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Claim
An external memory system for an information processing system used with a

display screen, and having a microprocessor for exccuting a videographics program and
a video memory for storing character data indicative of a plurality of characters which
when combined define a display frame, said external memory system including:

a program memory for storing at least some of the instructions of said
videographics program, and

a conversion circuit coupled to said program memory for receiving display data
in terms of a pixel specification for processing said pixel specification and for converting
said pixel specification data into character data of a form used by said video memory.
23. A graphics processor comprising:

means for receiving data in terms of a pixei specification; and

a conversion circuit for processing the pixel specification data and for generating
character data in terms of a character specification specifying a character including a
specified pixel.
27. A graphics processor for use in an information processing system having a main
processing unit for executing a videographics program stored in at least one memory
device, said graphics processor including:

means for receiving program instructions from said at least one memory; and

means, responsive to at least one predetermined program instruction, for
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converting pixel-based format data associated with said at least one predetermined

instruction into a character-based data format.
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Patent Attorneys
1 Little Collins Street, Melbourne, 3000.

INVENTION TITLE:

Programmable graphics processor having pixel to character conversion hardware
for use in a video game system or the like

The following statement is a full description of this invention, including the best method
of performing it known to me/us:-
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The invention relates to an external memory system and a graphics processor.
Mor'e“particularly, the invention relates to a removable, external memory unit having a
program memory storing a program to be executed in part by a host processing system,
e.g. a video game system, and in part by a programmable microprocessor designed to
enhance the high speed graphics processing capabilities of the host system. The
programmable microprocessor includes hardware for converting from a pixel based format

to a character based format.

940825,p:\oper\dbw,20605.92,1



Prior art video game machines having an 8-bit
microprocessor and an associated display processing
subsystem embodied in a video game control deck
typically generate graphics by prestoring characters
in a game cartridge in the form of 8-bit by 8-bit
matrices and by building a screen display using
various programmable combinations of these prestored
characters. Such prior art video game systems
typically have the capability of moving the entire
display background as well as a number of
player-controlled "moving objects” or "sprites".

Such prior art systems do not have the
capability of practically implementing video games
which include moving objects made up of combinations
of polygons which must be manipulated, e.g.,
rotated, and "redrawn" for each frame. The prior
art 8-bit processor and associated display
processing circuitry in such systems are not
capable, for example, of performing the calculations
required to effectively rotate three-dimensional,
polygon-based objects or to appropriately scale such
rotating objects to generate 3-D type special
effects. The present inventors have recognized that
sophisticated graphics require updating the screen
on a pixel-by-pixel basis and performing complex
mathematics on a real time basis. Such prior art
character based video game machines are not capable
of performing such tasks.




The prior art 8-%it video game machines also
can not effectively perform other graphics
techniques which require rapidly updating the screen
on a pixel-by-pixel basis. For example, such
systems can not effectively map an object onto a
displayed polygon which is part of yet another
displayed object (hereinafter referred to as
"texture mapping”) in three-dimensional space.

In an effort to improve the graphics
capabilities over prior art 8-bit machines, video
game systems have been designed using more powerful
16-bit processors. Such 16-bit processors provide
the video game system with a mechanism for
performing the mathematics required for more
sophisticated graphics. Such systems, for example,
permit more sophisticated color generation and
better graphics resolution. Such 16-bit video game
machines are character-based systems which permit
the implementation of a wide range of video games
that can be pre-drawn into character-based or sprite
graphics. Such 16-bit video game systems also
permit the movement of multiple colored background
planes at high speeds with moving objects disposed
in back, or in front, of such planes.

However, such prior art 16-bit video game
machines do not permit the practical implementation
of advanced video games having 3-D type special
effects which display sophisticated objects made up
of polygons that must change during each frame. For
example, games which require many fully rotating
objects or sprites that must be enlarged and/or



reduced on a frame-by-frame basis are not
practically realizable in such prior art
character-based 16-bit machines. The inventors have
recognized that, in order to effectively implement
such games involving fully rotating and scaled,
polygon-based objects, it is necessary to draw the
edges of polygons and fill in such polygon-based
objects with appropriate data on a pixel-by-~pixel
basis. Such tasks, which must be done on a
pixel-by-pixel basis, consume a great deal of
processing time.

In the prior art, removable game cartridges
have been modified to improve game sophistication by
permitting existing processors to address a larger
program memory address space than the existing
number of address lines associated with the host
microprocessor would otherwise permit. For example,
such prior art 8-bit systems have utilized game
cartridges including multi-memory controller chips
which perform memory bank switching and other
additional functions. Such memory bank switching
related chips, however, are not capable of enabling
the video game system to do high speed graphics
processing of the nature described above.

The present invention addresses the

above-described problems in the prior ar
e, graphics

ned to be embodied in a
ory unit for connection with a

providing a unique, fully progra
microprocessor which is desi
removable external
host infor
embodifment described herein, the present invention

on processing system. In an exemplary
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.. In accordance with the present invention there is provided an external memory
system for an information processing system used with a display screen, and having a
microprecessor for executing a videographics program and a video memory for storing
character data indicative of a plurality of characters which when combined define a
display frame, said external memory system including:

a program memory for storing at least some of the instructions of said
videographics program, and

a conversion circuit coupled to said program memory for receiving display data
in terms of a pixel specification for processing said pixel specification and for converting

said pixel specification data into character data of a form used by said video memory.

In accordance with the present invention there is also provided a graphics
processor comprising:

means for receiving data in terms of a pixel specification; and

a conversion circuit for processing the pixel specification data and for generating
character data in terms of a character specification specifying a character including a

specified pixel.

The present invention also provides a graphics processor for use in an information
processing system having a main processing unit for executing a videographics program
stored in at least one memory device, said graphics processor including:

means for receiving program instructions from said at leasi one memory; and

means, responsive to at least one predetermined program instruction, for
converting pixel-based format data associated with said at least one predetermined

instruction into a character-based data format.

An exemplary preferred embodiment of the present invention is hereinafter

described with reference to the accompanying drawings in which:

FIGURE 1 is a block diagram of an exemplary

940825, p:\oper\dbw,20605.92,5
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external memory system in accordance with an
exemplary embodiment of the present invention;

FIGURE 2 is a block diagram of an exemplary
host processing system for use with a graphics
coprocessor of the presently preferred exemplary
embodiment;

FIGURE 3 is a perspective view showing an
exemplary mechanical configurations of a game
cartridge housing a graphics coprocessor and a base
unit housing the host processing system;

FIGURES 4A and 4B are a block diagram of the
graphics coprocessor in accordance with the
presently preferred exemplary embodiment;

FIGURE 5 is a flowchart delineating the
sequence of operations performed by the host
processing system for initiating graphics
coprocessor operation;

FIGURE 6 is a more detailed block diagram of
the arithmetic and logic unit shown in FIGURE 4A;

FIGURE 7 is a.more detailed block diagram of
exemplary pixel plot circuitry of the type shown in
FIGURE 4A;

FIGURE 8A is a block diagram showing the input
signals received by the plot controller and the
output signals generated by the plot controller;
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FIGURE 8B is a color matrix element contained
within the color matrix in the pixel plot circuitry;

FIGURE B8C depicts timing, control and data
signals associated with the pixel plot circuitry;

FIGURE 9 is a more detailed block diagram of
the RAM controller shown in FIGURE 42;

FIGURE S9A shows exemplary timing, control and
data signals associated witlhh the RAM controller
shown in FIGURE 9;

FIGURE 10 is a circuit diagram illustrating the
arbitration logic shown in FIGURE 9;

FIGURE 11 is a diagram of resynchronizing
circuitry in an exemplary embodiment of the graphics

coprocessor of the present invention;

FIGURE 12 illustrates timing signals associated
with the resynchronizing circuitry of FIGURE 11;

FIGURE 13 is a more detailed block diagram of
the ROM controller of the graphics coprocessor of
the present invention;

FIGURE 14 is a block diagram of the cache
controller of the graphics coprocessor in accordance
with an exemplary embodiment of the present
invention;
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FIGURE 15A is a block diagram showing the

instruction decoding related circuitry of the
graphics coprocessor of the present invention;

FIGURE 15B shows exemplary timing signals

demonstrating the operation-of the look-ahead logic
in FIGURE 15A; '

FIGURES 16 and 17 are block diagrams showing

the register control logic of the graphics

coprocessor in accordance with an exemplary

embodiment of the present invention;

FIGURE 18 is an exemplary flowchart delineating
the sequence of operations-of the graphics
coprocessor in carrying out a polygon generating

tasks;

FIGURES 19, 20 and 21 are exemplary displays
which may be generated of polygon-based objects to
illustrate scaling and rotation features in
accordance with an exemplary.embodiment of the

present invention

In accordance with the present exemplary
embodiment, the graphics coprocessor of the present
invention interacts with a 16-bit video game system
commercially sold by Nintendo of America, Inc. as
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the Super Nintendo Entertainment System (Super
NES). The Super Nintendo Entertainment System is
described in part in U.S. application Serial No.
07/651,265, entitled "Video Processing Apparatus"
which was filed on April 10, 1991 and U.S.
application Serial No. 07/749,530, filed on August
26, 1991, entitled "Direct Memory Access Apparatus
and External Storage Device Used Therein". These
appitcations are expressly incorporated herein by
reference. It should be understood th .t the present
invention is not limited to Super NES related
applications and may be used with other video game
systems or other, non-video game, information
processing apparatus.

For ease of reference purposes only, the
graphics processor in accordance with the present
exemplary embodiment is referred to hereinafter as
the "Mario chip™. The Mario chip is described in
the presently preferred exemplary embodiment as
being packaged within a video game cartridge. It
should be understood that it is not essential to the
present invention for the Mario chip to be housed in
the same cartridge case as the program memory as
long as it is connected, in use, to a program memory
and to the host processing unit.

Figure 1 shows an exemplary video game
cartridge/external memory system in accordance with
an exemplary embodiment of the present invention.
The game cartridge includes a printed circuit board
(not shown) on which all of the Figure 1 components
are mounted. The cartridge includes an array of



connector electirodes 1 disposed at an insertion end
of the printed circuit board for transmitting
signals to and from the Super NES main control

deck. The array of connector electrodes 1l is
received by a mating connector disposed in the Super
NES main control deck.

In accordance with the present exemplary
embodiment, the Mario chip (graphics coprocessor) 2
embodied on the game cartridge is a 100 to 128 pin
integrated circuit chip. The Mario chip receives
many control, address and data signals from the host
processing system (e.g., the Super NES). For
example, the Mario chip 2 receives a 21 MHz clock
input from the host processing system via pin P112,
and a system clock input which may be 21 MHz (or
another predetermined freguency) via pin P117. The
system clock input may be used, for example, to
provide the Mario processor with to memory timing
information for host CPU memory accesses and to
provide clock signals for timing operations within
the Mario chip. The Mario chip 2 also includes an
optional, external clock input (pin P110) which
couples the Mario chip to an extarnal c¢rystal 4, to
drive the Mario CPU, for example, at a higher
frequency clocking rate than the 21 MHz received
from the host system.

Host CPU addresses inputs (HA) are coupled to
the Mario chip 2 via pins P37 to pins P62 from the
host processing system (e.g., Super NES CPU/Picture
Processing Unit PPU) address bus. Similarly, data
inputs (ED) from the host system are coupled to the
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Mario chip 2 via pins P65-P72 from th .ost CPU data
bus. The Mario chip 2 additionally receives from
the host CPU a memory refresh signal RFSH via P119,
a reset signal via rin P1l18 read and write control
signals via pins P104, P105. The Mario chip
generates an interrupt request signal IRQ and
couples the signal IRQ to the Super NES via pin
P120. Other control signals are received from the
Super NES such as a ROMSEL signal via pin P106 which
may, for example, be used to initiate a host program
ROM 10 access. Additionally, the cartridge includes
an authentication processor 3 which exchanges data
with a Super NES authenticating processor on input
I, output O, and reset R lines. The authenticating
processor 3 and the security system used to
authenticate game cartridges may be of the type
shown in U.S. Patent 4,799,635, which patent is
incorporated herein by reference.

The Mario chip is coupled to RAMs 6 and 8 via
the RAM address bus (RAM A), and RAM address pins
P74-P91 and the RAM data bus (RAM D) and data pins
P93-P100. These RAMs may be dynamic memory devices
controlled in part using row address and column
address strobe signals (RAS, CAS) coupled via pins
P90 and P91, respectively. One or more static RAMs
may be utilized instead of dynamic RAMs and pins PSO
and P91 would then be used to couple address signals
to their respective RAMs without the row address and
column address strobe signals. A write enable
control signals WE is appropriately coupled to RAM 6
and 8 via pin P107.



The read and write control signals (R, W) are
generated by the host CPU and coupled to the Mario
chip via pins P104 and P105. By monitoring these
read and write lines, the Mario chip can determine
the nature of the memory access operation the Super
NES CPU is attempting to perform. Similarly,
virtually all address and control lines from the
host system are monitored by the Mario chip to keep
track of what the host CPU is attempting to do. The
ROM and RAM addressing signals received by the Mario
chip are monijitored and passed on to the appropriate
memory device. In this regard, the ROM addresses
are coupled to program ROM 10 via the ROM address
bus and pin P2 to P26 and the RAM address is coupled
to RAMs 6 and 8 via pins P74 to pins P91. The ROM
and RAM data inputs from the host CPU are
appropriately coupled to ROM 10 via the ROM data bus
and pins P28-P35 and via pins P93 to P1l00,
respectively.

It should be recognized that the Mario chip may
Le utilized in conjunction with a wide range of
different memory devices in addition to the ROM and
RAM's described herein. For example, it is
contemplated that the Mario chip may be
advantageously utilized in conjunction with wvideo
game systems using CD ROM's.

For example, in Figure 1, instead of using ROM
10, a CD ROM (not shown) may be used to store
character data, program instructions, video,
graphic, and sound data. A conventional-type CD
player (also not shown) suitably connected to the
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Mario chip 2 to receive memory address signals over
address bus P2-P26 for accessing data and/or
instructions over data bus P28-P35. The specific
structural and operational details of CD players and
CD ROM storage systems are well known to those
skilled in the art. One advantage provided by CD
ROM storage is a significant reduction in the cost
of storage per byte of information. Data may be
stored at a cost between 100 to 1000 percent less
than storage on semiconductor ROM. Unfortunately,
the memory access/read time for CD ROM is even
slower than that for semiconductor ROM.

Tha Mario chip uses a three bus architecture
which permits information on at least three buses to
be utilized in parallel. In this regard, in the
game cartridge shown in Figure 1, the Mario chip 2
is coupled to a ROM bus (including ROM data lines,
ROM address lines and control lines), a RAM bus
(including RAM address lines, data lines, and
control lines) and a host processor bus (including
host address, data and control lines).

The Mario chip architecture permits pipelined
operations to occur to optimize throughput. In this
regard, the Mario chip can be reading a cata byte
from ROM, while processing other data, while writing
yet further data to RAM to permit 3-D related
graphics to be performed very efficiently. As is
described further below, the Mario chip 2 uses a
16-bit architecture internally and yet is designed
to interface with 8-bit ROM 10 and RAM 6, 8 chips.
Internully, all internal data buses and internal



registers are 16-bits. Reads from ROM 10 and writes
to RAM 6, 8 are "buffered” and typically do not slow
down program execution.

Similarly, the Mario chip 2 may access
instructions and graphics data from CD ROM and write
that information into RAM 6, 8 for subsequent DMA
transfer into the video RAM of the host processor,
e.g., Super NES picture processing unit (PPU).

Those skilled in the art will appreciate that the
Mario chip 2 may be programmed to coordinate
transfer of data from the CD ROM directly to the
video RAM of the PPU, bypassing the RAM storage and
access operations.

The extremely fast processing speed of the
Mario chip 2 makes CD ROM storage practical for
graphics applications despite the long read access
time of CD ROMs. Video and audio data are
compressed using conventional data compression
techniques before storage on CD ROM. Data
compression and decompression techniques are well
known to those skilled in the art. After accessing
compressed data from the CD ROM, the Mario chip 2
decompresses the data using conventional data
decompression algorithms in much shorter time
periods than can be achieved by conventional
graphics processors. Because it operates with a 21
MHz clock, the Mario chip 2 completes decompression
within prescribed time periods for data transfer to
RAM 6, 8.



Thus, large amounts of video and audio data are
accessed (in compressed form) in typical CD ROM
access time periods. However, the effect of those
relatively long access times is minimized because
after data decompression by the Mario chip 2, the
actual access time per data byte is significantly
reduced. With the Mario chip 2 performing
decompression, the host graphics processor, e.g. the
Super NES PPU, is free to perform other processing
tasks. Of course, if speed is not an issue for a
particular application, the Mario chip 2 can access
Jdata from CD ROM in uncompressed form.

The cartridge may zlso include a battery backup
when static RAM is used. A backup battery 12 is
coupled to a conventional backup battery circuit 14
via a resistor R to provide a backup voltage (RSRAM)
for static RAM and a static RAM chip select signal
RAMCS in case of loss of power to provide a data
saving feature.

Additionally, coupled to the RAM address bus,
are option setting resistors 16. 1In normal
operation, the Mario chip address lines are output
to RAMs 6 and 8. However, during reset or power-on
operations, these address lines are used as input
lines to generate either a high or low signal
depending upon whether they are tied to a
predetermined voltage VCC or ground. In this
fashion, a "1" or "O" is appropriately read into an
internal Mario chip register. After reset,
depending upon the setting of these resistors, the
Mario chip can determine (during program execution),



for example, the multiplier clocking rate, the RAM
access time to which the Mario chip is coupled, the
clocking rate to be used with other operations
within the Mario chip, etc. Through the use of
these option setting registers, the Mario chip is,
for example, adaptable to be used with a number of
different types of memory devices without requiring
any Mario chip design modifications. For example,
if a dynamic RAM setting is detected then refresh
signals will be applied at appropriate times.
Additionally, the option settings may be used to
control the speed at which, for example, the
processor multiplier circuits operate and to permit
other instructions to be executed by the graphics
processor at a faster rate than it is possible to
execute certain multiply instructions. Thus by
initiating a delayed multiply execution, the
remaining instructions can run at a faster clock
rate than the rate otherwise possible (e.g., the
processor may, for example, be clocked at 30
magahertz, whereas the option settings would
effectively cause the multiply instructions to be
executed at 15 megahertz).

Figure 2 is block diagram of an exemplary host
video game system to which the exemplary game
cartridge set forth in Figure 1 is designed to be
coupled. Figure 2 may, for example, represent the
Super NES currently sold by Nintendo of America.
The present invention, however, is not limited to
Super NES related applications or systems having a
block diagram such as that shown in Figure 2.



The Super NES includes within its control deck
20, a 16-bit host CPU which may, for example, be a
65816 compatible microprocessor. The CPU 22 is
coupled to a working RAM 32, which may, for example,
include 128K bytes of storage. The CPU 22 is
coupled to a picture processing unit (PPU) 24 which
in turn is coupled to a video RAM 30 which may, for
example, include words of storage. The CPU 22 has
access to the video RAM 30 via the PPU 24 during
vertical or horizontal blanking intervals. Thus,
the CPU 22 can only access the video RAM 30 through
the PPU 24 at times other than during active line
scan when the PPU 24 is accessing video RAM. PPU 24
generates a video display on a user's television 36
from video RAM 30. CPU is also coupled to an audio
processing unit APU 26 which is coupled to a working
RAM 28. The APU 26 which may comprise a
commercially available sound chip generates the
sounds associated with the video game program stored
on the game cartridge in ROM 10. The CPU 22 can
only access the working RAM 28 via APU 26. The PPU
24 and APU 26 are coupled to the user's home
television 36 via RF modulator unit 34.

The video RAM 30 in the Super NES must be
loaded with appropriate character data stored in the
program ROM 10 in the cartridge (which stores not
only the game program, but also the character data
used during game play). Any moving object, e.g.,
sprite information, or background information to be
displayed must be resident in video RAM 30 before
use. The program ROM 10 is accessed by the CPU 22
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host address and data buses via a mating connector
18 which is coupled to the printed circuit board
edge connector 1 shown in Figure 1. The PPU 24 is
connected to the game cartridge via shared host CPU
data and address buses and connector 23 sc as to
provide a path for PPU data and control signals to
be coupled to the cartridge. The APU 26 is
connected to the game cartridge via shared host CPU
buses and audio bus 27.

The CPU 22 address space is mapped such that
pregram ROM 10 locations begin at location O and is
typically divided into 32K byte segments. The
program ROM uses approximately one-half of the CPU
address space. The top locations in each CPU
address space 32K byte segment is typically utilized
to address working RAM 32 and various registers.

The program ROM 10 typically is four megabytes. The
CPU 22 used in the Super NES is capable of
addressing the entirety of the program ROM 10. On
the other hand, the Mario chip 2 only includes a 16
bit program counter and thus includes bank registers
for selecting between the 32K byte banks in the
program ROM 10.

In the present exemplary embodiment, the Mario
chip has a full 24 bit address space that
corresponds with the Super NES memory map. This
contains the ROM 10 at the position starting at
location $00:8000, and the RAM chip 6, 8 on the
cartridge starts at location $70:0000.



Since the ROM 10 and RAM 6, 8 on the cartridge
are on separate buses they can be accessed in
parallel by the Mario Chip. Also RAMs 6, 8 can be
accessed at a faster rate than ROM and the Mario
chip is designed to utilize this performance
advantage. The Mario chip has no access to any
memory that is inside the Super WES, i.e., no access
to the working RAM 32 or PPU video RAM 30.

In order for the Mario chip to process data, or
draw into a bitmap, data must be contained within
the Mario cartridge RAM chip 6, 8. Thus, any
variables which are shared between the NES CPU
program and the Mario chip program must be within
the Mario cartridge RAM chip 6, 8. Any prestored
data that the Mario chip program needs to use can be
in ROM 10 and any variables will be in RAM 6, 8.

Any private variables only required by the
Super NES program do not need to be in cartridge RAM
6, €. 1In fact, since this RAM 6, 8 is at a premium
in terms of memory space, it is advisable to
allocate cartridge RAM 6, 8 on a high priority
requirement basis. Any non-essential variables
should be stored in Super NES internal RAM 32.

The bitmap that the Mario Chip writes into is
in Mario cartridge RAM 6, 8 and will be DMA
transferred under control of the Super NES into the
PPU's video RAM 30 when each bitmap frame has been
fully rendered.



The Super NES's CPU 22 has access to all
internal RAM within the Super NES control deck just
as 1f the Mario chip were not present. The Mario
chip has no access to this RAM so all data
transferred between the Mario ROM/RAM chips and
internal Super NES RAM must be initiated by the CPU
22 itself. Data can be transferred via CPU 22
programming, or block moved via DMA traansfer.

The Mario cartridge ROM 10 and RAM 6, 8 are mapped
in as usual on all game programs.

The CPU 22 has control over which CPU has
temporary access to the cartridge ROM or RAM chips.
On power up or reset conditions, the Mario chip is
turned off and the CPU 22 has total access to the
cartridge ROM and RAM chips. In order for the Mario
chip to run a program, it is necessary focr the CPU
22 program to give up its access to either the ROM
or RAM chip, preferably both, and cither wait for
the Mario chip to finish its given task, or
alternatively the CPU 22 can copy some code into
internal work-RAM 32 and execute it there.

The Mario chip has a number of registers that
are programmable and readable from the Super NES CPU
side. These are mapped into the CPU 22 memory map
starting at location $00:30Q00.

As indicated in Figure 2, the Super NES
generates and receives a variety of control
signals. When the Super NES CPU 22 needs to access
program ROM 10, it generates a control signal
ROMSEL. To initiate a memory refresh, the Super NES



generates a refresh signal RFSH. When the Mario
chip completes an operation, it transmits an
interrupt signal IRQ on an interrupt request line
associated with the Super NES CPU. The CPU 22
additionally generates read and write signals.

System timing signals are generated froﬁ timing
chain circuitry 21 within the control deck 20. A
power-on/reset signal is also generated within the
main control deck 20 and'coupled to the game
cartridge.

The Super NES also includes an authenticating
processing device 25 which exchanges data on input I
output O, and reset R conductors with an
authenticating processing device 3 on the game
cartridge in accordance with the above identified
U.S. Patent 4,799,635. The processing device 25 as
taught by U.S. Patent 4,799,635 holds the CPU 22 in
a reset state until authentication is established.

The Super NES video game machine which is
represented in block form in Figure 2 has only been
generally described herein. Further details
regarding the Super NES including PPU 24 may, for
example, be found in U.S. application Serial No.
07/651,265, entitled "Vicleo Processing Apparatus
which was filed on April 10, 1991, which application
has been expressly incorporated herein Ly
reference. Still further details such as how
information is transferred between the Super M. and
the game cartridge may be found in U.S. Application
Serial No. 07/749,530, filed on August 26, 1991,
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entitled "Direct Memory Access Apparatus in Image
Processing System and External Storage Device Used
Therein"” and in U.S. Application Serial No.
07/793,735, filed November 19, 1991, entitled,
"Mosaic Picture Display Apparatus and External
Storage Unit Used Therefor"”, which applications are

incorporated herein by reference.

In some applications, the inventors have
recognized that more information may need to be
transferred during vertical blanking using such host
processor DMA circuits than is achtually possible.
Accordingly, it may be desirable to extend vertical
blanking time -- even if it results in siightly
shrinking the pic%ure size. By using this approach,
significant advantages are realized in terms of
processing speed and picture update rate.

Figure 3 shows a perspective view of an
2axemplary mechanical design for a game cartridge
case 19 for Lousing the Mario chip and other
cartridge structure shown in Figure 1. Similarly,
Figure 3 shows the pzrspective view of an exemplary
exterior housing for a video game control deck 20
for housing the Super NES video game hardware shown
in Figure 2. The mechanical design for such video
game control deck 20 and associated removable game
cartridge 19 is shown in Figures 2-9 of U.S.
application Serial No. 07,748,338, filed on August
23, 1991, entitled, "TV Game Machine", which
application is hereby incorporated herein by

reference.
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Figures 4A and 4B are a block diagram of the
Mario chip 2 shown in Figure 1. Focusing first on
the various buses shown in Figures 4A and 4B, the
instruction buz INSTR is an 8-bit bus that couples
instruction codes to various Mario chip components.
The X, Y and 2 buses are 16-bit data buses. The HA
bus is a 24-bit host system address bus that, in the
presently preferred embodiment is coupled, in use,
to thie Super NES address bus. The HD bus is an
8-bit host data bus which is coupled, in use, to the
Super NES data bus. The PC bus is a 16-bit bus
which couples the output of the Mario chip program
counter (i.e., registef R15 in general register
block 76) to various system components. The ROM A
bus is a 20-bit ROM addr ss bus. The ROM D bus is
an 8-bit ROM data bus. _1e RAM A Lus is a bit RAM
adciress bus. The RAMD_IN bus is an 8-bit RAM read
data bus, and RAMD_OUT iu an 8-bit RAM write data
bus.

The Mario chip and the Super NES share the
cartridge RAM 6, 8 which serves as the maia
mechanism for nassing data between the Mario chip
and the Super NES. The Super NES accesses the Mario
chip via the address and data buses HA and HD. The
Mario chip registers 76 are accessed by the Super
NES via the Super MES address bus HA.

The Super NES accesses the cartridge program
ROM 10 and RAM 6, 8 via the Mario chip 2. The ROM
controller 104 and the RAM controller 88 receive
memory access re’ated signals generated by the Super
NES to respectively initiate ROM and RAM memory



accesses. By way of example, a RAM select signal
RAMCS is used by the Mario chip 2 to confirm that
the Super NES is attempting to address the RAM.

The X, Y and 2 buses shown in Figures 4A and 4B
are the internal Mario chip data buses. The X and Y
buses are source data buses and the Z data bus is a
destination bus. These buses carry 16 bits of
parallel data.

While executing instructions, the Mario chip 2
may place the source of data for an instruction on
the X wnd/or Y buses and the destination data on the
Z2 bus. For example, in executing an instruction
which adds the contents of two registers and places
the results in a third register, arithmetic and
logic unit (ALU) 50 receives the contents of two
source registers via the X and Y bus couples the
result to the Z bus (which in turn is coupled to a
specified register in block 76). Control signals
resulting from the decoding of an instruction
operation code by the instruction decoding circuitry
60 in the Mario chip 2 are coupled to the ALU 50 to
initiate an ADD operation.

As noted with respect to the description £
Figure 1, the Mario chip is coupled to a ROM bus, a
RAM bus and a Super NES host bus which are capable
of communicating signals in parallel. The Mario
chip 2 monitors the contr¢l address and data
signals transmitted via the host Super NES bus to
determine the operations which the host system is
performing. The cartridge ROM bus and the cartridge
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RAM bus may be accessed in parallel depending upon
the Super NES operation being performed at any given
time. In conventional Super NES gume cartridges,
the host CPU address and data lines are coupled
directly to the RAM and ROM, such that the RAM and
ROM may not be accessed in parallel.

In accordance with one aspect of the present
invention, the Mario chip 2 physically separates the
ROM bus and the RAM bus as shown in Figure 1 from
the Super NES buses. The Mario chip 2 monitors the
signals transmitted on the Super NES buses and
determines what signals need to be coupled to the
ROM chip and the RAM chip via two separate ROM and
RAM buses which are not time shared. By separating
the ROM and RAM buses, the Mario chip 2 is able to
read from ROM and write to RAM simultaneously. 1In
this fashion, the Mario chip can efficiently operate
with inexpensive ROM chips which have access times
which are significantly slower than RAM access times
without having to wait for the ROM accesses to be
completed beforz accessing RAM.

Turning to Figure 4A, as noted above, the Mario
chip 2 is a fully programmable processor, and
includes an ALU 50. The ALU 50 executes all the
arithmetic functions embodied within the Mario chip
except for multiply operations which are handled by
multiplier 64 and certain pixel plotting operations
handled by plot hardware 52. Upon receipt of an
appropriate control signal from instruction decoder
60, the ALU 50 performs addition, subtraction,
EXCLUSIVE-OR, shift and other operations. As shown



2o
26

in Figure 4A, ALU 50 receives information to be
operatad on from the X, Y buses, performs the
operation initiated by a control signal received
from instruction decoder 60, and couples the results
of the operation to the Z bus. The ALU is described
in further detail below in conjunction with Figure 6.

The Mario chip 2 additionally includes special
purpose hardware to enable 3-D type special effects
and other graphic operations to be efficiently
performed so that video games utilizing these
features may be practically realized. 1In this
regard, the Mario chip 2 includes plot hardware 52
which assists in converting in real time from pixel
coordinate addressing to character map addressing of
the nature utilized in the Super NES.
Advantageously, the Mario chip may be programmed by
specifying X and ¥ coordinates which define the
location of each pixel on the display screen.

Thus, graphic operations are performed based on
a programmer specifying pixels and the plot hardware
circuit 52 on the. fly converts pixel specifications
into properly formatted character data. The
characier data is then mapped into the desired place
for display in the Super NES video RAM 30 shown in
Figure 2. In this fashion, the Mario chip
programmer need only consider the Super NES video
RAM 30 as a bit map when in reality, it is a
character map.

The plot hardware 52 responds to various
plotting related instructions to permit programmable



selection of an X and Y coordinate on the display
screen and a predetermined color for a particular
pixel and to plot corresponding pixels such that the
X and Y coordinate is converted into an address
which corresponds to a character definition of the
form which is used to drive the Super NES video RAM
30.

The plot hardware 52 has associated data
latches which permit buffering of as much pixel data
as possible prior to writing to cartridge RAM to
After the X and Y
coordinate data is converted and buffered in the

minimize RAM data transactions.

plot hardware 52, character definition data is then
transferred to the cartridge RAM.

The plot hardware 52 receives X, Y coordinate
data via a PLOT X register 56 and PLOT Y register
58, respectively. In the presently preferred
embodiment, the PLOT X and PLOT Y registers are not
separate registers (as shown in Figure 4A) but
rather are Mario chip general registers (e.g.,
registers Rl and R2 registers in fegister block 76
shown in Figure 4B).

The plot hardware 52 also receives pixel color
As will be
the color of each pixel

information via a color register 54.
described further below,
that is displayed is stored in an 8 x 8 register
matrix, with each pixel color specification
occupying a column of the matrix.



The plot hardware 52 processes and couples the
character address and data associated with the X, Y
anc c¢olor input to the charzcter REM 6, 8. The
character address is forwarded via output lines 53
to the KAM controiler 88 and to a RAM address bus
RAM A. The character data is coupled to the
character RAM via output line 55, multiplexer 93 and
RAM data bus RAMD_OUT. The plot hardware 52 permits
pixels within a character to be addressed
individually, to thereby provide the programmer a
"virtual” bit map display system, while maintaining
compatibility with the Super NES character format.
The "virtual" bit map is held in the cartridge RAM
and is transferred to the Super NES video RAM 30 on
the completion of the display of each frame using,
for example, the DMA circuitry in the
above-identified application Serial no. 07/749,530.
The plot hardware 52 permits high speed individual
pixel control so that certain 3-D graphics effects
involving rotating and scaling objccts become
practically realizable.

Because of the conversion from pixel to
character format, the plot hardwavre 52 also receives
information relating to other pixels in the vicinity
of the current pixel X, Y from a cartridge RAM 6, 8
via RAMD_in data latch 32 and input line 83. By
using previous pixel data retrieved from RAM 6, 8
and temporarily stored in the RAM data latches, “he
number of writes to RAM may be minimized. The RAM
data latches 80, 84, and 86 shown in Figure 4A also
serve to buffer color data received regarding a
pixel which has been stored in multiple bit planes



in cartridge RAM to provide plot hardware 52 with
such data.

RAM data latch 80 is coupled to the Super NES
data bus so that the Super NES can read the contents
of the data latch. RAM data latches 80, 82, 84, and
86 are controlled by the RAM controller 88. RAM
data latches 84 and 86 operate to receive data from
RAM 6, 8 and couple data from RAM 6, 8 to the
destination 2 bus for loading into a predetermined
register in register block 76. Additionally coupled
to RAM controller 88 is a latch 90 which buffers RAM
addresses. The address stored in latch 90 is
utilized by RAM controller 88 for addressing RAM 6,
8 via the RAM A bus. RAM controller 88 may also be
accessed by the Super NES via address bus HA.

The plot hardware 52 also responds to a READ
PIXEL instruction which reads the pixel color
information for a horizontal position defined by the
contents of register Rl and the vertical position
defined by the contents of register R2 and stores
the result in a predetermined register in the
register block 76 via the destination 2 bus and
output line 87. The PLOT hardware 52 is described
in further detail in conjunction with the
description of Figures 7, 8A, and 8B.

Pipeline buffer register 62 and an ALU
controller instruction decoder 60 are coupled to
instruction bus INSTR and operate to generate the
control signals CTL (utilized throughout the Mario
chip) to initiate operations in response to commands
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placed on the instruction bus. The Mario chip 2 is
a pipelined microprocessor which fetches the next
instruction to be executed while it is executing the
current instruction. Pipeline register 62 stores
the next instruction(s) to be executed so as to
permit execution of instructions in one cycle, if
possible. The instructions which are placed on the
instruction bus are addressed by the contents of the
program counter stored in a register, which may, for
example, be register R15 in register block 76 shown
in Figure 4B.

The instructions executed by the Mario chip 2
may either be obtained from program ROM 10 a5 shown
in Figure 1 or the Mario chip's internal cache RAM
94 or from the cartridge RAM 6, 8. If the program
is being executed out of ROM 10, the ROM controller
104 (shown in Figure 4B) will fetch the instruction
and place it on the Mario chip instruction bus
INSTR. 1If a program instruction is stored in the
cache RAM 94, then the instruction will be placed on
the instruction bus directly from cache RAM 94 via
cache RAM output bus 95.

The host CPU, i.e., the Super NES, is
programmed to allocate portions of the program ROM
10 for Mario chip program instructions. The Super
NES program commands the Mario chip to perform a
predetermined function and then provides the Mario
chip with the address in ROM 10 for accessing the
Mario chip program code. Pipeline register 62
fetches instructions one byte ahead of the
instruction being executed to provide the



instruction decoder 60 with instruction related
information for the decoder to be able to anticipate
what is about to occur during program execution to
permit look ahead related processing. The decoding
and control circuitry in bleck 60 generates control
signals for commanding the ALU 50, plot hardware 52,
cache control 68, etc., to perform the operaticn
indicated by the instruction code being executed.

The Mario chip also includes a high speed,
parallel multiplier 64 that is separate from ALU
50. The multiplier 64 in response to predetermined
instructions operates to multiply two 8-bit numbers
received from the X and Y source buses and load the
16-bit result onto the destination Z bus. This
multiply operation is performed in one cycle if
possible. Either number input to the mult¢iplier 64
may be signed or unsigned. Multiplier 64 also is
capable of performing long multiply operations,
whereby two 16-bit numbers are multiplied to
generate a 32-bit result. The multiplier 64 also
includes associated partial product registers 66 to
store partial products generated during the
multiplication operation. The multiplier 64 is
enabled by a control signal from the instruction
decoder 60 when a multiply operation code is
decoded. The multiplier 64 will execute long
multiply ianstructions involving the multiplication
of 16-bit words in a minimum of four clock cycles.

The long multiply instruction has a format:
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R4 (low word), DREG (high word) = Sreg * R6.
This instruction is executed to multiply the source
register by the contents of register R6 and store a
32-bit result in registers R4/DREG (low/high). The
multiply is signed and sets zero and sign flags on
the 32-bit result.

The operation takes place in accordance with
the following six steps:

Step 1: Unsigned multiply R4 [0...15] = SREG
[0...7] * R6 [0...7]

Step 2: X signed. R4 [0...15] = R4 [0...15] +
256 * SREG [8...15] * R6 [0...7]. Top eight
bits of the product are ignored, but carry from
addition preserved.

Step 3: X signed. RS [0...15] = CY +
(R6[8...15] * SREG [0-7]) + 256; sign extended.

Step 4: X unsigned, Y signed. R4 [0...15] = R4
[O0...15] + 256 * SREG [0...7] * R6 [8...15].
The top eight bits of the product are ignored,
but carry from the addition is preserved.

Step 5: Y signed . R5 [0...15] = R5 [0...15] +
CY + SREG [0...7] * R6 [8...15]) + 256; sign
extended.

Step 6: X, Y signed. RS [0...15] = RS
[0...15] + RY [8...15] * R6 [8...15].



The multiplier 64 utilized in the present
exemplary embodiment may be, for example, of the
type described in Digital Computer Arithmetic, by
Cavanaugh, published by McGraw-Hill, 1984.

Turning to Figure 4B, cache controller 68
(which is shown in further detail in Figure 14)
permits a programmer to efficientiy initiate loading
into cache RAM 94 the portion of the program desired
to be executed at high speed. Such "caching" is
typically utilized in executing small program loops
which occur frequently in graphics processing. The
Mario chip instruction set includes a "CACHE"
instruction. Any instructions immediately following
the CACHE instruction is loaded into the cache RAM
until the cache RAM is full. When the CACHE
instruction is executed, the current program counter
state is loaded into the cache bause register 70.
Thus, the contents of the cache base register 70
defines the starting location at which caching has
been initiated.

Most instructions execute in ¢ne cycle.
Instructions coming from relatively slow external
memories like ROM 10 or RAM 6, 8 must be fetched
before they are executed. This will take an extra 6
or so cycles. To enhance program execution speed,
the 'cache' RAM 94 that is inside the Mario chip
itself should be used.

Cache RAM 94 may be a 512-byte instruction
cache. This is a relatively small size compared to
the size of the average program, so the programmer
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must decide how best to utilize the cache memory
94. Any program loop that can fit into the 512
bytes cache size can run at full speed, one cycle
for both fetch and execute. Because of the split
busses, both ROM and RAM can be simultaneously
accessed while executing code from internal cache
94.

The cache RAM 94 may be advantageously used to
rotate a sprite by running a loop inside the cache
94 that would read the color of each pixel from ROM
10 while it is performing the rotation and scaling
calculations, while it is using the PLOT instruction
(to be described below) to write the pixel to RAM 6,
8. All that happens in =zxallel, giving very fast
throughput slowed down by the slowest operation.

The slowest operation is usually ROM data fetching,
which is why the Mario chip is designed to use

buffered access to ROM and RAM.

When compared with running from the relatively
slow ROM 10, a program will run about 6 times faster
from inside the cache RAM 94, but first it has to be
loaded from ROM into the cache 94. This is done by
placing an instruction at the start of any loop to
be cached. Only the first 512 bytes of the loop
will be cached, taken from the address of the CACHE
instruction. While executing the code for the first
iteration of the loop, the program will be coming
from ROM 10 and copied into cache RAM in 16-byte
chunks. All further iterations of the loop will
come from the cache RAM 94 instead of ROM 10.



25
3

CACHE instructions can be used liberally in
front of any repetitive program loop:. Only
fulysequent iterations of a loop will benefit from
being in cache. 1If a program loop is bigger than
512 bytes and overflows the cache 94, it will still
work correctly, but only the first 512 bytes will
run from cache 94 and the remainder will run from
ROM 10 as usual. This gives a partial speed boost,
but is not ideal.

A cache tag bit register 72 which, in the
preferred embodiment, is part of the cache
controller 68 identifies the memory locations which
have been loaded in the cache RAM 94. The cache tag
bits permit the Mario chip to quickly determine
whether a program instruction is executable from the
faster cache RAM rather than from the program ROM
10. The cache RAM 94 may be accessed by the cache
controller 68 or the Super NES via the Super NES
address bus HA via multiplexer 96.

The cache controller 68 is coupled to the
program counter bus PC to load the cache base
register 70 and perform cache memory address
out-of-range checking operations.

Similar to the parallelism achievable in
reading from ROM 10, the Mario chip also provides a
way of writing to RAM 6, 8 in parallel. Whenever a
Mario register is written to RAM 6, 8, it will
initiate a separate RAM write circuit, e.g., in RAM
controller 88, to do the memory transaction. This
will takg typically 6 cycles, but it will not delay



the processor while it is doing so, provided the
programmer avoids doing another RAM transaction for
that time. For instance, it is faster to interleave
other processing in between each store instruction.
That way the RAM write circuit has time to do its
job. 1If two writes are used in a row, the second
one would delay the processor while the firsg% one i=s
being written.

For example (using instruct_ons from the instruction
set to be described below):

FROM R8 ;Store R8 into (R13)
SM (R13)

SM (R14) ;Store RO into (R14)
TO Rl

FROM R2

ADD R3 ;Performs:rl=r2+r3
TO R4

FROM RS

ADD R6 ;Performs: r4=r5+r6

Notice that the two store instructions are too
close to each other. The second one will take 6
cycles longer because the RAM bus is busy trying to
complete the first store instruction.

A better way of writing the code that wall run
faster would be to space out the two store
instructions with other useful code. For example:

FROM R8 ;Store R8 into (R13)
SM (R13)



TO R1

FROM R2

ADD R3 ;Performs:rl=r2+r3
TO R4

FROM R5

ADD R6 ;Performs:r4=r5+r6
SM (R14) ;Store RO into (R14)

In this fashion, a few more instructions may be
executed in parallel at the same time that the first
store instruction results in the writing to RAM.
Then the second store operation can be done a few
cycles later.

The instruction set described below includes a
fast instruction for writing back a register to the
last used RAM address. This allows for "bulk"
processing of data, by loading the value from RAM,
doing some processing on it, then storing it back

again fast.

Turning bacit to Figure 4B, an immediate data
latch 74 is coupled to the instruction bus. This
data latch 74 permits the instruction itself to
provide the source of data so that no source
register need be specified by an instruction. The
output of the immediate data latch 74 is coupled to
the destination Z bus, which in turn is coupled to a -
Predetermined one of the registers in register block
76. The instruction decoding circuit 60 decodes an
"immediate" data instruction and initiates the
performance of the appropriate transfer to regigter

operation.



The GET B register 98 shown in Figqure 4B is
used in conjunction with the delayed/buffered read
operation described above. In this regard, given
the widespi'ead use of relatively slow access time
ROMs, prior art processors have typically had to
wait until! # da%a fetch is completed, whenever
executing a 82%. By utilizing the delayed/buffered
fetch mechanism described below, other operations
may be performed while the data fetch is
accomplished. In accordance with this mechanism, if
regizter R14 in register block 76 is accessed or
modified in any way, ROM or RAM fetches are
initiated automatically at the address identified by
the contents of R14. -

As indicated in Figure 4B, the register R1l4 is
coupled to ROM controller 104. Any time the
contents of register Rl4 is modified in any way, ROM
controller 104 operates to initiate a ROM access.
The results of accessing the ROM are loaded into the
GET B register 98 via multiplexer 102 which is
coupled to the ROM data bus ROMD. Instructions
identified below permit accessing the information
buffered in the GET B register 98. This information
is loaded onto the destination 2 bus via multiplexer
100 and then into one of the registers in register
block 76.

In this fashion, if a data fetch from ROM is
known to take a predetexmined number of processing
cycles, that fetch can be initiated and instead of
waliting without performing other operations, the
Mario chip can execute, for example, unrelated code



after such data fetch has been initiated. The GET B
register 98 may also be utilized t¢ store
information retrieved from RAM 6, 8 via multiplexer
102 as shown in Figure 4B.

Embodied within register block 76 are sixteen
16-bit registers (RO-R15). Registers RC-R13 are
general purpose registers (although some of these
registers are often used fcr special purposes to be
described below). As described above, register R1l4
is used as a pointer for reading memory, and, when
modified, a read cycle from ROM (or RAM) is
initiated. The byte read is stored in a temporary
buffer (GET B register 98) for later access by a GET
L or GET H command. Register R15 is the program
counter. At the start of each instruction it points
to the next instruction being fetched.

Register RO is a general purpose register,
which typically operates as an accumulator. It is
also the default source and destination registe:r for
most single cycle instructions. If, for example,
the contents of RO and R4 are desired to be added
together it is only necessary to expressly specify
register R4.

Registers R1l1l, Rl2 and R13 are specially
utilized when a loop instruction is executed.
Register R13 stores an address of the instruction to
be executed at the top of the loop, and register R12
stores the number of times the loop is to be
executed. If the contents of register R1l2 is
non-zero, then the instruction at the address
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specified by the contents of R13 is loaded into the
program counter (R15) and executed. Register R1l1
stores the address to Fe returned to after the loop
is completed.

Register control logic 78 is coupled to
register block 76 and controls access to general
registers RO to R15. Depending upon the format of
the particular instruction being executed,
instruction decode logic 60 will specify one or more
registers RO-R15. Register control logic 78
specifies which register the next instruction to be
executed will need to utilize. The register control
logic 78 couples the outputs of the appropriate
register to the X and Y bus. Additionally, as
indicated by Figure 4B, the appropriate register
RO-R15 receives the information from the Z bus under
the control of register control 78.

ROM controller 104 upon receipt of an address
from either the Super NES address bus HA or the
Mario chip will access that address. ROM controller
104 is shown in further detail in Figure 13.
Accessed information from ROM 10 may be loaded into
the cache RAM 94 for fast instruction execution.

The ROM and RAM controllers 104, 108 both have bus
arbitration units which arbitrate between Super NES
and the Mario chip access attempts.

As will be described further below, the Mario
chip also utilizes‘status registers (e.g., within
register block 76 or in RAM 6, 8) which are
accessible by the Super NES CPU and which store



flags for identifying status conditions such as 0
flag, carry flag, sign flag, overflow flag, "GO"
flag (where 1 indicates that the Mario chip is
running and O indicates that the Mario chip is
stopped); a ROM byte fetch-in-progress flag
(indicating that register R14 has been accessed);
various mode indicating flags including an ALT 1
flag, ALT 2 flag, immediate byte-low and immediate
byte-high flags, and flags indicating that both a
source and destination register has been set by a
"WITH" prefix command, and an interrupt f£lag.

The’Mario chip represented in block diagram
form in Figures 4A and 4B is utilized by the Super
NES which turns the Mario chip on and off to perform
tasks many times a second. Initially, when the
Super NES is turned on, the game program stored in
ROM 10 is booted up. It is noted that prior to
execution of the game program by the Super NES and
Mario chip processors, the game cartridge is first
authenticated. By way of example only, such
authentication may take place by initially placing
the Super NES CPU in a reset state and executing
authenticating programs in authenticating processors
associated with the game cartridge and the Super NES
main control deck in accordance with the teachings
in U.S. Patent No. 4,799,635.

The Mario chip is initially in a switched-off
state. At this point in time, the Super NES has
unrestricted access to the game cartridge program
ROM and the game cartridge RAM. When the Super NES
has need to use the Mario chip processing power to



perform either graphics operations or mathematical
calculations, the Super NES stores the appropriate
data it desires the Mario chip to process in the
cartridge RAM (or in predetermined Mario registers)
and loads the Mario chip program counter with the
address of the Mario program to be executed. The
data to be processed by the Mario chip may be
predetermined X, Y coordinate data of objects which
The Mario
chip can execute programs which implement algorithms
to manipulate the background and foreground of

must be rotated and enlarged or reduced.

sprites or moving objects of varying number. The
use of the Mario chip speed enhancing hardware and
software results in high speed performance of such
operations.

The use of the Mario chip to process sprites
can expand the capabilities of the overall video
game system consideralbly. For example, the Super
NES is limited to displaying 128 sprites per frame.
With the use of the Super Mario chip virtually
hundreds of sprites may be displayed and, for

example, rotated.

When the Mario chip has completed the function
requested by the Super NES, a STOP instruction is
executed, and an interrupt signal is generated and
transmitted to the Super NES to indicate that the
Mario chip has completed its operation -- which, in
turn, indicates that it is ready to perform the next
task.



The Mario chip may be utilized to do small
tasks such as a high-speed multiplication task or
may be utilized to draw a scresn full of sprites.
In either event, the Super NES is free to do
processing in parallel with the Mario chip provided
the Super NES stays off the RAM or ROM buses when
such buses are being used by the Mario chip. It is
noted that if the Super NES gives the Mario chip
control of both the RAM and ROM buses on a game
cartridge, the Super NES may, nevertheless, be able
to execute programs out of its working RAM 32 shown
in Figure 2: Thus, the throughput of the entire
system may be increased by copying a Super NES
program to be executed from program ROM to its
working RAM; while, at the same time, executing a
program by the Mario chip.

A flowchart is shown in Figure S5 which
represents the sequence of operations performed by a
"RUM MARIO" program executed by the host CPU (e.g.,
the Super NES CPU) for starting the Mario chip to
fetch and execute code from ROM at the required
address. The routine represented by Figure 5 will
be typically executed by the Super NES CPU after
copying the routine from the program ROM 10 to its
working RAM 32 shown in Figure 2. This routine is
executed by the host CPU any time the Mario chip is
required to perform an operation.

As indicated in block 125 when the RUN MARIO
host CPU routine is executed, initialization
operations are performed including preserving the
Super NES registers. During the initialization



step, this routine is copied from program ROM 10 to
the host CPU's working RAM 32.

As indicated at block 127, the ROM 10 code bank
storing the Mario program code to be executed is
loaded in a Mario chip register. Additionally, the
actual address within the code bank is stored in a
Mario chip screen base register as indicated at
block 129.

Thereafter, as indicated in block 131, 1/0
input/output modes are set in the Mario chip by
identifying whether 4, 16 or 256 color modes will be
used. These modes correspond to the color modes
with which the host CPU operates. Additionally, a
mode is set defining the height of the screen in
terms of number of characters that may be displayed.

Additionally, mode bits are set which give the
control of the ROM and RAM buses to the Mario chip.
Control of the ROM and RAM buses are separately
selectable so that the Mario chip may be set to a
mode where it has access to the ROM bus, the RAM
bus, or both. Thus, if the "Mario owner"” mode is
set for both the ROM and the RAM, then the host CPU
cannot read or write from or to the ROM or RAM. It
is noted that, if the host CPU attempts to access
the program ROM while the Mario chip is using the
program ROM bus, a mechanism is provided whereby the
Mario chip returns dummy addresses to the Super
NES. The branchinjy to such addresses will keep the
Super NES occupied until the Mario chip no longer
requires access to the cartridge ROM bus.



As indicated at block 133, the Mario chip
begins operation after the Maric chip program
counter is loaded with an address which stores the
first instruction that the Mario routine must
execute.

The host CPU then waits for an interrupt signal
from the Mario chip (block 135).
signal is received, the Super NES is informed that

When an interrupt

the Mario chip has completed its operation and has
stopped (block 137).
received, then the host CPU continues to wait for an
interrupt (block 135). The Super NES may, during
this time period, execute program code in parallel

If no such interrupt signal is

with Mario chip operations by executing out of its
working RAM 32 shown in Figure 2.

The Super NES then checks the status register

(e.qg.,
determine whether the Mario chip "GO" flag has been

in the Mario chip register block 76) to

set which indicates that the Mario chip is in
Additionally,
set in the Mario chip status registers to indicate
that the Mario chip is the source of the interrupt
signal received by the host CPU. Thus,
interrupt signal is received by the host CPU (135),
the appropriate Mario status register is tested to
determine whether the Mario chip is the scurce of
the interrupt (as opposed to the interrupt signal
being indicative, for example, of a vertical
blanking interval). If the Mario chip has stopped
(137), then the Mario owner mode bits for the RAM
and ROM are cleared and the Super NES has full

operation (137). an interrupt flag is

after an
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access to the ROM and RAM. The Super NES exits the
routine (14l1) and returns to the point in its
program which it was executing prior to entering the

Run Mario routine.

When the CPU 22 game program has put the Mario
chip into ROM Mario owner mode, it must voluntarily
stop accessing the ROM. Whenever the CPU 22 needs
to access the ROM for some reason, it simply turns
ROM Mario owner mode off. The Mario chip will
automatically hold on when it next needs to access
the ROM until it is given ROM Mario owner mode back
again. If it was running from internal cache RaM
this may not be required at all.

If the Mario chip is in the Mario owner mode
for ROM. it is important that the CPU 22 game
program does not even try to read anything from
ROM. When any interrupt occurs, e.g., due to
vertical blanking, it causes an NMI, then the CPU 22
automatically tries to fetch its interrupt vectors
from the ROM. This is not desirable, because the
CPU 22 has explicitly told the Mario chip that it
will stay away frcm the ROM, and then an interrupt
occurs and it fetches from the ROM anyway. In this
situation, i.e., a ROM access from the CPU 22
despite being in the Mario owner mode will cause the
Mario chip to assume that this was an interrupt

vector request.

During an interrupt vector fetch in ROM Mario
owner mode, the Mario chip will relocate the
interrupt vectors into Super NES internal work RAM



32 at the bottom of the stack area. For instance,
if the usual interrupt vector was $00:FFEC then it
will cause a JUMP to location $00:010c. Similarly,
all interrupt vectors from $00:ffeX cause the CPU 22
to JUMP to their corresponding locations at
$00:010X. This technigque avoids the CPU 22 from
accessing the ROM 10 when its not supposed to, and
diverts it into on-board Super NES RAM 32 instead.
It is noted that the RAM based interrupt vectors
must contain jumps or branches to interrupt
handlers, i.e., actual code should be resident there
not simply vector addresses. When the Mario chip is
not in the Mario owner mode ROM, the normal ROM
interrupt vectors are in use, so it is advisable to
keep the same addresses pointed in these locations
to go to the same place as the RAM baged interrupt
vectors.

INSTRUCTION SET

The Mario chip instruction set provides an
efficient means for programming high speed graphics
and other processing algorithms. A brief
description of certain instructions is set forth
below followed by a description of certain registers
used by various instructions. A detailed listing of
the instruction in the instruction set is also
included.

Instructions are 8-bit instructions and
typically execute in a single clock cycle. However,
the instructions can be modified by 8-bit prefix
instructions. The Mario chip instruction set
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includes a unique register override system allowing
the programmer to specify the destination and both
source registers in front of any instruction.
Without such "prefixed" overrides, instructions
would operate only on the accumulator. Thus, the
instruction set is a variable length instruction set
with a myriad of combinations. There are some basic
instructions that are one byte long which operate in
one cycle. By providing prefixed instructions, a
programmer can extend the power of the

instructions. An instruction can be 8, 16 or 24
bits, depending upon the programmer's desire.

The Mario processor utilizes instructions to
initiate high speed, on-board cache RAM program
execution and delayed/buffered I/0 to memory.
Graphics processing is efficiently enabled through
the use of a single cycle pixel plot command which
initiates operation using the pixel plot hardware
described above.

Prior to identifying the Mario instruction set,
various memory mappe:l registers which are set or
accessed by the processor in executing instructions
are described below. Initially, the status flag
register is identified. The status register is a
16-bit register and the flags associated with each
of the 16 bits in the register are identified below.

STATUS FLAGS REGISTER 16 BIT

bit Flags
0 - Reserved

1l z Zero flag
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2 c Carry flag
3 8 Sign flag
4 A Overflow flag ([bit 14 into 15]
YOR [15 into Carryl)
5 g Go flag: 1 Mario chip running
0 stopped
6 r (R14) ROM byte fetch in progress
7 - Reserved

The "GO" flag (bit 5) is a flag that is set to
a "1" state to indicate that the Mario chip is
running and to a "0" state to indicate that the
Mario chip has stopped (which results in the
generation of an interrupt signal which is coupled
to the Super NES). This flag bit is checked by the
Super NES processor. Bit 6 is set to indicate that
a ROM byte fetch is currently in progress. The GET
byte instruction listed below cannot be executed
until this flag is cleared which indicates that the
data fetch has been completed. These least
significant bits of the status register may be read
independently or in conbination with the remaining 8
bits by either the Mario chip processor or the host
CPU. The most significant bits of the status flag
register are set by predetermined prefix
instructions and define various modes of instruction

interpretation.

bit Mode
8 altl Alter (ADD->ADC,SUB->SBC etc...)

9 alt2 Alter (ADD->ADD#, SUB->SUB# etc..)



10 i1 Immediate byte low (done before ih)

11 ih Immediate byte high (low byte
buffered until hi ready)

12 b Both Skeg & DReg set. Set by WITH

i3 - Reserved

14 - Reserved

15 irqg Interrupt flag

In the ALT 1 mode identified above, an ADD
instruction will Le interpreted as an ADD WITH CARRY
and a SUBTRACT instruction will be interpreted as
SUBTRACT WITH CARRY. An instruction ALT 1 initiates
this mecde.

An ALT 2 instruction modifies the
interpretation of the ADD instruction to ADD WITH
IMMEDIATE DATA and modifies, SURSTRACT to SUBTRACT
IMMEDIATE DATA. The "immediate" data is set forth
in the byte immediately following the instruction.
It i8 noted that the instruction ALT 3 will set both
bits 8 and 9 to the logic "1"” level. Bits 10 and 11
are set depending upon whether the immediate data is
immediate high byte or immediate low byte. Bit 12
of the status register defines a "b" mode, where
both source and destination register are set by the
use of a prefix instruction "WITH". Bit 15 of the
status register stores the Mario interrupt signal
which is set after the Mario chip has stopped
running.



The Mario chip includes manyv registers in
addition to {ic above-described status register. As
described above, the Mario chip includes 16
registers which are 16 bits wide as iniicated in the
discussion of register block 76 in Figures 4A and
4B. Most of these registers are general purpose
registers and can be used for data or address
storage. As noted above, register R15 1s, however,
utilized at all times as the program counter.
Typically, registers serve dual - urposes and arn
used for communication with the host CPU and for
controlling the executing program. Additionally,
other registers are utilized in the Mario chip, the

functicns of which are set forth in the table below.

& ]



Register Special Function

r0 Default DReg and SReg

rl X coord for PLOT instruction

r2 Y coord for PLOT instruction

r3 None

ré Low word of LMULT instruction result

r5 None

r6 Word multiplier for FRMULT and LMULT
instructions

r7 Source 1 for MERGE instruction

r8 Source 2 for MERGE instruction

r9 MONE

rl0 NONE

rll Link register for subroutine calls

rl2 Count for LOOP instruction

rl3 Address for LOOP instruction to branch to

rl4 ROM address, when modified starts a byte
read from ROM

rls Program counter

S22

OTHER REGISTERS

8 bit PCBANK Program code bank register

8 bit ROMBANKProgram data ROM bank register 64kbank

8 bit RAMBANKProgram data ROM bank register 64kbank
16 bit SCB sCreen base

8 bit NBP Number of bit planes



8 bit SCS Screen Column size select:

256,320,512,640,1024,1280
(screens 16 & 20 chars high, in
2,4 & 8 bit planes)

The Mario chip also includes a color mode CMODE
register. Four of the bits in this registers are
used in the exemplary embodiment to create the
special effects described below. The effect created
by setting a CMODE register bit varies based on
whether the 16 or 256 color resolution mode ha been
set as demonstrated in the examples below.



CMODE register bits are as follows:-

CMODE bR O

Plot colour O bRt (the NOT Transparent bit)

In 18 colour modae:
Hbdo=1andee¥ectedeolournbble=0mendonotpbt

n 256 colourmode and bit 3= 0:

- H bk 0 = 1 and colour byte = 0 then ¢o not plot S

In 258 colour mede and bt 8= 1; o
I bit 0 = 1 and aolour ko nibble = 0 then do not plot .

N.B. transparency ON =0
‘transparency OFF = 1

6niy uge for transparency OFF Is 1o fill an area with 0
(used for clearing the screen)

: . CMODE bit 1

]
edece

Dithering bit

Dithering in 16 colour mode. (hitow nibtle give two colours)
Lo nibble selected #f (xpos XOR ypos AND 1)=0

Hi nibble selected if (xpos XOR ypos AND 1)=1

If transparency is on and sslacted colour nibble is zero
then do not plot

Dithering in 258 colour mode should have no effect.

CMODEbit 2

High nibble colour bit

_In 16 colour mode or 256 colour mode with CMODE bt 3set.

Whan this bit set, COLOUR command sets lo nrbbb of uobur
register to hi nibble of source byte

(Used to unpack 18 colour sprites stored as hi nbblo ul
another sprite).

if the lo nibble of colour register is 2aro then do not plot .
i transparency on. R




CMODE bR 3
_Complcated b .

In 258 colour mode anly. When this bit is set the hi nbble ot the - .
eoizburh tockad and COLOUR commands only change the lo nibble.
Transparency is calculated from loveaibble only. .o |

In normal 256 eolour mode tmng;a:ency is calculated from -
all bits If un. : .
- 3 18 colour mede example

bt r0,$C0
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