PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 :

GOG6F 17/60 Al

(11) International Publication Number:

(43) International Publication Date:

WO 99/13426

18 March 1999 (18.03.99)

(21) International Application Number: PCT/US98/19034

(22) International Filing Date: 11 September 1998 (11.09.98)

(30) Priority Data:

60/058,659 11 September 1997 (11.09.97) US
09/082,647 21 May 1998 (21.05.98) [N
09/082,758 21 May 1998 (21.05.98) us
09/082,568 21 May 1998 (21.05.98) [N
09/082,811 21 May 1998 (21.05.98) US

(71) Applicant: ABB POWER T & D COMPANY INC. [US/US];
1021 Main Campus Drive, Raleigh, NC 27606 (US).

(72) Inventors: KELLEY, Raymond, H.; 14001 Bingham Driver,
Raleigh, NC 27614 (US). CARPENTER, Richard, Christo-
pher; 3808 Barbican Court, Fuquay-Varina, NC 27526
(US). LUNNEY, Robert, H.; 1147 Sturdivant Drive, Cary,
NC 27511 (US). MARTINEZ, Maureen; 1110D Schaub
Drive, Raleigh, NC 27606 (US). KENNEY, Jonathan, Q.;
104 Quid Court, Cary, NC 27513 (US). MILL, David,
Ethan; 5201 Harrington Grove Drive, Raleigh, NC 27613
(US). HUBBARD, Charles, Keith; 19 Shepherd Street,
Raleigh, NC 27607 (US).

(74) Agents: NORRIS, Norman, L. et al.; Woodcock Washburn
Kurtz Mackiewicz & Norris LLP, 46th floor, One Liberty
Place, Philadelphia, PA 19103 (US).

(81) Designated States: AU, BR, CA, MX, European patent (AT,
BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU,
MC, NL, PT, SE).

Published
With international search report.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

(54) Title: AUTOMATED METER READING SYSTEM

50}~ EXTERNAL APPLICATION & COMMUNICATION SYSTEMS |

e | —— e
[DATABASE APls | FUTURE INTERFACES | FILE BASED INTERFACE || oo \n |
(SOLACCESS) ;| (e CORBA) , "™ CANONICAL MAPPER _ | 132
- 126— AMR 15
124 APPLICATION 1400 3
&
outPuT |, INFRASTRUCTURE
STAGING ﬂ' SUBSYSTEMS
DATABASE 100
- N BsECT. 102 DISTRIBUTED SERVICES
e LA L | reaewore | L FRAMEWORK
UINNG ENCINA 104
PERSISTENCE
o&cr 109 106 4 4
A
XA PROTOCOL 0CE ROGUEWAVE
Lone 110 12 LIBRARIES ,,,
ORACLE RDBMS
116

OPERATING SYSTEMS 118

(87) Abstract

An automated meter reading server (15) having an open, distributed architecture that collects, loads, and manages system—wide
data collected from energy meters (60) and routes the data automatically to upstream business systems. The automated meter reading
server includes a repository (120) of metering data, and additionally provides timely access to information by including collection, storage,
validation, estimation, editing, publishing and securing of meter consumption and interval data. The automated meter reading server obtains
data from meters (60) equipped with modems via standard telephone lines or public RF networks. The data is converted from the format
of the meter/communications infrastructure to a format usable by the automated meter reading server and the repository (120). The data is
converted from the automated meter reading server compatible form to a format of a specific upstream business system prior to transmission.

AL
AM
AT
AU

BA
BB
BE
BF
BG

BR
BY
CA
CF
CG
CH
CI

CM
CN
CuU
CZ
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cbote d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

KR
KZ
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Treland

Tsrael

Iceland

Ttaly

Japan

Kenya

Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugosiav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
Sz
D
TG
TJ
™
TR
TT
UA
uG
us
Uz
VN
YU
YA

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

25

WO 99/13426 PCT/US98/19034

AUTOMATED METER READING SYSTEM

CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Patent Application
Serial No. 60/058,659, to Kelley et al., filed September 11, 1997, entitled “AUTOMATIC
METER READING SYSTEM”.

FIELD OF THE INVENTION

The present invention relates generally to an automated meter reading (AMR)
system, and more particularly to an AMR server within the automated reading system which
collects, loads and manages data from energy meters, and processes and stores meter data for

routing to end users and business systems.

ACRONYMS AND KEYWORDS
The written description provided herein contains acronyms and keywords to
describe the various system components and services. Although known, use of several of the
acronyms and keywords is not standardized in the art. For the purposes of the written
description herein, acronyms and keywords are defined as follows:
ACID - Atomicity, Consistency, Isolation, Durability
AMPS - Analog Mobile Phone System
AMR - Automated Meter Reading
API - Application Program Interface
BOM - Bill of Material
C&lI - Commercial and Industrial
CIS - Customer Information System
CDS - Cell Directory Service
CDMA - Code Division Multiplexed Access
CDPD - Cellular Digital Packet Data

10

15

20

25

30

WO 99/13426 PCT/US98/19034

CM -Communications Manager

CORBA - Common Object Request Broker Architecture
CPU - Central Processing Unit

CRUDLE - Create, Read, Update, Delete, List, and Exists
CSR - Customer Service Representative

CURDLE - Create, Update, Read, Delete, List and Exist
DAO - Data Access Object

DCE - Distributed Computing Environment

DFS - Distributed File Service

DSS - Distributed Security Service

DTS - Distributed Time Service

ESCO - Non-Grid and Non-Commodity Energy Services Companies
ESP - Energy Service Provider

GUI - Graphical User Interface

IDL - Interface Definition Language

ISO - Independent System Operator

LAN - Local Area Network

LECRUD - List, Exist, Create, Read, Update and Delete
MDMA - Meter Data Management Agent

OMS - Outage Management System

0O - Object Oriented

PM - Wholesale Power Market Services

PSTN - Public Switched Telephone Network

PX - Power Exchange

RDBMS - Relational Database Management System
RF - Radio Frequency

RM - Resource Managers

RPC - Remote Procedure Call

RPU - Real Time Processor Unit

RQS - Recoverable Queuing System

RSP - Remote Stored Procedure

RTG - Remote Terminal Gateway

- WO 99/13426 PCT/US98/19034

10

15

20

25

30

RTU - Remote Telemetry Unit

SC - Schedule Coordinator

SCADA - Supervisory Control and Data Acquisition
SFS - Structured File System

SNMP - Simple Network Management Protocol
SOE - Sequence of Events

TDMA - Time Division Multiple Access

TM - Transaction Manager

TOU - Time of Use

UDC - Utility Distribution Company

UPC - Universal Protocol Converter

VEE - Validation, Editing, and Estimation
WAN - Wide Area Network

WFM - Work Flow Manager

BACKGROUND OF THE INVENTION

The reading of electrical energy has historically been accomplished with
human meter readers that came on-site to the customers’ premises and manually documented
the readings. Over time, manual meter reading has been enhanced with walk-by or drive-by
reading systems that utilize radio communications between the meters and a meter reading
device. The information that these walk-by and drive-by systems collected increased, but still
the functions provided by the communication systems were limited.

More recently, over the last few years, there has been a concerted effort to
automate meter reading by installing fixed networks that allow data to flow from the meter
to a host computer system without human intervention, such systems have been referred to
in the art as Automated Meter Reading (AMR) systems. AMR systems have gained interest
because there are approximately 150 million installed meters, of which 17 million are
considered to be “hard-to-read” because of location, etc. A limitation in these conventional
AMR systems is that they typically use only one type of communication infrastructure to
gather data. For example, the AMR system may receive data from meters via one of a fixed
proprietary RF communications infrastructure, the public switched telephone network or

power line transmission. This one-infrastructure communication of data has led to the

10

15

20

25

30

WO 99/13426 PCT/US98/19034

-4-

development of incompatible AMR systems that are tied to that particular communications
infrastructure, utilize proprietary devices and protocols, and have unacceptably low data rates.
Such implementations are also lacking because RF coverage is limited, and public switched
telephone network and power line transmission solutions require relatively long periods of
time to communicate data from the meter.

In addition to the limitations regarding communication infrastructures,
conventional AMR systems are not easily adaptable to changing requirements of both the
energy provider and the energy consumer. For example, while most meters measure energy
monthly in kWh or Time-of-Use (TOU), rising consumer demand for daily reads of kWh or
TOU, load profile metering along with demand, outage, power quality and tamper monitoring
capabilities will render conventional systems obsolete. For example, conventional AMR
systems collect data via a pulsed input, and over a period of time to determine energy usage
or may create a load profile. These systems, however, are not capable of reading data from
newly developing intelligent meters that provide load profile information and the like to the
AMR system.

A further limitation of the conventional AMR system is that they do not
accommodate the requirements of end-user systems (e.g., billing systems, energy management
systems and supervisory control systems). Theses systems are typically standalone systems,
separate from the metering system. One of the primary reasons that the requirements of end-
user systems are not met is because of the above-mentioned limitations that conventional
AMR systems were designed as proprietary systems rather than open systems. These systems
generally output the meter data in a raw format that is not compatible with the end-user
systems and that must be converted for use. Thus, conventional AMR systems do not perform
validation, editing and estimation of the output data, and require a relatively high amount of
manual intervention to transfer data from the AMR system to end users for further processing.

Yet another limitation of conventional AMR systems is that metering data has
been captured and managed using traditional mainframe or two-tiered client/server
architectures. While mainframe and client/server solutions have been up to the present
relatively successful in addressing the needs of utilities and their customers, AMR Systems
are becoming far too large and complex for conventional technologies because of the amount

of data flowing in and out of the system (e.g., it may be necessary to store and process data

10

15

20

25

30

WO 99/13426 PCT/US98/19034

-5.

from daily or hourly meter reads from millions of meters). As data requirements steadily
increase in an automated meter reading system, traditional mainframe and two-tiered
architectures (non-distributed systems) experience limitations in memory, CPU capabilities,
and storage capacity because a growing amount of data traffic over the network leads to
bottlenecks that result in performance limitations as data is shipped between the database and
the client, and records in the database can become locked when client programs need to lock
data to use it. Upgrading these systems to increase the load capability and performance
requires bringing the system down. In addition, the cost of maintenance and upgrade of these
systems increases as companies attempt to solve client/server performance problems and
scalability issues by purchasing bigger and faster machines.

In addition to limitations noted-above in conventional AMR systems, perhaps
the greatest limitation of the existing AMR systems is that the electric utility marketplace is
moving towards deregulation. Under deregulation, utility customers will be able to choose
their electric service providers. As a result, the deregulated marketplace has created many
new business entities, which will place additional demands on AMR systems. For example,
in California, a Meter Data Management Agent (MDMA) has been created which is
responsible for collecting and publishing the data required for billing. Further, the MDMA
requires that settlement quality data be provided as the MDMA publishes data to multiple
business entities, including the ESP, the UDC and potentially other ancillary services (e.g.,
third party billing companies, etc.). However, conventional AMR systems were not designed
to accommodate the demands of a deregulated market place nor do they provide such
capabilities. Further, conventional AMR systems do not accommodate the needs of
commercial and industrial (C&I) and residential customers who are interested in determining
usage statistics.

Specific examples of conventional AMR and AMR-type systems are described
in the prior art. U.S. Patent No. 5,602,744, to Meek et al., entitled “Universal Send/Receive
Utility Usage Data Gathering System”, which discloses a universal utility usage data gathering
system that can respond and transmit recorded utility consumption to readers manufactured
by other vendors. A “buried” emulated protocol responds to another vendor’s interrogation
pulse and tricks the other vendor’s reader into thinking that it is communicating with one of
its own meters. The interrogator and the data gathering system may communicate in a

synchronous or asynchronous manner depending on the vendor’s implementation.

10

15

20

25

30

WO 99/13426 PCT/US98/19034

-6-

U.S. Patent No. 5,553,094, to Johnson et al., entitled, “Radio Communication
Network for Remote Data Generating Stations”, discloses a wide area communications
network that collects data generated by a plurality of electric meters for transmission to a
central data terminal. Information is transmitted from network service modules to remote cell
nodes, which then transfer the information to a central data terminal via intermediate data
terminals. The network service modules transmit data packets over RF transmission links to
the remote cell nodes located at approximately 0.5 mile intervals, for example, on utility poles
or a building. The remote cell nodes periodically forward information via RF transmission
links to the intermediate data terminals. The intermediate data terminals are located at 4 mile
intervals. The intermediate data terminals communicate to the central data terminal via
various different types of links including telephone lines, T1 carriers, fiber optic channels,
coaxial cables, microwave, or satellite.

U.S. Patent No. 5,590,179, to Shincovich et al., entitled “Remote Automatic
Meter Reading Apparatus” discloses an adaptor to provide automatic meter reading of
conventional watthour meters without requiring modifications to the meters or the socket to
which the meters are mounted. The adaptor is interconnected between the meter and the
socket and includes internal telephone communications circuitry. During a predefined
transmission window, a controller in the adaptor changes modes such that the adaptor may be
contacted via telephone to send data to a central utility site.

Also known are distributed networks for communicating data from devices
having dissimilar formats and/or protocols. U.S. Patent No. 5,619,685, to Schiavone, entitled
“Run-Time Dynamically Adaptive Computer Process for Facilitating Communication
between Computer Programs” discloses a system whereby two dissimilar software programs
may communicate with each other on a distributed network by mapping input and output
blocks of memory.

In addition to the above system, there are specific examples of AMR products
in use. A first is MV-90, which is a product sold by Itron/UTS. While MV-90 supports
multiple electric meter manufacturer protocols, as well as several gas meters, gathers load
profile, time-of-use, consumption and demand data, and performs some form of meter data
validation and issues alerts/alarms, the MV-90 interfaces only to a corresponding proprietary
billing system (i.e., the MV-PBS Power Billing System). A further limitation is that MV-90

is a DOS-based AMR system, and therefore is small scale solution and is not scalable to

10

15

20

25

30

WO 99/13426 PCT/US98/19034

-7-

accommodate large scale entities. In addition, MV-90 is limited to communicating with
meters via a single telephone modem interface, therefore is considered only a tactical solution
for many energy service providers. Still further, MV-90 has not been designed to
accommodate and support multiple deregulated business entities and specific regulatory
agency validation and estimation schemes.

An example of another AMR product is MAPS, which is offered by
Schlumberger. MAPS is a client-server, UNIX-based AMR system that collects data from
water, gas and electric meters. The MAPS host software provides scheduling, network
management, access to usage and load profile information, and analysis of power usage.
Usage information may be shared with other systems such as billing. While MAPS may be
more robust than MV-90, it too is limited by the number of meter end points from which
information may be collected. Further, there are no data validation or estimation schemes, and
MAPS will not accommodate multiple market entities.

In view of the limitations of conventional AMR and AMR-type systems, the
AMR system of the present invention addresses the needs and limitations of known systems
by providing an end-to-end system that combines communications, data warehousing,
processing and consolidation as well as presentation and standard application interface
options. In particular, the present invention provides an all-inclusive, highly automated
solution by providing an integrated system that is capable of receiving data from a plurality
of dissimilar metering devices and communications networks, managing the data, and
communicating the data to a plurality of applications and end user systems. The AMR system
of the present invention is adapted to communicate with legacy systems and other proprietary
systems to provide a total AMR solution not found anywhere in the prior art. The AMR
system addresses the need for diverse communication technologies resulting from the
relationship of RF coverage to population density (e.g., rural areas may utilize telephone
implemented solutions due to very low population density, whereas urban areas are more
likely to utilize RF solutions). The AMR system of the present invention addresses the needs
of energy providers allowing them to meet the consumer expectations and demands and more
effectively compete in an industry that is presently being deregulated to encourage increasing

competition.

10

15

20

25

30

WO 99/13426 PCT/US98/19034

-8-

SUMMARY OF THE INVENTION

In view of the above, the present invention, through one or more of its various
aspects and/or embodiments provides one or more features and advantages over the prior art,
such as those noted below.

The present invention is directed to an automated meter reading (AMR) system
server that offers a large-scale system solution to address the metering data management needs
of the entities involved in energy distribution. The AMR Server is an open, distributed
architecture that collects, loads, and manages system-wide data collected from energy meters
and routes the data automatically to upstream business systems. The AMR Server is a
scalable, integrated, standards-based, end-to-end meter data management solution. Energy
providers can capture consumption and interval meter data for hundreds of thousands of
meters, deliver it directly to business functions like billing or CIS, and supply the data to large
commercial and industrial accounts.

The AMR Server is designed to be a repository of metering data, and
additionally provides timely access to critical energy information by including such features
as collection, storage, validation, estimation, editing, publishing and securing of meter
consumption and interval data. The AMR server also performs meter data groupings, meter
and account management, and includes published application program interfaces for business
system integration. The AMR server further includes a scalable database having a distributed
architecture that may store data from hundreds of thousands of metering points. Data from
each meter may be managed separately, or aggregated into user-defined subsets. The AMR
Server obtains data from meters equipped with modems via standard telephone lines or public
RF networks.

The AMR server is designed to provide acceptable input and update times for
a large volume of data, provide quick response time for on-line users, interface with multiple
dissimilar platforms and meter firmware, maintain system availability, provide quick data
recovery, be accessible to multiple legacy systems, and be accessible from a common
Application Program Interface (API) for communication servers, accommodate a variety of
third party communication technologies.

In accordance with an aspect of the invention, there is provided an apparatus
for automated meter reading that collects telemetry data from remote customer locations and

processes the telemetry data for use by end users and upstream business systems. The

10

15

20

25

30

WO 99/13426 PCT/US98/19034

-9.

automated meter reading server comprises a data repository to store the telemetry data, at least
one external interface to communicate with systems external of the automated meter reading
server, and a multi-layered distributed software architecture. The multi-layered distributed
software architecture comprises application and infrastructure subsystems that include
services that are distributed throughout the automated meter reading server to cooperate to
accomplish predefined business functionalities, middleware software to facilitate scalability,
transaction processing, and mapping of objects to the data repository, and application
frameworks to facilitate access to the data repository and the creation of processes compliant
with the middleware software. The business functionalities determine processes by which the
automated meter reading server receives data from downstream collection points, processes
the telemetry data, and manipulates the data repository.

According to a feature of the invention, the middleware software provides
communication facilities to communicate information between clients of the automated meter
reading server and the automated meter reading server, data transportation and data conversion
facilities, and a mechanism by which the clients can locate servers within distributed
architecture. The middleware software also provides for load balancing and scheduling by
assigning the services to application servers based on a priority. Each of the application
servers may consist of multiple processing agents and may be multi-threaded. A plurality of
application servers may be executed simultaneously on multiple physical devices that
comprise the automated meter reading server to spread client loads across the multiple
physical devices.

According to another feature of the present invention, the automated meter
reading server accesses the data repository via transactions and transaction processing. The
transactions are isolated from one another to prevent other transactions from accessing data
that a particular transaction is using until the particular transaction is complete. A recoverable
queuing system may be provided to queue transactional work to be completed at a later time.
The data repository comprises an object-oriented design residing on a relational database
implementation, such that object-to-relational mapping is performed by mapping from a
tabular relational database to object structures and may utilize a temporal framework. The
temporal framework comprises timestamp ranges for each table within the relational database

to provide different historical views of data stored therein. The data repository may be

10

15

20

25

30

WO 99/13426 » PCT/US98/19034

-10-

designed to represent a high-level object model and such that each high-level object is mapped
to the data repository.

According to yet another feature of the present invention, the application
frameworks comprise a data access object framework and a distributed services framework.
The distributed services framework includes classes to provide a factory for any object or
atomic datatype that has been defined within a class mapping directory, a pointer to an
instance of a specific type of object and a wrapper around the instance, a blackboard to share
information used in an existing activity plan, a mechanism that provides a runtime invocation
of functions based on a representation of a function name, and a mechanism that provides
encapsulation of a string of tag-value pairs and manipulation and extraction of information
from the string. The distributed services framework hides the detailed implementation of the
data repository from an application by providing distributed object proxies, and wherein the
data repository is not directly accessed by external applications. The data access object
framework provides proxies, manager servers, and back-end implementation servers to isolate
relationships of the telemetry data in the data repository in order to provide access to the
telemetry data.

According to a further feature of the invention, the infrastructure subsystem
supports the application subsystem, and comprises generic and reusable components having
no knowledge of the automated meter reading server application domain. The application
subsystem includes services that run on a plurality of application servers that have detailed
and specific knowledge about the automated meter reading domain.

According to another feature, the infrastructure subsystem comprises an
activity management subsystem. The business functionalities to be performed by the
automated meter reading server are extracted into activity plans to isolate the business
functionalities from application code comprising the software architecture in order to provide
for diverse business functionalities without requiring substantial modification of the
application code. The activity plans control the flow of work within the automated meter
reading server, and the activity management subsystem invokes and manages the activity
plans. The activity plans include at least one task, where a task is a discrete unit of work in
the activity plan that is controlled by a single server in the system. The tasks are responsible
for failover processors, the failover processors being a list of operations to be perform in the

case of failure, the failure being determined based on conditions returned after executing an

10

15

20

25

30

WO 99/13426 PCT/US98/19034

-11 -

activity. The activity management subsystem includes an activity plan builder to construct
an ordered collection of tasks and initialize a blackboard to share information, a dispatcher
panel to instantiate activity plans and route responses from servers within the automated meter
reading server to an appropriate activity plan where tasks within an activity plan and sends
queued messages to other servers within the automated meter reading server, a dispatcher
storage manager to control access to persistent activity plans, and an activity plan monitor to
show a user the state of any activity plan by name, or by selection.

According to yet another feature, the infrastructure subsystem comprises a
scheduler subsystem, which manages building and execution of schedules within the
automated meter reading server. The schedules are used to control the time-based execution
of work within the automated meter reading server. The scheduler subsystem comprises a
schedule manager server and a scheduler, which handle the creation, updating, and retrieval
of schedules to and from the data repository, and retrieve schedules. The scheduler
determines a job execution duration and adjusts execution durations in accordance with
heuristic-tuning parameters. The scheduler subsystem may compﬁse adelivery schedule that
notifies a supplier when to deliver data to the automated meter reading server, a billing
schedule which determines the timing of data delivery from the automated meter reading
server to the utility for billing, and a collection schedule which determines when to collect
data and what type of data to collect. '

According to still another feature of the present invention, the infrastructure
subsystem comprises an alarm subsystem that receives requests for timed messages, and when
an alarm occurs, a callback is made to a subscriber of the alarm.

According to another feature of the present invention, the infrastructure
subsystem comprises a concern management subsystem that provides for distributed event
management and a mapping of concerns for entities within the automated meter reading
server. The entities include a vendor, which is something that can provide notification of an
event, or a requester, which is something that has an interest or concern in an item that can be
provided by a vendor.

According to a feature of the invention, the infrastructure subsystem comprises
amapping subsystem which provides services for customization of file formats for exporting
data from, and importing data to, the automated meter reading server. The customization of

file formats is performed in accordance with maps. The mapping subsystem may include a

10

15

20

25

30

WO 99/13426 PCT/US98/19034

-12-

canonical mapper, which includes an input map, a canon, and an output map to map
information from an input file format to an output filé format. The input and output maps are
used to map information across sub-domains, where there are at least two sub-domains under
a same root domain. A mapping interface server which sends requests to the canonical
mapper may be included and the input and output maps may be derivation trees. The
canonical mappér builds a scanner/parser for an input sub-domain, traverses the input map,
parses the data from the input file into a canonical list, and maps from the canonical list to an
output sub-domain by traversing the output map and re-interpreting the corresponding element
from the canonical list to conform to the new data format to create the specified output file.

According to still another feature, the infrastructure subsystem comprises a
log/trace subsystem that generates logs for auditing purposes and to determine a cause of
problems that occur in the automated meter reading server. The logs can be activated at
runtime or by any of the individual servers within the automated meter reading server.

According to yet another feature, the application subsystem further comprises
a supplier subsystem that is adapted to communicate with a supplier in accordance with a
format of the supplier. The supplier subsystem encapsulates differences in communication
formats so that clients of the external interface need not know what type of supplier with
which they are communicating. Outgoing requests to suppliers are accomplished through
activity plans that control the flow of work within the automated meter reading server, and
services triggered from a supplier will begin activity plans to accomplish tasks. The supplier
subsystem may comprise a supplier manager, supplier outgoing, supplier incoming, and dock
control servers, and route meter service requests from automated meter reading services to an
automated meter reading service responsible for interfacing with an extérnal system. The
supplier subsystem directs incoming service requests from communication servers, connected
to the automated meter reading server, to activities within the automated meter reading server
responsible for servicing the request.

According to a further feature, the application subsystem comprises a data
access object subsystem. The data access object subsystem contains data access objects to
manipulate data within the data repository, wherein the data access objects are representations
of tables within the data repository. The data access objects have a hierarchical relationship
with one another, such that one type of object or collection contains or is contained by another

type of object or collection. In addition, the data access subsystem utilizes proxy objects to

10

15

20

25

30

WO 99/13426 PCT/US98/19034

-13-

interact with the application frameworks, wherein the proxy objects are provided by the
application frameworks to encapsulate relationships and behavior of data. The data access
object subsystem may comprise a plurality of manager servers that provide services related
to meters, services related to rates, services related to meter groups, loading of the received
and mapped data into the data repository, retrieving reading samples from the automated
meter reading data repository, determining the abilities of a particular component instance,
and provide lists of reference data.

According to still another feature, application subsystem comprises an export
subsystem that exports data to external application systems by mapping and formatting data
from the application systems. The export subsystem may comprise an export manager and
a validation, editing, and estimation manager. The validation, editing, estimation manager
performs validation, editing, and estimation of output data to be exported such that the output
data has characteristics desired by a requestor of the output data. The validation, editing,
estimation manager performs the validation in accordance with a plurality of regulatory
agencies to produce settlement quality data. Further, the validation, editing, estimation
manager utilizes activity plans to control the flow of work within the automated meter reading
server.

According to another feature of the present invention, the application
subsystem comprises a utility interface that communicates with external systems and accepts
requests from the external systems. A graphical user interface may be provided which
interacts with the utility subsystem and provides at least one of access to the automated meter
reading server to manually invoke all business system interfaces online, search specific
meter/account/rate/event information, provide access to the activity management system
monitor, and provide an interface to schedules. The graphical user interface may use standard
application system application programming interfaces provided by the utility interface
subsystem to initiate requests.

According to a feature of the invention, the external interface includes one of
a standards-based application programming interface and a file based interface. The external
interface mechanism communicates to a canonical mapper which builds a map that specifies
the required translation to perform a conversion from an input format to an output format.
The standards-based interface application programming interface requests may be either

synchronous or asynchronous requests. The synchronous requests return request outputs

10

15

20

25

30

WO 99/13426 PCT/US98/19034

-14 -

directly to arequestor when the request is made, and wherein the asynchronous requests return
the status of a request start-up from the application subsystem to the requestor and, at a later
time, provide an asynchronous notification to the requestor with the request outputs.

According to yet another feature of the invention, the automated meter reading
server is adapted to administer a plurality of dissimilar legacy systems and dissimilar
customer-to-customer requirements, business functionality logic, and regulatory requirements.

According to still another feature, at least one communications server is
provided to communicate the telemetry data over at least one communications network. The
automated meter reading server is adapted to receive the telemetry data via dissimilar
communications networks. Further, a plurality of dissimilar meters communicate the
telemetry data via the dissimilar communications networks. The communications networks
may be wireless or public switched telephone networks.

According to another feature, the automated meter reading server notifies end
users of outage alerts, tamper notification, in-home display of electric information, meter
programming, remote monitoring of power quality, and customer service diagnostics. The
automated meter reading server measures power usage, the power usage being measured in
one of kVARI, kVAh, kWh, and Time of Use.

In accordance with another aspect of the invention, there is provided a
distributed server that receives and processes information for use by end users. The
distributed server includes a data repository to store the information, at least one external
interface to communicate with systems external of the distributed server, and a multi-layered
distributed software architecture. The multi-layered distributed sofiware architecture includes
application and infrastructure subsystems comprising services distributed throughout the
distributed server that cooperate to perform operations within the server, middleware sofiware
to facilitate scalability, transaction processing, and mapping of objects to the data repository,
and application frameworks to facilitate access to the data repository and the creation of
processes compliant with the middleware software. The distributed server receives data from
downstream collection points, processes the data, and manipulates the data repository to
accomplish the operations.

According to yet another aspect of the invention, there is provided a server
residing within a multi-layered distributed software architecture. The server includes a data

repository to store data received by the server, at least one external interface to communicate

10

15

20

25

30

WO 99/13426 PCT/US98/19034

-15-

with systems external of the server, a services subsystem comprising distributed services that
run on application servers within the distributed architecture, middleware software to facilitate
scalability, transaction processing, and mapping of objects to the data repository, and
application frameworks to facilitate access to the data repository and the creation of processes
compliant with the middleware software. Server-based procedures are managed in accordance
with predetermined activities.

Features of the later aspects of the invention include those noted above with

regard to the automated meter reading server.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing summary, as well as the following detailed description of the
preferred embodiments, is better understood when read in conjunction with the appended
drawings. For the purpose of illustrating the invention, there is shown in the drawings an
embodiment that is presently preferred, in which like references numerals represent similar
parts throughout the several views of the drawings, it being undérstood, however, that the
invention is not limited to the specific methods and instrumentalities disclosed. In the
drawings:

Figure 1 illustrates an overview of an AMR system architecture in accordance
with the present invention;

Figure 2 illustrates an exemplary hardware configuration of an AMR Server
for a small-scale deployment;

Figure 3 illustrates the software architecture of the AMR Server including the
three-tiered system, middleware products, a database repository and external interfaces;

Figure 4 expands the AMR Application and Infrastructure Subsystem block
shown in Figure 3;

Figure 5 illustrates the relationship of a delivery schedule to a Scheduler
Subsystem;

Figure 6 illustrates the relationship of a Mapping Interface Server to the AMR
Subsystems;

Figure 7 illustrates the process of converting a file between two applications;

Figure 8 illustrates a Log/Trace Subsystem,;

10

15

20

25

30

WO 99/13426 PCT/US98/19034

-16-

Figure 9 illustrates in block diagram format a client GUI connected to the
AMR Server;

Figure 10 illustrates a Supplier Subsystem in accordance with the present
invention;

Figure 11 illustrates the process of a synchronous requests to the AMR Server;

Figures 12A and 12B illustrate the process of an asynchronous requests to the
AMR Server and asynchronous notifications from the AMR Server;

Figures 13 and 14 show the interaction between manager servers, proxies, and
implementation servers within a DAO Subsystem;

Figure 15 illustrates the process performed each time a method is invoked on
a proxy;

Figure 16 illustrates an exemplary structure of the database designed as a high-
level object model,

Figure 17 illustrates the logical architecture of the account management
subsystem;

Figures 18 A-D illustrate the logical architecture of the capability manager;

Figure 19 illustrates the logical architecture of the meter manager;

Figure 20 illustrates the logical architecture of the rate manager;

Figure 21 illustrates the logical architecture of the reading management server;

Figures 22A-B illustrate the logical architecture of the schedule manager;

Figures 23 A-E illustrate the Schedule Manager;

Figure 24 illustrates the logical architecture of the System Parameters;

Figure 25 illustrates the logical architecture of the Translation Service;

Figure 26 illustrates the process of an on-request meter reading;

Figure 27 illustrates a canonical element “BOM”;

Figure 28 illustrates the Canon “Costing”;

Figure 29 illustrates a main screen of the activity plan builder in accordance
with the present invention;

Figure 30 is a graphical representation of the various paths available for a
particular workflow; -

Figure 31 illustrates a modifying a particular Task to execute, undo, or finalize

an operation;

5

10

15

20

25

30

WO 99/13426 PCT/US98/19034

-17-

Figure 32 illustrates modification of an operation;

Figure 33 illustrates slot names within a blackboard object that contain the
specific value types used to execute the operations; and

Figures 34A-D illustrate the interaction of threads within the Validation,

Editing and Estimation subsystem.

BRIEF DESCRIPTION OF THE APPENDICES

In order to further facilitate the detailed description of the present invention,
reference is made to the noted plurality of appendices by way of non-limiting examples of
preferred embodiments of the present invention, which are provided with respect to the
various features, operations and functions of the invention, and wherein:

Appendix A contains top level interaction diagrams illustrating the various
servers and objects invoked for an operation; and

Appendix B contains the database structure for the AMR Server of the present

invention.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

The AMR Server of the present invention advantageously offers a large-scale
system solution to address the management of metering data and the administration of the
systems that perform the management. The AMR Server is designed to provide business
entities in the power industry with an automated meter reading system that could serve as a
single source for metering data.

As will be described in detail below, the AMR system of the present invention
1s designed as a distributed system to accommodate the variety of legacy systems and
platforms existing in the current market, and is scalable, flexible and adaptable. The system
is adapted to accommodate customer-to-customer differences in requirements, business logic,
and regulatory requirements.

An overview of the AMR system 10 architecture is illustrated in Figure 1. The
AMR System includes an AMR Server 15 that collects, loads, and manages system-wide
metering data from electronic or electro-mechanical meters 60 located at customers’ premisses
70 and routes it automatically to upstream business systems 50 (collectively, the External

Application and Communication Systems). Energy providers can capture consumption and

10

15

20

25

30

WO 99/13426 PCT/US98/19034

-18-

interval meter data for hundreds of thousands of meters 60, deliver it directly to business
functions and system 50, and ultimately supply the data to large commercial and industrial
accounts 40. In addition, the AMR Server 15 serves as a repository for existing business
application systems 50 belonging to Energy Service Providers (ESPs) and/or Utility
Distribution Companies (UDCs), such as billing, Customer Information Systems (CIS),
Customer Service, and Outage Management Systems (OMS).

Metering data may be collected via communications servers 30 from a variety
of dissimilar meters 60 and transmitted using multiple dissimilar types of communication
media and infrastructures 80. The AMR Server 15 is designed to compensate for the
complications introduced by variations in dissimilar meters 60 and communication media 80,
and to present an abstracted view of the entire metering system to end-user business
applications 50. The AMR Server 15 allows various business systems 50 to interact with
meters 60 and metering data without the constraints of system configuration details. For
example, the AMR Server 15 allows a billing system to create a billing schedule for a
collection of meters 60 and have this data delivered to a specified location according to the
schedule. The collection of meters 60 to be billed may be of different meter types and
distributed across various communication media 80 each having different network constraints
that complicate the data collection. Meanwhile, the billing system is not required to have
knowledge of these complexities.

As will be described in greater detail herein, the AMR Server 15 architecture
is represented as a cooperating set of services running in a distributed architecture. The
distributed architecture of the AMR Server 15 is designed with three tiers, rather than the
traditional two. A three-tiered system advantageously allows clients make small requests for
services, instead of large requests for data, via application servers that can be programmed in
ways that they do not create lock contention in the database. Application servers can be
executed on multiple machines simultaneously in a configuration called "application
replication" which spreads client loads across multiple machines and enables higher
availability, scalability, and performance. Additionally, the total number of connections into
the database can be reduced because application servers manage client "sessions" and multiple
clients can share database connections. The architecture is designed to be scalable from a

small utility (approximately 10,000 meters) to a large utility (3 million meters or more).

10

15

20

25

30

WO 99/13426 PCT/US98/19034

-19-

The AMR Server 15 is preferably a distributed architecture because such
systems are flexible, scalable, and efficient. A further advantage of distributed systems is that
the hardware components of a distributed system can be located and added where they are
needed. Therefore, as needs change over time, the components of a distributed system can
be easily moved and reconfigured without impacting performance. Distributed processing
allows the AMR Server 15 to be scalable and to grow, as the data management needs change.
Further, by distributing large amounts of data across multiple servers, higher throughputs are
achieved resulting in better performance and management of data. Distributed systems can
provide greater availability as planned outages occur and are immune to single points of
failure. Individual computers or links can be disconnected from the system for testing, repair,
or modification without a negative impact on the system. In addition, the AMR Server 15 will
provide SNMP support supplemented with other tools.

Communication with the meter or meter modems is preferably supported as
server initiated and meter modem initiated calls. Two-way communications allows both
service providers, and end-users to have functionalities which are currently limited in
availability. Some of these functions would include: outage alerts, tamper notification, in-
home display of electric information, meter programming, remote monitoring of power
quality, customer service diagnostics and more. The communications infrastructures
supported in the AMR System 10 include, but are not limited to, CDMA (Code Division,
Multiple Access), Telephone and International DAA, ARDIS, X.25, RAM, ReFlex, AMPS
(Analog Mobile Phone System), CDPD (Cellular Digital Packet Data), TDMA (Time
Division Multiple Access), and AMPS (Digital Analog Mobile Phone System).

Figure 2 illustrates an exemplary hardware configuration of the AMR Server
15 for a small-scale deployment. The exemplary hardware configuration assumes an initial
deployment configuration with a design scope of about 10,000-meter points. As illustrated,
the exemplary initial configuration includes Sun E3000 Database Server (or other enterprise
level server) running Oracle® RDBMS, and the Encina® Monitor Suite; a Sun Ultra 2 running
all other distributed systems; an EMC Disk Array, a Veritas ATL DLT Backup System; and
a Compagq Proliant 5000 running a Canonical Mapper (discussed below). This configuration
is scalable to accommodate greater numbers of meters, as noted above. The Communication
Servers 30 of this base configuration run over a Wide Area Network (WAN) and can be scaled

toward a geographically dispersed telephone solution or a wireless communication system

10

15

20

25

30

WO 99/13426 PCT/US98/19034

-20-

(e.g., Ardis, CDPD or PCS). The communication server 30 may comprise an RCS 250,
available from ABB Power T&D Information Systems, Raleigh, North Carolina, as
configured in Figure 2.

Turning to the software implementation of the AMR Server 15, it is noted that
in recent years object orientation in software development has demonstrated that
encapsulating logic or behavior with data is useful in building flexible systems. However,
new systems require dynamic business functionality based on changing customer needs or
customer differences. Three-tier architectures are implemented by using views and simple
APIs to interface with a domain server that in turn deals with encapsulated business objects
that are persistently stored in the database. This works well to abstract business logic from
application logic; however they are limited in that when business logic is changed, the
business logic objects must be re-coded within the system.

The present invention improves upon traditional three-tiered systems to be
flexible and to accommodate dynamic business requirements. This flexibility is provided by
the AMR Server 15 as an extension made to the traditional three-tiered approach. This
extension is to extract business logic into objects called Activity Plans. Activity Plans or
work flows control the flow of work in a system. The Activity Plans are an independently
driven set of flexible and cooperating services that do not require programming, as the
business logic is not hard-coded into the system, but appears as tasks in Activity Plans. The
Activity Plans can thus accommodate different business models. Further, the Activity Plans
contain a well-defined interface, and encompass dynamic rules.

Referring now to Figure 3, as part of the three-tiered system, middleware
products are used to promote scalability and adaptability in the AMR infrastructure and
architecture. For example, middleware products such as the Common Object Request Broker
Architecture (CORBA) and Distributed Computing Environment (DCE) 112 may be used.
However, it is preferable to use DCE as CORBA does not provide some key capabilities (e.g.,
Distributed Services, Distributed File Services, Distributed Security, and Transaction
Processing support) that are preferably provided in the AMR Server 15. Further, CORBA is
a relatively new technology and lacks support for all the major platforms (e.g., PCS to
mainframes).

The DCE environment 112 consists of a suite of integrated software services

that are part of a computing system’s infrastructure. DCE 112 plays an important role in

10

15

20

25

30

WO 99/13426 PCT/US98/19034

-21-

critical areas of computing, such as security, Internet/Intranet computing, and distributed
objects. The DCE technology 112 was designed to operate independently of the operating
system 118 and networking technology that applications use. As a result, it enables
interaction between clients and servers in any environment. As shown in Figure 3, the DCE

“technology comprises software services that reside logically “on top” of the operating system
118. These services employ lower-level operating system 118 and network resources to
accomplish their tasks.

The DCE services 112 include a Remote Procedure Call (RPC) that facilitates
client-server communication so that applications can effectively access resources distributed
across a network, a Security Service that authenticates the identities of users and authorizes
access to resources using a method for user and account management, a Directory Service that
provides a single naming model throughout the distributed environment, a Time Service that
synchronizes the system clocks throughout the network, a Thread Service that provides
multiple threads of execution, and a Distributed File Service that provides access to files
across a network. Each will now be briefly described.

The DCE RPC facility eases distributed application development by modeling
distributed processes as a subroutine and the caller of that subroutine. The subroutine is the
implementation of the server and the caller of the subroutine is the client. The DCE RPC
provides the developer with basic services that the application developer would otherwise
have to implement, such as communication facilities required to communicate between the
client and the server, mechanisms for the client to locate the server within the network and
data transportation across the network, and data conversion from one format to another as
needed.

The Distributed Time Service (DTS) serves two major purposes. The DTS
service keeps all computers within the network reasonably close to the same time (even if
their hardware clocks do not run at exactly at the same rate) and maintains the network nodes
connected to a public time service in synch.

The Distributed Security Service (DSS) ensures that services are provided only
to designated parties. Security in a distributed environment presents major challenges as users
are dispersed at various locations and need to be authorized to access the system. An
appropriate level of access is determined for each of the users that are authorized to access the

system. Also, the security privileges are verified against the actions the users wish to perform.

10

15

20

25

30

WO 99/13426 PCT/US98/19034

-22-

The Distributed File Service (DFS) provides the ability for programs to access
files located on a file server as if the files were located on the local system’s hard disk. The
distributed application does not have to know where the files are located or that the files are
not located locally on the disk. DFS has a single, consistent, and global namespace for all
files, which means that every node in the network identifies the same file by the same name
and sees it located in the same directory.

The DCE Cell Directory Service (CDS) provides a reliable mechanism by
which distributed applications can associate information with names. The primary purpose
of CDS is to allow clients to locate servers. The Cell Directory Service implements a |
hierarchy of names arranged in a tree structure in which every item has exactly one parent and
zero or more children. The CDS provides naming within a local set of nodes called a cell.

Within the distributed environment, transactions are monitored to ensure
proper functioning of the system. In the AMR Server 15, Encina® 106 (ver 2.5 or higher), is
used to monitor transactions (see Figure 3). Encina® 106 is a family of products, offered by
Transarc® Corporation, for developing, executing, and administering distributed transaction
processing systems. A distributed system consists of multiple software components that run
in separate independent processes on different machines in a network. Transactions are a tool
for distributed systems programming that simplify failure scenarios. A transactionis a set of
operations that transforms data from one consistent state to another. This set of operations is
an indivisible unit of work, and in some contexts, a transaction is referred to as a logical unit
of work. The operations that make up a transaction typically consist of requests for existing
data, requests to modify existing data, requests to add new data, or any combination of these
requests.

Transactions provide several important properties referred to as ACID
(Atomicity, Consistency, Isolation, and Durability) properties. Atomicity refers to the
property that a transaction is either successful or unsuccessful. A successful transaction is
said to commit. An unsuccessful transaction is said to abort. Any operations performed by
an aborted transaction are undone (rolled back) so that its effects are not visible. Consistency
refers to the property where each transaction transforms distributed data from one consistent
state to another. The application program is responsible for ensuring consistency. Isolation
refers to the property where each transaction appears to execute independently of other

transactions that are running concurrently. The effects of the transaction are not visible to

10

15

20

25

30

WO 99/13426 PCT/US98/19034

-23-

other transactions until the transaction completes (either commits or aborts). The transactions
appear to be serialized, with two or more transactions acting as though one completed before
the other began, even though they executed concurrently. Durability, also known as
permanence, refers to the property where the effects of a transaction are permanent once
completed. Preferably, transactions are used to control and moderate access to a database.

The transactions are monitored by the Encina® Monitor (not shown). The
Encina® Monitor provides the infrastructure for building and deploying client/server
applications, such as an environment that shields application programmers from the
complexities of distributed computing, fault tolerance across heterogeneous environments to
provide high performance and transactional integrity, and a comprehensive management
environment that enables widely distributed Monitor-based systems to be administered as a
single, logically defined system. The Encina® Monitor provides methods for simplifying load
balancing and scheduling. These methods include assigning a priority to each application
server, multiple processing agents for each application server, and multi-threaded application
Servers. |

Transactions are preferably isolated from one another to prevent other
transactions from accessing data that a particular transaction is using until the transaction is
complete. This could result in locking the database and preventing other users from accessing
the data until the transaction commits or aborts. An important design goal of transactional
applications is to complete transactions quickly, unlocking locked data and giving other
transactions access to data as quickly as possible. This feature is accomplished via a
Recoverable Queuing System (RQS), which will be described below.

The Encina® Structured File Server (SFS) is a record-oriented file system that
provides transactional integrity, log-based recovery, and broad scalability. SFS uses
structured files that are composed of records. The records themselves are made up of fields.
The structured file system is the collection of data managed by a single structured file server
(SFS). All access to a structured file system is through a single server, using a special type
of open file descriptor (OFD).

Asnoted above, the AMR Server 15 is an object-oriented system that retrieves
and stores a large amount of persistent data. While an object-oriented database or a relational
database could be implemented in the AMR Server 15 to store the persistent data, object

oriented (OO) databases are new and are not really proven in large distributed systems

10

15

20

25

30

WO 99/13426 PCT/US98/19034

-24 -

because they are unable to handle the large volume of data. Relational databases have been
established, proven, and implemented for years and since relational database technology
entails transactional integrity, locking and concurrency solutions, and distributed databases.

However, it is preferable to use a combination relational database/object-
oriented solution in the AMR Server 15. The AMR Server 15 uses a relational database with
an obj ect-oriented design on top of the relational strategy. The database preferably comprises
Oracle® RDBMS 116, and the Encina® 106 application servers (Meter Manager, Rate
Manager, etc. to be discussed below) use the OO design to implement its mapping to the
relational data in Oracle. The Oracle® RDBMS 116 shown in Figure 3 is available from
Oracle® Corporation, Redwood Shores, California.

In order to address the mismatch between OO development and a relational
database, Persistence software (ver 3.4.2 or higher) 108 was selected, as shown in Figure 3.
Persistence software 108 is available from Persistence Software Inc., San Mateo, California.
Persistence 108 performs object-to-relational mapping which is the tedious translation and
mapping from the two-dimensional relational database 120 to the much more complex object
structures in the AMR Server 15. Persistence 108 also performs object caching which
provides the AMR Server 15 with a “local copy” of the database to improve performance and
monitors and updates database changes in the cache. In addition, Persistence 108 provides
for database independence which ensures that the database functionality works consistently
in the AMR Server 15 regardless of the type of relational database system behind Persistence.
This later capability, although not essential, is preferable.

The Persistence software 108 provides a platform-independent, database-
independent class library interface to a variety of Relational Database Management Systems
(RDBMS). The Persistence software 108 consists of the Persistence Object Builder and the
Persistence Object Server class libraries. The Persistence Object Builder automatically
generates object-oriented C++ classes for use when building high-performance relational
database applications. The Persistence Object Builder creates the Persistence-generated C++
classes based on a database schema designed for the AMR Server 15. The Persistence Object
Server class library supports Persistence-generated classes and mediates the RDBMS activity.
The generated classes contain derived methods for all common database operations.

The AMR Server 15 preferably accesses the relational database 120

transactionally. Such a capability is provided via Transaction Processing (see XA Protocol

10

15

20

25

30

WO 99/13426 PCT/US98/19034

-25-

110 in Figure 3). The relational database management system (RDBMS) 116 or one of the
Encina® 106 resource managers (such as SFS or RQS) preferably supports transactional
semantics which ensure that if a transaction is aborted, any changes to the database are
undone. The XA specification describes what a resource manager does to support
‘transactional access.

Briefly, X/Open, an international standards body, defines the components that
interact in a typical transaction processing system. These include the Transaction Manager
(TM), which manages distributed transactions and decides whether they commit or abort; the
Resource Managers (RM), which store recoverable data; the Communications Manager (CM),
which communicates between transaction managers and other components; and the
application code. There are also X/Open standards for the interactions between these
components. The most commonly-implemented specification is the XA Specification, which
defines the interaction between the TM and the RM.

Typically, Encina® 106 acts as the TM, and XA-compliant databases are the
RMs. The XA specification defines the interaction between the RM and TM. In Encina® 106,
the XA protocol 110 is implemented in the TMXA module. TMXA, in turn, registers callback
functions with TRAN to determine when transactions are prepared, aborted, and committed.
It also registers callbacks with the “threadTid” module to be notified when a new transaction
is present. The XA protocol 110 specifies how the TM interacts with the RM. However, it
does not specify how application code interfaces with the RM. Applications programmers
using the XA protocol 110 use the TM API to begin and end transactions, and use the RM’s
native API to access and modify data.

The XA specification 110 is not a network communications protocol, but rather
it is a set of functions that are implemented by the RM and called by the TM. There are also
some functions implemented by the TM that will be called by the RM. 1t is important that the
TM be able to manage transactions on several RMs at once. So, these XA functions are
provided to the TM by a table of function pointers. This structure is called the “XA switch.”
Defined by each RM, the switch includes function pointers to the functions in the XA API,
and flags that specify the exact behavior of the RM.

Referring again to Figure 3, a Database Access Object Framework 102 and a
Distributed Services Framework 104 (collectively called Application Frameworks) are built

on top of the middleware products to simplify the use of these products and alleviate the need

10

15

20

25

30

WO 99/13426 PCT/US98/19034

-26-

of programmers to have detailed knowledge of creation of applications that initialize and
establish the required environment for these products. The Database Access Object
Framework 102 hides the detailed implementation of the database 120, as represented by the
Persistence objects, from the application by providing distributed object proxies. The
Distributed Services Framework 104, provides classes that hide the details of how to create
DCE/Encina® compliant servers (processes). The Distributed Services Framework 104 also
shields the application from the underlying communication mechanism (RPC or queued)
being utilized.

The Distributed Services Framework 104 comprises several utility classes,
including the object store, generic object, blackboard, performer and tag value list classes.
The object store is a singleton that exists within the process space of a module. The
ObjectStore class is provided to serve as a factory for any object or atomic datatype that has
been defined within the ObjectStore class mapping directory. It can create new instances of
these objects based on a string representation of the class name of the object to be created.
It also provides functionality for casting these newly created instances to the proper datatype,
so they can subsequently be sent messages and accessed as if the object was specifically
instantiated the objects in the code.

Because the boundaries of communication for the AMR Server 15 are difficult
to define, a common mechanism for inter-process communication has been created. This
common mechanism is “messaging.” Pieces are easily moving into or out of the AMR Server
15 as needs emerge by using a messaging concept for all intra and inter systems
communication. Messages are sent to named objects. A third party or "broker" is responsible
for delivering the message to the receiver and making sure the return value makes it back to
the requester. Commonly, this type of interprocesses communication is described by the
CORBA standard. Typically, messages are defined that are supported by all systems and use
a common language called the Interface Definition Language (IDL). By building the AMR
Server 15 along these lines, this provides for manageable changes to the AMR Server 15 in
the future.

The Generic Object class provides some of the dynamic functionality that is
similar to a weakly-typed runtime bound environment such as Smalltalk. The GenericObject

class is designed to be used as an extension of the ObjectStore. An instance of GenericObject

10

15

20

25

30

WO 99/13426 PCT/US98/19034

-27-

contains a pointer to an instance of a specific type of object, and provides a “wrapper” around
this instance.

The Blackboard class uses the framework class ObjectStore, GenericObject and
GenericDictionary to provide a heterogeneous dictionary which can be saved to, and restored
from, a persistent medium such as a file or relational database. The blackboard may be used
as a central repository for shared information used in an existing workflow. The blackboard
may also be used to store parameters to be supplied to a task invoked automatically for a
scheduler or alarm server. A blackboard is uniquely identified by a number, which is
represented in a datatype.

The Performer Class (discussed above with reference to RQS) has its origins

- in Smalltalk, where weak typing and late or runtime binding are used. However, C++ has a

different and opposite ideology. Thus, Performer attempts to resolve this dichotomy by
simulating runtime invocation of functions based on a RWCString representation of the
function name. Performer is a template class and a specific template instance of Performer
is instantiated for each type of class these functions are to be executed on.

Tag value list is a class that encapsulates the concept of a string of tag-value
pairs, and provides various functionality for manipulating and extracting information from
such a string. The concept of a tag-value list is useful when a function can take a variable and
diverse number of parameters that can be more easily realized in a string form of tag-value
pairs that may have special meaning within the function.

Each server object in the AMR Server 15 is a subclass of the Distributed
Services Framework AppServer classes. The AppServer classes model the concepts of RPC
clients and servers as objects. These classes support both synchronous RPC based interfaces
and queue-based interfaces. The AppServer class makes the different interface types (RPC
or queue-based) largely transparent to the developer. AppServer provides the following
generic behavior for all subclasses. AppServer contains methods to support: Interface to trace,
logging and error reporting systems, DCE registration and startup (Namespace registration and
Security registration), Vendor messages required by a Concern Manager, Initialization of any
common objects from startup file (Queue names served), automatically starts thread to read
and invoke methods on self from queued messages, opens message and uses service name to

map to a method within the object, and Decodes tagValueList to provide arguments.

10

15

20

25

30

WO 99/13426 PCT/US98/19034

-28 -

The AMR Server 15 may have named queues attached to it for asynchronous
requests, export interface objects that represent actual RPCs that can be made to the server;
where each interface object can be synchronous (RPC based), asynchronous, or both. The
server may also need to initialize and connect to resource managers, described below.

The AppServer classes use other utility classes from the Distributed Services
Framework 104. As noted above, the Distributed Services Framework 104 contains RQS
Queue Management Classes which are classes that encapsulate the RQS concepts in Encina®
106 as C++ objects to reduce the complexity and redundancy typically involved with using
RQS. The RQS allows applications to queue transactional work to be completed at a later
time. The RQS approach provides several advantages, such as preventing overloading of a
queue-fed server when a large number of requests are handed to it. Also, if a server is down,
the request is still received and placed in its queue and will be processed when ever the server
comes back up. Also, RQS advantageously provides for a transactional queuing service, such
that if a request is aborted, it is placed back in the server’s queue and not lost.

Each server may be provided with one or more QueueSets. A QueueSet is a
collection of one or more queues (i.e., 1 to n number of queues) that are given a priority from
1 to n. Queue class feeds messages through a class to a configurable read pool to eliminate
bottlenecking of the queue and overrunning of the number of reads the server would be
processing. To perform such a function, The queues are also assigned service levels in inverse
order. The priority 1 queue gets a service level of n, priority 2 queue gets service level n-1,
etc. Threads are created to service the queues. Also included are Queue Class which are used
by servers to enqueue items/actions according to priority/service level to servers for
asynchronous processing. In addition, the QueueElement Class is an abstract base class
containing pure virtual functions getAction() and getInterface(). This class assumes that all
QueucElements contain an action and an interface name that the action will be performed on.

To increase or decrease the throughput of a server, the number of threads is
configurable on a per server basis via a configuration file (e.g., 172b in Figure 8). When a
request comes into a server in the form of a queue element, one of the threads service the
queue dequeues the element and begins the transaction. The thread then obtains the interface
and service to be invoked from the queue element and messages the for that interface to
invoke the function associated with the service name. If the service is invalid, the raises an

exception and the thread discards the queue element. If the service is valid, the Performer

10

15

20

25

30

WO 99/13426 PCT/US98/19034

-29-

invokes the appropriate function. When the function returns, the return status is optionally
sent back to the requester of the service via a separate queue element where it is processed if
necessary. A

Referring again to Figure 3, Application and Infrastructure Subsystems 100 are
provided, which include subsystems that lie on top of the middleware products discussed
above. The AMR Application and Infrastructure Subsystems 100 both directly and indirectly
use the middleware products described above. RogueWave 114, is a class library of
pre-compiled software used to assist in the development of common and routine tasks within
a system. RogueWave 114 provides many useful services that shield the AMR Server
software from the underlying operating system 118. RogueWave 114 is platform independent
between different UNIX variants as well as Windows NT®.

Figure 3 also illustrates several external interface mechanisms that allow the
AMR Application Services to interact with the External Application Systems 50. As
illustrated, a DCE API 132 is provided that is based upon the DCE RPC mechanism discussed
above. The individual RPC APIs provided by the AMR Server 15 will described below.
Another interface available to external systems is the File Based Interface 128 . The file based
interface 128 is provided because RPCs are not designed to efficiently handle bulk exchanges
of data, like sending metering data to a billing system. Most billing systems currently use a
file-based protocol for receiving billing data, and have specified formats for the billing data
file. Currently, there is no standard data format specified for use by billing systems. In view
of the incompatibilities in file formats, the AMR Server 15 uses a Canonical Mapper 140a that
can convert from any file format to any other file format. The Canonical Mapper 140a builds
a map which specifies the required translation to perform the conversion. The Canonical
Mapper 140a advantageously allows the AMR Server 15 to quickly adapt to different formats
for the data without writing code and recompiling the software.

The final interface illustrated in Figure 3 is the Database APIs 124. The AMR
Server 15 provides the capability to populate the Output Staging Database 122 with data from
the AMR Data Repository 120. The Output Staging Database 122 schema is made public to
enable external system application developers to produce their own database access routines.
The AMR Server 15 does not directly provide the Database APIs 124 depicted in Figure 3,
but the architecture of the system enables these APIs to be developed while maintaining

1solation between the business systems and the AMR Server 15. Future interfaces 126, such

10

15

20

25

30

WO 99/13426 PCT/US98/19034

-30-

as CORBA, may be provided as necessary. A provision has been made in the AMR Server
15 for such future interfaces 126.

The loading of data into the AMR Server 15 database is the highest volume
task in the system. For this reason, the loading performs bulk imports of data into the
database very efficiently. To this end, the AMR Server Data Repository 120 is not directly
accessed by external applications. If external applications had direct SQL access to this
database, then the AMR Server applications could not be assured these applications would not
perform inefficient queries that would lock out sections of the data and consume needed
processing power. In addition, if external applications are allowed direct access to the
database, then encapsulation is lost and any changes made to the structure of the database need
to be coordinated with all external applications that have made direct use of the database.
Instead, the AMR Server 15 architecture provides periodic data mining from the Data
Repository 120 into another database (see, Output Staging Database 122 in Figure 3). The
structure of the Output Staging Database 122 can remain stable and isolated from the AMR
Server 15 applications. As changes occur in the AMR Server Data Repository 120, only the
data mining application has to change. External applications can be developed using SQL or
other commercially available report generation tools to obtain access to the contents of the
Output Staging Database 122.

Referring now to Figure 4, the AMR Server 15 uses independent Subsystems
(SS) to accomplish large grained business goals. Figure 4 expands the AMR Application and
Infrastructure Subsystem block 100 shown in Figure 3 as well as other systems. These
Subsystems house specialized services which may be distributed throughout the AMR Server
15. The Subsystems are named to help locate the services within the distributed system, but
Subsystems do not have physical boundaries. The subsystems are simply named places (i.e.,
name spaces) to conveniently group services that collaborate to perform a business goal.
Messages are not sent to the Subsystems, but rather to the services (methods, functions, etc.)
within the Subsystems. Typically, the services provided by a Subsystem are contained in
executables (servers) or provided as class libraries that perform a specific set of services.
There may be a single server within a Subsystem (named the same as the Subsystem), or there
may be multiple servers in a Subsystem that interact to implement the service(s).

AMR (Software Architecture) Subsystems are divided into two broad
categories, shown as the Infrastructure and Application Subsystems 100. The Infrastructure

10

15

20

25

30

WO 99/13426 PCT/US98/19034

-31-

Subsystems provide the services and framework required to support the Application
Subsystems. The Infrastructure Subsystems are developed as generic and reusable
components. These Subsystems have no knowledge of AMRs’ application domain. The
Application Subsystems, on the other hahd, have detailed and specific knowledge about the
AMR domain. These Subsystems implement the AMR application requirements. For
example, the AMR domain is concerned with meters 60, rates, accounts, metered data, etc.,
and the Application Subsystems know how to operate on these entities, and know their
relationships. The Application Subsystems can be further subdivided into Support Services,
and Data Management Services.

As shown in Figure 4, the AMR software architecture is composed of the
following Subsystems. The Infrastructure Subsystems include Activity Management 146,
Scheduler 138, Alarm 134, Concern Management 136, Mapping 140, and Log/Trace 142
subsystems. The Application Subsystems include a GUI subsystem 92. Asnoted above, the
Applications Subsystems may comprise Support Services and Data Management Services.
The Support Services are a group of subsystems that accept reqﬁests, and communicate to
systems external to AMR. Support Subsystems include a Utility Interface 144 and a Supplier
Interface 148. The Data Management Services store, retrieve, and format the relatively large
amounts of data that the system will handle. The Data Management Subsystems include a
Data Access Object Subsystem 150 and an Export Subsystem 152.

Each AMR Subsystem is composed of one or more software servers. Asnoted
above, the AMR Server 15 is modeled as a set of cooperating system services and objects
encapsulated within servers implement these services. The capabilities of the system are
viewed as the combined capabilities of its services. As used herein, cooperating objects
accomplish services. The interface to these objects is through their public methods. Many
methods may interact to accomplish a service, but only a few are exposed as interfaces to the
service. All objects that cooperate to fulfill a service physically live in the process space of
one or more servers (processes running apart from the client process on the same machine,
LAN or WAN). The client or end user portion of the system will almost never contain the
actual objects that provide services. These servers are implemented on top of DCE/Encina®
middleware. As such, they are capable of either receiving remote procedure calls (to

interfaces exposed through the IDL) or reading requests from queues (Encina® RQS).

10

15

20

25

30

WO 99/13426 PCT/US98/19034

-32-

Services in the AMR Server 15 are triggered by both RPC calis and queue-fed
requests, depending on the nature of the service. Services that access an object in the database
and return some attribute or that immediately answer a question, are triggered synchronously
via RPC. Services that carry out long operations (such as mapping a list of values) are
triggered asynchronously via a queued message through RQS. Some objects may be designed
to behave both asynchronously and synchronously for different methods.

Referring again to Figure 4, the various subsystems illustrated therein will now
be described in detail beginning with the Infrastructure Subsystems.

The Activity Management Subsystem 146 houses services that invoke and
manage Activity Plans. As much as possible, business logic is abstracted away from the
service level into Activity Plans (to be discussed below). The services are reduced to finite
business objects that accomplish a single task or service for the system, usually on behalf of
alarger grained Activity Plan. As noted above, the Activity Plans may be thought of as a list
of tasks or operations that are performed to complete a business unit of work. The tasks
themselves do not perform the work, but simply invoke a system service for its task and have
information delivered and returned. Each operation may have nested failover, undo, and final
commit operations defined.

The Activity Plan is a decision tree of these operations along with contextual
information carried for the flow and available to each operation. The Activity Plan also
defines which operations are dependent upon others and thus, which operations can run in
parallel. Services within the activity dispatcher instantiate (start) an Activity Plan, negotiate
responses and events for Activity Plans, and monitor the current status of all Activity Plans
in progress. Activity Plans themselves are scripted outside the coding environment and are
easily modified to tailor the AMR Server 15 for a particular client’s business requirements.
Thus, the business requirements may be easily changed without re-coding the underlying
services and objects. The decision process for guiding execution is controlled by a directed
graph of business logic encapsulated in each Activity Plan. The Activity Plan object
represents a state machine that is self-directed. The dispatcher simply provides the Activity
Plan objects an environment in which to execute.

The tasks have the following responsibilities. The first is task sequencing,
which determines which tasks can be run in parallel vs. serial. The second responsibility is

blackboard management, which holds and manages access to the blackboard for all contained

10

15

20

25

30

WO 99/13426 PCT/US98/19034

-33-

tasks. The third is task state management, which tracks which tasks are in progress. Another
responsibility is a next operation which is a directed graph rule-set for determining which task
to perform next based on the state of the Activity Plan. The activity plans are also responsible
for task logging, which logs the result of tasks as they are completed.

The task is a discrete unit of work in an Activity Plan that is performed by a
single service in the system. An Activity Plan task is responsible for precondition processing
which predetermines the task’s ability to execute based on the availability of required inputs.
The task also has Activity to Perform responsibilities which is a unique identifier for the
specific operation to be performed by an agent. The agent is a server capable of performing
the activity. Tasks are responsible for failover processors, which are a list of operations to
perform in the case of failure based on return conditions from executing an activity.

The activity management subsystem 146 acts as a workflow manager within
the AMR Server 15. It is an engine that controls business events and contains a knowledge
base of business rules that are domain specific. It acts in concert with the Transaction
Manager (TM) to coordinate higher level business events such as watching and acting on
schedule dependencies within the unit or controlling an event with a legacy system.

An example of a controlled legacy event would be a case where the Billing
System requests a route to be read within three days. The application would request a
workflow called, for example, a ReadRoute. The Work Flow Manager (WFM) uses a
dictionary of predefined workflows to determine the prerequisites for the business flow and
all required operations that comprise the workflow. Each of the operations in the workflow
are autonomous but operating either serialized or in tandem with other operations. Each
operation performs some atomic unit of work (or another WF) in the system and reports its
success or failure back to the WFM. Each operation can have failover clauses that allow for
€ITor recovery or cleanup.

In short, the business rules used by the WFM are preferably the primary
mechanism for building functionality in the AMR server 15. Little to no changes should need
to be made in the general application set. Each of the systems within the AMR Server 15
responds to messages sent by operations. All intra-system data is communicated via objects
to ease state maintenance. Each operation is checkpointed or stored as it sleeps between state

changes in the database 120.

10

15

20

25

30

WO 99/13426 PCT/US98/19034

-34-

The Activity Management Subsystem 146 Servers will now be described. In
order for Activity Plans to flexibly control system actions, the system is modeled and
implemented as a cooperating set of medium to low-level services. The services are grouped
and serialized to perform business operations. The grouping and control of the service
execution (to accomplish a specific high-level business task) is the job of the Activity Plan
object.

Activity Plan instances are named, for example, by the business unit of work
they accomplish and contain an ordered list of tasks that interact with individual services in
the system. Task instances are named for the service they invoke and know their prerequisites
and possible alternate cases in the event of service failure. To support the execution of
business logic through Activity Plans, a support structure for building, dispatching, logging,
monitoring and routing are assembled. This Subsystem consists of a set of five servers to
perform these tasks. They are illustrated in Figure 3 as the Activity Plan Builder 146d,
Dispatcher Panel 146a, Dispatcher Brain 146b, Dispatcher Storage Manager 146e, and
Activity Plan Monitor 146¢. The servers will now be described. The Dispatcher Panel 146a,
Dispatcher Brain 146b and the blackboard object comprise the Activity Plan Dispatcher.

The Activity Plan Builder 146d is provided because Activity Plans are not
useful objects immediately after instantiation. They are constructed and passivated for later
use because Activity Plans are the objects that manage a set of tasks to perform a unit of
business work. In addition, the Activity Plan object itself is simply a manager and container
for the tasks that get the work done. An ordered collection of tasks are constructed and
assigned to the Activity Plan before it is useful.

The tasks use the data-exchange object Blackboard, which is initialized prior
to use. To accomplish this, a tool is used to build and manage a dictionary of useful tasks,
initialize blackboard slots, and assemble Activity Plans. The Blackboard object provides
methods for creating, accessing, updating and deleting blackboards and slot contents within
blackboards. All blackboards are stored as a streamed object (blob) keyed by a unique
identifier. When used in conjunction with Activity Plans, the unique identifier matches the
Activity Plan ID with its associated Activity Plan. When used for Activity Plans, the
blackboard object has predefined slots required to communicate information among the
various Activity Plan tasks. Each task in an Activity Plan retrieves inputs from predetermined

blackboard slots, and places outputs into other predetermined slots. The blackboard is stored

10

15

20

25

30

WO 99/13426 PCT/US98/19034

-35-

in another persistent store labeled with the name of the Activity Plan. An Activity Plan object
is built with the same name as the blackboard’s, describing the business unit of work to
perform. The user then uses the builder to populate the named Activity Plan with the required
tasks.

The Activity Plan Builder 1464 is a developer tool comprising a front-end
graphical user interface (GUI), controller, and domain objects capable of being stored
persistently and used by the Dispatcher. The Builder allows for ease of constructing tasks and
storing them in a dictionary for easy insertion into Activity Plans. In the same manner,
Activity Plans should be constructed through the Builder 146d by selecting tasks from the
dictionary, validating that static prerequisites are fulfilled, and inserting into the list of tasks
contained by the Activity Plan. All Activity Plans are stored in a dictionary used by the
dispatcher to copy into execution upon request. The Builder 146d is used in the development
cycle to instantiate task objects that will be used in one or more Activity Plans. The builder
stores tasks in a persistent dictionary by the name of the task. The builder 146d also prepares
a blackboard object for the Activity Plan. Preparation of the blackboard is a matter of
predefining slot names and initializing values. The builder 146d is also an editor. It is
capable of easily allowing the user to reference a stored task, blackboard, or Activity Plan and
change its contents.

Referring to Figure 29, there is illustrated the main screen of the activity plan
builder 146d. As illustrated, the entry screen of Figure 29 provides the user with the
capability to view, edit and delete existing workflows, tasks and operations in addition to
creating new ones. The attributes for each workflow, task, and operation are listed beside
each item. As can be seen from the Workflows illustrated in the top panel, the workflow
attributes contain tasks (e.g., the ModifyMeterSave workflow contains the task ModifyMeter).

Figure 30 is a graphical representation of the various paths available for that
particular workflow. This screen is accessible from the main screen shown in Figure 29. In
this example, a ModifyMeter workflow is illustrated with three main paths of execution. The
first is a Normal path (STS_NORMAL) which translates into a simple update in the database
120. The second is a Move to Non-communicative
(STS_MOVE_TO_NONCOMMUNICATIVE), which lists required tasks that must complete
in order to successfully run workflow. The third is a Move to Communicative
(STS_MOVE_TO_COMMUNICATIVE), which lists required tasks that must complete in

10

15

20

25

30

WO 99/13426 PCT/US98/19034

-36 -

order to successfully run workflow. Traversing of various paths (decisions) is based on
statuses returned at each individual decision point. If each task within a workflow completes
successfully, the final branch returns to the AddUpdateMeterAliases task at the end of the first
decision tree.

Figure 31 shows how a particular Task from the main screen of Figure 29 can
be modified to éxecute, undo, or finalize an operation. In an undo, the operation reverts to a
previous task and a previous state in order to resolve failure conditions. Finalizing an
operation performs clean-up operations for any operation that was initiated in a task by, e.g.,
deleting files, etc.

Figure 32 illustrates how an operation can be modified. The following fields
are used in the modification:

Name - Name of the Operation;

Queue Name - Queue assigned to Manager (Server) responsible for the
operation,;

Interface Name - DCE Interface that contains the method for the operation;

Service Name - Method used for the Operation;

Return Queue Name - Queue name for return results of operation;

Return Interface Name - DCE Interface for return operation; and

Return Service Name - Method used for the Return Operation.

Figure 33 illustrates the slot names within the blackboard object that contain
the specific value types used to execute the operations.

The Dispatcher Panel (DPanel) 146a instantiates Activity Plans by name and
initiates processing. This server handles requests for starting Activity Plans and fields
requests for current status and obtaining results from completed Activity Plans. DPanel 146a
has an API used by requestors to begin Activity Plans and to receive results of finished
Activity Plans. DPanel 146a may also be called to inquire as to the state of a Activity Plan.
All DPanel 146a calls are synchronous. By request, DPanel 146a instantiates a named
Activity Plan from the Activity Plan storage area, along with its associated Blackboard, both
with a unique identifier but does not run it. Activity Plans are instantiated and passivated
using the Dispatcher Storage Manager 146e, keyed by Activity Plan identifier. After

passivation of the new instance in the active Activity Plan area, DPanel 146a sends a message

10

15

20

25

30

WO 99/13426 PCT/US98/19034

-37-

through RQS to DBrain 146b (described below) using the Activity Plan identifier. DPanel
146a can then process requests for status or results.

Activity Plans themselves are instantiated objects, and outside of a process -
space (except in CORBA environments) are unable to receive messages themselves.
‘Therefore, they are invoked and managed by a process. In the case of a DCE environment
112, a RPC/Queue server receives and dispatches all communication between other system
objects and the Activity Plan(s). This server is called a Dispatcher Brain (DBrain) 146b,
which runs Activity Plans and handles responses from other servers sent to active Activity
Plans. DBrain 146b is messaged primarily through the RQS server. The sole function of
DBrain 146b is to run Activity Plans and route responses from other servers to an appropriate
Activity Plan where tasks within an Activity Plan (run in DBrain’s 146b process space) send
queued messages to other servers. Individual plans may receive priority in activation based
on dynamically set priorities. During processing, Activity Plans are passivated when
dependencies prohibit the next task to run, and can be re-activated by the DBrain 146b when
the dependent task(s) complete, upon receipt of an event notification (Concern Manager 136),
and when Activity Plans mature (i.e., timer expiration).

DBrain 146b is a vendor of special events called Activity Plan state changes.
The Concern Manager 136 has a corresponding special interface for requesters to request state
change information by Activity Plan identity, either a specific instance of an Activity Plan,
or all Activity Plans with a given name. The special events DBrain 146b can vend are
Activity Plan Start, Abort and Finish. DBrain 146b is responsible for both logging the
operations and parameters of an Activity Plan and for debugging. As each task begins and
ends, a log entry is written. The log entry contains the Activity Plan state and blackboard
contents (in their entirety or selectively) at each step.

The Dispatcher Storage Manager (DStorageMgr) 146e is used to control access
(add, update, read, etc.) to the persistent Activity Plans. The DStorageMgr 146¢ is used
concurrently by the Dispatcher Brain 146b and the Monitor to prevent collisions while
accessing the Activity Plans. The DBrain 146b server uses the storage manager to maintain
the activity state persistently across system shutdowns and Dispatcher failures.

Many Activity Plans can be active in the system at a time, and may operate for
hours or days. It is important to be able to monitor the state or status of any and all Activity

Plans. The Activity Plan Monitor (APM) 146¢ shows a user the state of any Activity Plan by

10

15

20

25

30

WO 99/13426 PCT/US98/19034

-38-

name, or by selection. The monitor 146¢ does not examine the log but only knows the current
state of the Activity Plan as it is represented in the database. It monitors the state of active
Activity Plans and allows examination of completed and aborted Activity Plans from the
Activity Plan Archive.

Referring again to Figure 4, a Scheduler Subsystem 138 manages the building
and execution of schedules for the AMR Server 15. Schedules are used to control the time-
based execution of work within the AMR Server 15. Schedules can be recurring, specified,
start time-activated, or finish time-activated. The Scheduling Subsystem 138 provides a
single point of database access for creating, retrieving, and updating of schedules. In addition,
the Scheduling Subsystem 138 executes scheduled activities at the proper time, and optimizes
the execution of scheduled activities to avoid conflicts, missed deadlines, and redundant work.
The Scheduling Subsystem 138 is provided to accommodate changing business requirements.
It also maintains portability of core objects so that components can be shared with the
Scheduling Subsystem 138 in the Supplier System 148.

Schedules within the AMR Server 15 do not perform the work; instead, the
schedules control the activation of the work. As noted above, the work within the AMR
Server 15 is typically controlled by an Activity Plan that is initiated by the Scheduling
Subsystem 138. Schedules in the AMR domain are used to control the delivery of data from
suppliers to the AMR Server 15 based upon business activities such as billing export or other
data export from the AMR Server 15. Schedules also control other tasks like the loading of
the Output Staging Database 122 (Figure 3), and report generation.

The object model for schedules may have, e.g., a ScheduleTask class at the top.
The ScheduleTask class handles any external schedules from the business world. A subclass
of the ScheduleTask class may be defined that handles the detailed entities that contain data
for those schedules (e.g., meters 60, accounts, etc.) A schedule has several aspects, i.e., what
to do, when to do it, what objects to perform the action on, and why this action is being
performed. The ScheduleTask object may contain two component objects, e.g.,
ScheduleEvent that represents what to do, and ScheduleTime that represents when to do it.
The set of objects on which to perform operations may be represented by an association with
a MeterGroup object.

In the AMR Server 15, a schedule may exist, for example, because data is to

be exported to a utility, or because data is to be made available in the AMR database 120. The

10

15

20

25

30

WO 99/13426 PCT/US98/19034

-39-

scheduler 138 may also handle complex timed execution of other operations, or may simply
indicate the expected arrival of data from a supplier. In the latter case, there is no expected
action for AMR. It is noted that the AMR Server 15 keeps receive schedules because the
AMR Server 15 maintains what has been given to the suppliers, and because these schedules
represent a constraint on the start times of related AMR actions.

Referring again to Figure 4, the Scheduler Subsystem 138 has two main
servers, the Schedule Manager 138b and the Scheduler 138a. The Scheduler 138a and
Schedule Manager 138b interact primarily with each other, the database 120, the Activity
Management system 146, and an Alarm service 134. The Schedule Manager server 138b
handles the creation, updating, and retrieval of schedules to and from the database. The
Schedule Manager 138b preferably utilizes Data Access Object (DAO) proxies (to be
discussed below) to interact with the Schedule Implementation Server of the DAO Subsystem
102 to perform all database operations. Activity Plans and other subsystems that create and
use schedules will interact with the Schedule Manager 138b. Additional server processes that
implement distributed objects for the schedules may supplement the Schedule Manager 138b.

The other aspect of the scheduling system is the Scheduler server 138a, which
isresponsible for starting the execution of scheduled activities. The Scheduler 138aretrieves
schedules through the Schedule Manager 138b and organizes plans of execution. At
appropriate times, the Scheduler 138a initiates Activity Plans to perform the scheduled
operations. The major incoming stimuli to Scheduler 138a are notices from the Schedule
Manager 138b that schedules have changed, and alarm calls from the Alarm Subsystem 134.
Outgoing stimuli are all Activity Plans. The Scheduler 138a also saves some private
persistent objects in the database 120.

The Scheduler 138a server uses the schedules supplied by the Schedule
Manager 138b to build and execute activity plans that drive data collection and export actions.
Most commonly used activity plans are built to schedule the generation of billing reports and
other resource intensive tasks that must complete within a certain window of time. The
Scheduler 138a obtains the average time to process schedule items, and then determines a
number of jobs scheduled for a given work plan. The Scheduler 138a adjusts estimates
appropriately to schedule a job to begin with a starting time and starting event so that the job

can complete within the deadline window.

10

15

20

25

30

WO 99/13426 PCT/US98/19034

-40 -

A constraint on the Scheduler 138a is the need to adjust for real world
influences that cannot be accurately predicted. In order to schedule ajob, the Scheduler 138a
needs to determine how long it will take. However, the execution time can only be estimated
at best; it will change from day to day and likely will change as the number of associated
meters 60 changes. The execution time will also vary based on how heavily loaded the AMR
Server 15 is. If a new schedule is added that executes at the same time as an existing
schedule, times need to be adjusted to account for the load. Important AMR schedules are
constrained by matching schedules with the supplier, for example, the AMR Server 15 cannot
start exporting data until the data has reached AMR 10. Therefore, the scheduler 138a
allocates some room when creating supplier schedules, and new schedules will have to defer
to seniority for choice execution times.

The Scheduler 138a contains several heuristic-tuning parameters for adjusting
estimated execution times. The parameters are set and changed by the configuration file
interface used by AMR Server 15. The core classes implementing the Scheduler 138a are
designed to be generic, and independent of the application domain and of the implementation
platform.

The Scheduler 138a may use several important classes to build and execute
activity plans. For example, ActivityPlan may be used, which translates the time specification
algorithms of schedules, describing multiple executions, into specific jobs with specific start
times. In order to keep the scheduling code portable, there is provided three classes that
isolate system dependencies, the Schedule Builder, Schedule View, and Work Plan Agent.
The process operates as follows. The Scheduler class implements an Encina® 106 interface.
The interface then makes method calls to the ScheduleBuilder class, which should be
platform-independent. ScheduleBuilder uses a ScheduleView object to retrieve and filter the
schedules. Database access dependencies are preferably handled by ScheduleView and kept
transparent to ScheduleBuilder. Once the ActivityPlan is constructed, ScheduleBuilder hands
the ActivityPlan to an ActivityPlanAgent for execution. The agent handles persistent storage
for the plan, and the details of setting and responding to alarms and initiating the actions.

Figure 5 illustrates the relationship of a delivery schedule 162/32 to the
Scheduler Subsystem 138. The delivery schedule 162/32 notifies the supplier 30 when to
deliver data to the AMR Server 15 in a recurring manner. The delivery schedule 162/32 is
owned by the AMR Server 15 and is the consolidated schedule of billing and availability

10

15

20

25

30

WO 99/13426 PCT/US98/19034

-41 -

schedules supplied by the utility. The billing schedule 154 determines the timing of data
delivery from the AMR Server 15 to the utility for billing. The availability schedule 156
notifies the AMR Server 15 when to make the reading data available (or visible) to the utility.
Both billing 154 and availability 156 schedules are created by the utility; however, the AMR

~Server 15 will keep the schedules in its database. The AMR Server 15 derives the delivery

schedule 162/32 by taking the most restrictive timing from the billing 154 and availability 156
schedules. For example, if the billing schedule 154 is once per month (the last day of the
month), and the availability schedule 156 is daily (for increased customer service), the AMR
Server 15 will choose a daily delivery schedule 162/32 in order to meet billing and availability
requirements.

A collection schedule 34 determines when to collect data and what type of data
to collect. The AMR Server 15 provides the supplier with collection component information
164, i.e., the collection type and the load profile interval. The collection component 164 is
based upon the rate 158 and other data requirements 160 (e.g., power quality) supplied by the
utility. The AMR Server 15 does not inform the supplier of the timing of data collection since
itis assumed that the supplier has a superior understanding of the communication network and
other constraints. It is also noted that the delivery schedule 162/32 from the AMR Server 15
should be used to derive the collection schedule 34.

Schedules may be specialized into two types: Delivery Schedules and
Receiving Schedules. Delivery Schedules specify when the AMR Server 15 is to deliver the
data for the grouped meters 60 to external Application Systems. Billing schedules and data
export schedules are examples of Delivery Schedules. Receiving Schedules specify when the
data is to be received from the Communication Servers 30 (suppliers). Receiving Schedules
are derived by the AMR Scheduling Subsystem from Delivery Schedules.

The AMR Server 15 preferably uses several data structures to transfer data and
schedule/collection information between the AMR Server 15 and Communication Servers 30.
The structures encapsulate the data required by the supplier API to allow for maximum
flexibility and future expansion.

Referring again to Figure 4, there is shown the Alarm Subsystem 134. The
Alarm Subsystem 134 receives requests for timed messages. The Alarm Subsystem 134
maintains a list of wake-ups for any requester in the system. The wake-up is stored with a

message to send back to the requester when predetermined time expires. Activity Plans and

10

15

20

25

30

WO 99/13426 PCT/US98/19034

-42 -

the Scheduler Subsystem 138 most frequently request the services of the Alarm Subsystem
134.

The Alarm Subsystem 134 is comprised of a single server, the Alarm Server
134a. The Alarm Server 134a is designed as an Encina® server, and will use the Distributes
Services Framework 104, described above, for its implementation. This service is preferably
concurrent (multi-threaded) in order to support multiple clients concurrently in setting and
processing alarms. The Alarm Server 134a may provide both synchronous and asynchronous
interfaces to its functions. Requests will be transactional, in that if an operation fails for
whatever reason, it will have no effect. All active Alarms managed by this service will be
stored persistently through their life-cycles, which will allow the Alarm Server 134ato restore
its state in event that it is shut down and restarted while active Alarms exist.

When an Alarm occurs, a callback is made to the subscriber via the
asynchronous interface provided by, for example, the Queueutil library. Ifthe Alarm was set
with any information, this will be passed with the SOQueueElement back to the subscriber.
Optionally, the Alarm Server 134a will support a callback mechanism using synchronous RPC
for those subscribers that do not read from a queue.

Referring again to Figure 4, the AMR Server 15 is also provided with a
Concern Management Subsystem 136 . The Concern Management facility 136 is a set of
services providing distributed event management for other entities within the system. The
entities may be either a “vendor” and/or “requester.” A “vendor” is something that can
provide notification of an “event,” or more generically, something that can provide (vend) a
particular item. The term “event” is used within the written description to mean the
occurrence of one or more specific and well-defined circumstances that can be tangibly
detected and described. A “requester” is something that has an interest or concern in an item
that can be provided by a vendor, and usually wants to obtain the item or in the case of an
event, be made aware of its occurrence. It is noted that a particular client of the Concern
Management service 136 can be both a vendor and a requester, much like a server can also be
aclient in the RPC world. This design attempts to advantageously solve the problem of how
to allow requesters to express a concern for particular events and vendors and forward these
events to any concerned requesters in a distributed system of interacting services.

The above implies a process/server/device that tracks which vendors can

provide specific events and which requesters have concerns for these events. The Concern

10

15

20

25

30

WO 99/13426 PCT/US98/19034

-43 -

Manager 136a is a centralized service that coordinates the above-noted interaction. This
relieves the burden on vendors to manage interaction with their requesters. The vendor will
communicate all event information to a central service. Requesters need not know which
vendor(s) can provide specific events, but only know the event types that can be provided.
From the Requester's perspective, it simply notifies this central service that it is concerned for
a particular event, and the concern manager forwards any occurrences of this event back to
the requester. From the vendor’s standpoint, it simply notifies the central service of any event
it can vend, and forwards them on to the central service when they occur. To be efficient, the
central service can notify a vendor when it needs to begin forwarding events, since there is no
need to forward a specific event if no requesters are concerned with the event.

The Concern Management Subsystem 136 is comprised of one server, the
Concern Manager 136a. The Concern Manager 136a is designed as an Encina® server, and
uses the Distributed Services Framework 104 as the basis for its implementation. This service
is preferably concurrent (multi-threaded) in order to support multiple clients concurrently in
managing concerns and events. The Concern Manager 136a will provide both synchronous
and asynchronous interfaces to its functions. Requests will be transactional, in that if an
operation fails for whatever reason, it Will have no effect. All active Concerns managed by
this service will be stored persistently through their lifecycles, which will allow the Concern
Manager 136a to restore its state if it is shut down and restarted while active Concerns exist.

The Concern Manager 136a is responsible for accepting concerns from
requesters and retaining a mapping of the concern. This map contains enough information to
make a callback to the requester at a later time with notification of the event if it occurs. The
Concern Manager 136a provides an interface for vendors to register what events they can
produce and callback information to enable and disable forwarding of these events.

At startup, all vendors register the events that they can produce. Vendors
register each type of event separately. The vendor will provide the event type and enabling
and disabling callbacks. Event reporting is considered disabled for a vendor until the Concern
Manager 136a receives a concern for a particular event. The Concern Manager 136a then
makes the enable callback to any vendors that have registered that they can provide this
particular type of event. Whenever this event occurs within the context of an enabled vendor,

the vendor forwards the event to the Concern Manager 136a to be handled.

10

15

20

25

30

WO 99/13426 PCT/US98/19034

-44 -

On the requester side, requesters register concerns for each event separately.
The request consists of the event name and a callback in the requester to notify it when such
an event occurs. When a vendor forwards an event matching a type that a requester is
concerned for, the requester is notified via the callback of the event occurrence. Requesters
explicitly withdraw concerns for events. Callbacks can either be provided through the queue
of a requester or vendor; or for non-queuing servers (i.e., DCE only/non-Encina), through a
synchronous callback interface.

To assist in integrating other servers in the system with the Concern Manager
1364, the Distributed Services Framework 104 is utilized which allows the developer to model
the server as a Vendor and/or Requester and use the respective member functions just like
other server member functions.

Referring again to Figure 4, a Mapping Subsystem 140 provides services that
allow easy customization of file formats for exporting data from and importing data to the
AMR Server 15. The mapping subsystem comprises the canonical mapper 140a, which is
included to enhance the custorﬁization of the AMR Server 15. The purpose of the Canonical
Mapper 140a is to produce maps that can be used to map information across subdomains. The
mapper assumes that there are at least two subdomains mapped in which to transfer
information across. Both subdomains are mapped under the same root domain. The user
invokes the Mapping tool rather than the Map Builder to create a utility capable of
transforming information from one selected subdomain to another. The User Interface is
simple. It displays all maps in two lists and allows the user to select one map from each list.
One list represents the subdomain to map data from. The other list represents the subdomain
to map data to.

The Canonical Mapper 140a is preferably implemented in Smalltalk and hence
requires integration into the DCE / Encina® environment of the AMR Server 15. To
accomplish this integration, a Mapping Interface Server 170 provides the DCE/Encina®
service requests from the AMR Subsystems, as shown in Figure 6. The Mapping Interface
Server 170 will interface with the Canonical Mapper Server using a socket connection. The
Mapping interface server 170 will provide a service that allows an AMR Subsystem to specify
an input file 166, an input map, an output file 168, and an output map. The Mapping interface
server 170 will send this request to the Canonical Mapper 140a through the socket interface

shown in Figure 6. The input and output maps are derivation trees. Using these maps, the

10

15

20

25

30

WO 99/13426 PCT/US98/19034

-45 -

Canonical Mapper 140a, running in a headless mode, will build a scanner/parser for the
FROM sub-domain. The Canonical Mapper 140a will then traverse the input map, parsing
the data from the input file into a canonical list. After the input map traversal is complete, a
canonical list will exist, populated with the elements from the input sub-domain. Next, the
‘Canonical Mapper 140a will map from the canonical list to the output sub-domain by
traversing the output map and re-interpreting the corresponding element from the canonical
list to conform to the new data format. This action creates the specified output file.

The Canonical Mapper 140a may be configured to accommodate differing file
formats as follows. Asnoted, the purpose of the Canonical Mapper 140a is to standardize data
formats so that information spanning across different business units can be easily converted
from one format to another.

In the detailed description of the canonical mapper 140a, the following terms
are used to describe the features of the canonical mapper 140a. A “canon” is a tree relating all
data attributes within a domain of information (e.g., Bill of Materials). “Canonical elements”
are specific parts of a Canon. A “map” is a data structure that describes the format of a
particular file in terms of the Canon. A “domain” is a collection of data that is semantically
consistent (e.g., the same data format). “Scanning” is the process of identifying elements of
input text. “Parsing” is codifying input text in terms of its relationship to the output text. A
“token” is an item added to a value in a file to describe the format of the text. An “action” is
a tool for modifying the appearance of a particular file, i.e., an “action” performs operations
upon text (e.g., add carriage returns, add quotation marks, etc.)

The Canonical Mapper 140a preferably consists of utilities to create Canons,
build Maps, and translate files. A Canons utility may be included to create a Canon. The
Canon is an abstract template or master file that describes a general structure for a domain of
information. In other words, the Canon is a template that describes a general format for a
domain of information that is to be converted. A Canon may be analogized as a tree or an
outline that is used as a template for the conversion of information. The Canon starts with a
root from which other subordinate parts stem. The root of the tree is the name of the Canon,
thus the root is the parent to every other part of the tree. That parts that are nested or indented
within the root are the children. The Canon is described from top to bottom by the

relationships of each part to the other, similar to an outline. Each parent contains specific

10

15

20

WO 99/13426 ' PCT/US98/19034

-46 -

information (i.e., children) and a child may contain other children. Each child and parent is
anode in the tree. A node that does not contain any children is a terminal node or leaf node.

Every item in the Canon is a Canonical Element. In order for the Canon to
function correctly, each element must be defined so that when data is fed through the Canon,
the data can be accurately interpreted. The entire domain is described in terms of a canonical
element that is an abstraction, and then each division or part of that element is subsequently
defined in terms of less abstract elements until the entire document is defined. Each abstract
element ultimately resolves to a concrete element. For example, as shown in Figure 27, if a
user is mapping a domain that is a bill of material (BOM) document, they select the entire
domain sample and select the canonical element “BOM?”. As this point, the user has abstractly
represented the entire input as a “BOM”. Then, the user proceeds to identify more detailed
abstractions in the input. For example, the user selects the domain input comprising all the
assemblies and select assemblies from the canon. Within that selection, they further sub-
select a single occurrence describing an assembly and map it to the canonical element
“Assembly”. Mapping proceeds in this manner until all discreet elements of the input have
been mapped to the canon.

Relationships exist when a domain contains data that is dependent upon other
data in the domain. For example, a domain input describing a part, wherein a part has a
plurality of attributes. The word “has” infers a relationship, i.e., the part may include a part
identifier, material identifier and a parent identifier.

The domain may be mapped to the canon with the following relationships:

10

15

20

25

30

WO 99/13426 PCT/US98/19034

-47 -

+Parts (Group)
+Part (Group, isRepeating)

+Partldentity (Group)
PartldTag (Id)
PartIldResult (Result)

+Materialldentity (Group, isOptional)
MaterialldTag (Id)
MaterialResult (Result)

+Parentldentity (Group)
ParentldTag (Id)
ParentResult (Result)

As exemplified above, the part may be described as a first canonical element
Parts. This is an abstract element denoted by its type (i.e., group). The next element nested
is Part, which indicates that Parts have a Part. The nesting indicates a relationship. Part has
three relationships, Partldentity, Materialldentity, and ParentIdentity. The user controls how
relationships are formed by selecting a previously mapped element to add a new relationship.

The canonical elements may also be assigned attributes that define certain
qualities about those elements. For example, the attributes may include element types (e.g.,
group and result elements) and modifiers. Group elements are elements that contain children
(e.g., “Partld” contains “PartldValue”) and result elements contain a variable piece of
information that identifies a specific value (e.g., “PartidValue” contains a particular value).
A graphical view of the Canonical Elements may be derived, as shown in Figure 28 for the
Canon “Costing.”

A Maps utility is included to create a map for translating data from one format
to another. Since there may be many different file formats and applications within a particular
domain, it is desirable that the software be flexible enough to allow users to create customized
maps for their particular applications and file formats. These maps are based on the Canon
for which the data conversion is needed. Maps specifically describe formats for the
conversion of information between two applications, i.e., a map is a way to describe the
intended output in terms of the Canonical Elements. The map does not perform actual
converting, but rather acts as a liaison between the Canon, the input file and the application

used to create the input file. A map is essentially a tree that represents a formula for

10

15

20

25

30

WO 99/13426 PCT/US98/19034

-48 -

converting a file. Anytime there is a need for data conversion between different applications
and there are no existing maps for these applications, a map must be created that describes
what the converted information should look like. In other words, for every two tools that need
to communicate with each other, there must be a map for each tool. Once maps are created,
they can be repeatedly used to convert information between the two applications.

Building amap entails selecting each component of the input file and defining
its function in terms of the Canon being used. Attributes about certain Canonical Elements
are defined during the process of building a map. For example, group elements may have
modifiers defined for them. A modifier is a conditional statement that further defines its
function. The modifiers may indicate that a group element is not required, indicate that the
group element appears more than once, indicate that the group contains a series of results that
are grouped within that element, or indicate that the element is required. In addition to
modifiers, identifier may be included for constant information within the file. The identifiers
may be used to identify a Result element for a particular piece of information. An exemplary
identifier may be an order number for a BOM.

Tokens and actions are defined in the maps utility. The token specifies the
format of the results (i.e., values) in the map. Tokens are defined because they define specific
values that change depending on the input text. Actions structure the appearance of certain
parts of the file. For example, a carriage return action instructs the mapper to insert a carriage
return at a particular point in a file. Two types of actions may be performed, Canon Actions
and Output Actions. The Canon Actions are performed on the input text as it is converted to
the canonical form (step 202) or when any actions are necessary prior to the output map has
acted on the file (step 204). Once the information has traveled through the Output Map, the
Output Actions are activated. These actions are performed because the file has been changed
and may need to be re-interpreted before they can be displayed correctly.

An Interactive Translator utility is provided to test the actual translation of a
file to be mapped for the conversion process. The Interactive Translator bases the conversion
on the Canon, the Input Map that was created to describe the conversion of the input text, the
Output Map that is used to describe the output text, and the input text being converted. The
Interactive Translator then produces an output text file based on the information provided.

Once a successful translation has been made in the Interactive Translator, then

the translation across domains is performed in a Headless Translator. By selecting the

10

15

20

25

30

WO 99/13426 PCT/US98/19034

-49 -

appropriate input map, output map, and input text, the Headless Translator performs the
conversion to create the translated text file.

Thus, the mapping process can be broken down into four main steps: Creating
the Canon (Canons Utility), creating the maps for the Canon (Maps Utility), testing the file
conversion (Interactive Translator), and mapping the information from the Input Map to the
Output Map (Headless Translator) to create the converted file. ,

Referring now to Figure 7, the process of converting a file between two
applications (i.e., from one domain to another) will be described. Using the Maps utility, the
input text file 200 is selected. In order for the mapping to be successful, the input text 200 is
translated to a Canonical Form in accordance with an input map 202. The particular
Canonical Form of the input text depends on the Input Map 202 that is being used. The text
must be transformed into a Canonical Form at step 202 so that the text can be sent to the
Output Map 204 in a format it can accept. Once the text file has been converted to its
Canonical Form, it is interpreted by the Interactive translator in accordance with the Output
Map 204 that was specifically designed for converting files between the two applications to
generate an output text file 206. The output text file 206 is parsed and translated by the
Headless Translator into a text file 208 that can be printed, saved, or placed into a word
processing document.

Referring again to Figure 4 and Figure 8, a Log/Trace Subsystem 142 is
provided which is a group of class libraries available to all servers through the AppServer

class. The Log/Trace 142 provides all servers with a common mechanism for logging and

~ tracing. Logging and tracing are initialized from a system configuration file 174 that activates

logging and specifies the default log file 176 destination. These settings can be modified
during runtime by using an administration utility (ASADMIN 180) provided with the system.

The ASADMIN utility 180 is a program that allows system level control of
servers running the AMR Server 15. The ASADMIN 180 is capable of starting and stopping
the servers. In addition, the ASADMIN 180 can modify and query system configuration
variables. The configuration options (asadmin config) may provide options for reloading the
server’s particular configuration file 172b, returning the configuration filename used by the
server, setting a variable in the server, returning the configuration information by variable,
returning the configuration information by group, and retrieving all possible log settings from

the server.

10

15

20

25

30

WO 99/13426 PCT/US98/19034

-50-

Several scripts may be used for configuration. A first script (rc.amr) may be
written to start or stop all servers. The script preferably attempts to start all servers in order
of dependence by the AMR Server 15. A second script (configServer) may be used to
configure an individual Encina® 106 server. The Encina® cell, however, must be properly
configured before this script is executed. After configuration of Encina® 106 cell, the
configServer script may validate the many parameters, configure the server in Encina, set the
interface ACLs, start the server, modify the server directory permissions to be more open, and
set the queue ACLs. A third script (amrsetup:) may be used to configure or unconfigure all
the AMR servers. It uses the configServer script to configure all the servers and configure a
location of the config file to reference, additional environment variables needed, list of
interfaces exported by the server, various switches (-noasync -nodatabase -singlethreaded),
the Encina® name, and the name of the executable. It is noted that when the AMR Server 15
is implemented and distributed on Sun platforms, the Sun Packaging utility is used. This is
the same utility that is used to distribute Sun sofiware.

Users of the AMR Server 15 can retrieve logs 176 from the Logging
Subsystem 142. The Logs 176 may be used for auditing purposes and can support certain
standard types of queries. An example of a typical log requirement is to log the activation of
each invoked Application System API call with, for example, the following information: API
invoked, User, Time and Supplied parameters.

The Log 176 is internationalized, since users of the system may view its
contents. Log messages contain e.g., the following levels: INFO, WARNING, ERROR, and
FATAL. Users may use Tracing 142 to “trace” the execution of the system to resolve
problems. When the tracing component is activated, it will place messages in a specified trace
file 178. The trace messages have trace categories that can be controlled by adjusting the trace
masks of servers in the system. Typical trace categories are defined for performance, auditing,
function, exception, debugging, and user-defined categories.

Tracing is initialized from the system configuration file 174. The default
configuration for a delivered system is to have tracing disabled. Tracing is only required to
track down problems that occur in a running system and can be activated at runtime on the
entire system or any of the individual servers within the system using the ASADMIN utility
180. The ability to specify trace masks for running servers provides a mechanism to adjust

(increase or decrease) the amount of information traced by the server. Tracing might be used

10

15

20

25

30

WO 99/13426 PCT/US98/19034

-51-

when there is a problem with the Supplier Manager 148a and a user needs to view the trace
messages for function, exception and debugging to understand and isolate the problem. At
runtime, the ASADMIN utility 180 may be used to activate tracing on the Supplier Manager
server 148a, with a trace mask that enabled these categories (function, exception, debugging),
and a trace file specified for the output. By viewing the trace messages output by the Supplier
Manager 148a when the problem occurs, the developer has much more insight into how the
system is reacting.

Each of the above-described subsystems comprise the Infrastructure
subsystems of the AMR Server 15. The Application Subsystems will now be described, also
with reference to Figure 4.

The AMR Server 15 Graphical User Interface (GUI) 92 provides users with
access to the functionality of the system. The GUI 92 provides a User Interface that is self-
explanatory and easy to use. For example, the GUI 92 utilizes the mouse and keyboard input
devices and as such is not geared towards volumes of data entry. For mass data entry, the
AMR Application Systems automate mass data entry through the i)rovided DCE 132 and file
based interfaces 128. The GUI 92 is intended for rapid access to the functionality for smaller
data entry jobs.

The AMR GUI 92 preferably runs on Windows NT® 4.0 or UNIX
workstations and is preferably implemented in a windowing environment. The GUI 92
provides a user friendly and intuitive environment for accessing various AMR activities. The
GUI 92 allows user to manually invoke all business system interfaces online, allows user to
search on specific meter/account/rate/event information, provides access to Activity
Management System 146¢c monitor, and provides interface to schedules.

The GUI 92 is preferably developed in Java™ to provide platform
independence and the capability of remotely running as an applet from standard Internet
Browsers. The GUI 92 uses Standard Application System APIs provided by the Utility
Interface Subsystem 144 to initiate requests. In order to connect a Java™ client to the AMR
Server 15 through DCE some technical challenges have to be overcome due to the relative
immature state of Java™. The following section explains the GUI Interface Architecture
required to accomplish this unique connection.

As shown in Figures 4 and 9 below, there are five major “pieces” involved in

connecting the Java™ client GUI to the AMR Server 15. They are: a Client GUI 92a, a DCE

10

15

20

25

30

WO 99/13426 PCT/US98/19034

-52-

Encina® Lightweight Client™ (DE-Light) gateway 92b, Custom gateway server
(ConfigUtility) 92c, Custom notification server 92d, and an AMR Server 15 (Utility Interface)
144a.

The Client GUI 92a is preferably implemented in Java™ and performs all
communication using the DE-Light gateway 92b. The client 92a provides a “thin” client that
is capable of runhing on a large variety of platforms. The GUI 92 submits end user requests
to the AMR Server 15 and is responsible for interpreting and displaying any data returned
from the AMR Server 15. The GUI 92 is capable of performing a variety of activities related
to meter management, such as adding a new meter, installing a meter, uninstalling a meter,
terminating a meter, modifying a meter, estimating a meter reading, entering a meter reading
manually, reading a meter, adding a meter to an account, removing a meter from an account,
adding a rate to a meter, removing a rate from a meter, adding a meter to a data collection
group, removing a meter from a data collection group, and defining communication
parameters for a meter. To perform each of the following activities, the user may click on
icons or press a combination of keys to be presented with a data entry screen. The data entry
screen includes a list of required and optional fields into which information may be entered
using the keyboard and/or mouse. The DE-Light gateway 92b, available from Transarc®
Corporation, is provided to allow the Java™ GUI client 92a to make RPC calls into Encina®
106 servers. Itis used as communications middleware to connect the Java™ client 92a to the
Encina® ConfigUtility server. The DE-Light gateway 92b enables the Java™ client 92a to
make a secure connection to the AMR Server 15 using the DCE security service.

The ConfigUtility server 92c is provided to work around limitations in DE-
Light 92b. In particular, it acts as a custom translator between the Java™ client 92a and the
AMR Server 15. It mainly performs data conversion (such as serialization) and does not
contain any significant application logic. All RPC calls from the GUI 92 are directed to the
ConfigUtility server 92c. This server 92¢ will provide the Java™ client 92a with a
mechanism to poll for asynchronous replies from the Utility Interface 144a via a Notification
Server 92d.

The Notification server 92d acts as a queue that allows clients that cannot
handle incoming RPC calls to process asynchronous notifications. The server 92d assigns a
unique client ID to each client. Clients then tag their requests to the AMR Server 15 with
their client ID. The AMR Server 15 calls the Notification server 92d when asynchronous

10

15

20

25

30

WO 99/13426 PCT/US98/19034

-583-

requests are complete and stores any information provided, including the requesting client’s
ID, in a delivery queue. Clients execute a simple loop, fetching available notifications and
processing each in turn. If a client tries to fetch a notification when none are available, the
call will block until a new notification arrives (or a timeout occurs), thus preventing busy
polling. The Notification server 92d is preferably written using straight DCE (without
Encina®) and does not use the AMR framework. In accordance with an aspect of the present
invention, the AMR Server 15 performs all the real processing. Therefore, it accepts client
requests and returns data back to the client (either synchronously or asynchronously) via the
Notification server 92d.

When the GUI client 92a receives a notification that an activity plan is
complete, the GUI client 92a receives data passed back in a wait call, or the client 92a may
call the Utility Interface 144a, as noted below. The call to the Utility Interface 144a is
preferably a RPC call, however, may be performed by directly accessing the blackboard. In
addition, the GUI 92 is designed to handle a situation where the client 92a terminates. For
example, if the client 92a cores, then the server 15 will timeout. If the client 92a shuts down
peacefully, then the Notification server 92d will call an abort. On the other hand, if one of the
servers in the AMR Server 15 terminates, then the client 92a will attempt to reconnect for a
predetermined number of times or period of time (e.g., 10 times or 5 minutes). If the server
is brought back up, then the client 92a will reconnect and pending requests, if any, can be
reissued. If the server fails to come up, then the client 92a will be unable to reconnect and
will be notified such that the application calling the server can be closed.

Referring again to Figure 4, the AMR Server 15 includes Support Services that
are a group of Subsystems that accept requests, and communicate with systems 90 external
to AMR Server 15. The Utility Interface Subsystem 144 is the entry point for Application
System requests to the AMR Server 15. All customer requests come in through this
Subsystem. Every external business service the AMR Server 15 may be asked to perform is
represented by a service API in this interface. The services within the Utility Interface 144a
have some common features (by using a common set of services within this Subsystem).
When a service APl is invoked, the accompanying arguments or parameters are validated, and
translated to a form used within the AMR Server 15.

The Utility Interface Subsystem 144 is comprised of a single server, the Utility

Interface Server 144a. This server is an RPC server that provides the DCE only interface for

10

15

20

25

30

WO 99/13426 PCT/US98/19034

-54 -

external Application Systems 50. This server controls access to services within the system
by security mechanisms built into the messaging layer and translates proprietary data from the
utility client to a format useful to the AMR Server 15. The Utility Interface server 144a does
not directly accomplish the work requested. The services the utility interface provides are
“windows” into the system through which work requests pass. After necessary
mapping/validation of parameters has been completed, these services message the Activity
Dispatcher 146a to invoke an Activity Plan to accomplish the business tasks of the request.
All services are synchronous in that they immediately return a result to the requester.
However the nature of the result differs, based on whether the invoked service is interactive,
or the initiator of a batch process.

Interactive services, or those requiring an immediate response to the user will
wait for the Activity Plan to complete and return an answer. These types of requests can be
quickly satisfied within the system through access to warehoused data. Other services initiate
batched background work. These services message the Activity Dispatcher Panel 146a to
begin an Activity Plan that will complete at some time in the future. These types of requests
are called asynchronous or deferred requests. When the Utility Interface 144 activates an
Activity Plan, it receives the unique Activity Plan identifier assigned by the Dispatcher Panel
146a, and uses this identifier to register an activity completion concern with the Concern
Manager 136a.

The external requester of the work is also immediately answered with the
identity of the Activity Plan. The requester can later use other services to check on the status
of a Activity Plan and/or be notified when a Activity Plan has completed. The Activity
Dispatcher Brain 146b communicates to the Concern Manager 136a who in turn notifies all
interested parties when an activity has finished. When the Utility Interface Manager 144a
receives the Activity Plan completion notification, it will return the results to the requesting
client.

This asynchronous or deferred service requests from external systems to the
Utility Interface Subsystem can provide a client context, which is carried through the AMR
Server 15 unmodified, and returned with the corresponding results. This service allows an
external system to create a context identifier meaningful to their application that can be used

to marry the response to the original request.

10

15

20

25

30

WO 99/13426 PCT/US98/19034

-55.-

In addition, the Utility Interface 144 allows an external system to specify in
each asynchronous/deferred request, the binding information of the RPC server within their
system that should receive the results of the request. If the request does not provide this
binding information, then the RPC server specified as a system-wide default will be used. The
system-wide default RPC server can be set using the configuration file.

Referring to Figures 4 and 10, there is illustrated the Supplier Subsystem 148.
The Supplier Subsystem 148 is analogous to the Utility Interface Subsystem 144. It could be
considered the “Order Fulfillment Center” for the system. There are two terms used to discuss
the systems that provide the metering data to the AMR Server 15. The terms “Supplier” and
“Communication Server” are used interchangeably herein. The name “Supplier” is used
because the external systems that are communication with the AMR Server 15 are not
“communication systems” in the normal computer sense of the word. Rather, they are simply
other computer systems that have their own APIs or database formats for retrieving
information which is supplied to the AMR Server 15.

From the perspective of the AMR Server 15, a “éomm” or communications
system is one that operates asynchronously and delivers its data in a raw (or non-structured)
format and in its own time not the system's (i.e. real or near-real time). The external
information systems 50 that collect and report meter information should appear to
communicate with the AMR Server 15 in the same manner that the AMR Server 15 might
communicate with any other information system. With this in mind, it is preferable that the
AMR Server 15 communicate with an external system the same way that the internal systems
or components within the AMR Server 15 communicate. For example, a message model can
use a broker to resolve location and an IDL to define interfaces. Accordingly, the AMR
Server 15 uses this same model to communicate with external systems. The AMR Server 15
views each of the external systems by “type” and list attributes or types of information that
it will require as input, and the type of information that it will supply as output. The AMR
Server 15 then is able to find commonalty between systems and define a high level of
interface descriptions that will work with each type.

The AMR Server 15 maintains the interface to external systems abstracted as
far out of the system as possible to protect itself from future change or new systems.
Specifically, the AMR Server 15 accomplishes this isolation by finding the commonalty in

the existing systems and defining generic interfaces that will communicate to the AMR

10

15

20

25

30

WO 99/13426 PCT/US98/19034

-56 -

Server's 15 “wrappers” for the specific communication systems. Thus, the only components
that will change over time will be the third-party interfaces and how the AMR Server 15
wraps those interfaces. The AMR Server 15 can add new systems by building wrappers that
communicate with generic IDL definitions for services inside the AMR Server 15.

Legacy systems can be treated similarly to the external communication
systems. However, due to the nature of these legacy systems, it is likely that the type of
information that is retrieved will not be compatible with the message-based architecture of the
AMR Server 15. In particular, it is likely that legacy systems will transmit information via
flat files which must be parsed into message sends, and conversely, the AMR Server 15
messages will need be collected in batches to form flat files for import into the legacy system.
This can best be accomplished by determining the superset or canon of attributes that will be
communicated by the legacy systems. The canonical mapper 140a, described above, maps
legacy specific formats into common formats that have optimized parsers designed for
messaging.

The Supplier Subsystem 148 houses services that are specific to how a supplier
communicates information; meaning that there will be separate supplier interfaces for
different interface modes (asynchronous/synchronous) with limitations and extensions
necessary to support fixed networks, telephony, etc. The type and capabilities of a supplier
are determined by meter identity. The supplier interface asks suppliers for actions, such as
remote disconnect, and standing orders (sample delivery). The interface encapsulates the
differences between synchronous and asynchronous forms of interface as well as differences
in network types so that clients of the interface need not know what “type” of supplier they
are interacting with.

These services are similar to utility interface services in that they perform any
required translation of internal key codification into proprietary formats expected by external
suppliers of information. All outgoing requests to suppliers are accomplished through
Activity Plans (via the Activity Dispatcher 146a). Services triggered from a supplier will
begin Activity Plans to accomplish tasks such as requesting information for a group of devices
and then moving the results to the Receiving Subsystem 150d in the Data Access Object
Subsystem 150 (discussed below) for processing.

Thus, the primary purpose of the Supplier Subsystem 148 is to provide the

AMR Subsystems with secure access to data collected and stored on any supported

10

15

20

25

30

WO 99/13426 PCT/US98/19034

-57-

Communication Server 30. To accomplish this, the SupplierMgr 148a, SupplierOutgoing
148c, and Supplierincoming 148d servers interact with each other, AMR business objects, the
Activity Management Subsystem 146, and the AMR Event services (see Figure 4). In
addition, the SupplierOutgoing 148c and SupplierIncoming 148d servers are designed to
interact with specific types of supported Communication Servers 30. The Supplier Manager
148a is used within the Supplier subsystem 148 to hide the differences in communication
systems. From the AMR service level, all communications systems appear identical as
viewed from the Supplier Interface.

It is also the purpose of the Supplier Subsystem 148 to provide a single point
of secure access for AMR Subsystems 100 to all supported meter Communication Servers 30.
The appropriate interface is chosen by the Supplier Subsystem 148, thus shielding other AMR
Subsystems from the intricacies of binding to a specific interface. The Supplier Subsystem
148 also provides a single point of secure access for all supported meter Communication
Servers 30 to services provided by the AMR Server 15. Further, the Supplier Subsystem 148
encapsulates the differences between Communication Server 30 interfaces, as well as
differences in network types, so that AMR Subsystems need not know what “type” of supplier
with which they are interacting. The Supplier Subsystem 148 support both synchronous and
asynchronous Communication Server 30 interfaces, performs required data transfer between
internal AMR business objects and the data structures supported in the Supplier API, and
performs any required translation of internal key codification into proprietary formats
expected by external suppliers of information.

The primary constraints on Communication Server 30 access are security
considerations and transaction control. Security considerations are addressed by DCE security
services. Transaction control internal to the supplier Subsystem and during interactions with
other AMR services is provided by Encina® 106.

For Communication Servers 30 conforming to the synchronous model (Figure
11 described below), the workflow Subsystem interacts with the SupplierMgr 148a through
RQS and data is passed via business object proxies passivated in an AMR Blackboard object.
Based on information obtained from the business object proxies, the SupplierMgr 148a can
route the request, along with the required business object proxies, to the appropriate
SupplierOutgoing 148c server. The SupplierOutgoing server 148c translates the data as

required by the Supplier API and forwards the request to the Communication Server 30.

10

15

20

25

30

WO 99/13426 PCT/US98/19034

-58-

Return information is then used to update AMR business objects. Service requests from
Communication Servers 30 are forwarded by the SupplierIncoming server to a DockControl
148b interface, which then starts a workflow to perform the required tasks.

The asynchronous Communication Server 30 model (Figures 12A and 12B
described below) is similar to the synchronous model with the exception that the requesting
activity does not wait for the response from the supplier Subsystem. The result is returned at
a later time though a SupplierIncoming server 148d and can be tied to the original request
using the AMR Context passed to the Communication Server 30 with the original request and
returned with the response.

Referring to Figure 11, synchronous requests (from the Application System)
return their specific outputs directly. They also provide the status of the request and AMR
context information that can be used to retrieve information about it from the system log.
Synchronous requests usually provide the fastest execution of an AMR service. However,
they tie up the requesting thread and user window (if any) until they are done.

Figure 12A illustrates the process of an asynchronous request. Requests that
may require data from the communications servers or physical meters 60 will be made through
the asynchronous mode because they can take relatively longer to carry out. Requests that
may return a large volume of data should also be made through the asynchronous mode. RPC
through DCE does not support true asynchronous requests, so the AMR Server 15 will realize
asynchronous requests by generating a separate RPC call to inform the Application System
when the request is complete. Asynchronous requests (from the Application System) return
the status of the request start-up, and the AMR context (reference) of the requesting RPC call.
The response (message) provides the overall status of the service. The response contains
either the output data directly or the output locations. The Application System may also
provide its own context information returned with the response so that the Application System
can associate the appropriate request with its response.

Referring to Figure 12B, Asynchronous Notifications will now be described.
The AMR Server 15 will generate some scheduled services. For example, it generates
services periodically to store and collect meter readings for each billing schedule. The AMR
Server 15 will notify the Application System when these services are complete by invoking
an RPC call to the Utility. The Notification call will contain the outputs, and the AMR

context (reference) of the service.

10

15

20

25

30

WO 99/13426 PCT/US98/19034

-59-

The Supplier Subsystem 148 is composed of three actual servers, a Supplier
Manager 148a, a Supplier Outgoing 148c, and a Supplier Incoming 148d, and one logical
server (not shown), and a Dock Control 148b.

The Supplier Manager Server 148a is the primary point of access for other
AMR Subsystems. As shown in Figure 4, the Supplier Manager 148a serves as the interface
between the AMR Activity Management Subsystem 146 and the specific AMR Server 15
handling communication with Communication Servers 30. It routes meter service requests
from AMR services to the AMR Outgoing service 148c responsible for interfacing with the
Communication Server 30 handling the requests for the specified meter. The Supplier
Manager 148a also manages the delivery schedules and collection component distribution to
the Communication Servers 30 (Figure 5). For example, when an AMR schedule for data
(billing schedule, data collection group schedule, etc.) is added or deleted, it is the
responsibility of the Supplier Manager 148a to determine which Communication Server 30
should have the delivery schedule added or deleted based upon the meters 60 that the
Communication Server 30 supports. |

It is noted that the Communications server network layer preferably supports
various network technologies without changing application code. A successful
communications architecture should assure that network specific instructions are pushed as
low as possible, and common communications instructions are elevated to assure minimal
amounts of new code development with each different communications environment.

There may be multiple Supplier Outgoing Servers 148¢ running in the AMR
Server 15. As its name implies, the Supplier Outgoing Server 148c handles the
communication from the AMR Server 15 to the communication server(s). In general, each
Supplier Outgoing Server 148c is responsible for a particular type of Communication Server
30 (not a particular instance). There may be a one-to-many relationship of the Supplier
Outgoing Server to communication servers 30.

The Supplier Outgoing Server 148c shown in Figure 4 acts as an Encina® 106
server to the Supplier Manager 148a and as a RPC client to the Communication Server 30,
assuming the Communication Server 30 supports DCE. The AMR Server 15 publishes a
Standard DCE API for interfacing with Communication Servers 30. If a Communication

Server 30 does not support DCE, but provides some other interface, then it is the job of the

10

15

20

25

30

WO 99/13426 : PCT/US98/19034

-60 -

Supplier Outgoing to bridge this interface gap and hide the implementation details of this
custom interface from the other AMR Subsystems.

The Supplier Outgoing server 148c¢ is responsible for the data transfer between
the internal AMR business objects and the data structures and files supported in the Standard
Supplier API (discussed below), or to customized data structures for different types of
Communication Servers 30. In general, it is assumed that a customized Supplier Outgoing
Server 148c will be required for each different type of Communication Server 30 supported
by the AMR Server 15.

There may be multiple Supplier Incoming Servers 148d running in the AMR
Server 15. As its name implies, the Supplier Incoming Server 148d handles the
communication from the communication server(s) to the AMR Server 15. In general, each
Supplier Incoming Server 148d is responsible for a particular type of Communication Server
30 (not a particular instance of a communication server). In the specific case of the RCS-250
communication server, there will be a one-for-one relationship between a Supplier Incoming
Server 148d and the communication server.

The Supplier Incoming Server 148d shown in Figure 4 acts as a Encina® 106
client of Dock Control 148b and as a RPC server to the communication server 30, assuming
the Communication Server 30 supports DCE. The AMR Server 15 publishes a Standard DCE
API for interfacing with Communication Servers 30. The AMR Server 15 has a designed
flexibility regarding how meter (and other) data suppliers communicate information. It is
preferable to keep the AMR interface for receiving information is as open as possible as some
suppliers will be sophisticated and make use of the RPC interface while others may push (or
pull) flat files into our file system. Other possibilities include, but are not limited to, remote
table reads and reading remote message queues.

One important note is that Supplier Incoming 148d does not retrieve
information directly from devices and is not a data supplier. Ifthe AMR Server 15 is required
to read data from devices, a separate (sub)system acting as a supplier needs to be added. If
a Communication Server 30 does not support DCE 112, but provides some other interface,
then it is the job of the Supplier Incoming 148d to bridge this interface gap and hide the
implementation details of this custom interface from the other AMR Subsystems. The
Supplier Incoming server 148d is responsible for the data transfer between the external data

structures into internal AMR business objects. In general, it is assumed that a customized

10

15

20

25

30

WO 99/13426 PCT/US98/19034

-61 -

Supplier Incoming Server 148d will be required for each different type of Communication
Server 30 supported by the AMR Server 15.

As shown in Figure 4, the Dock Control 148b is a logical server, (actually
contained within the same process space as the Supplier Incoming Server 148d) that interfaces
between the Supplier Incoming Server 148d and the Activity Management Subsystem 146.
Dock Control 148b directs incoming service requests from Communication Servers 30 to the
activities responsible for servicing the request. In some situations, Dock Control services
148b are triggered by data arriving from suppliers, which then directs the work to the
appropriate receiving point (Receiving Services). Data may be sent from suppliers as files
moved into a receiving DFS directory, an RPC with a reference to a table space, an RPC with
a reference to a remote file, an RPC containing an individual update, and an RPC with
reference to available messages in a supplier queue.

Dock control 148b is an object whose API acts as a “traffic director.” Dock
control 148b begins Activity Plans to handle data from suppliers. The differing nature of data
(lafge loads versus outage messages) requires subhandlers (delegated objects) to do the actual
work. Therefore, dock control 148b is simply a hand-off point much like the Utility interface
144. As discussed above, Dock Control 148b provides an interface for use by the Supplier
Incoming Server 148d.

Referring again to Figure 4, the Application Subsystems also comprise the
Data Management Services. The Data Management Services are provided by two
Subsystems, a Data Access Object Subsystem 150, and an Export Subsystem 152.

The Data Access Object (DAO) Subsystem 150 shown in Figure 4 is the
primary Subsystem of the Data Management Services. The DAO Subsystem contains
Persistence objects to manipulate the Oracle® database, thus isolating the use of the
Persistence middieware 108 to a set of specialized servers within this Subsystem. The
Persistence objects (DAOQs) are object representations of tables within a relational database.
Data access objects represent the different components of a database. The objects have a
hierarchical relationship to one another; one type of object or collection contains or is
contained by another type of object or collection. The DAO Subsystem 150 is responsible for
providing the Application Support Services with access to the Data Repository 120. This

Subsystem simplifies the storage and manipulation of collected meter samples. Relationships

10

15

20

25

30

WO 99/13426 PCT/US98/19034

-62-

between requesting, storing, retrieving and combining collected data are understandably
complex.

The DAO subsystem 150 is provided such that application developers do not
need to have an understanding of the relationships of the complex data in the system in order
to access the data. Successive layers of encapsulation isolate the complexity of dealing with
the complex data of the system. To this end, proxy objects are used to encapsulate the
relationships and behavior of this data. These proxy objects are collectively called “Business
Objects.” The proxy objects are typically utilized by Manager Servers, as well as by other
Application Support Services. For instance, the data and behavior of rate information is
complex. This complexity is hidden within a set of rate business objects (e.g., Rate,
MeterRate, RateComponent, MeasurementCapability, etc.) which have a higher level
interface called a “Rate Manager 150b.”

There are many such business object managers through which application
developers access business objects or perform medium-grained operations. There are
successive layers of encapsulation that isolate the complexity of dealing with the complex data
of the system. These layers comprise the Data Access Object Framework 102 shown in
Figure 3 and discussed below.

The Distributed Access Object Framework 102 is provided to simplify the
development of distributed objects in the Encina® environment 106. The system can be
considered as consisting of two main framework components, a DOFactory library, which
provides a dynamic/runtime interface for creating server objects in the Encina® environment
106. and a code generator (genInterface), which generates business objects and proxies. The
Distributed Access Object Framework 102 advantageously provides an environment wherein
the creation, deletion and usage of distributed business objects are transparent to the user. The
Distributed Access Object Framework 102 also provides standard methods and
implementations for all business objects, and hides all details of the Persistence 108 data
access objects (DAOs), DCE communications, DCE datatypes, etc.

To this end, the Data Access Object Framework 102 provides proxies, manager
servers, and back-end implementation servers for the various business objects in the AMR
Server 15. Figures 14 and 15 show an example of a meter object, showing the role of the
proxy, a meter manager server, and the meter back-end implementation server 150a. As noted

above, proxy objects are mapped to DAOs, which in turn are object representations of tables

10

15

20

25

30

WO 99/13426 PCT/US98/19034

-63 -

within a relational database. The logical architecture of the DAOs for the various managers
and subsystems will now be described.

When a manager server invokes one of the client methods on a proxy, the
proxy will call the back-end implementation counterpart to perform the actual work with the
associated DAOs. The call to the back-end implementation may be performed via RPC if the
proxy and DAO are not in the same process space. The proxies are distributed objects which
“stand-in” for DAOs in an Encina® Server. DAOs, by their nature, cannot be distributed and
cached in memory. Therefore, proxies represent, or “wrap”, their respective DAOs from
within Encina® servers, while the DAOs reside in cache for fast access. In this manner, data
and transactional integrity are maintained in a distributed environment. This distribution
creates arelative lightweight manager server that is responsible for the coordination of various
proxies to accomplish the requested AMR domain service. It also provides an isolation of the
Persistence middleware 108 to the implementation servers. The manager and implementation
servers (shown together in Figure 4) can hence be distributed across machines if necessary,
as the system is required to scale up, without sacrificing transaction‘ integrity. To be efficient,
this framework is developed with an option to build the back-end implementation behavior
local with the manager server.

Figures 13 and 14 show the interaction between manager servers, proxies, and
implementation servers within the DAO Subsystem 150; how other Subsystems can utilize
the proxies directly to increase efficiency when simple Create, Read, Update, Delete, List, and
Exists (CRUDLE) types of requests are needed; and how exceptions are managed and
converted into the standard sysStatus object within the DAO Subsystem.

The Meter Manager Server 150a contains a Rate BO_Proxy in addition to a
Meter BO_Proxy. This is typical in the design of all Manager Servers, because the Manager
Servers are responsible for providing AMR domain services. For example, the Meter
Manager provides the retrieveRatesForMeter service, which requires that it create a Rate
Proxy in order to perform “Reads” for the specified meter. Each proxy is coupled with a
dedicated back-end implementation, which in turn is coupled to a dedicated set of DAOs (see
the Rate Implementation Server 150b and Meter Implementation Server 150a discussed below
with reference to Figure 16).

Figure 13 additionally shows how the Utility Interface Server 144a (an

Application Support Service) may directly create and utilize proxies. This is the typical usage

10

15

20

25

30

WO 99/13426 . PCT/US98/19634

-64 -

that any Application Support Subsystem can make of the proxies. In these cases, the
Application Support Subsystem uses the wrapped Create, Update, Read, Delete, List and Exist
(CURDLE) methods provided by the proxies to perform these simple operations against the
Implementation Servers and the Data Repository 120. In these examples, the AMR domain
knowledge provided by the Manager Servers is not required.

Although not explicitly shown in Figure 13, the design also supports
Implementation Servers that do not have an explicit Manager Server like Meter Manager 150a
and Rate Manager 150b. An example of this type of Implementation Server is the External
Translation Implementation Server. In this case, other Manager Servers that need translations
from this Implementation Servers will create and use the External Translation Proxies, whose
back-end implementation and DAOs reside in the External Translation Implementation
Server.

Figure 13 also shows the exception handling and sysStatus conversion
performed within the DAO Subsystem 150. The primary purpose of the system status
(sysStatus) is to drive the activity plan logic. In addition, sysStatus is used for information
purposes outside of the AMR Server 15 system. Exceptions should not be thrown across a
server boundary due to the limitations of Encina® exception handling.

The responsibilities of the Manager/Other Servers (users of proxies) are to
catch sysStatus exception thrown by proxies (for logic control), convert sysStatus exception
into appropriate sysStatus based on context and return via RPC in the status argument or in
WFQueueElement statusStruct, catch communication exceptions, and catch base exceptions.
The responsibilities of the Implementation Server is to: catch all exceptions, translate to
sysStatus and return via RPC in status argument, and never re-throws exception across server
boundary.

Referring to Figure 15, there is shown the process performed each time a
method is invoked on a proxy. When the client needs to use a distributed object, it calls the
constructor (step 1) on the distributed object. From the client’s view, this is similar to calling
constructors on any object. Internally, however, the distributed object/proxy knows that it is
named DOFactory, and calls a Create (step 2) on the factory. This results in the Create RPC
(step 3) to the DOFactoryInterface on the server. The Create routine implementation on the
server calls (step 4) the constructor on the DistributedObjectInterface using ObjectStore and

Performer. The RPC then queries the interface object for its Encina® reference and returns

10

15

20

25

30

WO 99/13426 PCT/US98/19034

-65 -

it to the caller of the Create RPC, which returns it to the proxy. Once the distributed object
proxy receives the reference, the proxy calls a Rebind (step 5) on itself using the reference.
At this point, the proxy is setup with a one-to-one correspondence with a back-end interface
object.

A If the user calls, e.g., setAttr() on the proxy (step 6), the framework routes the
call through a corresponding RPC. With regard to transactional work, any work that it is
peformed by the distributed object that needs access to the database is accomplished via
transactional RPCs between the proxy object and the back-end implementation (e.g., CURDL
methods). The distributed objects perform CURDL methods using key values/attributes that
are set (step 7) on the business objects. Typically, the client starts a transaction by invoking
a transactional method, such as createObj() (step 8) on the proxy. This results in a
transactional RPC to the back-end implementation (step 9). With the transactional RPC, a XA
connection through Persistence is opened and the Persistence DAOs are constructed (step 10).
All of the attributes are next copied from the back-end implementation to the DAO (step 11).
The DAO is deleted (step 12), which flushes its data to the database 120. The XA connection
is then closed. Thus, the Persistence DAOs never exists across a transaction RPC, as they are
mainly used to pass data to the database. ‘Once a client commits, all changes are committed
to the database. Top level scenarios of the above are contained in Appendix A.

The Data Access Object Manager Servers 150a-150p illustrated in Figure 4
will now be described. The Manager Servers 150a-150p are primarily used by the Dispatcher
Brain 146b of the Activity Management Subsystem 146. The services/methods provided by

- the Manager Servers 150a-150p are typically tasks of an Activity Plan. This section will

highlight the medium grained services provided by the various Manager Servers 150a-150p
shown in Figure 4. As will be evident to those of skill in the art, the services are named are
merely exemplary as other services may be performed by the various servers.

The Meter Manager Server 150a is responsible for providing all services
related to meters 60. The Meter Manager 150a may provide services to add a meter, add a
meter mapping, install or uninstall a meter, update meter data, terminate a meter, computer
or verify a meter stage, set a meter connect status, and retrieve accounts or rates for a meter.

The Rate Manager Server 150b is responsible for providing all services related
to rates. For example, the Rate Manager 150b may provide services to add or remove a rate,

retrieve rate components, and assign and de-assign a meter to a rate.

10

15

20

25

30

WO 99/13426 PCT/US98/19034

-66 -

The Meter Group Manager Server 150c is responsible for providing all services
related to meter groups (e.g. Accounts, Data Collection, etc.). To provide these services, the
Meter Group Manager 150c will interact with the Account Implementation Server, and the
Data Collection Implementation Server. The Meter Group Manager 150c may provide
services to add, modify or remove an account, retrieve meter rate for an account, terminate
meter groups, retrieve meters for a group, assign meters to a group, de-assign meters from a
group and compute a group stage.

The Receiving Manager 150d is responsible for loading the received and
mapped data into the repository. This is accomplished either through a bulk loading process
for large shipments of data, or through the DAOs for individual on-request meter reads. The
Receiving Manager 150d may provide services such as receiving a meter reading, and
receiving a bulk loading.

The Reading Manager 150k is responsible for retrieving reading samples from
the AMR Data Repository 120. The Reading Manager 150k services include retrieving
readings (using freshness), assembling reading data, and retrieving readings for meter rates.

The Capability Manager 150j is responsible for determining the abilities of a
particular component instance. “Capabilities” are attributes of various types of components
in an AMR Server 15. For example, meters 60 of different types have different capabilities
that they can support. In addition, the different communication systems have different
capabilities that they support. “Abilities” are enabled “capabilities” for an individual
component. In other words, abilities are instance-based. The Capability Manager 150j may
provide services that
assign capabilities and validate rate components.

The Reference Data Manager 150n is responsible for efficiently providing
various lists of reference data like meter ID's, meter types, communication types, etc. from
the AMR Data Repository 120. The Reference Data manager 150n utilizes Persistence DAOs
directly to retrieve this information via simple queries from the AMR Data Repository 120.
The Reference Data Manager 150n does not use proxy objects and hence an Implementation
Server does not exist for reference data. This information is primarily utilized by the GUI
Subsystem to obtain lists from the AMR Data Repository 120 for users to select from. The

Reference Data Manager 150n a service to retrieve reference data.

10

15

20

25

30

WO 99/13426 PCT/US98/19034

-67-

As discussed above with reference to Figure 14, the Data Access Object
Implementation Servers 150a-150p contain the back-end implementation for the proxy objects
and the Persistence DAOs. The back-end implementation provides users of proxies with
services that operate on associated Persistence DAOs and, hence, their related Oracle® tables.
The services performed by the implementation servers below are provided for exemplary
purposes and are not limited to only the noted services.

The Meter Implementation Server 150a provides the users of meter proxies
with the meter-related services, such as changing or setting a meter, and retrieving and setting
meter configuration information. The Rate Implementation Server 150b provides the users of
rate proxies with services, such as creating, updating and reading rate information from a
meter. The Schedule Implementation Server 150i provides the users of schedule proxies with
services that include retrieving and schedule times and events. The Meter Group
Implementation Server 150c provides the users of meter group proxies with services that
include modifying meter groups, defining meter group properties, and mapping meters to
groups. The Account Implementation Server 150p provides the users of account proxies with
services, such as determining account names, group status, and defining account information.
The MeterGroupManager Server 150c is the primary server that will utilize the services of the
Account Implementation server 150p through the proxies. The Data Collection
Implementation Server 150g provides the users of data collection group proxies with data
collection services. It is primarily the MeterGroupManager Server 150c that will utilize these
services through the proxies. The Sample Data Implementation Server 150f provides the users
of sample data proxies with services, such as reading sample data, and determining validation
information. The External Translation Implementation Server 150h translates from external
to internal representation and vice versa. All manager servers that require ID translations
between internal and external representation utilize the services of the External Translation
Implementation Server 150h. Some typical objects that have external representations are:
meters 60, rates, schedules, Communication Servers 30, accounts, data collection groups, etc.
The External Translation Implementation Server 150h provides the users of external
translation proxies with services that perform operations on the associated Persistence DAOs
and hence their related Oracle® database tables. The External Translation Implementation
Server does not have a specific manager server, but is used primarily by the Utility Interface
144,

10

15

20

25

30

WO 99/13426 : PCT/US98/19034

- 68 -

Referring again to Figure 4, the AMR Server 15 is responsible for generating

exports of data to the external application systems. The AMR Server 15 reports scheduled

billing data, deferred requests, supplier performance statistics, etc. The data used for these
reports is available through the business objects managed by the Business Object Servers.
However the results are gathered, mapped, and formatted for the export to Application
Systems. These services are encapsulated by the Export Subsystem 152. The export
operation is driven by activity plans specific to a export scenario, but the services necessary
to produce the export are contained within the generator along with fine and medium-grained
control objects.

Referring to Figure 4, the Export Subsystem 152 is comprised of two servers,
an Export Manager (EM) 152b and a Validation, Editing, and Estimation (VEE) Manager
152a. These servers will process a large volume of data, so efficiency is an important
consideration. One of the first functions the Export Subsystem 152 supports is generating a
report for Billing. In order to perform the billing process, data may require validation, editing,
and estimation.

The data export subsystem 152 of the AMR Server 15 uses template files to
dynamically define what data is exported from the AMR database 120. The basic concept of
the export process is to extract data for a given hierarchy of information from the AMR
database 120 for a given date range and write the data to a file using a specific file format.
This file format is termed herein the AMR File Format. For example, an export of billing data
from the AMR Server 15 consists of producing a file containing a hierarchical grouping of
accounts, meters, data components and meter readings. That is, an account contains meters
which contain data components which contain meter readings, all of which are scoped by the
supplied date range. A template file defines what attributes will appear in the export file for
each object in the hierarchy. For example, a meter has many attributes associated with it, such
as its transformer factor, meter id, communication status, type, etc., but for billing purposes,
this information may not be relevant. However, for the purpose of loading this meter into
another database, all of the attributes may be necessary. The concept of a template helps solve
this problem by allowing specification of what attributes will be extracted from a given object
for a particular export job. Each type of export can use a different template, which allows
extraction of only the required information. This advantageously provides for faster export

times and smaller export files.

10

15

20

25

30

WO 99/13426 PCT/US98/19034

-69 -

The following is an example of a template entry for a meter object in the AMR
server 15.

+Meter

Meterld:meterid|getMeterld|long

TransformerFactor:tranSﬂ getMeterMultiplier|float

CommStatus:commst|get| CommunicationStatus|RWCString

-Meter

As an example export, a script is used that maps the AMR Format File into the
export format. As an example import, the import file may by converted into a set of C++
objects. The template is applied against the objects to produce the AMR Format File, similar
to the business objects noted above. The AMR Format File is then loaded into the Receiving
Subsystem 150d.

The Export Manager (EM) 152b is one of the agents in an activity plan. When
generating a billing report, the EM 152b will receive a list of account IDs to process and a
Utility II) and Role. For each account, the EM 152b will retrieve a list of meters 60 for that
account. The EM 152b then interrogates each meter to determine the rate for the given Utility
ID and Role. Once the Rate for that meter is known, the meter components can be
determined. For each meter component, one or more readings are gathered. As is evident to
one of skill in the art, this nesting of information will make it difficult to assemble the export
data in a mass query manner.

Each reading is preferably validated (and possibly estimated) before it is

- exported. This creates a problem for EM 152b in that data must be written for estimated

readings and each reading must be updated as having been validated. In addition, this makes
what would normally be non-transactional database operations transactional. Such operations
pose problems in that there is a limitation in the number of database operations that can be
performed in a single transactional unit (smaller batch units), and that transactional reads
involve XA overhead and can significantly slow the process.

The Validation, Editing, Estimation (VEE) Manager 152a is responsible for
performing the validation, editing, and estimation specified by a particular Regulatory Agency
to produce settlement quality data for export from the AMR Server 15. As with all Encina®
Servers in the system, the VEE Manager 152a uses the AppServer classes to receive service

requests through RQS. The VEE Manager 152a uses a directed graph and the performer to

10

15

20

25

30

WO 99/13426 PCT/US98/19034

-70 -

execute different functions. Each request is for VEE 152a on a particular meter/rate
combination and will be executed within its own thread. Although shown logically as existing
within the Export Subsystem 152, the VEE Manager 152a is actually contained within the
same process space as the Reading Manager. The VEE Manager 152a will nonetheless
provide a separate interface and be bound to as if it was a separate server. It physically resides
with the Reading Manager as a performance optimization to minimize the transport of data
across the network and benefit from local Persistence object caching. Figures 34A-D illustrate
the various threads executing in the VEE 152a.

The validation, editing and estimation tasks must be performed on raw data to
certify the data as settlement quality. Associated with these validation checks are specific
estimation algorithms that must be performed on the raw data when a validation checks fails.
The raw and estimated data values may also need to be stored and maintained for years due
to legal stipulations regarding billing disputes. The additional storage of estimated data not
only compounds database sizing and performance problems, but also creates the need for
temporal solutions (discussed below).

A thorough analysis of abnormal billing scenarios yields several situations that
require an AMR Server 15 to maintain multiple versions of history of both the raw and
estimated data for a meter 60. For example, consider the scenario where all of the billing data
from an individual meter cannot be collected due to a communication failure. The specified
VEE rules will plug the missing data to produce settlement quality data for this meter to
support the customer billing process. In the case where the actual raw data for this meter
happens to arrive after the customer billing process has completed, then a bill adjustment
process is required. The actual raw data received from this meter requires validation to be
performed before it can be used to determine the appropriate bill adjustment. This validation
process may fail any one of the specified validation tasks fail and require estimation to
produce settlement quality data for the bill adjustment. For example, if in the future (one
month later), the customer has a billing dispute related to this abnormal billing period, a
complete history of both the original and the adjusted billing transactions (including the raw
and estimated data) will be required to resolve the customer dispute.

Another example of billing abnormalities is a case where configuration data
(e.g., the transformer factor) for a customer’s meter was entered incorrectly and went

undetected for several monthly billing cycles. In this case, the MDMA needs to correct the

10

15

20

25

30

WO 99/13426 PCT/US98/19034

-71-

configuration data (transformer factor) for the meter and recompute the several months ofbills
for this customer to determine the adjustment. Since both the original and recomputed raw
and estimated data sets were used to support the billing process, this data must be maintained
by the system to resolve any future billing disputes.

In order to accomplish validation, editing, and estimation the VEE Manager
152a will use local Activity Plans and a local dispatcher to run these plans. This Local
Dispatching approach has been designed for use in VEE 152a to take advantage of the fact
that all primary objects used in VEE 152a are in the same process space. The Local
Dispatcher performs a Local Activity Plan which only executes Local Operations that carry
out actions on local objects. Local operations generate a workflow slot, and a
ForcedRereadNeeded, which indicates the need to reread the physical meter 60 or
communication server 30 to retrieve more accurate readings for a specified time period and
then reapply the readings to the VEE 152a. All parameters are in the blackboard. Other
batched services may use the Local Dispatching approach for performance enhancement, if
they also depend strictly on Local objects performing synchronously. This implementation
uses a modified version of the infrastructure developed for the Activity Management
Subsystem 146. The directed graph logic will contain the Regulatory Agency specific tasks
and rules.

The Local activity plan (workflow) acts as a task list which the Local
dispatcher reads. For each task, the Local dispatcher requests the Performer to perform the
task. The Performer uses a method dictionary to lookup the Functor associated with the task.
A Functor object executes the appropriate C++ method to do the actual work of the task.

The VEE interface 152a is used by the other Subsystems within the AMR
Server 15. The service provided by the VEE 152a include checking for missing components,
usage interval information, computing various consumption data, estimating load profile
usage, determining if a meter requires maintenance, prorating usage and load profile, and
estimating usage.

Referring now to Figure 4, the Database (AMR Data Repository 120) is an
Oracle® Relational Database Management System (RDBMS.) The structure of the database
is designed to represent a high-level object model, as shown in Figure 16.

With respect to data storage, two signal factors of the AMR Server 15

preferably utilizes a distributed approach because of the tremendous volume of data stored,

10

15

20

25

30

WO 99/13426 PCT/US98/19034

-72-

and the extremely high rate of data capture, manipulation, and extraction. For example, one
meter undergoing 15 minute load profile readings on 2 channels for 24 hours per day, having
a 37 month data retention period, requiring an average of 63 bytes per row, one VEE reading
per raw reading and a 10% re-read and re-validation, will require 14.97 megabytes (Mb) of
storage space for its readings only. Given this per meter storage requirement, data storage

requirements are as follows:

Metered Data Storage
Points Requirement
1000 15 Gigabytes
10,000 150 Gigabytes
100,000 1.5 Terabytes
1,000,000 15 Terabytes

In addition, the data insert rate is also large. Using Ardis, communication with
meters is available only 4 to 6 hours per day, usually between 10 p.m. and 4 am. In the 1000
meter system scenario above this means the AMR database 120 performs 96 raw readings per
meter, with an average size of 63 bytes per reading, or 96,000 inserts. This works out to 4.44

inserts per meter per second for a six hour collection period. When scaling is considered:

Metered Points Inserts per second
1000 4.44

10,000 44.4

100,000 444

1,000,000 4440

A conventional Unix relational database server installation consists of a single
Unix host with a single relational database server process (or set of processes). Given this
configuration, conventional relational databases begin to experience trouble keeping up with
an insert rate somewhere between 200 to 500 inserts per second. Thus, the conventional
relational database server is inadequate to support the desired scalability of the AMR database.
To resolve this, the data repdsitory 120 of the present invention employs a distribution of the
workload. This is accomplished by using multiple hosts to perform database duties. This type
of parallelization may take two forms. The first being a true database distribution, in which
multiple, wholly separate hosts operate separately under the control of a managing process,

and the second being parallelization, in which a machine may have multiple CPUs, I/O busses,

10

15

20

25

30

WO 99/13426 PCT/US98/19034

-73-

etc, and may further participate in a loosely-coupled cluster of machines that address a shared
disk farm.

Meters 60 can be associated with one-or-more Rates, combined into Meter
Groups, and have many Capabilities and Abilities. Capabilities are based upon meters types
and specify the functionality supported by this meter type. Abilities are associated with a
particular instance of a meter and represent capabilities that are enabled by the programming
of this particular meter. Rates specify what data is required to be collected for particular
purpose (i.e. Billing). When a Meter 60 is assigned to a particular Rate, the Meters Abilities
are checked to verify that the Meter 60 can support the data requirements specified by the
Rate. A Rate is made up of Data Collection Components. These components have various
types (Load Profile Components, Consumption Components, etc.). These components have
Readings (Consumption Reading, Load Profile Reading) that are associated with Data
Samples. Meter Groups are associated with Schedules and are specialized into two types
Account and Data Collection.

Accounts are specialized groups that are related to the billing process.
Accounts contain meters that have different Rates that are used to bill a particular customer.
Data Collection groups are meters 60 that share the same Data Collection Components. These
groups are primarily used for collecting like data from meters 60 possibly for export from the
AMR Server 15 to an Application System.

Each of the objects in the high-level object diagram of Figure 16, is mapped
to the database as illustrated in Figures 17-25.

Figure 17 illustrates the logical architecture of the account management
subsystem 150p. The account management subsystem 150p provides for operations on groups
of meters 60, and resolving many-to-many relationships between a group and its elements.
Figures 18A-D illustrate the logical architecture of the capability manager 150j. As noted
above, abilities are enabled capabilities. The capabilities are actions a mechanism is capable
of performing (e.g., measurement, information and control). Abilities may be enabled either
intrinsically or explicitly. An ability belongs to a particular object and no others (i.e., abilities
are instance-based). Figure 19 illustrates the logical architecture of the meter manager 150a.
As illustrated, the meter manager 150a provides for setting the communication parameters
specific to a particular meter. The meter manager 150a also contains a list of the

communication statuses that a meter may have, the status of a meter’s electrical connection,

10

15

20

25

30

WO 99/13426 PCT/US98/19034

-74 -

the meter’s current stage in the life cycle (e.g., ordered, inventoried, installed, readable,
billable, terminated). Figure 20 illustrates the logical architecture of the rate manager 150b.
The rate manager 150b sets rates for particular meters 60 (or vice-versa). The data component
(DC) instance 1s the application of a data collection template (DCTemplate) to a particular
meter. Only certain combinations of DCTemplates are allowed. Figure 21 illustrates the
logical architecture of the reading management server 150k. The reading management server
150k provides for scalar readings (consumption or demand) or arrays (load profile or time of
use) and the meter reading is split between two tables (MeterSample and SampleData). The
method of acquisition of each data point in a meter reading is determined for quality of data
purposes, in addition to why the meter was read. Figures 22A-B illustrate the logical
architecture of the schedule manager 138b. The schedule manager 138b provides for setting
the periodic delivery schedule of exported data to a utility. To perform the exportation, the
external characteristics of the data are set, e.g., file name, when to deliver the data. The
schedule manager 138b is also responsible for scheduling of all workflows. The expected
time for each workflow and a total number of workflows are taken into account to determine
when to start the workflow so that the system is not overloaded. Receiving events and internal
events within the AMR are also scheduled by the schedule manager 138b. For example, data
to be received from a supplier is scheduled as well as actions the AMR may have to take to
make the data available to the utility.

The logical view of the Schedule Manager 150f is shown in Figures 23A-E.
The ScheduleManagement subsystem accepts requests via workflow create and update
schedules of data collection. It is the Encina® server interface for building workplans
(Activity Plans) for billing schedules. ScheduleBuilder builds workplans by arranging the
activities in the various schedules into jobs, determines when to start the activities, and to set
the alarms to trigger execution. For example, when a new billing schedule is entered into the
system, a delivery schedule for the supplier of the data needs to be determined. In addition,
a workplan for a range of time needs to be built including, finding all schedules with times
within the range, arranging in chronological order, figuring start times that result in acceptable
finish times, putting jobs into a workplan, setting alarms to trigger the jobs and RPC operation
for the subsystem. In addition, actions scheduled, event conflicts, and whether an event
subsumes another event are also determined. A schedule task is something to do at a schedule

time. As noted above, it consists of “what to do” and “when to do it.” “What to do” is a

10

15

20

25

30

WO 99/13426 PCT/US98/19034

=75 -

scheduleEvent, which carries all of the information about the activity. “When to do it” is a
scheduleTime, which carries all of the timing information.

Figure 24 illustrates the logical architecture of the SystemParameters. The
SystemParameters are a catalog of the properties of the AMR Server 15. They can be used
to set defaults on a system-wide basis, and set utility defaults on a utility-wide basis. Figure
25 illustrates the logical architecture of the TranslationService 150h. The TranslationService
150h may be used to validate fields such as state and zip codes, and determining a regulatory
agency for a jurisdiction in which the meter resides.

Relational databases suffer from a deficiency in that they generally hold only
current data, as all previous versions of the data are overwritten. Thus, the relational database
approach will not provide an historical view of the data. The solution to this problem is to use
atemporal framework approach. This approach includes augmenting the database to hold two
timestamp ranges for each table, enhancing the stored procedures to perform the temporal
equivalent of relational inserts, updates and deletes, providing a templated technique for
selecting the correct version of data from the database for differént views of history, and
performing relatively minor recoding of application servers to use the temporal framework.

The database 120 is implemented utilizing temporal timestamps on the
relational tables. An explanation of the use of temporal timestamps on relational tables
follows. The Bitemporal Conceptual Data Model is preferably used in the AMR Server 15
because of the capability of this model to meet the requirements of the electrical deregulation
information marketplace.

The Bitemporal Conceptual Data Model is an extension of the relational data
model which allows for two independent, orthogonal time periods to be associated with each
tuple (row) in a relation (table). It accomplishes this by using the timestamp datatype to
append two time periods to each tuple: Valid time and Transaction time.

Valid and Transaction each have two boundaries, startTime and endTime. The
two periods are orthogonal, i.e., they record different, independent aspects of the tuple. The
Valid period is the time range during which a fact is true. The Transaction period is the time
range during which knowledge of a fact is current, or stated another way, the time range
during which a fact is recorded in the database. The temporal timestamp is modeled as two
dependent relational attributes, startTime and endTime, where startTime is always be less than

or equal to endTime.

10

15

20

25

WO 99/13426 PCT/US98/19034

-76 -

The boundaries of the two time periods also have different meanings. For
Valid, the startTime is when a fact becomes true or effective. The Valid endTime is when a
fact ceases to be true. For the Transaction time period, startTime is when a fact (row) was
recorded in the database; endTime records how long the fact represents the current state of the
relation. In other words, the endTime records the expiration or deletion time of a fact as
representing current relations.

With regard to database operations, there are three possible write operations
that involve temporal timestamps: inserts, updates, and deletes. In addition, there are two
possible scenarios for updates: the Valid attributes are modified or not modified.
Modification of Valid timestamp may be done to reflect a new understanding of the time
period during which a fact was (is) true. In the temporal sense, the three database write
operations work as follows:

1. During an insert, a row is inserted into the appropriate database table.

2. During an update, a new row with the updated data is inserted into the
appropriate database table. The Transaction endTime of previously
current row is updated to the commit time of the update operation.

3. During a delete, the current row is not truly removed from the
database, but is logically deleted by updating the Transaction endTime
to sometime less than infinity, though not necessarily less than or
equal to the delete operation commit timestamp. If the Transaction
endTime is set to a time greater than now, the fact is current until that
time, i.e. the fact is preset to expire at the Transaction endTime.

As an example, one meter may have many rates and one rate may apply to
many meters 60. What needs to be determined is when this relationship of meters 60 and rates
is effective (valid). That is indicated by the Valid and Transaction timestamps of the Meter,
Rate and the intersection table that resolves the many-to-many Meter-Rate relationship. Some

samples of those tables are shown below:

10

15

20

25

30

WO 99/13426 PCT/US98/19034
-77 -

Meter

Meterld MeterType OCA Vs Ve Ts Te

1 A1D 0 4-1-1998 2-5-2037 4-1-1998 2-5-2037

2 AlK 0 4-1-1998 2-5-2037 4-1-1998 7-4-1998

2 Al-K2 1 -4-1-1998 2-5-2037 7-4-1998 2-5-2037

Table 1

Meterld is the primary key of the Meter table, while MeterType is an aperiodic time-variant
attribute. OCA is the Optimistic Control Attribute; it is compared to the OCA value stored
in a passivated proxy object, to determine if the data retrieved from the database represents
the state of the proxy object before passivation. Vs and Ve are the start time and end time
boundaries of the Valid timestamp. Ts and Te are similar. It is helpful to think of these two
values as comprising one datatype. As shown in Table 1, Meter 1 has meter type A1D, and
this is valid and current from April 1st forward. This is an example of a straight insert. Meter
2 originally had meter type A1K, and this was valid from April 1st forward, and current from
April 1st until July 4th. The meter type for meter 2 was changed to A1-K2 on July 4th, and
became the current fact. Note, since the valid timestamp was not changed, this reflects a
correction of the meter type back to April 1st, in essence correcting the history of the meter.
This is an example of an update that does not modify the Valid timestamp. Note the OCA
value for Meter 2 also changed from 0 to 1. This flags the row as being different than before,

and is used for optimistic locking. Optimistic locking will be discussed below.

Rate

Rateld RateType OCA Vs Ve Ts Te

10 LPKVA 0 4-1-1998 4-25-1998 | 4-1-1998 4-15-1998

10 LP KVAR 1 4-26-1998 | 2-5-2037 4-15-1998 | 2-5-2037

11 CONS 0 4-1-1998 2-5-2037 4-1-1998 2-5-2037
Table 2

As shown in Figure 2, Rate 10 has rate type LP KVA as the current rate type
from April 1st until April 15th, at which time the customer requests to change the rate type
to LP KVAR at the end of the fourth billing cycle. The valid period for the previous rate type
ends at the end of the 4th billing cycle (April 25th), and the new rate type is valid from the
beginning of the fifth billing cycle (April 26th) forward. The change was recorded in the

10

15

20

25

30

WO 99/13426 PCT/US98/19034

-78 -

database on April 15th, however, and so becomes current at this time. This logical update
represents a new state for Rate 10. This is an example of an update that does modify the Valid

timestamp. Rate 11 is another example of a straight insert.

MeterRate

Meterld l Rateld OCA Vs Ve Ts Te

1 11 0 4-1-1998 2-5-2037 4-1-1998 2-5-2037

2 10 0 4-1-1998 4-25-1998 | 4-1-1998 4-15-1998

2 10 1 4-26-1998 2-5-2037 4-15-1998 2-5-2037
Table 3

Asshownin Table 3, MeterRate is an intersection table that resolves the many-.
to-many relationship between Meter and Rate. As such it has a two part key, Meterld and
Rateld. For MeterRate (1, 11), the association between Meter 1 and Rate 11 becomes valid
on April 1st and continues forever. As used herein, the term “forever” refers to the date 2-5-
2037, as this is the latest date that may be represented by the preferred database software. The
association between Meter 1 and Rate 11 is also current for the same time period. It
represents a straight insert into the intersection table.

For MeterRate (2, 10), there are two possibilities. The first possibility is
represented above in Table 3. When Rate 10 changed on April 15th, MeterRate could be
updated to reflect a change in the association, i.e. MeterRate (2, 10) shows the state change
of one of its associates. Another possibility is that the association itself has not changed, so

the two rows shown above for MeterRate (2, 10) could be represented by a single row:

MeterRate

Meterld | Rateld OCA Vs Ve Ts Te

1 11 0 4-1-1998 | 2-5-2037 [4-1-1998 | 2-5-2037

2 10 0 4-1-1998 | 2-5-2037 | 4-1-1998 [2-5-2037
Table 4

With this representation, however, the ability to distinguish which rate to use during the
association’s Valid time period is ambiguous. If selecting the current state, Rate 10 with the
current Transaction timestamp (the one whose endTime is greater than now) would be used.
During a billing run for billing cycle 4, Rate 10 with the Valid timestamp(s) that span the

billing cycle time period is used. The logic used to select the correct Rate 10 representation

10

15

20

25

WO 99/13426 PCT/US98/19034

-79 -

can be inherent to the navigation of the relationships in Table 3. If represented as in Table 4,
it is left to the programmer to sort out which Rate 10 representation to use. Techniques for
selecting the correct data are presented below.

Changes to Valid times may cause an overlap with the Valid time period of
other versions (rows) of the entity instance. In this case, a special operation, coalescing, may
be required. It is noted that this should not to be confused with the Oracle® COALESCE
operation. Two or more rows with identical non-temporal attribute values are value-
equivalent. Value-equivalent rows with adjacent or overlapping time periods represent a
temporal extension of a single fact and therefore should be coalesced into a single row. This
is the case with MeterRate (2, 10) present in Table 3, if the OCA value is not taken into
account. The coalescing operation is similar to duplicate elimination in a "select distinct"
operation.

Coalescing is an extremely expensive operation in a purely relational database
engine, and should be avoided if possible. To determine how to avoid coalescing, it is
necessary to examine the three ways in which value-equivalent fows may materialize in a
database.

The first way value-equivalent rows may appear is through the insert of value-

equivalent rows with differing timestamps. Consider Table 5:

MeterRate

Meterld | Rateld OCA Vs Ve Ts Te

2 10 0 4-1-1998 | 4-25-1998 | 4-1-1998 | 4-15-1998

2 10 0 4-26-1998 | 2-5-2037 | 4-15-1998 | 2-5-2037
Table 5

In Table 5, the validity of MeterRate (2,10) is extended from April 25th to forever, and the
currency is extended from April 15th until forever. These two rows are value-equivalent and
have adjacent timestamps. Therefore they may be coalesced into a single row without any

loss of semantic information, as shown in Table 6.

10

15

20

25

30

WO 99/13426 PCT/US98/19034

-80 -

MeterRate _

Meterld | Rateld OCA Vs Ve Ts Te

2 [10 0 4-1-1998 2-5-2037 4-1-1998 2-5-2037
Table 6

The coalescing operation, however, is performed either in the application modifying the data,
or by the database stored procedure code. If performed by the C++ programmer, the
appropriate coalescing pre-conditions are detected and a method called that literally updates
the database, rather than performing a temporal update. If performed by the insert stored
procedure programmer, each new record inserted into the database are preferably tested with
all other records of the same primary key. If coalescing criteria are met, the stored procedure
extends the Valid or Transaction timestamp, or both, of an existing row by performing a
classic database update.

To effectively perform coalescing in C++ code, the programmer needs to
perform a search for value-equivalent rows prior to every insert, retrieve any candidates,
evaluate the coalescing criteria, and call a special method that performs a classic database
update on an existing row. This algorithm is also duplicated for each low level proxy
implementation. This technique, however, is expensive in terms of processing time and
network bandwidth, but has the advantage in amulti-tiered environment of spreading the work
over many processes. It may also be templated, after a fashion, and the requisite code
generated by the Proxy code generators.

Code generators are like software production lines, given an order, the
generator creates reproducible code that shares characteristics with other units from the
production line. To further the analogy, an automobile manufacture’s models differ from each
other in size, model, style, color, options, and price. Each automobile, however, shares a core
set of similarities that enable the driver to operate any of the vehicles without retraining. For
instance, steering wheels always are round, and when rotated clockwise cause the vehicle to
turn right. The pedal layout and operation is always the same. Gauges present familiar
information, though possible in a different format. Fuel is standardized, as is the basic drive
train operation. This standardization extends to the production line that produced the
automobiles. Though the list of available options is fixed for a certain model and year, each

customer can specify which options they want for their vehicle. The production line can then

10

15

20

25

30

WO 99/13426 PCT/US98/19034

-81-

take this specification and produce the appropriate vehicle for that customer. The customer
is then responsible for any further customization they wish to make to their car.

The code generators serve a similar function in the AMR Server 15. By
creating the specification for an AppServer, Proxy, or DAO, the programmer can have most
of the standard, shared code generated for them. This code represents a substantial portion
of the code required to implement one of these classes. Furthermore, the result is
reproducible, since the code is not hand-built each time, which reduces the potential for error
and rework time. Thus. the overall quality of the AMR Server 15 is thus vastly improved by
using code generators, and the cost in terms of time is proportionately reduced.

Ifthe insert stored procedure is responsible for coalescing, it also evaluates the
table for any value-equivalent rows with satisfy the coalescing criteria, and then perform a
classic database update on an existing row. This approach has the disadvantage of localizing
all processing in the database engine, which is less distributable than Encina® servers.
Localization can become an advantage, however, in that it simplifies the C++ programmers’
job, and the stored procedure code can be generated via an appropriately modified generator.
Also, this approach trims network traffic, which preferably avoids bottlenecks in overall AMR
Server 15 throughput.

The second way value-equivalent rows may appear is by temporally updating
arow with adjacent or overlapping timestamps. Table 7 shows the Meter table containing a

single row, valid and current forever.

MeterRate

Meterld | Rateld OCA Vs Ve Ts Te

2 | 10 0 4-1-1998 2-5-2037 | 4-1-1998 | 2-5-2037
Table 7

If that row is temporally updated (a new row is inserted and made current, and the Te value
of the existing row is changed to the commit timestamp) with value-equivalent values, a new

row results, as shown in Table 8.

MeterRate

Meterld | Rateld OCA Vs Ve Ts Te

2 10 0 4-1-1998 2-5-2037 | 4-1-1998 | 4-15-1998
2 10 1 4-1-1998 2-5-2037 | 4-15-1998 | 2-5-2037

10

15

20

25

WO 99/13426 PCT/US98/19034

-82-

Table 8

This condition may be most easily avoided by detecting the value-equivalence of the "new"
row in the proxy code, and disallowing the update.
A third way value-equivalent rows may appear is by updating a row to become

temporally adjacent or coincident with another row, as shown in Table 9.

Suppose Meter 2 was assigned to Rate 11 by mistake. If MeterRate (2,11) is corrected to

reflect that the rate should really have been Rate 10 instead of Rate 11, the result is shown in

MeterRate

Meterld | Rateld OCA Vs Ve Ts Te

2 10 0 4-1-1998 4-25-1998 | 4-1-1998 5-1-1998

2 11 1 4-25-1998 | 6-1-1998 5-1-1998 6-1-2037

2 10 2 6-1-1998 2-5-2037 6-1-1998 2-5-2037
Table 9

Table 10.
MeterRate
Meterld | Rateld OCA Vs Ve Ts Te
2 10 0 4-1-1998 | 4-25-1998 | 4-1-1998 | 5-1-1998
2 10 1 4-25-1998 | 6-1-1998 5-1-1998 | 6-1-2037
2 10 2 6-1-1998 | 2-5-2037 [6-1-1998 | 2-5-2037
Table 10

If this operation is allowed, then the three rows above represent a single, temporally
continuous fact about MeterRate (2, 10) and should be coalesced. There is a problem with this
specific operation. As a matter of policy, are "mistakes" valid data, and therefore are kept in
the history, or may they be corrected without loss of information? If the former, then
modifying the Rateld of MeterRate (2, 11) should be disallowed, and a temporal update
applied instead. This results in Table 11.

10

15

20

25

30

WO 99/13426 PCT/US98/19034
-83-

MeterRate

Meterld | Rateld OCA Vs Ve Ts Te

2 10 0 4-1-1998 | 4-25-1998 | 4-1-1998 | 5-1-1998
2 11 1 4-25-1998 | 6-1-1998 5-1-1998 | 7-1-1998
2 10 2 6-1-1998 | 2-5-2037 | 6-1-1998 | 2-5-2037
2 10 3 4-25-1998 | 6-1-1998 | 7-1-1998 | 2-5-2037

Table 11

By examining the Valid timestamps, it is seen that rows 1, 4, and 3 have adjacent and
overlapping validities, and therefore form a temporally continuous single fact with respect to
validity, i.e. row 2 represents a mistaken state. If they are coalesced, however, the details of
the mistaken history shown in row 2 are obliterated.

By examining the Transaction timestamps of rows 1, 4 and 3, it is seen that
rows 1 and 4 are not temporally adjacent, even thought their validities are temporally adjacent.
Furthermore, rows 3 and 4 have overlapping Transaction and Valid periods. These two rows
may be coalesced without loss of information, since the Valid period for the mistaken fact lies
wholly within the Valid period of the coalesced rows 3 and 4, and the Transaction period for

row 3 wholly contains the Transaction period for row 4. The result is presented in Table 12.

MeterRate

Meterld | Rateld OCA Vs Ve Ts Te

2 10 0 4-1-1998 4-25-1998 | 4-1-1998 5-1-1998

2 11 1 4-25-1998 | 6-1-1998 5-1-1998 7-1-1998

2 10 2 4-25-1998 | 2-5-2037 6-1-1998 2-5-2037
Table 12

Note the Valid periods for rows 1 and 3 are adjacent, and the Transaction period for row 3 is
later than the Transaction period for row 2, indicating row 3 supersedes row 2. The same
information now occupies 37 fewer bytes.

To further illustrate this example, suppose a billing run was made in May on
the above data. Row three would not have existed yet, so the mistake Rate 11 would be used
in the billing run. Once the mistake was discovered in June and corrected, another billing run
would use Rate 10 to publish the amendment to the May results, and Rate 10 would be used
thereafter. Furthermore, the fact that an incorrect rate had been used at one time could be

detected and accounted for, without degrading the proper performance of the system.

10

15

20

25

30

WO 99/13426 PCT/US98/19034

-84 -

If Table 11 is reordered somewhat, the result is Table 13. Note the order of

rows 4 and 3 are swapped.

MeterRate

Meterld l Rateld OCA Vs Ve Ts Te

2 10 0 4-1-1998 4-25-1998 4-1-1998 5-1-1998
2 11 1 4-25-1998 6-1-1998 5-1-1998 7-1-1998
2 10 3 4-25-1998 6-1-1998 7-1-1998 2-5-2037
2 10 2 6-1-1998 2-5-2037 6-1-1998 2-5-2037

Table 13

The second and third rows show the "mistaken" fact and the "corrected" fact. This reordering
makes it apparent that MeterRate (2, 10) has been the valid association since April 1st. This
is shown by the continuity is indicated by the adjacent Valid timestamps and the temporally
greater (later in time) Transaction timestamp of row 3 compared to row 2. When asking the
question "How long has Meter 2 been on Rate 10?" the time range that answers that question
begins on April 1st and continues to now. This implies that the query should return a single
answer, rather than multiple consecutive, adjacent results. This type of coalescing is done at
query time, rather than during a database write. ‘

Each scenario presented above should be examined and benchmarked to
determine the most effective and efficient techniques for implementing history in the
production AMR Server 15.

With regard to data manipulation techniques, the following clauses are used.
To select the current version of the data, the following where clause is used in the select
statement:

where transactionTimeStart < :now

and transactionTimeEnd > :now
where :now is a variable holding the select transaction start time.

To select a version of data that matches a specific date, use the following where clause:
where :specificDate between validTimeStart and validTimeEnd

where :specificDate is the specific date of interest.

To select a version of data that falls in a certain time period, use the following where clause:
where validStartTime

between :timePeriodStart and :timePeriodEnd

5

10

15

20

25

30

WO 99/13426 . PCT/US98/19034

-85-

and validEndTime

between :timePeriodStart and :timePeriodEnd
The latter where clause is typical of navigational queries that traverse the relational schema,
weaving the relationships between parent and dependent tables. The two variables are the
boundaries of either the Valid or Transaction period of the parent record. The following
explains the transitions each period experiences during database write operations. All times
are recording in the UTC time zone.

During an insert, a row is inserted into the appropriate database table. The
policy for the Valid and Transaction periods is as follows: Valid startTime may be set to a
past or future date. If not set, if will default to the commit time of the database transaction.
Valid endTime may be set to a past or future date, so long as it is greater than the Valid
startTime. If endTime is not set, it defaults to infinity, which occurs on February 5, 2037 (the
maximum time RogueWave can accommodate, RWTime(UINT MAX)). Transaction
startTime is set to the commit time of the database transaction. This is kept consistent
between all database writes that occur during a single database transaction. Transaction
endTime is set to RWTime(UINT MAX).

During an update, a new row with the updated data is inserted into the
appropriate database table. The Transaction endTime of previously current row is updated
to the commit time of the update operation. The policy for the Valid and Transaction periods
of the new row is as follows: Valid startTime may be updated. Ifit is, Valid startTime may
be changed to a past or future date. It may not exceed the endTime. If startTime is not
updated, it will not be changed in the database. Valid endTime may be updated. Valid
endTime may be changed to a past or future date, so long as it is greater than the Valid
startTime. Ifthe endTime is not updated, it will not be changed in the database. Transaction
startTime is set to the commit time of the database transaction. This is kept consistent
between all database writes that occur during a single database transaction. Transaction
endTime is set to RWTime(UINT MAX).

During a delete, the current row is not truly removed from the database, but is
logically deleted by updating the Transaction endTime to some time less than infinity, though
not necessarily less than or equal to the delete operation commit timestamp. If the
Transaction endTime is set to a time greater than now, the fact is current until that time, i.e.

the fact is preset to expire at the Transaction endTime. This can become problematic,

10

15

20

25

30

WO 99/13426 PCT/US98/19034

-86-

however, and is not recommended. Valid startTime is not changed. Valid endTime is not
changed. Transaction startTime is not changed. Transaction endTime is updated to the
commit time of the delete operation.

The functionality of Bitemporal Conceptual Data Model accommodates both
strategic and tactical directions of database vendors, standards, and the AMR Server 15, and
it is preferably utilized to meet the needs of a deregulated electric utility industry.

As shown in Figures 3 and 4, the AMR Server 15 supports many External
Application Program Interfaces (APIs) 124 and 132. The AMR Server 15 provides a DCE
Remote Procedure Call (RPC) API for application systems. External systems will require
DCE in order to utilize the AMR Server 15 API. DCE is supported on all major platforms
including mainframes, UNIX servers/ workstations, and PCS. The AMR Server 15 API
provides an external system with access to services within the AMR Server 15.

The initiator of an RPC call acts as an RPC Client and the recipient of an RPC
call acts as an RPC Server. Each API service request returns the status of the request. Note
that all API calls return the DCE error status. The diagrams below show the high-level
interactions of the service initiator and recipient.

The following will highlight the API calls available to an RPC Client running
in an Application System (APIs invoked from Application System to AMR).

Meter Life Cycle APIs:

Add Meter Defines a meter in the AMR database.

Synchronous Request The addition/definition of a meter to the
AMR database is done by the Primary
Metering Utility (or third-party vendor).

Install Meter Records the physical installation of a meter
Synchronous at its location.

Request

Uninstall Meter Records the physical removal of a meter
Synchronous from its location.

Request

Modify Meter Modifies the definition of an existing
Synchronous meter.

Request

10

15

20

25

30

WO 99/13426 PCT/US98/19034

-87-

Terminate Meter Removes the meter from the database after

Synchronous a specified expiration.
Request

Account Life Cycle APIs:
Add Account Adds a new inactive account. An
Synchronous account may refer to a new or existing
Request service.
Add Meter to Adds a meter to an account. The account
Account may or may not have other meters 60
Synchronous associated with it.
Request

Remove Meter from
Account

Disassociates a meter from an account.
This disassociation does not physically

Synchronous remove the meter.

Request

Modify Account Modifies the definition of an existing
Synchronous account.

Request

Terminate Account

Terminates an account. The account

Synchronous must not have any meters 60 assigned to
Request it.
Rates include the functions necessary to define and manage rates including
usage and interval data. Different meters 60 for the same account may be on different rates;
however, a single meter may only be associated with one rate at a time. Data available in the

meter that could be used as “billing data” (and therefore included in the billing data required

e 2l

by arate type) includes total “*” for this billing period, and load profile (typically 5, 15,
30, or 60 minute); where “*” may be any of the following: kW(h) delivered, kW(h) received,
kVA(h) delivered, kVA(h) received, kVAR(h) delivered, kVAR(h) received, kVAR(h) for
quadrants 1,2, 3, 4, kQ(h) delivered, kQ(h) received, and Power factor for peak demand, time-
of-use peak demand and load profile.

Rate APIs include:

10

15

20

25

WO 99/13426 PCT/US98/19034

-88-
Create Rate Defines a Rate in the AMR database. A
Synchronous rate consists of one or more Data
Request Components that provide specific
information required for calculating a
bill.
Assign Rate to Assigns a rate to a meter.
Meter- Synchronous
Request

Remove Rate from Removes a rate from a meter.
Meter

Synchronous

Request

Delete Rate Deletes a rate from the AMR database.
Synchronous
Request

With regard to interval data, the data is normalized when the clock in the meter
does not agree with the clock in the computer reading the meter. This phenomena is called
“clock drift.” Clock drift can be either positive or negative depending upon whether the real
time (at the computer) is greater than (negative drift) or less than (positive drift) the clock in
the meter.

Metering data includes the functions necessary to retrieve meter-reading
information used for billing and for information (rate studies), and sends it to the appropriate

system(s). This includes both consumption and interval data.

On Request Meter Retrieves meter readings on request for a

Read specific meter from the database using
Asynchronous specific retrieval parameters that are
Request passed with the request. If the readings

stored in the database are not recent
enough, the reading is retrieved from the
meter. This retrieval can be done via a
meter, account, or data collection group.

WO 99/13426 PCT/US98/19034

-89 -
Export Scheduled Collects billing data based on a schedule
Billing Data and prepares the billing data in a
Asynchronous "Destination File." The customer is
Notification notified that the billing data file is ready
for retrieval. Validation must be done to
data prior to shipping
5 Export Metering Records how the scheduler, an operator,
Data Asynchronous or external system exports interval data
Notification from the AMR database to an external

system. The export data can be in a
range of times/dates and for a data
collection group, specific meter
channels, or meters 60.

Enter Data Manually Records the manual entry of meter data
Synchronous into the AMR database when an AMR
10 Request reading is unavailable. The read could
be actual or estimated. The reading is
not imported from a file.

Import Metering Records the importing of Data
Data Synchronous Components for meters 60 from an
Request external system or operator. This data

may come from the meter via a device
such as a hand-held and then entered into
the system through this import process.
The import of metering data represents a
scenario that is not typical or automatic.

15 The scheduler includes Billing Scheduling functions necessary to define which
meters 60 are to be read on which days for billing or information purposes. The billing read
schedule includes the “billing day”, and identifies other information necessary to collect and
process billing data. An account is assigned a rate and assigned to a billing schedule. The

associated APIs are as follows:

20 Create Billing Defines a billing schedule for the AMR
Schedule database according to the schedule given
Synchronous Request to it by a customer. The schedule specifies
both when billing readings are delivered to
the billing system and what actually
constitutes a valid billing reading
(freshness).

10

15

20

25

30

WO 99/13426

Assign Account to
Billing Schedule
Synchronous
Request

Remove Account
from Billing
Schedule
Synchronous
Request

Delete Billing
Schedule
Synchronous
Request

PCT/US98/19034

- 90 -

Assigns an account to a specific billing
schedule.

Removes an account from a specific
billing schedule.

Deletes a billing schedule from the AMR
database.

Group APIs are as follows:

Create Data
Collection Group
Synchronous
Request

Add Meter to Data
Collection Group
*Synchronous
Request

Delete Meter from
Data Collection
Group Synchronous
Request

Delete Data
Collection Group
Synchronous
Request

Defines a data collection group. The data
collection group defines metering data
components that are to be periodically
retrieved from the meter and stored in the
database.

Adds a meter to an existing data
collection Group. The request includes
the name of the data collection group
and a list of meters 60 to be added to the
group. A meter may belong to more
than one data collection group.

Removes a meter from a data collection
group. The removal stops data
collection for that meter. Previously
collected data is still available for
retrieval based on retrieval rules.

Removes a data collection group from
the AMR database. A group can only be
deleted when there are no meters 60
associated with it. Data is still available
for retrieval until data retention period
expires.

Administrative APIs:

10

15

20

25

30

WO 99/13426 PCT/US98/19034

-91-
Synchronize Meter Verifies the time inside a meter.
Time
Synchronous
Request

Validating Editing
and Estimating Data

The AMR Server 15 tracks the electrical service connection status
(Disconnect/Reconnect) of meters 60 within its database. For example, once a meter
technician has physically connected or disconnected electrical service to the premise,
notification can be sent to the AMR Server 15 via the Modify Meter API and the appropriate
meter status flag is updated. In addition, meter readings can be obtained and identified as
“connect” or “disconnect” readings in the database with their associated date/time stamps and
reason codes.

Supplier System Interfaces (APIs) will now be described. The AMR Server
15 provides services allowing the automated meter reading of different types of electrical
measurements from a variety of meter types and communication networks. These services
integrate the diverse types of meters 60 and communications servers into a uniform flow of
data that will better support the business and engineering units of utilities.

The services provided by the AMR Server 15 should be as transparent as
possible to the type of communication network(s) used by the utility. The Supplier APIis a
set of common APISs that shield the particulars of vendor-specific Communication Servers 30
and networks from the utility and from the AMR Server 15 application software. If a utility
desires to add another type of communication network into the AMR Server 15, this will only
require the addition of a new communication interface in the AMR Server 15 and will not
impact the utility or AMR application software.

Supplier API presents different scenarios of the Communication Server 30 API
interacting with the AMR Server 15 in both synchronous and asynchronous communication
modes. The APIis utilized as an interface between AMR and communication server. Some
APIs will be called from the AMR Server 15 to Communication Servers 30, while others may
be invoked from Communication Server 30 to the AMR Server 15. Not all APIs will apply
to a particular communication server. If an APIis not applicable to a specific communication

server, the API can still be called, but will return the status code AMR_NOT SUPPORTED.

10

15

20

WO 99/13426 PCT/US98/19034

-92-

In general, all APIs interact with the supplier interface in the AMR Server 15. However, the
receiving Subsystem will process data received from bulk delivery and on-request reads.

The AMR Server 15 faces the challenge to accept a variety of data types (i.e.,
formats) from different types of meters 60 and Communication Servers 30. Therefore, a
flexible data format is needed to facilitate data mapping and integration. At the same time,
in order to make the API type-safe and prevent potential run time errors, the AMR Server 15
has fixed data types. The AMR 10 employs DCE's enumerated unions so that each different
structure can be supported at run time, while still giving some type checking. Extensions to
the API can be done without affecting older clients by using DCE version numbering. In
some cases, a tag-value based data format can be used for maximum flexibility. Such a format
applies tags to all the values. The beauty of this format is its ability to store any type of data
with tags defined; however, it could increase the size of the data for an API. The tagged fields
will predominantly be used for parameters like UtilityContext that can have any information
the utility or company wants AMR Server 15 to carry by way of context information. The top
level scenarios of the Supplier APIs are contained in Appendix A.

APIs Invoked From Communication Server 30 to AMR are as follows:

DiscoverMeter Informs the AMR Server 15 that a new

meter has been found in the field.

BulkDelivered Notifies the AMR Server 15 that
consumption and/or load profile bulk
data for the specified delivery schedule
has been delivered and is available in the
specified file.

APIs Invoked from AMR to Communication Server 30 are as follows:

AddMeter Adds a new meter to
communication server.
DeleteMeter Deletes the specified meter.

WO 99/13426 PCT/US98/19034

-93-

OnRequestMeterReadings

AddDeliverySchedule

AddCollectionComponents

SynchMeterTime

AddMeterComponentSchedule

GetMeterConfig

DeleteCollection-Component

DeleteDelivery-Schedule

Requests the meter reading
data for the specified meter.
The reading data may consist
of consumption and/or interval
data depending upon input
argument ComponentArray.
The data is returned in
fileName.

Creates a new schedule with
the given schedule ID for data
delivery from the
Communication Server 30 to
the AMR Server 15.

Creates collection components
for consumption and/or
interval data on the
Communication Server 30 and
returns the assigned
component IDs.

Requests time synchronization
for the specified meter. The
DCE Distributed Time Service
Local to the communications
server is used as the time
source.

Assigns the specified
collection components and
delivery schedule to the
specified meter.

Retrieves meter configuration
and type information for the
specified meter from the
communication server.

Deletes collection components
from the communication
server.

Deletes a schedule for delivery
from the communication
Sserver.

10

15

20

25

WO 99/13426 PCT/US98/19034

-94 -

DeleteMeterComponentSchedule Deletes delivery
schedule/collection component
assignments for the specified
meter.

An AMR Server 15 Scenario for an on request meter reading will now be
described with reference to Figure 26. The following numbered steps correspond to the
numbered flows illustrated in Figure 26.

1. The user presses “Submit” on AMR Java™ application.

2. The ConfigUtility Encina® Server performs back-end support for the Java™
application and messages the OnRequestMeterRead Utility Interface API.

3. UtilityMgr Encina® Server houses the Utility Interface APIs. For this call,
UtilityMgr uses the Meter Proxy and Rate Proxy to populate the appropriate data and requests
execution of the OnRequestMeterRead workflow. '

4. Dispatcher Panel Encina® Server retrieves the OnRequestMeterRead
workflow, assigns it a workflow id, and queues a message to DispatcherBrain.

5. DispatcherBrain Encina® Server executes the OnRequestMeterRead
workflow:

6. Brain queues a message to ReadingMgr Encina® Server requesting
GetReadingsUsingFreshness service.

7. ReadingMgr uses SampleData proxies (ReadingMgr Encina® Server) to read
samples from the AMR database.

8. Ifreturn status is STS_STALE READINGS then DispatcherBrain queues
a message to SupplierMgr Encina® Server requesting OnRequestMeterReadings service.

9. SupplierMgr determines the correct SupplierOutgoing Encina® Server to
message for the meter.

10. RCS Encina® Server (running on NT) checks Local database for
appropriate reading data. If the data is stale, the meter is dialed and the data is read from the
meter. The readings file is written to the DSF directory.

11. DispatcherBrain queues a message to the ReceivingMgr Encina® Server

requesting ReceiveMeterReadings service.

10

15

20

25

30

WO 99/13426 PCT/US98/19034

-95 .

12. ReceivingMgr retrieves the specified readings file from DFS and parses
the file. The SampleData Encina® Server stores the readings in the AMR database.

13. DispatcherBrain queues a message to ReadingMgr requesting
GetMeterReadings service.

14. ReadingMgr uses MeterSample and SampleData proxies (MeterSample
Encina® Server) to read samples from the AMR database. The samples are stored in a file in
a DFS directory.

15. DispatcherBrain commits the workflow and notifies the DispatcherPanel
and ConcernMgr of workflow completion and final status.

16. ConcernMgr notifies UtilityMgr of workflow completion and final status.

17. UtilityAgent notifies ConfigUtility of workflow completion, final status,
and reading file.

18. ConfigUtility notifies the AMR Java™ application of workflow
completion and readings file. The results are displayed to the user.

Another facet of the AMR Server 15 is the ability to customize the system.
Customization is essential because the scope of operation for the AMR Server 15 may include
data collection from meters 60 in different states in the United States and world and under
varying regulatory authorities. The system accommodates the application of processes such
as editing and estimation with unique sets of finite rules depending on the applicable
regulatory or business practice authority. Examples of parameters that may vary include
Regulatory Authority Parameters (e.g., state agencies, VEE, and Time Synchronization),
Utility Parameters (e.g., Meter data freshness values, and Timing and quantity of meter
reads/retries), and System Parameters (e.g., C&I Server system specifications, Standard meter
characteristics and abilities, Standard communications characteristics, Size and duration of
data storage, and Size and duration of system logs).

The AMR Server 15 will also need to be managed by an appropriate set of
tools, and accordingly, the AMR Server 15 Management comprises a basic system
management plan and tools. The plans are tailored to support existing customer practices and
willinclude at a minimum, hardware and software configuration, management tools, operation
documentation and operator training. Tools for system management will coincide with
existing customer standards. In the event no standards exist, platform-specific system

management tools may be utilized to monitor and assist in the operation and maintenance of

10

15

20

25

30

WO 99/13426 PCT/US98/19034

-96 -

the AMR Server 15. Planned maintenance windows for each customer should be
implemented, and these will be dependent on the customer’s critical operating time frames.
Routine maintenance will be required and will be staged to provide the lowest impact to
system operation.

The tools include a disk storage solution which is configured to support online
and archival stofage. Solutions will support a variety of options to support growth and
scalability of the system and provide options for hardware and sofiware- based raid systems.
A backup solution that supports both a UNIX and Windows NT® environment should be
included as part of a “turnkey” solution. Backups will be sized and automated to provide
capacity for growth. Backup solutions do not require system shutdown since online (i.e., live)
backups of the Oracle® database will be an integral part of the backup solution. Data recovery
metrics in the event of a failure will coincide with defined operational metrics.

Network Management is preferably provided by the industry standard
mechanism for providing network management support, i.e., the Simple Network
Management Protocol (SNMP). The Oracle® database supports SNMP and provides the
ability to Monitor the status of Oracle® services, Identify performance bottlenecks, “Discover”
Oracle® databases or tools as they start up on any system node, Receive alerts when
exceptional events occur (i.e. database going down), Define thresholds and automatic
responses to specific events, Detect and diagnose potential problems quickly and easily, be
notified when certain events occur, and Store, report upon, filter and analyze I‘listorical data.

It is also possible that the Encina® utilities can be utilized for the network
management of the AMR Server 15 Applications. The Encina® utilities provide the ability
to: Monitor error messages, Enable selective tracing of execution path events, Dump
information about the state of Encina® servers (which includes all AMR Server 15s), Analyze
queue usage, Detect hung transactions, and Monitor server stops and starts.

The above-mentioned Oracle®, AMR Server Logging, and Encina® network
management tools will assist in managing and isolating system bottlenecks and trouble areas.
These tools ensure that the entire system remains functional and that no one component causes
unscheduled system down time.

It is noted that the foregoing examples have been provided merely for the
purpose of explanation and are in no way to be construed as limiting of the present invention.

While the invention has been described with reference to preferred embodiments, it is

WO 99/13426 PCT/US98/19034

-97.

understood that the words which have been used herein are words of description and
illustration, rather than words of limitations. Further, although the invention has been
described herein with reference to particular means, materials and embodiments, the invention
is not intended to be limited to the particulars disclosed herein; rather, the invention extends
to all functionally equivalent structures, methods and uses, such as are within the scope of the
appended claims. Those skilled in the art, having the benefit of the teachings of this
specification, may effect numerous modifications thereto and changes may be made without

departing from the scope and spirit of the invention in its aspects.

10

15

20

25

WO 99/13426 PCT/US98/19034

-98-

What is claimed is:

1. Anautomated meter reading server that collects telemetry data from remote
customer locations and processes said telemetry data for use by end users and upstream
business systems, said automated meter reading server comprising:

a data repository to store said telemetry data;

at least one external interface to communicate with systems external of said
automated meter reading server; and

a multi-layered distributed software architecture comprising:

application and infrastructure subsystems, said application and
infrastructure subsystems comprising services, distributed throughout said automated meter
reading server, that cooperate to accomplish predefined business functionalities;
middleware software, said middleware software being provided to
facilitate scalability, transaction processing, and mapping of objects to said data repository;
and
application frameworks, said application frameworks facilitating access
to said data repository and the creation of processes compliant with said middleware software,
wherein said business functionalities determine processes by which said
automated meter reading server receives data from downstream collection points, processes

said telemetry data, and manipulates said data repository.

2. The automated meter reading server as recited in claim 1, wherein said
middleware software provides communication facilities to communicate information between
clients of said automated meter reading server and said automated meter reading server, data
transportation and data conversion facilities, and a mechanism by which the clients can locate

servers within distributed architecture.

3. The automated meter reading server as recited in claim 1, wherein said
middleware provides for load balancing and scheduling by assigning said services to
application servers based on a priority, and wherein each of said application servers consists

of multiple processing agents and is multi-threaded.

10

15

20

25

WO 99/13426 PCT/US98/19034

-99 .

4. The automated meter reading server as recited in claim 3, wherein a
plurality of application servers are executed simultaneously on multiple physical devices that
comprise said automated meter reading server to spread client loads across said multiple

physical devices.

5. The automated meter reading server as recited in claim 1, wherein said
automated meter reading server accesses said data repository via transactions and transaction

processing.

6. The automated meter reading server as recited in claim 5, wherein said
transactions are isolated from one another to prevent other transactions from accessing data
that a particular transaction is using until the particular transaction is complete, and wherein
a recoverable queuing system is provided to queue transactional work to be completed at a

later time.

7. The automated meter reading server as recited in claim 5, wherein said data
repository comprises an object-oriented design residing on a relational database
implementation, and wherein object-to-relational mapping is performed by mapping from a

tabular relational database to object structures.

8. The automated meter reading server as recited in claim 1, wherein said data
repository comprises a relational database having a temporal framework, wherein said
temporal framework comprises timestamp ranges for each table within said relational database

to provide different historical views of data stored therein.

9. The automated meter reading server as recited in claim 8, wherein said
temporal framework comprises a bitemporal conceptual data model, said bitemporal
conceptual data model providing for two independent, orthogonal time periods to be
associated with each row in a table, said two independent, orthogonal time periods comprising
a valid time and transaction time, wherein said valid time and said transaction time each

comprise a start time and end time, and wherein valid time is a time range during which a fact

10

15

20

25

WO 99/13426 PCT/US98/19034

-100 -

is true, and said transaction period is the time range during which said fact is recorded in said

data repository.

10. The automated meter reading server as recited in claim 1, wherein said
datarepository is designed to represent a high-level object model and wherein each high-level

object is mapped to said data repository.

11. The automated meter reading server as recited in claim 1, said application

frameworks comprising a data access object framework and a distributed services framework.

12. The automated meter reading server as recited in claim 11, wherein said
distributed services framework comprises:

classes to provide a factory for any object or atomic datatype that has been
defined within a class mapping directory;

a pointer to an instance of a specific type of object and a wrapper around said
instance;

a blackboard to share information used in an existing activity plan;

a mechanism that provides a runtime invocation of functions based on a
representation of a function name; and

a mechanism that provides encapsulation of a string of tag-value pairs and

manipulation and extraction of information from said string.

13. The automated meter reading server as recited in claim 11, wherein said
distributed services framework hides the detailed implementation of said data repository from
an application by providing distributed object proxies, and wherein said data repository is not

directly accessed by external applications.

14. The automated meter reading server as recited in claim 11, wherein said
data access object framework provides proxies, manager servers, and back-end
implementation servers to isolate relationships of said telemetry data in the said data

repository in order to provide access to said telemetry data.

10

15

20

25

WO 99/13426 PCT/US98/19034

-101 -

15. The automated meter reading server as recited in claim 1, wherein said
infrastructure subsystem supports said application subsystem, said infrastructure subsystem
comprising generic and reusable components having no knowledge of said automated meter
reading server application domain, and said application subsystem comprising services
running on a plurality of application servers that have detailed and specific knowledge about

said automated meter reading domain.

16. The automated meter reading server as recited in claim 15, said
infrastructure subsystem comprising an activity management subsystem, wherein said
business functionalities to be performed by said automated meter reading server are extracted
into activity plans to isolate said business functionalities from application code comprising
said software architecture in order to provide for diverse business functionalities without
requiring substantial modification of said application code,

wherein said activity plans control the flow of work within said automated
meter reading server, and wherein said activity management subsystem invokes and manages

said activity plans.

17. The automated meter reading server as recited in claim 16, said activity
plans comprising at least one task, wherein a task is a discrete unit of work in said activity

plan that is controlled by a single server in the system.

18. The automated meter reading server as recited in claim 17, wherein said
tasks are responsible for failover processors, said failover processors being a list of operations
to be perform in the case of failure, said failure being determined based on conditions returned

after executing an activity.

19. The automated meter reading server as recited in claim 16, wherein said
activity management subsystem instantiates said activity plan, negotiates responses and events

for activity plans, and monitors the current status of all activity plans in progress.

20. The automated meter reading server as recited in claim 16, said activity

management subsystem comprising:

10

15

20

25

WO 99/13426 PCT/US98/19034

-102 -

an activity plan builder which is an interface to construct an ordered collection
of tasks and initializes a blackboard to share information;

a dispatcher panel which instantiates activity plans and routes responses from
servers within said automated meter reading server to an appropriate activity plan where tasks
within an activity plan and sends queued messages to other servers within said automated
meter reading server;

a dispatcher brain which runs said activity plan and handles responses from
other servers sent to active said activity plan;

adispatcher storage manager which controls access to persistent activity plans;
and

an activity plan monitor which displays the state of any activity plan by name,

or by selection.

21. The automated meter reading server as recited in claim 15, said
infrastructure subsystem comprising a scheduler subsystem, wherein said scheduler subsystem
manages building and execution of schedules within said automated meter reading server,
wherein said schedules are used to control the time-based execution of work within said

automated meter reading server.

22. The automated meter reading server as recited in claim 21, said scheduler
subsystem comprising a schedule manager server and a scheduler, wherein said schedule
manager server handles the creation, updating, and retrieval of schedules to and from said data

repository, and said scheduler retrieves schedules through said schedule manager server.

23. The automated meter reading server as recited in claim 21, wherein said
scheduler determines a job execution duration and adjusts execution durations in accordance

with heuristic-tuning parameters.

24. The automated meter reading server as recited in claim 21, wherein said
scheduler subsystem comprises a delivery schedule that notifies a supplier when to deliver

data to the automated meter reading server, a billing schedule which determines the timing

10

15

20

25

WO 99/13426 PCT/US98/19034

-103 -

of data delivery from the automated meter reading server to the utility for billing, and a

collection schedule which determines when to collect data and what type of data to collect.

25. The automated meter reading server as recited in claim 15, said
infrastructure subsystem comprising an alarm subsystem that receives requests for timed

messages, and wherein when an alarm occurs, a callback is made to a subscriber of said alarm.

26. The automated meter reading server as recited in claim 15, said
infrastructure subsystem comprising a concern management subsystem that provides for
distributed event management and a mapping of concerns for entities within said automated
meter reading server, wherein said entities comprise a vendor, which is something that can
provide notification of an event, or a requester, which is something that has an interest or

concern in an item that can be provided by a vendor.

27. The automated meter reading server as recited in claim 15, said
infrastructure subsystem comprising a mapping subsystem which provides services for
customization of file formats for exporting data from, and importing data to, said automated
meter reading server, said customization of file formats being performed in accordance with

maps.

28. The automated meter reading server as recited in claim 27, wherein said
mapping subsystem comprises a canonical mapper, said canonical mapper comprising an
input map, a canon, and an output map to map information from an input file format to an

output file format.

29. The automated meter reading server as recited in claim 28, wherein said
input and output maps are used to map information across sub-domains, wherein there are at

least two sub-domains under a same root domain.

30. The automated meter reading server as recited in claim 28, further
comprising a mapping interface server which sends requests to said canonical mapper,

wherein said input and output maps are derivation trees, and

10

15

20

25

WO 99/13426 PCT/US98/19034

-104 -

wherein said canonical mapper builds a scanner/parser for an input sub-
domain, traverses said input map, parses the data from the input file into a canonical list, and
maps from the canonical list to an output sub-domain by traversing said output map and re-
interpreting the corresponding element from the canonical list to conform to the new data

format to create the specified output file.

31. The automated meter reading server as recited in claim 15, said
infrastructure subsystem comprising a log/trace subsystem that generates logs for auditing
purposes that are adapted to support certain standard types of queries, and wherein log/tracing
system is provided to determine a cause of problems that occur in said automated meter
reading server and can be activated at runtime or by any of the individual servers within said

automated meter reading server.

32. The automated meter reading server as recited in claim 15, wherein said
application subsystem further comprises a supplier subsystem, said supplier subsystem
adapted to communicate with a supplier in accordance with a format of said supplier, and
wherein said supplier subsystem encapsulates differences in communication formats so that
clients of said external interface need not know what type of supplier with which they are

communicating.

33. The automated meter reading server as recited in claim 32, wherein
outgoing requests to suppliers are accomplished through activity plans that control the flow
of work within said automated meter reading server, and wherein services triggered from a

supplier will begin activity plans to accomplish tasks.

34. The automated meter reading server as recited in claim 32, said supplier
subsystem comprising supplier manager, supplier outgoing, supplier incoming, and dock
control servers, wherein said supplier subsystem routes meter service requests from automated
meter reading services to an automated meter reading service responsible for interfacing with
an external system, and manages information delivery and collection schedules, and manages

communication from the automated meter reading server to the external system.

10

15

20

25

WO 99/13426 PCT/US98/19034

-105 -

35. The automated meter reading server as recited in claim 34, wherein said
supplier subsystem directs incoming service requests from communication servers, connected
to said automated meter reading server, to activities within the automated meter reading server

responsible for servicing the request.

36. The automated meter reading server as recited in claim 15, wherein said

application subsystem comprises a data access object subsystem.

37. The automated meter reading server as recited in claim 36, wherein said
data access object subsystem contains data access objects to manipulate data within said data
repository, wherein said data access objects are representations of tables within said data

repository.

38. The automated meter reading server as recited in claim 37, wherein said
data access objects have a hierarchical relationship with one another, such that one type of

object or collection contains or is contained by another type of object or collection.

39. The automated meter reading server as recited in claim 36, wherein said
data access subsystem utilizes proxy objects to interact with said application frameworks,
wherein said proxy objects are provided by said application frameworks to encapsulate

relationships and behavior of data.

40. The automated meter reading server as recited in claim 39, wherein said
proxy objects are mapped to objects in said data access subsystem, wherein, said objects in

said data access subsystem are object representations of tables within said data repository.

41. The automated meter reading server as recited in claim 40, wherein said

proxy objects are distributed and cached in a memory in said meter reader server.

42. The automated meter reading server as recited in claim 36, wherein said
data access object subsystem comprises a plurality of manager servers, wherein said manager

servers provide services related to meters, services related to rates, services related to meter

10

15

20

WO 99/13426 PCT/US98/19034

-106 -

groups, loading of the received and mapped data into said data repository, retrieving reading
samples from the automated meter reading data repository, determining the abilities of a

particular component instance, and provide lists of reference data.

43. The automated meter reading server as recited in claim 15, wherein said

application subsystem comprises an export subsystem.

44. The automated meter reading server as recited in claim 43, wherein said
export subsystem exports data to external application systems by mapping and formatting data

from said application systems.

45. The automated meter reading server as recited in claim 43, wherein said
export subsystem comprises an export manager and a validation, editing, and estimation

manager.

46. The automated meter reading server as recited in claim 45, wherein said
validation, editing, estimation manager performs validation, editing, and estimation of output
data to be exported such that said output data has characteristics desired by a requestor of said

output data.

47. The automated meter reading server as recited in claim 46, wherein said
validation, editing, estimation manager performs said validation in accordance with a plurality

of regulatory agencies to produce settlement quality data.

48. The automated meter reading server as recited in claim 45, wherein said
validation, editing, estimation manager utilizes activity plans to control the flow of work

within said automated meter reading server.

49. The automated meter reading server as recited in claim 15, wherein said
application subsystem comprises a utility interface, said utility interface communicating with

external systems and accepting requests from the external systems.

10

15

20

25

WO 99/13426 PCT/US98/19034

-107 -

50. The automated meter reading server as recited in claim 49, further
comprising a graphical user interface which interacts with said utility subsystem and provides
at least one of access to said automated meter reading server to manually invoke all business
system interfaces online, search specific meter/account/rate/event information, provide access

to said activity management system monitor, and provide an interface to schedules.

51. The automated meter reading server as recited in claim 50, wherein said
graphical user interface uses standard application system application programming interfaces

provided by said utility interface subsystem to initiate requests.

52. The automated meter reading server as recited in claim 1, wherein said at
least one external interface includes one of a standards-based application programming

interface and a file based interface.

53. The automated meter reading server as recited in claim 52, wherein said
external interface mechanism communicates to a canonical mapper, said canonical mapper
building a map which specifies the required translation to perform a conversion from an input

format to an output format.

54. The automated meter reading server as recited in claim 52, wherein said
standards-based interface application programming interface requests are utilized to interact
with said automated meter reading server, said standards-based application programming
interface requests comprising synchronous and asynchronous requests,

wherein said synchronous requests return request outputs directly to arequestor
when the request is made, and wherein said asynchronous requests return the status of a
request start-up from said application subsystem to the requestor and, at a later time, provide

an asynchronous notification to the requestor with the request outputs.

55. The automated meter reading system as recited in claim 1, wherein said
automated meter reading server is adapted to administer a plurality of dissimilar legacy
systems and dissimilar customer-to-customer requirements, business functionality logic, and

regulatory requirements.

10

15

20

25

WO 99/13426 PCT/US98/19034

-108 -

56. The automated meter reading server as recited in claim 1, further
comprising at least one communications server to communicate said telemetry data over at
least one communications network, and wherein said automated meter reading server is

adapted to receive said telemetry data via dissimilar communications networks.

57. The automated meter reading server as recited in claim 56, wherein a
plurality of dissimilar meters communicate said telemetry data via said dissimilar

communications networks.

58. The automated meter reading server as recited in claim 56, wherein said
at least one communications network comprises at least one of a wireless and public switched
telephone network, and

wherein said at least one communications server establishes communications
sessions to read said telemetry data from meters, interprets meter protocols, converts data
from a meter protocol to a protocol of said communication server, and sends said telemetry

data to said communications server.

59. The automated meter reading server as recited in claim 58, wherein said
communication server supports at least one of CDMA, telephone & international DAA,
PSTN, PCS, Ardis, x.25 modem, RAM, ReFlex, Amps, CDPD, and TDMA environments.

60. The automated meter reading server as recited in claim 56, wherein said
automated meter reading server is adapted to support a fail-over capability at all levels in the
event of a failure, and wherein of an individual process fails, said automated meter reading
server shifts failed processes to another process, and wherein if a communications server fails,

automatic routing to other communication servers is established.

61. The automated meter reading server as recited in claim 1, wherein said
automated meter reading server notifies end users of outage alerts, tamper notification, in-
home display of electric information, meter programming, remote monitoring of power

quality, and customer service diagnostics.

WO 99/13426 PCT/US98/19034

-109 -

62. The automated meter reading server as recited in claim 1, wherein said
automated meter reading server measures power usage, said power usage being measured in

one of kKVARh, kVAh, kWh, and Time of Use.

63. A distributed server that receives and processes information for use by end
5 users, said distributed server comprising:
a data repository to store said information;
at least one external interface to communicate with systems external of said
distributed server; and
a multi-layered distributed software architecture comprising:

10 application and infrastructure subsystems, said application and
infrastructure subsystems comprising services, distributed throughout said distributed server,
that cooperate to perform operations within said server;

middleware software, said middleware software being provided to
facilitate scalability, transaction processing, and mapping of objects to said data repository;

15 and

application frameworks, said application frameworks facilitating access
to said data repository and the creation of processes compliant with said middleware software,
wherein distributed server receives data from downstream collection points,

processes said data, and manipulates said data repository to accomplish said operations.

20 64. The distributed server as recited in claim 63, wherein said middleware
provides for load balancing and scheduling by assigning each service to an application server
based on a priority, and wherein each of said application servers consists of multiple

processing agents and is multi-threaded.

65. The distributed server as recited in claim 64, wherein a plurality of
25 application servers are executed simultaneously on multiple physical devices that comprise

said distributed server to spread client loads across said multiple physical devices.

66. The distributed server as recited in claim 63, wherein séid distributed

server accesses said data repository via transactions and transaction processing.

10

15

20

25

WO 99/13426 PCT/US98/19034

-110 -

67. The distributed server as recited in claim 66, wherein said transactions are
isolated from one another to prevent other transactions from accessing data that a particular
transaction is using until the particular transaction is complete, and wherein a recoverable

queuing system is provided to queue transactional work to be completed at a later time.

68. The distributed server as recited in claim 66, wherein said data repository
comprises an object-oriented design residing on a relational database implementation, and
wherein object-to-relational mapping is performed by mapping from a tabular relational

database to object structures.

69. The distributed server as recited in claim 63, wherein said data repository
is designed to represent a high-level object model and wherein each high-level object is

mapped to the data repository.

70. The distributed server as recited in claim 63, said application frameworks

comprising a data access object framework and a distributed services framework.

71. The distributed server as recited in claim 70, wherein said distributed
services framework hides the detailed implementation of said data repository from an
application by providing distributed object proxies, and wherein said data repository is not

directly accessed by external applications.

72. The distributed server as recited in claim 70, wherein said data access
object framework provides proxies, manager servers, and back-end implementation servers
to isolate relationships of said information in said data repository in order to provide access

to said information.

73. The distributed server as recited in claim 63, wherein said infrastructure
subsystem supports said application subsystem, said infrastructure subsystem comprising
generic and reusable components having no knowledge of said distributed server application
domain, and wherein said application subsystem comprising services running on applications

servers that have detailed and specific knowledge about said distributed domain.

WO 99/13426 PCT/US98/19034

-111 -

74. The distributed server as recited in claim 73, said infrastructure subsystem
comprising an activity management subsystem, wherein said operations are extracted into
activity plans to be performed by said distributed server to isolate said operations from
application code that comprises said software architecture to provide for dissimilar operations

5 to be performed without requiring substantial modification of said application code,
wherein said activity plans control the control the flow of work within said
distributed server, wherein said activity management subsystem invokes and manages said

activity plans.

75. The distributed server as recited in claim 74, said activity plans comprising
10 at least one task, and wherein a task is a discrete unit of work in said activity plan that is

controlled by a single server in the distributed server.

76. The distributed server as recited in claim 75, wherein said tasks are
responsible for failover processors, said failover processors being a list of operations to be
perform in the case of failure, said failure being determined based on conditions returned after

15 executing an activity.

77. The distributed server as recited in claim 74, wherein said activity
management subsystem instantiates said activity plan, negotiates responses and events for

activity plans, and monitors the current status of all activity plans in progress.

78. The distributed server as recited in claim 73, said infrastructure subsystem
20 comprising a scheduler subsystem, wherein said scheduler subsystem manages building and
execution of schedules within said distributed server, wherein said schedules are used to

control the time-based execution of work within said distributed server.

79. The distributed server as recited in claim 78, wherein said scheduler
subsystem determines a job execution duration and adjusts execution durations in accordance

25 with heuristic-tuning parameters.

10

15

20

25

WO 99/13426 PCT/US98/19034

-112 -

80. Thedistributed server as recited in claim 73, said infrastructure subsystem
comprising an alarm subsystem that receives requests for timed messages, and wherein when

an alarm occurs, a callback is made to a subscriber of said alarm.

81. The distributed server as recited in claim 73, said infrastructure subsystem
comprising a concern management subsystem provides distributed event management and a
mapping of concerns for entities within said distributed server, wherein said entities comprise
vendors, which are something that can provide notification of an event, or a requester, which

is something that has an interest or concern in an item that can be provided by a vendor.

82. The distributed server asrecited in claim 73, said infrastructure subsystem
comprising a mapping subsystem which provides services for customization of file formats
for exporting data from, and importing data to, said distributed server, said customization

being performed in accordance with maps.

83. The distributed server as recited in claim 82, wherein said mapping
subsystem comprises a canonical mapper, said canonical mapper comprising an input map,
a canon, and an output map to map information from an input file format to an output file

format.

84. The distributed server as recited in claim 83, wherein said input and output
maps are used to map information across sub-domains, wherein there are at least two sub-

domains under a same root domain.

85. The distributed server as recited in claim 73, said infrastructure subsystem
comprising a log/trace subsystem generates logs for auditing purposes that are adapted to
support certain standard types of queries, and wherein log/tracing system is provided to
determine a cause of problems that occur in said distributed server and can be activated at

runtime or by any of the individual servers within said distributed server.

86. The distributed server as recited in claim 73, wherein said application

subsystem further comprises a supplier subsystem, said supplier subsystem adapted to

10

15

20

WO 99/13426 PCT/US98/19034

-113 -

- communicate with a supplier in accordance with a format of said supplier, and wherein said

supplier subsystem encapsulates differences in formats so that clients of the interface need not

know what type of supplier with which they are interacting.

87. The distributed server as recited in claim 86, wherein outgoing requests
to suppliers are accomplished through activity plans that control the flow of work within said
distributed server, and wherein services triggered from a supplier will begin activity plans to

accomplish tasks.

88. The distributed server as recited in claim 86, wherein said supplier
subsystem directs incoming service requests from communication servers, connected to said
distributed server, to activities within the distributed server responsible for servicing the

request.

89. The distributed server as recited in claim 73, wherein said application

subsystem comprises a data access object subsystem.

90. The distributed server as recited in claim 89, wherein said data access
object subsystem contains data access objects to manipulate data within said data repository,

wherein said data access objects are representations of tables within said data repository.

91. The distributed server as recited in claim 90, wherein said data access
objects have a hierarchical relationship with one another, such that one type of object or

collection contains or is contained by another type of object or collection.

92. The distributed server as recited in claim 89, wherein said data access
subsystem utilizes proxy objects to interact with said application frameworks, wherein said
proxy objects are provided by said application frameworks to encapsulate relationships and

behavior of data.

10

15

20

WO 99/13426 PCT/US98/19034

-114 -

93. The automated meter reading server as recited in claim 92, wherein said
proxy objects are mapped to objects in said data access subsystem, wherein, said objects in

said data access subsystem are object representations of tables within said data repository.

94. The automated meter reading server as recited in claim 93, wherein said

proxy objects are distributed and cached in a memory in said meter reader server.

95. The distributed server as recited in claim 74, wherein said application
subsystem comprises an export subsystem that exports data to external application systems

by mapping and formatting data from said application systems.

96. The distributed server as recited in claim 95, wherein said export
subsystem comprises an export manager and a validation, editing, and estimation manager,
wherein said validation, editing, estimation manager performs validation,
editing, and estimation of data to be exported such that said output data has characteristics

desired by a requestor of said output data.

97. The distributed server as recited in claim 96, wherein said validation,
editing, estimation manager utilizes activity plans to control the flow of work within said

distributed server.

98. The distributed server as recited in claim 73, wherein said application
subsystem comprises a utility interface, said utility interface communicating with external

systems and accepting requests from the external systems.

99. The distributed server as recited in claim 98, further comprising a
graphical user interface which interacts with said utility subsystem and provides at least one
of access to said distributed server to manually invoke all business system interfaces online,
search specific meter/account/rate/event information, provide access to said activity

management system monitor, and provide an interface to schedules.

10

15

20

25

WO 99/13426 PCT/US98/19034

-115-

100. The distributed server as recited in claim 99, wherein said graphical user
interface uses standard application system application programming interfaces provided by

said utility interface subsystem to initiate requests.

101. The distributed server as recited in claim 63, wherein said at least one
external interface includes one of a standards-based application programming interface and

a file based interface.

102. The distributed server as recited in claim 101, wherein said external
interface mechanism communicates to a canonical mapper, said canonical mapper building
a map which specifies the required translation to perform a conversion from an input format

to an output format.

103. The distributed server as recited in claim 101, wherein said standards-
based interface application programming interface requests are utilized to interact with said
distributed server, said standards-based application programming interface requests
comprising synchronous and asynchronous requests,

wherein said synchronous requests return request outputs directly to arequestor
when the request is made, and wherein said asynchronous requests return the status of the
request start-up from said application subsystem to the requestor and, at a later time, provide

an asynchronous notification to the requestor with the request outputs.

104. The distributed server as recited in claim 63, further comprising at least
one communications server to communicate said information over at least one
communications network, and wherein said distributed server is adapted to receive said

information via dissimilar communications networks.

105. A serverresiding within amulti-layered distributed software architecture,
said server comprising:

a data repository to store data received by said server;

at least one external interface to communicate with systems external of said

server,

WO 99/13426 PCT/US98/19034

-116 -

aservices subsystem comprising distributed services, said distributed services
running on application servers within said distributed architecture;
middleware software, said middleware software being provided to facilitate
scalability, transaction processing, and mapping of objects to said data repository; and
5 application frameworks, said application frameworks facilitating access to said
data repository and the creation of processes compliant with said middleware software,
wherein server-based procedures are managed in accordance with

predetermined activities.

106. The server as recited in claim 105, wherein said application servers are
10 simultaneously executed on multiple physical devices to spread client loads across said

multiple physical devices.

107. The server asrecited in claim 105, wherein said server accesses said data

repository via transactions and transaction processing.

108. The server as recited in claim 107, wherein said transactions are isolated
15 from one another to prevent other transactions from accessing data that a particular transaction
is using until the particular transaction is complete, and wherein arecoverable queuing system

is provided to queue transactional work to be completed at a later time.

109. The server as recited in claim 105, said application frameworks

comprising a data access object framework and a distributed services framework.

20 110. The server as recited in claim 109, wherein said distributed services
framework hides the detailed implementation of said data repository from an application by
providing distributed object proxies, and wherein said data repository is not directly accessed

by external applications.

111. The server as recited in claim 109, wherein said data access object
25 framework provides proxies, manager servers, and back-end implementation servers to isolate

the relationships of said data within said data repository in order to provide access to said data.

10

15

20

WO 99/13426 PCT/US98/19034

-117 -

112. The server as recited in claim 105, said services subsystem comprising
an activity management subsystem, wherein said predetermined activities comprise activity
plans to be performed by said server which isolate said predetermined activities from
application code that comprises said services subsystem to provide for dissimilar activities to
be performed without requiring substantial modification of said application code,

wherein said activity plans control the control the flow of work within said

server, wherein said activity management subsystem invokes and manages said activity plans.

113. The server as recited in claim 112, wherein said activity plans comprise
at least one task, and wherein a task is a discrete unit of work in said activity plan that is

controlled by a single server.

114. The server as recited in claim 105, said services subsystem comprising
amapping subsystem which provides services for customization of file formats for exporting

data from and importing data to said server.

115. The server as recited in claim 114, wherein said mapping subsystem
comprises a canonical mapper, said canonical mapper comprising an input map, a canon, and

an output map to map information from an input file format to an output file format.

116. The server as recited in claim 115, wherein said input and output maps
are used to map information across sub-domains, wherein there are at least two sub-domains

under a same root domain.

117. The server as recited in claim 105, wherein said services subsystem
further comprises a supplier subsystem, said supplier subsystem adapted to communicate with
a supplier in accordance with a format of said supplier, and wherein said supplier subsystem
encapsulates differences in formats so that clients of the interface need not know what type

of supplier with which they are interacting.

WO 99/13426 PCT/US98/19034

-118 -

118. The server asrecited in claim 117, wherein outgoing requests to suppliers
are accomplished through activity plans that control the flow of work within said server, and

wherein services triggered from a supplier will begin activity plans to accomplish tasks.

119. The server as recited in claim 105, wherein said services subsystem
5 comprises an export subsystem that exports data to external application systems by mapping

and formatting data from said services subsystems.

120. The server as recited in claim 119, wherein said export subsystem
comprises a validation, editing, and estimation manager, wherein said validation, editing,
estimation manager performs validation, editing, and estimation of data to be exported has

10 characteristics desired by a requestor of said output data.

121. The server as recited in claim 120, wherein said validation, editing,

estimation manager utilizes activity plans to control the flow of work within said server.

122. The server as recited in claim 105, wherein said server comprises an

automated meter reading server.

15 123. In a computer system, a canonical mapper to translate an input file from
an input domain to an output domain, said canonical mapper comprising:

a canons utility which builds a canon, said canon being a tree relating all data
attributes within a domain of information, and said domain being a collection of data that has
a same data format; '

20 a maps utility which creates input and output maps that specify the translation
from said input domain to said output domain, said input map being a data structure that
describes a format of said input domain, and said output map being a data structure that
describes a format of said output domain; and

atranslator utility which performs the translation of said input file to an output
25 file in accordance with said canon and aid input and output maps,

wherein said input domain and said output domain have differing formats.

WO 99/13426 PCT/US98/19034

-119 -

124. The canonical mapper as recited in claim 123 wherein said canonical
mapper converts files over at least two mapped subdomains, said at least two mapped

subdomains having the same root domain.

125. The canonical mapper as recited in claim 123, wherein said input map
5 and said output map are derivation trees, and said canonical mapper utilizes said input map

and said output map to build a scanner/parser for said input file domain.

126. The canonical mapper as recited in claim 125, wherein said canonical

mapper traverses said input map to parse data from said input file into a canonical list.

127. The canonical mapper as recited in claim 126, wherein said canonical
10 mapper maps from said canonical list to said output domain to generate said output file by
traversing said output map and re-interpreting a corresponding element in said canonical list

such that said corresponding element conforms to said output domain.

128. The canonical mapper as recited in claim 123, wherein said canon
comprises an abstract template that describes a structure of said domain of information, said
15 canon being structured as a tree comprising canonical elements that are used to interpret data

contained within said input file.

129. The canonical mapper as recited in claim 128, wherein each canonical
element is an abstraction, and canonical elements nested below higher level canonical
clements is subsequently defined in terms of less abstract elements until resolving to a

20 concrete element.

130. The canonical mapper as recited in claim 129, wherein relationships exist

when said domain contains data that is dependent upon other data in said domain.

131. The canonical mapper as recited in claim 128, wherein said canonical

elements are assigned attributes that define qualities of said canonical elements.

10

15

20

25

WO 99/13426 PCT/US98/19034

-120 -

132. The canonical mapper as recited in claim 128, wherein said input map
and said output map are created in accordance with said canon, and wherein said input map

and said output map describe the intended output in terms of said canonical elements.

133. The canonical mapper as recited in claim 132, wherein said input map
defines a function of each component of said input file in terms of said canon, and said output

map defines a function of each component of said output file in terms of said canon.

134. The canonical mapper as recited in claim 133, wherein said input and
output maps further comprise attributes that define said canonical elements, tokens that

represent values, and actions that define the format said canonical elements.

135. The canonical mapper as recited in claim 134, wherein said attributes
comprise element types and modifiers,

wherein said element types include group elements that are canonical elements
that have nested canonical elements and result elements contain a specific value, and

wherein said modifiers are associated with said group elements and are

conditional statements about said group element.

136. The canonical mapper as recited in claim 135, wherein said conditional

statements comprise optional, repeating, group results, and mandatory.

137. The canonical mapper as recited in claim 135, wherein said tokens are

defined for said result elements and represent said specific value based on said input file.

138. The canonical mapper as recited in claim 123, further comprising an
interactive translator utility to test the actual translation of said input file to be mapped for the
translation process, said test being performed in accordance with said canon, said input map,

said output map, and said input file.

139. The canonical mapper as recited in claim 123, wherein said translator

utility runs in a headless mode.

WO 99/13426 PCT/US98/19034

-121 -

140. A method of mapping an input file having an input domain to an output
file having an output domain using a canonical mapper, said canonical mapper comprising a
canons utility, a maps utility and a translator utility, wherein a domain is a collection of data
having a same format, said method comprising:

5 creating a canon using said canons utility, said canon comprising canonical

elements;

creating input and output maps using said maps utility in accordance with said
canon to perform the conversion of said input file to said output file; and

mapping the information from said input map to said output map to create said

10 output file using said translator utility.

141. The method as recited in claim 140, wherein said creating a canon
comprises:
defining said canonical elements such that said canonical elements have a
hierarchical structure, said hierarchical structure having a root and children nested under said
15 root;
defining children of said root, said children defining specific information about
said root; and

defining relationships of said canonical elements.

142. The method as recited in claim 140, wherein said creating input and
20 output maps comprises: }

selecting each component of said input file and defining its function in terms

of said canon;

defining attributes about said canonical elements;

defining tokens, said tokens specifying a format of the results of mapping said
25 input file using said input and output maps; and

defining actions to structure the appearance of portions of said input file or said

output file.

143. The method as recited in claim 142, wherein said defining attributes

about said canonical elements comprises:

10

15

20

25

WO 99/13426 PCT/US98/19034

-122 -

defining modifiers for said canonical elements, said modifiers determining if
a value of a particular canonical element is required, if said value appears more than once, if
said canonical element includes a series of said values, or if said canonical element is
required; and

defining identifiers, said identifiers being constant values within said input file.

144. The method as recited in claim 140, wherein said mapping the
information from said input map to said output map to create said output file further comprises

testing the conversion.

145. In a server residing within a multi-layered distributed software
architecture that receives and processes data, said server comprising a data repository to store
said data, at least one external interface to communicate with systems external of said server,
a services subsystem comprising distributed services, said distributed services running on
application servers within said distributed architecture, middleware software to facilitate
scalability, transaction processing, and mapping of objects to said data repository, and
application frameworks to facilitate access to said data repository and the creation of processes
compliant with said middleware software, a canonical mapper server comprising:

a canons utility which builds a canon, said canon being a tree relating all data
attributes within a domain of information, and said domain being a collection of data that has
a same data format;

amaps utility which creates input and output maps that specify the translation
from said input domain to said output domain, said input map being a data structure that
describes a format of said input domain, and said output map being a data structure that
describes a format of said output domain; and

a translator utility to perform the translation of said input file to an output file,

wherein said input domain and said output domain have differing formats.

146. The server as recited in claim 145, wherein said canonical mapper server
resides ina mapping subsystem which provides for customization of file formats for exporting

data from and importing data to said server.

10

15

20

25

WO 99/13426 PCT/US98/19034

-123 -

147. The server as recited in claim 146, further comprising a mapping
interface server that interfaces with said canonical mapper, wherein said mapping interface

server provides middleware service requests from said services subsystems.

148. The server as recited in claim 147, wherein said mapping interface server
interfaces with the canonical mapper server using a socket connection, and wherein said
mapping interface server provides a service that allows a service in said services subsystem

to specify said input file, said input map, said output file, and said output map.

149. The server as recited in claim 145, wherein said input map and said

output map are created in accordance with said canon.

150. A distributed server residing within a multi-layered software architecture,
said distributed server comprising:

aservices subsystem comprising distributed services, said distributed services
running on application servers within said distributed architecture;

middleware software, said middleware software being provided to facilitate
scalability and transaction processing; and

application frameworks, said application frameworks facilitating creation of
processes compliant with said middleware software,

wherein said services subsystem is implemented as a cooperating set of
medium to low-level services that are grouped and serialized to perform predetermined
functions, and

wherein said predetermined functions are operations to be performed by said
distributed server, and are extracted into activity plans that control the flow of work within
said distributed server, and

wherein said activity plans isolate said predetermined functions from
application code that comprises said software architecture in order to provide for the
capability of said server to perform diverse functions may be without requiring substantial

modification of said application code.

10

15

20

25

WO 99/13426 PCT/US98/19034

-124 -

151. The distributed server as recited in claim 150, said services subsystem
comprising an activity plan management subsystem, wherein said activity management

subsystem invokes and manages said activity plans.

152. The distributed server as recited in claim 151, wherein said activity
management subsystem instantiates said activity plan, negotiates responses and events for

activity plans, and monitors the current status of all activity plans in progress.

153. The distributed server as recited in claim 152, said activity plans
comprising at least one task, wherein a task is a discrete unit of work in an activity plan that

is controlled by a single server in said distributed server.

154. The distributed server as recited in claim 153, wherein said tasks invoke
a particular service within said services subsystem to process information, wherein said
activity plan is a decision tree of said tasks defining which tasks are dependent upon others,

and contains contextual information carried for the flow of work and available to each task.

155. The distributed server as recited in claim 154, wherein said activity plan
controls the execution within said distributed server via a directed graph which encapsulates

said diverse functions from said application code.

156. The distributed server asrecited in claim 155, wherein said tasks perform
at least one of determining which tasks can be run in parallel or run serially, managing a data
exchange object to exchange information between tasks, managing task states that track which
tasks are in progress, determining which task to perform next based on a state of said activity
plan and a rule-set of said directed graph, task logging to log results of tasks as they are
completed, precondition processing which determines if said task can execute based on the
availability of required inputs, and failover processors that are a list of operations to perform

in the case of failure based on return conditions from executing an activity.

157. The distributed server asrecited in claim 156, wherein said data exchange

object comprises predefined slots that are used to communicate information among the

10

15

20

25

WO 99/13426 PCT/US98/19034

-125 -

various tasks, wherein each task retrieves inputs from predetermined slots, and places outputs

into other slots in said data exchange object.

158. The distributed server as recited in claim 150, wherein said activity plans
are scripted outside an environment of said application code and are adapted to be modified

to tailor said distributed server for a particular set of end-user requirements.

159. The distributed server as recited in claim 153, said activity management
subsystem comprising:

an activity plan builder which is an interface to construct an ordered collection
of tasks and initializes a data exchange object to share information;

a dispatcher panel which instantiates activity plans and routes responses from
servers within said distributed server to an appropriate activity plan where tasks within an
activity plan and sends queued messages to other servers within said distributed server;

a dispatcher brain which runs said activity plan and handles responses from
other servers sent to activate said activity plan;

a dispatcher storage manager which controls access to said activity plans; and

an activity plan monitor which displays the state of any activity plan.

160. The distributed server as recited in claim 159, said activity plan builder

- comprising a developer tool having a graphical user interface, a controller, and domain objects

capable of being stored persistently and used by said dispatcher,
wherein said activity plan builder provides a mechanism to construct, store and

edit tasks in a dictionary for insertion into said activity plans.

161. The distributed server as recited in claim 159, wherein said dispatcher
panel instantiates said activity plan and initiates processing within said distributed server, and
wherein said dispatcher panel has an application programming interface that is used by

requestors to begin said activity plans and to receive results of completed activity plans.

10

15

20

25

WO 99/13426 PCT/US98/19034

-126 -

162. The distributed server as recited in claim 159, wherein said activity plans
receive priority in activation based on dynamically set priorities, and wherein said activity
plans are passivated when dependencies prohibit a next task to run, and can be re-activated

by the said dispatcher brain when a dependent task is complete.

163. The distributed server as recited in claim 159, wherein said dispatcher
storage manager controls access to said activity plans, and wherein said dispatcher storage
manager cooperates with said dispatcher brain, and said activity plan monitor to prevent

collisions while accessing said activity plans.

164. The distributed server as recited in claim 150, further comprising at least

one external interface to communicate with systems external of said distributed server.

165. The distributed server as recited in claim 164, said services subsystem
comprising a supplier subsystem that is adapted to communicate with a supplier via said at
least one external interface to a supplier, wherein outgoing requests to suppliers are
accomplished through said activity plans, and wherein services triggered from a supplier will

begin activity plans to accomplish tasks.

166. The distributed server as recited in claim 165, wherein said at least one
external interfaces communicates in accordance with a format of said supplier, and wherein
said supplier subsystem encapsulates differences in communication formats so that clients of
said external interface within said distributed server need not know what type of supplier with

which they are communicating.

167. The distributed server as recited in claim 164, said services subsystem
comprising an export subsystem to export data to external application systems by mapping
and formatting data from said services subsystems, wherein data is exported to external

application systems through said activity plans.

168. The distributed server as recited in claim 167, wherein said export

subsystem comprises a validation system.

WO 99/13426 PCT/US98/19034

-127 -

169. The distributed server as recited in claim 167, wherein said validation
system performs validation and editing of data to be exported such that said output data has

characteristics desired by a requestor of said output data.

170. The distributed server as recited in claim 150, said services subsystem
5 comprising a scheduler subsystem, which manages the building and execution of schedules
within said distributed server, wherein said schedules are used to control the time-based

execution and activation of activity plans within said distributed server.

171. The distributed server as recited in claim 170, wherein said schedules

control the delivery and receipt of data from suppliers external of said distributed server.

10 172. The distributed server as recited in claim 170, said services subsystem
comprising an activity plan management subsystem, wherein said activity management
subsystem invokes and manages said activity plans, and

wherein said activity management subsystem instantiates said activity plan,
negotiates responses and events for activity plans, and monitors the current status of all

15 activity plans in progress.

173. The distributed server as recited in claim 172, said activity plans
comprising at least one task, wherein a task is a discrete unit of work in an activity plan that

is controlled by a single server in said distributed server.

174. The distributed server as recited in claim 173, wherein said tasks invoke
20 aservice within said services subsystem to process information, wherein said activity plan is
a decision tree of said tasks defining which tasks are dependent upon others, and contains

contextual information carried for the flow of work and available to each task.

175. The distributed server as recited in claim 174, wherein said activity plan
controls the execution within said distributed server via a directed graph which encapsulates

25 said diverse functions from said application code.

10

15

20

25

WO 99/13426 PCT/US98/19034

-128 -

176. In a computer system comprising a multi-layered distributed software
architecture that receives and processes data, an activity management server comprising:

an activity plan builder which is an interface to construct an ordered collection
of tasks and initializes a data exchange object to share information among said tasks;

a dispatcher panel which instantiates activity plans and routes responses from
servers within said computer system to an appropriate activity plan where tasks within an
activity plan and sends queued messages to other servers within said computer system;

a dispatcher brain which runs said activity plans and handles responses from
other servers sent to activate said activity plans;

a dispatcher storage manager which controls access to activity plans; and

an activity plan monitor which displays the state of any activity plan,

wherein said predetermined functions to be performed by said distributed
server are extracted into activity plans that control the flow of work within said computer
system,

wherein said activity plans isolate said predetermined functions from
application code that comprises said software architecture in order to provide for the
capability of said computer system to perform diverse functions may be without requiring
substantial modification of said application code, and

wherein a task is a discrete unit of work in an activity plan that is controlled

by a single server in said computer system.

177. The computer system as recited in claim 176, said activity plan builder
comprising a developer tool having a graphical user interface, a controller, and domain objects
capable of being stored persistently and used by said dispatcher,

wherein said activity plan builder provides a mechanism to construct, store and

edit tasks in a dictionary for insertion into said activity plans.

178. The computer system as recited in claim 176, wherein said dispatcher
panel instantiates said activity plan and initiates processing within said computer system, and
wherein said dispatcher panel has an application programming interface that is used by

requestors to begin said activity plans and to receive results of finished activity plans.

10

15

20

25

WO 99/13426 PCT/US98/19034

-129 -

179. The computer system as recited in claim 176, wherein said activity plans
receive priority in activation based on dynamically set priorities, and wherein said activity
plans are passivated when dependencies prohibit a next task to run, and can be re-activated

by the said dispatcher brain when a dependent task is complete.

180. The computer system as recited in claim 176, wherein said dispatcher
storage manager controls access to said activity plans, and wherein said dispatcher storage
manager cooperates with said dispatcher brain, and said activity plan monitor to prevent

collisions while accessing said activity plans.

181. Inadistributed server residing within a multi-layered distributed software
architecture that receives and processes data, said distributed server comprising a data
repository to store said data, at least one external interface to communicate with systems
external of said distributed server, a services subsystem comprising distributed services, said
distributed services running on application servers within said distributed architecture,
middleware software to facilitate scalability, transaction processing, and mapping of objects
to said data repository, and application frameworks to facilitate access to said data repository
and the creation of processes compliant with said middleware software, an activity
management server comprising:

an activity plan builder which is an interface to construct an ordered collection
of tasks and initializes a data exchange object to share information;

a dispatcher panel which instantiates activity plans and routes responses from
servers within said distributed server to an appropriate activity plan where tasks within an
activity plan and sends queued messages to other servers within said distributed server;

a dispatcher brain which runs said activity plans and handles responses from
other servers sent to active said activity plan;

a dispatcher storage manager which controls access to activity plans; and

an activity plan monitor which displays the state of any activity plan,

wherein said predetermined functions to be performed by said distributed
server are extracted into activity plans that control the flow of work within said computer

system,

10

15

20

25

WO 99/13426 PCT/US98/19034

-130 -

wherein said activity plans isolate said predetermined functions from
application code that comprises said software architecture in order to provide for the
capability of said computer system to perform diverse functions may be without requiring
substantial modification of said application code, and

wherein a task is a discrete unit of work in an activity plan that is controlled

by a single server in said computer system.

182. The distributed server as recited in claim 181, said services subsystem
comprising a scheduler subsystem, which manages the building and execution of schedules
within said distributed server, wherein said schedules are used to control the time-based

execution and activation of activity plans within said distributed server.

183. The distributed server as recited in claim 182, wherein said schedules

control the delivery and receipt of data from suppliers external of said distributed server.

184. The distributed server as recited in claim 181, further comprising at least

one external interface to communicate with systems external of said distributed server.

185. The distributed server as recited in claim 184, said services subsystem
comprising a supplier subsystem that is adapted to communicate with a supplier via said at
least one external interface to a supplier, wherein outgoing requests to suppliers are
accomplished through said activity plans, and wherein services triggered from a supplier will

begin activity plans to accomplish tasks.

186. The distributed server as recited in claim 185, wherein said at least one
external interfaces communicates in accordance with a format of said supplier, and wherein
said supplier subsystem encapsulates differences in communication formats so that clients of
said external interface within said distributed server need not know what type of supplier with

which they are communicating.

187. The distributed server as recited in claim 184, said services subsystem

comprising an export subsystem to export data to external application systems by mapping

10

15

20

25

WO 99/13426 PCT/US98/19034

-131 -

and formatting data from said services subsystems, wherein data is exported to external

application systems through said activity plans.

188. The distributed server as recited in claim 187, wherein said export

subsystem comprises a validation system.

189. The distributed server as recited in claim 187, wherein said validation
system performs validation and editing of data to be exported such that said output data has

characteristics desired by a requestor of said output data.

190. A client for use with a distributed server comprising a multi-layered
software architecture and external interface mechanisms that communicate information
between said client and said distributed server, said multi-layered software architecture
comprising middleware software to access services within said server, said client comprising:

a client user interface;

a middleware communications gateway to provide communication between
said client and said middleware; and

a gateway server to perform data conversion,

wherein said client user interface interacts with said external interface

mechanisms and provides access to said server to invoke services provided by said server.

191. The client as recited in claim 190, wherein standard application system
application programming interfaces provided by said external interface mechanisms are used

to initiate requests.

192. The client as recited in claim 191, wherein said client performs all
communication using the middleware communications gateway, wherein said middleware
communications gateway is provided to allow the client to make remote procedure calls into

said subsystems.

193. The client as recited in claim 192, wherein said gateway server is

provided as a translator between said client and said server.

10

15

20

25

WO 99/13426 PCT/US98/19034

-132 -

194. The client as recited in claim 190, further comprising a notification
server, wherein said notification server is provided as a queue that allows clients that cannot

handle incoming remote procedure calls to process asynchronous notifications.

195. The client asrecited in claim 194, wherein said notification server assigns
aunique client ID to each client and each client tags requests to said client with said client ID,

and wherein said client calls said notification server when requests are complete.

196. The client as recited in claim 190, wherein said client is developed in
Java to provide platform independence and the capability of remotely running as an applet

from standard Internet browsers.

197. Inadistributed server residing within a multi-layered distributed software
architecture that receives and processes data, said distributed server comprising a data
repository to store said data, at least one external interface to communicate with systems
external of said distributed server, a services subsystem comprising distributed services, said
distributed services running on application servers within said distributed architecture,
middleware software to facilitate scalability, transaction processing, and mapping of objects
to said data repository, and application frameworks to facilitate access to said data repository
and the creation of processes compliant with said middleware software, a client running in
cooperation with said distributed server comprising:

a client user interface;

a middleware communications gateway to provide communication between
said client and said middleware; and

a gateway server to perform data conversion,

wherein said client user interface interacts with said external interface

mechanisms and provides access to said server to invoke services provided by said server.

198. The client as recited in claim 197, wherein standard application system
application programming interfaces provided by said external interface mechanisms are used

to initiate requests.

10

15

20

25

WO 99/13426 PCT/US98/19034

-133 -

199. The client as recited in claim 198, wherein said client is implemented
performs all communication using the middleware communications gateway, wherein said
middleware communications gateway is provided to allow the client to make remote

procedure calls into said subsystems

200. The client as recited in claim 199, wherein said gateway server is

provided as a translator between said client and said server

201. The client as recited in claim 197, further comprising a notification
server, wherein said notification server is provided as a queue that allows clients that cannot

handle incoming remote procedure calls to process asynchronous notifications.

202. Theclient asrecited in claim 201, wherein said notification server assigns
aunique client ID to each client and each client tags requests to said client with said client ID,

and wherein said client calls said notification server when requests are complete.
203. The client as recited in claim 197, wherein said client is developed in
Java to provide platform independence and the capability of remotely running as an applet

from standard Internet browsers.

204. A client for use with a server having a multi-layered distributed software

“architecture, said multi-layered distributed software architecture comprising middleware to

provide data exchange between application services and an operating system of said server,
said client comprising:

a client user interface;

a middleware communications gateway to provide communication between
said client and said middleware; and

a gateway server to perform data conversion,

wherein said client user interface interacts with said external interface

mechanisms and provides access to said server to invoke services provided by said server.

PCT/US98/19034

WO 99/13426

1/46

SY3ISN 31vy04y0D
40 SY¥3IN0LSND yo4
SS333v IN3ND
J10N3Y

\

=53 /1INY3INI

Sy3Sn vivda
11v40dd090 ¥3HLO

SS300v c*:\\\

LINYIINI

d3A43S G3IM

NILSAS
ONI¥ILIN LINYIINI
/LANYIINI

4VIN1130/3INOH4IT3L 0%

00000,

_umc

Lo,

0 _wﬂmuumﬁgm.AMHHv
(=)

SWILSAS ONDINNYL
SHYOMLIN 44 F1VAI

?M
44 211and
INIOVd AVM-OML
NYY
SIqyv SNOILYOIMddY TVI4ISNANI ® TVIDYINNOD »
SHYOMLIN 1Y AA

e

L

SYIAY3S
"WNOJ

N

SYIAYIS
AYOMLIN

SS323v J1nand

08

ONIYILIN 404 3ISvEaviva TVNOILVIIY

SW3LSAS 19W xmo»ﬂw///
NOILVOIJILON 39VINO P
NOILVJITddVY vQ-

4002Qqd009J -
J¥003 Q3HIS -

301AY3S ¥INOLSND.
g Y- S3LVYe.
ONITIIE
SW3ILSAS SIN/SIDe

404 JIVHY3INI
AY4904d NOILYIITddV

Ad3IA0J3d y31SVSId
HLIM NOILdO LNVANNQ3Y

d3IAYIS YAV

SUBSTITUTE SHEET (RULE 26)

PCT/US98/19034

WO 99/13426

2/46

3LINS YOLINOW YNION3

S3JIA¥3S 3SvE 324
S/0 SI¥V10S

AYONIN WILSAS 891

SY0SS3I04d ZHW 06Z-2
¢ V1IN NNS

3LINS YOLINOW VNION3
S3IJIAY3S 3SvE 304
S/0 SINY10S
AYONIN WILSAS 891
SY0SSI0¥d ZHW 0GZ-¢
Z V1IN NNS

G AIvd d3SvE JYVMAYVH
JOVYOVLIS 318vVSn 8900¥
AVYYY XSIJ O3

ﬁ. =

| 1

|

JONILSISYId
‘31INS YOLINOW VYNION3
‘S43 ‘ALINIIS ‘SAD
‘ISvg 300 ‘710v¥0
S/0 SI¥V10S
AYONIN W3LSAS 992
SY0SSII0¥d ZHW 0SZ-+

43AY3S 3Svavivd 000¢3 NNS

ac¢'ol4 | 02914
82°9014 | VvZ'OIA

¢ Old

V¢ Ol

RECTIFIED SHEET (RULE 91)

PCT/US98/19034

WO 99/13426

S QIv4 ‘0005 INVI104d OVAWOD

3/46

d¢ Ol

0% IN
AVY 8N 9GC
'40SS3004d WNILN3d TVNna

1]

]

d3ddYN TVIINONYD

-

Sl

JONILSISYId
‘31INS YOLINON VNION3
‘S43 ‘ALI¥NJIS ‘S
‘ISvd 32Q ‘310V40
S/0 SI¥V10S
AJONIN W3LSAS 89¢
SY0SSII08d ZHW 0SZ-¥
¥IAYIS ISVEVLVA 000€3 NNS

SIAIYA 110 &
AJONIN WILSAS 8W8CI
ASId 89 9°C1

AVdS | vdln
|

W3LSAS dNXJvE 110 11V SVIIN3A

RECTIFIED SHEET (RULE 91)

PCT/US98/19034

WO 99/13426

4/46

¢ OH

S avy G avy
31INS JOLINOW VNION3I 3LINS ¥OLINOW VNION3
ANIINNY INJIVY9 INILNNY IN3IQVH9

‘IN31D S4a 390 ‘IN3MD S34d 320
31040 310v40
AI10d NI12d
05259y 0SZS0Y 3 NOILNT0S G3SY¥3dSIa
07 IN 07 IN ‘ ATIVOIHdYY9039
¥IAYIS WHOD YIAYIS WWOD
_ < JONILSISYd
‘31INS YOLINOW VNION3
‘S43 ‘ALI¥ND3S
| S0 ‘ISva 320 ‘319VY0
S/0 SIYVI0S
ale AJONIN WILSAS 892

S40SS3I304d ZHWN 0SZ-¥
dJAY3S 3Svaviva 000¢3 NNS
A

Y,

AV13Y

»\ 1113413
431n0Y JAVY

[o[logco00)]
O

PCT/US98/19034

WO 99/13426

5/46

dd OH

&

IN3ITO 1HON3d
G6 SMOANIM
d01IXS3a ¥3sn

SIpIY

dimol
olavy

31INS YOLINOW VNIONI “INIINNY
IN3IQVY¥9 ‘INIITD S4@ 320 ‘8@ 319VH0
NI1dd ‘05ZSoY

140S 31vO 4¥ HOILIAN
—08 ayvd GZ x 0y IN
AVY 8N 9SZ “Y0SSIT0¥d WNILNId Tvnd

G QIV¥ ‘0005 INVITOYd DVANOD
__ ¥3IAYIS NOILYIINNWAOD
HOLIMS SIQ¥Y il

oe— il

RECTIFIED SHEET (RULE 91

PCT/US98/19034

WO 99/13426

.n
¢ O
811 SWILSAS INILVYIO

0zl
AYOLISOJTY

911 v

SKEQY 31030 1
ﬁLL/ ANV
Vi
" saiyvaen 4y ol oNIVOT
JAYMIN90Y 300 1000104d VX - N vIVO
601
19310
@ @ 201 JON3LSISYd

o +01 YNION | ONINIH

< AHOMINVYS 1T AJOMINYVY 4 @] \Q_Qﬁ_ﬁm
\© SIIAY3S GILNAIILSI] 01 193r80
SS300¥ 3SVavIva Ta

1T 001 3S¥avIv(
SWLSASENS i INIOVIS

FYN1ONYLSYAINI 1nd1no

3
. NOILYOI1ddV
S1 § - rovl YNV 9TI el
Ly g 23V WONONYD T (ygyon 69) | (ss300v 05) |
L 1) JOVAUIINI Q3SVE JU4 | SIOVAYINI WNINA | SV ISvaviva
62! I
SWILSAS NOILYOINNWAOD % NOILYOIlddY TVNY3LX3 05

SUBSTITUTE SHEET (RULE 26)

PCT/US98/19034

WO 99/13426

¥ Ol

- = S .w._M‘ SIovIIN NI (3
_ sy v KILSAS-ENS ¥NLONYLSYHINI [
VNYIIN . v —
z@ m%_#m_km-- N 9NI091n0)| ¥3riddng H233NddNS VIVD L3N] L of WILSAS-8NS NOILYONddY [—
QVONVIS || 431ddng “agzzm_ 7 A
[on]y F- - - 4SS ANV A8 03SN 55 30wd1/901 _ N3OTT
N —— 1508 (NIv¥g-0) | 901
| I SYSVL dv Wo¥d [00})
INHOYY | _
: _ 4NddnS /|, S0Y (NIvyg-q) !
9¥1 L 1 SYSVL dY Wod4 1081
m%% (ody)ss W ol (50 1 2 —2! SS INIddVA _
ALV 81 SS ¥3NddnS] 005175 dH
% 4N
Dil (S31X0¥d VIA)
19V401S | _ | NIvyg SS ANV WO¥4 Josi
NV1d 430108
43HILYd !
ALINLOY |
(0%) 26 uoaw_u_m _
ng 861 SS ¥TINAIHIS 0l
o s YOV _ | “
B dOLINOR A y3HO1vd A S »zt ! 319v40
—_— ~Sla _
A 05 L
WJERN 1)) %] 051 SS 133r80
‘SI2‘INTIE) / 1SS 'INON ALINLOY SS 'IN9K NYIINOD $S300V ISVav1Ya
) %“Ema A T T (24¥)sS : mo& |||||||| =
1HVIIddY ANV NOY4 _ 279 NIv¥8 ~Q) SxSvL]
IRRITEIE) il YINIS dv HOY3 ! _
sy |1\t /| ANV 01/HO¥ SHILSAS | | =
SWILSAS NOILYONMddY L _ >~—__ 1 . SSsna oL _ TN N 3
QUYONVIS S JOVAMIINT ALDILN L ssmnv | g 751SS THOUXS i

SUBSTITUTE SHEET (RULE 26)

PCT/US98/19034

WO 99/13426

8/46

I(SINIVYLISNOD ¥3HIO

~

SY3I1IN NOY4
ViV@ 1237700 0L N3HM

3INAIHIS
NOILD3T10) &

pe

j

4NV 01 d31NddNS WOy
VIVQ Y3IAIN3IQ 0L NIHM

31NA3HIS
Ad3AN3a L

le.q

0€
(4A3¥3S WWOD) ¥INddNS

SINVYISNOYY| FMm—m™ ™ ™ ™ —

MYOMLIN ﬁ J
! (34n1ny) |
| ALTVAD ¥3¥ood B8 ||
“ VIVQ 43HLO “
| £0313S 0L V1Va LVHM _
_ S3S0ddNd ¥3HLO |
| ININO4NOD I ® AGNLS ONITNE ¥O4 |
_ NOI193770D _ “ SONIQVIY LNOTIVD OL MOH “
_ _]
_ ¢o~\mw _ “ mW el “
_ |

8s1
_ . 4 ALFILN) "
_ _ “ OL YAV WO¥4 J18NVA | |
VIVG INVA OL NIHM
e | , _
| |unv oL ¥anddns wous| | | Jnasios |
: VIVQ ¥3AN30 0L NIHM _ N “
|
3INAIHIS

| I3 | (oNmug ¥os |\ |
“ N “ _ ALTILN OL ¥AY WOY4 “
LS L VYO ¥3AM3Q OL N3HM | |
“ n “ TINAIHIS \¥ “
_ | "¢m_mw//, INITIIE “
_ _
A A N I A3NddNS Atn

SUBSTITUTE SHEET (RULE 26)

WO 99/13426 PCT/US98/19034

9/46

INTERFACE PROVIDED
INPUT TO AMR SUBSYSTEMS

_ A FILE -‘////:;;7
| MAPPER

INTERFACE
SERVER
170

CANONICAL
MAPPER

140a

~
S DCE/ENCINA
SMALLTALK ™| QUTPUT SERVER
IMAGE FILE
168

FIG. 6

APPSERVER
(INITIALIZATION)

172a

CONFIGURATION
FILE

172b

LOG/TRACE
142

SERVER ADMIN_S
(COMMUNICATES VARIABLES
CHANGES)
172¢

ASADMIN 150

SERVER ADMIN_C

FIG. 8

SUBSTITUTE SHEET (RULE 26)

WO 99/13426 PCT/US98/19034

10/46

INPUT

MAPS TEXT

CANONICAL
FORM

204 206

OUTPUT INTERACTIVE OUTPUT
MAP TRANSLATOR TEXT

HEADLESS
[TRANSLATOR

208

TEXT
FILE

FIG. 7

SUBSTITUTE SHEET (RULE 26)

PCT/US98/19034

WO 99/13426
11/46
JAVA JAVA JAVA 5
CLIENT ONE CLIENT TWO CLIENT THREE ~ 2
DELIGHT GATEWAY
92b
call apiRpc calls getClientid calls abort calls wait

\ \

/

\ CONFIG UTILITY SERVER (ENCINA) \

/

\ 92c
interfaces to handle api calls

GuiNotification interface

Icc:lls apiRpc with 1
'DCE Credentials-and will |
'explicﬁly state in the call E

''where to send the
lnohﬂcohon

------------------ - 'forwcrd abort,wait, and _[\
' geiClientid fo Notification]
| Svr (Security Needed) _j

NOTIFICATION SERVER (DCE ONLY)

Utility Agent interface| |client interface

92e

dceOnly client (APl test)

| Uyility Agent ===reportResults(---),

:When a workflow has completed E

144a

nCoIls rpc LN pe—eee
'dceOnIy CaHL-ﬁ
’for each api |

(Securiy Needed) P :
UTILITY INTERFACE /

FIG. 9

SUBSTITUTE SHEET (RULE 26)

PCT/US98/19034

WO 99/13426

12/46

Ol Old

INJA3 140438 % ¥31S193Y

P91 (4IIVNVW
N¥3IN0OD

_
I
_
_
|
l
_
[
I
|
_
I
!
I
_
_
_
[
I
_
I
I
!
I
I

—

_| |||||||||||||||||||||||| - = — - —
| A 704INOD) bl
I (1| 2000 o1 IN3D I
||| s YV
asve) _ Id 4103dS SINIIT 4IAY3S
300 350 GNV ldv HOV3 ¥04 ¥3A43S fu3ny3s “wNionaAIH IR _yniong sy 1ov
0I03dS ¥3Nddns| 431ddNS Jd¥ 390 sV 10V AT o 951
IN3D [pst T08INOD %004 13NVda _
F 2d¥ SOy) “ L ONINOOINI) ~— / __ _ ~—
8> I vl “ “
_
| ||
| |
I A YIOYNVA) I
ST | (] [43NddNS 01 ¥3AY3S Il
390 150 any UM 0 TR X
gddns d
u:_um_hwmwm&:m _ HOVI 01 INIITD egy1 I IN311D
ﬁ RERES | 2d¥ 320 SV 1V YIS YNIONI| 139051 T VNIONI SV 1OV
< | o8%1 ﬁ, 4IOVNVA ; o q9¢1 ;
9¢ “ - INIOO21NO \p 4311ddns | NIV¥8Q
o€ _ 7 I
(43A43S WWOD) “ 8v1 I 94|
43NddNS L FOVANIINI ¥311ddNS 1 THILSASENS MOTS NHOM
stywy 0 T T T T T T T

SUBSTITUTE SHEET (RULE 26)

PCT/US98/19034

WO 99/13426

13/46

B
(INd1NO ‘SNLVLS ‘IXIINOD) ISNOJSIY T SNONONHINASY :Z
(LX3LNOD ‘SNLVIS ‘SH¥ILINVYVD) 1SINOIY SNONOYHIONASY :1
YWY NILSAS "ddV
¥3IAYIS OdY IN3IMD 04y
] i
_ “
| I
_ "
_
(]
_ L]
| (INdLNO *SNLVLS ‘SYILINVYEVC) LSINDIY T SNONONHINAS: | “
! i
_ “
} '
YNV NILSAS "ddVv
d3AdIS OdY IN3ITD Ody

SUBSTITUTE SHEET (RULE 26)

PCT/US98/19034

WO 99/13426

14/46

dcl Ol

s 1A%
IN3ITO Jdd

(LNdNO*‘1X3LNOD) NOILVOI4ILON "SNONOYHINASY :1

WILSAS "ddVv
43A¥3S Odd

SUBSTITUTE SHEET (RULE 26)

PCT/US98/19034

WO 99/13426

15/46

¢l O

NOILONYLSIA
/NOILVI¥D AYOLDV4
SYIddViM INTITD

A
|
|

INIddYI QI
SAOHIIN NOILYAIVA Y1Va
SAOHLIN NOILYAINVYA A3
SNOILYY3dO 13S/139
SAOHLIN aNYIIT

INd.LNO YOLVIINID

'SS ININIOVNVYA
ALIALLDY A8 Q3Z1TLN ATINYAIN
"WILSAS 01 Q3QIAONd SIDIAY3S

(3IN3IYO NIVNOQ yWY

ST
A4010¥4708)
~ ~

/

AX0Y¥d 08
TR Y3LIN

(43A43S)
YIOVNVYIN

YALIW

\\SQ#Z_/V

> mehof \Om\

1dWI 08
4313N

(43A43S)
NOLLY.INAWT TdWI
NELELL

®0S1

SUBSTITUTE SHEET (RULE 26)

PCT/US98/19034

WO 99/13426

'SISNLVIS NYNLIY 1V HO3HOD

OL 3AVH 10N S30Q 30V4Y3INI ALIILN

‘IYO43YIHL "ININNOYY SNLVIS
INISN Jd¥ A8 WILSAS TYNYILXT
/iN9 0L GINYNIIY SNLVISSAs

NIVINOD ION QTNOHS
SYIAYIS NOILVINIWITJNI

'S3IX0dd

110N

<l (43AY3S)

"SINLVLS |

NINLIY TV IIHD OL 3AVH |/

LON S300 ¥3I9VYNVW‘IYOIIYIHL

"YIOVNYWN 0L NOILdIDX3 \

SNLVISSAS MOYHL SIIX0Yd
~

1an1ySsnynys
juawiaj3auany §m

NI dM Ol GaNynily
e SN1viSsAs N

A\
O (aanas) S
S UIDYNVIV ¥ALIW

-~

W01 (y3A438)

YIDVNVI 4LVH

\

ININNOYY
SNIVIS 9NISN
JdY¥ A8 NyN13Yy

SN1V1SsAs

YIOVNYW
0l NOILd32x3
SNLVLSSAs

MOYHL S3IX0dd
7

SUBSTITUTE SHEET (RULE 26)

PCT/US98/19034

WO 99/13426

17/46

Sl O

()Ativies | |

931ap ¢l

(8o0pu8jul) (dw
}oalgopainquiysig

()lqpaypauog

ovd
joalqopainquysiq

ssinquyy paJinbay
Uim jonjsuod gl

80D Jajul
k1000 40

(JHvies

10JoNnJ4su0y‘y

()lqpajpauo-g
()4Hviesg

(Ax0u1d)

yoalqopainquisiqg

9ouaJajas pupul| (()aypauyg

gdusiajal puiouy

odu :()aypau)y g

A1049040Q

40}0nJ4isuod- |

ASD| up|d AjlAlpoy
/ual|)

SUBSTITUTE SHEET (RULE 26)

WO 99/13426 PCT/US98/19034

120"_\\ 18/46
METER | 0..*| METER METER
ABILITY | 0..* 0..% Nl
— 1 _]1
[cAPABILITY
— +6§
\\ 0
\\\0%%
ACCOUNT | [AVAILABILITY %2
GROUP 0. *
K >—
] DATA
COLLECTION READING
COMPONENT| 1 ..
\V4 T \
METER 7 \
L~ GROUP \
0% COMPONENT
READING
TYPE
SCHEDULE| o
1 0..%
LOAD LOAD
A PROFILE PROFILE
COMPONENT READING
S FRESH()
SDCE#IE\{)ERY RECEIVING
ULE} [SCHEDULE | oo e pTioN CONSUMPTION
COMPONENT READING
1 55 IS FRESH()

FIG. 16

SUBSTITUTE SHEET (RULE 26)

PCT/US98/19034

WO 99/13426

19/46

L1 "Old

(tuawabouppsjny wouy)
ovasyeidwa)ng |

11— | lusuodwojpjop

++ "0~ | spgdnoigApyiqopoan

0 = buoj : yp0
swiljdjpp @ 8jpQUOIjDUIWLIB)

()mou:tawi My = awraiop : ajpganysya

Buo) : puajaw
Buo| : pidnosgisjaw

sJajapdnougiajaw b=

(s1a43y wouy)

ov@4ajapdnogiajap

0 = Buoj : y)0
aWwljajpp : ajpquUOlDUIWIB)

()mouzawnmy = awyejop : appganyssyy

buoy : pyusuodwor ojop
buoj : pidnosgiopwis

0va2Q@dnoi9)gaojiwig

xx 0-

dnougAyiqo|ioap

$3@dno19Ayjiqojioap

dnou9Ayiqojipap

dnouguiajaw

xx'0— | stsjopdnoigusjaw

PRIV aieion

| LnoJgapewl ||~ |-

dnoigiajew

0 = buoy : y30
(#9)40yd : snjoygdnoub
(#9)40yo : abojgdnoub

Buoj : pidnoigqns
(y9)4oyo : adAjdnoigisjpw
Buo| : pidnoigisjaw

sa|npayogdnoigiajaw

xx 0—

0 = buo) : yo0

awalop @ 8JpquUOIDUIWS}

()mouzawijmy = awnsjop : ajpQaAIds))a

Buo| : piajnpayos
Buoj : pidnoigisjsw

ovadnos9ajap

payosdigiajop

1= dnoigiajaw

Lo

11°0™ | junoooo

0 =

bl-

Buoj : V30

(¥9)4oyo : ssodund
(¥9)40y> : awopndnosgiojwis
Buoj : pidnosgiojwis

ovadnosg)qaojiuwig

“ .

0 = buo) : vy
bunpg, = (y9)soyo : ssodind
(¥9)40y> : swopjuNoIID

buo| : pyunosso

0vQjunodoy

sa|npayasdnotguaiawl [, 0—

3|Npayos | | | -

Buo| : @iyspjjuspuadap
buoj : guuaajsnpayos
buoj : giawi} sjnpayos

(1)40yo : sayoD
Buoj : qysbjajnpayos

0vQ Asbl 3|npayog

SUBSTITUTE SHEET (RULE 26)

PCT/US98/19034

WO 99/13426

V8l Ol

ag1914|081 914

881°014{v81 914

0 = buoj : vy

20/46

817014

Hoys : Apjigodoyjosjuosjes
buoj: piApjigodoyjojuos

170

Apjigodoyjosjuon

0vaAtiqodoyu)

0 = buoy : yyo

Hoys : ajuum

Hoys : podas

buo| : pjApigodogyuoyouwiiogul

170

0vQANigodo)oyuj

0 = buoy : y30

Buo| : |oaajuigns

Buoj : |pasajul

[v9}royo : wonop

Buo) : piuoyoasngop

buo| : pjadA)op

buo| : pyusuodwoyoyop

buoj : piApqodoa

Aylligodoyuoypbwiogut

Buo) : pjadAjsapiroaghppqodos

ovaAugodonyadA)

ajpjdwa Hiigoded
0v(@sio| 120 Apprgodoo Anpqodoo
0T ssdi nq
| |
| » 0 MA mcxo_ : “oo
fiiaod ¥9140Yd : 8dA} A}l|IqDdADI
) #irqodoo [¥9])40y0: Appqodod
«0 | Buo| : piAjjqodoo
sadf} Ajinqodoo

0vaAytiigodo)

SUBSTITUTE SHEET (RULE 26)

PCT/US98/19034

WO 99/13426

21/46

0 = buoj : y)0
[¥9]i0yo : saquinyjapopadh|jegwiwiod
[¥9]40y> : uoyduasagadhjjeguwwos
[¥9]1oyo : adAjjagiwon
Buo| : pjadAjagwiwos

ovgadA[jaswwon

0 = buoj : yg0
[¥9]ioyo : adAjiamsaguios
[¥9]1oyo : adhjsamsaguiwod
buo| : pjadAiaatagwiwod

d8l Ol

ovgadAjiaataswwo)

adAjjagwwod 10

10 CL TS PEYVEINTIIIL

. 0 = bBuoj : y90

¥9]10y) : uoyduosagadhpiajaw
[¥9)ioyo : saquinnsinpopadA isjaw
[¥9]10yo : Jaunpoynuowadhjsajew

0 = buoj : yyo

[#9}ioyo = pamojjyjnu
[¥9]ioyd ¢ ynpjaghpiadosd
i yburpyoghjsadosd

dA
3dA140s! [r9)ioyo adApajows maﬁm_:vozEEwQ
buo| : pradAjisjpw 170
ovQedAjisjap
sal4adoigadAy |0 | adAjusjpw

[¥9)10yo : adA|ojpghsadosd
(¥9]i0yo : awppApadosd
Buoy : pjadAjsepinoidhiqodoo | saadosgadiy

ovaApedosgadA) x

adA1apiroigAppqodos

!

adAj1apirosgApiqodos
_

L1

adA) sapirosgAiqodos

adApiapiroighpigodos

0 = buoj : yyo
[¥9]ioyo : adAjiapiroighpiiqodos

0 = buoj : y)0
[¥9]!oyo: Jainjo0jnUDYRINPOKWWOD

[79]40yd & JaquinyjapopadA)anpopwiwos
[¥9]uoyo : uoiyduasagadhsinpopywwod

[¥9)ioyo ¢ adAjsjnpopwwos
Buoj: pjadA|ajnpoywwod

ovQgadAjajnpopywiwior

adAjJapiroidApfigodoo
|

adA)aapiroagApiqodoo

0 = buoj : vy

[¥9]10yo : saquinyuoisian

awyajop : 8jpgasnalal

[¥9]104o : Jaquinyaspajas

[#9]10y> : uoyduiosagadAjwaishsyny
[¥9])ioyo : adAjwaisAyny

Buoj : pjadAjwaihsAsyny

OvQadAjwaisASyny

|

10 | adAjwaishsypy

[¥9]40yo : ssojpuapirosghyiqodos

Buoy : pjadAjsapiroaghpiqodos [} @piaocadApigodoo

ovqadAjaoigdoy

SUBSTITUTE SHEET (RULE 26)

PCT/US98/19034

WO 99/13426

22/46

D8l OH

Saiji|iqo

0 = buoj : y0
Buoj : Aypqodoa
buo) : papinosdAjigo

OvaApIqy
+ 01 sayngo

SUBSTITUTE SHEET (RULE 26)

PCT/US98/19034

WO 99/13426

dapinoidhyiqo

4apiroagAjiiiqo

13piosdAjiqo

by _ _

Japiroidhiqo

JapinoLgAjingo

()sauqodogyab

| sjusuodwiod

| [¥9]u0ya : ssojpuspircighppgo
buoj : puaptrosghpigo
Buo| : plajew

170
18jawi| QV(Q4348N 10 JansagwWwoD
SEYEY
0 = buoy = va0[,0 0V(Q/aniagwwo)
sjuauodwod 10 jaSWwwod

(w%s_zg& fapiosd 470

Ovadwo)ajayjonjiA

) 18nowsl

o e

2 0 = buoj : ¥

~ Buoj : pjadA|iapinosghpiqodos

& Buo| : ppapinoagAyigo

0 0v@4apiroIdAiiiqy
$13p1A01gANIIQD r— - =

IIIIIIIII] « "0 | saipadoigiapiaoid

0 = buoj : y3Q
y9}4oyo : anjppApadosd
¥9]40yo : awoNApadosd

Buoy : pjadAjiapirorgApigodoa
buoj : papimosgApgo

ovQaenippApadouy

* 0 [anjppdpadoud

[¥9]10yo : saquinNDLIBSE|INPOKLILIOD

0 = buoy : vy
?mfo;o : UOISIaAR|NPOKWWOD

[#9]10y> : uoyduosagsjnpopwwos
[¥9]4pyo : awyanpopwiwod
[¥9]ioya : adAjsnpopwiwios

buoj : pjoInpopywwos

Ova@s|inpopywwoy

WalASYWY | -0

0 = buoy : yy0

[967)40yd : 2saquoyp)ioisuiwalsASYNY

[¥9]40ya : awoNuoD|DsUILIBISASHY

[¥9]ioyo : adhjwaishsypy

Buoy : pjwaysAsypy
OVQW3ISASYNY

dsl Ol

OvQiaswwoy {1 - | sjnpopwiwod

Aligo

SUBSTITUTE SHEET (RULE 26)

PCT/US98/19034

WO 99/13426

24/46

Vol Ol

86179014 ~
Vel Old
617914
0 = buoy - y30
[¥9]40yo @ 9sagsnpjsuolpIUNWWOIajeW <0+
[¥9]ioyo : snjpjsuoyDIUNWWOY 8w T T
OV(SND}SWWo) 19}
0 = bBuo| : yo0
jul : anippuolDOUNIY
[¥9] : swbpNssLIDYUOWWOD
[¥9] : uoisispsiomwly oo [+
[#9Juoys : pjasomuwiy jwiwoo uoHDIUNWWO)IajaW J3j8W
[¥9]ioyo : ssauppywioo
buo) : plsjow 04
OV(SIDduiwo)ajap "

L1+ | AouabyAiopioinbaa

[¥9]4pys ! awopnAousbyAiojoinbal
buoj : pjhousbyhiojoinbal

0 = buoj : yy0
(z)4oyo : ayoys

ovQqiuabyhiojpinbay

¢]ioyo : auozawy

#9J4pys : piaxyoos

[¥9]ioyo - piaps

awijaipp : 3jpQguol}p||DjSulap

awlejop : 8ypQUOID||DSUI

[¥9]4oyo : uoisiapaiDMW {18 0W

[¥9]4oY> : pjaspmuujiajew

[¥9]1oyo : piomsspyiajew

[¥9]4oyo : saquinypliasIajBW

[¥9]4pyo : uoypa0ua}EW

pauiojusaul = [y9]ioyo : sbpjsisjow
pajosuuodsig= [$9]ipyo : snypjguoidaULO)IBjEW
AIDOIUNWIWOI-UON = [§9]IDyd @ SnjpjgUOLDIIUNWWIOYIBJW
[¥9]uoyo : adhjisjew

Buo| : ppisjaw

Ova4sien

]
[
[
!

()sbuippayssjapjeb
()Buippayiajapjab
()snipiSisjapies

()iejoparowsal

()4ajenppo

sjo8lp ssauisng Jabbubpiajep

RECTIFIED SHEET (RULE 91)

PCT/US98/19034

WO 99/13426

25/46

dol Ol

0 = buo) : yy0
[#9]40yo : uoyduosagebojgiajpw siajaw
[¥9]4pyo : abpjgiajaw 0v(abosiajew « 0+
0vQ3bojsiajep
0 = buoy : yyp
mvw ks (R T N TIN T T E TV T VETET x 0+
y9J4oys : snypjguoiposuuocgiajaw SN|DJSUU0)IBW Siojol

QvQ snhjojsuuo)ajap

0 = buoj : yoQ

[¥9]ioyo : abpjjopadirisgisjew
[¥9]ioyo : pajijosdiajow

jut : 10420 4buj|DISa|1}014pPOO]
| = jur : aendyinpaejow
[¥9]4oyo : juioginoaxo)prib
jul : saop|djpwioaqAbasus
JDO} : 10}JOD JI3LLIO JSUD.}
{0of} © P

{oof} - ¥

buoj : pihouabyhiojojnba.

RECTIFIED SHEET (RULE 9%)

PCT/US98/19034

WO 99/13426

0 = buo| : vyo0 0 = buo| : y)0
[¥9]4oys : uoydussagainsoawygpun | ||+ ajo|dwa)ap [¥9}ioyo = wopop
[v9}1oyo: aunspapjopiun [jiupajqoinsoaw L0 [oys : awi|ssauaalbio)
UN51300nSD3 j40ys : |pA1BjuUIgNS
ovanunaig A aojdwajop {doys : |pAsajul
« 0+ [s L1+ [¥9]4oyo : adAjusuodworojop
0 = B9l v30 buo| : piyusuodwoqpjop
jul : jauuby)lejaw 0vgajoidwalaq
Buoj : pyusuodworojop sioa+ m_c_arcm.w.hov
Buoj : pusjaw g7 +'0+| soquo)pba
Buoj : piosp 0 = buo] : yy0
0vQaouDIsUg $82UDISUIYQsp Buo| : pjiusuoduwioqpjop
S100 [« 0+ , buoy : prosp
80uDjsuldsSp+| |+ 0V(9quwo|oba
© oo 0 = Buo| : y)0 soquwo)|oba||« 0+
<] : 9JbquotjpujwIay
Ny ()mouz:awiimy = awyaiop : ajoganaajja LL+] 2ip1dwajosp
N ?mfcco asodind 0 = buoj : yyo
[¥9]ioya : ajoyhpn aW||3jDp : 8JpQUONDUIWIBY
m:mo_ : .E\:_E: S8ouDjsulasip LE+|()mouzawimy = awpajop : ajpqanjds))a
mcoﬂbo“_ vtw__‘wmrm x 0+ ajpjdwa|osip [¥9]ioyo : adhjosp
0v{eouoysuinsq buol : piasp
: ajojdw
+707 | Sosp ovasy __ 913Sd
!
(')+a1enuimAniigyodwon o jajoyaon|ons 310y
()ajoywou yiaapubissoap _
I+ arew)y ()aipyojaajopubisso (. |
()eioy ajelep
o\ ZJEIETT 13jpwW A vo*omm*cmt .
1abpuppajoy ON U_H_

SUBSTITUTE SHEET (RULE 26)

IC_Old

PCT/US98/19034

27/46

WO 99/13426

(Jpanuod - m:o_o m%&w_ow_w%% : Lt [1]i0yd cmMoww%n__mmau_%
0 = buoj : 90 jur - boyfighyonp | 0 SeIdwpSIfew :,_aﬁ : adAjo|dwos
[¥9)ioyo : :o_a_smésamcmz*oz:: 00 = oo} : buipoas awajop : dwpjsaw)jainiod
[¥9])10yd : ainspapopun | = poys : asusnbagpjogsjduwios sadwingrajow| 2wlielop : dwojsaw)Buipoe
0vQiuna|qoInsnay awljajop - an_mmmﬁm.c%oE 0t . buoj : ppop
TinegoInsosw [13 0] - piop Ov@sjdwossajap
s+ 0+ S94ojdwajop 0vojogajdwog sajdwogiajaw |+ "0+ xs"0+|sajdwos
ﬁo_u buoj : y90 +«'0+|0jpgajdwos +x 0+ | ojpgajdwos
¥340Y2 © Wonop
Hoys : awijssauanibio) boj 4Ayonb || + |1+ Jovgasodingaiduos
jHoys : |paJajuIgns - - e 0 = buoj : v
Joys : S I UOIISO4y! .
ol : il o o] | e st
: [¥9]s0yo @ Apuanss [1]40y2 : ssodingajdwis
buoj : pijusuodwiogojop [#9]10ya : [arathyonb
ovgaoidwa o 1+ jui : BojyyigAyjonb ovgesodingalduiog
ayojdwa|ap [I1+ajo/dwa)o
w0+ mBE_o“_V_com* P ovabolshyong ovgedApaidwog |1+
0 = buoj : yyo 0 = buo| : yy0
buoy : E_cmcoafouo*cn (821 }#oy2 : uoyduasagadAjsjdwos
o :o_m. p1osp 0 = buol m Y20 [1]ioys : adA|adwos
wojjoba :
o o] lhee ekl [e
** wyji106)yaan IR 120
| 14| ajpjdwajosp wyyrob ai
Yl40DJy33A ~ Buol -
0 = buo) : yyp " 0 = buop = ¥30
aulljgjop - aypquoljpuiwiial X buo o _mzc%__u_&ms
()wou : awnimy = swnajop ¢ ajoganiosyyo o 04 H Eﬁw:o.souc_%
D ad uo| : puajew
[¥9]i0ys : adAjosp Buol °
buoy : prosp —— 11+ $190 O] - PIop
ovaeIoIdua 05 OvQI3i3N Jopait 0t Qv(@adupjsuinq

SUBSTITUTE SHEET (RULE 26)

WO 99/13426

ScheduleManagement

28/46

PCT/US98/19034

Scheduler

deleteBillingSchedule
assignMeterToSchedule()
createAvailabilitySchedule()
deleteAvailabilitySchedule()
getSchedulesForRange()
removeMeterfromSchedule()
findSupplierSchedulef orAMRSchedule()
createSupllierSchedulef orAMRSchedule()
createLoadProfileSchedule()

creafeBiIlingScheduleé f

¢
I
|
|
|

4 planforRange
notifyMeterChan
createSupliierSc

ge()

heduleForAmrSchedule()

ScheduleBuilder

B R

planforRange()

le{ notifyMeterChange()

buildWorkPlan()

createDeliveryScheduleforBillingSchedule()

__ L

deleteLoadProfileSchedul /
T 1'8 chedule() / ScheduleTimePDAD N
\
' J |scheduleTimelD : long \
ScheduleView - timeZone : int \\J
P scheduleTimeType : char([64] |
schedulesForDcte% OCA : long = 0
schedulesForTime
trueforDate
nggdile;Feronge() \ frueForRong(eg) ,
acesc g ;Z(I) nexiTimeAfter()
removeSchedule() NextTimeAtOrAfter() |
nexiTimeWithinExclusive() !
scheduleTime | nexiTimeWithininclusive()™ theSchedules
A secondsTilNexiTime()
startDrivenTime M latestStariTimeFor()
StartDrivenTimeDAQ earliestStariTimeFor() ,
0.1 earfiestDataTimeFor() |
scheduleTimelD : long poseTxnngfDoy() l
startTime : datefime isRepeating() ;
OCA : long = 0 getTolerance() when !
: getType() scheduleTask |
scheduleTime | typelsEqual() "
periodisCompatible()
scheduleTime
eriodSchedule 0.1
— 0. lstSchedulel™ | isiSchedulePDAO
PeriodSchedulePDAO
! |scheduleTimelD : long
scheduleTimelD : long mySchedule | dueBy : datetime
dueBy : datetime tolerance : long
folerance : long 0CA : long = 0
fype : char[64] datelist | 0..*
lenght : int SpecificTimePDAO
initialTime : datetime pecitictime FIG.22
OCA ; long = (2] scheduleTimelD : long FIG.22A | FIG.22B
lengthinSeconds theTime : datetime
increment() OCA : fong = 0 FIG. 22A

SUBSTITUTE SHEET (RULE 26)

PCT/US98/19034

WO 99/13426
29/46
WorkPlanAgent WorkPlanPDAQ
executePlan() workPlan| workPlanid : long
executeNextJob() stcrﬂime : datetime
| suspendPlan()Agent 0.x [endTime : datetime
v " curdob : long
L / pendingAlamid : long
~ ==~/ workPlans L2 Joca fong = 0
]
workPlan
getNextJob() kPl
; addJob() roran
removeJob() jobList
getFirstJob()
ScheduleTaskPDA gefCurrentJob()
: scheduIeTaskl[D]: long
active : char(! .
| scheduleTimelD : long dependsOn joblist} 0.
}\ priorTaskiD : long JobPDAQ
activationTime : datetime . _
\\ deactivationTime : datetime J;t;ll?es}slf%nr? . datetime
| _ |scheduleType ; char[1] latestStart : datetime
| | utilityld : long 0. deadline : datetime
utilityRole : char[64] workflowld : long
OCA : long = 0 executionStatus : long
subsumes() workPlanid : long
conflictsWith() 0.} scheduleEventD : long

| executeSchedule() OCA : long = 0

C0.* |nexiTimeAfter() subsequent performdob()
nextTimeAtOrAfter() expectedEndTime()

| nexiTimeWithinExclusive() secondsTilStartTime()
nexiTimeWithininclusive()

FIG. 22B

latestStartTimeFor()
earliestStariTimeFor()
earliestDataTimeFor()
baseTime0fDay()
trueForDate(
trueForRange()
receiveTimeCompaﬁble} ;
averageTimeToExecute

scheduleTask

0..*| jobs

whotToDo

—

ScheduleEventPDAQ

what

——

ExportDatatventPDAO

scheduleEventlD : fong
utilityld : long
deliverfileName :
fileFormat : char(64]
OCA : long = 0

char(128]

SUBSTITUTE SHEET (RULE 26)

{

0.1

scheduleEventlD : long
scheduleTask!D : long
activityType : char[64)
averageTimeToExecute :
subType ; char{64]
OCA :iong = 0

int

executeSchedule()
subsumes()
conflictsWith()

exportDatakvent

scheduleEvent

PCT/US98/19034

WO 99/13426

30/46

(Juoidiomppo
()uoidpuadsns

()qolixaNajnoaxa
()up|dajnoaaxa

juabyupjgxyiom

()aInpayaganaday.o yawijangaipina|na
()abuoyytiompying

()eBupypiaephyjou

()ebupyuo jupid

(Juuopygol

()ebuoydanpayashyijon

()aInpayagaA1aday 10 Jatus{an(a|ojnd|oa
()ebunynuajapAyijou

()ebupyuo qupid

13|npayag

vVed Old

J3p|ingajnpayag

(JAdw3enpayog si

()3INpPayosynyI0 Jajnpayasal|dnganala
)2INPayaSYKy.0 Janpayagalddngpuyy
: VM)eBupyuo jsajnpayagyab

N019).10 JPaYISAIYBASLIE]

()ainpayashpnqopioayaysjap
()aimpayashyigioayajoaid

()einpayagwou ydnosgubissoap

()anpayaswouydnosqubisso

(')ainpayosbuigayajep

()einpayoshianijpgayoald

1bpyajnpayog

SUBSTITUTE SHEET (RULE 26)

WO 99/13426

31/46

Scheduler

PCT/US98/19034

planForRanger()
nofifyMeterChange()

nobfyScheduleChange()
jobAlarm()

calculateDueTimeForReceiveSchedule()

ScheduleMgr

ScheduleBuilder

planForRanger()
notifyMeterChange()

createDeliverySchedule()
deleteBillingSchedule()
assignGroupToSchedule()
dessignGroupFromSchedule()
createAvailabilitySchedule()
deleteAvailabilitySchedule()
retieveRevSchedForGroup()
getScheduleForRanger()
findSupplierScheduleF orAMRSchedule()
createSupplierScheduleForAMRSchedule{)

buildWorkPlan() N isScheduleEmpty()
calculateDueTimeF orReceiveSchedule() N I
[N 1
-11 [\ ~
| \\ N l
workPlans | \ S :
: JobSpan ScheduleView
[. . .
WorkPlan mustFinishBy:RWTime
| . LA schedulesForDate()
— l earhesfocrf.RVﬂ_/Tlme schedulesForRanger()
workPlanld:RWinterger latestStart:RWTime addSchedule()
startTime:RWTime ‘ timespan:RWTime
endTime:RWTime I removeSchedule()
curjob:int ‘I setTheSchedule() / fepandsO
ependsOn
-] “*
getNextJob() \ 1m0 fheSchedLéI:;endems
addJob() \ / oot
removeJob() \\ 0+ “*ndsOn
gefFirstdob() \ ScheduleTa... :
getCurrentJob() \ T 0.
WorkPlan © 0..% Mf __1thedob Aen
-1 Job what
job[; . ScheduleTwt...
WorkPlanAgent J“sf jobid:RWinteger
earliestStart:RWTime theEvent ”
executePlan() latestStart:RWTime 11 what
execu?eNex’rJob() performjob() ScheduleEvent
suspedPlan()

addWorkPlan()

!

Alarm

FIG. 23B

expectedEndTime()
secondsToStartTime()

scheduleEventlD : long

0..* _whaiToDo

eventType : EveniType;
activityName : RWCString
averagelimeToExecute : RWinteger

-11
executeSchedule()
subsumes()

conflictsWith()

SUBSTITUTE SHEET (RULE 26)

PCT/US98/19034

WO 99/13426

32/46

JeC O

juaajdnou(a|ijoidpooT] juaaibuig

juaa3dnoigiigiioay

|

v

BuniSOMY : pwao4a)i}
BunjSomy : swoNa|i18a11ap

{uaajoypqgjiodxy

v

()sdnouguajapyab

1abajuimy @ pApyn

juaaiwy

v

(Junmsiolpuod
()sawnsgns
()ainpayogajnoaxa

Jabajuimy : aynoaxjojawijaboisap
Buttisomy : awpNApAloD
:odAjjuaay @ adAjjuans

Buoj : Qjuaajysnpayos

jusA3a|Npayog

SUBSTITUTE SHEET (RULE 26)

PCT/US98/19034

WO 99/13426
33/46
ScheduleTask
scheduleTaskiD : long
active : RWBoolean
scheduleType : ScheduleType
subsumes()
conflictsWith()
executeSchedule() q
nextTimeAfter() dependsQ ependsOn
nexiTimeAtOrAfter() O/B/
nextTimeWithinExclusive()
nextTimeWithininclusive() +0..%* 99997
1/ latestStartTimeFor(+0.**
earliestStartTimeFor()
earliestDataTimeFor()
baseTimeOfDay()
trueForDate(
trueForRange()
receiveTimeCompatible()
averageTimeToExecute()
\ +11
+11/when what
ScheduleTime
scheduleTimelD : long /1
scheduleTimeType : scheduleTimeType what\ *
trueForDate() ScheduleEvent
frungrRonge() scheduleEventiD : long
nexfT!meAfier() eventType : EventType;
nexfT[meAf.Or.After() activityName : RWCSting
nexfT!meW!fhmEchuswe() averageTimeToExecute : RWinteger
nextTimeWithininclusive()
secondsTilNexiTime() executeSchedule()
|Ofesf3f0rﬂlmef‘_0r(subsumes()

eorlies’rSfcr\‘TimeForg)
earliestDataTimeFor()
baseTimeOfDay()

is ReFeaﬁngS g
getTolerance

getType()
typelsEqual()
periodisCompatible()

conflictsWith()

AmrScheduleTask

utilityld : lo

utilityRole : long

ng

meferGroupAO._**
MeterGroup

7
associatedSchedules +0..**

FIG. 23D

SUBSTITUTE SHEET (RULE 26)

WO 99/13426

34/46

scheduleTime

scheduleTimeO : long
scheduleTimeType : scheduleTimeType

trueForDate()
frueFochngeQ
nexiTimeAfter()
nextTimeAtOrAtter()
nextTimeWithinExclusive()
nextTimeWithininclusive(
secondsTilNextTime()
latestStartTimeFor()
earliestStartTimeFor
ecrliestofoTimeForé?
baseTimeOfDay()
isrepeating()
getTolerance()

getType()

typelsEqual()

periodicCompatible()

2

PCT/US98/19034

FinishDrivenTime

StartDrivenTime

dueBy : DTSDateTime StartTime : DTSDateTime
Tolerance : RWlinteger
ListSchedule PeriodicSchedule
Schedule
Period
. type : PeriodType
PeeList length : RWinteger
RWDate initialTime : DTSDateTime

lengthinSeconds()
increment()

FIG. 23E

SUBSTITUTE SHEET (RULE 26)

PCT/US98/19034

WO 99/13426

35/46

¥¢ Ol

0 = buoj : yy0

[¢}toyo : puppouusduoyuayal
jul : polaquoljuaal

Buoj : pjhouabyhiojpjnbau

ovqwodAuabybay

L1+ | AousbyAiojpinbay

sJajawpupnghouabyhiojoinbau

0 = buo| : y)0

[¢]ioyo : 8yoys

[#9]40y2 : awopAduabyhiojponbal
Buo| : pjhouabyhiojoinbau

0vQAouabyAiojpinbay

0 = buo| :

[¥9]ipyo : anppsajewDID AN
[¥9}1oya : swopIajEWODIDGAN N
Buoj = plApyn

V20

OV@4ajawningApiin

L170+ | ssapawnangApyn

LI+ [Apyn

Amo_twmco:c_mco::_o:v
ovaArIlN

[¢]4pyo : puppousduoluajayoiop

0 = buoj : yo0

jul 1 pouaduoljuajayojop
jur : puwiazisbowaysds
Buo| : pjwajsAsyny

0vQ48}oWDIDJSASYNY

1170+ S18}3WDIDJaSASYWY

LI+ | wasAsyny

*

9GZJ4oyd : osaquoljp|ojsujwasASYNY

vmfc:o

0 = buo| : y30

: BWDNUO!ID||DISUILLBISASYNY
[¥9]ioyo : adAjwayshksymy
Buoj : prwaisAsypy

OVQWajsASYNY

SUBSTITUTE SHEET (RULE 26)

PCT/US98/19034

WO 99/13426

36/46

GC

Ol

[¥ Jioyo: pdiz
[G}ipyo : gdiz
[vy9]ioyo : aypys
[¥9]ioyo @ Apo

[821]10yo

0 = buoj

- V30
uotduasaquolurgep

[¥9]4ioyo : adAjuoipuiyep

0 = buoy : y30
[821]4oya : uoydisasagajol

[¥9]ioyo : sjoysaulyap

[¥9]ioyo : zsseuppo

adAuoyjulyaq

ajoyauljaq

[¥9]ioyo : |ssauppo

adA)jap|l+

Ovassaippy
- }
0 = buoj : vy
[¥9])i0yo : awopAyyn
Buoj = prAjyn
ovaAun
IO+ | Appyn
SUO)|DISUDI X3
0 = bBuo : v30 0+
[¥9]ioyo : saquinNiopuapsayddns
[¥9])i0yo : swppuayddns
Buoy : puaiddns
Q Ov@4a!ddng
oﬁm_wum_.“&mm 110+] so1jddns
[¥9]toyo : awopAouabyhiojonbal
Buo| : pjhousbyhiojojnba L1+ |48uljap L1+ | 12ULSP
OvaAousbyAiojpjnbay ~ _o = mc% - V30
110+ Asuabyhiojoinbaa 19Ulia r9jiogo “.m. Lisuljsp 4
1yep Buo) : ppauljep 5U1jop
b+ ovQ4auiaqg

L 1+] ®10Yy)8p

xx 0+ *x "0+ |suoyjo|suni|jxa

0 = buo| 1 y)0

[821]toys : uoyduosap

aWjajop : 8ypQuOIDUILLIIBY
(Jmousawi| My = swigajop : 8jpQaAId8))3
buoj : puwo

¥9]40yo : adAjuoiuiyep

[F9]1oyo : uontuiyaqowayxa
[¥9}ioyo : sjoyssuljap

buoj ¢ plasuljaiowayxa

OvQuolp|sup1|x3

|

()anddngyab

(YAmunieb

Ja)ddngwol JApnAjyuepl
Aplinwos yiayddngAyijuapy

()Jenddnguwol j1aje Ay inAsiuspl
()Amnnwou yiagapsayddngAyuapi
()anddngwo y1ajapynvAjuaps

()Anmnwoa iy Ny Ayuapy

1abouppuoyypjsunay

SUBSTITUTE SHEET (RULE 26)

PCT/US98/19034

WO 99/13426

37/46

llllllll [1
* (SYIYIS WHOD -2 .
: onostno)| | LfsuFiadns viva i Dl
(TYNY3LNI) 4INddnS)} S.dv
dY ¥3NddNs— | 4ddng
avanvis || N N | | QHYONYIS $S 30v41/901
it . | —
_ ! 43ddVN
INHORY | [A— IVIINONY?)
SNYTd L—==- === - S5 INIddVH
ALIAILDY
| 3nLov
JOVHOIS
NV1d
ALIAILDY o
In9 SiaaLs S 4TINAIHIS
=l ISVaAVLYQ
4IHILYd 310V40
~Sig
(013 ‘swo SS 193r80
'S “ONITIIg) _ S5 "INOW ALY SS “LNOW N4IINOD $S300V ISVAYIVQ
SHILSAS | r L e L
zm_&m_:% | IS L yon __
YNY31X3 I\ 1304x3
JOVRIIN WYYV _ _
s 14y L— @D AN _ _ S—
SHILSAS NOWLVOMddY L >—"_ 1 S AUVIV L= N
QWVONVIS SS JOVAMIINI ALMiln S 140dX3

SUBSTITUTE SHEET (RULE 26)

WO 99/13426

38,46

PCT/US98/19034

| CANON BOS Bom Version 0.2 (generated by system) 3X]
File Canon
Canons
group
Bom : 3
. Header

HeaderValue
. Assemblies
. Assembly
AssemblyValue
. AssemblyAttributes
. AssemblyAttributesList
. AssemblyAttributes
. Partid
PartidValue
. Docid
DocidValue
. Instance
InstanceValue
. Mass
MassVaiue
. Parent

ParentValue

Add Delete Modify

FIG. 27

SUBSTITUTE SHEET (RULE 26)

8¢ O

« »

PCT/US98/19034

«

39/46

\NNNNNNNNE

« N\

an|pAJaqUINNIBPIQ laquinNJ4epiQ
laquinN4apaQ
8{bQg

anipALdqUINNJIBPIQ aN|bA3iD(Q

18pa1Q —— Buyso)
Wig}|}so0) — sway|jso)

_
I10Dd adA)wayjyso)
1

WO 99/13426

O
[

adAjwayysog |

SUBSTITUTE SHEET (RULE 26)

WO 99/13426

PCT/US98/19034

40/46
& Workflow Builder] e——
Operations
Workflows
installMeter [~ |Workflow : ModifyMeterSave -~
ManuaiMeterRead Task
: asks :
mgg:;m:?:: t Nc'JlrmEaclj path : ValidateModifyMeter - (STS_NORMAL)
. A :
ModifyMeterSave S (0) Voh%a teModifyMeter — (STS_NORMAL) - ModifyM
gnRequeﬂM*ef%rRReotd (0) ModifyMeter - (STS_NORMAL) - AddUpdateMeter
eassignMeterJorate ()Mod fyMeter - (STS) _ MOVED TO COMMUNICATVE <
ReassignMeterToAccount = D
New Exit Delete
Tasks
instaliMeter = |Name : ModifyMeter
ModifyAccount Execute Operation : ModifyMeter
mg\%frjz?r?{ote Undo Operation :
MoveMetersToAccount § Finalize Operation :
OnRequestMeterReadings
ReceiveManualReadings
ReceiveMeterReadings -
New Exit Delete
Operations
AddMeter = [Name : AddMeterToSupplier -
AddMeterComponentSchedule Queue Name : SupplierMgr_s
AddMeterToSupplier interface Name : SupplierMgrinterface
AddRate Service Name : AMRAddMeter
AddScheduleToSupplier § Return Queue Name : DispatchBrain
AddUpdateMeterAliases Return Service Name : handleAnswer
AssignCapabilities Return interface Name : DispaicherBraininterface
AssignGroupToSchedule < |Alarm Type : None =
New Exit Delete

FIG 29

SUBSTITUTE SHEET (RULE 26)

PCT/US98/19034

WO 99/13426

41/46

ZZAAAIII h - - - HNEHHHDTIT e,

0t Ol

9so|)| | aapg

'p4poq3oDp|g

4

1>

,_<:zoqlmhm

Jayiddngo|s|npayosppy

I
TVNYON SIS

1311ddngo| sjusuodwonppy

_

Ja1iddnswou y1ajanay9ia(]

IVWYON SIS
I

Jayddngo j1ajspppy

[
TVNYON SIS

|
Jajiddngwolya|npayosayalag

JAILYIINNKNOD 0L G3AONTSIS

TVRYON SIS
|

a|npayagjuauodwoniajanaialaq

sasoI|y.ajawaiopdnppy

T

JNLVIINAKROINON 0L QIAOW SIS

l
TVRYONTSLS
|

1ojapAsipop
_

TVAYON SIS
1

1a3jaAjIpopa}opi|IDA

| xspl sbubyy |
[snioys sbupyy |
[isojuotjoys anoway]
| puaddy 1ybiy |

| puadeuy |

_ puaddy |

& | .POm—,mOHD_|_<>Z_Hwhm
Vivd_dITvANI_ SIS
AINTAITVANITSIS

7 VIVQONTSIS

ANNOA~LON ANTVATSLS

JONVY~ 31VA_AIVANITSIS
31va dINVANI_SIS
TVWNIYON_SIS

% HOYYION SIS
&~ _.Om_,mOHD_|_<>Z_HMHw
V1VA_QIVANITSIS

A3INX dAITVANIT SIS

" VIVAONTSIS
ANNO4~LON”INTVATSIS

IONVY~ 3LVA_AIIVANITSIS

31va AInvANI_SIS
TVNYON_SIS

- dOYY3ION SIS

—

m>om‘_m*m§>:_uo§_ :9WDN

mo|piom |63

SUBSTITUTE SHEET (RULE 26)

WO 99/13426 PCT/US98/19034

42/46

&) Tasks _IOX]

— Task Properties

Name: AddMeterMeterToSupplier|

AddMeterToSupplier g DeleteMeterfromSupplier || [none §
AddRate DeleteSchedulefromSupplier AddAccount
AddScheduleToSupplier ExportUsingAccounts § AddComponentsToGroup
AddUpdateMeterAliases ExportUsingDCGroups AddComponentsToSupplier
AssignCapabilities ExportUsingMeters AddDCGroup
AssignGroupToSchedule ExportValidateData AddMeter

AssignMeterToRate FromatReadingDataOut AddMeterComponeniSchedule
AssignMetersToAccount | |GeiMeterReadings =1 |AddMeterToSupplier —

Save Close

FIG. 31

SUBSTITUTE SHEET (RULE 26)

WO 99/13426 PCT/US98/19034

43/46
¢| Operation | —
—Operation Attributes
Name: | AddMeterToSupplier]
Queue Name: | SuppiierMgr_s |
Interface Name: | SupplierMgrinterface]
Service Name: | AMRAddMeter |
Return Queue Name: | DispatcherBrain |
Return Interface Name: [DispatcherBraininterface |
Return Service Name: | handleAnswer |
Alarm Type: | 0.No Ala...w |
Time Out Period(in seconds): [0 |
Number of Return: | 0 |
—Operation Attributes
Slot Name | ACCOUNT w || Slot Name Value Ty...|Value
METER String A
Value Type | String |
Slot Name []
Slot Name | Edit Object... |
[Add>>>] [<<<Remove | [Replace>>> |
Save | |Close

FIG. 32

SUBSTITUTE SHEET (RULE 26)

PCT/US98/19034

WO 99/13426

44/46

|2oup)f | 30
AAAmoo_Qmm_ m\,o_\cmmvvv; TAAAUE_
~198lq0 P3| 123r80 103
“"niplS }o8UU0) Builys INVA VA
al jusuodwoo BuliiS | SILNNINGTOHSIYHLYIMOTIONIINAS < BoT;
T Boie o35 Lys| 3dAL Inva
3N|DA adA] an|pp 3WDN }0|S

2m<|_<oz>mu2;_ JNVN 101S

pipoqxonig |5

SUBSTITUTE SHEET (RULE 26)

PCT/US98/19034

WO 99/13426

30VdS SS3004d YIIVNYH ONIQVIY
(S3AL010¥d 2ILVIS) QVIWHL INIOV

JIVdS SSIJ0¥d ¥IQYNVA ONIQYIY
GYVIHL ¥IAYIS 33A

45/46

I QV3¥HL

JAON HdVy9
d3193y10

HdVY9
123410

qyvoaxavig
NOILVY3dO

1vo01

11 S31VINSdYIN]
NV Q¥v0aMIv1g
1VHM SININY3130

ars OH

S3ONVISNI
IN3¥3441Q 1ngG ‘SSY1D INVS

(S3INY INIYILH10-INIANIJIANI
38 71M NOISYIA HIV3)
IN3OV AYOLVIN9IY

43HILVdSIA
301

Ve Ol

JOVIYIINI
d3IOVNVYA
AON3IOV
AdOLVINO3Y

dIOVNVN
JOVIYIINI 1404X3
43IOVNYA
AINI9Y MOTINIOM
A401VIN93Y

0 AviyHL

SUBSTITUTE SHEET (RULE 26)

PCT/US98/19034

WO 99/13426

10VdS SS3004d ¥IGYNVA ONIQVIY

o JY3IH SIOINVHO VIva
/7 (v N avIyHL
\u4m<uoz<zo% NOILND3X3 33A
| MOT1M0M
< 01
~ . ~

—

ININOdWO02
1vy
d1

© ININOJW0D
Ny v1vaQ 3LvY
Q I1dAYS SNOD

ayvoanovig

¢ QV3IY¥HL

JIVdS SS3004d YIIVNYWN 9NIQVIY

e DI
IIH SIONVHD Vivd
_ av3IYHL
L7 TN NOILNDIX3 33A
/- (viva
Jsﬁozé%_
\ MOTINHOM
< W01

IN3INOdW0D
31vy
dl

ININOJWOD
11vy
SNO2

viva
J1dWVS

ayvogxovig

¢ QV3Iy¥HL

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

Intemnational- application No.
PCT/US98/19034

A. CLASSIFICATION OF SUBJECT MATTER

IPC(6) :GO6F 17/60
US CL :702/62; 340/870.01; 395/200.31

According to Intemational Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : Please See Extra Sheet.

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

None

Electronic data base consuited during the international search (name of data base and, where practicable, search terms used)

APS, IEEE

search terms: canon, map, input, output, middleware, meter, scalability

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X,P US 5,745,901 A (ENTNER et al) 28 April 1998, Abstract, figure 3, | 190-193, 197-200,

------ col. 2, lines 25-39. 204

yep {(| e
1,2,5,6,8, 11,
52, 53, 55-63,
66, 67, 70, 101,
102, 104-109,
114-122

X US 4,769,772 A (DWYER) 06 September 1988, Abstract, figures 6-| 140, 141, 144

----- 8, col. 9, lines 14-68, col. 10, lines 1-68, col. 11, lines 1-68, col.| -------

Y 12, lines 1-68, col. 13, lines 1-64. 53, 102, 114-116,
119-121

Further documents are listed in the continuation of Box C.

D See patent family annex.

. < .
P 8

A" 4 t defining the g

to be of particular relevance

ies of cited d ts:

| state of the art which is not considered

BE earlier document published on or after the international filing date

L document which may throw doubts on priority claim(s) or which is
cited to blish the publication date of h ion or other
special reason (as lpemﬁed)

*o" document referring to an oral disclosure, use, exhibition or other
means

p document published prior to the international filing date but later than

the priority date claimed

‘T later d t published after the inter | filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive step
when the document is taken sione

'Y document of particular relevance; the claimed invention cannot be
considered to involve an inventive stop when the document is
combined with one or more other such do: ts, such bi
being obvious to a person skilled in the art

‘& document member of the same patent family

Date of the actual completion of the intemational search

06 DECEMBER 1998

Date of mailing of the international search report

01FEB1399

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Facsimile No. (703) 305-3230

Authori, officer
ﬂ X A UM/’\

HAL D. WACHSMAN

Telephone No. (703) 305-9788

Form PCT/ISA/210 (second sheet)July 1992)%

INTERNATIONAL SEARCH REPORT International application No.

PCT/US98/19034
C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y,P US 5,790,789 A (SUAREZ) 04 August 1998, figures 6, 7a-7¢, col. |1, 2,5, 6, 8, 11,

Y.E

Y.P

4, lines 57-67, col. 5, lines 1-5, col. 14, lines 9-65, col. 18, lines 6- |52, 53, 55-63, 66,
67, col. 19, lines 1-67, col.20, lines 1-67, col. 21, lines 1-14. 67, 70, 101, 102,
104-109, 114-122

US 5,808,558 A (MEEK et al) 15 September 1998, Abstract, col. 1,2,5,6,8, 11,
5, lines 1-20. 52, 53, 55-62,
122

US 5,787,437 A (POTTERVELD et al) 28 July 1998, figures 8, 8
10, col. 9, lines 29-43.

Form PCT/ISA/210 (continuation of second sheet)(July 1992)w

INTERNATIONAL SEARCH REPORT International application No.
PCT/US98/19034

B. FIELDS SEARCHED
Minimum documentation searched
Classification System: U.S.

702/62, 61, 81-84, 122, 123, 179, 182, 183, 186-188; 340/870.01, 870.02, 870.16; 395/200.31, 200.54, 837, 838, 200.53,
200.33, 200.58, 200.6, 682, 200.32; 707/10, 2, 100, 103, 104; 705/ 1, 7, 8, 401, 404, 405, 410, 412; 364/528.26, 528.3,
528.31, 130-133, 138, 191, 192

Form PCT/ISA/210 (extra sheet)(July 1992)«

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

