
Λ

AUSTRALIA

PATENTS ACT 1990

PATENT REQUEST : STANDARD PATENT

I/We being the person(s) identified below as the Applicant(s), request the grant cf a
patent to the person(s) identified below as the Nominated Person(s), for an invention
described in the accompanying standard complete specification.

Full application details follow:

[71/70] Applicant(s)/Nominated Person(s):

A/N Inc.

of

4820 150th Avenue, N.E., Redmond, Washington, 98052, United States of
America

[54] Invention Title:

Programmable graphics processor having pixel to character conversion
hardware for use In a video game system or the like

[72] Name(s) of actual inventor(s):

Jeremy E. SAN
Ben CHEESE
Carl N. GRAHAM
Peter R. WARNES

[74] Address for service in Australia:

DAVIES COLLISON CAVE, Patent Attorneys, 1 Little Collins Street,
Melbourne, Victoria, Australia. Attorney Code: DM

• · · · Basic Convention Application(s) Details:
• · ·• « · [31] Application [33] Country Code [32] Date of
• · ·• · · Number Application

827201 United States of America US 30 January 1992

DATED this TWENTY EIGHTH day of JULY 1992

" i: /

DAVIES COLLISON CAVE for
and on behalf of the
applicant(s)

AUSTRALIA
PATENTS ACT 1990

NOTICE OF ENTITLEMENT

We, A/N Inc., the applicant/Nominated Person in respect of Application No.
20605/92 state the following:-

The Nominated Person is entitled to the grant of the patent
because the Nominated Person derives title to the invention from
the inventors by assignment.

The Nominated Person is entitled to claim priority from the basic
application listed on the patent request because the Nominated
Person is the assignee of the applicants in respect of the basic
application, and because that application was the first application
made in a Convention country in respect of the invention.

DATED this FOURTH day of SEPTEMBER 1992

a member of the firm of
DAVIES COLLISON
CAVE for and on behalf
of the applicants)

(DCC ref: 1517586)

AU9220605

(12) PATENT ABRIDGMENT (11) Document No. AU-B-20605/92
(19) AUSTRALIAN PATENT OFFICE (10) Acceptance no. 654727

(54) Title
PROGRAMMABLE GRAPHICS PROCESSOR HAVING PIXEL TO CHARACTER CONVERSION
HARDWARE FOR USE IN A VIDEO GAME SYSTEM OR THE LIKE

International Patent Classificatlon(s)
(51)5 G06F 015/72 G06F 003/14 G09G 005/28

(21) Application No. : 20605/92 (22) Application Date : 28.07.92

(30) Priority Data

(31) Number (32) Date (33) Country
827201 30.01.92 US UNITED STATES OF AMERICA

(43) Publication Date : 19.08.93

(44) Publication Date of Accepted Application : 17.11.94

(71) Applicant(s)
A/N INC.

(72) Inventor(s)
JEREMY E. SAN; BEN CHEESE; CARL N. GRAHAM; PETER R. WARNES

(74) Attorney or Agent
DAVIES COLLISON CAVE , 1 Little Collins Street, MELBOURNE VIC 3000

(57) Claim

1. An external memory system for an information processing system used with a

display screen, and having a microprocessor for executing a videographics program and

a video memory for storing character data indicative of a plurality of characters which

when combined define a display frame, said external memory system including:

a program memory for storing at least some of the instructions of said

videographics program, and

a conversion circuit coupled to said program memory for receiving display data

in terms of a pixel specification for processing said pixel specification and for converting

said pixel specification data into character data of a form used by said video memory.

23. A graphics processor comprising:

means for receiving data in terms of a pixel specification; and

a conversion circuit for processing the pixel specification data and for generating

character data in terms of a character specification specifying a character including a

specified pixel.

27. A graphics processor for use in an information processing system having a main

processing unit for executing a videographics program stored in at least one memory

device, said graphics processor including:

means for receiving program instructions from said at least one memory; and

means, responsive to at least one predetermined program instruction, for

.. ./2

(11) AU-B-20605/92 -2-
(10)654727

converting pixel-based format data associated with said at least one predetermined

instruction into a character-based data format.

65

AUSTRALIA

PATENTS ACT 1990
COMPLETE SPECIFICATION

NAME OF APPLICANT(S):

A/N Inc.

ADDRESS FOR SERVICE:

DAVIES COLLISON CAVE
Patent Attorneys
1 Little Collins Street, Melbourne, 3000.

INVENTION TITLE:

Programmable graphics processor having pixel to character conversion hardware
for use in a video game system or the like

• · · ·

The following statement is a full description of this invention, including the best method
of performing it known to me/us:-

• · · ·

• ·

1

ι

- 1A-

10

• · ·• · ·• · ·• · · ·• · · · 15

• · ·• · ·• · · ·

• · · ·• · ·

20
• · · ·• · · ·• · ·• · ·• ·• · ·• ft ·• · ·

• · ·• · ·• · ···· ·• · ·• · · • · ·
The invention relates to an external memory system and a graphics processor.

25 More particularly, the invention relates to a removable, external memory unit having a

program memory storing a program to be executed in part by a host processing system,

e.g. a video game system, and in part by a programmable microprocessor designed to

enhance the high speed graphics processing capabilities of the host system. The

programmable microprocessor includes hardware for converting from a pixel based format

30 to a character based format.

940825,ptopeiMbw.20605.92.1

2

• · · «• ·

• · · ·

• · · ·
» · · ·

■BAGKgRQUND. AMD SUMMARY OF-TIIE—

Prior art video game machines having an 8-bit
microprocessor and an associated display processing
subsystem embodied in a video game control deck
typically generate graphics by prestoring characters
in a game cartridge in the form of 8-bit by 8-bit
matrices and by building a screen display using
various programmable combinations of these prestored
characters. Such prior art video game systems
typically have the capability of moving the entire
display background as well as a number of
player-controlled "moving objects" or "sprites".

Such prior art systems do not have the
capability of practically implementing video games
which include moving objects made up of combinations
of polygons which must be manipulated, e.g.,
rotated, and "redrawn" for each frame. The prior
art 8-bit processor and associated display
processing circuitry in such systems are not
capable, for example, of performing the calculations
required to effectively rotate three-dimensional,
polygon-based objects or to appropriately scale such
rotating objects to generate 3-D type special
effects. The present inventors have recognized that
sophisticated graphics require updating the screen
on a pixel-by-pixel basis and performing complex
mathematics on a real time basis. Such prior art
character based video game machines are not capable
of performing such tasks.

3

The prior art 8-bit video game machines also
can not effectively perform other graphics
techniques which require rapidly updating the screen
on a pixel-by-pixel basis. For example, such
systems can not effectively map an object onto a
displayed polygon which is part of yet another
displayed object (hereinafter referred to as
"texture mapping") in three-dimensional space.

In an effort to improve the graphics
capabilities over prior art 8-bit machines, video
game systems have been designed using more powerful
16-bit processors. Such 16-bit processors provide
the video game system with a mechanism for
performing the mathematics required for more
sophisticated graphics. Such systems, for example,
permit more sophisticated color generation and
better graphics resolution. Such 16-bit video game
machines are character-based systems which permit
the implementation of a wide range of video games
that can be pre-drawn into character-based or sprite
graphics. Such 16-bit video game systems also
permit the movement of multiple colored background
planes at high speeds with moving objects disposed
in back, or in front, of such planes.

However, such prior art 16-bit video game
machines do not permit the practical implementation
of advanced video games having 3-D type special
effects which display sophisticated objects made up
of polygons that must change during each frame. For
example, games which require many fully rotating
objects or sprites that must be enlarged and/or

4

reduced on a frame-by-frame basis are not

practically realizable in such prior art
character-based 16-bit machines. The inventors have
recognized that, in order to effectively implement
Buch games involving fully rotating and scaled,
polygon-based objects, it is necessary to draw the
edges of polygons and fill in such polygon-based
objects with appropriate data on a pixel-by-pixel
basis. Such tasks, which must be done on a
pixel-by-pixel basis, consume a great deal of
processing time.

In the prior art, removable game cartridges
have been modified to improve game sophistication by
permitting existing processors to address a larger
program memory address space than the existing
number of address lines associated with the host
microprocessor would otherwise permit. For example,
such prior art 8-bit systems have utilized game
cartridges including multi-memory controller chips
which perform memory bank switching and other
additional functions. Such memory bank switching
related chips, however, are not capable of enabling
the video game system to do high speed graphics
processing of the nature described above.

The present invention addresses the
above-described problems in the prior arj
providing a unique, fully programjnabXe, graphics
microprocessor which is dg^i^ned to be embodied in a
removable external^mefiiory unit for connection with a
host inforjaatlon processing system. In an exemplary
embpdifiient described herein, the present invention

-5 -

... In accordance with the present invention there is provided an external memory

system for an information processing system used with a display screen, and having a

microprocessor for executing a videographics program and a video memory for storing

character data indicative of a plurality of characters which when combined define a

5 display frame, said external memory system including:

a program memory for storing at least some of the instructions of said

videographics program, and

a conversion circuit coupled to said program memory for receiving display data

in terms of a pixel specification for processing said pixel specification and for converting

10 said pixel specification data into character data of a form used by said video memory.

In accordance with the present invention there is also provided a graphics

processor comprising:

means for receiving data in terms of a pixel specification; and

15 a conversion circuit for processing the pixel specification data and for generating

character data in terms of a character specification specifying a character including a

specified pixel.

The present invention also provides a graphics processor for use in an information

20 processing system having a main processing unit for executing a videographics program

stored in at least one memory device, said graphics processor including:

means for receiving program instructions from said at least one memory; and

means, responsive to at least one predetermined program instruction, for

converting pixel-based format data associated with said at least one predetermined

25 instruction into a character-based data format.

An exemplary preferred embodiment of the present invention is hereinafter

described with reference to the accompanying drawings in which:

FIGURE 1 is a block diagram of an exemplary

940825, p:\op«\dbw^0605.9i5

ft ft ft• · ·

ft···ft···
• ft• ft

ft ft · ·ft ft ft ·

ft ft · ·ft ft ft ·

• ft ft• « ft

external memory system in accordance with an
exemplary embodiment of the present invention;

FIGURE 2 is a block diagram of an exemplary
host processing system for use with a graphics
coprocessor of the presently preferred exemplary
embodiment;

FIGURE 3 is a perspective view showing an
exemplary mechanical configurations of a game
cartridge housing a graphics coprocessor and a base
unit housing the host processing system;

FIGURES 4A and 4B are a block diagram of the
graphics coprocessor in accordance with the
presently preferred exemplary embodiment;

FIGURE 5 is a flowchart delineating the
sequence of operations performed by the host
processing system for initiating graphics
coprocessor operation;

FIGURE 6 is a more detailed block diagram of
the arithmetic and logic unit shown in FIGURE 4A;

FIGURE 7 is axmore detailed block diagram of
exemplary pixel plot circuitry of the type shown in
FIGURE 4A;

FIGURE 8A is a block diagram showing the input
signals received by the plot controller and the
output signals generated by the plot controller;

~Ί
•9-

FIGURE 8Β is a color matrix element contained
within the color matrix in the pixel plot circuitry;

FIGURE 8C depicts timing, control and data
signals associated with the pixel plot circuitry;

FIGURE 9 is a more detailed block diagram of
the RAM controller shown in FIGURE 4A;

FIGURE 9A shows exemplary timing, control and
data signals associated with the RAM controller
shown in FIGURE 9;

• · · ··· · I · ·• · · FIGURE 10 is a circuit diagram illustrating the
arbitration logic shown in FIGURE 9;

• ·• · ··

FIGURE 11 is a diagram of resynchronizing
circuitry in an exemplary embodiment of the graphics
coprocessor of the present invention;

FIGURE 12 illustrates timing signals associated
with the resynchronizing circuitry of FIGURE 11;

FIGURE 13 is a more detailed block diagram of
the ROM controller of the graphics coprocessor of
the present invention;

FIGURE 14 is a block diagram of the cache
controller of the graphics coprocessor in accordance
with an exemplary embodiment of the present
invention;

s

····fc «···«

····• « • · · ·

» ·· »···

• · · ·

FIGURE 15A is a block diagram showing the
instruction decoding related circuitry of the
graphics coprocessor of the present invention;

FIGURE 15B shows exemplary timing signals
demonstrating the operation Of the look-ahead logic
in FIGURE 15A; ’

FIGURES 16 and 17 are 'block diagrams showing
the register control logic of the graphics
coprocessor in accordance with an exemplary
embodiment of the present invention;

FIGURE 18 is an exemplary flowchart delineating
the sequence of operations of the graphics
coprocessor in carrying out a polygon generating
tasks; .

FIGURES 19, 20 and 21 are exemplary displays
which may be generated of polygon-based objects to
illustrate scaling and rotation features in
accordance with an exemplary embodiment of the
present invention

.p-nrowfr nwranaeM—

In accordance with the present exemplary
embodiment, the graphics coprocessor of the present
invention interacts with a 16-bit video game system
commercially sold by Nintendo of America, Inc. as

9
»

• ···• 4····

« · ·

• · · ·• 4• · · ·

• ·» · • ·
• · ·

the Super Nintendo Entertainment System (Super
NES). The Super Nintendo Entertainment System is
described in part in U.S. application Serial No.
07/651,265, entitled ’’Video Processing Apparatus"
which was filed on April 10, 1991 and U.S.
application Serial No. 07/749,530, filed on August
26, 1991, entitled "Direct Memory Access Apparatus
and External Storage Device Used Therein". These
applications are expressly incorporated herein by
reference. It should be understood th ,t the present
invention is not limited to Super NES related
applications and may be used with other video game
systems or other, non-video game, information
processing apparatus.

For ease of reference purposes only, the
graphics processor in accordance with the present
exemplary embodiment is referred to hereinafter as
the "Mario chip*''. The Mario chip is described in
the presently preferred exemplary embodiment as
being packaged within a video game cartridge. It
should be understood that it is not essential to the
present invention for the Mario chip to be housed in
the same cartridge case as the program memory as
long as it is connected, in use, to a program memory
and to the host processing unit.

Figure 1 shows an exemplary video game
cartridge/external memory system in accordance with
an exemplary embodiment of the present invention.
The game cartridge includes a printed circuit board
(not shown) on which all of the Figure 1 components
are mounted. The cartridge includes an array of

ΙΟ
is

connector electrodes 1 disposed at an insertion end
of the printed circuit board for transmitting
signals to and from the Super NES main control
deck. The array of connector electrodes 1 is
received by a .mating connector disposed in the Super
NES main control deck.

In accordance with the present exemplary
embodiment, the Mario chip (graphics coprocessor) 2
embodied on the game cartridge is a 100 to 128 pin
integrated circuit chip. The Mario chip receives
many control, address and data signals from the host
processing system (e.g., the Super NES). For
example, the Mario chip 2 receives a 21 MHz clock
input from the host processing system via pin P112,
and a system clock input which may be 21 MHz (or
another predetermined frequency) via pin P117. The
system clock input may be used, for example, to
provide the Mario processor with to memory timing
information for host CPU memory accesses and to
provide clock signals for timing operations within
the Mario chip. The Mario chip 2 also includes an
optional, external clock input (pin P110) which
couples the Mario chip to an external crystal 4, to
drive the Mario CPU, for example, at a higher
frequency clocking rate than the 21 MHz received
from the host system.

Host CPU addresses inputs (HA) are coupled to
the Mario chip 2 via pins P37 to pins P62 from the
host processing system (e.g., Super NES CPU/Picture
Processing Unit PPU) address bus. Similarly, data
inputs (KD) from the host system are coupled to the

/'
,.Λ tA ‘ L.

ttA ··'

• · ·• · ···· ·• <*· ·• ·• · β ·
• · 9*·····■·• « «···

·· · • « ·« *·
• · 9 ·• · ·

• ·• · * ··
·· ·♦• ·

• · ·>• e ·• ··· ·
• 9 9• ··

Mario chip 2 via pins P65-P72 from tl· ost CPU data
bus. The Mario chip 2 additionally receives from
the host CPU a memory refresh signal RFSH via P119,
a reset signal via pin P118 read and write control
signals via pins P104, P105. The Mario chip
generates an interrupt request signal IRQ and
couples the signal IRQ to the Super NES via pin
P120. Other control signals are received from the
Super NES such as a ROMSEL signal via pin P106 which
may, for example, be used to initiate a host program
ROM 10 access. Additionally, the cartridge includes
an authentication processor 3 which exchanges data
with a Super NES authenticating processor on input
I, output O, and reset R lines. The authenticating
processor 3 and the security system used to
authenticate game cartridges may be of the type
shown in U.S. Patent 4,799,635, which patent is
incorporated herein by reference.

The Mario chip is coupled to RAMs 6 and 8 via
the PAM address bus (RAM A), and RAM address pins
P74-P91 and the RAM data bus (RAM D) and data pins
P93-P100. These RAMs may be dynamic memory devices
controlled in part using row address and column
address strobe signals (RAS, CAS) coupled via pins
P90 and P91, respectively. One or more static RAMs
may be utilized instead of dynamic RAMs and pins P90
and P91 would then be used to couple address signals
to their respective RAMs without the row address and
column address strobe signals. A write enable
control signals WE is appropriately coupled to RAM 6
and 8 via pin P107.

TO

' / ft-.v,

12-.

• · ·• · ·β·· ·• ······· r ··

······ · • · ·• ··

«···• · ··· ·

····
» a
*··ι

• · ·
a a

β · ·
• aa

The read and write control signals (R, W) are
generated by the host CPU and coupled to the Mario
chip via pins P104 and P105. By monitoring these
read and write lines, the Mario chip can determine
the nature of the memory access operation the Super
NES CPU is attempting to perform. Similarly,
virtually all address and control lines from the
host system are monitored by the Mario chip to keep
track of what the host CPU is attempting to do. The
ROM and RAM addressing signals received by the Mario
chip are monitored and passed on to the appropriate
memory device. In this regard, the ROM addresses
are coupled to program ROM 10 via the ROM address
bus and pin P2 to P26 and the RAM address is coupled
to RAMs 6 and 8 via pins P74 to pins P91. The ROM
and RAM data inputs from the host CPU are
appropriately coupled to ROM 10 via the ROM data bus
and pins P28-P35 and via pins P93 to P100,
respectively.

It should be recognized that the Mario chip may
te utilized in conjunction with a wide range of
different memory devices in addition to the ROM and
RAM’s described herein. For example, it is
contemplated that the Mario chip may be
advantageously utilized in conjunction with video
game systems using CD ROM’s.

For example, in Figure 1, instead of using ROM
10, a CD ROM (not shown) may be used to store
character data, program instructions, video,
graphic, and sound data. A conventional-type CD
player (also not shown) suitably connected to the

Z . &

is
-2=s-

Mario chip 2 to receive memory address signals over
address bus P2-P26 for accessing data and/or
instructions over data bus P28-P35. The specific
structural and operational details of CD players and
CD ROM storage systems are well known to those
skilled in the art. One advantage provided by CD
ROM storage is a significant reduction in the cost
of storage per byte of information. Data may be
stored at a cost between 100 to 1000 percent less
than storage on semiconductor ROM. Unfortunately,
the memory access/read time for CD ROM is even
slower than that for semiconductor ROM.

The Mario chip uses a three bus architecture
which permits information on at least three buses to
be utilized in parallel. In this regard, in the
game cartridge shown in Figure 1, the Mario chip 2
is coupled to a ROM bus (including ROM data lines,
ROM address lines and control lines), a RAM bus
(including RAM address lines, data lines, and
control lines) and a host processor bus (including
host address, data and control lines).

• · · ·» · • · · ·

• · ·• · «• ·

The Mario chip architecture permits pipelined
operations to occur to optimize throughput. In this
regard, the Mario chip can be reading a data byte
from ROM, while processing other data, while writing
yet further data to RAM to permit 3-D related
graphics to be performed very efficiently. As is
described further below, the Mario chip 2 uses a
16-bit architecture internally and yet is designed
to interface with 8-bit ROM 10 and RAM 6, 8 chips.
Internally, all internal data buses and internal

/<9 /,7 ·

Α
ί*

registers are 16-bits. Reads from ROM 10 and writes
to RAM 6, 8 are ’’buffered" and typically do not slow
down program execution.

Similarly, the Mario chip 2 may access
instructions and graphics data from CD ROM and write
that information into RAM 6, 8 for subsequent DMA
transfer into the video RAM of the host processor,
e.g., Super NES picture processing unit (PPU).
Those skilled in the art will appreciate that the
Mario chip 2 may be programmed to coordinate
transfer of data from the CD ROM directly to the
video RAM of the PPU, bypassing the RAM storage and
access operations.

The extremely fast processing speed of the
Mario chip 2 makes CD ROM storage practical for
graphics applications despite the long read access
time of CD ROMs. Video and audio data are
compressed using conventional data compression
techniques before storage on CD ROM. Data
compression and decompression techniques are well
known to those skilled in the art. After accessing
compressed data from the CD ROM, the Mario chip 2
decompresses the data using conventional data
decompression algorithms in much shorter time
periods than can be achieved by conventional
graphics processors. Because it operates with a 21
MHz clock, the Mario chip 2 completes decompression
within prescribed time periods for data transfer to
RAM 6, 8.

ΤΓ

Thus, large amounts of video and audio data are
accessed (in compressed form) in typical CD ROM
access time periods. However, the effect of those
relatively long access times is minimized because
after data decompression by the Mario chip 2, the
actual access time per data byte is significantly
reduced. With the Mario chip 2 performing
decompression, the host graphics processor, e.g. the
Super NES PPU, is free to perform other processing
tasks. Of course, if speed is not an issue for a
particular application, the Mario chip 2 can access
data from CD ROM in uncompressed form.

The cartridge may also include a battery backup
when static RAM is used. A backup battery 12 is
coupled to a conventional backup battery circuit 14
via a resistor R to provide a backup voltage (RSRAM)
for static RAM and a static RAM chip select signal
RAMCS in case of loss of power to provide a data
saving feature.

Additionally, coupled to the RAM address bus,
are option setting resistors 16. In normal
operation, the Mario chip address lines are output
to RAMs 6 and 8. However, during reset or power-on
operations, these address lines are used as input
lines to generate either a high or low signal
depending upon whether they are tied to a
predetermined voltage VCC or ground. In this
fashion, a "1" or "0" is appropriately read into an
internal Mario chip register. After reset,
depending upon the setting of these resistors, the
Mario chip can determine (during program execution),

/4

for example, the multiplier clocking rate, the RAM
access time to which the Mario chip is coupled, the
clocking rate to be used with other operations
within the Mario chip, etc. Through the use of
these option setting registers, the Mario chip is,
for example, adaptable to be used with a number of
different types of memory devices without requiring
any Mario chip design modifications. For example,
if a dynamic RAM setting is detected then refresh
signals will be applied at appropriate times.
Additionally, the option settings may be used to
control the speed at which, for example, the
processor multiplier circuits operate and to permit
other instructions to be executed by the graphics
processor at a faster rate than it is possible to
execute certain multiply instructions. Thus by
initiating a delayed multiply execution, the
remaining instructions can run at a faster clock
rate than the rate otherwise possible (e.g., the
processor may, for example, be clocked at 30
megahertz, whereas the option settings would
effectively cause the multiply instructions to be
executed at 15 megahertz).

Figure 2 is block diagram of an exemplary host
video game system to which the exemplary game
cartridge set forth in Figure 1 is designed to be
coupled. Figure 2 may, for example, represent the
Super NES currently sold by Nintendo of America.
The present invention, however, is not limited to
Super NES related applications or systems having a
block diagram such as that shown in Figure 2.

17
3=^

The Super NES includes within its control deck
20, a 16-bit host CPU which may, for example, be a
65816 compatible microprocessor. The CPU 22 is
coupled to a working RAM 32, which may, for example,
include 12BK bytes of storage. The CPU 22 is
coupled to a picture processing unit (PPU) 24 which
in turn is coupled to a video RAM 30 which may, for
example, include words of storage. The CPU 22 has
access to the video RAM 30 via the PPU 24 during
vertical or horizontal blanking intervals. Thus,
the CPU 22 can only access the video RAM 30 through
the PPU 24 at times other than during active line
scan when the PPU 24 is accessing video RAM. PPU 24
generates a video display on a user's television 36
from video RAM 30. CPU is also coupled to an audio
processing unit APU 26 which is coupled to a working
RAM 28. The APU 26 which may comprise a
commercially available sound chip generates the
sounds associated with the video game program stored
on the game cartridge in ROM 10. The CPU 22 can
only access the working RAM 28 via APU 26. The PPU
24 and APU 26 are coupled to the user's home
television 36 via RF modulator unit 34.

The video RAM 30 in the Super NES must be
loaded with appropriate character data stored in the
program ROM 10 in the cartridge (which stores not
only the game program, but also the character data
used during game play). Any moving object, e.g.,
sprite information, or background information to be
displayed must be resident in video RAM 30 before
use. The program ROM 10 is accessed by the CPU 22

IS
-2β-

host address and data buses via a mating connector
18 which is coupled to the printed circuit board
edge connector 1 shown in Figure 1. The PPU 24 is
connected to the game cartridge via shared host CPU
data and address buses and connector 23 so as to
provide a path for PPU data and control signals to
be coupled to the cartridge. The APU 26 is
connected to the game cartridge via shared host CPU
buses and audio bus 27.

The CPU 22 address space is mapped such that
program ROM 10 locations begin at location 0 and is
typically divided into 32K byte segments. The
program ROM uses approximately one-half of the CPU
address space. The top locations in each CPU
address space 32K byte segment is typically utilized
to address working RAM 32 and various registers.
The program ROM 10 typically is four megabytes. The
CPU 22 used in the Super NES is capable of
addressing the entirety of the program ROM 10. On
the other hand, the Mario chip 2 only includes a 16
bit program counter and thus includes bank registers
for selecting between the 32K byte banks in the
program ROM 10.

In the present exemplary embodiment, the Mario
chip has a full 24 bit address space that
corresponds with the Super NES memory map. This
contains the ROM 10 at the position starting at
location $00:8000, and the RAM chip 6, 8 on the
cartridge starts at location $70:0000.

iAc .

Since the ROM 10 and RAM 6, 8 on the cartridge
are on separate buses they can be accessed in
parallel by the Mario Chip. Also RAMs 6, 8 can be
accessed at a faster rate than ROM and the Mario
chip is designed to utilize this performance
advantage. The Mario chip has no access to any
memory that is inside the Super WES, i.e.z no access
to the working RAM 32 or PPU video RAM 30.

In order for the Mario chip to process data, or
draw into a bitmap, data must be contained within
the Mario cartridge RAM chip 6, 8. Thus, any
variables which are shared between the NES CPU
program and the Mario chip program must be within
the Mario cartridge RAM chip 6, 8. Any prestored

: .··. data that the Mario chip program needs to use can be• · · ·
.····. in ROM 10 and any variables will be in RAM 6, 8.• · · ·• · *• · ·• * · ·
.····. Any private variables only required by the
.**. j Super NES program do not need to be in cartridge RAM

6, 8. In fact, since this RAM 6, 8 is at a premium
in terms of memory space, it is advisable to

·’*·.· allocate cartridge RAM 6, 8 on a high priority
requirement basis. Any non-essential, variables
should be stored in Super NES internal RAM 32.

R «I · · « ·»
·’*’*· The bitmap that the Mario Chip writes into is

in Mario cartridge RAM 6, 8 and will be DMA
·*·**· transferred under control of the Super NES into the
.*·.· PPU's video RAM 30 when each bitmap frame has been

fully rendered.

A
«·■ ■

*
c.

Ao
22-

The Super NES's CPU 22 has access to all
internal RAM within the Super NES control deck just
as if the Mario chip were not present. The Mario
chip has no access to this RAM so all data
transferred between the Mario ROM/RAM chips and
internal Super NES RAM must be initiated by the CPU
22 itself. Data can be transferred via CPU 22
programming, or block moved via DMA transfer.
The Mario cartridge ROM 10 and RAM 6, 8 are mapped
in as usual on all game programs.

The CPU 22 has control over which CPU has
temporary access to the cartridge ROM or RAM chips.
On power up or reset conditions, the Mario chip is
turned off and the CPU 22 has total access to the
cartridge ROM and RAM chips. In order for the Mario
chip to run a program, it is necessary for the CPU
22 program to give up its access to either the ROM
or RAM chip, preferably both, and either wait for
the Mario chip to finish its given task, or
alternatively the CPU 22 can copy some code into
internal work-RAM 32 and execute it there.

The Mario chip has a number of registers that
are programmable and readable from the Super NES CPU
side. These are mapped into the CPU 22 memory map
starting at location $00:3000.

As indicated in Figure 2, the Super NES
generates and receives a variety of control
signals. When the Super NES CPU 22 needs to access
program ROM 10, it generates a control signal
ROMSEL. To initiate a memory refresh, the Super NES

=3-ί

generates a refresh signal RFSH. When the Mario
chip completes an operation, it transmits an
interrupt signal IRQ on an interrupt request line
associated with the Super NES CPU. The CPU 22
additionally generates read and write signals.

System timing signals are generated from timing
chain circuitry 21 within the control deck 20. A
power-on/reset signal is also generated within the
main control deck 20 and coupled to the game
cartridge.

• · ·• · ·• · · ·• · · ·• ·• · · ·• · ·• · ·• · · ·• · · ·• ·• · « ·

The Super NES also includes an authenticating
processing device 25 which exchanges data on input I
output O, and reset R conductors with an
authenticating processing device 3 on the game
cartridge in accordance with the above identified
U.S. Patent 4,799,635. The processing device 25 as
taught by U.S. Patent 4,799,635 holds the CPU 22 in
a reset state until authentication is established.

? · · ·• · ·• · ·

• · · ·» ·• · · ·

• ·» e ·

The Super NES video game machine which is
represented in block form in Figure 2 has only been
generally described herein. Further details
regarding the Super NES including PPU 24 may, for
example, be found in U.S. application Serial No.
07/651,265, entitled "Video Processing Apparatus
which was filed on April 10, 1991, which application
has been expressly incorporated herein fcy
reference. Still further details such as how
information is transferred between the Super K2; and
the game cartridge may be found in U.S. Application
Serial No. 07/749,530, filed on August 26, 1991,

&
■ X

ςν·

ΐιΠ

ή

4. ·"·

<3A
-24-

• · · ·I» ·« · · ·

entitled "Direct Memory Access Apparatus in Image
Processing System and External Storage Device Used
Therein" and in U.S. Application Serial No.
07/793,735, filed November 19, 1991, entitled,
"Mosaic Picture Display Apparatus and External
Storage Unit Used Therefor", which applications are
incorporated herein by reference.

In some applications, the inventors have
recognized that more information may need to be
transferred during vertical blanking using such host
processor DMA circuits than is actually possible.
Accordingly, it may be desirable to extend vertical
blanking time — even if it results in slightly
shrinking the picture size. By using this approach,
significant advantages are realized in terms of
processing speed and picture update rate.

Figure 3 shows a perspective view of an
exemplary mechanical design for a game cartridge
case 19 for housing the Mario chip and other
cartridge structure shown in Figure 1. Similarly,
Figure 3 shows the perspective view of an exemplary
exterior housing for a video game control deck 20
for housing the Super NES video game hardware shown
in Figure 2. The mechanical design for such video
game control deck 20 and associated removable game
cartridge 19 is shown in Figures 2-9 of U.S.
application Serial No. 07/748,938, filed on August
23, 1991, entitled, "TV Game Machine", which
application is hereby incorporated herein by
reference.

■> .(>
// u’

P' pi
'■ Pl

¢53
2-3

Figures 4A and 4B are a block diagram of the
Mario chip 2 shown in Figure 1. Focusing first on
the various buses shown in Figures 4A and 4B, the
instruction bus INSTR is an 8-bit bus that couples
instruction codes to various Mario chip components.
The X, Y and Z buses are 16-bit data buses. The HA
bus is a 24-bit host system address bus that, in the
presently preferred embodiment is coupled, in use,
to the Super NES address bus. The HD bus is an
8-bit host data bus which is coupled, in use, to the
Super NES data bus. The PC bus is a 16-bit bus
which couples the output of the Mario chip program
counter (i.e., register R15 in general register
block 76) to various system components. The ROM A
bus is a 20-bit ROM addr-ss bus. The ROM D bue is
an 8-bit ROM data bus. . ie RAM A bus i« a bit RAM
address bus. The RAMD_IN bus is an 8-bit RAM read
data bus, and RAMD_OUT iu an 8-bit RAM write data
bus.• · ·• · «• · · ·• · · ·• ····· The Mario chip and the Super NES share the
cartridge RAM 6, 8 which serves as the main
mechanism for passing data between the Mario chip
and the Super NES. The Super NES accesses the Mario
chip via the address and data buses HA and HD. The
Mario chip registers 76 are accessed by the Super
NES via the Super NES address bus HA.

The Super NES accesses the cartridge program
ROM 10 and RAM 6, 8 via the Mario chip 2. The ROM
controller 104 and the RAM controller 88 receive
memory access re1ated signals generated by the Super
NES to respectively initiate ROM and RAM memory

&+

accesses. By way of example, a RAM select signal
RAMCS is used by the Mario chip? 2 to confirm that
the Super NES is attempting to address the RAM.

The X, Y and Z buses shown in Figures 4A and 4B
are the internal Mario chip data buses. The X and Y
buses are source data buses and the Z data bus is a
destination bus. These buses carry 16 bits of
parallel data.

While executing instructions, the Mario chip 2
may p)ace the source of data for an instruction on
the X ind/or Y buses and the destination data on the
Z bus. For example, in executing an instruction
which adds the contents of two registers and places
the results in a third register, arithmetic and• · ·

ί.ί ί logic unit (ALU) 50 receives the contents of two• · · ·
’....* source registers via the X and Y bus couples the• · ·
'•L.· result to the Z bus (which in turn is coupled to a• · · ·
'····* specified register in block 76). Control signals• · ·
*· ’·! resulting from the decoding of an instruction

operation code by the instruction decoding circuitry
60 in the Mario chip 2 are coupled to the ALU 50 to·· · ·

*· *·: initiate an ADD operation.• · · ·• · ·• · ·
As noted with respect to the description z£

Figure 1, the Mario chip is coupled to a ROM bus, a
····’ RAM bus and a Super NES host bus which are capable
, .. of communicating signals in parallel. The Mario• · ·

chip 2 monitors the contrei address and data• · ·
’ ” signals transmitted via the host Super NES bus to

determine the operations which the host system is
performing. The cartridge ROM bus and the cartridge

-ftirh

• · ·• · ·■ ·· ·····• ·
• · I• · « • ·· ·• · ■ ·• · ·«··
• 9 9• · ·• · 9

t»··• · ·* » «

« ·• ····
• · · a« ♦• < · «

• · ·9 9 ·
»· 9• · I« ··

RAM bus may be accessed in parallel depending upon
the Super NES operation being performed at any given
time. In conventional Super NES game cartridges,
the host CPU address and data lines are coupled
directly to the RAM and ROM, such that the RAM and
ROM may not be accessed in parallel.

In accordance γ/ith one aspect of the present
invention, the Mario chip 2 physically separates the
ROM bus and the RAM bus as shown in Figure 1 from
the Super NES buses. The Mario chip 2 monitors the
signals transmitted on the Super NES buses and
determines what signals need to be coupled to the
ROM chip and the RAM chip via two separate ROM and
RAM buses which are not time shared. By separating
the ROM and RAM buses, the Mario chip 2 is able to
read from ROM and write to RAM simultaneously. In
this fashion, the Mario chip can efficiently operate
with inexpensive ROM chips which have access times
which are significantly slower than RAM access times
without having to wait for the ROM accesses to be
completed before accessing RAM.

Turning to Figure 4A, as noted above, the Mario
chip 2 is a fully programmable processor, and
includes an ALU 50. The ALU 50 executes all the
arithmetic functions embodied within the Mario chip
except for multiply operations which are handled by
multiplier 64 and certain pixel plotting operations
handled by plot hardware 52. Upon receipt of an
appropriate control signal from instruction decoder
60, the ALU 50 performs addition, subtraction,
EXCLUSIVE-OR, shift and other operations. As shown

-2Ό-

• ··• · ···· ·····• 9
• 999

9 99β · ·• •«ft• ••ft• ftft···
99 «• ft · ft ··

ft ft ft ·• ft ft• ft ft

ft ft• ft··· ft • ••ft• · « · ftft

« ··• · «ft ftft· ft♦ * ft,• ftft

in Figure 4A, ALU 50 receives information to be
operated on from the X, Y buses, performs the
operation initiated by a control signal received
from instruction decoder 60, and couples the results
of the operation to the Z bus. The ALU is described
in further detail below in conjunction with Figure 6.

The Mario chip 2 additionally includes special
purpose hardware to enable 3-D type special effects
and other graphic operations to be efficiently
performed so that video games utilizing these
features may be practically realized. In this
regard, the Mario chip 2 includes plot hardware 52
which assists in converting in real time from pixel
coordinate addressing to character map addressing of
the nature utilized in the Super NES.
Advantageously, the Mario chip may be programmed by
specifying X and Y coordinates which define the
location of each pixel on the display screen.

Thus, graphic operations are performed based on
a programmer specifying pixels and the plot hardware
circuit 52 on the· fly converts pixel specifications
into properly formatted character data. The
character data is then mapped into the desired place
for display in the Super NES video RAM 30 shown in
Figure 2. In this fashion, the Mario chip
programmer need only consider the Super NES video
RAM 30 as a bit map when in reality, it is a
character map.

The plot hardware 52 responds to various
plotting related instructions to permit programmable

29'

« · · ·• β« · · ·

• · ft

selection of an X and Y coordinate on the display
screen and a predetermined color for a particular
pixel and to plot corresponding pixels such that the
X and Y coordinate is converted into an address
which corresponds to a character definition of the
form which ie used to drive the Super NES video RAM
30.

The plot hardware 52 has associated data
latches which permit buffering of as much pixel data
as possible prior to writing to cartridge RAM to
minimize RAM data transactions. After the X and Y
coordinate data is converted and buffered in the
plot hardware 52, character definition data is then
transferred to the cartridge RAM.

The plot hardware 52 receives X, Y coordinate
data via a PLOT X register 56 and PLOT Y register
58, respectively. In the presently preferred
embodiment, the PLOT X and PLOT Y registers are not
separate registers (as shown in Figure 4A) but
rather are Mario chip general registers (e.g.,
registers Rl and R2 registers in register block 76
shown in Figure 4B).

The plot hardware 52 also receives pixel color
information via a color register 54. As will be
described further below, the color of each pixel
that is displayed is stored in an 8 x 8 register
matrix, with each pixel color specification
occupying a column of the matrix.

■3^·

The plot hardware 52 processes and couples the
character address and data associated with the X, Y
and color input to the character RAM 6, 8. The
character address is forwarded via output lines 53
to the RAM controller 88 and to a RAM address bus
RAM A. The character data is coupled to the
character RAM via output line 55, multiplexer 93 and
RAM data bus RAMD_OUT. The plot hardware 52 permits
pixels within a character to be addressed
individually, to thereby provide the programmer a
"virtual" bit map display system, while maintaining
compatibility with the Super NES character format.
The "virtual" bit map is held in the cartridge RAM
and is transferred to the Super NES video RAM 30 on
the completion of the display of each frame using,
for example, the DMA circuitry in the
above-identified application Serial no. 07/749,530.
The plot hardware 52 permits high speed individual
pixel control so that certain 3-D graphics effects
involving rotating and scaling objects become
practically realizable.

Because of the conversion from pixel to
character format, the plot hardware 52 also receives
information relating to other pixels in the vicinity
of the current pixel X, Y from a cartridge RAM 6, 8
via RAMD_in data latch 32 and input line 83. By
using previous pixel data retrieved from RAM 6, 8
and temporarily stored in the RAM data latches, ''he
number of writes to RAM may be minimized. The RAM
data latches 80, 84, and 86 shown in Figure 4A also
serve to buffer color data received regarding a
pixel which has been stored in multiple bit planes

3=5-

in cartridge RAM to provide plot hardware 52 with
such data.

RAM data latch 80 is coupled to the Super NES
data bus so that the Super NES can read the contents
of the data latch. RAM data latches 80, 82, 84, and
86 are controlled by the RAM controller 88. RAM
data latches 84 and 86 operate to receive data from
RAM 6, 8 and couple data from RAM 6, 8 to the
destination 2 bus for loading into a predetermined
register in register block 76. Additionally coupled
to RAM controller 88 is a latch 90 which buffers RAM
addresses. The address stored in latch 90 is
utilized by RAM controller 88 for addressing RAM 6,
8 via the RAM A bus. RAM controller 88 may also be
accessed by the Super NES via address bus HA.

The plot hardware 52 also responds to a READ
PIXEL instruction which reads the pixel color
information for a horizontal position defined by the
contents of register RI and the vertical position
defined by the contents of register R2 and stores
the result in a predetermined register in the
register block 76 via the destination Z bus and
output line 87. The PLOT hardware 52 is described
in further detail in conjunction with the
description of Figures 7, 8A, and 8B.

Pipeline buffer register 62 and an ALU
controller instruction decoder 60 are coupled to
instruction bus INSTR and operate to generate the
control signals CTL (utilized throughout the Mario
chip) to initiate operations in response to commands

an
-3*

placed on the instruction bus. The Mario chip 2 is
a pipelined microprocessor which fetches the next
instruction to be executed while it is executing the
current instruction. Pipeline register 62 stores
the next instruction(s) to be executed so as to
permit execution of instructions in one cycle, if
possible. The instructions which are placed on the
instruction bus are addressed by the contents of the
program counter stored in a register, which may, for
example, be register R15 in register block 76 shown
in Figure 4B.

The instructions executed by the Mario chip 2
may either be obtained from program ROM 10 rb shown
in Figure 1 or the Mario chip’s internal cache RAM
94 or from the cartridge RAM 6, Θ. If the program
is being executed out of ROM 10, the ROM controller
104 (shown in Figure 4B) will fetch the instruction
and place it on the Mario chip instruction bus
INSTR. If a program instruction is stored in the
cache RAM 94, then the instruction will be placed on
the instruction bus directly from cache RAM 94 via
cache RAM output bus 95.

The host CPU, i.e., the Super NES, is
programmed to allocate portions of the program ROM
10 for Mario chip program instructions. The Super
NES program commands the Mario chip to perform a
predetermined function and then provides the Mario
chip with the address in ROM 10 for accessing the
Mario chip program code. Pipeline register 62
fetches instructions one byte ahead of the
instruction being executed to provide the

:·■ J

c;··»

///

ee­

instruction decoder 60 with instruction related
information for the decoder to be able to anticipate
what is about to occur during program execution to
permit look ahead related processing. The decoding
and control circuitry in block 60 generates control
signals for commanding the ALU 50, plot hardware 52,
cache control 68, etc., to perform the operation
indicated by the instruction code being executed.

• · · · • ··»

• ·· ·• « • · · ·

• · ·» · ·* · β

The Mario chip also includes a high speed,
parallel multiplier 64 that is separate from ALU
50. The multiplier 64 in response to predetermined
instructions operates to multiply two 8-bit numbers
received from the X and Y source buses and load the
16-bit result onto the destination Z bus. This
multiply operation is performed in one cycle if
possible. Either number input to the multiplier 64
may be signed or unsigned. Multiplier 64 also is
capable of performing long multiply operations,
whereby two 16-bit numbers are multiplied to
generate a 32-bit result. The multiplier 64 also
includes associated partial product registers 66 to
store partial products generated during the
multiplication operation. The multiplier 64 is
enabled by a control signal from the instruction
decoder 60 when a multiply operation code is
decoded. The multiplier 64 will execute long
.multiply instructions involving the multiplication
of 16-bit words in a minimum of four clock cycles.

The long multiply instruction has a format:

, ·,* Ul ■
" // „

/

s s u ; ‘

52.
34-

• · ·• · ·• · · ·

• · »• · «• · · ■
• · · ··· · ι · ·• · ·

« · ·• · · ·

R4 (low word), DREG (high word) = Sreg * R6.
This instruction is executed to multiply the source
register by the contents of register R6 and store a
32-bit result in registers R4/DREG (low/high). The
multiply is signed and sets zero and sign flags on
the 32-bit result.

The operation takes place in accordance with
the following six steps:

Step 1: Unsigned multiply R4 [0...15] = SREG
[0...7] * R6 [0...7]

Step 2: X signed. R4 [0...15] = R4 [0...15] +
256 * SREG [8...15] * R6 [0...7]. Top eight
bits of the product are ignored, but carry from
addition preserved.

Step 3: X signed. R5 [0...15] = CY +
(R6[8...15] * SREG [0-7]) * 256; sign extended.

Step 4: X unsigned, Y signed. R4 [0...15] = R4
[0...15] + 256 * SREG [0...7] * R6 [8...15],
The top eight bits of the product are ignored,
but carry from the addition is preserved.

Step 5: Y signed . R5 [0...15] = R5 [0...15] +
CY + SREG [0...7] * R6 [8...15]) + 256; sign
extended.

Step 6: X, Y signed. R5 [0...15] = R5
[0...15] + RY [8...15] * R6 [8...15].

«, -i-.· ·

The multiplier 64 utilized in the present
exemplary embodiment may be, for example, of the
type described in Digital Computer Arithmetic, by
Cavanaugh, published by McGraw-Hill, 1984.

Turning to Figure 4B, cache controller 68
(which is shown in further detail in Figure 14)
permits a programmer to efficiently initiate loading
into cache RAM 94 the portion of the program desired
to be executed at high speed. Such "caching" is
typically utilized in executing small program loops
which occur frequently in graphics processing. The
Mario chip instruction set includes a "CACHE"
instruction. Any instrucxtions immediately following
the CACHE instruction is loaded into the cache RAM
until the cache RAM ie full. When the CACHE
instruction is executed, the current program counter
state is loaded into the cache haxse register 70.
Thus, the contents of the cache base register 70
defines the starting location at which caching has
been initiated.

Most instructions execute in one cycle.
Instructions coming from relatively slow external
memories like ROM 10 or RAM 6, 8 must be fetched
before they are executed. This will take an extra 6
or so cycles. To enhance program execution speed,
the ’cache’ RAM 94 that is inside the Mario chip
itself should be used.

Cache RAM 94 may be a 512-byte instruction
cache. This is a relatively small size compared to
the size of the average program, so the programmer

-‘'“Vi,
J)

Yk taf A Ci
β?

SH

must decide how best to utilize the cache memory
94. Any program loop that can fit into the 512
bytes cache size can run at full speed, one cycle
for both fetch and execute. Because of the split
busses, both ROM and RAM can be simultaneously
accessed while executing code from internal cache
94.

The cache RAM 94 may be advantageously used to
rotate a sprite by running a loop inside the cache
94 that would read the color of each pixel from ROM
10 while it is performing the rotation and scaling
calculations, while it is using the PLOT instruction
(to be described below) to write the pixel to RAM 6,
8. All that happens in parallel, giving very fast
throughput slowed down by the slowest operation.
The slowest operation is usually ROM data fetching,
which is why the Mario chip is designed to use
buffered access to ROM and RAM.

When compared with running from the relatively
slow ROM 10, a program will run about 6 times faster
from inside the cache RAM 94, but first it has to be
loaded from ROM into the cache 94. This is done by
placing an instruction at the start of any loop to
be cached. Only the first 512 bytes of the loop
will be cached, taken from the address of the CACHE
instruction. While executing the code for the first
iteration of the loop, the program will be coming
from ROM 10 and copied into cache RAM in 16-byte
chunks. All further iterations of the loop will
come from the cache RAM 94 instead of ROM 10.

"A.”' ' s
:>■ j

■, ζ /
•1 /Xi' A

57-

• · 9• · ft·· · ·

• ft ft• · 4• · ft ·• ·♦·• β • · ft ·

» * ft • · ft

CACHE instructions can be used liberally in
front of any repetitive program loop;. Only
subsequent iterations of a loop will benefit from
being in cache. If a program loop is bigger than
512 bytee and overflows the cache 94, it will still
work correctly, but only the first 512 bytes will
run from cache 94 and the remainder will run from
ROM 10 as usual. This gives a partial speed boost,
but is not ideal.

A cache tag bit register 72 which, in the
preferred embodiment, is part of the cache
controller 68 identifies the memory locations which
have been loaded in the cache RAM 94. The cache tag
bits permit the Mario chip to quickly determine
whether a program instruction is executable from the
faster cache RAM rather than from the program ROM
10. The cache RAM 94 may be accessed by the cache
controller 68 or the Super NES via the Super NES
address bus HA via multiplexer 96.

The cache controller 68 is coupled to the
program counter bus PC to load the cache base
register 70 and perform cache memory address
out-of-range checking operations.

Similar to the parallelism achievable in
reading from ROM 10, the Mario chip also provides a
way of writing to RAM 6, 8 in parallel. Whenever a
Mario register is written to RAM 6, 8, it will
initiate a separate RAM write circuit, e.g., in RAM
controller 88, to do the memory transaction. This
will take typically 6 cycles, but it will not delay

38-

the processor while it is doing so, provided the
programmer avoids doing another RAM transaction for
that time. For instance, it is faster to interleave
other processing in between each store instruction.
That way the RAH write circuit has time to do its
job. If two writes are used in a row, the second
one would delay the processor while the first one
being written.

For example (using instruct.ons from the instruction
set to be described below):

• · ·
• · «
• · · ·

« · · a
FROM R8 Store R8 into (R13)

« ■
« a a a

e ··
SM (R13)

• · ·
• · · e
• ·· ·

SM (R14) z Store RO into (R14)
• a

• »· ·
* · a

TO R1
• · ·

• a · FROM R2
ADD R3 z Performs:rl=r2+r3

• a · TO R4
• Λ ·
• ··
β · ·« FROM R5

• · ·
• · · ADD R6 z Performs:r4=r5+r6

• ·
'i a a a a
•
- a a · Notice that the two store instructions are
» ·· · close to each other. The second one will take

cycles longer because the RAM bus is busy trying to
complete the first store instruction.

A better way of writing the code that will run
faster would be to space out the two store
instructions with other useful code. For example:

FROM R8 ;Store R8 into (R13)
SM (R13)

·<

TO Rl
FROM R2
ADD R3 ;Performs:rl=r2+r3
TO R4
FROM R5
ADD R6 ; Performs: r4-~r5+r6
SM (R14) ;Store RO into (R14)

In this fashion, a few more instructions may be

• 00 ♦ · «··· ·····• ·«···

····• «···· ♦· ·

· ·• · · « ·····• β ··♦ 9

• ·• · · · ·
• 909» · · A 6

executed in parallel at the same time that the first
store instruction results in the writing to RAM.
Then the second store operation can be done a few
cycles later.

The instruction set described below includes a
fast instruction for writing back a register to the
last used RAM address. Thi3 allows for "bulk"
processing of data, by loading the value from RAM,
doing some processing on it, then storing it back
again fast.

Turning back, to Figure 4B, an immediate data
latch 74 is coupled to the instruction bus. This
data latch 74 permits the instruction itself to
provide the source of data so that no source
register need be specified by an instruction. The
output of the immediate data latch 74 is coupled to
the destination Z bus, which in turn is coupled to a
predetermined one of the registers in register block
76. The instruction decoding circuit 60 decodes an
"immediate" data instruction and initiates the
performance of the appropriate transfer to register
operation.

&
:1<3

fo V.

<»·.·/

4Θ-

The GET B register 98 shown in Figure 4B is
used in conjunction with the delayed/buffered read
operation described above. In this regard, given
the widespread use of relatively slow access time
ROMs, prior art processors have typically had to
wait until a data fetch is completed, whenever
executing a HOM. By utilizing the delayed/buffered
fetch mechanism described below, other operations
may be performed while the data fetch is
accomplished. In accordance with this mechanism, if
register R14 in register block 76 is accessed or

J.:”; modified in any way, ROM or RAM fetches are
·’’**· initiated automatically at the address identified by
·.;**· the contents of R14.
····• ♦···«

As indicated in Figure 4B, the register R14 is
coupled to ROM controller 104. Any time the
contents of register R14 is modified in any way, ROM• ♦ ·*. controller 104 operates to initiate a ROM access.

• If

*·«· Ϊ The results of accessing the ROM are loaded into the
GET B register 98 via multiplexer 102 which isI ·
coupled to the ROM data bus ROMD. Instructions• · · ·

····* identified below permit accessing the information
buffered in the GET B register 98. This information• · »

’··* is loaded onto the destination Z bus via multiplexer•« ·
• ’·· 100 and then into one of the registers in register

block 76.

In this fashion, if a data fetch from ROM is
known to take a predetermined number of processing
cycles, that fetch can be initiated and instead of
waiting without performing other operations, the
Mario chip can execute, for example, unrelated code

j(e ■' *» j/· *κ t' J
A z&

s°>
-«r

• 9 9
999 9····• ·

• · **·· ·♦ ···
• a

········• 999
9

• 999

4 9» · ·• · » · ·

·· · • ♦ t
♦ 99

• 999

·· · • · ·♦ 99····

99
• · (4 9 9 9 »«»$
• c

» ♦ * a

··• · (4 9 9 9 »«»$
• c

a ♦ * a

• 49
9

99

• 49
9

99

after such data fetch has been initiated. The GET B
register 98 may also be utilized tc store
information retrieved from RAM 6, 8 via multiplexer
102 as shown in Figure 4B.

Embodied within register block 76 are sixteen
16-bit registers (R0-R15). Registers R0-R13 are
general purpose registers (although some of these
registers are often used for special purposes to be
described below). As described above, register R14
is used as a pointer for reading memory, and, when
modified, a read cycle from ROM (or RAM) is
initiated. The byte read is stored in a temporary
buffer (GET B register 98) for later access by a GET
L or GET H command. Register R15 is the program
counter. At the start of each instruction it points
to the next instruction being fetched.

Register RO is a general purpose register,
which typically operates as an accumulator. It is
also the default source and destination register for
most single cycle instructions. If, for example,
the contents of RO and R4 are desired to be added
together it is only necessary to expresely specify
register R4.

Registers Rll, R12 and R13 are specially
utilized when a loop instruction is executed.
Register R13 stores an address of the instruction to
be executed at the top of the loop, and register R12
stores the number of times the loop is to be
executed. If the contents of register R12 is
non-zero, then the instruction at the address

uo
-42-

specified by the contents of R13 is loaded into the
program counter (R15) and executed. Register Rll
stores the address to fee returned to after the loop
is completed.

Register control logic 78 is coupled to
register block 76 and controls access to general
registers RO to R15. Depending upon the format of
the particular instruction being executed,
instruction decode logic 60 will specify one or more
registers R0-R15. Register control logic 78
specifies which register the next instruction to be
executed will need to utilize. The register control
logic 78 couples the outputs of the appropriate
register to the X and Y bus. Additionally, as
indicated by Figure 4B, the appropriate register
R0-R15 receives the information from the Z bus under
the control of register control 78.

ROM controller 104 upon receipt of an address
from either the Super NES address bus HA or the
Mario chip will access that address. ROM controller
104 is shown in further detail in Figure 13.
Accessed information from ROM 10 may be loaded into
the cache RAM 94 for fast instruction execution.
The ROM and RAM controllers 104, 108 both have bus
arbitration units which arbitrate between Super NES
and the Mario chip access attempts.

As will be described further below, the Mario
chip also utilizes status registers (e.g., within
register block 76 or in RAM 6, 8) which are
accessible by the Super NES CPU and which store

l_v\
49-

····• ·····• ··• · *·······«• ·····. ·· ♦• · · • · ·

«* · • ·• ·····»• · ·· 9

• 9999
9 ····
» 9····

• 9
9

flags for identifying status conditions such as 0
flag, carry flag, sign flag, overflow flag, "GO"
flag (where 1 indicates that the Mario chip is
running and 0 indicates that the Mario chip is
stopped); a ROM byte fetch-in-progress flag
(indicating that register R14 has been accessed);
various mode indicating flags including an ALT 1
flag, ALT 2 flag, immediate byte-low and immediate
byte-high flags, and flags indicating that both a
source and destination register has been set by a
"WITH" prefix command, and an interrupt flag.

The Mario chip represented in block diagram
form in Figures 4A and 4B is utilized by the Super
NES which turns the Mario chip on and off to perform
tasks many times a second. Initially, when the
Super NES is turned on, the game program stored in
ROM 10 is booted up. It is noted that prior to
execution of the game program by the Super NES and
Mario chip processors, the game cartridge is first
authenticated. By way of example only, such
authentication may take place by initially placing
the Super NES CPU in a reset state and executing
authenticating programs in authenticating processors
associated with the game cartridge and the Super NES
main control deck in accordance with the teachings
in U.S. Patent No. 4,799,635.,

The Mario chip is initially in a switched-off
state. At this point in time, the Super NES has
unrestricted access to the game cartridge program
ROM and the game cartridge RAM. When the Super NES
has need to use the Mario chip processing power to

l+2_
-44»

ft ft β··· ft····
• β
• · · ·• ··• · ft• ft ft ft
• ••ft• ft · • ft ft

ft ftft

9···• ftft

• ft ftft » ft•••ft

perform either graphics operations or mathematical
calculations, the Super NES stores the appropriate
data it desires the Mario chip to process in the
cartridge RAM (or in predetermined Mario registers)
and loads the Mario chip program counter with the
address of the Mario program to be executed. The
data to be processed by the Mario chip may be
predetermined X, Y coordinate data of objects which
must be rotated and enlarged or reduced. The Mario
chip can execute programs which implement algorithms
to manipulate the background and foreground of
sprites or moving objects of varying number. The
use of the Mario chip speed enhancing hardware and
software results in high speed performance of such
operations.

The use of the Mario chip to process sprites
can expand the capabilities of the overall video
game system considerably. For example, the Super
NES is limited to displaying 128 sprites per frame.
With the use of the Super Mario chip virtually
hundreds of sprites may be displayed and, for
example, rotated.

When the Mario chip has completed the function
requested by the Super NES, a STOP instruction is
executed, and an interrupt signal is generated and
transmitted to the Super NES to indicate that the
Mario chip has completed its operation — which, in
turn, indicates that it is ready to perform the next
task.

• 00 «····
• «

0000

• · 0
0000
0000

• 0
•000
·· 0

• β• · ·· ·
•••0

• 4····

*» 0
• 0 ·
• 00

4-3,
-45>

The Mario chip may be utilized to do small
tasks such as a high-speed multiplication task or
may be utilized to draw a screen full of sprites.
In either event, the Super NES is free to do
processing in parallel with the Mario chip provided
the Super NES stays off the RAM or ROM buses when
such buses are being used by the Mario chip. It is
noted that if the Super NES gives the Mario chip
control of both the RAM and ROM buses on a game
cartridge, the Super NES may, nevertheless, be able
to execute programs out of its working RAM 32 shown

3

in Figure 2. Thus, the throughput of the entire
system may be increased by copying a Super NES
program to be executed from program ROM to its
working RAM; while, at the same time, executing a
program by the Mario chip.

A flowchart is shown in Figure 5 which
represents the sequence of operations performed by a
”RUN MARIO" program executed by the host CPU (e.g.,
the Super NES CPU) for starting the Mario chip to
fetch and execute code from ROM at th® required
address. The routine represented by Figure 5 will
be typically executed by the Super NES CPU after
copying the routine from the program ROM 10 to its
working RAM 32 shown in Figure 2. This routine is
executed by the host CPU any time the Mario chip is
required to perform an operation.

As indicated in block 125 when the RUN MARIO
host CPU routine is executed, initialization
operations are performed including preserving the
Super NES registers. During the initialization

W-
4€*

step, this routine is copied from program ROM 10 to
the host CPU’s working RAM 32.

As indicated at block 127, the ROM 10 code bank
storing the Mario program code to be executed is
loaded in a Mario chip register. Additionally, the
actual address within the code bank is stored in a
Mario chip screen base register as indicated at
block 129.

Thereafter, as indicated in block 131, I/O
input/output modes are set in the Mario chip by
identifying whether 4, 16 or 256 color modes will be
used. These modes correspond to the color modes
with which the host CPU operates. Additionally, a
mode is set defining the height of the screen in
terms of number of characters that may be displayed.

Additionally, mode bits are set which give the
control of the ROM and RAM buses to the Mario chip.
Control of the ROM and RAM buses are separately
selectable so that the Mario chip may be set to a
mode where it has access to the ROM bus, the RAM
bus, or both. Thus, if the "Mario owner" mode is
set for both the ROM and the RAM, then the host CPU
cannot read or write from or to the ROM or RAM. It
is noted that, if the host CPU attempts to access
the program ROM while the Mario chip is using the
program ROM bus, a mechanism is provided whereby the
Mario chip returns dummy addresses to the Super
NES. The branching to such addresses will keep the
Super NES occupied until the Mario chip no longer
requires access to the cartridge ROM bus.

&

• ··• · ·• ·· ·• ·· ·• ·• · · ·

• · · ·• 4····«· ·

····• · ··· «

• · ·· ·
♦ *··

• 9
9999

As indicated at block 133, the Mario chip
begins operation after the Mario chip program
counter is loaded with an address which stores the
first instruction that the Mario routine must
execute.

The host CPU then waits for an interrupt signal
from the Mario chip (block 135). When an interrupt
signal is received, the Super NES is informed that
the Mario chip has completed its operation and has
stopped (block 137). If no such interrupt signal is
received, then the host CPU continues to wait for an
interrupt (block 135). The Super NES may, during
this time period, execute program code in parallel
with Mario chip operations by executing out of its
working RAM 32 shown in Figure 2.

The Super NES then checks the status register
(e.g., in the Mario chip register block 76) to
determine whether the Mario chip "GO" flag has been
set which indicates that the Mario chip is in
operation (137). Additionally, an interrupt flag is
set in the Mario chip status registers .to indicate
that the Mario chip is the source of the interrupt
signal received by the host CPU. Thus, after an
interrupt signal is received by the host CPU (135),
the appropriate Mario status register is tested to
determine whether the Mario chip is the scarce of
the interrupt (as opposed to the interrupt signal
being indicative, for example, of a vertical
blanking interval). If the Mario chip has stopped
(137), then the Mario owner mode bits for the RAM
and ROM are cleared and the Super NES has full

4β=

• · ·• « β
··«·• ·• · ··• ··• · ·····
• · · ··· · • « ·• β ·

«ϊβ«• · ··· ·

»»e ···*
• β · ·

» a·»··

access to the ROM and RAM. The Super NES exits the
routine (141) and returns to the point in its
program which it was executing prior to entering the
Run Mario routine.

When the CPU 22 game program has put the Mario
chip into ROM Mario owner mode, it must voluntarily
stop accessing the ROM. Whenever the CPU 22 needs
to access the ROM for some reason, it simply turns
ROM Mario owner mode off. The Mario chip will
automatically hold on when it next needs to access
the ROM until it is given ROM Mario owner mode back
again. If it was running from internal cache RAM
this may not be required at all.

If the Mario chip is in the Mario owner mode
for ROM. it is important that the CPU 22 game
program does not even try to read anything from
ROM. When any interrupt occurs, e.g., due to
vertical blanking, it causes an NMI, then the CPU 22
automatically tries to fetch its interrupt vectors
from the ROM. This is not desirable, because the
CPU 22 has explicitly told the Mario chip that it
will stay away from the ROM, and then an interrupt
occurs and it fetches from the ROM anyway. In this
situation, i.e., a ROM access from the CPU 22
despite being in the Mario owner mode will cause the
Mario chip to assume that this was an interrupt
vector request.

During an interrupt vector fetch in ROM Mario
owner mode, the Mario chip will relocate the
interrupt vectors into Super NES internal work RAM

Λν.'λ

LQ

32 at the bottom of the etack area. For instance,
if the usual interrupt vector was $OO:FFEC then it
will cause a JUMP to location $00:010c. Similarly,
all interrupt vectors from $00:ffeX cause the CPU 22
to JUMP to their corresponding locations at
$00:010X. This technique avoids the CPU 22 from
accessing the ROM 10 when its not supposed to, and
diverts it into on-board Super NES RAM 32 instead.
It is noted that the RAM based interrupt vectors
must contain jumps or branches to interrupt
handlers, i.e., actual code should be resident there
not simply vector addresses. When the Mario chip is
not in the Mario owner mode ROM, the normal ROM
interrupt vectors are in use, so it is advisable to
keep the same addresses pointed in these locations
to go to the same place as the RAM based interrupt
vectors.

4· ·• · ·• ···«··* ♦ a

• aaaa

• ••V
• a
····

INSTRUCTION SET

The Mario chip instruction set provides an
efficient means for programming high speed graphics
and other processing algorithms. A brief
description of certain instructions is set forth
below followed by a description of certain registers
used by various instructions. A detailed listing of
the instruction in the instruction set is also
included.

Instructions are 8-bit instructions and
typically execute in a single clock cycle. However,
the instructions can be modified by 8-bit prefix
instructions. The Mario chip instruction set

\ . Λ j

u-gr
so-

• »·

• · · ·• < • · · ·

• · · · fl• O · ·

includes a unique register override system allowing
the programmer to specify the destination and both
source registers in front of any instruction.
Without such "prefixed" overrides, instructions
would operate only on the accumulator. Thus, the
instruction set is a variable length instruction set
with a myriad of combinations. There are some basic
instructions that are one byte long which operate in
one cycle. By providing prefixed instructions, a
programmer can extend the power of the
instructions. An instruction can be 8, 16 or 24
bits, depending upon the programmer’s desire.

The Mario processor utilizes instructions to
initiate high speed, on-board cache RAM program
execution and delayed/buffered I/O to memory.
Graphics processing is efficiently enabled through
the use of a single cycle pixel plot command which
initiates operation using the pixel plot hardware
described above.

Prior to identifying the Mario instruction set,
various memory mapped registers which are set or
accessed by the processor in executing instructions
are described below. Initially, the status flag
register is identified. The status register is a
16-bit register and the flags associated with each
of the 16 bits in the register are identified below.

STATUS FLAGS REGISTER 16 BIT

bit Flags
0 - Reserved

z1 Zero flag

-y '
S A

ft- :.
Gt

33τ

2 c Carry flag
3 s Sign flag
4

5

6

v Overflow flag ([bit 14 into 15]
XOR [15 into Carry])

g Go flag: 1 Mario chip running
0 stopped

r (R14) ROM byte fetch in progress
7 - Reserved

The "GO" flag (bit 5) is a flag that is set to
a "1" state to indicate that the Mario chip is
running and to a "0" state to indicate that the
Mario chip has stopped (which results in the
generation of an interrupt signal which is coupled
to the Super NES). This flag bit is checked by the
Super NES processor. Bit 6 is set to indicate that
a ROM byte fetch is currently in progress. The GET
byte instruction listed below cannot be executed
until this flag is cleared which indicates that the
data fetch has been completed. These least
significant bits of the status register may be read
independently or in combination with the remaining 8
bits by either the Mario chip processor or the host
CPU. The most significant bits of the status flag
register are set by predetermined prefix
instructions and define various modes of instruction
interpretation.

bit Mode
8 altl Alter (ADD->ADC,SUB->SBC etc...)
9 alt2 Alter (ADD->ADD#,SUB->SUB# etc..)

. 'e

2 Ui'
Ol

S°
52-

10 il
11 ih

12 b

Immediate byte low (done before ih)
Immediate byte high (low byte
buffered until hi ready)

Both SReg & DReg set. Set by WITH
13 - Reserved
14 - Reserved
15 irg Interrupt flag

• · · ·• · · ·

• · ♦ · ·

In the ALT 1 mode identified above, an ADD
instruction will ts interpreted as an ADD WITH CARRY
and a SUBTRACT instruction will be interpreted as
SUBTRACT WITH CARRY. An instruction ALT 1 initiates
this mode.

An ALT 2 instruction modifies the
interpretation of the ADD instruction to ADD WITH
IMMEDIATE DATA and modifies, SUBTRACT to SUBTRACT
IMMEDIATE DATA. The "immediate" data is set forth
in the byte immediately following the instruction.
It is noted that the instruction ALT 3 will set both
bits 8 and 9 to the logic "1” level. Bits 10 and 11
are set depending upon whether the immediate data is
immediate high byte or immediate low byte. Bit 12
of the status register defines a ”b" mode, where
both source and destination register are set by the
use of a prefix instruction "WITH". Bit 15 of the
etatus register stores the Mario interrupt signal
which is set after the Mario chip has stopped
running.

wt v ol
■'·

S'!
53-

The Mario chip includes many registers in
addition to the above-described status register. As
described above, the Meirio chip includes 16
registers which are 16 bits wide as .•’ndicated in the
discussion of register block 76 in Figures 4A and
4B. Most of those registers are general purpose
registers and can be used for data or address
storage. As noted above, register R15 is, however,
utilized at all times as the program counter.
Typically, registers serve dual purposes and are
used for communication with the host CPU and for
controlling the executing program. Additionally,
other registers are uti,lized in the Mario chip, the
functions of which are set forth in the table below.

• · · ·• · · ·• ·• ■ · ·• · ·

• *» · • · ·« · ·

0 · ·<
• ·· 0

\ >··' -"v
A "

f ,(1/ ΰ·\/A P:
07

v /7/

2-2­
-54-

Register Special Function
rO Default DReg and SReg
rl X coord for PLOT instruction
r2 Y coord for PLOT instruction
r3 None
r4 Low word of LMULT instruction result
r5 None
r6 Word multiplier for FRMULT and LMULT

instructions
r7 Source 1 for MERGE instruction

• »·• · ·• · · ·• · · · r8 Source 2 for MERGE instruction
• ·• · · ·« · ·• · · r9 NONE
• · · ·« ·• · · · rlO NONE
«· ·• · ·• · · rll Link register for subroutine calls

rl2 Count for LOOP instruction
• · ·• · ·• · · rl3 Address for LOOP instruction to branch to
• · · ·• · ·• · « rl4 ROM address, when modified starts a byte

read from ROM
• · · « ·* • » · · rl5 Program counter

OTHER REGISTERS
β bit PCBANK Program code bank register
8 bit ROMBANKProgram data ROM bank register 64kbank
8 bit RAMBANKProgram data ROM bank register 64kbank
16 bit SCB Screen base
8 bit NBP Number of bit planes

<

155-

8 bit SCS Screen Column size select:
256,320,512,640,1024,1280
(screens 16 & 20 chars high, in
2,4 & 8 bit planes)

The Mario chip also includes a color mode CMODE
register. Four of the bits in this registers are
used in the exemplary embodiment to create the
special effects described below. The effect created
by setting a CMODE register bit varies based on
whether the 16 or 256 color resolution mode ha been
set as demonstrated in the examples below.

• · · ·

• · · ·

• ·

··

Λ,

-5€p

CMODE register bits are as follows:·

,/
CMOOEbltO ..

Plot colour 0 bit (the NOT Transparent bit) .

In 16 colour mode: -
H bit 0 a 1 and selected colour nibble = 0 then do not plot χ I

In 256 colour mode and bit 3 = 0: :. ■ .
■ HbrtO=1 and colour byte = 0 then do not plot · · i- ‘

In 253 colour mode and bit 3 = 1: - .
If bit 0 = 1 and oolour to n&bte » 0 then do not plot *

N.B. transparency ON «Q
transparency OFF = 1 '

Only use for transparency OFF Is to fill an area with 0 ·
(used for clearing the screen)

··: *: . CMODEbit 1 · '
<’«· Dithering bit
• · ·
*····’ Dithering in 16 cotour mode. (hVtaw nibble give two colours)
·”*? Lo nibble selected if (xpos XOR ypcs AND 1)=0
·?'·.: H*nibbl® selected if (xpos XOR ypos AND 1)=1

If transparency is on and selected colour nibble is zero
then do not plot

• 9 · ·

*· *·· Dithering "m 256 colour mode ehould have no effect• ·«« v

CMODEbit 2
High nibble colour bit *

. In 16 colour mode or 256 colour mode with CMOOE bit 3 aet ..
When this bit set COLOUR command seta lo nibble of colour ’

- register to hl nibble of soutcg byte " ·
. (Used to unpack 16 colour Sprites stored as hl ntoble of .

another sprite). ··-·..
if the to nibble of colour register is zero then do not ptot

• if transparency on. · .·

1
(

CMODE bR 3
Complicated bi .

In 258 colour mode only. When this bit « set the W nibble of the
colour I» locked and COLOUR oommands only change tha Io nibble.
Transparency is calculated from tevtntoble only.

In normal 256 colour mode transperency is calculated from
aS bits If on.

•; 18 colour mode example

• ·· a• ft··• «• · ··• ··• · ft ····■ ···• · • ••ft

* ·· • · ft ·

• · ··> · ····

tot rO.SCO
colour
tot r0.%0000
cmode

•tot tO^S7
colour
plot
tot rO,$3O
colour
plot

tot f0,%0001
cmode
tot rO,$4O
colour

■ plot

stop

; set colour SCO
;setO

; plots colour $7

; no plot, as colour Is $0
; (transparency on and bnfcble = 0}

; set bit 1

; plots colour $0
; (transparency off)

; 16 colour mode, bit 2 set example

tot rO.SCO . .
colour ;aet colour SCO

. ; 256 colour mode, bit 3 set example

tot rO.SCO
colour
tot ro.%1000
cmode
tot r0,$47
colour
plot
tot rO.SSO
x>?aur
plot

; set colour SCO
; set bit 3

; plots colour SC7

; no plot, as colour fa SCO
: (transparency on and lo nibble - 0)

58;

tot r0,%1001
cm ode
tot r0,S60
colour
plot

; set bit 3 and bit 1

; plots colour SCO
; (transparency off)

stop

; 256 colour mode, bit 3 and bi. 2 set example

····
I a·· · ·
• a a

I · ·
• a a

ibt rO.SCO
colour
Ibt rO,%11OO
cm ode
tot r0,$74
colour
plot
tot r0,$03
colour
plot

; se colour SCO
;se bit 3 and bit 2

; plots colour SC7

; no plot, as colour is SCO
; (transparency on and Io nibble « 0)

ibt r0,%1101 ; set bit 3, bit 2 and bit 1

• · ·
• ··
• a a a

cmode
tot rO,$G8
colour
plot ; plots colour SCO

; (transparency off)

•top

• a ·

a a · ·
» a
• a a a

S'?
•59-

• ··• · ···· 9
• 999• 9 9 999

• 99•9 «··· ·····« · ····
·· 99 9 9• » ·

• ·· ····

···«• « 9999

Many of the Mario chip registers have
associated special functions. As indicated in the
above table, if not otherwise specified, the system
defaults to register RO as the destination register
or source register required by a particular
instruction. Register RO is also utilized as the
ALU accumulator. The multiply instruction, as
indicated above, returns a 32 bit result. The least
significant 16 bits are stored in register in R4.
Register R6 is used in conjunction with a fractional
signed multiply instruction (FRMULT) and a long
multiply instruction (LMULT).

Registers R7 and R8 are utilized in executing a
MERGE instruction. The instruction takes two
predetermined registers (i.e., Register R7, R8) and
merges them together to form sprite coordinate
data. Such coordinate data is utilized in
addressing a ROM table for mapping a predetermined
sprite onto a predetermined polygon. This
instruction is an aid to efficiently performing
texture mapping operations by combining portions of
two registers to define the address of the color for
the next pixel which is to the contained within a
sprite mapped onto a polygon.

Registers Rll through R13 are used for
controlling subroutine execution. The register Rll
is used as a link register for subroutine calls and
stores the contents of the program counter plus
one. The content of register Rll defines the
address that must be accessed after a loop has been

-βθ-

• ··• · ···· ·····• ·····
• β·
• » « • · ο ·····• ·«····· · * ·

• ·• · · · ·
• · · · ♦ ·«·

*·• · • ·

completed. The register R12 is used to store a
count defining the number of times the loop is to be
executed. The address of the loop is stored in
register R13.

As indicated above, whenever the contents of
register R14 are modified, a byte is read from ROM
10 at the address stored in register R14. In this
fashion, a delayed or buffered READ operation is
implemented in conjunction with the GET byte
instructions identified below.

Turning to the "Other Registers" in the above
table, the program ROM location from which the
program is being executed is addressed using a 24
bit address. The least significant 16 bits of this
address are found in the program counter. The most
significant bits defining the program bank are
stored in a program code bank (PC Bank) register.

The ROM bank register (ROMBANK) stores the most
significant bits for permitting the Mario chip
processor to address program data stored in ROM 10
and is appended to the 16 bit ROM address stored in
register R14. Similarly, the RAM bank register
(RAMBANK) stores the higher order address bits for
permitting the Mario chip processor to access
program data in RAM. The contents of the RAM and
ROM bank register are used in association with Mario
chip ROM and RAM accessing instructions for
effectively extending the Mario processor’s
addressing range.

■et·

• · · ·» « • · ··> ··
«···

» a····

• · · • · ·• ·· ····

··• ····
• · · ·• ·

• ··
• * a• ·

The screen base register (SCB) is used to store
the address of the virtual bit map of sprites or
objects which are being created, and rotated,
enlarged or reduced. When a PLOT pixel instruction
is executed, the screen base register SCB stores the
address in the RAM which is accessed and to which
information is written.

Register NBP is utilized to store the number of
bit planes that are being used. It typically
indicates either the use of 2, 4, or 8 bit planes.
Additionally, a screen column size register SCS is
utilized to specify information regarding the
virtual bit map in terms of the number of characters
contained in a column therein.

The Mario chip instruction set is listed below
specifying the instruction mnemonic and the
associated function performed upon decoding the
associated instruction. Initially, brief comments
are set forth below for certain functions of an
associated instruction which are not believed to be
self explanatory.

The STOP instruction is executed when the Mario
chip has finished its operation and operates to set
the "GO" flag to zero while also generating any
interrupt signal to the host CPU.

The CACHE instruction operates to define the
portion of program ROM which is to be copied into
the Mario chip cache RAM and executed therefrom.
When the CACHE instruction is executed, the contents

Ao
-&2*

of the program counter is loaded into the cache base
register and the cache tags to be described below
are reset.

• · ·• » »··· ·• · · ·• «
• e ··• · ·• · ·• · · ·····• · • · · ·

·· · • · ·• · ·• · · ·• · ·• · ·

• · · »····

The Mario chip includes a series of delayed
branch instructions in which the instruction
following the branch is executed as indicated in the
table below. The address to which branching occurs
is relative to the contents of the program counter.
The instruction set includes a wide variety of
delayed branches based on the conditions outlined in
the table below.

The Mario chip includes a number of "prefix"
instructions, i.e., to/with/from. These prefix
instructions imply a data distribution for
subsequent instructions. For example, the "TO"
prefix sets the destination register (DReg) for the
next instruction. The ’FROM' prefix sets the source
register (SReg) for the next instruction. The
'WITH' prefix sets both.

Most instructions name a second source register
in the opcode. If SReg and DReg are not set by
prefix instructions they default to RO. Both SReg &
DReg are set to RO after every instruction that is
not a prefix instruction. If the Dreg is set to
R15, the program counter, thereby causing the next
instruction to store its contents in R15, then a one
cycle delayed branch is initiated.

Other prefix instructions set flags in the high
byte of the status register to change the operation

61
"63*

of following instruction. All non prefix
instructions clear the high byte of the status
word. The following are examples as to how
subsequent instructions may be modified through
prefix instructions.

lsr ;r0 = rO shift right 1
to r4
lsr ;r4 = rO shift right 1
from r4
ler ;r0 = r4 shift right 1

• ··• · ·• · · «····• ·• · « ·• ··• · ·····

alt 1
from r6
to r5
add r7 ;r5 = r6+r7 + carry
alt 1
with r3
add r3 ;r3 = r3+r3 + carry (6502 rol)

If the "b" flag is set in the status register,·· 0
’· ’·· the "TO" instruction is modified to operate as a• · fr ·
·· : "MOVE" instruction. The TO instruction specifies
.. the register to which the information is moved and
' the FROM instruction specifies the information
• ··*·· source.
• · ·
,,·· The STW instruction stores a particular word in• · ·
* *’ a buffer such that it is not necessary to wait until

a storage operation is completed before executing
the following instructions. In this fashion, the
use of a RAM that is slower than the processor
doesn't unnecessarily slow the processor down.

····Β «····

·· · • · · « ······• · ·»· ·

• ·• *··«
····• ·• · · «

ca
a a

The execution of the LOOP instruction operates
to decrement the contents of general register R12,
If the contents of R12 is non-zero, then a jump is
initiated to the address specified in R13.

Alt 1, Alt 2, and Alt 3 are prefix instructions
which set the above-mentioned flags in the status
register so as to cause executed instructions to be
interpreted in different fashions as indicated in
the table below.

The PLOT instruction identifies the X and Y
screen coordinates of the pixel to be plotted and
plots the color specified by the COLOR instruction
at screen location corresponding to the X and Y
coordinates (as indicated in registers RI and R2).
The PLOT pixel instruction includes an automatic
incrementation of the contents of RI which assists
in plotting horizontal lines at high speed and
eliminates including an extra increment instruction.

If the Alt 1 flag is set then the plot
instruction is interpreted as a READ PIXEL
instruction (RPIX). By executing the read pixel
instruction RPIX, the color of the pixel at the
specified screen location is read which also may be
used to flush unwanted pixel information from the
plot hardware.

The read pixel instruction RPIX in essence uses
the plot hardware in reverse to read from a matrix
of a character to determine the color of a
particular pixel that is specified in the

/ A

ft ·· ft ft <
• · · a

• · « ··· ·• ft··• ·• ft··• ft ·

• · ··• · ··· ·

• ·ft ft···ft ft···• · ····

• ·• · • ·• ft · • « · ft ··

4»3
•&s>

instruction. The COLOR instruction provides to the
color hardware, the color of the next pixel which
may be defined by the contents of a specified source
register.

The "CMODE" instruction sets the color mode and
can be used to generate different special effects as
demonstrated in the examples provided above. For
example, a dithering effect can be generated using
the CMODE instruction which alternates different
colors in alternate pixels to produce a shading
effect. The CMODE instruction can also be used to
control transparency so that the display of a sprite
will then block out the background display. The
transparency is determined by the setting of a color
mode related flag as shown in the above examples.

The instruction set ε. so includes a fractional
signed multiply which is used in calculations for
rotating polygons to determine gradients or slopes
of objects to be displayed.

The increment instruction, if used in
conjunction with register R14, will initiate a read
from ROM. The GETC instruction will take the byte
accessed from ROM and load it into the color
register.

The following table specifies an exemplary
Mario chip instruction set in accordance with the
presently preferred embodiment including those
instruction which have been discussed above.

Instruction Set.

Hex_____ Mnsmank_____ ΐΰ action

$00 STOP Stop mario chip and generate 65816 IRQ
g = 0

SOI NOP 1 cycle ,uo operation

$02

base)

CACHE Set cache base to pc & reset cache flags
. (only if pc is not equal to current cache

if cache base 0 rl5 then cache base = ri 5
reset cache flags

$03 LSR Logical shift right
DReg = SReg LSR 1

$04 ROL Rotate left with carry
DReg = SReg ROL 1

$05 nil BRA sbyte Delayed branch relative always
rl5 = rl5 + signed byte offset

$06 nn BGE sbyte De’ayed branch relative if greater than or
equitl
if (s X0R v) = 1 then rl5 = rI5 + signed

byte offset

$07 nn BLT sbyte Delayed branch relative if less than
if (s XOR v) = 0 then rl 5 = rl 5 + signed

byte offset

$08 nn RNE sbyte Delayed branch relative if equal
if z=l then rl5 = rl 5,+ signed byte offset

$09 nn BEQ sbyte Delayed branch relative if not equal

j

:<
ί

tiiO
¢.&Ύ'1"-/

ev-

if z=0 ±en r1 5 = r!5 + signed byte oFfset

SOann BPL sbyte Delayed branch relative if positive
if s=0 then rl5 - rl5 + signed byte offset

SObnn BMI sbyte Delayed branch relative if minus
if s=l then r!5 = rl5 + signed byte offset

SOc oa BCC sbyte Delayed branch relative if carry clear
if c=0 then rl5 » rl5 + signed byte offset

SOdnn BCS sbyte Delayed branch relative if carry set
if c=l then r 15 = rl5 + signed byte offset

SOe nn BVC sbyte Delayed branch relative if overflow deaf
if v=0 then rl5 = rl5 + signed byte offset

50f nn BVS sbyte Delayed branch relative if overflow set
if v=l then rl5 = rl5 + sig ted byte offset

SlO-Slf TO tO..rl5 (Prefix) set DReg to m
(destination register for next op)
DReg = ra

Sf b: MOVE ra = SReg (No flags set)

520-52? WTTHK)..rl5 (Prefix) set DReg&SReg to m
(sre & dest &. b flag)
DReg = ra
SReg = ra
b=l

$30-$3b 5TW (m) Store SReg at address in ra
RAM[m] = SReg (word Ια/hi buffered)
(Words on even addresses normally)

if altl: STB (ra) Store low byte of SReg at address in m
RAM[m] = SReg.l (byte buffered»

53c LOOP Decrement rl2 and if rl2o0 th^s»
delayed jump to address in rl 3
rl2 = rl2- 1

G>(=3

-&&·

$3d ALT1

- ;12o0 then rl5 = rl3
(T0/W3TH/FR0M ignored)

(Prefix) set altl flag
altl = 1

$3e AL.T2 (Prefix) set alt2 flag
alt2 = l

S3f ALT3

$4O-$4b LDW (rn)

if altl: LDB (m)

S4c PLOT

RAM)

if altl: RPDC -

$4d SWA?

S4e COLOUR

if altl: CMODE

(Prefix) set altl & alt2 flags
altl = 1
alt2= 1

Load DReg from address in rn
DReg = RAM[rn](word lo/hs waits)
(Words on even ?ddresses normally)
Load DReg (unsigned byte) from address
in rn
DReg.h = 0
DReg.l = RAM[m] (byte waits) .

Plot pixel a» »1x2 (x,y) and increment rl
(N.B. rl and r2 are not checked for being
on screen, and will draw anywhere in

plot(rlx2)
rl =rl+l
Read colour of pixel at rl.r2 (x.y>
DReg ax point(rl,r2)

Swap bytes
DReg.h = SReg.l
DReg.l = SReg.h

Set PLOT colour
plot colour = SReg
Set PLOT colour mode
plot colour mode = SReg

DReg = NOT SReg.

Gy

-69-

• «·• » ···· ·

• · ·• · ·
·· · ·• ·

$50-$5f ADD Σ0..Γ15
if altl: ADC
ifalt2: ADD
if aitl+alx2: ADC

$6O-$6f SUB rO..rl5
ifaltl: SBC
ifal£: SUB
if akl+alt2: CMP

$70 MERGE

$7l-$7f AND rl..rl5
ifaltl: BIC
ifalt2: AND
ifaltl+alt2: BIC

$80-$8f MULT r0..rl5
ifaltl: UMULT
if alt2: MULT '
if altl+alt2: UMULT

$90 SBK

$91-594 LINK 1..4

595: SEX

$96 ASR

DReg = SReg + m
DReg = SReg + m + c
DReg = SReg + #n
DReg = SReg + #n + c

DReg s SReg - rn
DReg = SReg - m - c
DReg =s SReg -#n
SReg - m (zero,sign,carry .overflow)

Merge high bytes of r7 and rS into DReg
DReg.h = r7.h
DReg.l =r8.h
Flags set on result: <·
s = bl5ORb7
v= bl4 OR b6 OR s
c=bl3 0R b5 ORv
z=bl2ORb4ORc

DReg = SReg AND m
DReg ss SReg AND NOT m
DReg = SReg AND #n
DReg = SReg AND NOT #n

DReg ss SReg * Rn (signed 8 by 8 bit.)
DReg = SReg * Rn (unsigned 8 by S bit)
DReg = SReg * #n (signed 8 by 8 hit)
DReg ss < Reg * #n (unsigned 8 by 8 bit)

Store SReg back to last RAM address used

Link return address to rl 1
rll s=rl5+1..4

Sign extend low byte to word
DReg.[bl5-b7]« SReg.[b71
DReg.l = SReg.l

Arithmetic shift right

£8

if alii: DIV2

S97 ROR

$98-$9d JMPr8.Jl3

if aid: LJMP

S9e LOB

S9f FMULT

if aid: LMULT

SaO-Saf nn EBT rO.-rlS, sbyte

ifaltl: LMS rO~fl5, byte

ifalt2: SMS rO. Jl5, byte

SbO-Sbf FROM iO..rl5

ifb: MOVES

DReg = SReg ASR I
Divide by 2 with rounding
DReg=SReg ASR 1
if DReg=-l then DReg=O

Rotate right with carry ·
DReg = SReg ROR 1 .

Jump to address in rn
rl5= rn (delayed branch)
Long jump to address in rn
(ROM Bank from SReg)
and reset cache
r!5 as rn (delayed branch)
Program ROM bank reg = SReg

Low byte
DReg.h = 0
DReg.l = SReg.l

Fractional signed multiply
DReg = (SReg * r6).hw
(signed 16 bv 16 bit multiply)
c = (SR eg) * r6).bl5
Long signed multiply
DReg = (SReg * r6).hw
(signed 16 by 16 bit multiply)
r4 = (SReg *r6).lw
c = (SReg) · r6).bl5

Load rn with sign extended byte
rn = immediate byte (sign extended)
Load rn from absolute shifted byte address
m=RAM[byte«l] (word data)
Store rn to absolute shifted byte address
RAM[byte«l]=m (word data)

(Prefix) Set SReg = rn
SReg = m
DReg= m

$cO HIB

(zero,sign&overflow(sign lo byte) flags)

High byte
DReg-h = 0
DRcg.l = SReg.l

k · ·
k · «• · · ·

• · · ·• · ····

Scl-$cf 0Rrl~rl5
ifaltl: XOR
ifalt2: OR
if altl+alt2: XOR

SdG-Sde INC rO.^14

Sdf GETC
ifalt2: RAMB
if alti+alt2: ROMB

SeO-See DEC r0..rl4

Sef GETB

ifaltl: GETBH

ifaltl: GETBL

if altl+alt2: GETBS ‘

DReg = SReg OR Rd
DReg = SReg XOR Rd
DReg = SReg OR #n
DReg = SReg XOR#n

Increment rn
rn sm+l
(TO/WITH/FROM ignored)

Get byte from ROM buffer to PLOT colour
RAM data bank reg = SReg
ROM data bank reg = SReg

Decrement m
rn = m-l
(TO/WITH/FROM ignored)

Get unsigned byte from ROM buffer to Dreg
DReg = ROM buffer byte, zero extended
Get from ROM buffer to high byte of Dreg
DReg = ROM buffer byte, merge with low
DReg» (SReg & SFF) + (byte«Si
(use WITH)
Get frora ROM buffer to low byte of Dreg
DReg s ROM buffer byte, merge with high
(use WITH)
Get signed byte from ROM buffer to Dreg
DReg = ROM buffer byte, sign extended

SfO-Sff nnnnlWT rO..rl5. word Load immediate word to m
m = immediate word (buffered)

ifaltl: LM rO.jrlS. word Load m from absolute word address
rn = RAMfword addr] (word data)

if alt2: SM r0..rl5. word Store m to absolute word address

7o
73

Figures 6 through 17 show the block diagram
depicted component parts of Figures 4A and 4B in
further detail. In order to more clearly present
the unique features of the present invention,
circuit details which are believed to be
conventional or apparent to those skilled in the art
and which tend to obfuscate these unique features
are not shown in the figures which follow.

An exemplary arithmetic and logic unit which
may be used as ALU unit 50 is shown in Figure 6.
The ALU 50, as shown in Figure 4A and Figure 6, is
coupled to X, Y, and Z buses. Thus, the Mario chip
general registers RO to R15 are coupled to the ALU.

The ALU 50 performs addition and subtraction
functions via a 16 bit adder/subtractor 152. The
ALU 50 also includes conventional "AND" logic
circuitry 154, "OR" logic circuitry 156, and
"EXCLUSIVE OR" logic circuitry 158.

The ALU also includes conventional shift
function circuitry, in which any carry bit is
shifted into the most significant bit position and
the result coupled to one input of multiplexer 164
via line 160. Additionally, ALU 50 performs
conventional byte swap operations whereby the least
significant byte and the most significant byte
carried on the bus may be swapped and the result
coupled to multiplexer 164 on line 162. The X and Y
buses are coupled to circuits 152, 154, 156 and 158
as shown in Figure 6.

7/
-76»

The output from each of the adder/subtractor
152, circuits 154, 156, 158, the shift output, and
swap function output is coupled to the 16 bit, six
input-to-one "result" multiplexer 164. Depending
upon the instruction that is deco,’id, the
appropriate result is output to the destination bus
Z.

··«·• « • · · ·

• · · ·• « ····• · ·

• · · Λ
• e

• · « ·
• a····

• ·
« · • ·

The adder/subtractor 152 in addition to
receiving the 16 bits from the X bus also receives
information being forwarded on the Y bus or the
information in the instruction itself depending upon
the instruction decoder input to multiplexer 150.

ALU 50 additionally includes a CPU flag
generation circuit 166. The CPU flag circuit 168
generates zero overflow, sign, and carry signals for
loading into at least one flag register within
circuit 166. The CPU flags may be set from the
instruction decoding circuit 60 which decodes the
carry enable, zero enable, sign enable and overflow
enable signals generated by instructions, which
cause flags to be set depending upon the
corresponding condition as determined by
adder/subtractor 152. The flags may also be set
based on the contents of the destination (or result)
bus Z which are input to flag circuit 166. Flags
are used, for example, to trigger conditional
branching operations based on a wide range of
conditions.

Figures 7, 8A, and 8B shows the pixel plot
circuitry (52, 54, 56, and 58) shown in Figure 4A in

« 1

Z2
-Ξ4·

• · ·• · ···· ·*«··• ·• · · ·
• · · ·····• ·····• · ·

• · · β
• ·

• · · ·» '• · · ·

further detail. This circuitry executes the PLOT
command which takes a specified X coordinate and Y
coordinate and plots a pixel at those screen
coordinates in the color specified by the contents
of the color register 54 which is loaded by a COLOR
command.

As noted above, the Super NES utilizes a
character mapped display screen. The plot hardware
operates to convert pixel coordinate address data
into character mapped address data.

The Super NES characters are defined in bit
planes. Characters can have either 2, 4, or 8 bit
planes for defining 4, 16, or 256 colors. Each byte
of the character definition includes a bit plane of
one pixel row of the character. The pixels are
defined left to right, high bit to low bit. For a
256 color mode of operation, there are 8 RAM
locations which need to be updated.

The pixel plot hardware includes a local
buffering mechanism including a color matrix 206
which stores all the bits in a particular byte to be
displayed since all such bits may ultimately need to
be updated. A bit plane counter 208 is coupled to
the color matrix circuit 208. The pixel coordinates
are loaded into plot X and plot Y registers 202, 204
from the X and Y buses. In the present exemplary
embodiment, general registers Rl and R2 are used as
the plot X register 202 and the plot Y register 204
shown in Figure 7. These registers receive the X

rs
-*5-

• · ···· ·····• ·····• ··• · ··· · ·····• · • · · ·• · · • · ·

« · · · ·
• · · ·

• ·
• · · • · ·

and Y coordinates of the pixel to be plotted as
specified by the PLOT command.

The plot X and plot Y registers 202, 204 are
coupled to full and half adder based character
address calculating circuitry which outputs on
address to a 2 position barrel shifting circuit 214
which, in turn, is coupled to a plot address
register 216 and an address comparator 218. The
three least significant bits of the plot X register
are coupled to ?emultiplexer 212 which, in turn, is
coupled to a bit pending register 210.

Plot controller 200 shown in Figure 8A receives
signals indicating that a PLOT pixel (PLOT) or READ
pixel (RPIX) command has been decoded as well as
other control signals described below. Plot
controller 200 generates plot circuit control
signals used in the manner set forth below.

As indicated above, the plot control circuit
200 generates control signals utilized within the
pixel plot hardware 52. As indicated in Figure 8A,
the pixel control circuit 200 receives the output
from the bit pending register 210 which output is
coupled to the pixel control circuit 200 through AND
gate 201. If all eight bits of the bit pending
register 210 are set, the pixel control logic 200 is
informed that a reading cycle may be skipped and the
information in the color matrix 206 may be written
out to RAM.

• · a ·
• β a

• a ·

• · · 9
• · 9• · ·

• ·• ♦♦«·
• · · ·• ·
• ••a

• · ·
9 9 ·• ·« « ·• · ·

• ·• ♦♦«·
• · · ·• · ····

• · ·
• 9 ·• ·« « ·• · ·

The pixel control circuit 200 is also
responsive to the PLOT command to initiate its
operation. The pixel control logic 200 also
responds to the READ pixel command RPIX to initiate
virtually identical operations, except that new
information is not written into the color matrix 206
for outputting to RAM. As noted above, the READ
pixel command is executed if there is a need to know
the color of a particular pixel on the screen and is
also used to flush out the existing information in
the color matrix 206.

The controller 200 also receives a RAM done
control signal RAMDONE, which indicates that the RAM
access has been completed. The RAM done signal, as
noted above, is also used to increment the bit plane
counter 208, which identifies a bit plane in the
color matrix 206. The plot controller 200 also
receives the PLEQ signal from address comparator
218, which indicates that there has been an address
match and there is no need to write out the contents
of the color matrix 206 to RAM, to thereby indicate
that updating should continue with respect to the
current color matrix contents. The plot controller
200 also receive the screen mode SCR.MD control
signal which informs the plot controller 200 as to
how many bytes must be read and written.

The plot control circuit 200 generates a dump
control signal DUMP referred to in conjunction with
Figures 7 and 8B which causes the contents of the
color matrix 206 to be buffered in its second
buffering section. The controller 200 additionally

• ft··
» t• · · ·

• · · ·• « 1 ft ■ *

• · · • ftft
• · ft « ft ftft

9 ft• ft ft ft ft ft • ft ftft• ft• ·· ft

ft ftft • ft ftft ft• ft ft ft ··• ftft

» T(~rFFT

generates a clear bit pending register signal CLRPND
and a load bit pending register control signal LDPND
and couples such signals to the bit pending register
210. Additionally, the controller 200 generates the
LDPIX and BPR control signals associated with the
color matrix elements described in conjunction with
Figure 8B.

The decoding of the PLOT command by the
instruction decoder and the PLOT signal input to the
plot controller 200 initiates the generation of the
load pending signal LDPND presuming that the pixel
plot hardware is not otherwise busy. The LDPND
signal is coupled to the bit pending register 210 to
enable the loading of the data into the bit pending
register 210 from the demultiplexer 212. The clear
pending signal CLRPND is generated in response to
the RAM done signal RAMDONE which indicates that the
pending data has been written out to RAM.
Thereafter, the bit pending register is freed for
the next pixel plot information.

A timing diagram depicting the relationship
between the signals received by the plot controller
200, various address and data signals, other related
control signals and the plot controller generated
output control signals described above are shown in
Figure 8C. Exemplary address value, data value,
etc., are shown for purposes of illustration only.

The plot hardware 52 operates as follows. When
the plot controller 200 determines that the plot
hardware 52 is not busy, the contents of the color

Ύ-6
—78-

• ···• « r · · t• ··• · β ·· · 9····• . ·· · ··· e • · ·• ··

• u ·
« · ·& ··
• ere• · 9*· ·

·*• ···«
0···• · *» · · *

• · a• · «.« ··· · • · ·• ··

register 54 shown in Figure 4A is loaded into a
horizontal row of the 8 by 8 color matrix circuit
205. Color matrix 200 is loaded by rows and read
out by columns. The contents of the color register
54 are updated by a COLOR command. The color
register 54 is the register through which any
subsequent PLOT command will load color data into
the color matrix.

The vertical position in the color matrix 206
to which the color register bits are loaded is
determined by the three least significant bits
stored in the plot X register 202. Thus, the three
least significant bits of the plotting address
define a row of bits which is to be updated in the
color matrix 206.

Bit pending register 210 is used to record
which particular bits of the section of the screen
character is being updated. The register 210
include 16 register flags which indicate that bits
have been written into the associated portion of the
screen. The bit pending register 210 is loaded in
response to a signal LDPND and cleared by a signal
CLRPND generated by the plot controller 210.

If a subsequent plot command is to be executed
for updating the screen map in the same area, the
operation for a given bit is repeated together with
additional color data corresponding to a pixel which
is loaded into the 8 by 8 color matrix 206. Another
bit is then set into bit pending register 210 via
the least significant bits of the plot address

| -J
i c2i ϊ \

VV. 1
I

~~Π-79>

stored in the plot X register 20,2. A particular bit
is loaded into the bit pending register 210 via a 3
to 8 demultiplexer 212 which is coupled to plot X
register 202. If the pixel to be updated is more
than 8 pixels away horizontally or if it occupies a
different vertical position, then the data which has
been written into matrix 206 must be read out to RAM
6 (or 8). The color matrix 206 is thereafter free
to receive new color data. Until a subsequent plot
command is received which requires writing to PAM,
the current content of color matrix 206 is buffered
within the pixel plotter hardware, e.g., within the
color matrix 206.

When data from the color matrix 206 is written
to RAM 6 or 8, address transformation calculations
are made to convert the X, Y coordinate to a RAM
address by using the logic gates, full and half
adder circuits of the type shown in Figure 7. The
actual address calculation is to be made in
accordance w th the explanation and exemplary code
set forth below. Such calculations will vary
depending upon whether 4, 16, or 256 color mode is
being used. Exemplary calculations are given for
the 256 color mode.

These 256 color characters have 4 blocks of 16
bytes, each defining pairs of bit planes for a total
of 54 bytes.

A bit map is constructed by placing a unique
character on every position of the required screen
area. When plotting in association with the Super

—ft Π-L tJXr*

NES, it is best to organize the characters in
columns.

eg. (128 pixel high screen)
Char numbers

0 16 32
1 17 33 ...
2 18 24 ...

15 31 47 ...

The Super NES is not limited to 256 characters,
so bit map size is mainly constrained by memory and
DMA transfer time. The Mario chip is able to plo%
on, for example, 128 and 160 pixel high screens.
The maximum screen width is 32 characters or 256
pixels.

The following algorithm exemplifies how pixel
plotting is controlled using a virtual bit map
organized in columns.

First Calculate a pixel mask for all bit
planes, from least '.significant 3 bits of x coord.

Mask
%10000000
%01000000

%00000001

Pixel num.
0
1

7

~Ί<=)
84-

Next Calculate offset down column using y
coordinate with low 3 bits removed, to give
characters down column, & then multiply by size of
character.

Screen colors
4
16

256

Character size in bytes
16
32
64

Next Calculate offset of top of character
column from x coordinate with low 3 bits removed,
multiplied by column size. Column size is number of
characters in column multiplied by character size.• ♦ ·• · ·• · « ·• · · ·• ·• · · ·• · · Normal column size• · · ·*....· Chars high

16 20
4 256 byte 320 byte
colors 16 512 byte 640
256 1024 byte 1280 byte

The low 3 bits of the y coordinate give byte
offset down the character. The total of all offsets
plus pointer to current bit map gives address of
byte holding first bit plane of pixel. Following
bit planes are alternately 1 byte on, then 15 bytea
on from the last. Pixel bits can then be set or
cleared using the pixel mask. The bit in each bit
plane is set or cleared to the state of the

82*

corresponding bit in the color number stored in the
color register 54 required for the pixel.

• · · ■ ·• · · ·• · · ·

• · · · · « • · · ·« ·

-83-

EXAMPLE CODS

;Plot on 4 bit plan·· in 65816 coda, as used in our game
deao. . · . *
;The routine is mostly table driven.

./Registers Λ,Χ and ¥ are 16 bit. ,
SetColour .
/Get colour and double

Ida Colour
asl a
tax

• ft ·
ft · ft ft

• · ft · ft
• · · ·• ft• ft · ft

/set colour mask for bit plaree 0 and 1
• Ida maskltab,x

sta maskl

/set colour mask for bit planes 2 and 3
Ida aask2tab,x
sta aask2

rts

ft ft ft ft ft ft

//
'••4
V ./

-64-

Plot '
;Get horizontal £ vertical coords

; double both and move to Y 6 X rag·
Ida plotxl .
asl a
tay jY is x coord * 2
Ida plotyl
asl a
tax ?X is y coord * 2

jGet offset down column
' 'Ida pyoftab,x

/Add st«.rt of ooluan offset
clc

·. adc pxoftab,y

.* /Add double buffer pointer (select bitmap)·, clc
* adc drawmap

tax
• ·

** 1 X ie offset of vord holding required pixel from
bitmapbase.
ί Y is x coord of pixel * 2

Έ3
-©S'

/Do bit -planes 0 and 1

lda.l
and
sta
Ida
and
ora
sta.l

bxfc»apbase,x /get word holding pixel
pbxttabn,y /aask out old pixel colourpmask ·
aaakl /Mask colour and ’
pbittab,y /pixel Bask together
pmask /join with other pixels

bitmzabase,x /store to bitmap .

;Do bit planes 2 and 3

lda.l bitmapbase+16,x
• · · * • · · and pbittabn,y• · · ·

• · · · sta preask• ····· Ida mask2 *• · ·• · · and pbittab,y
···· ora pmask• *• · · ·
• · · sta.l bitnapbase+ΐδ,χ
» ··

rts

/256 word table of pairs of pixel bit masks .
pbittab

rept 32 znum_col
dw $8080,$4040,$2020,$1010,$0808,$0404,$0202, $0101
endr ·

/table above with words inverted
pbittabn

rept 32 ;rum_col
dw $7f7f,-$4040,-$2020,-$1010,~$80β.-$404,-$202,-$

101 ‘
endr *

..
:ir> i.·Έ rf.U rf-

V%
4,

Ci,

<&/-
-8β-

I colour Masks for bib planes 0 ί 1 (colours 0* to IS) ·
maskltab

dw $0000 ,$00££,$f£00,$££££,$0000,$00ff,$ff£00,$ff£f dw $0000,$00£f,$££00,$£iff,$0000,$00ff,$££00,$£fff
/colour Masks for bit planec a ft 3 (colours 0 to 15)
ma sk2 tab. . ■

dw $0000,$0000,$0000,$0000,$00f£,$00ff,$00ff,$00f£ • dw $££00,$ff00,$££00,$f£00,$££££,$ffff,$££££, $££££

col si2e equ Humber char_rows * B * Number bit_plan«s
» (16) (4)

/Offset to start of char column table
pxoftab
temp «■ 0

rept 32 /number of char columns
; dw temp, temp, temp, temp, temp, temp, temp, tamp··· ·
···· e ·tamp — temp+col__Bize

• ··• · · ·
·· · · «.... endr• ·• · · ·
//./. /offset down column table

* *’ pyoftab

temp - 0
• · ·

*· ’·· rept 16 /Number of char rows
: dw temp

dv temp+2
w dw · temp+4
:*·*·· dw temp+6
.····. dw temp+8
........... dw temp+10

dw teap+12 ,.
.·.**. dw temp+14

-8^

Turning back to Figure 7 in more detail, the X
and Y coordinates on the screen defining the
position of the pixel to be plotted is loaded into
PLOT X and Y registers 202 and 204 (which registers
may actually be the R1 and R2 registers in register
block 76). The least significant three bits of the
plotting address loaded into the PLOT X register 202
define which bit within a bit plane byte is to be
written to by the specified X and Y coordinate. The
contents of the accumulator RO is loaded to the
column of the color matrix 206 selected by the least
significant bits of plot X register 202.

If the plot X register 202 is 0, then the least
significant bit will be updated in each of the 8
bits defining the pixel. With plot X register 202

·""· being 0, the 3 to 8 demultiplexer 212 will set the
least significant bit and in the bit pending

·.’**’ register 210 to a logical "1".
• · ·« β ·

The bit pending register 210 is utilized by the
RAM controller 88 to indicate gaps which do not need
to be written out from RAM since the corresponding
bits in bit pending register 210 indicate that no
modification is required.

The bit pending register 210 operates as a
pixel mask buffer to prevent overwriting new data
from RAM, if such new data is not desired. In order
to perform this function, the contents of the bit
pending register 210 as indicated in Figure 7 is
coupled as an input to the color matrix circuit

-β8-

• · · ·• a• · · ·a · ·
» · a• · · ·• · · · i «• · · ·

• · · • · ·• · ·• · · ·• · ·

• · · ·I ·• ·· ·

• ·
• a
• ·• · · • · «• · ·

If the BIT_FENDING register 210 is zero, the
screen address of the pixel is computed, and loaded
into the a plot address register 216 and the pixel
position within the byte is used to set the same bit
in the BIT_PENDING register 210. If the BIT_PENDING
register 210 is non-zero, then the BUSY flag is set.

If the new computed address equals the contents
of the PL0T_ADDR register 216, then the new pixel
bit position is set within the BIT_PENDING register
210 and the BUSY flag is reset.

If the new address differs from the contents of
the PLOT_ADDR register, then the following steps are
taken:

Step 1 If the BIT__PENDING register 210 contains
FFh then go directly to step 3.

Step 2 Read byte from RAM at PLOT_ADDR + scr.
base into a temporary data buffer, PLOT_BUFF.

Step 3. If the bits in the data buff masked by
the BIT_PEND register 210 are all equal to row 0 of
the PLOT_COLOR register array, then go straight to
Step 5.

Step 4. Write row 0 of the PL0T_C0L0R register
array into all the bits in PLOT_BUFF enabled by the
BIT_PENDING register. Write data_buff back to RAM
at PLOT_ADDR.

S783-

Step 5. Do the same operation (PLOT_ADDR + 1) and
row 1 of the PLOT_COLOR register array.

Step 6. If 8 or 256 color mode, do the same
operation on (PLOT_ADDR+ 16) and row 2 of the
PLOT_COLOR register array.

continue until all color bits are updated.

The contents of the plot X and plot Y register
202, 204 are processed by the full adder and half
adder circuitry represented in Figure 7. The
configuration of full and half adders FA and HA and
the associated logic circuitry have been simplified
for the purposes of the Figure 7 block diagram. The
address calculation may be accomplished as follows:

Address = scr_base + 2 * y[0..2] +
(y[3..7] + x[3..7] * 16 + ((x[3..7] * 4)

&& scr_ht)
* char siz.

The middle term is:

• · · · ft ·• · · ·
x7

x7 x6 x5

y7 ye
x6 x5 x4
x4 x3 0

y5 y4 y3
x3 0 0
0 0 0

px9 px8 px7 px6 px5 px4 px3 px2 pxl pxO

····• e• · · «

····• «·· β ·• · · • · ·• · ·

• · » ·• · «·» «

fc · · ·» · ····

9 99y 9 99 ··· ·fc · ·• 9 9

■^<2
-90==

to thereby generate a 10 bit partial result
px(0..9]; using, for example, 6 full adders and 4
half adders.

This result is fed into a 12 x 3 way
multiplexer controlled by the char_size value in
order to shift the partial result into the correct
precision for the screen mode selected. This
combined with the y lower bits yl0..21 forms a 16
bit screen address. To complete the address
calculation, this is then added to the screen_base
value scr{9..22] which allows the screen to be
placed on lk boundaries.

This address is then coupled to a two position
barrel shifter 214 which operates to multiply the
address information input thereto by 1 or 2 or 4 to
correspond to whether 4, 16, or 256 color resolution
has been selected.

The output of the shift circuit 214 is coupled
to a plot address register 216 which serves as a
buffer storage for the RAM address. The address
needs to be buffered since after the plot command is
executed, the contents of registers Rl and R2, i.e.,
plot X and plot Y registers, may change.

The address comparator 218 compares the new
address determined by the plot hardware as output
from shift circuit 214 with the old address Btored
in the plot address register 216. If the address ie
different, then the address must be written out to
RAM. The addrees comparator 218 generates a control

? 4
..,/

*· >3
C/7

&

-99?-

• · · ·· r ····• ··• · · ·· · ·• · · ·• ··· · ·
·· ·

• · t• · ·

9· ·
• 9 9

« 99

9999

9999 • « ···»

• r

··

signal PLEQ (which is coupled to plot controller
200) if the plot address stored in address register
216 is equal to the output of shifting circuit 214.

Turning back to the color matrix 206, as noted
above, color matrix 206 is read out in columns. A
bit plane counter 208 is coupled to the color matrix
206 and defines which column is to be read out. The
bit plane counter 208 is coupled to RAM controller
88 and when a RAM operation is completed, the RAM
controller 88 generates a signal which increments
bit plane counter 208.

Color matrix 206 includes an array of elements
such as the one shown in Figure 8B. There are 64
such elements in one matrix element of the 8 by 8
matrix 206. When the plot command is decoded,
controller 200 couples instruction control signal
LDPIX to latch 220 to enable the latch to be loaded
with color data COL from the color register 54. The
generation of the control signal DUMP by controller
200 indicates that the first level of buffering
within the color matrix 206 is completed and the
data needs to be output to the screen. Once the
DUMP signal is generated, the data stored in latch
220 is coupled to gating circuitry 226 and to latch
228. When the DUMP signal is actively coupled to
gating circuitry 226, that gating circuitry couples
the data to latch 228. At the same time, gate 224
is deactivated, which in turn prevents the feedback
loop from the non-inverting output of latch 228 from
maintaining storage of the previous stored data.

So
-9ik

• · · • ·• · ·• · · ·• · · ·• ·· • ·• · · · • · · ·• · · ·

• · · • ·• · ·• · · ·• · · ·• ·· • ·• · · · • · · ·• · · ·

····• ·• · 9
····• ·• · 9

• · ·• · ·

When data is read in from RAM to fill in data
gaps, control signal BPR provides a zero input to
gate 222 and the LDRAM signal will be in a zero
state. Under these conditions, data input from the
RAMD input will pass through the gating circuitry
226 into latch 228. The data in latch 228 is then
available for reading out to the RAM data bus via
the RAM controller 88 as shown in Figure 7. Other
such elements are combined to convert the pixel data
as indicated by the X, Y pixel identification to
character data compatible with the Super NES
character format.

The RAM controller 88 shown in detail in Figure
9 generates various control signals associated with
accessing the game cartridge RAM(s). The cartridge
RAM(s) must be shared between the Super NES, the
plot hardware 52 within the Mario chip, and the data
fetches from the Mario chip programs which are
executed. The RAM controller 88 serves to insure
that the appropriate address is sent to the RAM
address bus at the appropriate times. The
generation of RAM accessing signals at the
appropriate time is controlled in part by
arbitration logic 310 which is shown in further
detail in Figure 10.

The RAM controller 88 includes a multiplexer
304 which multiplexes between an input from the RAM
data pins via the RAM D data bus and the instruction
bus. The instruction bus or the RAM data bus is
selected in response to signal received from the

<?/
-W

instruction decoder 60 and the appropriate RAM
output is placed on the destination Z bus.

• · ·
• Q ·• · · ·

The RAM controller 88 also includes a 16-bit
data register 300 which is reserved for data writes
to RAM received from either the 16 bit X bus, or the
16 bit Y bus under the control of signals received
from the instruction decoder 60. The data loaded
into the data register 300 is divided into a low
byte and a high byte and coupled to RAM data pins
via multiplexer 302 which outputs the low or high
byte in response to a signal received from
instructions decoder 60.

« · · ·• · ·• · ·

• * ·• · ·• · ·• · ·• · ·
• a ·

RAM controller 88 also includes a 20-bit
address multiplexer 308. Multiplexer 308 selects an
address input in response to a control signal
received from arbitration circuit 310 which is
derived from the code acknowledge CACK, data
acknowledge DACK, or plot acknowledge PACK signals
generated in the arbitration circuit 310. Address
signals from the Super NES address bus HA are
received by multiplexer 308 and are coupled to the
RAM address bus, via memory timing signal generator
312, whenever the Mario "owner" status bit is set to
a zero. The arbitration circuit 310 is informed of
the status of the Mario chip RAM ownership via the
signal RAN coupled to arbitration circuit 310 which
also receives a RAM refresh control signal RFSH.
The RAN and RFSH signals are "OR"ed together to form
the "SUSPEND" signal shown in Figure 10.

-94·

The address multiplexer 308 also receives an
address input from the 16-bit multiplexer register
306. Multiplexer register 306 receives either the
contents of the Y bus or the contents of the
instruction bus depending upon a select signal
generated by instruction decoder 60. Multiplexer
308 also receives the output of the data bank
register 314 as an address input together with the
contents of the program counter PC as shown in
Figure 9. The screen bank register 316 output is
used to form the most significant bits of the plot
address input to multiplexer 308, the least
significant bits being input from the plot circuitry
of Figure 7. Both the screen bank register 316 and
the data bank register 314 are loaded with data from
the host data bus HD and are addressable by the host
CPU. These registers, while shown in Figure 9, are
not necessarily embodied in the RAM controller 88
itself, but rather their contents are coupled to the
RAM controller. The data bank register 314 may, for
example, be in the ROM controller 104 described
below and the screen bank register may be, for
example, embodied in the plot hardware 52.

The multiplexer 308 input signal to be output
is selected as follows. If the code acknowledge
signal CACK is generated, then the code bank and
program counter PC input is selected. If the data
acknowledge signal DACK is generated, then the data
bank plus multiplexer register input is selected.
If the plot acknowledge signal PACK is present- the
the plot address is selected. Finally, if neither

33
33-

then CACK, DACK or PACK signals are present, then
the host (e.g., SNES) address input is selected.

The 20 bit address output of multiplexer 308 is
coupled to memory timing signal generator 312 which
couples these address signals to RAM 6, & at the
appropriate time. The memory timing signal
generator 312 receives the output from a gray
counter in arbitration block 310. The memory timing
signal generator 312 decodes the output from the

• ,··. gray counter and generates output signals for• »· ·
.····. addressing RAM 6, 8 shown in Figure 1 via the RAM• · · ·
: .··. address bus RAMA. Alternatively, timing signal• · · ·
,····. generator 312 will generate control signals for• · · «
.··. : accessing RAM 6, 8 including row address strobe RAS,• » ·

column address strobe CAS, and write enable WE
signals, as shown in Figure 1.

•« ·• · ·• · ·
The memory timing signal generator 312

generates a DONE signal which is fed back to
>’· .. arbitration logic 310 to indicate that the RAM eye .e
·****. has been completed. The memory timing signal

generator 312 also generates a data latch signal
·*·’*· DATLAT which operates to latch data coming from the

external RAM into data latches (not shown) in tha
RAM controller 88. Data from RAM is then coupled to
the Mario chip circuitry via, for example, the RAM
data bus RAMD_IN. The RAM A address signal output
from timing signal generator 312 is coupled to any
static RAM on the game cartridge. The control
signals CES, RAS and WE are generated, if dynamic
RAM is used in the game cartridge. The static or
dynamic RAM signals will be appropriately generated

-96-

depending upon the configuratioi x the Mario chip,
as indicated by the option resistor settings
described above. Exemplary timing signals generated
by timing signal generator 312 and other related
signals are shown in Figure 9A. The exemplary
address and data values shown are set forth for
purposes of illustration only. The RAM DONE signal
is shown in Figure 8C.

The generation of RAM accessing signals at the
appropriate time is controlled in part by
arbitration logic 310. As shown in Figure 10,
arbitration logic 310 receives memory access input
related signals CACHE request CACHERQ, data request
DATRQ and plot request PLTRQ. Each of these input
signals are temporarily stored in latches 325, 327,
329, respectively. If a Mario instruction is to be
executed out of RAM or ROM, the process is initiated
by the receipt of a CACHE request signal CACHERQ
which is used in the context of Figure 10 to confirm
that the instruction is not being executed out of
CACHE RAM and therefore must be executed out of RAM
or ROM. Thus, the CACHE request CACHERQ signal
indicates that the instruction can not be executed
out of CACHE 94. The data request signal DATARQ is
generated as a result of decoding an instruction
requiring RAM access (e.g., the load byte, load word
instructions). Additionally, the arbitration logic
310 receives a plot request signal PLTRQ which is
generated by the plot controller 200 in response to
the decoding of a plot command.

■3T

The arbitration logic 310 is only enabled (as
indicated by a status register SUSPEND mode bit
being in a "0" state) when the Mario chip is running
and when the Mario owner bit is set. After receipt
and storage of the CACHE request, data request, and
plot request signals, latches 325, 327, and 329
generate CRQ, DRQ and PRQ signals, respectively.
Gates 331, 333 and 335 receive these signals from
the respective latch non-inverting output and
establish the priority for these signals. In this
regard, the CACHE request signal has the highest
priority, the data request the second highest
priority and the plot request signal has the lowest
priority. The CACHE request signal is assigned the
top priority since it indicates that an attempt has
been made to execute an instruction nut of CACHE and
that it is necessary to access the instruction from
RAM. The gating circuits 333 and 335 operate to
ensure that a lower priority request does not
operate to set latches 339 and 341, if a higher
priority request has already set its respective
latch. The latches 337, 339, 341 can only be set if
the system is not in SUSPEND mode since the SUSPEND
mode signal is input to each of gates 331, 333,
335.’ The SUSPEND mode signal will be at a low logic
level state when the Mario chip owns, i.e., has free
access to, RAM. The latches 337, 339 and 341 cannot
be set if SUSPEND is set to "1" nor when any of the
acknowledge latches 337, 339 and 341 are already at
"1" (i.e., a cycle is already in progress). The
gates 331, 333 and 335 establish the priority of RAM
access. The Data acknowledge latch 339 will not be
set if the CACHE REQUEST latch 337 is set, nor will

ι

%
-98-

the Plot acknowledge latch 341 be set if either
CACHE or DATA request latches are set.

• «·• « ■• · · ·

The cache acknowledge signal CACK is generated
as soon as latch 337 is set by the cache request
signal and as soon as it established by the logic
circuitry in Figure 10 that the CACHE 94 (or RAM) is
available. The data acknowledgement signal DACK and
plot request acknowledgment signal PACK are likewise
generated to acknowledge the data request and plot
request signals if the logic circuitry in Figure 10
determines that the RAM is not otherwise busy.

• · ·

• · · ·• I··♦·

·· · • · ·• · ·

The non-inverting output of latches 337, 339,
and 341 are coupled to gating circuit 343 which in
turn, via NOR gate 344 resets gray counter 345 which
generates timing signals for RAM accesses. It will
be appreciated by those skilled in the art, that a
gray counter is a counter where only one output bit
changes at one time, which conveniently may be used
to control RAM access time.

A DONE signal generated by timing signal
generator 312 is received by NOR gate 344, and
latches 337, 339, 341. The DONE signal indicates
that a RAM cycle has been completed. The generation
of the DONE Bignal triggers the clearing of the
appropriate latch in the arbitration logic 310 to
clear the request that has been latched. The DONE
signal is also coupled to the originating circuit,
e.g., the cache controller 68 or plot controller 52,
to indicate that the RAM access has been completed.

(t

4 l/'0 /7
F £

\ F

iftl i

97
-99-

• ft ft• « ·• «ft ftft ···• ft ft ft ft ft• ··• · ftft ft ft ft

• ft ft

• ft ft • ft ft ft ft ft ft* ft ft

ft ft ft ft ft ft ft ft ft ft

ft*

In accordance with an alternative embodiment of
the present invention, the Mario chip may use a dual
clocking system. Thus, Mario chip processor need
not be driven by the same clock which drives, for
example, the RAM controller circuitry identified
above. The RAM controller 88 may, for example, be
driven by the 21 MHz clock signal received from the
Super NES and the Mario chip processor may be driven
by another variable frequency clock. In this
fashion, the Mario chip processor will not be
constrained to operate at 21 MHz clocking rate.

The Mario chip in accordance with this
exemplary embodiment may use an asynchronous ,state
machine control circuit such as that shown in Figure
11 for performing a resynchronizing dual clock
interfacing function. The Figure 11 circuitry may
be used to interface with Mario chip processor if it
is implemented using a different clocking system
than a memory controller operating at another
clocking rate.

The resynchronization circuit shown in Figure
11 receives an incoming clock signal DIN which is
not synchronous with a clock signal CK. The
resynchronizing circuitry generates a signal from
DIN which is synchronous with CK, whether DIN is of
higher or lower frequency than the clock rate CK.

As exemplified in Figure 12, in response to the
signal DIN, the circuitry shown in Figure 11.
Transitions through states 010, 110, 100, 101, 111,
and back to the initial state 010. The Figure 11

I .. λ.'1'-’-!.·. *

I©©7

• ftft• « ·• ft ft ftft ft ft ft ft ftft ft ft ftft ftft ft ft ftft···ft ft ft ft ft ·ft ft ft ft

ft ft ft ft • ft• ••ft

ft ft ft ft ftft ft ftft

resynchronization circuitry may be employed in any
interface circuit receiving dual clock signals such
as ROM controller 104 and RAM controller 88.

The circuit shown in Figure 11 responds to the
incoming signal DIN by switching from its idle or
reset state "010" to form state "110" due to latch A
being set by gate F. As soon as the resynchronizing
clock CK goes low (which may already be true), latch
B is reset by Gate E forming state "100". When the
clock goes high again, latch C is set forming state
"101" by Gate A.

Latch C generates the output from the circuit
as indicated at Q in Figure 11. When the input
signal goes low again, latch B is set again by Gate
C forming state "111". When the clock CK goes low
again after reaching state "111", then latch A is
reset by Gate G forming state Oil. Thereafter,
clock CK goes high again and latch C is reset by
Gate B returning the state machine to its idle
state, then the output becomes inactive.

Figure 13 shows the Figure 4B ROM controller
104 in further detail. The ROM controller 104
includes a cache loader 400 which controls in part
the loading of the Mario chip cache RAM 94 with
currently executing program instructions stored in
ROM 10 or in the cartridge RAM. Instructions are
loaded into cache RAM 94 in 16-byte groupings. When
a jump instruction is encountered, in the middle of
a 16 byte segment, a complete 16-byte segment must
nevertheless be continued to be filled before the

.· v
%

/

J
c ·4 ?

<¥=)

• · ··• ·• · · ·• ··C · ♦• · · ·• · · ·• ·

• · · • ·· • · · ·

• · · ·» I*··♦

jump may be executed. The CACHE load circuit 400
includes a 2-bit state machine which responds to the
decoding of the jump instruction by ensuring that
the remaining bytes of the 16 byte CACHE segment are
loaded into cache RAM 94. The first state of the
cache loading logic state machine is the idle state
which is true if either program execution is outside
the range of cache or if the program data has
already been loaded into cache. The second states
indicates that the loading of cache and the
executing the instructions from the cartridge ROM or
RAM are occurring at the same time. The third state
is triggered by the decoding of the jump instruction
which state remains in effect until all the bytes in
the 16 byte cache segment has been loaded. The
fourth state is encountered when the jump is
executed and the jump falls on an address which does
not precisely correspond to a caehe 16 byte boundary
in which case the cache is filled from the beginning
of the boundary to the part of the 16 byte segment
corresponding to the address to which the program
has branched.

The cache controller 68 shown in Figure 4B
generates a CACHE signal which .is input to cache
loader 400 and which indicates that the requested
instruction is not presently available in the cache
RAM 94. Accordingly, the instruction must be
fetched from ROM. The code bank signal identifies
the most significant three bits of the address to be
accessed and indicates whether the program ROM or
the RAM is to be accessed. Cache loader 400 aleo
includes a counter (not shown) which during program

ft J
: t

t'd Ϊ* *V'i , V V. *CzX /5 .
e‘..s

ιοθ
jTv2i

execution maintains a count corresponding to the
least significant bits of the program counter PC.
This counter is loaded via the PC input of cache
loader 400.

• · ·• « ··· · ·• ···• ·• · · ·

····• · ····

• * ···♦

• ··» · «• «• * ·• · ·
* a ·

The cache load circuitry 400 in the ROM
controller 104 also receives WAIT and GO control
signals which indicate that the Mario processor is
not being held in the WAIT state for any reason and
that the Mario chip is in the "go" or "running"
mode. Under such circumstances the cache loading
circuit 400 generates a CODEFETCH control signal
which is coupled to NOR gate 408 shown in Figure 13,
which, in turn, is coupled to the clear input of ROM
timing counter 406. When cache load circuit 400
generates a code fetch signal CODE FETCH, logic
circuitry within the ROM controller 104 initiates a
code fetch on a higher priority then the data fetch
as this code fetch must be initiated prior to data
fetch. Arbitration circuitry incorporating priority
logic such as shown in conjunction with Figure 10
may be used to enable the generated signal to be
given a higher priority than the DATA FETCH.

When the clear signal is removed from the ROM
timing counter 406, a count cycle is initiated. ROM
timing counter 406 is used to generate the ROMRDY
timing signal which indicates that ROM data is
available at ROM data pins, which signal is output
from gating circuit 410.

The ROM data ready signal ROMRDY gating ie
coupled to the resynchronization circuit 402, which

A.

Ιο)
-303.

• ··• « ··· · ·····• ·• * ··• · ·• · »• ·· ·
*···• · *···

* · · • ·· ····

• » · ·····

• · • · ·

may, for example, comprise the resynchronization
circuitry described above in Figure 11. After
synchronization is obtained with the processor
clock, signal ROM DCK is generated to reset latch
404 and to generate a DATAFETCH signal indicative of
a data fetch triggered by the accessing of register
R14 which results in the EN_R14 signal. The
DATAFETCH signal is generated when ROM timing
counter 406 has reached a predetermined count to
ensure that data is available at ROM data pins.

The ROM controller shown in Figure 13 generates
a ROM address at the output from multiplexer 414
which selects address information from one of the
following inputs. The code bank register 412 is
loaded from the Super NES data bus HD to define from
which ROM program bank the Mario code is to be
executed. The code bank register 412 provides 8
bits of a 23 bit RC/M address to multiplexer 414.
The least significant bits of the ROM address are
obtained from the contents of the program counter
PC. When data is being written into cache RAM, the
least significant 4 bits from the CACHE LOAD signal
are generated by cache load 400. An additional
multiplexer 414 address input is generated from the
contents of Mario general register R14 whenever
register R14 is accessed.

The accessing of register R14 resulte in the
data fetch latch 404 generating a DATAFETCH signal
which is utilized as a control input for causing
multiplexer 414 to select its R14 input (and the
contents of the data bank register 416 which is

• ··• · ·
• ···• · · ·

····• · · • ·• · ·

··♦·* · ·• * ·

• ·• · · ♦ *
• t · »® · ····

• · ·

IO2_
ro4-

loaded from the Super NES data bus HD). The data
bank register 416 contains the most significant bits
of the data bank associated with an R14 fetching
operation.

The DATA FETCH signal additionally is coupled
to gate 408 which will initiate counting by the ROM
timing counter 406 which, in turn, generates a ROM
ready signal ROMRDY via gate 410. When the ROMRBY
signal is generated, data is available from the ROM
data bus ROM D[7:0].

The address multiplexer 414 also receives a ROM
address from the Super NES address bus HA. The
Super NES address bus will be selected depending
upon the state of the signal "ROM" which is coupled
to multiplexer 414 control inputs. The "ROM”
control signal indicates to the Mario ROM controller
that the Super NES has control of the ROM address
bus.

After a jump instruction is decoded, the
address multiplexer 414 is fed the contents of the
program counter plus the four least significant bits
generated by the counter within the cache loader
400. This permits the cache segment to be loaded
with the remainder of the 16 bytes which were being
loaded prior to the jump being decoded.

The multiplexer 422 provides the data path
within the ROM controller 104 from the ROM data pins
ROMD to the Mario chip’s destination bus Z. The
DATAFETCH signal which has been generated by latch

ioa.
-105-

• ··• · ·• · · ·• · · ·• ·• · ··• *·• · ♦• · 9 9
9 99 9 9 ·• · ·«
• · ·

• · · • »· ····

4
··«·»·*«

• 99
♦ · ·

404 and the ROMRDY signal generated by ROM timing
counter 406 are coupled to gate 418 to enable the
loading of ROM buffer 420. ROM data from the ROM
data bus ROMD [7...J] is loaded into ROM buffer
420.

The multiplexer 422 selects an input in
response to the decoding of an instruction code
(such as GET B which is the automatic data fetch
triggered by the accessing of register R14). If a
code fetch operation is decoded, the ROM controller
104 will couple instructions to the instruction bus
in the Mario chip as indicated in Figure 15A. If a
GET B instruction is decoded then the buffered byte
stored in register 420 is placed on the Z bus.
Certain GET B instruction operations involve data on
the X bus as is indicated via the corresponding
inputs to multiplexer 422 shown in Figure 13. The
data coupled to destination Z bus may then be loaded
into one of the Mario general registers 76.

The cache controller 68 is shown in further
detail in Figure 14. Cache controller 68 includes a
tag latch 506. Tag latch 506 includes, for example,
64 latches which indicate whether instructions are
stored in the cache RAM 94 (which is shown for
illustration purposes as being embodied in the cache
controller).

Each of the 64 flags in tag latches 506
corresponds to 16 bits of information etored in the
cache RAM 94. Cache RAM 94 is loaded with
instructions at the same time instructions are being

to ψ
Ί06-

executed from ROM or RAM. When a jump instruction
is executed, as noted above, the RAM 94 is loaded
with the remaining bytes of the 16 byte segment via
the cache loader 400 described in conjunction with
the ROM controller 104 shown in Figure 13. Until
these remaining bytes are loaded, the entire 16 byte
segment cannot be flagged as loaded via tag latch
506.

• ··• · ··»· ·• ···• ·*···• 0·0 · ♦• ·· β

• · ·* · 9• · ·

• · · • ·· ····

····
• · · ·4 · ··

99• « • 9

Focussing on gating circuit 510, when the
program counter has counted from 0 to 15, the 14 bit
subtractor 502 has output an out-of-range signal
(which is inverted) and when the ROM controller has
output its ROM data ready signal ROMRDY (indicating
that a byte is ready to be output), gating circuit
510 sets the tag latch 506 at the location addressed
by demultiplexer 504.

When a cache instruction is decoded, a control
signal is generated on bus 501 which indicates that
subsequent instructions are to be executed from the
cache RAM memory 94. The control signal on bus 501
is coupled to the cache base register 500 load input
and serves to load cache base register 500 with the
13 most significant bits of program counter PC. At
the same time, as indicated in Figure 14, the tag
latches 506 are cleared.

The output of the cache base register 500 and
the most significant bits of the program counter
(e.g., bits 3-15) are coupled to subtrac-’- 502,
which determines whether the address input from the
program counter PC is within the cache RAM 94

Α ί
/ς
Χ.

/oS~

9 99• · ·• · · ·····• ·····• *·• · ·• · · ·

a a
a aaaa

«···

a aa
a a a

a a
a 9 9

range. The subtractor 502 outputs, for example, its
six least significant bits, as the most significant
bits of the cache RAM address, the three least
significant address bits being coupled from the
program counter PC.

The out-of-range signal O/RANGE is generated
from a carry output signal from the subtractor 502
and is inverted. The inverted out-of-range signal
when high serves to initiate the setting of one
latch in latch array 506. The latch set will depend
upon the cache address output from subtractor 502
via demultiplexer 504 and corresponds to a 16-byte
segment in cache RAM 94 to indicate that an
instruction is stored in cache corresponding to the
output cache RAM address. The tag latches 506
outputs are coupled to a multiplexer 512 which
couples one of the 64 teg latch signals to NOR gate
514 based upon the multiplexer select input which
selects one latch signal to be output corresponding
to one of 64 select lines output from DEMUX 504.
The other input to NOR gate 514 is the out-of-range
signal which indicates that an external fetch is
required since the desired instruction cannot be
found in the cache RAM 94.

Figure 15A shows a block diagram of the ALU
controller/instruction decoder 60 shown in Figure
4A. As indicated in Figure 15, the ALU
controller/instruction decoder 60 receives
instructions from the cache RAM 94, ROM controller
104, and RAM controller 88. These Mario chip
components are not part of the ALU/instruction

Io£>
-I ftn1UO

• «·• · ·• · · ·

• · ·• · ·• · · ·

decoder 60 but are depicted in Figure 15 for
illustration purposes only.

Multiplexer 525 selects an instruction output
from either cache RAM 94, ROM controller 104, or RAM
controller 88 and inputs the selected instruction to
pipeline latch 527. Selection by multiplexer 525
between RAM or ROM based instructions depends upon
the state of a predetermined bit in the code bank
register, e.g., bit 4. Thus, depending upon the
address information loaded into the code bank
register, an instruction from ROM or RAM will be
decoded. Alternatively, multiplexer 525 selects an
instruction from c? he RAM 94 depending upon the
state of a control . .gnal CACHE CTL from the cache
controller 68 which indicates that an instruction to
be executed is within the range of cache RAM 94 and
that an appropriate tag bit has been set as
described in conjunction with the cache controller
68.

• · · ·» a«··« The pipeline latch 527 receives an 8-bit
instruction from multiplexer 525 when enabled by a
program counter enable signal PCEN.IL.IH which is
generated by, for example, the ROM controller 104
(or the RAM controller 88) if an instruction is
being fetched by the ROM (or RAM). Since it takes
more than one processing cycle to fetch an
instruction from RAM or ROM, the instruction
decoding operations are triggered by the program
counter enable signal PCEN generated by the
respective ROM or RAM controllers 104, 88.

ft
-±Θ3

• »·• · ·• · · ·• · · ·• ·• · · ·• · ·■ · e• · « ·• · « ·• ·• · · ·

On the other hand, if the instruction is
executed out of a cache RAM 94, the program counter
enable signal PCEN is active at all times and the
instruction execution is performed at the full
processor clock rate. Since the ROM 10 access time
is much slower than cache RAM 94 or cartridge RAM
access times, it is necessary for the PCEN signal to
be generated at less frequent intervals for ROM
accesses than either the corresponding cache RAM, or
the dynamic or static RAM decoding enable signal.

The instruction temporarily stored in the
pipeline latch 527 is output to conventional
instruction decoding circuitry, as schematically
represented by gating circuitry 537, 539 and 541, to
generate the signals indicative of operation codes
1, 2, . . . N.

• · · ·• · • · · ·

The instruction which is loaded into pipeline
latch 527 is also coupled to look-ahead logic 551.
Look-ahead logic 551 Berves to provide a predecoding
indication of the operation code which will eerve to
select appropriate registers in the Mario chip
register block 76. Thus, in order to optimize the
speed of execution prior to decoding the opcode, the
register required to be accessed is quickly
determined to enable high speed access of data that
is required by the instruction.

The look-ahead lc.’ic 551 is responsive to the
instruction opcode bits as well as various program
decoding control flags. The instruction decoding
circuit 60 includes program control flag detector

\C5^
Τ±Θ-

• »·• · «··· ·• · · ·• ·• · · ·
• · · ··· · ·»>···

• · · • · ·

• · · ·* · ♦ ·♦·

• * · • · a• · ·

logic 543 which is responsive to previously decoded
operation codes to generate ALT 1 and ALT 2 signals
to indicate that the corresponding prefix
instructions, as described above, have been
decoded. A related ALT 1 PRE signal described below
is also generated by flag detector logic 543.
Additionally, IL and IH signals are generated to
indicate that instructions requiring immediate data
have been decoded (whers L and H refers to low byte
and high byte, respectively). The IH and IL flags
operate to preclude the immediate data related
instructions from being decoded as operation codes.
Accordingly, not IL (IL) and not IH (IH) signals are
also required to enable pipeline latch 527. ALT 1
and ALT 2 signals, as previously described, serve to
modify a subsequently generated opcode and are input
to decoding logic 537, 539, 541, etc., as, for
example, shown at gating circuit 541 to modify the
output opcode in accordance with the previous
discussion of these signals.

The look-ahead logic 551 generates register
select signals based on the predecoded opcodes and
eignals which are generated when prior operation
codes (e,g., prefix codes ALT 1 or ALT 2) are
decoded. For example, as shown within program
control flag detect logic 543, if an ALT 1 signal is
decoded by decoding logic 545, an ALT 1 PRE signal
is generated, which signal is output by program
control flag detector logic 543 and which signal, in
turn, is coupled to the look-ahead logic 531 via OR
gate 549. The ALT 1 PRE signal also Bets ALT 1
latch 547. OR gate 549 also outputs the ALT 1

&
MS

\c^ft ft ftITT

• ■•ft• ·• ■ ··• ··* · ftft···

• 'J ft · ft

• · · ·

• ft ·• ft ft• 6

signal from latch 547 and couples the ALT 1 signal
to decoding logic 537, 539, 541, etc.

The look-ahead logic schematically represented
in Figure 15 illustrates how the four register
select control bits XSELO, XSEL1, XSEL2, and XSEL3
are generated. These four control bits are then
coupled to multiplexers 620 and 622 described in
conjunction with the register control logic 76 in
Figure 17 which selects the contents of one of the
16 registers to be output to the X bus for use by an
instruction being executed.

Thus, ar\ instruction prior to being loaded into
the pipeline latch 527 is coupled to look ahead
decoding logic element 529 which generates a
register selection bit XSEL-UO which, in turn, is
latched in latch 535 and then output as signal
XSELO. The latch 535 is enabled by the program
counter signal PCEN. Similarly, logic circuit 531
generates XSEL_U1 which is latched in latch 533
which is output as signal XSEL1. The ALT 1 PRE
signal is coupled to the various decoding logic
circuits 529, 531, etc., in the look-ahead logic 551
and is utilized to define the appropriate register
selected by the register control logic 76. For
example, as shown in look-ahead circuit 551, the ALT
1 PRE signal ie one of the signals coupled to logic
circuit 531 which generates XSEL-U1, which is
latch.ed in latch 533 which, in turn, outputs signal
XSEL1. ·

‘ I
Ho

··· ·····« ■• · ··
• e ·• · · ···« ····

·· · • · 0• ····»·• · ·•β ·

• · · ·
» a····

• · ·• · ·• · »* · · • ··

Figure 15B shows exemplary timing signale for
demonstrating the operation of look-ahead logic
551. Figure 15B shows a clock signal CK, and an
exemplary instruction opcode relating to cache RAM
data accessing. Timing signals are also shown
indicating when pipeline latch 527 is loaded, when
the instruction decoding operation is to be
performed, when register select signals are
generated, and when the information from the
registers are loaded on the destination Z bus.

As shown in Figure 15B, the cache RAM data
opcode (opcode 1) will become valid at some point in
time after the rising edge of the clock pulse CK.
The opcode is stored in pipeline latch 527 until,
for example, the rising edge of the second clock
pulse, at which time opcode 2 is loaded into the
latch 527. The instruction decoder 60 begins
decoding the instruction corresponding to opcode 1,
just after receiving the output from latch 227 at a
point in time schematically represented in Figure
18. The result of the instruction decoding will, as
described above, appropriately couple control
signals to Mario chip components such as the ALU 50,
cache controller 68, and plot hardware 52, etc.

The look-ahead circuit 551 shown in Figure 15
begins the register select decoding process by
generating a signal XSEL-U, at a point in time prior
to the decoding of opcode 2. The XSEL-UO signal
represents the output of decoding logic 529 prior to
being latched in latch 535. The XSEL-0 signal is
output, for example, by latch 535 at a point in time

3rt8-

• · ft···

·· « • ·• · ·

• · · • ······• · I»• ft ·

··
• a · ·» · ····

so that the data required for the instruction will
be accessible as early as possible in the
instruction execution cycle for coupling to the
appropriate bus as quickly as possible.

A portion of the register control logic 78 is
shown in Figure 16 for generating Y and Z bus
related register select signals. Multiplexer 604
selects which of the 16 registers will be written
from the Z bus. Multiplexer 606 selects which
register feeds the Y bus.

Multiplexers 604 and 606 receive inputs from
4-bit registers 600 and 602, respectively. The
registers 600 and 602 are utilized in implementing
the "FROM" and "TO" prefix instructions described
above. The registers 600 and 602 are respectively
enabled by the decoding of "TO" and "FROM" prefixes
which operate to couple the least significant bits
of the instruction bus to registers 600 and 602.
Register 600 and 602 are cleared in response to an
instruction which serves to reset the control flags
described above.• ··• · ···

Multiplexers 604 and 606 additionally receive
inputs from various registers in registers block
76. Additionally, the multiplexers 604, 606 receive
an input from the least significant bits or the
instruction bus to implement instructions whose
least significant four bits define the instruction
destination or source register. Additionally,
predetermined least significant bits from the Super
NES address bus are coupled to multiplexers 604 and

• »
rt4r

606 in order to provide the of Super NES with access
to the register set. The multiplexers 604 and 606
eelect the register feeding the Z and Y bus,
respectively.

Figure 17 shows register block 76 and
additional register selection control logic embodied
within the Figure 4B register control logic 78. A
FROMX register 618 is set by a FROMSET signal which
is generated upon the decoding of a FROM
instruction. Upon receipt of the FROMSET signal/
the contents of the Y bus is loaded into register
618. The data loaded in register 618, then becomes
the data which is used in subsequent instruction
execution. The contents of register 618 is coupled
as one of the inputs to multiplexer 622.
Multiplexer 622 also receives the contents of
register RO (which is used as a default register) as
one of its inputs.

Another input to multiplexer 622 is the output
of multiplexer 620. Multiplexer 620 receives as
input the contents of the program counter (i.e.,
register R15), inputs from registers used in
executing the MERGE instruction, and register Rl
(which is used, for example, in executing the plot
instruction). The multiplexer 620 selects one of
these inputs based on the state of the XSEL2 and
XSEL3 bits generated by the look-ahead logic 551
shown in Figure 15A.

An additional input to multiplexer 622 is
coupled to the contents of the Y bus to place the

ns
Tie-

same data on the X bus as is on the Y bus. As noted
previously, another input to multiplexer 622 is the
output of FROM X register 618 described above. The
output of multiplexer 622 is selected based on the
state of the XSELO and XSEL1 bits generated in
Figure 15A and is coupled to the X bus.

The special purpose functions associated with
many of the register R0-R15 have been described in
detail above and will not be repeated here. The
output of registers R0-R3 are coupled to multiplexer
608, the outputs of registers R4-R7 are coupled to
multiplexer 610, the outputs of registers R8-R11 are
coupled to multiplexer 612 and the outputs of
registers R12-R15 are coupled to multiplexer 614.
One of the four respective inputs to multiplexers
608, 610, 612 and 614 are selected by the Y SEL 1
and YSELO bits which are output from multiplexer 606
shown in Figure 16. The outputs from multiplexer
608, 610, 612, and 614 are, in turn, input to
multiplexer 616. One of the four inputs to
multiplexer 616 is selected based on the state of
the Y SEL 2 and Y SEL 3 bits output from multiplexer
606 in Figure 16. Multiplexer 616 has its output
coupled to buffer register 617, whose output is, in
turn, coupled to the Y bus.

Turning to the inputs to registers R0 to R15,
each register has an enable input selected by ZSEL
bits 0 to 3 which are generated as described above
in conjunction with Figure 16. Each register also
has a clock input CK and a data input DATA-IN via

HM-

which data is received from the Z bus after being
appropriately buffered.

Register R4, which is used in conjunction with
various multiply operation, also includes disable
low and disable high bit inputs and enable low and
enable high bit inputs. Register R15, the program
counter PC, receives a signal CCHLD from the cache
loader 400 in the ROM controller of Figure 13 which
inhibits a jump operation until the current 16 byte
cache segment is loaded into cache RAM. The prograia
counter additionally receives a program loop pending
signal LOOPEN from the instruction decoder which
indicates that a branch operation should take place
and enables the loading of the PC with the contents
of register R13. Register R15 additionally receives
a power-on reset signal RESET and sn input RN which
loads the program counter with the contents of
register R13 when a loop instruction is being
executed.

As indicated above, the graphics coprocessor of
the present invention in combination with the host
video game system may be advantageously utilized to
create a variety of special effects involving, for
example, the rotation, enlargement, and/or reduction
of polygon-based objects. Figure 18 is a flowchart
of an exemplary Mario chip program for drawing a
trapezoid to illustrate how the Mario chip may be
programmed to generate a portion of a polygon-based
object to be displayed. A Mario program for
generating such a polygon is set forth below

1/^
ηΤ-

together with a detailed explanation as to how the
Mario hardware executes the program.

Turning first to the high level flowchart shown
in Figure 18, initially certain of the registers in
register block Rl to R15 are associated with
variables utilized in the generation of the
trapezoid (e.g., register Rl stores the pixel X
position, register R2 stores the pixel Y position
line, register R7 stores the trapezoid height,
etc.). Thereafter, as indicated in block 650, a
loop counter is set up and initial pixel values are
computed.

As indicated in block 652, a check is then made
to determine the length of one of the trapezoid
horizontal lines. If the result of subtracting the
starting point of the line from the end point of the
lines is a negative value (-VE), then the routine
branches to block 660. If the result of subtracting
the starting point of the line from the ending point
of the line is a positive value which indicates that
the length of the line has not been exceeded, then a
loop counter is decremented (654) and a plot pixel
instruction is executed to result in the plotting of
the appropriate pixel (656).

As indicated in block 658, a check is then made
to determine whether the contents of the loop
counter is zero. If the loop counter ie not zero,
then a jump is effected to branch back to block 654
to decrement the loop counter (654) and plot another
pixel (656).

\\4=>
Tt«-

If the loop counter is equal to zero, then the
left polygon side X coordinate and the right polygon
side X coordinate are updated (660). Thereafter,
the Y HEIGHT of the trapezoid (662) is decremented
(662) and if the result is not zero, then the
routine will be reexecuted by branching back to
block 650 (664) and the Y coordinate is incremented
so as to move to the next scan line (665). If Y
HEIGHT is equal to zero, then the routine will have
been fully executed and the trapezoid will be
complete (666).

In order to illustrate the use of the Mario
chip instruction set to generate graphics, an
exemplary program for drawing a trapezoid to
implementing the Figure 18 flowchart is set forth
below.

\v~)
-■* ·* r·»Tl>

; Draw trapezoid loop
rx = 1 plot x pos
ry - 2 plot y pos
rxl = 3 top left x pos
rxlinc - 4 top left x pos increment
rx2 5 top right x pos
rx2inc = 6 top right x pos increment
rdy = 7 trapezoid y height
rlsn = 12 loop count, hline length
rloop 13 loop label

• · ·• · · hlines• · · ·• · · ·6 · miwt rloop,hlines 2 ; set start of• · · ·• · ·• · · hline loop• · · ·• · · ·• · hlines 1• · · ·• · *• · · mfrom rxl ; x = (rxl)>> 8• · · mto rx
mhib

• · ·• · ·• · · ·• · · mfrom rx2
mhib

• ·• · · · · mto rlen
• · · ·• ·• · · · msub rx ; length, rlen =

(rx2>>8) -
• · ·• · ·• · (rxl>>8)
• · ·• · ·• · · mbmi hlines 3 ; if rlen<0 then

skip hline
mnop
mine rlen ; always draw on

pixel

hlines2

mloop
mplot ; draw hline

hlines3
mwith
madd

rxl
rxlinc

mwith rx2
madd rx2inc

mdec rdy
mbne hlinesl
mine ry

; rxl+=rxlinc

; rx2+=rx2inc

; rdy-=l
; repeat rdy time
; and next y down

·»··• 9 «• · ·

• ·• · · · ·
··««

• « Λ• I·*

\\°1
±24

0

it 0 ·• 0

ft

λ 0
• 0 0 0 0

• 0 00
• ·
• 0 0 0

e · r• · · • t

To demonstrate how the Mario chip hardware
operates to execute a program, the following
explanation is directed to the trapezoid generating
program set forth above. Prior to executing the
trapezoid generating program, the host computer
system, e.g., the Super NES, writes directly to the
code bank register and into the screen base
register, as explained above in conjunction with the
description of the Figure 5 flowchart.
Additionally, the "uper NES writes the low byte of
the XEQ address to a local register in the ROM
controller 104 which is decoded from the Super NES
address bus HA. The Super NES then writes a high
byte to the ROM controller 104 which is combined
with the contents of the local register and coupled
to the Z bus. Thereafter, the register R15 which
operates as the Mario chip program counter is
enabled.

Upon detecting the trailing edge of the above
Super NES write operation to the ROM controller 104,
the Mario "GO" flag is set. If the program counter
minus the cache base register is giiater than the
cache size or if the cache flag times the program
counter minus the cache base register di ided by 16
is equal to zero, then the program counter contents
are passed to ROM 10 and the ROM timing counter
(Fig. 13 block 406) is started.

Initially, prior to executing the draw
trapezoid subroutine, the variables used with the

‘jsl

\ DlO
trapezoid loop program are associated with Super
Mario registers as indicated in the initial portion
of the trapezoid program listing, e.g., "rx" which
is the "plot X position" is be associated with
register Rl and variable the "rloop" is associated
with register R13.

• · · «• ·

After these register assignments are made, the
trapezoid program begins execution, as follows. When
the ROM timing counter 406 in the ROM controller 104
reaches a count of 5 (approximately 200
nanoseconds), the first instruction to be executed
"IWT rloop, hlines 2" is latched into the pipeline
register 62 shown in Figure 4A from the ROM dat
bus. The data is simultaneously written into the
U'.che RAM 94. In executing the instruction "IWT
rloop, hlines", the program counter is incremented..
The "IL” and ”IM” flags are set to signify that the
following two bytes in the instruction stream are
immediate data. When the ROM timing counter 406
reaches 5, the immediate data (low byte) is written
to the cache RAM 94 and held in a temporary register
in ROM controller 104. The ROM fetch mechanism is
repeated and the high byte of the immediate data is
combined with the low byte and routed to the Z bus.
Register R13 is enabled and the Z bus contents is
stored therein in order to set the loop counter.
From this point on in the routine, each instruction
is fetched from memory until the loop instruction is
encountered.

In executing the instruction FROM .RX1", the
lowest four bits of the instruction code are loaded

/// /A

cV

±23«

into the four bit "FROM Y" register 602 in the
register controller (See Fig. 16). Additionally,
the data from RX1 (register R3) is enabled onto the
Y bur and is stored in the 16 bit "FROM X" register
618. In executing the "TO RX" instruction, the
lowerst fovr bits of the instruction code are loaded
into the lour bit "enable Z" register 600 in the
register controller (See Fig. 16).

The "HIB" instruction is executed by placing
the sixteen bit contents of the "FROM X" register
onto the X bus. The ALU places the top byte of the
X bus onto the low byte of the Z bus and sets the
top byte of the Z bus to zero. This removes the
fractional part of the X position and leaves the
starting point for the first horizontal line in
register RX (register Rl).

In executing the instruction "FROM RX2",
similar operations are performed as indicated above
in executing "FROM RX1" instruction. The "HIB"
instruction causes operations (similar to those
described above) with respect to the top right X
coordinate of the trapezoid leaving the end point of
the first horizontal line in register RO (the
default register operating as the accumulator).

The "RLEN" instruction and the "SUB RX"
instruction are executed by subtracting the start of
the line from the end of line RLEN (R12) - RO - Rx.

9The sign flag will be set if there is a negative
result to indicate an error condition.

ft"
?

VX2.

The "ΒΜΙ HLINES3" instruction is a two byte
instruction, where the first byte sets a flag, if
the sign flag is set. The second byte is the branch
offset (where R15 equals R15 plus the instruction),
if the conditional flag is set. If not, R15 remains
unaltered and normal program execution continues.

The "INC RLEN" instruction is executed such
that the line length register has one added to it to
ensure that at least one pixel is plotted. The
"LOOP" instruction operates to cause the computation
of R12 = R12 -1. If R12 is not zero, then R15 (the
program counter) is loaded with the contents of R13
to thereby effect a jump.

If the program at this point is in the range of
the cache RAM 94, then the cache load circuit 400
will detect the jump and will continue to load the
cache RAM 94 suspending execution as it does bo.

When it is completed, the program counter is loaded
with its new value and the following instruction is
fetched from cache RAM 94.

In order to execute the "PLOT" instruction, the
loop/plot instruction pair form a horizontal line
draw algorithm. The "PLOT" instruction will set the
screen pixel addressed by RI, R2 (as X and Y
coordinates) to the color set in the "COLOR
register" 54 shown in Figure 4A. The address of the
character containing the pixel is computed by plot
hardware 52. The new pixel data is held in a
character line buffer (the color matrix), until the
Mario chip moves onto plotting at a different

-T2'5*

character position. When all the color information
is copied into the second level of the double buffer
mechanism within the color matrix, then the
information is written to the external RAM.

The ’’WITH RXI" and "ADD RXI INC” instructions
are executed to update the left side X coordinate of
the trapezoid. Similarly, the "WITH RX2" and "ADD
RX2 INC" operates to update the right side of the
trapezoid. The "DEC RDY", BNE, Hlinesl" and "INC
RY" instructions operate to move onto the next Y
position (the next scan line) until the trapezoid is
completed.

The following program listing exemplifies how
the Mario chip may be programmed to rotate an array
of 8-bit X, Y, and Z points. This routine
illustrates programming for the graphics coprocessor
in accordance with an exemplary embodiment of the
present invention to perform rotation operations.
The listing for this routine is set forth below:• · · · ·

LISTING ROTATE:

Rotate an array of 8 bit x,y,z points

by a rotation matrix in the registers
rmatl211< rmat2113, rmat2322, rmat3231, rmat0033

• · ·• · ·• · · ·• ···• ·• · · ·
• · ·

• · · · ·
• · · ·

-7
ce

matrix elements are 8 bit signed fractions
ie 127 = 127/128 = approx. 1

-128 = -128/128 = -1
these are stored compactly as 2 8 bit elements
per register

rx = 1 ; x
ry 2 ; y
rz = 3 ; z
rt = 4 ; temp
rmatl211 = 5 ; matrix elements 11 and 12
rmat2113 = 6 ; matrix elements 13 and 21
rmat2322 = 7 ; matrix elements 22 and 23
rmat3231 = 8 ; matrix elements 31 and 32
rmat0033 = 9 ; matrix elements 33
routptr = 10 ; ptr to rotated points

buffer

msh_rotpoints8
miwt

miwt

rl4,pointsaddr

rl2,numpoints

miwt routptr,m_rotpnts

ROM ptr to
points to be
rotated
Number of
points to
rotate
;RAM ptr to

ι-η*7•χία·/'·

rotate points
buffer

meache

, mmove

; set cache addr

rl3,pc ;init loop addr

mmatrotploop

mto rx ; get x
• · · mgetb
* · · ·• · · « mine Π4• ·• · · ·• · · mfrom rmatl211 ; 11
• · · ·• · · · mto rt
·· · ·• · ·• · ·• · ·

mmult rx ;mll*x

mto ry ; get y
• · ·• · · mgetb
« · ·• · · ·• · · mine Π4•« · mfrom rmat2113 ; 21

• ·• · · « · mhib• « · « ·• · mmult ry m21*y• · · · mto rt
• · ·• ♦ ·• · madd rt

• · ·» a ·
mto rz ; get z
mget b
mine rl4
mfrom rmat 3231 ; 31
mmult rz ;m31*z
madd rt

madd rO

XZCJ^

• · · ·• a·»··

mhib
mstb (routptr) ; store
mine routptr

mfrom rmatl211 ; 12
mhib
mto rt
mmult rx ; ml2*x

mfrom rmat2322 ;22
mmult ry ;m22*y
mto rt
madd rt

mfrom rmat3231 ;32
mhib
mmult rz ; m32*z
madd rt

madd rO
mhib
mstb (routptr) ; store
mine routptr

mfrom rmat2113 ; 13
mto rt
mmult rx ; ml3*x

mfrom rmat2322 ; 23
mhib
mmult ry ; n»23*y
mto rt
madd rt

Z<t -.·? -

\2Γ)
JWr»

mfrora rmat0033
mmult rz
madd rt

madd rO
mhib
mstb (routptr)

mloop
mine routptr

33
m33*z

store rotated z

• · · · ·
• · · ·» · • · « ·

- 128 -

,.. Figures 19, 20 and 21 exemplify some of the special effects which may be

generated while using the programmable graphics coprocessor of the present invention

in combination with the host computer system, e.g. the Super NES. As shown in Figure

19, the side view of an object, i.e. a helicopter, is portrayed. This figure is not intended

5 to accurately reflect the high quality display that can be generated by using the Mario

chip. Figures 20 and 21 show enlarged and rotated views of the helicopter set forth in

Figure 19. The graphics coprocessor of the present invention may be used to generate

3-D type (and other) special effects including those involving rotated and scaled

polygon-based objects at high speed, while only minimally burdening the host video

10 game processing system.

The graphics microprocessor and the video game system described herein include

many unique and advantageous features, some of which are summarized below.

• · · ·• · ·• · ·

• · · ·• · · ·

• · ·• · ·• · ·• · · ·

• · ·• · ·• · ·• · · ·

15 The unique graphics processor is pluggably connected to a host microprocessor.

In order to maximize processing speed, the graphics processor may operate in parallel

with the host microprocessor. In one exemplary embodiment, the game cartridge in

which the graphics processor resides also includes a read-only memory (ROM) and a

random-access memory (RAM).

20

The graphics processor arbitrates memory transactions between its own needs and

data fetches from the host microprocessor. The processor is capable of executing

programs simultaneously with the host microprocessor to permit high speed processing,

heretofore not achievable in prior art video game systems.

25

The graphics processor operates in conjunction with a three bus architecture

embodied on the game cartridge which permits effective utilization of the RAM and

ROM cartridge memories by optimizing the ability of both the host and cartridge

processors to efficiently use such memory devices.

30

The fully user programmable graphics processor includes a unique instruction set

which is designed to permit high speed processing. The instruction set is designed to

940825,p:\opci\dbw,20005.92,128

- 129-

ο · ·
• ·

• · · · • · ·• ·• ft

■ί>

efficiently implement arithmetic operations associated with 3-D graphics and, for

example, includes special instructions executed by dedicated hardware for plotting

individual pixels in the host video game system's character mapped display.

5 The instruction set includes unique pixel-based instructions which, from the

programmer's point of view, create a "virtual" bit map by permitting the addressing of

individual pixels — even though the host system is character based. The pixel data is

converted on the fly by the graphics processor to character data of a format typically

utilized by the host character based 16-bit machine. Thus, for example, although the

10 programmer may use a unique "PLOT" instruction to plot a pixel, when related data is

read to RAM, the data is converted to a character-based format which the 16-bit host

machine is able to utilize.

Special purpose pixel plotting hardware executes this instruction to efficiently

15 permit high speed 3-D type graphics to be implemented. The plot hardware assists in

converting in real time from pixel coordinate addressing to character map addressing of

the nature utilized by the host system. Advantageously, the processor may be

programmed by specifying X and Y coordinates which define the location of each pixel

on the display screen.

20 .

Thus, graphic operations are performed based on a programmer specifying pixels

and the plot hardware on the fly converts pixel specifications into properly formatted

character data. The character data is then mapped into the desired place for display in

the host processor's video RAM.

25

The plotting hardware responds to various plotting related instructions to permit

programmable selection of an X and Y coordinate on the display screen and a

predetermined color for a particular pixel and to plot corresponding pixels such that the

X and Y coordinate is converted into an address which corresponds to a character

30 definition of the form which is used to drive the host processor's video RAM.

While the invention has been described and illustrated in detail, it should be

940825,p:\opci\dbw^O6O5.92,129

- 130-

understood that the detailed disclosure is for purposes of illustration and example only.

While the foregoing embodiment is considered to be a preferred embodiment, it should

be understood that numerous variations and modifications may be made therein by those

skilled in art and is intended that the following claims cover such variations and

5 modifications within the spirit and scope of the present invention.

940825,p:\opa\dbwi0605.92.130

J

- 131 -

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. An external memory system for an information processing system used with a

display screen, and having a microprocessor for executing a videographics program and

5 a video memory for storing character data indicative of a plurality of characters which

when combined define a display frame, said external memory system including:

a program memory for storing at least some of the instructions of said

videographics program, and

a conversion circuit coupled to said program memory for receiving display data

10 in terms of a pixel specification for processing said pixel specification and for converting

said pixel specification data into character data of a form used by said video memory.

2. An external memory system according to claim 1, wherein said pixel specification

includes coordinate data defining the location of the pixel on the display screen and

15 wherein said conversion circuit receives said pixel specification from said program

memory.

3. An external memory system according to claim 2, wherein said conversion circuit

includes address converter circuitry for receiving pixel coordinate data and for generating

20 a character specifying address.

4. An external memory system according to claim 1, further including storage means,

buffer memory means for temporarily storing character data generated by said conversion

circuit, and means for coupling character data stored in said buffer memory to said

25 storage means.

5. An external memory system according to claim 2, further including register means

for temporarily storing pixel coordinate data from said program memory.

30 6. An external memory system according to claim 1, further including a

programmable graphics processor coupled to said program memory and wherein said

conversion circuit is embodied within said graphics processor.

940825,p:\opo\dbw,2Q605.92,131

- 132-

7. An external memory system according to claim 6, wherein said programmable

graphics processor includes a first source common bus, a second source common bus and

a destination common bus, said conversion circuit receiving data from said first source

bus and said second source bus and for forwarding data to said destination bus.

5

8. An external memory system according to claim 1, wherein said pixel necification

includes the display coordinate of a pixel and color information to be associated with said

display coordinate, and further including color register means for receiving and for

temporarily storing said color information.

10

9. An external memory system according to claim 8, further including a register

matrix for receiving pixel color information from said color register means.

• · · ·• · · ·

• · · · ··
• · · • ·

10. An external memory system according to claim 1, further including storage means

15 and a memory controller for controlling access to said storage means, said conversion

circuit including address converting means for generating a character address, and

character data generating means for generating character data including data

corresponding to said pixel specification, and means for transferring the character address

and character data generated by said conversion circuit to said memory controller.

20

11. An external memory system according to claim 1, further including storage means

and means for coupling character information to said conversion circuit from said storage

means to be associated with said pixel specification being processed by said conversion

circuit

25 „

12. An external memory system according to claim 1, further including means for

storing character data, wherein said conversion circuit includes means for receiving, from

said means for storing, character data information regarding other pixels to be displayed

in the vicinity of pixel currently being processed.

30

//

13. An external memory system according to claim 1, wherein the program memory

and said conversion circuit are embodied within a video game cartridge.

•Z
3/

940825,p:\opcr\dbw,20605.92,132

&
<sy

- 133 -

14. s. An external memory system according to claim 1, wherein said conversion circuit

includes a color matrix for storing data relating to the specified pixel and other pixels in

a character including the specified pixel.

5 15. Au external memory system according to claim 14, wherein said color matrix

includes a plurality of rows and columns and wherein the color matrix is loaded by row

and read out by column.

16. An external memory system according to claim 15, further including register

10 means for temporarily storing said pixel specification including pixel coordinate data and

wherein said color matrix is addressed in part by at least a portion of the contents of said

register means.

• · · ·• · · ·• ·• ····»• ·• · ·• · «• · β ·• · · ·

• β · ·• · · ·• · ·• · ·• ·• ·«« * ·• · ·• · ·• · · ·
• · · ·• ·«• · ·• · ·• · · ·• · ·9 9 9

17. An external memory system according to claim 1, further including bit pending

15 means for recording whether the pixel being processed is part of the current character

being processed.

18. An external memory system according to claim 17, further including storage

means and means for transferring the character data generated by said conversion circuit

20 to said storage means depending upon the state of said bit pending means.

19. An external memory system according to claim 2, further including means for

indicating bits of a character associated with a pixel specification being processed which

do not need to be updated.

25

20. An external memory system according to claim 19, wherein said conversion circuit

includes means for generating a character address in response to a predetermined state

of said means for indicating.

1
t · /

940825, p:'topei\dbw,20605.92,133

21. An external memory system according to claim 1, further including address

register means for storing a character address generated by said conversion circuit, an

address comparator, coupled to the address register means, for comparing the current

30

W · >κ;«

134 -

character address generated by said conversion circuit with a previously generated

addicss.-

22. An external memory system according ω claim 21, further including character

5 memory means for storing character data and control means responsive to said address

comparator for writing out the address stored in said address register means to said

character memory means.

• ft ft
• · a• · ·a·· ·• · · ·

• · · • · · ·• · · ·
<5 *• *

» . 6 ί»
»0 ftO 4 C • <4• ¢-

23. A graphics processor eomprisir^:

10 means for receiving data in terms of a pixel specification; and

a conversion circuit for processing the pixel specification data and for generating

character data in terms of a character specification specifying a character including a

specified pixel.

15 24. A graphics processor according to claim 23, wherein said pixel specification

includes the display coordinate of a pixel and color information io be associated with said

display coordinate, and further including color register means for receiving and for

temporarily storing said color information.

V ft ft ft ft···

• · ft• ft ft ft
• ••ft

20 25. A graphics processor according to clai™ 23, further including a register matrix for

receiving pixel color information from said color register means.

26. A graphics processor according to claim 23, further including storage means and

means for coupling character information to said conversion circuit from said storage

25 means to be associated with said pixel specification being processed by said conversion

circuit.

30

■ . - ί']
- ci/

27. A graphics processor for use in an. information processing system having a main

processing unit for executing a videographics program stored in at least one memory

device, said graphics processor including:

me: .as for receiving program instructions from said at least one memory; and

means, responsive to at least one predetermined program instruction, for

940825,p:\opci\dbw,206Q5.92,134

4

i

- 135 -

converting pixel-based format data associated with said at least one predetermined

instruction into a character-based data format.

28. A graphics processor according to claim 27, further including a first source

5 common bus, a second source common bus and a destination common bus, and wherein

means for converting receives data from said first source bus and said second source bus

and forwards data to said destination bus.

29. A graphics processor according to claim 27, wherein said graphics processor is

10 coupled in use to storage means, and further including memory controller for controlling

access to said storage means, said means for converting including address converting

means for generating a character address, and character data generating means for

generating character data including data corresponding to said pixel-based data and

means for transferring the character address and character data generated by said means

15 for converting to said memory controller.

30. An external memory system substantially as hereinbefore described with reference

to the accompanying drawings.

20 31. A graphics processor substantially as hereinbefore described with reference to the

accompanying drawings.

• · · · ··

25

DATED this 25th day of August, 1994

30 A/N INC.

By its Patent Attorneys

,■ · DAVIES COLLISON CAVE

940825,p:\opcr\dbw,20605.?2,135

ί/

ABSTRACT OF THE DISCLOSURE

-4

A fully programmable, graphics microprocessor is
disclosed which is designed to be embodied in a
removable external memory unit for connection with a
host information processing system. In an exemplary
embodiment, a video game system is described
including a host video game system and a pluggable
video game cartridge housing the graphics
microprocessor. The game cartridge also includes a
read-only program memory (ROM) and a random-access
memory (RAM). The graphics coprocessor operates in
conjunction with a three bus architecture embodied on
the game cartridge. The graphics processor using
this bus architecture may execute programs from
either the program ROM, external RAM or ite own
internal cache "AM. The fully user programmable
graphics coprocessor has an instruction set which is
designed to efficiently implement arithmetic
operations associated with 3-D graphics and, for
example, includes special instructions executed by
dedicated hardware for plotting individual pixels in
the host video game system's character mapped display
which, from the programmer's point of view, creates a
"virtual" bit map by permitting the addressing of
individual pixels — even though the host system is
character based. The graphics coprocessor interacts
with the host coprocessor such that the graphics
coprocessor's 16 general registers are accessible to
the host processor at all times.

Η

Μ
ω

bf
 S

C
Yo

C

2/23

3/23

FIG. 3

4/23

INSTR X Υ

5/23

FIG. 4B

QFROM FIG. 4A]

6/23

125
START RUN

MARIO
-INITIALIZATION

129λ
SET SCREEN

BASE FIG. 5
131

SET I/O MODE 4, 16
OR 256 COLOR SCREEN

SET MARIO OWNER MODE
FOR ROM & RAM

I33
SET MARIO CHIP
PC TO ROUTINE

ADDRESS

I4I

7/23

FIG. 6
16

INSTR. DECODE

» · * ·
« r-

x[0..15] y [0..15] COLOR[0..7]
FIG. 7

© c « e · ·

BIT
PEND

LDPNDxREG
I /210 212Z

FROM
BIT
PENDING f:
PLOT γ:
ADDR
PLOTX2 —

LSBO “
DUMP ~

8X8
COLOR
MATRIX
CIRCUIT

,204,202
PLOLx PLOT.y
REGISTER REGISTER

,206

PLAN[2:1), PLA0
BIT PLANE
COUNTER 208

BIT PLANES
0-7, DATA
TO RAM
CONTROLLER

RAM CONTROLLER
DONE INCREMENTS
COUNTER

PLEQ •218

TO COLOR
MATRIX 206

PLOT ADDR
TO RAM
CONTROLLER

PLOT COMMAND

8/23

9/23

FIG. 8A

BIT
BENDING

REG. OUTPUT PLOT----
RPIX ----

RAM.DONE----
PLEQ -

SCR MD-

200

PLT CTL
(CONTROL)

► DUMP
-<► CLRPND
-► LDPND
->· LDPIX
-► BPR

BPR
LDRAM

224

FIG. 8B

• * ·
«
» 0'

FIG. 8C
WE

DE

RAMA

RAMDI

RAMDO

SPR
MATRIX
(BUFF CONTENTS)
PMTX
(BUFF CONTENTS)

COLOR

DUMP

PLOT
APIX

LDPND

CLRPND

RAMDONE

PLEQ

LDRAM

R1

R2

CODE

WAIT

U U LJ L i_J I—J
I I I------------------- 1 I I

■χ 2AB X 2AA X 2AB O 2AC H2ADj< 2AC /ΈξΕΤΟ 2AE X 2AF X 2AE X 2AF | 3EE X 3EF X 3EE

DD Y 22 X DD X 22 O DD X 22 X DD X D3 X DD

22 J DD X 22 X D2 X DD X 22 X DD X D3 X 22

40 X 80 DD
v y....... . —γ ψ v ψ----- ψ ψ ψ ψ γ

E7BBA87A504C1DD7 X E7BBAB7A584C3DBE

DE
π π n

I-----------------------------1

_______________________ I ” ■■ ' ”L-
Π

ΓΊ ΓΊ π

Γ~ L_T "LJ ..U " LI "TJ.....LJ “L........LT “LJ U " LJ ' ’Ll L
1 1 · -

ιπ π π π η γί____π

002C χ 003 D

χ 0037

α 4C - Τ 3DT ' 4C . . L.

“Ί 1 ·. 1 1
C .. - ...i D

10/23

11/23

12/23

FLIP

13/23

INV1
CK-

14/23

RESETL Q

GATE B
A-D
ckQ

RESET L

B

INV1

LATCH C

a q-ΜΎ GATE c
DIN-

GATE D

c o
Q-

Λ

——NA3

A- O- A
C-Q- B Y B

NA2

ΔΓλ
Y

B

NA3P LATCH B

RESET L Q-
A Q-

C- LI­
CK-O-

B , v
Aps

B P/>Y

NA4

NA2P
GATE E

B-

LATCH A

FIG. 11
NIN1

15/23

FIG. 12

DIN

CK

Q

STATE

0 p_j--- 1....................... .

0 ~“l_... .. .1 L „„J L _J t

I 1________________________r~~

OIO οϊοΌ<ΤϊόΌ< loo X ίοϊ ~~ΎΰΤΧ οι1 " X oio .
t : : : :._ri 500.1 200 300 400

INSTR[3:0]

TO —

RESFLAGS

FROM

^602 MUX INSTR
DECODE
-^606

4 BIT
REG FIXED

REGISTERS”
E INSTR[3:0] --

CLR HA[4‘.1]

Y SEL[3:0]
(SELECTS WHICH
REGISTER FEEDS
Y BUS)

FIG. 16

FIG. 13
16/23

EN.R14 J

^04
----- DATAFETCH

4C2

ROMRDY—

CODE BANK -

CACHECK -

RESYNC

K

ROMDCK

WAIT -----
GO -----

CA.RGE -----
EN.R15 ------
PC[3:0] ----

CACH, RQ

CODEFETCH
CACH
LOAD

4
-f— CACH LOAD

FIG. 14

17/23

FLAG DETECTOR 543

18/23

FIG. 15B

CK J f \ J
CACHE RAM DATA

(OPCODE)
OPCODE

PIPELINE OPCODE-1 X OPCODE-2

19/23

INSTRUCTION DECODE I
XSEL U0

XSEL0

20/23

FIG. 17

(CKV
RN15

disable l°x
ENABL ___

DISABLE H~—CK
DATA IN

ENABL

ENABLE
CK—»

DATA IN
CCHLD e

PCEN
LOOPEI

RESET , z —
ENABLE L.L- CKX

DATA IN

21/23

666·^ j YES
tK)

22/23

FIG. 19

FIG. 20

23/23

FIG. 21

