the same
computer system as the queues 154.

To generate a visual representation of a data processing environment, the
metadata associated with the data processing applications (e.g., the metadata stored in the
data repository 152) can be accessed to dynamically identify relationships between the
data processing applications and the queues during execution of the data processing
applications. For instance, the queues to which one or more of the data processing
applications publish and/or subscribe can be identified using the metadata associated with
the data processing applications. In some examples, metadata associated with the queues
can also be accessed, such as queue metadata stored in the data repository 152 and/or
queue data stored in a queue interface. Based on the identified relationships, a visual
representation of the data processing environment can be generated for display on a user
interface 160. For instance, in a graphical representation, nodes may be used to represent
data processing applications and queues, and lines connecting nodes may be used to
represent relationships between the data processing applications and queues. In a tabular
representation, rows and columns of data may be used to represent information related to
the data processing applications and queues.

The visual representation of the data processing environment may also include
dynamically updated status information about the data processing applications and/or
queues. In some examples, external input, e.g., from a user, may identify which data
processing applications and/or queues to monitor. In some examples, some or all of the
data processing applications executed by the execution module 112 and their associated
queues may be automatically indicated for monitoring. In some examples, identifiers of
data processing applications and/or queues to be monitored may be stored in a monitoring
database. Metadata associated with the data processing applications and/or queues
identified in the monitoring database can be accessed to determine status information.

Referring to Fig. 2, in an example of a relationship between data processing

applications and queues, a first data processing application 200 publishes data to a queue

-10-

WO 2014/126909 PCT/US2014/015771

202. Two downstream data processing applications 204 and 206 subscribe to the queue
202, for example, to be provided data from the queue. The relationship between the
queue 202 and the first data processing application 200 (i.e., the first data processing
application 200 publishes to the queue 202) can be determined by an analysis of metadata
associated with the data processing application 200, the queue 202, both the data
processing application and the queue, etc. For instance, the data processing application
200 may have associated metadata that specifies that the data processing application 200
publishes to queue 202. The relationship between the queue 202 and the downstream data
processing applications 204, 206 (i.c., the downstream data processing applications 204,
206 subscribe to the queue 202) can likewise be determined by an analysis of metadata
associated with the data processing applications 204, 206, the queue 202, both the data
processing application and the queue, etc.

Queues can act as buffers to control the flow of data from an upstream data
processing application to a downstream data processing application. For instance, if the
first data processing application 200 publishes data to the queue 202 faster than the
downstream data processing applications 204, 206 can read data from the queue 202, the
data can accumulate in the queue 202 until the downstream data processing applications
204, 206 are ready to read the data. Queues may also substantially maintain the order of
incoming and outgoing data records. For instance, in a first-in-first-out queue, the first
data record published to the queue can be the first record to emerge when the queue is
read. When there are multiple data processing applications publishing or subscribing to a
single queue, the queue can help ensure that data records are properly collected and
distributed. For instance, the queue 202 can ensures that data published to the queue 202
by the first data processing application 200 is distributed appropriately to the downstream
data processing applications 204, 206.

A queue may be considered a data structure that may include a directory or
multidirectory in a file system. The data in the queue, which may be compressed data,
resides in the queue directory on disk. As data is published to the queue, the data records
are landed to disk in the queue directory. For instance, referring to Fig. 3, a queue 300 is
embodied by a directory /queue A in a file system. Data records 302 received from a

publishing data processing application reside in the directory /queue A.

-11-

WO 2014/126909 PCT/US2014/015771

Each queue directory may have one or more subdirectories 304, 306, also referred
to as subscribers. Each subscriber 304, 306 links to data records in the directory
/queue A that are to be provided to a corresponding data processing application 308, 310,
respectively, that subscribes to the queue 300. As a subscribing data processing
application consumes a data record, a pointer 312, 314, also referred to as a cursor, is
moved in the associated subscriber subdirectory 304, 306, respectively. The cursor serves
as a kind of bookmark that points to the next data record to be provided to the subscribing
data processing application 308, 310 and shows how much of the queued data the
corresponding subscribing data processing application has processed. Each subscriber
directory 304, 306 is assigned its own cursor 312, 314 because each subscribing data
processing application 308, 310 may consume data records at its own rate. Thus, for
instance, in the illustrated example, the data processing application 308 corresponding to
the subscriber subdirectory 304 has processed through data record 5, as indicated by the
cursor 312; and the data processing application 310 corresponding to the subscriber
subdirectory 306 has processed through data record 6, as indicated by the cursor 314. The
cursor 312, 314 may be used as a recovery mechanism: if a subscribing data processing
application fails, the position of the corresponding cursor can be used to resume
processing from the last checkpoint or processing phase. After all of the subscribers to a
queue have processed a particular data record, the data record may be deleted.

During the commit portion of a write transaction, a publishing data processing
application may finish writing a data file to the queue directory on disk. Each data file
may contain one or more data records. Each data record contains a specific amount of
data in bytes. In some cases, the queue data may be compressed, in which case the
number of bytes contained in the records may be greater than the number of bytes stored
on disk.

A variety of performance metrics can be used to monitor the status of queues
and/or data processing applications. For instance, example performance metrics that can
be used to monitor the status of a queue may include, but are not limited to, one or more
of the following:

e MAX DISK SPACE. The number of bytes on disk for the subscriber using the most
disk space.

- 12-

WO 2014/126909 PCT/US2014/015771

MAX FILES. The number of files for the subscriber having the most files remaining
to process.

MAX RECORDS. The number of records for the subscriber having the most records
remaining to process.

MAX RECORDS SPACE. The number of bytes on disk consumed by the records
for the subscriber having the most records remaining to process. If the queue data is
compressed, this value may be different than the MAX DISK SPACE value.

MAX READ ELAPSED. The time (e.g., in seconds) since data has been read from
the queue by the subscriber that has waited the longest to read that data.

WRITE _ELAPSED. The time (e.g., in seconds) since data was last written to the
queue.

MAX SKEW. The ratio of the largest partition to the smallest partition for the

subscriber with the largest such ratio, ¢.g., expressed as a percentage.

Example performance metrics that can be used to monitor the status of a data processing

application may include, but are not limited to, one or more of the following:

DISK SPACE. The number of bytes left on disk for the subscriber to process.
FILES. The number of files left on disk for the subscriber to process.

RECORDS. The number of records left on disk for the subscriber to process.
RECORDS SPACE. The number of uncompressed bytes in the records left on disk
for the subscriber to process. If the queue data is compressed, this value may be
different than the MAX DISK SPACE value.

READ ELAPSED. The elapsed time (e.g., in seconds) since the subscribing data
processing application last read data from the queue.

SKEW. The ratio of the largest partition to the smallest partition for the subscriber,
e.g., expressed as a percentage.

A visual representation of the dynamically detected relationships between data

processing applications and queues (i.e., the data processing environment) can be

generated and presented on a user interface. The visual representation may be interactive,

e.g., provided in a web browser, such that a user may browse the data processing

applications and queues, create new and/or alter existing data processing applications,

specify parameters for data processing applications, schedule jobs, and perform other

- 13-

WO 2014/126909 PCT/US2014/015771

actions. Form-based browser screens may be generated for a user to search for and view
data processing applications and queues and information about data processing
applications and queues. Various graphical elements may be utilized, for example,
Relationships may be represented as graphical lines connecting graphical nodes that
represent metadata objects or groupings of metadata objects.

The visual representation of a data processing environment may provide
information about the status of queues and/or data processing applications included in the
visual representation. For instance, the visual representation may include indications
about whether a queue has active publishers, active subscribers, both, neither, etc. The
visual representation may include indications about whether a data processing application
is a publisher and/or a subscriber to one or more queues. Warnings, errors, and other
runtime status indicators for queues and or data processing applications can be displayed.
Representations of data processing jobs publishing to a queue, subscribing to a queue,
etc., may also be displayed. Performance metrics, such as those listed above, may be
displayed graphically or in a table format. In some arrangements, performance metric
thresholds can be established for queues and/or data processing applications such that
alerts (e.g., alerts within the visual representation, audio alerts, or other types of alerts)
can be provided if one or more associated performance metrics violates its corresponding
threshold.

Referring to Fig. 4, the visualization module 150 (see also Fig. 1) generates a
visual representation of a data processing environment that includes, for example, one or
more queues 402 and one or more data processing applications 404.

A queue monitoring submodule 406 queries the interface of each queue 402
(identified as queues 1-N) in the data processing environment to determine the status of
each queue 402. The queue monitoring submodule 406 may query corresponding
interfaces of the queues periodically, e.g., every ten minutes. Status information may
include, for instance, one or more of the performance metrics listed above. The queue
monitoring submodule 406 provides data about the status of each queue 402 to a
reporting submodule 408.

In some examples, data processing applications announce when they read from or

write to a queue, e.g., via metadata associated with the data processing applications. Data

- 14-

WO 2014/126909 PCT/US2014/015771

processing applications 404 (identified as data processing applications 1-N) provide
metadata indicative of the identity of the queues they read from or write to along with
status and tracking metadata to the reporting submodule 408. In some examples, the
reporting submodule 408 accesses the metadata associated with the data processing
applications 404 to identify queues and to determine status and tracking metadata.

The reporting submodule 408 aggregates information from the data processing
applications 404 and the queue monitoring module 406 and forwards the aggregated
information to a visualization submodule 410. The visualization submodule 410 stores
the received data about the queues 402 and the data processing applications 404 of the
data processing environment in a database 412. The visualization submodule 410
correlates information about the queues 402 and information about the data processing
applications 404 to identify relationships between individual queues 402 and individual
data processing applications 404 (e.g., to identify which data processing applications
publish to and subscribe to which queues). Based on the correlations between queues 402
and data processing applications 404, the visualization submodule 410 generates a
representation of the data processing environment. The representation may represent,
e.g., the relationships between the queues 402 and the data processing applications 404,
the status of the queues and/or the data processing applications, and/or other information.
The visualization submodule 410 typically provides the representation to a display
interface, such as a web browser 414, for rendering as a visual representation, such as a
graphical representation or a tabular representation.

Fig. 5 shows an example of a graphical representation 500 (also referred to as a
queue connections diagram) of a data processing environment. The queue connections
diagram 500 shows schematically the connections between data processing applications
and queues, which are represented as nodes. The queue connections diagram 500 depicts
a data processing application 502 (labeled “publishl.pset”) publishing (writing) to a
queue 504 (labeled “testqueue”). The queue 504 has two subscribers 506, 508 (a first
labeled “one” and a second labeled “rwo”). Each subscriber 506, 508 corresponds to a
data processing application 510 (labeled “subscribel.psef’) and 512 (labeled
“subscribe2.pset”), respectively, that is reading from (subscribing to) the queue 504

(labeled “testqueuel’). The data processing application 510 (labeled “subscribel.pset”)

- 15-

WO 2014/126909 PCT/US2014/015771

publishes to a queue 514 (labeled “testqueue2’), which has a subscriber (not shown)

corresponding to a further data processing application 516 (labeled “subscribe3.pset”).

The data processing application 512 (labeled subscribe2.pset”) publishes to a queue 518

(labeled “testqueue3’), which has a subscriber 519 (labeled “one”) corresponding to a

further data processing application 520 (labeled (subscribe4.pset”).

A queue connections diagram, such as the queue connections diagram 500,
includes information about the queues and data processing applications depicted in the
queue connections diagram. In some examples, a user may select the information to be
displayed in the queue connections diagram. For instance, example information included
in a queue connections diagram may include some or all of the following information:

e The name of each queue depicted in the queue connections diagram. In some
examples, the queue name may be set by default to be the same as the name of the
directory in which the queue was created.

e Publisher and subscriber activity. Each queue has an input and an output connected to
one or more publishers and one or more subscribers, respectively. An indicator, such
as an icon or a color indicator, may indicate whether each publisher or subscriber is
running. For instance, if one or more publishers to a queue are running, the input side
of the queue may appear in green. If one or more subscribers to a queue are running,
the output side of the queue may appear in green.

¢ Quecue or data processing application issues. Issues, such as errors or alerts,
associated with a queue or a data processing application, may be depicted by
indicators, such as icons, color indicators, or other types of indicators. For instance,
an indicator may indicate the number of issues associated with a queue or a data
processing application, the degree of severity of the most severe issue, or another
indication of an issue.

e Performance metrics, such as the performance metrics listed above. For instance, in
the example shown, a number representative of the performance metric
MAX RECORDS is shown. A large number of maximum records may suggest that
data records are accumulating in the queue, which may indicate that there is a

problem with a subscribing job.

-16-

WO 2014/126909 PCT/US2014/015771

e Subscribers. The name of each subscriber to a queue may be displayed along with the
number of records remaining for each subscriber, issues associated with each
subscriber, or other information associated with subscribers. The subscriber name
may be an active link such that selecting (e.g., by clicking, tapping, using a pointing
device such as a mouse to hover over, etc.) a subscriber name may open a subscriber
dialog box with further information about the subscriber, as described below.

e Publishing jobs. The name, status, or other information for each publishing job
associated with a queue may be displayed. The job name may be an active link such
that selecting (e.g., by clicking, tapping, using a pointing device such as a mouse to
hover over, etc.) a job name may open a job dialog box with further information
about the job, as described below.

In the queue connections diagram 500, the status of the two subscribers 506, 508
of the queue 504 (labeled “festqueuel’”) is shown. The subscriber 506 (labeled “one”
drained the queue such that there are no records left in the queue 504 (labeled
“testqueuel”) for subscriber 506 (labeled “one”) (depicted as “0 recs”). A success icon
510a (e.g., a blue dot, a green dot, or another icon indicative of success) indicates that the
data processing application 510 (labeled “subscribel pset”) corresponding to the
subscriber 506 (labeled “one”) ran successfully. The subscriber 508 (labeled “two’) failed
to drain the queue 504 (labeled “testqueuel”) and there are 398 records remaining in the
queue 504 (labeled “testqueuel”) for subscriber 508 (labeled “two”; depicted as “398
recs”). A failure icon 512a (e.g., a red dot, a black dot, or another icon indicative of
failure) indicates that the data processing application 512 (labeled “subscribe2.pset”)
corresponding to the subscriber 508 (labeled (#wo”) failed to run correctly. An alert icon
522 indicates that an error occurred during the execution of the data processing
application 512 (labeled “subscribe2.pset”).

Fig. 6 shows an example of a tabular representation 600 (also referred to as a
queue grid view) of the same data processing environment depicted in the graphical
representation 500 of Fig. 5. The queue grid view may include some or all of the same
information included in the queue connections view. One row of data corresponds to each
monitored queue; columns provide information for the corresponding queue, such as,

e.g., its connections to publishers and subscribers; status information for the queue, its

-17-

WO 2014/126909 PCT/US2014/015771

subscribers, and/or its publishers; status information for jobs; and other information. The

queue grid view may be useful, e.g., to visualize data processing environments having

many data processing applications and/or many queues. The queue grid view also enables
sorting, searching, and scaling operations.

A queue grid view, such as the queue grid view 600, includes information about
the queues and data processing applications included in the queue grid view. In some
examples, a user may select the information to be displayed in the queue grid view. For
instance, example information included in a queue grid view may include some or all of
the following information:

e The name of each queue depicted in the queue grid view.

e The host with which each queue is associated. For instance, the name of the
filesystem run host with which each queue is associated may be listed.

e Quecue or data processing application status. Issues, such as errors or alerts, associated
with a queue or a data processing application, may be depicted by indicators, such as
icons, color indicators, or other type of indicator. For instance, an indicator may
indicate the number of issues associated with a queue or a data processing
application, the degree of severity of the most severe issue, or another indication of an
issue.

e Performance metrics, such as the performance metrics listed above.

e Last job. The name of the last job to have read data from each subscriber. The job
name may be an active link such that selecting (e.g., by clicking, tapping, using a
pointing device such as a mouse to hover over, etc.) a job name may open a job
dialog box with further information about the job.

e Job status. The status of the currently connected job, if any exists; or the status of the
last job to have been connected, if no job currently exists.

e Job issues. Issues associated with the current or last job.

e Associated system, such as an associated operating system.

Fig. 7 shows a queue dialog box 700 showing details about a particular queue
(also referred to as a queue details view), in this example the queue 504 (labeled
“testqueuel”). The dialog box 700 for a particular queue can be obtained by selecting on

the queue name from the queue connections diagram or from the queue grid view. The

- 18-

WO 2014/126909 PCT/US2014/015771

queue details view may provide some or all of the information that is displayed in the

queue connections diagram and/or the queue grid view, and may also provide some or all

of the following additional information about the particular queue:

e Directory. The location in the host file system where the queue was created.

e System. The execution environment (e.g., execution environment 104 in Fig. 1) to
which the queue is assigned.

e Type of queue. Various types of queues are possible, such as, e.g., a standard queue
or a recycle queue

e Version. Software version of the queue.

e Partitions. Number of partitions in the queue multi-directory.

o Attributes. A list of the attributes assigned to the queue at the time of its creation.
Attributes may include, e.g., whether the queue data is compressed, whether the
queue includes empty file to mark checkpoints or compute points in which no data
was received, or other attributes.

¢ Notification groups. The names of any warning and error notification groups with
which the queue is associated.

Fig. 8 shows a tabular view 800 showing details about a particular queue, in this
example the queue 504. The tabular view 800 for a particular queue can be obtained by
selecting the “Details” link in the queue details view 700. The tabular view 800 provides
information about the queue, such as some or all of the information listed above. For
example, the tabular view 800 may include information about publishers and subscribers
to the queue, metrics for the queue, etc. For instance, in the depicted example, it can be
seen that the data processing application 512 (labeled “subscribe2.pset’) associated with
the subscriber 508 (labeled “fwo”) 1s in error. In this example, as was shown in Fig. 5, the
data processing application 512 (labeled “subscribe.pser”) failed to run correctly and the
subscriber 508 (labeled “two”) failed to drain the queue 504 (labeled “testqueuel™).

Fig. 9 shows a job dialog box 900 showing information about a job corresponding
to a particular subscriber (referred to as a job details view). The job dialog box 900 can
be obtained by selecting the name of the subscriber, e.g., from the queue connections
view 500, the queue grid view 600, or the tabular view 800. For instance, in the depicted

example, the dialog box 900 shows information about the data processing application 513

-19-

WO 2014/126909 PCT/US2014/015771

(labeled “subscribe2.pset’) corresponding to the subscriber 508 (labeled “two ™). The
dialog box 900 shows information including, ¢.g., system details for the data processing
application, status indicators, performance statistics, and other types of information for
the data processing application.

Fig. 10 shows a tabular view 10 showing details about queues associated with a
particular data processing application, in this case the data processing application 512
(labeled “subscribe2.pset”). The tabular view 10 for a particular data processing
application can be obtained by selecting the “Details” link in the data processing
application details view 900. For instance, in the depicted example, the tabular view 10
shows that the data processing application 512 (labeled “subscribe2.pset’”) reads from the
queue 504 (labeled “testqueuel’) and writes to the queue 518 (labeled “festqueue3’) 518.

In some cases, a data processing environment may include queues and/or data
processing applications that include restricted information. This restricted information
may not be displayed in a visual representation of the data processing environment. For
instance, a user may have access to a first system but not to a second system. If jobs from
both the first system and the second system subscribe to a particular queue that is
displayed on a visual representation to the user, no information may be displayed about
the jobs from the second system that subscribe to the queue.

Referring to Fig. 11, in an example process, information provided by a data
processing application during execution of the data processing application is received
(50). The information is indicative of at least one of a source of data for the data
processing application and a destination of data for the data processing application. For
instance, the information may identify a queue.

The information is dynamically analyzed during execution of the data processing
application to identify a queue in communication with the data processing application
(52). The information is dynamically analyzed during execution of the data processing
application to identify a relationship between the data processing application and the
queue is identified (54). For instance, the queue may be the source of data for the data
processing application (i.e., the data processing application subscribes to the queue). The
queue may be the destination of data from the data processing application (i.e., the data

processing application publishes to the queue).

-20-

WO 2014/126909 PCT/US2014/015771

In some examples, a status of the queue and/or the data processing application
may be determined, e.g., dynamically determined during execution of the data processing
application.

Referring to Fig. 12, in an example process, information indicative of a
relationship between a data processing application and a queue is received from a data
processing application during execution of the data processing applicaiton (60). The
relationship includes at least one of the queue being a source of data for the data
processing application and the queue being a destination of data from the data processing
application. In some cases, information may be received indicative of relationships
among a plurality of data processing applications and a plurality of queues.

A graphical representation of the data processing application, the queue, and the
relationship between the data processing application and the queue is generated (62) and
the graphical representation is displayed on a user interface during execution of the data
processing application (64). In some cases, the graphical representation may include a
first node to represent the data processing application, a second node to represent the
queue, and a connection between the data processing application and the queue to
represent the relationship. In some cases, a status of the queue can be determined and a
representation of the status can be included in the graphical representation, or a
notification can be provided based on the status.

In one example implementation, the queue monitoring and visualization
techniques described herein can be applied to the processing of telephone records for
billing purposes. Large numbers of telephone records can be processed by a billing
system to generate telephone bills. The ability to visualize the occurrence and location of
potential errors during processing can help to ensure accuracy and efficiency of the
billing process.

The queue monitoring and visualization techniques described above can be
implemented using a computing system executing suitable software. For example, the
software may include procedures in one or more computer programs that execute on one
or more programmed or programmable computing system (which may be of various
architectures such as distributed, client/server, or grid) each including at least one

processor, at least one data storage system (including volatile and/or non-volatile memory

-21-

WO 2014/126909 PCT/US2014/015771

and/or storage elements), at least one user interface (for receiving input using at least one
input device or port, and for providing output using at least one output device or port).
The software may include one or more modules of a larger program, for example, that
provides services related to the design, configuration, and execution of dataflow graphs.
The modules of the program (e.g., clements of a dataflow graph) can be implemented as
data structures or other organized data conforming to a data model stored in a data
repository.

The software may be provided on a tangible, non-transitory medium, such as a
CD-ROM or other computer-readable medium (e.g., readable by a general or special
purpose computing system or device), or delivered (e.g., encoded in a propagated signal)
over a communication medium of a network to a tangible, non-transitory medium of a
computing system where it is executed. Some or all of the processing may be performed
on a special purpose computer, or using special-purpose hardware, such as coprocessors
or field-programmable gate arrays (FPGAs) or dedicated, application-specific integrated
circuits (ASICs). The processing may be implemented in a distributed manner in which
different parts of the computation specified by the software are performed by different
computing elements. Each such computer program is preferably stored on or
downloaded to a computer-readable storage medium (e.g., solid state memory or media,
or magnetic or optical media) of a storage device accessible by a general or special
purpose programmable computer, for configuring and operating the computer when the
storage device medium is read by the computer to perform the processing described
herein. The inventive system may also be considered to be implemented as a tangible,
non-transitory medium, configured with a computer program, where the medium so
configured causes a computer to operate in a specific and predefined manner to perform
one or more of the processing steps described herein.

A number of embodiments of the invention have been described. Nevertheless, is to be
understood that the foregoing description is intended to illustrate and not to limit the
scope of the invention, which is defined by the scope of the following claims.
Accordingly, other embodiments are also within the scope of the following claims. For
example, various modifications may be made without departing from the scope of the

invention. Additionally, some of the steps described above may be order independent,

-0

WO 2014/126909 PCT/US2014/015771

and thus can be performed in an order different from that described.

-23-

WO 2014/126909 PCT/US2014/015771

What 1s claimed is:

1. A computer-implemented method including:
receiving information provided by a data processing application during execution
of the data processing application, wherein the information is indicative
of at least one of a source of data for the data processing application and a

destination of data from the data processing application;

dynamically analyzing the information during execution of the data processing
application to identify a queue in communication with the data processing

application; and

dynamically analyzing the information during execution of the data processing
application to identify a relationship between the data processing
application and the queue, including at least one of identifying that the
queue is the source of data for the data processing application and
identifying that the queue is the destination of data from the data

processing application.

2. The computer-implemented method of claim 1, wherein the information
indicative of at least one of the source of data and the destination of data includes an

identifier of the queue.

3. The computer-implemented method of claim 1, including dynamically

determining a status of the queue during execution of the data processing application.

4. The computer-implemented method of claim 3, including providing a notification

based on the status of the queue.

5. The computer-implemented method of claim 3, wherein the status includes at
least one of number of records in the queue and an elapsed time associated with the

queue.

-24-

WO 2014/126909 PCT/US2014/015771

6. The computer-implemented method of claim 1, including determining a status of

the data processing application.

7. The computer-implemented method of claim 1, including receiving an input
identifying the queue.
8. The computer-implemented method of claim 7, including identifying the data

processing application based on the processing and based on the input identifying the

queue.

9. The computer-implemented method of claim 1, wherein the one or more data

processing applications include computation graphs.

10. The computer-implemented method of claim 1, including generating a visual
representation of the data processing application, the queue, and the relationships

between the data processing application and the queue.

11. The computer-implemented method of claim 10, including displaying the visual

representation on a user interface.

12. The computer-implemented method of claim 10, wherein the visual representation

includes a representation of a status of the queue.

13. Software stored on a computer-readable medium, the software including

instructions for causing a computer system to:

receive information provided by a data processing application during execution of
the data processing application, wherein the information is indicative of at
least one of a source of data for the data processing application and a

destination of data from the data processing application;

-25-

WO 2014/126909 PCT/US2014/015771

dynamically analyze the information during execution of the data processing
application to identify a queue in communication with the data processing

application; and

dynamically analyze the information during execution of the data processing
application to identify a relationship between the data processing
application and the queue, including at least one of identifying that the
queue is the source of data for the data processing application and
identifying that the queue is the destination of data from the data

processing application.

14. A computing system including:

an input port configured to receive information provided by a data processing
application during execution of the data processing application, wherein
the information is indicative of at least one of a source of data for the data
processing application and a destination of data from the data processing

application; and
at least one processor configured to:

dynamically analyze the information during execution of the data
processing application to identify a queue in communication with

the data processing application; and

dynamically analyze the information during execution of the data
processing application to identify a relationship between the data
processing application and the queue, including at least one of
identifying that the queue is the source of data for the data
processing application and identifying that the queue is the

destination of data from the data processing application.

-26-

WO 2014/126909 PCT/US2014/015771

15. A computing system including:

means for receiving information provided by a data processing application
during execution of the data processing application, wherein the
information is indicative of at least one of a source of data for the
data processing application and a destination of data from the data

processing application;

means for dynamically analyzing the information during execution of the
data processing application to identify a queue in communication

with the data processing application; and

means for dynamically analyzing the information during execution of the
data processing application to identify a relationship between the
data processing application and the queue, including at least one of
identifying that the queue is the source of data for the data
processing application and identifying that the queue is the

destination of data from the data processing application.

16. A computer-implemented method including:

receiving, from a data processing application during execution of the data
processing application, information indicative of a relationship between
the data processing application and a queue, wherein the relationship
includes at least one of the queue being a source of data for the data
processing application and the queue being a destination of data from the

data processing application;

generating a graphical representation of the data processing application, the
queue, and the relationship between the data processing application and

the queue; and

displaying the graphical representation on a user interface during execution of the

data processing application.

-27-

WO 2014/126909 PCT/US2014/015771

17. The computer-implemented method of claim 16, wherein the graphical
representation includes a first node to represent the data processing application, a second
node to represent the queue, and a connection between the data processing application

and the queue to represent the relationship.

18. The computer-implemented method of claim 17, including displaying information

about the data processing application responsive to user selection of the first node.

19. The computer-implemented method of claim 17, including displaying information

about the queue responsive to user selection of the second node.

20. The computer-implemented method of claim 16, including dynamically
determining a dynamic status of the queue during execution of the data processing

System.

21. The computer-implemented method of claim 20, wherein the graphical

representation includes a representation of the status of the queue.

22. The computer-implemented method of claim 20, including providing a

notification based on the status of the queue.

23. The computer-implemented method of claim 20, wherein the status of the queue
includes at least one of a number of records in the first queue and an elapsed time

associated with the first queue.

24. The computer-implemented method of claim 16, including dynamically
determining a status of the data processing application during execution of the data

processing application.

-08-

WO 2014/126909 PCT/US2014/015771

25. The computer-implemented method of claim 24, wherein the graphical

representation includes a representation of the status of the data processing application.

26. The computer-implemented method of claim 16, including receiving, from a
plurality of data processing applications, information indicative of a relationship between

cach data processing application and at least one corresponding; and

wherein generating a graphical representation includes generating a graphical
representation of the plurality of data processing applications, the plurality

of queues, and the relationships.

27. The computer-implemented method of claim 16, wherein receiving information

includes:

receiving information provided by the data processing application during
execution of the data processing application, wherein the information is
indicative of at least one of a source of data for the data processing
application and a destination of data from the data processing application;

and

dynamically analyzing the information during execution of the data processing

application to identify the queue and the relationship.

28. Software stored on a computer-readable medium, the software including

instructions for causing a computing system to:

receive, from a data processing application during execution of the data
processing application, information indicative of a relationship between
the data processing application and a queue, wherein the relationship
includes at least one of the queue being a source of data for the data
processing application and the queue being a destination of data from the

data processing application;

-20.

WO 2014/126909 PCT/US2014/015771

generate a graphical representation of the data processing application, the queue,
and the relationship between the data processing application and the

queue; and

display the graphical representation on a user interface during execution of the

data processing application.

29. A computing system including:

an input port configured to receive, from a data processing application during
execution of the data processing application, information indicative of a
relationship between the data processing application and a queue, wherein
the relationship includes at least one of the queue being a source of data
for the data processing application and the queue being a destination of

data from the data processing application; and
a processor configured to:

generate a graphical representation of the data processing application, the
queue, and the relationship between the data processing application

and the queue; and

display the graphical representation on a user interface during execution of

the data processing application.

30. A computing system including:

means for receiving, from a data processing application during execution of the
data processing application, information indicative of a relationship
between the data processing application and a queue, wherein the
relationship includes at least one of the queue being a source of data for
the data processing application and the queue being a destination of data

from the data processing application;

-30-

WO 2014/126909 PCT/US2014/015771

31.

means for generating a graphical representation of the data processing application,
the queue, and the relationship between the data processing application

and the queue; and

means for displaying the graphical representation on a user interface during

execution of the data processing application.

A computer-implemented method including:

receiving information provided by a data processing application during execution
of the data processing application, wherein the information is indicative
of at least one of a source of data for the data processing application and a

destination of data from the data processing application;

dynamically analyzing the information during execution of the data processing
application to identify a queue in communication with to the data

processing application and hosted on a third computer system;

dynamically analyzing the information during execution of the data processing
application to identify a relationship between the data processing
application and the queue, including at least one of identifying that the
queue is the source of data for the data processing application and
identifying that the queue is the destination of data from the data

processing application;

generating a graphical representation of the data processing application, the
queue, and the relationship between the data processing application and

the queue; and

displaying the graphical representation on a user interface during execution of the

data processing application.

-31-

PCT/US2014/015771

WO 2014/126909

1/11

¥ST S3N3N0

T Sl

YOT LNINWNOYIANI NOLLNA2IX3

Zit

A o ™~ -@d‘ﬂ])}
251 otT
AHOLISOdd I1NAOW - I1NAOW il
e T NOILNO3IX3 "§8I00Ud-IHd s
///,fi[‘ o e
_ Z0l /
05T —-— ,.
it T
31NAOW
NOILYZITYNSIA ADVHOLS VIY INTFWNOHIANT [
[e ININGO13A3A N
- o _
. - 0z}
09T \ 9Ll

WO 2014/126909 PCT/US2014/015771
2111

%,
%

206 204

Fig. 2

WO 2014/126909 PCT/US2014/015771
3/11

Application 308
Application 310

304

W
e

3
o
[ap}

fopnin A

Fig. 3

ety

%,
%,

%,
%,
%,

312 =]

302,

PCT/US2014/015771

4/11

WO 2014/126909

¥ 'Ol

\—r——"~ """ """"”"""=""”"”""”""”7
_ - Ty
: oy *
| aseqeleq |
f e [
I ~— e I
_ v | R
_ “ T pop
‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ : v S | |~ N uoneoyddy |
/b /o oLY 807 P .
/ 1esmolq \m ““““““ " ““““““““ sjnpowgns = ~ sinpowqns \/ " .
/ aeMm / | UOHBZIBNSIA Buipoday Y .
/ I m - P~y o \
| TN 1
| | b uoeoyddy |
_ [-
| |
| 90¥ “
_ ~ enpowgns _
| - Buuopuow snany |
_ !
| (ST 9|npoUI UoIRZIENSIA o f
be o o e e e e o o s \m. e o o o e 4
/
y
/ /,
wr \ozop
N anany T anany
L N N

WO 2014/126909

500

5/11

518

519

RIS

510

e

510a

PCT/US2014/015771

Fig. 5

WO 2014/126909 PCT/US2014/015771

6/11

Fig. 6

G
¢
&
el

600

PCT/US2014/015771

WO 2014/126909

7/11

DA

L

‘314

ISIAON IR
LEPADITA KD
arB3shs

s AR

% T sEnbyee:
52 00/ T R

WO 2014/126909 PCT/US2014/015771
8/11

Fig. 8

a
g
]
i
]
A
o
K]
0
=
H

s

Fublish

PCT/US2014/015771

WO 2014/126909

9/11

ATIGE RIS INE IEE LY
LR JERYIY

YRS PRI

ISKBLY,

ISV :

wng wBramag
rpue wbusmny
34y mssnny

s EELS |

red A g

tAsyum By ysey
tAyamams yEaugfiig
13S0
EYGRRTIBRTY
OIS AR Gl

oty

WO 2014/126909 PCT/US2014/015771
10/11

Fig. 10

WO 2014/126909 PCT/US2014/015771
11/11

Receive information provided by a data processing
application during execution of the data processing
application

50

¥

Dynamically analyze information to identify a queue in
communication with the data processing application

52

4
Dynamically analyze the information to identify a

relationship between the data processing application
and the queue

54

FIG. 11

Receive information indicative of a relationship
between a data processing application and a queue

60

4

Generate a graphical representation of the data
processing application, the queue, and the relationship

62

¥

Display the graphical representation on a user
interface

64

FIG. 12

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US14/15771

A. CLASSIFICATION OF SUBJECT MATTER
IPC(8) - HO4L 12/26 (2014.01)
USPC - 709/224

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

IPC(8) Classification(s): GO6F 17/30; HOAL 12/24, 12/26 (2014.01)
USPC Classification(s): 707/705, 709/224, 715/736

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

graph, gui, display

Electronic data base consulted during the intemational search (name of data base ahd, where practicable, search terms used)

MicroPatent (US-G, US-A, EP-A. EP-B, WO, JP-bib, DE-C,8, DE-A, DE-T, DE-U, GB-A, FR-A); ProQuest; IEEE; Google/Google Scholar
Keywords: data source, data input, destination, output, queue, data processing application, identifier, information, metadata, pop-up,

C.. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X US 2012/0275307 A1, (GODBOLE, A. et al.), 01 November 2012; paragraphs [0006], (0017], 1-3,7,13-15

meermenas (0020), (0040], [0057], (0102). s
Y 4-6, 8-12, 16-31
Y US 2011/0055388 A1, (YUMEREFENDI, A. et al.), 03 March 2011; paragraphs [0017], (0022}, 5-6, 8, 10-12, 16-31

[0073], [0108]. ‘

Y US 6, 772,202 B2, (WRIGHT, D.), 03 August 2064; claims 1, 2. 4,22
Y US 7,467,383 B2, (INCHINGOLO, F. et al.), 16 December 2008; column 5, lines 32-38. 9, 17-19
Y US 2003/0120681 A1, (BACLAWSKI, K.), 26 June, 2003; figure 8, paragraph [0069]. 18-19
Y US 5,826,104 A, (RIFKIN, D.), 20 October 1998; abstract. 24-25

l:l Further documents are listed in the continuation of Box C.

[l

Special categories of cited documents:

the priority date claimed

“A" document defining the general state of the art which is not considered
to be of particular relevance

“E” earlier application or patent but published on or after the international
filing date

“L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another .citation or other ..
special reason (as specified) .

“O" document referring to an oral disclosure, use. exhibition or other
means

“P" document published prior (o the international filing date but later than

riority

“T" later document published after the international filing date or 3
rstan

date and not in conflict with the apﬁliqalion but cited to unde
the principle or theory underlying the invention

“X" document of particular relevance; the claimed invention clannot'be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

Y" document of particular relevance; the claimed invention cannot be

considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&" document member of the same patent family

Date of the actual completion of the international search

04 June 2014 (04.06.2014)

Date of mailing of the international search report

27 JUN 2014

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/JUS, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450

Facsimile No. 571-273-3201

Authorized officer:
Shane Thomas

PCT Helpdesk: §71-272-4300
PCT OSP: §71-272-7774

Form PCT/ISA/210 (second sheet) (July 2009)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - claims
	Page 29 - claims
	Page 30 - claims
	Page 31 - claims
	Page 32 - claims
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - wo-search-report

