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(57) Claim

1. An external memory system for an information processing system used with a 

display screen, and having a microprocessor for executing a videographics program and 

a video memory for storing character data indicative of a plurality of characters which 

when combined define a display frame, said external memory system including:

a program memory for storing at least some of the instructions of said 

videographics program, and

a conversion circuit coupled to said program memory for receiving display data 

in terms of a pixel specification for processing said pixel specification and for converting 

said pixel specification data into character data of a form used by said video memory. 

23. A graphics processor comprising:

means for receiving data in terms of a pixel specification; and 

a conversion circuit for processing the pixel specification data and for generating

character data in terms of a character specification specifying a character including a 

specified pixel.

27. A graphics processor for use in an information processing system having a main

processing unit for executing a videographics program stored in at least one memory

device, said graphics processor including:

means for receiving program instructions from said at least one memory; and

means, responsive to at least one predetermined program instruction, for
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converting pixel-based format data associated with said at least one predetermined 

instruction into a character-based data format.
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INVENTION TITLE:

Programmable graphics processor having pixel to character conversion hardware 
for use in a video game system or the like

• · · ·

The following statement is a full description of this invention, including the best method 
of performing it known to me/us:-

• · · ·
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The invention relates to an external memory system and a graphics processor. 

25 More particularly, the invention relates to a removable, external memory unit having a 

program memory storing a program to be executed in part by a host processing system, 

e.g. a video game system, and in part by a programmable microprocessor designed to 

enhance the high speed graphics processing capabilities of the host system. The 

programmable microprocessor includes hardware for converting from a pixel based format

30 to a character based format.

940825,ptopeiMbw.20605.92.1
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Prior art video game machines having an 8-bit 
microprocessor and an associated display processing 
subsystem embodied in a video game control deck 
typically generate graphics by prestoring characters 
in a game cartridge in the form of 8-bit by 8-bit 
matrices and by building a screen display using 
various programmable combinations of these prestored 
characters. Such prior art video game systems 
typically have the capability of moving the entire 
display background as well as a number of
player-controlled "moving objects" or "sprites".

Such prior art systems do not have the 
capability of practically implementing video games 
which include moving objects made up of combinations 
of polygons which must be manipulated, e.g., 
rotated, and "redrawn" for each frame. The prior 
art 8-bit processor and associated display 
processing circuitry in such systems are not 
capable, for example, of performing the calculations 
required to effectively rotate three-dimensional, 
polygon-based objects or to appropriately scale such 
rotating objects to generate 3-D type special 
effects. The present inventors have recognized that 
sophisticated graphics require updating the screen 
on a pixel-by-pixel basis and performing complex 
mathematics on a real time basis. Such prior art 
character based video game machines are not capable 
of performing such tasks.
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The prior art 8-bit video game machines also 
can not effectively perform other graphics 
techniques which require rapidly updating the screen 
on a pixel-by-pixel basis. For example, such 
systems can not effectively map an object onto a 
displayed polygon which is part of yet another 
displayed object (hereinafter referred to as 
"texture mapping") in three-dimensional space.

In an effort to improve the graphics 
capabilities over prior art 8-bit machines, video 
game systems have been designed using more powerful 
16-bit processors. Such 16-bit processors provide 
the video game system with a mechanism for 
performing the mathematics required for more 
sophisticated graphics. Such systems, for example, 
permit more sophisticated color generation and 
better graphics resolution. Such 16-bit video game 
machines are character-based systems which permit 
the implementation of a wide range of video games 
that can be pre-drawn into character-based or sprite 
graphics. Such 16-bit video game systems also 
permit the movement of multiple colored background 
planes at high speeds with moving objects disposed 
in back, or in front, of such planes.

However, such prior art 16-bit video game 
machines do not permit the practical implementation 
of advanced video games having 3-D type special 
effects which display sophisticated objects made up 
of polygons that must change during each frame. For 
example, games which require many fully rotating 
objects or sprites that must be enlarged and/or
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reduced on a frame-by-frame basis are not

practically realizable in such prior art
character-based 16-bit machines. The inventors have 
recognized that, in order to effectively implement 
Buch games involving fully rotating and scaled, 
polygon-based objects, it is necessary to draw the 
edges of polygons and fill in such polygon-based 
objects with appropriate data on a pixel-by-pixel 
basis. Such tasks, which must be done on a 
pixel-by-pixel basis, consume a great deal of 
processing time.

In the prior art, removable game cartridges 
have been modified to improve game sophistication by 
permitting existing processors to address a larger 
program memory address space than the existing 
number of address lines associated with the host 
microprocessor would otherwise permit. For example, 
such prior art 8-bit systems have utilized game 
cartridges including multi-memory controller chips 
which perform memory bank switching and other 
additional functions. Such memory bank switching 
related chips, however, are not capable of enabling 
the video game system to do high speed graphics 
processing of the nature described above.

The present invention addresses the 
above-described problems in the prior arj 
providing a unique, fully programjnabXe, graphics 
microprocessor which is dg^i^ned to be embodied in a 
removable external^mefiiory unit for connection with a 
host inforjaatlon processing system. In an exemplary 
embpdifiient described herein, the present invention
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... In accordance with the present invention there is provided an external memory 

system for an information processing system used with a display screen, and having a 

microprocessor for executing a videographics program and a video memory for storing 

character data indicative of a plurality of characters which when combined define a

5 display frame, said external memory system including:

a program memory for storing at least some of the instructions of said

videographics program, and

a conversion circuit coupled to said program memory for receiving display data 

in terms of a pixel specification for processing said pixel specification and for converting

10 said pixel specification data into character data of a form used by said video memory.

In accordance with the present invention there is also provided a graphics 

processor comprising:

means for receiving data in terms of a pixel specification; and 

15 a conversion circuit for processing the pixel specification data and for generating

character data in terms of a character specification specifying a character including a 

specified pixel.

The present invention also provides a graphics processor for use in an information 

20 processing system having a main processing unit for executing a videographics program

stored in at least one memory device, said graphics processor including:

means for receiving program instructions from said at least one memory; and 

means, responsive to at least one predetermined program instruction, for

converting pixel-based format data associated with said at least one predetermined 

25 instruction into a character-based data format.

An exemplary preferred embodiment of the present invention is hereinafter 

described with reference to the accompanying drawings in which:

FIGURE 1 is a block diagram of an exemplary

940825, p:\op«\dbw^0605.9i5
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external memory system in accordance with an 
exemplary embodiment of the present invention;

FIGURE 2 is a block diagram of an exemplary 
host processing system for use with a graphics 
coprocessor of the presently preferred exemplary 
embodiment;

FIGURE 3 is a perspective view showing an 
exemplary mechanical configurations of a game 
cartridge housing a graphics coprocessor and a base 
unit housing the host processing system;

FIGURES 4A and 4B are a block diagram of the 
graphics coprocessor in accordance with the 
presently preferred exemplary embodiment;

FIGURE 5 is a flowchart delineating the 
sequence of operations performed by the host 
processing system for initiating graphics 
coprocessor operation;

FIGURE 6 is a more detailed block diagram of 
the arithmetic and logic unit shown in FIGURE 4A;

FIGURE 7 is axmore detailed block diagram of 
exemplary pixel plot circuitry of the type shown in 
FIGURE 4A;

FIGURE 8A is a block diagram showing the input 
signals received by the plot controller and the 
output signals generated by the plot controller;
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FIGURE 8Β is a color matrix element contained 
within the color matrix in the pixel plot circuitry;

FIGURE 8C depicts timing, control and data 
signals associated with the pixel plot circuitry;

FIGURE 9 is a more detailed block diagram of 
the RAM controller shown in FIGURE 4A;

FIGURE 9A shows exemplary timing, control and 
data signals associated with the RAM controller 
shown in FIGURE 9;

• · · ··· · I · ·• · · FIGURE 10 is a circuit diagram illustrating the 
arbitration logic shown in FIGURE 9;

• ·• · ··

FIGURE 11 is a diagram of resynchronizing 
circuitry in an exemplary embodiment of the graphics 
coprocessor of the present invention;

FIGURE 12 illustrates timing signals associated 
with the resynchronizing circuitry of FIGURE 11;

FIGURE 13 is a more detailed block diagram of 
the ROM controller of the graphics coprocessor of 
the present invention;

FIGURE 14 is a block diagram of the cache 
controller of the graphics coprocessor in accordance 
with an exemplary embodiment of the present 
invention;
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FIGURE 15A is a block diagram showing the 
instruction decoding related circuitry of the 
graphics coprocessor of the present invention;

FIGURE 15B shows exemplary timing signals 
demonstrating the operation Of the look-ahead logic 
in FIGURE 15A; ’

FIGURES 16 and 17 are 'block diagrams showing 
the register control logic of the graphics 
coprocessor in accordance with an exemplary 
embodiment of the present invention;

FIGURE 18 is an exemplary flowchart delineating 
the sequence of operations of the graphics 
coprocessor in carrying out a polygon generating 
tasks; .

FIGURES 19, 20 and 21 are exemplary displays 
which may be generated of polygon-based objects to 
illustrate scaling and rotation features in 
accordance with an exemplary embodiment of the 
present invention

.p-nrowfr nwranaeM—

In accordance with the present exemplary
embodiment, the graphics coprocessor of the present
invention interacts with a 16-bit video game system
commercially sold by Nintendo of America, Inc. as
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the Super Nintendo Entertainment System (Super 
NES). The Super Nintendo Entertainment System is 
described in part in U.S. application Serial No. 
07/651,265, entitled ’’Video Processing Apparatus" 
which was filed on April 10, 1991 and U.S. 
application Serial No. 07/749,530, filed on August 
26, 1991, entitled "Direct Memory Access Apparatus 
and External Storage Device Used Therein". These 
applications are expressly incorporated herein by 
reference. It should be understood th ,t the present 
invention is not limited to Super NES related 
applications and may be used with other video game 
systems or other, non-video game, information 
processing apparatus.

For ease of reference purposes only, the 
graphics processor in accordance with the present 
exemplary embodiment is referred to hereinafter as 
the "Mario chip*''. The Mario chip is described in 
the presently preferred exemplary embodiment as 
being packaged within a video game cartridge. It 
should be understood that it is not essential to the 
present invention for the Mario chip to be housed in 
the same cartridge case as the program memory as 
long as it is connected, in use, to a program memory 
and to the host processing unit.

Figure 1 shows an exemplary video game 
cartridge/external memory system in accordance with 
an exemplary embodiment of the present invention.
The game cartridge includes a printed circuit board
(not shown) on which all of the Figure 1 components
are mounted. The cartridge includes an array of
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connector electrodes 1 disposed at an insertion end 
of the printed circuit board for transmitting 
signals to and from the Super NES main control 
deck. The array of connector electrodes 1 is 
received by a .mating connector disposed in the Super 
NES main control deck.

In accordance with the present exemplary 
embodiment, the Mario chip (graphics coprocessor) 2 
embodied on the game cartridge is a 100 to 128 pin 
integrated circuit chip. The Mario chip receives 
many control, address and data signals from the host 
processing system (e.g., the Super NES). For 
example, the Mario chip 2 receives a 21 MHz clock 
input from the host processing system via pin P112, 
and a system clock input which may be 21 MHz (or 
another predetermined frequency) via pin P117. The 
system clock input may be used, for example, to 
provide the Mario processor with to memory timing 
information for host CPU memory accesses and to 
provide clock signals for timing operations within 
the Mario chip. The Mario chip 2 also includes an 
optional, external clock input (pin P110) which 
couples the Mario chip to an external crystal 4, to 
drive the Mario CPU, for example, at a higher 
frequency clocking rate than the 21 MHz received 
from the host system.

Host CPU addresses inputs (HA) are coupled to 
the Mario chip 2 via pins P37 to pins P62 from the 
host processing system (e.g., Super NES CPU/Picture 
Processing Unit PPU) address bus. Similarly, data 
inputs (KD) from the host system are coupled to the

/'
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Mario chip 2 via pins P65-P72 from tl· ost CPU data 
bus. The Mario chip 2 additionally receives from 
the host CPU a memory refresh signal RFSH via P119, 
a reset signal via pin P118 read and write control 
signals via pins P104, P105. The Mario chip 
generates an interrupt request signal IRQ and 
couples the signal IRQ to the Super NES via pin 
P120. Other control signals are received from the 
Super NES such as a ROMSEL signal via pin P106 which 
may, for example, be used to initiate a host program 
ROM 10 access. Additionally, the cartridge includes 
an authentication processor 3 which exchanges data 
with a Super NES authenticating processor on input 
I, output O, and reset R lines. The authenticating 
processor 3 and the security system used to 
authenticate game cartridges may be of the type 
shown in U.S. Patent 4,799,635, which patent is 
incorporated herein by reference.

The Mario chip is coupled to RAMs 6 and 8 via 
the PAM address bus (RAM A), and RAM address pins 
P74-P91 and the RAM data bus (RAM D) and data pins 
P93-P100. These RAMs may be dynamic memory devices 
controlled in part using row address and column 
address strobe signals (RAS, CAS) coupled via pins 
P90 and P91, respectively. One or more static RAMs 
may be utilized instead of dynamic RAMs and pins P90 
and P91 would then be used to couple address signals 
to their respective RAMs without the row address and 
column address strobe signals. A write enable 
control signals WE is appropriately coupled to RAM 6 
and 8 via pin P107.

TO
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The read and write control signals (R, W) are 
generated by the host CPU and coupled to the Mario 
chip via pins P104 and P105. By monitoring these 
read and write lines, the Mario chip can determine 
the nature of the memory access operation the Super 
NES CPU is attempting to perform. Similarly, 
virtually all address and control lines from the 
host system are monitored by the Mario chip to keep 
track of what the host CPU is attempting to do. The 
ROM and RAM addressing signals received by the Mario 
chip are monitored and passed on to the appropriate 
memory device. In this regard, the ROM addresses 
are coupled to program ROM 10 via the ROM address 
bus and pin P2 to P26 and the RAM address is coupled 
to RAMs 6 and 8 via pins P74 to pins P91. The ROM 
and RAM data inputs from the host CPU are
appropriately coupled to ROM 10 via the ROM data bus 
and pins P28-P35 and via pins P93 to P100, 
respectively.

It should be recognized that the Mario chip may 
te utilized in conjunction with a wide range of 
different memory devices in addition to the ROM and 
RAM’s described herein. For example, it is 
contemplated that the Mario chip may be 
advantageously utilized in conjunction with video 
game systems using CD ROM’s.

For example, in Figure 1, instead of using ROM 
10, a CD ROM (not shown) may be used to store 
character data, program instructions, video, 
graphic, and sound data. A conventional-type CD 
player (also not shown) suitably connected to the

Z . &
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Mario chip 2 to receive memory address signals over 
address bus P2-P26 for accessing data and/or 
instructions over data bus P28-P35. The specific 
structural and operational details of CD players and 
CD ROM storage systems are well known to those 
skilled in the art. One advantage provided by CD 
ROM storage is a significant reduction in the cost 
of storage per byte of information. Data may be 
stored at a cost between 100 to 1000 percent less 
than storage on semiconductor ROM. Unfortunately, 
the memory access/read time for CD ROM is even 
slower than that for semiconductor ROM.

The Mario chip uses a three bus architecture 
which permits information on at least three buses to 
be utilized in parallel. In this regard, in the 
game cartridge shown in Figure 1, the Mario chip 2 
is coupled to a ROM bus (including ROM data lines, 
ROM address lines and control lines), a RAM bus 
(including RAM address lines, data lines, and 
control lines) and a host processor bus (including 
host address, data and control lines).

• · · ·» · • · · ·

• · ·• · «• ·

The Mario chip architecture permits pipelined 
operations to occur to optimize throughput. In this 
regard, the Mario chip can be reading a data byte 
from ROM, while processing other data, while writing 
yet further data to RAM to permit 3-D related 
graphics to be performed very efficiently. As is 
described further below, the Mario chip 2 uses a 
16-bit architecture internally and yet is designed 
to interface with 8-bit ROM 10 and RAM 6, 8 chips. 
Internally, all internal data buses and internal

/<9 /,7 ·
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registers are 16-bits. Reads from ROM 10 and writes 
to RAM 6, 8 are ’’buffered" and typically do not slow 
down program execution.

Similarly, the Mario chip 2 may access 
instructions and graphics data from CD ROM and write 
that information into RAM 6, 8 for subsequent DMA 
transfer into the video RAM of the host processor, 
e.g., Super NES picture processing unit (PPU).
Those skilled in the art will appreciate that the 
Mario chip 2 may be programmed to coordinate 
transfer of data from the CD ROM directly to the 
video RAM of the PPU, bypassing the RAM storage and 
access operations.

The extremely fast processing speed of the 
Mario chip 2 makes CD ROM storage practical for 
graphics applications despite the long read access 
time of CD ROMs. Video and audio data are 
compressed using conventional data compression 
techniques before storage on CD ROM. Data 
compression and decompression techniques are well 
known to those skilled in the art. After accessing 
compressed data from the CD ROM, the Mario chip 2 
decompresses the data using conventional data 
decompression algorithms in much shorter time 
periods than can be achieved by conventional 
graphics processors. Because it operates with a 21 
MHz clock, the Mario chip 2 completes decompression 
within prescribed time periods for data transfer to 
RAM 6, 8.
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Thus, large amounts of video and audio data are 
accessed (in compressed form) in typical CD ROM 
access time periods. However, the effect of those 
relatively long access times is minimized because 
after data decompression by the Mario chip 2, the 
actual access time per data byte is significantly 
reduced. With the Mario chip 2 performing 
decompression, the host graphics processor, e.g. the 
Super NES PPU, is free to perform other processing 
tasks. Of course, if speed is not an issue for a 
particular application, the Mario chip 2 can access 
data from CD ROM in uncompressed form.

The cartridge may also include a battery backup 
when static RAM is used. A backup battery 12 is 
coupled to a conventional backup battery circuit 14 
via a resistor R to provide a backup voltage (RSRAM) 
for static RAM and a static RAM chip select signal 
RAMCS in case of loss of power to provide a data 
saving feature.

Additionally, coupled to the RAM address bus, 
are option setting resistors 16. In normal 
operation, the Mario chip address lines are output 
to RAMs 6 and 8. However, during reset or power-on 
operations, these address lines are used as input 
lines to generate either a high or low signal 
depending upon whether they are tied to a 
predetermined voltage VCC or ground. In this 
fashion, a "1" or "0" is appropriately read into an 
internal Mario chip register. After reset, 
depending upon the setting of these resistors, the 
Mario chip can determine (during program execution),
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for example, the multiplier clocking rate, the RAM 
access time to which the Mario chip is coupled, the 
clocking rate to be used with other operations 
within the Mario chip, etc. Through the use of 
these option setting registers, the Mario chip is, 
for example, adaptable to be used with a number of 
different types of memory devices without requiring 
any Mario chip design modifications. For example, 
if a dynamic RAM setting is detected then refresh 
signals will be applied at appropriate times. 
Additionally, the option settings may be used to 
control the speed at which, for example, the 
processor multiplier circuits operate and to permit 
other instructions to be executed by the graphics 
processor at a faster rate than it is possible to 
execute certain multiply instructions. Thus by 
initiating a delayed multiply execution, the 
remaining instructions can run at a faster clock 
rate than the rate otherwise possible (e.g., the 
processor may, for example, be clocked at 30 
megahertz, whereas the option settings would 
effectively cause the multiply instructions to be 
executed at 15 megahertz).

Figure 2 is block diagram of an exemplary host 
video game system to which the exemplary game 
cartridge set forth in Figure 1 is designed to be 
coupled. Figure 2 may, for example, represent the 
Super NES currently sold by Nintendo of America.
The present invention, however, is not limited to 
Super NES related applications or systems having a 
block diagram such as that shown in Figure 2.
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The Super NES includes within its control deck 
20, a 16-bit host CPU which may, for example, be a 
65816 compatible microprocessor. The CPU 22 is 
coupled to a working RAM 32, which may, for example, 
include 12BK bytes of storage. The CPU 22 is 
coupled to a picture processing unit (PPU) 24 which 
in turn is coupled to a video RAM 30 which may, for 
example, include words of storage. The CPU 22 has 
access to the video RAM 30 via the PPU 24 during 
vertical or horizontal blanking intervals. Thus, 
the CPU 22 can only access the video RAM 30 through 
the PPU 24 at times other than during active line 
scan when the PPU 24 is accessing video RAM. PPU 24 
generates a video display on a user's television 36 
from video RAM 30. CPU is also coupled to an audio 
processing unit APU 26 which is coupled to a working 
RAM 28. The APU 26 which may comprise a
commercially available sound chip generates the 
sounds associated with the video game program stored 
on the game cartridge in ROM 10. The CPU 22 can 
only access the working RAM 28 via APU 26. The PPU 
24 and APU 26 are coupled to the user's home 
television 36 via RF modulator unit 34.

The video RAM 30 in the Super NES must be 
loaded with appropriate character data stored in the 
program ROM 10 in the cartridge (which stores not 
only the game program, but also the character data 
used during game play). Any moving object, e.g., 
sprite information, or background information to be 
displayed must be resident in video RAM 30 before 
use. The program ROM 10 is accessed by the CPU 22
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host address and data buses via a mating connector 
18 which is coupled to the printed circuit board 
edge connector 1 shown in Figure 1. The PPU 24 is 
connected to the game cartridge via shared host CPU 
data and address buses and connector 23 so as to 
provide a path for PPU data and control signals to 
be coupled to the cartridge. The APU 26 is 
connected to the game cartridge via shared host CPU 
buses and audio bus 27.

The CPU 22 address space is mapped such that 
program ROM 10 locations begin at location 0 and is 
typically divided into 32K byte segments. The 
program ROM uses approximately one-half of the CPU 
address space. The top locations in each CPU 
address space 32K byte segment is typically utilized 
to address working RAM 32 and various registers.
The program ROM 10 typically is four megabytes. The 
CPU 22 used in the Super NES is capable of
addressing the entirety of the program ROM 10. On 
the other hand, the Mario chip 2 only includes a 16 
bit program counter and thus includes bank registers 
for selecting between the 32K byte banks in the 
program ROM 10.

In the present exemplary embodiment, the Mario 
chip has a full 24 bit address space that 
corresponds with the Super NES memory map. This 
contains the ROM 10 at the position starting at 
location $00:8000, and the RAM chip 6, 8 on the 
cartridge starts at location $70:0000.

iAc .



Since the ROM 10 and RAM 6, 8 on the cartridge 
are on separate buses they can be accessed in 
parallel by the Mario Chip. Also RAMs 6, 8 can be 
accessed at a faster rate than ROM and the Mario 
chip is designed to utilize this performance 
advantage. The Mario chip has no access to any 
memory that is inside the Super WES, i.e.z no access 
to the working RAM 32 or PPU video RAM 30.

In order for the Mario chip to process data, or
draw into a bitmap, data must be contained within
the Mario cartridge RAM chip 6, 8. Thus, any
variables which are shared between the NES CPU
program and the Mario chip program must be within
the Mario cartridge RAM chip 6, 8. Any prestored

: .··. data that the Mario chip program needs to use can be• · · ·
.····. in ROM 10 and any variables will be in RAM 6, 8.• · · ·• · *• · ·• * · ·
.····. Any private variables only required by the
.**. j Super NES program do not need to be in cartridge RAM

6, 8. In fact, since this RAM 6, 8 is at a premium 
in terms of memory space, it is advisable to

·’*·.· allocate cartridge RAM 6, 8 on a high priority
requirement basis. Any non-essential, variables 
should be stored in Super NES internal RAM 32.

R «I · · « ·»
·’*’*· The bitmap that the Mario Chip writes into is

in Mario cartridge RAM 6, 8 and will be DMA
·*·**· transferred under control of the Super NES into the
.*·.· PPU's video RAM 30 when each bitmap frame has been

fully rendered.

A
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The Super NES's CPU 22 has access to all 
internal RAM within the Super NES control deck just 
as if the Mario chip were not present. The Mario 
chip has no access to this RAM so all data
transferred between the Mario ROM/RAM chips and 
internal Super NES RAM must be initiated by the CPU 
22 itself. Data can be transferred via CPU 22 
programming, or block moved via DMA transfer.
The Mario cartridge ROM 10 and RAM 6, 8 are mapped 
in as usual on all game programs.

The CPU 22 has control over which CPU has 
temporary access to the cartridge ROM or RAM chips. 
On power up or reset conditions, the Mario chip is 
turned off and the CPU 22 has total access to the 
cartridge ROM and RAM chips. In order for the Mario 
chip to run a program, it is necessary for the CPU 
22 program to give up its access to either the ROM 
or RAM chip, preferably both, and either wait for 
the Mario chip to finish its given task, or 
alternatively the CPU 22 can copy some code into 
internal work-RAM 32 and execute it there.

The Mario chip has a number of registers that 
are programmable and readable from the Super NES CPU 
side. These are mapped into the CPU 22 memory map 
starting at location $00:3000.

As indicated in Figure 2, the Super NES 
generates and receives a variety of control 
signals. When the Super NES CPU 22 needs to access 
program ROM 10, it generates a control signal 
ROMSEL. To initiate a memory refresh, the Super NES
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generates a refresh signal RFSH. When the Mario 
chip completes an operation, it transmits an 
interrupt signal IRQ on an interrupt request line 
associated with the Super NES CPU. The CPU 22 
additionally generates read and write signals.

System timing signals are generated from timing 
chain circuitry 21 within the control deck 20. A 
power-on/reset signal is also generated within the 
main control deck 20 and coupled to the game 
cartridge.

• · ·• · ·• · · ·• · · ·• ·• · · ·• · ·• · ·• · · ·• · · ·• ·• · « ·

The Super NES also includes an authenticating 
processing device 25 which exchanges data on input I 
output O, and reset R conductors with an
authenticating processing device 3 on the game 
cartridge in accordance with the above identified 
U.S. Patent 4,799,635. The processing device 25 as 
taught by U.S. Patent 4,799,635 holds the CPU 22 in 
a reset state until authentication is established.

? · · ·• · ·• · ·

• · · ·» ·• · · ·

• ·» e ·

The Super NES video game machine which is 
represented in block form in Figure 2 has only been 
generally described herein. Further details 
regarding the Super NES including PPU 24 may, for 
example, be found in U.S. application Serial No. 
07/651,265, entitled "Video Processing Apparatus 
which was filed on April 10, 1991, which application 
has been expressly incorporated herein fcy
reference. Still further details such as how 
information is transferred between the Super K2; and 
the game cartridge may be found in U.S. Application 
Serial No. 07/749,530, filed on August 26, 1991,

&
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entitled "Direct Memory Access Apparatus in Image 
Processing System and External Storage Device Used 
Therein" and in U.S. Application Serial No. 
07/793,735, filed November 19, 1991, entitled, 
"Mosaic Picture Display Apparatus and External 
Storage Unit Used Therefor", which applications are 
incorporated herein by reference.

In some applications, the inventors have 
recognized that more information may need to be 
transferred during vertical blanking using such host 
processor DMA circuits than is actually possible. 
Accordingly, it may be desirable to extend vertical 
blanking time — even if it results in slightly 
shrinking the picture size. By using this approach, 
significant advantages are realized in terms of 
processing speed and picture update rate.

Figure 3 shows a perspective view of an 
exemplary mechanical design for a game cartridge 
case 19 for housing the Mario chip and other 
cartridge structure shown in Figure 1. Similarly, 
Figure 3 shows the perspective view of an exemplary 
exterior housing for a video game control deck 20 
for housing the Super NES video game hardware shown 
in Figure 2. The mechanical design for such video 
game control deck 20 and associated removable game 
cartridge 19 is shown in Figures 2-9 of U.S. 
application Serial No. 07/748,938, filed on August 
23, 1991, entitled, "TV Game Machine", which 
application is hereby incorporated herein by 
reference.

■> .( >
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Figures 4A and 4B are a block diagram of the 
Mario chip 2 shown in Figure 1. Focusing first on 
the various buses shown in Figures 4A and 4B, the 
instruction bus INSTR is an 8-bit bus that couples 
instruction codes to various Mario chip components. 
The X, Y and Z buses are 16-bit data buses. The HA 
bus is a 24-bit host system address bus that, in the 
presently preferred embodiment is coupled, in use, 
to the Super NES address bus. The HD bus is an 
8-bit host data bus which is coupled, in use, to the 
Super NES data bus. The PC bus is a 16-bit bus 
which couples the output of the Mario chip program 
counter (i.e., register R15 in general register 
block 76) to various system components. The ROM A 
bus is a 20-bit ROM addr-ss bus. The ROM D bue is 
an 8-bit ROM data bus. . ie RAM A bus i« a bit RAM 
address bus. The RAMD_IN bus is an 8-bit RAM read 
data bus, and RAMD_OUT iu an 8-bit RAM write data 
bus.• · ·• · «• · · ·• · · ·• ····· The Mario chip and the Super NES share the 
cartridge RAM 6, 8 which serves as the main 
mechanism for passing data between the Mario chip 
and the Super NES. The Super NES accesses the Mario 
chip via the address and data buses HA and HD. The 
Mario chip registers 76 are accessed by the Super 
NES via the Super NES address bus HA.

The Super NES accesses the cartridge program 
ROM 10 and RAM 6, 8 via the Mario chip 2. The ROM 
controller 104 and the RAM controller 88 receive 
memory access re1ated signals generated by the Super 
NES to respectively initiate ROM and RAM memory
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accesses. By way of example, a RAM select signal 
RAMCS is used by the Mario chip? 2 to confirm that 
the Super NES is attempting to address the RAM.

The X, Y and Z buses shown in Figures 4A and 4B 
are the internal Mario chip data buses. The X and Y 
buses are source data buses and the Z data bus is a 
destination bus. These buses carry 16 bits of 
parallel data.

While executing instructions, the Mario chip 2 
may p)ace the source of data for an instruction on 
the X ind/or Y buses and the destination data on the 
Z bus. For example, in executing an instruction 
which adds the contents of two registers and places 
the results in a third register, arithmetic and• · ·

ί.ί ί logic unit (ALU) 50 receives the contents of two• · · ·
’....* source registers via the X and Y bus couples the• · ·
'•L.· result to the Z bus (which in turn is coupled to a• · · ·
'····* specified register in block 76). Control signals• · ·
*· ’·! resulting from the decoding of an instruction

operation code by the instruction decoding circuitry
60 in the Mario chip 2 are coupled to the ALU 50 to·· · ·

*· *·: initiate an ADD operation.• · · ·• · ·• · ·
As noted with respect to the description z£ 

Figure 1, the Mario chip is coupled to a ROM bus, a
····’ RAM bus and a Super NES host bus which are capable
, .. of communicating signals in parallel. The Mario• · ·

chip 2 monitors the contrei address and data• · ·
’ ” signals transmitted via the host Super NES bus to

determine the operations which the host system is
performing. The cartridge ROM bus and the cartridge
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RAM bus may be accessed in parallel depending upon 
the Super NES operation being performed at any given 
time. In conventional Super NES game cartridges, 
the host CPU address and data lines are coupled 
directly to the RAM and ROM, such that the RAM and 
ROM may not be accessed in parallel.

In accordance γ/ith one aspect of the present 
invention, the Mario chip 2 physically separates the 
ROM bus and the RAM bus as shown in Figure 1 from 
the Super NES buses. The Mario chip 2 monitors the 
signals transmitted on the Super NES buses and 
determines what signals need to be coupled to the 
ROM chip and the RAM chip via two separate ROM and 
RAM buses which are not time shared. By separating 
the ROM and RAM buses, the Mario chip 2 is able to 
read from ROM and write to RAM simultaneously. In 
this fashion, the Mario chip can efficiently operate 
with inexpensive ROM chips which have access times 
which are significantly slower than RAM access times 
without having to wait for the ROM accesses to be 
completed before accessing RAM.

Turning to Figure 4A, as noted above, the Mario 
chip 2 is a fully programmable processor, and 
includes an ALU 50. The ALU 50 executes all the 
arithmetic functions embodied within the Mario chip 
except for multiply operations which are handled by 
multiplier 64 and certain pixel plotting operations 
handled by plot hardware 52. Upon receipt of an 
appropriate control signal from instruction decoder 
60, the ALU 50 performs addition, subtraction, 
EXCLUSIVE-OR, shift and other operations. As shown
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in Figure 4A, ALU 50 receives information to be 
operated on from the X, Y buses, performs the 
operation initiated by a control signal received 
from instruction decoder 60, and couples the results 
of the operation to the Z bus. The ALU is described 
in further detail below in conjunction with Figure 6.

The Mario chip 2 additionally includes special 
purpose hardware to enable 3-D type special effects 
and other graphic operations to be efficiently 
performed so that video games utilizing these 
features may be practically realized. In this 
regard, the Mario chip 2 includes plot hardware 52 
which assists in converting in real time from pixel 
coordinate addressing to character map addressing of 
the nature utilized in the Super NES.
Advantageously, the Mario chip may be programmed by 
specifying X and Y coordinates which define the 
location of each pixel on the display screen.

Thus, graphic operations are performed based on 
a programmer specifying pixels and the plot hardware 
circuit 52 on the· fly converts pixel specifications 
into properly formatted character data. The 
character data is then mapped into the desired place 
for display in the Super NES video RAM 30 shown in 
Figure 2. In this fashion, the Mario chip
programmer need only consider the Super NES video 
RAM 30 as a bit map when in reality, it is a 
character map.

The plot hardware 52 responds to various 
plotting related instructions to permit programmable
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selection of an X and Y coordinate on the display 
screen and a predetermined color for a particular 
pixel and to plot corresponding pixels such that the 
X and Y coordinate is converted into an address 
which corresponds to a character definition of the 
form which ie used to drive the Super NES video RAM 
30.

The plot hardware 52 has associated data 
latches which permit buffering of as much pixel data 
as possible prior to writing to cartridge RAM to 
minimize RAM data transactions. After the X and Y 
coordinate data is converted and buffered in the 
plot hardware 52, character definition data is then 
transferred to the cartridge RAM.

The plot hardware 52 receives X, Y coordinate 
data via a PLOT X register 56 and PLOT Y register 
58, respectively. In the presently preferred 
embodiment, the PLOT X and PLOT Y registers are not 
separate registers (as shown in Figure 4A) but 
rather are Mario chip general registers (e.g., 
registers Rl and R2 registers in register block 76 
shown in Figure 4B).

The plot hardware 52 also receives pixel color 
information via a color register 54. As will be 
described further below, the color of each pixel 
that is displayed is stored in an 8 x 8 register 
matrix, with each pixel color specification 
occupying a column of the matrix.
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The plot hardware 52 processes and couples the 
character address and data associated with the X, Y 
and color input to the character RAM 6, 8. The 
character address is forwarded via output lines 53 
to the RAM controller 88 and to a RAM address bus 
RAM A. The character data is coupled to the 
character RAM via output line 55, multiplexer 93 and 
RAM data bus RAMD_OUT. The plot hardware 52 permits 
pixels within a character to be addressed
individually, to thereby provide the programmer a 
"virtual" bit map display system, while maintaining 
compatibility with the Super NES character format. 
The "virtual" bit map is held in the cartridge RAM 
and is transferred to the Super NES video RAM 30 on 
the completion of the display of each frame using, 
for example, the DMA circuitry in the
above-identified application Serial no. 07/749,530. 
The plot hardware 52 permits high speed individual 
pixel control so that certain 3-D graphics effects 
involving rotating and scaling objects become 
practically realizable.

Because of the conversion from pixel to 
character format, the plot hardware 52 also receives 
information relating to other pixels in the vicinity 
of the current pixel X, Y from a cartridge RAM 6, 8 
via RAMD_in data latch 32 and input line 83. By 
using previous pixel data retrieved from RAM 6, 8 
and temporarily stored in the RAM data latches, ''he 
number of writes to RAM may be minimized. The RAM 
data latches 80, 84, and 86 shown in Figure 4A also 
serve to buffer color data received regarding a 
pixel which has been stored in multiple bit planes
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in cartridge RAM to provide plot hardware 52 with 
such data.

RAM data latch 80 is coupled to the Super NES 
data bus so that the Super NES can read the contents 
of the data latch. RAM data latches 80, 82, 84, and 
86 are controlled by the RAM controller 88. RAM 
data latches 84 and 86 operate to receive data from 
RAM 6, 8 and couple data from RAM 6, 8 to the 
destination 2 bus for loading into a predetermined 
register in register block 76. Additionally coupled 
to RAM controller 88 is a latch 90 which buffers RAM 
addresses. The address stored in latch 90 is 
utilized by RAM controller 88 for addressing RAM 6,
8 via the RAM A bus. RAM controller 88 may also be 
accessed by the Super NES via address bus HA.

The plot hardware 52 also responds to a READ 
PIXEL instruction which reads the pixel color 
information for a horizontal position defined by the 
contents of register RI and the vertical position 
defined by the contents of register R2 and stores 
the result in a predetermined register in the 
register block 76 via the destination Z bus and 
output line 87. The PLOT hardware 52 is described 
in further detail in conjunction with the 
description of Figures 7, 8A, and 8B.

Pipeline buffer register 62 and an ALU 
controller instruction decoder 60 are coupled to 
instruction bus INSTR and operate to generate the 
control signals CTL (utilized throughout the Mario 
chip) to initiate operations in response to commands
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placed on the instruction bus. The Mario chip 2 is 
a pipelined microprocessor which fetches the next 
instruction to be executed while it is executing the 
current instruction. Pipeline register 62 stores 
the next instruction(s) to be executed so as to 
permit execution of instructions in one cycle, if 
possible. The instructions which are placed on the 
instruction bus are addressed by the contents of the 
program counter stored in a register, which may, for 
example, be register R15 in register block 76 shown 
in Figure 4B.

The instructions executed by the Mario chip 2 
may either be obtained from program ROM 10 rb shown 
in Figure 1 or the Mario chip’s internal cache RAM 
94 or from the cartridge RAM 6, Θ. If the program 
is being executed out of ROM 10, the ROM controller 
104 (shown in Figure 4B) will fetch the instruction 
and place it on the Mario chip instruction bus 
INSTR. If a program instruction is stored in the 
cache RAM 94, then the instruction will be placed on 
the instruction bus directly from cache RAM 94 via 
cache RAM output bus 95.

The host CPU, i.e., the Super NES, is 
programmed to allocate portions of the program ROM 
10 for Mario chip program instructions. The Super 
NES program commands the Mario chip to perform a 
predetermined function and then provides the Mario 
chip with the address in ROM 10 for accessing the 
Mario chip program code. Pipeline register 62 
fetches instructions one byte ahead of the 
instruction being executed to provide the
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instruction decoder 60 with instruction related 
information for the decoder to be able to anticipate 
what is about to occur during program execution to 
permit look ahead related processing. The decoding 
and control circuitry in block 60 generates control 
signals for commanding the ALU 50, plot hardware 52, 
cache control 68, etc., to perform the operation 
indicated by the instruction code being executed.

• · · · • ··»

• ·· ·• « • · · ·

• · ·» · ·* · β

The Mario chip also includes a high speed, 
parallel multiplier 64 that is separate from ALU 
50. The multiplier 64 in response to predetermined 
instructions operates to multiply two 8-bit numbers 
received from the X and Y source buses and load the 
16-bit result onto the destination Z bus. This 
multiply operation is performed in one cycle if 
possible. Either number input to the multiplier 64 
may be signed or unsigned. Multiplier 64 also is 
capable of performing long multiply operations, 
whereby two 16-bit numbers are multiplied to 
generate a 32-bit result. The multiplier 64 also 
includes associated partial product registers 66 to 
store partial products generated during the 
multiplication operation. The multiplier 64 is 
enabled by a control signal from the instruction 
decoder 60 when a multiply operation code is 
decoded. The multiplier 64 will execute long 
.multiply instructions involving the multiplication 
of 16-bit words in a minimum of four clock cycles.

The long multiply instruction has a format:

, ·,* Ul ■
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R4 (low word), DREG (high word) = Sreg * R6. 
This instruction is executed to multiply the source 
register by the contents of register R6 and store a 
32-bit result in registers R4/DREG (low/high). The 
multiply is signed and sets zero and sign flags on 
the 32-bit result.

The operation takes place in accordance with 
the following six steps:

Step 1: Unsigned multiply R4 [0...15] = SREG
[0...7] * R6 [0...7]

Step 2: X signed. R4 [0...15] = R4 [0...15] +
256 * SREG [8...15] * R6 [0...7]. Top eight 
bits of the product are ignored, but carry from 
addition preserved.

Step 3: X signed. R5 [0...15] = CY +
(R6[8...15] * SREG [0-7]) * 256; sign extended.

Step 4: X unsigned, Y signed. R4 [0...15] = R4
[0...15] + 256 * SREG [0...7] * R6 [8...15],
The top eight bits of the product are ignored, 
but carry from the addition is preserved.

Step 5: Y signed . R5 [0...15] = R5 [0...15] +
CY + SREG [0...7] * R6 [8...15]) + 256; sign 
extended.

Step 6: X, Y signed. R5 [0...15] = R5
[0...15] + RY [8...15] * R6 [8...15].

«, -i-.· ·



The multiplier 64 utilized in the present 
exemplary embodiment may be, for example, of the 
type described in Digital Computer Arithmetic, by 
Cavanaugh, published by McGraw-Hill, 1984.

Turning to Figure 4B, cache controller 68 
(which is shown in further detail in Figure 14) 
permits a programmer to efficiently initiate loading 
into cache RAM 94 the portion of the program desired 
to be executed at high speed. Such "caching" is 
typically utilized in executing small program loops 
which occur frequently in graphics processing. The 
Mario chip instruction set includes a "CACHE" 
instruction. Any instrucxtions immediately following 
the CACHE instruction is loaded into the cache RAM 
until the cache RAM ie full. When the CACHE 
instruction is executed, the current program counter 
state is loaded into the cache haxse register 70. 
Thus, the contents of the cache base register 70 
defines the starting location at which caching has 
been initiated.

Most instructions execute in one cycle. 
Instructions coming from relatively slow external 
memories like ROM 10 or RAM 6, 8 must be fetched 
before they are executed. This will take an extra 6 
or so cycles. To enhance program execution speed, 
the ’cache’ RAM 94 that is inside the Mario chip 
itself should be used.

Cache RAM 94 may be a 512-byte instruction 
cache. This is a relatively small size compared to 
the size of the average program, so the programmer
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must decide how best to utilize the cache memory 
94. Any program loop that can fit into the 512 
bytes cache size can run at full speed, one cycle 
for both fetch and execute. Because of the split 
busses, both ROM and RAM can be simultaneously 
accessed while executing code from internal cache 
94.

The cache RAM 94 may be advantageously used to 
rotate a sprite by running a loop inside the cache 
94 that would read the color of each pixel from ROM 
10 while it is performing the rotation and scaling 
calculations, while it is using the PLOT instruction 
(to be described below) to write the pixel to RAM 6, 
8. All that happens in parallel, giving very fast 
throughput slowed down by the slowest operation.
The slowest operation is usually ROM data fetching, 
which is why the Mario chip is designed to use 
buffered access to ROM and RAM.

When compared with running from the relatively 
slow ROM 10, a program will run about 6 times faster 
from inside the cache RAM 94, but first it has to be 
loaded from ROM into the cache 94. This is done by 
placing an instruction at the start of any loop to 
be cached. Only the first 512 bytes of the loop 
will be cached, taken from the address of the CACHE 
instruction. While executing the code for the first 
iteration of the loop, the program will be coming 
from ROM 10 and copied into cache RAM in 16-byte 
chunks. All further iterations of the loop will 
come from the cache RAM 94 instead of ROM 10.

"A.”' ' s
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CACHE instructions can be used liberally in 
front of any repetitive program loop;. Only 
subsequent iterations of a loop will benefit from 
being in cache. If a program loop is bigger than 
512 bytee and overflows the cache 94, it will still 
work correctly, but only the first 512 bytes will 
run from cache 94 and the remainder will run from 
ROM 10 as usual. This gives a partial speed boost, 
but is not ideal.

A cache tag bit register 72 which, in the 
preferred embodiment, is part of the cache 
controller 68 identifies the memory locations which 
have been loaded in the cache RAM 94. The cache tag 
bits permit the Mario chip to quickly determine 
whether a program instruction is executable from the 
faster cache RAM rather than from the program ROM 
10. The cache RAM 94 may be accessed by the cache 
controller 68 or the Super NES via the Super NES 
address bus HA via multiplexer 96.

The cache controller 68 is coupled to the 
program counter bus PC to load the cache base 
register 70 and perform cache memory address 
out-of-range checking operations.

Similar to the parallelism achievable in 
reading from ROM 10, the Mario chip also provides a 
way of writing to RAM 6, 8 in parallel. Whenever a 
Mario register is written to RAM 6, 8, it will 
initiate a separate RAM write circuit, e.g., in RAM 
controller 88, to do the memory transaction. This 
will take typically 6 cycles, but it will not delay
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the processor while it is doing so, provided the 
programmer avoids doing another RAM transaction for 
that time. For instance, it is faster to interleave 
other processing in between each store instruction. 
That way the RAH write circuit has time to do its 
job. If two writes are used in a row, the second 
one would delay the processor while the first one 
being written.

For example (using instruct.ons from the instruction
set to be described below):

• · ·
• · «
• · · ·

« · · a
FROM R8 Store R8 into (R13)

« ■
« a a a

e ··
SM (R13)

• · ·
• · · e
• ·· ·

SM (R14) z Store RO into (R14)
• a

• »· ·
* · a

TO R1
• · ·

• a · FROM R2
ADD R3 z Performs:rl=r2+r3

• a · TO R4
• Λ ·
• ··
β · ·« FROM R5

• · ·
• · · ADD R6 z Performs:r4=r5+r6

• ·
'i a a a a 
•
- a a · Notice that the two store instructions are
» ·· · close to each other. The second one will take

cycles longer because the RAM bus is busy trying to 
complete the first store instruction.

A better way of writing the code that will run 
faster would be to space out the two store 
instructions with other useful code. For example:

FROM R8 ;Store R8 into (R13)
SM (R13)
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TO Rl
FROM R2
ADD R3 ;Performs:rl=r2+r3
TO R4
FROM R5
ADD R6 ; Performs: r4-~r5+r6
SM (R14) ;Store RO into (R14)

In this fashion, a few more instructions may be

• 00 ♦ · «··· ·····• ·«···

····• «···· ♦· ·
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• ·• · · · ·
• 909» · · A 6

executed in parallel at the same time that the first 
store instruction results in the writing to RAM.
Then the second store operation can be done a few 
cycles later.

The instruction set described below includes a 
fast instruction for writing back a register to the 
last used RAM address. Thi3 allows for "bulk" 
processing of data, by loading the value from RAM, 
doing some processing on it, then storing it back 
again fast.

Turning back, to Figure 4B, an immediate data 
latch 74 is coupled to the instruction bus. This 
data latch 74 permits the instruction itself to 
provide the source of data so that no source 
register need be specified by an instruction. The 
output of the immediate data latch 74 is coupled to 
the destination Z bus, which in turn is coupled to a 
predetermined one of the registers in register block 
76. The instruction decoding circuit 60 decodes an 
"immediate" data instruction and initiates the 
performance of the appropriate transfer to register 
operation.

&
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The GET B register 98 shown in Figure 4B is 
used in conjunction with the delayed/buffered read 
operation described above. In this regard, given 
the widespread use of relatively slow access time 
ROMs, prior art processors have typically had to 
wait until a data fetch is completed, whenever 
executing a HOM. By utilizing the delayed/buffered 
fetch mechanism described below, other operations 
may be performed while the data fetch is
accomplished. In accordance with this mechanism, if 
register R14 in register block 76 is accessed or

J.:”; modified in any way, ROM or RAM fetches are
·’’**· initiated automatically at the address identified by
·.;**· the contents of R14.
····• ♦···«

As indicated in Figure 4B, the register R14 is 
coupled to ROM controller 104. Any time the 
contents of register R14 is modified in any way, ROM• ♦ ·*. controller 104 operates to initiate a ROM access.

• If

*·«· Ϊ The results of accessing the ROM are loaded into the
GET B register 98 via multiplexer 102 which isI ·
coupled to the ROM data bus ROMD. Instructions• · · ·

····* identified below permit accessing the information
buffered in the GET B register 98. This information• · »

’··* is loaded onto the destination Z bus via multiplexer•« ·
• ’·· 100 and then into one of the registers in register

block 76.

In this fashion, if a data fetch from ROM is 
known to take a predetermined number of processing 
cycles, that fetch can be initiated and instead of 
waiting without performing other operations, the 
Mario chip can execute, for example, unrelated code

j( e ■' *» j/· *κ t' J
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after such data fetch has been initiated. The GET B 
register 98 may also be utilized tc store 
information retrieved from RAM 6, 8 via multiplexer 
102 as shown in Figure 4B.

Embodied within register block 76 are sixteen 
16-bit registers (R0-R15). Registers R0-R13 are 
general purpose registers (although some of these 
registers are often used for special purposes to be 
described below). As described above, register R14 
is used as a pointer for reading memory, and, when 
modified, a read cycle from ROM (or RAM) is 
initiated. The byte read is stored in a temporary 
buffer (GET B register 98) for later access by a GET 
L or GET H command. Register R15 is the program 
counter. At the start of each instruction it points 
to the next instruction being fetched.

Register RO is a general purpose register, 
which typically operates as an accumulator. It is 
also the default source and destination register for 
most single cycle instructions. If, for example, 
the contents of RO and R4 are desired to be added 
together it is only necessary to expresely specify 
register R4.

Registers Rll, R12 and R13 are specially 
utilized when a loop instruction is executed. 
Register R13 stores an address of the instruction to 
be executed at the top of the loop, and register R12 
stores the number of times the loop is to be 
executed. If the contents of register R12 is 
non-zero, then the instruction at the address
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specified by the contents of R13 is loaded into the 
program counter (R15) and executed. Register Rll 
stores the address to fee returned to after the loop 
is completed.

Register control logic 78 is coupled to 
register block 76 and controls access to general 
registers RO to R15. Depending upon the format of 
the particular instruction being executed, 
instruction decode logic 60 will specify one or more 
registers R0-R15. Register control logic 78 
specifies which register the next instruction to be 
executed will need to utilize. The register control 
logic 78 couples the outputs of the appropriate 
register to the X and Y bus. Additionally, as 
indicated by Figure 4B, the appropriate register 
R0-R15 receives the information from the Z bus under 
the control of register control 78.

ROM controller 104 upon receipt of an address 
from either the Super NES address bus HA or the 
Mario chip will access that address. ROM controller 
104 is shown in further detail in Figure 13.
Accessed information from ROM 10 may be loaded into 
the cache RAM 94 for fast instruction execution.
The ROM and RAM controllers 104, 108 both have bus 
arbitration units which arbitrate between Super NES 
and the Mario chip access attempts.

As will be described further below, the Mario 
chip also utilizes status registers (e.g., within 
register block 76 or in RAM 6, 8) which are 
accessible by the Super NES CPU and which store
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flags for identifying status conditions such as 0 
flag, carry flag, sign flag, overflow flag, "GO" 
flag (where 1 indicates that the Mario chip is 
running and 0 indicates that the Mario chip is 
stopped); a ROM byte fetch-in-progress flag 
(indicating that register R14 has been accessed); 
various mode indicating flags including an ALT 1 
flag, ALT 2 flag, immediate byte-low and immediate 
byte-high flags, and flags indicating that both a 
source and destination register has been set by a 
"WITH" prefix command, and an interrupt flag.

The Mario chip represented in block diagram 
form in Figures 4A and 4B is utilized by the Super 
NES which turns the Mario chip on and off to perform 
tasks many times a second. Initially, when the 
Super NES is turned on, the game program stored in 
ROM 10 is booted up. It is noted that prior to 
execution of the game program by the Super NES and 
Mario chip processors, the game cartridge is first 
authenticated. By way of example only, such 
authentication may take place by initially placing 
the Super NES CPU in a reset state and executing 
authenticating programs in authenticating processors 
associated with the game cartridge and the Super NES 
main control deck in accordance with the teachings 
in U.S. Patent No. 4,799,635.,

The Mario chip is initially in a switched-off 
state. At this point in time, the Super NES has 
unrestricted access to the game cartridge program 
ROM and the game cartridge RAM. When the Super NES 
has need to use the Mario chip processing power to
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perform either graphics operations or mathematical 
calculations, the Super NES stores the appropriate 
data it desires the Mario chip to process in the 
cartridge RAM (or in predetermined Mario registers) 
and loads the Mario chip program counter with the 
address of the Mario program to be executed. The 
data to be processed by the Mario chip may be 
predetermined X, Y coordinate data of objects which 
must be rotated and enlarged or reduced. The Mario 
chip can execute programs which implement algorithms 
to manipulate the background and foreground of 
sprites or moving objects of varying number. The 
use of the Mario chip speed enhancing hardware and 
software results in high speed performance of such 
operations.

The use of the Mario chip to process sprites 
can expand the capabilities of the overall video 
game system considerably. For example, the Super 
NES is limited to displaying 128 sprites per frame. 
With the use of the Super Mario chip virtually 
hundreds of sprites may be displayed and, for 
example, rotated.

When the Mario chip has completed the function 
requested by the Super NES, a STOP instruction is 
executed, and an interrupt signal is generated and 
transmitted to the Super NES to indicate that the 
Mario chip has completed its operation — which, in 
turn, indicates that it is ready to perform the next 
task.
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The Mario chip may be utilized to do small 
tasks such as a high-speed multiplication task or 
may be utilized to draw a screen full of sprites.
In either event, the Super NES is free to do 
processing in parallel with the Mario chip provided 
the Super NES stays off the RAM or ROM buses when 
such buses are being used by the Mario chip. It is 
noted that if the Super NES gives the Mario chip 
control of both the RAM and ROM buses on a game 
cartridge, the Super NES may, nevertheless, be able 
to execute programs out of its working RAM 32 shown

3

in Figure 2. Thus, the throughput of the entire 
system may be increased by copying a Super NES 
program to be executed from program ROM to its 
working RAM; while, at the same time, executing a 
program by the Mario chip.

A flowchart is shown in Figure 5 which 
represents the sequence of operations performed by a 
”RUN MARIO" program executed by the host CPU (e.g., 
the Super NES CPU) for starting the Mario chip to 
fetch and execute code from ROM at th® required 
address. The routine represented by Figure 5 will 
be typically executed by the Super NES CPU after 
copying the routine from the program ROM 10 to its 
working RAM 32 shown in Figure 2. This routine is 
executed by the host CPU any time the Mario chip is 
required to perform an operation.

As indicated in block 125 when the RUN MARIO 
host CPU routine is executed, initialization 
operations are performed including preserving the 
Super NES registers. During the initialization
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step, this routine is copied from program ROM 10 to 
the host CPU’s working RAM 32.

As indicated at block 127, the ROM 10 code bank 
storing the Mario program code to be executed is 
loaded in a Mario chip register. Additionally, the 
actual address within the code bank is stored in a 
Mario chip screen base register as indicated at 
block 129.

Thereafter, as indicated in block 131, I/O 
input/output modes are set in the Mario chip by 
identifying whether 4, 16 or 256 color modes will be 
used. These modes correspond to the color modes 
with which the host CPU operates. Additionally, a 
mode is set defining the height of the screen in 
terms of number of characters that may be displayed.

Additionally, mode bits are set which give the 
control of the ROM and RAM buses to the Mario chip. 
Control of the ROM and RAM buses are separately 
selectable so that the Mario chip may be set to a 
mode where it has access to the ROM bus, the RAM 
bus, or both. Thus, if the "Mario owner" mode is 
set for both the ROM and the RAM, then the host CPU 
cannot read or write from or to the ROM or RAM. It 
is noted that, if the host CPU attempts to access 
the program ROM while the Mario chip is using the 
program ROM bus, a mechanism is provided whereby the 
Mario chip returns dummy addresses to the Super 
NES. The branching to such addresses will keep the 
Super NES occupied until the Mario chip no longer 
requires access to the cartridge ROM bus.
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As indicated at block 133, the Mario chip 
begins operation after the Mario chip program 
counter is loaded with an address which stores the 
first instruction that the Mario routine must 
execute.

The host CPU then waits for an interrupt signal 
from the Mario chip (block 135). When an interrupt 
signal is received, the Super NES is informed that 
the Mario chip has completed its operation and has 
stopped (block 137). If no such interrupt signal is 
received, then the host CPU continues to wait for an 
interrupt (block 135). The Super NES may, during 
this time period, execute program code in parallel 
with Mario chip operations by executing out of its 
working RAM 32 shown in Figure 2.

The Super NES then checks the status register 
(e.g., in the Mario chip register block 76) to 
determine whether the Mario chip "GO" flag has been 
set which indicates that the Mario chip is in 
operation (137). Additionally, an interrupt flag is 
set in the Mario chip status registers .to indicate 
that the Mario chip is the source of the interrupt 
signal received by the host CPU. Thus, after an 
interrupt signal is received by the host CPU (135), 
the appropriate Mario status register is tested to 
determine whether the Mario chip is the scarce of 
the interrupt (as opposed to the interrupt signal 
being indicative, for example, of a vertical 
blanking interval). If the Mario chip has stopped 
(137), then the Mario owner mode bits for the RAM 
and ROM are cleared and the Super NES has full
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access to the ROM and RAM. The Super NES exits the 
routine (141) and returns to the point in its 
program which it was executing prior to entering the 
Run Mario routine.

When the CPU 22 game program has put the Mario 
chip into ROM Mario owner mode, it must voluntarily 
stop accessing the ROM. Whenever the CPU 22 needs 
to access the ROM for some reason, it simply turns 
ROM Mario owner mode off. The Mario chip will 
automatically hold on when it next needs to access 
the ROM until it is given ROM Mario owner mode back 
again. If it was running from internal cache RAM 
this may not be required at all.

If the Mario chip is in the Mario owner mode 
for ROM. it is important that the CPU 22 game 
program does not even try to read anything from 
ROM. When any interrupt occurs, e.g., due to 
vertical blanking, it causes an NMI, then the CPU 22 
automatically tries to fetch its interrupt vectors 
from the ROM. This is not desirable, because the 
CPU 22 has explicitly told the Mario chip that it 
will stay away from the ROM, and then an interrupt 
occurs and it fetches from the ROM anyway. In this 
situation, i.e., a ROM access from the CPU 22 
despite being in the Mario owner mode will cause the 
Mario chip to assume that this was an interrupt 
vector request.

During an interrupt vector fetch in ROM Mario 
owner mode, the Mario chip will relocate the 
interrupt vectors into Super NES internal work RAM

Λν.'λ
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32 at the bottom of the etack area. For instance, 
if the usual interrupt vector was $OO:FFEC then it 
will cause a JUMP to location $00:010c. Similarly, 
all interrupt vectors from $00:ffeX cause the CPU 22 
to JUMP to their corresponding locations at 
$00:010X. This technique avoids the CPU 22 from 
accessing the ROM 10 when its not supposed to, and 
diverts it into on-board Super NES RAM 32 instead.
It is noted that the RAM based interrupt vectors 
must contain jumps or branches to interrupt 
handlers, i.e., actual code should be resident there 
not simply vector addresses. When the Mario chip is 
not in the Mario owner mode ROM, the normal ROM 
interrupt vectors are in use, so it is advisable to 
keep the same addresses pointed in these locations 
to go to the same place as the RAM based interrupt 
vectors.

4· ·• · ·• ···«··* ♦ a
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INSTRUCTION SET

The Mario chip instruction set provides an 
efficient means for programming high speed graphics 
and other processing algorithms. A brief
description of certain instructions is set forth 
below followed by a description of certain registers 
used by various instructions. A detailed listing of 
the instruction in the instruction set is also 
included.

Instructions are 8-bit instructions and 
typically execute in a single clock cycle. However, 
the instructions can be modified by 8-bit prefix 
instructions. The Mario chip instruction set

\ . Λ j
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includes a unique register override system allowing 
the programmer to specify the destination and both 
source registers in front of any instruction.
Without such "prefixed" overrides, instructions 
would operate only on the accumulator. Thus, the 
instruction set is a variable length instruction set 
with a myriad of combinations. There are some basic 
instructions that are one byte long which operate in 
one cycle. By providing prefixed instructions, a 
programmer can extend the power of the
instructions. An instruction can be 8, 16 or 24 
bits, depending upon the programmer’s desire.

The Mario processor utilizes instructions to 
initiate high speed, on-board cache RAM program 
execution and delayed/buffered I/O to memory. 
Graphics processing is efficiently enabled through 
the use of a single cycle pixel plot command which 
initiates operation using the pixel plot hardware 
described above.

Prior to identifying the Mario instruction set, 
various memory mapped registers which are set or 
accessed by the processor in executing instructions 
are described below. Initially, the status flag 
register is identified. The status register is a 
16-bit register and the flags associated with each 
of the 16 bits in the register are identified below.

STATUS FLAGS REGISTER 16 BIT

bit Flags
0 - Reserved

z1 Zero flag

-y '
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2 c Carry flag
3 s Sign flag
4

5

6

v Overflow flag ([bit 14 into 15]
XOR [15 into Carry])

g Go flag: 1 Mario chip running
0 stopped

r (R14) ROM byte fetch in progress
7 - Reserved

The "GO" flag (bit 5) is a flag that is set to 
a "1" state to indicate that the Mario chip is 
running and to a "0" state to indicate that the 
Mario chip has stopped (which results in the 
generation of an interrupt signal which is coupled 
to the Super NES). This flag bit is checked by the 
Super NES processor. Bit 6 is set to indicate that 
a ROM byte fetch is currently in progress. The GET 
byte instruction listed below cannot be executed 
until this flag is cleared which indicates that the 
data fetch has been completed. These least 
significant bits of the status register may be read 
independently or in combination with the remaining 8 
bits by either the Mario chip processor or the host 
CPU. The most significant bits of the status flag 
register are set by predetermined prefix 
instructions and define various modes of instruction 
interpretation.

bit Mode
8 altl Alter (ADD->ADC,SUB->SBC etc...)
9 alt2 Alter (ADD->ADD#,SUB->SUB# etc..)

. 'e
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10 il
11 ih

12 b

Immediate byte low (done before ih)
Immediate byte high (low byte 
buffered until hi ready)

Both SReg & DReg set. Set by WITH
13 - Reserved
14 - Reserved
15 irg Interrupt flag

• · · ·• · · ·

• · ♦ · ·

In the ALT 1 mode identified above, an ADD 
instruction will ts interpreted as an ADD WITH CARRY 
and a SUBTRACT instruction will be interpreted as 
SUBTRACT WITH CARRY. An instruction ALT 1 initiates 
this mode.

An ALT 2 instruction modifies the 
interpretation of the ADD instruction to ADD WITH 
IMMEDIATE DATA and modifies, SUBTRACT to SUBTRACT 
IMMEDIATE DATA. The "immediate" data is set forth 
in the byte immediately following the instruction.
It is noted that the instruction ALT 3 will set both 
bits 8 and 9 to the logic "1” level. Bits 10 and 11 
are set depending upon whether the immediate data is 
immediate high byte or immediate low byte. Bit 12 
of the status register defines a ”b" mode, where 
both source and destination register are set by the 
use of a prefix instruction "WITH". Bit 15 of the 
etatus register stores the Mario interrupt signal 
which is set after the Mario chip has stopped 
running.

wt v ol 
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The Mario chip includes many registers in 
addition to the above-described status register. As 
described above, the Meirio chip includes 16
registers which are 16 bits wide as .•’ndicated in the 
discussion of register block 76 in Figures 4A and 
4B. Most of those registers are general purpose 
registers and can be used for data or address 
storage. As noted above, register R15 is, however, 
utilized at all times as the program counter. 
Typically, registers serve dual purposes and are 
used for communication with the host CPU and for 
controlling the executing program. Additionally, 
other registers are uti,lized in the Mario chip, the 
functions of which are set forth in the table below.

• · · ·• · · ·• ·• ■ · ·• · ·

• *» · • · ·« · ·
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Register Special Function
rO Default DReg and SReg
rl X coord for PLOT instruction
r2 Y coord for PLOT instruction
r3 None
r4 Low word of LMULT instruction result
r5 None
r6 Word multiplier for FRMULT and LMULT 

instructions
r7 Source 1 for MERGE instruction

• »·• · ·• · · ·• · · · r8 Source 2 for MERGE instruction
• ·• · · ·« · ·• · · r9 NONE
• · · ·« ·• · · · rlO NONE
«· ·• · ·• · · rll Link register for subroutine calls

rl2 Count for LOOP instruction
• · ·• · ·• · · rl3 Address for LOOP instruction to branch to
• · · ·• · ·• · « rl4 ROM address, when modified starts a byte 

read from ROM
• · · « ·* • » · · rl5 Program counter

OTHER REGISTERS
β bit PCBANK Program code bank register
8 bit ROMBANKProgram data ROM bank register 64kbank 
8 bit RAMBANKProgram data ROM bank register 64kbank 
16 bit SCB Screen base
8 bit NBP Number of bit planes

<
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8 bit SCS Screen Column size select: 
256,320,512,640,1024,1280 
(screens 16 & 20 chars high, in
2,4 & 8 bit planes)

The Mario chip also includes a color mode CMODE 
register. Four of the bits in this registers are 
used in the exemplary embodiment to create the 
special effects described below. The effect created 
by setting a CMODE register bit varies based on 
whether the 16 or 256 color resolution mode ha been 
set as demonstrated in the examples below.

• · · ·

• · · ·

• ·

··
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CMODE register bits are as follows:·

,/
CMOOEbltO ..........................................

Plot colour 0 bit (the NOT Transparent bit) .

In 16 colour mode: -
H bit 0 a 1 and selected colour nibble = 0 then do not plot χ I

In 256 colour mode and bit 3 = 0: :. ■ .
■ HbrtO=1 and colour byte = 0 then do not plot · · i- ‘

In 253 colour mode and bit 3 = 1: - .
If bit 0 = 1 and oolour to n&bte » 0 then do not plot *

N.B. transparency ON «Q
transparency OFF = 1 '

Only use for transparency OFF Is to fill an area with 0 ·
(used for clearing the screen)

··: *: . CMODEbit 1 · '
<’«· Dithering bit 
• · ·
*····’ Dithering in 16 cotour mode. (hVtaw nibble give two colours)
·”*? Lo nibble selected if (xpos XOR ypcs AND 1)=0
·?'·.: H*nibbl® selected if (xpos XOR ypos AND 1)=1

If transparency is on and selected colour nibble is zero 
then do not plot

• 9 · ·

*· *·· Dithering "m 256 colour mode ehould have no effect• ·«« v

CMODEbit 2
High nibble colour bit *

. In 16 colour mode or 256 colour mode with CMOOE bit 3 aet .. 
When this bit set COLOUR command seta lo nibble of colour ’

- register to hl nibble of soutcg byte .................. " ·
. (Used to unpack 16 colour Sprites stored as hl ntoble of .

another sprite). ··-·..
if the to nibble of colour register is zero then do not ptot

• if transparency on. . ... · .·
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CMODE bR 3
Complicated bi .

In 258 colour mode only. When this bit « set the W nibble of the
colour I» locked and COLOUR oommands only change tha Io nibble.
Transparency is calculated from tevtntoble only.

In normal 256 colour mode transperency is calculated from 
aS bits If on.

•; 18 colour mode example

• ·· a• ft··• «• · ··• ··• · ft ····■ ···• · • ••ft

* ·· • · ft ·

• · ··> · ····

tot rO.SCO 
colour
tot r0.%0000 
cmode

•tot tO^S7 
colour 
plot
tot rO,$3O
colour
plot

tot f0,%0001
cmode
tot rO,$4O
colour

■ plot

stop

; set colour SCO 
;setO

; plots colour $7

; no plot, as colour Is $0 
; (transparency on and bnfcble = 0}

; set bit 1

; plots colour $0 
; (transparency off)

; 16 colour mode, bit 2 set example

tot rO.SCO . .
colour ;aet colour SCO

. ; 256 colour mode, bit 3 set example

tot rO.SCO 
colour
tot ro.%1000
cmode
tot r0,$47
colour
plot
tot rO.SSO
x>?aur
plot

; set colour SCO 
; set bit 3

; plots colour SC7

; no plot, as colour fa SCO
: (transparency on and lo nibble - 0)
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tot r0,%1001
cm ode
tot r0,S60
colour
plot

; set bit 3 and bit 1

; plots colour SCO 
; (transparency off)

stop

; 256 colour mode, bit 3 and bi. 2 set example

····
I a·· · ·
• a a

I · ·
• a a

ibt rO.SCO 
colour
Ibt rO,%11OO
cm ode
tot r0,$74
colour
plot
tot r0,$03
colour
plot

; se colour SCO 
;se bit 3 and bit 2

; plots colour SC7

; no plot, as colour is SCO 
; (transparency on and Io nibble « 0)

ibt r0,%1101 ; set bit 3, bit 2 and bit 1

• · · 
• ·· 
• a a a

cmode
tot rO,$G8
colour
plot ; plots colour SCO

; (transparency off)

•top

• a ·

a a · ·
» a 
• a a a
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Many of the Mario chip registers have 
associated special functions. As indicated in the 
above table, if not otherwise specified, the system 
defaults to register RO as the destination register 
or source register required by a particular 
instruction. Register RO is also utilized as the 
ALU accumulator. The multiply instruction, as 
indicated above, returns a 32 bit result. The least 
significant 16 bits are stored in register in R4. 
Register R6 is used in conjunction with a fractional 
signed multiply instruction (FRMULT) and a long 
multiply instruction (LMULT).

Registers R7 and R8 are utilized in executing a 
MERGE instruction. The instruction takes two 
predetermined registers (i.e., Register R7, R8) and 
merges them together to form sprite coordinate 
data. Such coordinate data is utilized in 
addressing a ROM table for mapping a predetermined 
sprite onto a predetermined polygon. This 
instruction is an aid to efficiently performing 
texture mapping operations by combining portions of 
two registers to define the address of the color for 
the next pixel which is to the contained within a 
sprite mapped onto a polygon.

Registers Rll through R13 are used for 
controlling subroutine execution. The register Rll 
is used as a link register for subroutine calls and 
stores the contents of the program counter plus 
one. The content of register Rll defines the 
address that must be accessed after a loop has been
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completed. The register R12 is used to store a 
count defining the number of times the loop is to be 
executed. The address of the loop is stored in 
register R13.

As indicated above, whenever the contents of 
register R14 are modified, a byte is read from ROM 
10 at the address stored in register R14. In this 
fashion, a delayed or buffered READ operation is 
implemented in conjunction with the GET byte 
instructions identified below.

Turning to the "Other Registers" in the above 
table, the program ROM location from which the 
program is being executed is addressed using a 24 
bit address. The least significant 16 bits of this 
address are found in the program counter. The most 
significant bits defining the program bank are 
stored in a program code bank (PC Bank) register.

The ROM bank register (ROMBANK) stores the most 
significant bits for permitting the Mario chip 
processor to address program data stored in ROM 10 
and is appended to the 16 bit ROM address stored in 
register R14. Similarly, the RAM bank register 
(RAMBANK) stores the higher order address bits for 
permitting the Mario chip processor to access 
program data in RAM. The contents of the RAM and 
ROM bank register are used in association with Mario 
chip ROM and RAM accessing instructions for 
effectively extending the Mario processor’s 
addressing range.
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The screen base register (SCB) is used to store 
the address of the virtual bit map of sprites or 
objects which are being created, and rotated, 
enlarged or reduced. When a PLOT pixel instruction 
is executed, the screen base register SCB stores the 
address in the RAM which is accessed and to which 
information is written.

Register NBP is utilized to store the number of 
bit planes that are being used. It typically 
indicates either the use of 2, 4, or 8 bit planes. 
Additionally, a screen column size register SCS is 
utilized to specify information regarding the 
virtual bit map in terms of the number of characters 
contained in a column therein.

The Mario chip instruction set is listed below 
specifying the instruction mnemonic and the 
associated function performed upon decoding the 
associated instruction. Initially, brief comments 
are set forth below for certain functions of an 
associated instruction which are not believed to be 
self explanatory.

The STOP instruction is executed when the Mario 
chip has finished its operation and operates to set 
the "GO" flag to zero while also generating any 
interrupt signal to the host CPU.

The CACHE instruction operates to define the 
portion of program ROM which is to be copied into 
the Mario chip cache RAM and executed therefrom.
When the CACHE instruction is executed, the contents
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of the program counter is loaded into the cache base 
register and the cache tags to be described below 
are reset.

• · ·• » »··· ·• · · ·• «
• e ··• · ·• · ·• · · ·····• · • · · ·

·· · • · ·• · ·• · · ·• · ·• · ·

• · · »····

The Mario chip includes a series of delayed 
branch instructions in which the instruction 
following the branch is executed as indicated in the 
table below. The address to which branching occurs 
is relative to the contents of the program counter. 
The instruction set includes a wide variety of 
delayed branches based on the conditions outlined in 
the table below.

The Mario chip includes a number of "prefix" 
instructions, i.e., to/with/from. These prefix 
instructions imply a data distribution for 
subsequent instructions. For example, the "TO" 
prefix sets the destination register (DReg) for the 
next instruction. The ’FROM' prefix sets the source 
register (SReg) for the next instruction. The 
'WITH' prefix sets both.

Most instructions name a second source register 
in the opcode. If SReg and DReg are not set by 
prefix instructions they default to RO. Both SReg & 
DReg are set to RO after every instruction that is 
not a prefix instruction. If the Dreg is set to 
R15, the program counter, thereby causing the next 
instruction to store its contents in R15, then a one 
cycle delayed branch is initiated.

Other prefix instructions set flags in the high
byte of the status register to change the operation
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of following instruction. All non prefix 
instructions clear the high byte of the status 
word. The following are examples as to how 
subsequent instructions may be modified through 
prefix instructions.

lsr ;r0 = rO shift right 1
to r4
lsr ;r4 = rO shift right 1
from r4
ler ;r0 = r4 shift right 1

• ··• · ·• · · «····• ·• · « ·• ··• · ·····

alt 1
from r6
to r5
add r7 ;r5 = r6+r7 + carry
alt 1
with r3
add r3 ;r3 = r3+r3 + carry (6502 rol)

If the "b" flag is set in the status register,·· 0
’· ’·· the "TO" instruction is modified to operate as a• · fr ·
*··* : "MOVE" instruction. The TO instruction specifies
.. the register to which the information is moved and
' the FROM instruction specifies the information
• ··*·· source.
• · ·
,,·· The STW instruction stores a particular word in• · ·
* *’ a buffer such that it is not necessary to wait until

a storage operation is completed before executing 
the following instructions. In this fashion, the 
use of a RAM that is slower than the processor 
doesn't unnecessarily slow the processor down.
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The execution of the LOOP instruction operates
to decrement the contents of general register R12,
If the contents of R12 is non-zero, then a jump is
initiated to the address specified in R13.

Alt 1, Alt 2, and Alt 3 are prefix instructions 
which set the above-mentioned flags in the status 
register so as to cause executed instructions to be 
interpreted in different fashions as indicated in 
the table below.

The PLOT instruction identifies the X and Y 
screen coordinates of the pixel to be plotted and 
plots the color specified by the COLOR instruction 
at screen location corresponding to the X and Y 
coordinates (as indicated in registers RI and R2). 
The PLOT pixel instruction includes an automatic 
incrementation of the contents of RI which assists 
in plotting horizontal lines at high speed and 
eliminates including an extra increment instruction.

If the Alt 1 flag is set then the plot 
instruction is interpreted as a READ PIXEL 
instruction (RPIX). By executing the read pixel 
instruction RPIX, the color of the pixel at the 
specified screen location is read which also may be 
used to flush unwanted pixel information from the 
plot hardware.

The read pixel instruction RPIX in essence uses 
the plot hardware in reverse to read from a matrix 
of a character to determine the color of a 
particular pixel that is specified in the

/ A
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instruction. The COLOR instruction provides to the 
color hardware, the color of the next pixel which 
may be defined by the contents of a specified source 
register.

The "CMODE" instruction sets the color mode and 
can be used to generate different special effects as 
demonstrated in the examples provided above. For 
example, a dithering effect can be generated using 
the CMODE instruction which alternates different 
colors in alternate pixels to produce a shading 
effect. The CMODE instruction can also be used to 
control transparency so that the display of a sprite 
will then block out the background display. The 
transparency is determined by the setting of a color 
mode related flag as shown in the above examples.

The instruction set ε. so includes a fractional 
signed multiply which is used in calculations for 
rotating polygons to determine gradients or slopes 
of objects to be displayed.

The increment instruction, if used in 
conjunction with register R14, will initiate a read 
from ROM. The GETC instruction will take the byte 
accessed from ROM and load it into the color 
register.

The following table specifies an exemplary 
Mario chip instruction set in accordance with the 
presently preferred embodiment including those 
instruction which have been discussed above.



Instruction Set.

Hex_____ Mnsmank_____ ΐΰ action

$00 STOP Stop mario chip and generate 65816 IRQ 
g = 0

SOI NOP 1 cycle ,uo operation

$02

base)

CACHE Set cache base to pc & reset cache flags 
. (only if pc is not equal to current cache

if cache base 0 rl5 then cache base = ri 5 
reset cache flags

$03 LSR Logical shift right
DReg = SReg LSR 1

$04 ROL Rotate left with carry
DReg = SReg ROL 1

$05 nil BRA sbyte Delayed branch relative always 
rl5 = rl5 + signed byte offset

$06 nn BGE sbyte De’ayed branch relative if greater than or 
equitl
if (s X0R v) = 1 then rl5 = rI5 + signed 

byte offset

$07 nn BLT sbyte Delayed branch relative if less than 
if (s XOR v) = 0 then rl 5 = rl 5 + signed

byte offset

$08 nn RNE sbyte Delayed branch relative if equal
if z=l then rl5 = rl 5,+ signed byte offset

$09 nn BEQ sbyte Delayed branch relative if not equal

j
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if z=0 ±en r1 5 = r!5 + signed byte oFfset

SOann BPL sbyte Delayed branch relative if positive 
if s=0 then rl5 - rl5 + signed byte offset

SObnn BMI sbyte Delayed branch relative if minus
if s=l then r!5 = rl5 + signed byte offset

SOc oa BCC sbyte Delayed branch relative if carry clear 
if c=0 then rl5 » rl5 + signed byte offset

SOdnn BCS sbyte Delayed branch relative if carry set 
if c=l then r 15 = rl5 + signed byte offset

SOe nn BVC sbyte Delayed branch relative if overflow deaf 
if v=0 then rl5 = rl5 + signed byte offset

50f nn BVS sbyte Delayed branch relative if overflow set 
if v=l then rl5 = rl5 + sig ted byte offset

SlO-Slf TO tO..rl5 (Prefix) set DReg to m 
(destination register for next op)
DReg = ra

Sf b: MOVE ra = SReg (No flags set)

520-52? WTTHK)..rl5 (Prefix) set DReg&SReg to m 
(sre & dest &. b flag)
DReg = ra
SReg = ra 
b=l

$30-$3b 5TW (m) Store SReg at address in ra
RAM[m] = SReg (word Ια/hi buffered) 
(Words on even addresses normally)

if altl: STB (ra) Store low byte of SReg at address in m 
RAM[m] = SReg.l (byte buffered»

53c LOOP Decrement rl2 and if rl2o0 th^s» 
delayed jump to address in rl 3 
rl2 = rl2- 1
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$3d ALT1

- ;12o0 then rl5 = rl3 
(T0/W3TH/FR0M ignored)

(Prefix) set altl flag 
altl = 1

$3e AL.T2 (Prefix) set alt2 flag 
alt2 = l

S3f ALT3

$4O-$4b LDW (rn)

if altl: LDB (m)

S4c PLOT

RAM)

if altl: RPDC -

$4d SWA?

S4e COLOUR

if altl: CMODE

(Prefix) set altl & alt2 flags 
altl = 1 
alt2= 1

Load DReg from address in rn 
DReg = RAM[rn](word lo/hs waits) 
(Words on even ?ddresses normally) 
Load DReg (unsigned byte) from address 
in rn
DReg.h = 0
DReg.l = RAM[m] (byte waits) .

Plot pixel a» »1x2 (x,y) and increment rl 
(N.B. rl and r2 are not checked for being 
on screen, and will draw anywhere in

plot(rlx2)
rl =rl+l
Read colour of pixel at rl.r2 (x.y>
DReg ax point(rl,r2)

Swap bytes
DReg.h = SReg.l
DReg.l = SReg.h

Set PLOT colour
plot colour = SReg
Set PLOT colour mode
plot colour mode = SReg

DReg = NOT SReg.
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$50-$5f ADD Σ0..Γ15
if altl: ADC
ifalt2: ADD
if aitl+alx2: ADC

$6O-$6f SUB rO..rl5
ifaltl: SBC
ifal£: SUB
if akl+alt2: CMP

$70 MERGE

$7l-$7f AND rl..rl5
ifaltl: BIC
ifalt2: AND
ifaltl+alt2: BIC

$80-$8f MULT r0..rl5
ifaltl: UMULT
if alt2: MULT '
if altl+alt2: UMULT

$90 SBK

$91-594 LINK 1..4

595: SEX

$96 ASR

DReg = SReg + m
DReg = SReg + m + c
DReg = SReg + #n
DReg = SReg + #n + c

DReg s SReg - rn
DReg = SReg - m - c
DReg =s SReg -#n
SReg - m (zero,sign,carry .overflow)

Merge high bytes of r7 and rS into DReg 
DReg.h = r7.h 
DReg.l =r8.h
Flags set on result: <·
s = bl5ORb7
v= bl4 OR b6 OR s
c=bl3 0R b5 ORv
z=bl2ORb4ORc

DReg = SReg AND m 
DReg ss SReg AND NOT m 
DReg = SReg AND #n 
DReg = SReg AND NOT #n

DReg ss SReg * Rn (signed 8 by 8 bit.) 
DReg = SReg * Rn (unsigned 8 by S bit) 
DReg = SReg * #n (signed 8 by 8 hit) 
DReg ss < Reg * #n (unsigned 8 by 8 bit) 

Store SReg back to last RAM address used

Link return address to rl 1 
rll s=rl5+1..4

Sign extend low byte to word 
DReg.[bl5-b7]« SReg.[b71 
DReg.l = SReg.l 

Arithmetic shift right
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if alii: DIV2

S97 ROR

$98-$9d JMPr8.Jl3

if aid: LJMP

S9e LOB

S9f FMULT

if aid: LMULT

SaO-Saf nn EBT rO.-rlS, sbyte

ifaltl: LMS rO~fl5, byte

ifalt2: SMS rO. Jl5, byte

SbO-Sbf FROM iO..rl5

ifb: MOVES

DReg = SReg ASR I
Divide by 2 with rounding
DReg=SReg ASR 1
if DReg=-l then DReg=O

Rotate right with carry ·
DReg = SReg ROR 1 .

Jump to address in rn
rl5= rn (delayed branch)
Long jump to address in rn
(ROM Bank from SReg)
and reset cache
r!5 as rn (delayed branch)
Program ROM bank reg = SReg

Low byte 
DReg.h = 0 
DReg.l = SReg.l

Fractional signed multiply 
DReg = (SReg * r6).hw 
(signed 16 bv 16 bit multiply) 
c = (SR eg) * r6).bl5 
Long signed multiply 
DReg = (SReg * r6).hw 
(signed 16 by 16 bit multiply) 
r4 = (SReg *r6).lw 
c = (SReg) · r6).bl5

Load rn with sign extended byte 
rn = immediate byte (sign extended)
Load rn from absolute shifted byte address 
m=RAM[byte«l] (word data)
Store rn to absolute shifted byte address 
RAM[byte«l]=m (word data)

(Prefix) Set SReg = rn 
SReg = m 
DReg= m
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(zero,sign&overflow(sign lo byte) flags)

High byte
DReg-h = 0
DRcg.l = SReg.l

k · · 
k · «• · · ·

• · · ·• · ····

Scl-$cf 0Rrl~rl5 
ifaltl: XOR
ifalt2: OR
if altl+alt2: XOR

SdG-Sde INC rO.^14

Sdf GETC
ifalt2: RAMB
if alti+alt2: ROMB

SeO-See DEC r0..rl4

Sef GETB

ifaltl: GETBH

ifaltl: GETBL

if altl+alt2: GETBS ‘

DReg = SReg OR Rd 
DReg = SReg XOR Rd 
DReg = SReg OR #n 
DReg = SReg XOR#n

Increment rn
rn sm+l
(TO/WITH/FROM ignored)

Get byte from ROM buffer to PLOT colour 
RAM data bank reg = SReg 
ROM data bank reg = SReg

Decrement m
rn = m-l
(TO/WITH/FROM ignored)

Get unsigned byte from ROM buffer to Dreg 
DReg = ROM buffer byte, zero extended 
Get from ROM buffer to high byte of Dreg 
DReg = ROM buffer byte, merge with low 
DReg» (SReg & SFF) + (byte«Si 
(use WITH)
Get frora ROM buffer to low byte of Dreg 
DReg s ROM buffer byte, merge with high 
(use WITH)
Get signed byte from ROM buffer to Dreg 
DReg = ROM buffer byte, sign extended

SfO-Sff nnnnlWT rO..rl5. word Load immediate word to m
m = immediate word (buffered)

ifaltl: LM rO.jrlS. word Load m from absolute word address
rn = RAMfword addr] (word data)

if alt2: SM r0..rl5. word Store m to absolute word address
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Figures 6 through 17 show the block diagram 
depicted component parts of Figures 4A and 4B in 
further detail. In order to more clearly present 
the unique features of the present invention, 
circuit details which are believed to be 
conventional or apparent to those skilled in the art 
and which tend to obfuscate these unique features 
are not shown in the figures which follow.

An exemplary arithmetic and logic unit which 
may be used as ALU unit 50 is shown in Figure 6.
The ALU 50, as shown in Figure 4A and Figure 6, is 
coupled to X, Y, and Z buses. Thus, the Mario chip 
general registers RO to R15 are coupled to the ALU.

The ALU 50 performs addition and subtraction 
functions via a 16 bit adder/subtractor 152. The 
ALU 50 also includes conventional "AND" logic 
circuitry 154, "OR" logic circuitry 156, and 
"EXCLUSIVE OR" logic circuitry 158.

The ALU also includes conventional shift 
function circuitry, in which any carry bit is 
shifted into the most significant bit position and 
the result coupled to one input of multiplexer 164 
via line 160. Additionally, ALU 50 performs 
conventional byte swap operations whereby the least 
significant byte and the most significant byte 
carried on the bus may be swapped and the result 
coupled to multiplexer 164 on line 162. The X and Y 
buses are coupled to circuits 152, 154, 156 and 158 
as shown in Figure 6.
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The output from each of the adder/subtractor 
152, circuits 154, 156, 158, the shift output, and 
swap function output is coupled to the 16 bit, six 
input-to-one "result" multiplexer 164. Depending 
upon the instruction that is deco,’id, the
appropriate result is output to the destination bus 
Z.
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The adder/subtractor 152 in addition to 
receiving the 16 bits from the X bus also receives 
information being forwarded on the Y bus or the 
information in the instruction itself depending upon 
the instruction decoder input to multiplexer 150.

ALU 50 additionally includes a CPU flag 
generation circuit 166. The CPU flag circuit 168 
generates zero overflow, sign, and carry signals for 
loading into at least one flag register within 
circuit 166. The CPU flags may be set from the 
instruction decoding circuit 60 which decodes the 
carry enable, zero enable, sign enable and overflow 
enable signals generated by instructions, which 
cause flags to be set depending upon the
corresponding condition as determined by
adder/subtractor 152. The flags may also be set 
based on the contents of the destination (or result) 
bus Z which are input to flag circuit 166. Flags 
are used, for example, to trigger conditional 
branching operations based on a wide range of 
conditions.

Figures 7, 8A, and 8B shows the pixel plot
circuitry (52, 54, 56, and 58) shown in Figure 4A in
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further detail. This circuitry executes the PLOT 
command which takes a specified X coordinate and Y 
coordinate and plots a pixel at those screen 
coordinates in the color specified by the contents 
of the color register 54 which is loaded by a COLOR 
command.

As noted above, the Super NES utilizes a 
character mapped display screen. The plot hardware 
operates to convert pixel coordinate address data 
into character mapped address data.

The Super NES characters are defined in bit 
planes. Characters can have either 2, 4, or 8 bit 
planes for defining 4, 16, or 256 colors. Each byte 
of the character definition includes a bit plane of 
one pixel row of the character. The pixels are 
defined left to right, high bit to low bit. For a 
256 color mode of operation, there are 8 RAM 
locations which need to be updated.

The pixel plot hardware includes a local 
buffering mechanism including a color matrix 206 
which stores all the bits in a particular byte to be 
displayed since all such bits may ultimately need to 
be updated. A bit plane counter 208 is coupled to 
the color matrix circuit 208. The pixel coordinates 
are loaded into plot X and plot Y registers 202, 204 
from the X and Y buses. In the present exemplary 
embodiment, general registers Rl and R2 are used as 
the plot X register 202 and the plot Y register 204 
shown in Figure 7. These registers receive the X
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and Y coordinates of the pixel to be plotted as 
specified by the PLOT command.

The plot X and plot Y registers 202, 204 are 
coupled to full and half adder based character 
address calculating circuitry which outputs on 
address to a 2 position barrel shifting circuit 214 
which, in turn, is coupled to a plot address 
register 216 and an address comparator 218. The 
three least significant bits of the plot X register 
are coupled to ?emultiplexer 212 which, in turn, is 
coupled to a bit pending register 210.

Plot controller 200 shown in Figure 8A receives 
signals indicating that a PLOT pixel (PLOT) or READ 
pixel (RPIX) command has been decoded as well as 
other control signals described below. Plot 
controller 200 generates plot circuit control 
signals used in the manner set forth below.

As indicated above, the plot control circuit 
200 generates control signals utilized within the 
pixel plot hardware 52. As indicated in Figure 8A, 
the pixel control circuit 200 receives the output 
from the bit pending register 210 which output is 
coupled to the pixel control circuit 200 through AND 
gate 201. If all eight bits of the bit pending 
register 210 are set, the pixel control logic 200 is 
informed that a reading cycle may be skipped and the 
information in the color matrix 206 may be written 
out to RAM.
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The pixel control circuit 200 is also 
responsive to the PLOT command to initiate its 
operation. The pixel control logic 200 also 
responds to the READ pixel command RPIX to initiate 
virtually identical operations, except that new 
information is not written into the color matrix 206 
for outputting to RAM. As noted above, the READ 
pixel command is executed if there is a need to know 
the color of a particular pixel on the screen and is 
also used to flush out the existing information in 
the color matrix 206.

The controller 200 also receives a RAM done 
control signal RAMDONE, which indicates that the RAM 
access has been completed. The RAM done signal, as 
noted above, is also used to increment the bit plane 
counter 208, which identifies a bit plane in the 
color matrix 206. The plot controller 200 also 
receives the PLEQ signal from address comparator 
218, which indicates that there has been an address 
match and there is no need to write out the contents 
of the color matrix 206 to RAM, to thereby indicate 
that updating should continue with respect to the 
current color matrix contents. The plot controller 
200 also receive the screen mode SCR.MD control 
signal which informs the plot controller 200 as to 
how many bytes must be read and written.

The plot control circuit 200 generates a dump 
control signal DUMP referred to in conjunction with 
Figures 7 and 8B which causes the contents of the 
color matrix 206 to be buffered in its second 
buffering section. The controller 200 additionally
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generates a clear bit pending register signal CLRPND 
and a load bit pending register control signal LDPND 
and couples such signals to the bit pending register 
210. Additionally, the controller 200 generates the 
LDPIX and BPR control signals associated with the 
color matrix elements described in conjunction with 
Figure 8B.

The decoding of the PLOT command by the 
instruction decoder and the PLOT signal input to the 
plot controller 200 initiates the generation of the 
load pending signal LDPND presuming that the pixel 
plot hardware is not otherwise busy. The LDPND 
signal is coupled to the bit pending register 210 to 
enable the loading of the data into the bit pending 
register 210 from the demultiplexer 212. The clear 
pending signal CLRPND is generated in response to 
the RAM done signal RAMDONE which indicates that the 
pending data has been written out to RAM.
Thereafter, the bit pending register is freed for 
the next pixel plot information.

A timing diagram depicting the relationship 
between the signals received by the plot controller 
200, various address and data signals, other related 
control signals and the plot controller generated 
output control signals described above are shown in 
Figure 8C. Exemplary address value, data value, 
etc., are shown for purposes of illustration only.

The plot hardware 52 operates as follows. When
the plot controller 200 determines that the plot
hardware 52 is not busy, the contents of the color
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register 54 shown in Figure 4A is loaded into a 
horizontal row of the 8 by 8 color matrix circuit 
205. Color matrix 200 is loaded by rows and read 
out by columns. The contents of the color register 
54 are updated by a COLOR command. The color 
register 54 is the register through which any 
subsequent PLOT command will load color data into 
the color matrix.

The vertical position in the color matrix 206 
to which the color register bits are loaded is 
determined by the three least significant bits 
stored in the plot X register 202. Thus, the three 
least significant bits of the plotting address 
define a row of bits which is to be updated in the 
color matrix 206.

Bit pending register 210 is used to record 
which particular bits of the section of the screen 
character is being updated. The register 210 
include 16 register flags which indicate that bits 
have been written into the associated portion of the 
screen. The bit pending register 210 is loaded in 
response to a signal LDPND and cleared by a signal 
CLRPND generated by the plot controller 210.

If a subsequent plot command is to be executed 
for updating the screen map in the same area, the 
operation for a given bit is repeated together with 
additional color data corresponding to a pixel which 
is loaded into the 8 by 8 color matrix 206. Another 
bit is then set into bit pending register 210 via 
the least significant bits of the plot address

| -J
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stored in the plot X register 20,2. A particular bit 
is loaded into the bit pending register 210 via a 3 
to 8 demultiplexer 212 which is coupled to plot X 
register 202. If the pixel to be updated is more 
than 8 pixels away horizontally or if it occupies a 
different vertical position, then the data which has 
been written into matrix 206 must be read out to RAM 
6 (or 8). The color matrix 206 is thereafter free 
to receive new color data. Until a subsequent plot 
command is received which requires writing to PAM, 
the current content of color matrix 206 is buffered 
within the pixel plotter hardware, e.g., within the 
color matrix 206.

When data from the color matrix 206 is written 
to RAM 6 or 8, address transformation calculations 
are made to convert the X, Y coordinate to a RAM 
address by using the logic gates, full and half 
adder circuits of the type shown in Figure 7. The 
actual address calculation is to be made in 
accordance w th the explanation and exemplary code 
set forth below. Such calculations will vary 
depending upon whether 4, 16, or 256 color mode is 
being used. Exemplary calculations are given for 
the 256 color mode.

These 256 color characters have 4 blocks of 16 
bytes, each defining pairs of bit planes for a total 
of 54 bytes.

A bit map is constructed by placing a unique
character on every position of the required screen
area. When plotting in association with the Super
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NES, it is best to organize the characters in 
columns.

eg. (128 pixel high screen)
Char numbers

0 16 32 .....
1 17 33 ...
2 18 24 ...

15 31 47 ...

The Super NES is not limited to 256 characters, 
so bit map size is mainly constrained by memory and 
DMA transfer time. The Mario chip is able to plo% 
on, for example, 128 and 160 pixel high screens.
The maximum screen width is 32 characters or 256 
pixels.

The following algorithm exemplifies how pixel 
plotting is controlled using a virtual bit map 
organized in columns.

First Calculate a pixel mask for all bit 
planes, from least '.significant 3 bits of x coord.

Mask
%10000000 
%01000000

%00000001

Pixel num. 
0 
1

7
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Next Calculate offset down column using y 
coordinate with low 3 bits removed, to give 
characters down column, & then multiply by size of 
character.

Screen colors 
4
16

256

Character size in bytes 
16 
32 
64

Next Calculate offset of top of character 
column from x coordinate with low 3 bits removed, 
multiplied by column size. Column size is number of 
characters in column multiplied by character size.• ♦ ·• · ·• · « ·• · · ·• ·• · · ·• · · Normal column size• · · ·*....· Chars high

16 20
4 256 byte 320 byte
colors 16 512 byte 640
256 1024 byte 1280 byte

The low 3 bits of the y coordinate give byte 
offset down the character. The total of all offsets 
plus pointer to current bit map gives address of 
byte holding first bit plane of pixel. Following 
bit planes are alternately 1 byte on, then 15 bytea 
on from the last. Pixel bits can then be set or 
cleared using the pixel mask. The bit in each bit 
plane is set or cleared to the state of the
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corresponding bit in the color number stored in the 
color register 54 required for the pixel.

• · · ■ ·• · · ·• · · ·

• · · · · « • · · ·« ·
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EXAMPLE CODS

;Plot on 4 bit plan·· in 65816 coda, as used in our game
deao. . · . *
;The routine is mostly table driven.

./Registers Λ,Χ and ¥ are 16 bit. ,
SetColour .
/Get colour and double

Ida Colour 
asl a 
tax

• ft ·
ft · ft ft

• · ft · ft
• · · ·• ft• ft · ft

/set colour mask for bit plaree 0 and 1 
• Ida maskltab,x

sta maskl

/set colour mask for bit planes 2 and 3 
Ida aask2tab,x 
sta aask2 

rts

ft ft ft ft ft ft

//
'••4
V ./
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Plot '
;Get horizontal £ vertical coords

; double both and move to Y 6 X rag·
Ida plotxl .
asl a
tay jY is x coord * 2
Ida plotyl 
asl a
tax ?X is y coord * 2

jGet offset down column 
' 'Ida pyoftab,x

/Add st«.rt of ooluan offset 
clc

·. adc pxoftab,y

.* /Add double buffer pointer (select bitmap)·, clc
* adc drawmap

tax
• ·

** 1 X ie offset of vord holding required pixel from
bitmapbase.
ί Y is x coord of pixel * 2
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/Do bit -planes 0 and 1

lda.l
and
sta
Ida
and
ora
sta.l

bxfc»apbase,x /get word holding pixel 
pbxttabn,y /aask out old pixel colourpmask ·
aaakl /Mask colour and ’
pbittab,y /pixel Bask together 
pmask /join with other pixels

bitmzabase,x /store to bitmap .

;Do bit planes 2 and 3

lda.l bitmapbase+16,x
• · · * • · · and pbittabn,y• · · ·

• · · · sta preask• ····· Ida mask2 *• · ·• · · and pbittab,y
···· ora pmask• *• · · ·
• · · sta.l bitnapbase+ΐδ,χ
» ··

rts

/256 word table of pairs of pixel bit masks .
pbittab

rept 32 znum_col
dw $8080,$4040,$2020,$1010,$0808,$0404,$0202, $0101
endr ·

/table above with words inverted
pbittabn

rept 32 ;rum_col
dw $7f7f,-$4040,-$2020,-$1010,~$80β.-$404,-$202,-$

101 ‘
endr *

..
:ir> i.·Έ rf.U rf-

V%
4,

Ci,



<&/-
-8β-

I colour Masks for bib planes 0 ί 1 (colours 0* to IS) · 
maskltab

dw $0000 ,$00££,$f£00,$££££,$0000,$00ff,$ff£00,$ff£f dw $0000,$00£f,$££00,$£iff,$0000,$00ff,$££00,$£fff
/colour Masks for bit planec a ft 3 (colours 0 to 15) 
ma sk2 tab. . ■

dw $0000,$0000,$0000,$0000,$00f£,$00ff,$00ff,$00f£ • dw $££00,$ff00,$££00,$f£00,$££££,$ffff,$££££, $££££

col si2e equ Humber char_rows * B * Number bit_plan«s 
» (16) (4)

/Offset to start of char column table
pxoftab
temp «■ 0

rept 32 /number of char columns
; dw temp, temp, temp, temp, temp, temp, temp, tamp··· ·
···· e ·tamp — temp+col__Bize

• ··• · · ·
·· · · «.... endr• ·• · · ·
//./. /offset down column table

* *’ pyoftab

temp - 0
• · ·

*· ’·· rept 16 /Number of char rows
: dw temp

dv temp+2 
w dw · temp+4
:*·*·· dw temp+6
.····. dw temp+8
........... dw temp+10

dw teap+12 ,.
.·.**. dw temp+14
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Turning back to Figure 7 in more detail, the X 
and Y coordinates on the screen defining the 
position of the pixel to be plotted is loaded into 
PLOT X and Y registers 202 and 204 (which registers 
may actually be the R1 and R2 registers in register 
block 76). The least significant three bits of the 
plotting address loaded into the PLOT X register 202 
define which bit within a bit plane byte is to be 
written to by the specified X and Y coordinate. The 
contents of the accumulator RO is loaded to the 
column of the color matrix 206 selected by the least 
significant bits of plot X register 202.

If the plot X register 202 is 0, then the least 
significant bit will be updated in each of the 8 
bits defining the pixel. With plot X register 202

·""· being 0, the 3 to 8 demultiplexer 212 will set the
least significant bit and in the bit pending

·.’**’ register 210 to a logical "1".
• · ·« β ·

The bit pending register 210 is utilized by the 
RAM controller 88 to indicate gaps which do not need 
to be written out from RAM since the corresponding 
bits in bit pending register 210 indicate that no 
modification is required.

The bit pending register 210 operates as a 
pixel mask buffer to prevent overwriting new data 
from RAM, if such new data is not desired. In order 
to perform this function, the contents of the bit 
pending register 210 as indicated in Figure 7 is 
coupled as an input to the color matrix circuit
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If the BIT_FENDING register 210 is zero, the 
screen address of the pixel is computed, and loaded 
into the a plot address register 216 and the pixel 
position within the byte is used to set the same bit 
in the BIT_PENDING register 210. If the BIT_PENDING 
register 210 is non-zero, then the BUSY flag is set.

If the new computed address equals the contents 
of the PL0T_ADDR register 216, then the new pixel 
bit position is set within the BIT_PENDING register 
210 and the BUSY flag is reset.

If the new address differs from the contents of 
the PLOT_ADDR register, then the following steps are 
taken:

Step 1 If the BIT__PENDING register 210 contains
FFh then go directly to step 3.

Step 2 Read byte from RAM at PLOT_ADDR + scr.
base into a temporary data buffer, PLOT_BUFF.

Step 3. If the bits in the data buff masked by 
the BIT_PEND register 210 are all equal to row 0 of 
the PLOT_COLOR register array, then go straight to 
Step 5.

Step 4. Write row 0 of the PL0T_C0L0R register 
array into all the bits in PLOT_BUFF enabled by the 
BIT_PENDING register. Write data_buff back to RAM 
at PLOT_ADDR.
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Step 5. Do the same operation (PLOT_ADDR + 1) and 
row 1 of the PLOT_COLOR register array.

Step 6. If 8 or 256 color mode, do the same 
operation on (PLOT_ADDR+ 16) and row 2 of the 
PLOT_COLOR register array.

continue until all color bits are updated.

The contents of the plot X and plot Y register 
202, 204 are processed by the full adder and half 
adder circuitry represented in Figure 7. The 
configuration of full and half adders FA and HA and 
the associated logic circuitry have been simplified 
for the purposes of the Figure 7 block diagram. The 
address calculation may be accomplished as follows:

Address = scr_base + 2 * y[0..2] +
(y[3..7] + x[3..7] * 16 + ((x[3..7] * 4)

&& scr_ht)
* char siz.

The middle term is:

• · · · ft ·• · · ·
x7

x7 x6 x5

y7 ye
x6 x5 x4
x4 x3 0

y5 y4 y3 
x3 0 0
0 0 0

px9 px8 px7 px6 px5 px4 px3 px2 pxl pxO
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to thereby generate a 10 bit partial result
px(0..9]; using, for example, 6 full adders and 4 
half adders.

This result is fed into a 12 x 3 way 
multiplexer controlled by the char_size value in 
order to shift the partial result into the correct 
precision for the screen mode selected. This 
combined with the y lower bits yl0..21 forms a 16 
bit screen address. To complete the address 
calculation, this is then added to the screen_base 
value scr{9..22] which allows the screen to be 
placed on lk boundaries.

This address is then coupled to a two position 
barrel shifter 214 which operates to multiply the 
address information input thereto by 1 or 2 or 4 to 
correspond to whether 4, 16, or 256 color resolution 
has been selected.

The output of the shift circuit 214 is coupled 
to a plot address register 216 which serves as a 
buffer storage for the RAM address. The address 
needs to be buffered since after the plot command is 
executed, the contents of registers Rl and R2, i.e., 
plot X and plot Y registers, may change.

The address comparator 218 compares the new 
address determined by the plot hardware as output 
from shift circuit 214 with the old address Btored 
in the plot address register 216. If the address ie 
different, then the address must be written out to 
RAM. The addrees comparator 218 generates a control

? 4
..,/ 

*· >3
C/7

&
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signal PLEQ (which is coupled to plot controller 
200) if the plot address stored in address register 
216 is equal to the output of shifting circuit 214.

Turning back to the color matrix 206, as noted 
above, color matrix 206 is read out in columns. A 
bit plane counter 208 is coupled to the color matrix 
206 and defines which column is to be read out. The 
bit plane counter 208 is coupled to RAM controller 
88 and when a RAM operation is completed, the RAM 
controller 88 generates a signal which increments 
bit plane counter 208.

Color matrix 206 includes an array of elements 
such as the one shown in Figure 8B. There are 64 
such elements in one matrix element of the 8 by 8 
matrix 206. When the plot command is decoded, 
controller 200 couples instruction control signal 
LDPIX to latch 220 to enable the latch to be loaded 
with color data COL from the color register 54. The 
generation of the control signal DUMP by controller 
200 indicates that the first level of buffering 
within the color matrix 206 is completed and the 
data needs to be output to the screen. Once the 
DUMP signal is generated, the data stored in latch 
220 is coupled to gating circuitry 226 and to latch 
228. When the DUMP signal is actively coupled to 
gating circuitry 226, that gating circuitry couples 
the data to latch 228. At the same time, gate 224 
is deactivated, which in turn prevents the feedback 
loop from the non-inverting output of latch 228 from 
maintaining storage of the previous stored data.
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When data is read in from RAM to fill in data 
gaps, control signal BPR provides a zero input to 
gate 222 and the LDRAM signal will be in a zero 
state. Under these conditions, data input from the 
RAMD input will pass through the gating circuitry 
226 into latch 228. The data in latch 228 is then 
available for reading out to the RAM data bus via 
the RAM controller 88 as shown in Figure 7. Other 
such elements are combined to convert the pixel data 
as indicated by the X, Y pixel identification to 
character data compatible with the Super NES 
character format.

The RAM controller 88 shown in detail in Figure 
9 generates various control signals associated with 
accessing the game cartridge RAM(s). The cartridge 
RAM(s) must be shared between the Super NES, the 
plot hardware 52 within the Mario chip, and the data 
fetches from the Mario chip programs which are 
executed. The RAM controller 88 serves to insure 
that the appropriate address is sent to the RAM 
address bus at the appropriate times. The
generation of RAM accessing signals at the
appropriate time is controlled in part by 
arbitration logic 310 which is shown in further 
detail in Figure 10.

The RAM controller 88 includes a multiplexer 
304 which multiplexes between an input from the RAM 
data pins via the RAM D data bus and the instruction 
bus. The instruction bus or the RAM data bus is 
selected in response to signal received from the
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instruction decoder 60 and the appropriate RAM 
output is placed on the destination Z bus.

• · ·
• Q ·• · · ·

The RAM controller 88 also includes a 16-bit 
data register 300 which is reserved for data writes 
to RAM received from either the 16 bit X bus, or the 
16 bit Y bus under the control of signals received 
from the instruction decoder 60. The data loaded 
into the data register 300 is divided into a low 
byte and a high byte and coupled to RAM data pins 
via multiplexer 302 which outputs the low or high 
byte in response to a signal received from 
instructions decoder 60.

« · · ·• · ·• · ·

• * ·• · ·• · ·• · ·• · ·
• a ·

RAM controller 88 also includes a 20-bit 
address multiplexer 308. Multiplexer 308 selects an 
address input in response to a control signal 
received from arbitration circuit 310 which is 
derived from the code acknowledge CACK, data 
acknowledge DACK, or plot acknowledge PACK signals 
generated in the arbitration circuit 310. Address 
signals from the Super NES address bus HA are 
received by multiplexer 308 and are coupled to the 
RAM address bus, via memory timing signal generator 
312, whenever the Mario "owner" status bit is set to 
a zero. The arbitration circuit 310 is informed of 
the status of the Mario chip RAM ownership via the 
signal RAN coupled to arbitration circuit 310 which 
also receives a RAM refresh control signal RFSH.
The RAN and RFSH signals are "OR"ed together to form 
the "SUSPEND" signal shown in Figure 10.
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The address multiplexer 308 also receives an 
address input from the 16-bit multiplexer register 
306. Multiplexer register 306 receives either the 
contents of the Y bus or the contents of the 
instruction bus depending upon a select signal 
generated by instruction decoder 60. Multiplexer 
308 also receives the output of the data bank 
register 314 as an address input together with the 
contents of the program counter PC as shown in 
Figure 9. The screen bank register 316 output is 
used to form the most significant bits of the plot 
address input to multiplexer 308, the least 
significant bits being input from the plot circuitry 
of Figure 7. Both the screen bank register 316 and 
the data bank register 314 are loaded with data from 
the host data bus HD and are addressable by the host 
CPU. These registers, while shown in Figure 9, are 
not necessarily embodied in the RAM controller 88 
itself, but rather their contents are coupled to the 
RAM controller. The data bank register 314 may, for 
example, be in the ROM controller 104 described 
below and the screen bank register may be, for 
example, embodied in the plot hardware 52.

The multiplexer 308 input signal to be output 
is selected as follows. If the code acknowledge 
signal CACK is generated, then the code bank and 
program counter PC input is selected. If the data 
acknowledge signal DACK is generated, then the data 
bank plus multiplexer register input is selected.
If the plot acknowledge signal PACK is present- the 
the plot address is selected. Finally, if neither
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then CACK, DACK or PACK signals are present, then 
the host (e.g., SNES) address input is selected.

The 20 bit address output of multiplexer 308 is 
coupled to memory timing signal generator 312 which 
couples these address signals to RAM 6, & at the 
appropriate time. The memory timing signal 
generator 312 receives the output from a gray 
counter in arbitration block 310. The memory timing 
signal generator 312 decodes the output from the

• ,··. gray counter and generates output signals for• »· ·
.····. addressing RAM 6, 8 shown in Figure 1 via the RAM• · · ·
: .··. address bus RAMA. Alternatively, timing signal• · · ·
,····. generator 312 will generate control signals for• · · «
.··. : accessing RAM 6, 8 including row address strobe RAS,• » ·

column address strobe CAS, and write enable WE 
signals, as shown in Figure 1.

•« ·• · ·• · ·
The memory timing signal generator 312 

generates a DONE signal which is fed back to
>’· .. arbitration logic 310 to indicate that the RAM eye .e
·****. has been completed. The memory timing signal

generator 312 also generates a data latch signal
·*·’*· DATLAT which operates to latch data coming from the

external RAM into data latches (not shown) in tha 
RAM controller 88. Data from RAM is then coupled to 
the Mario chip circuitry via, for example, the RAM 
data bus RAMD_IN. The RAM A address signal output 
from timing signal generator 312 is coupled to any 
static RAM on the game cartridge. The control 
signals CES, RAS and WE are generated, if dynamic 
RAM is used in the game cartridge. The static or 
dynamic RAM signals will be appropriately generated
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depending upon the configuratioi x the Mario chip, 
as indicated by the option resistor settings 
described above. Exemplary timing signals generated 
by timing signal generator 312 and other related 
signals are shown in Figure 9A. The exemplary 
address and data values shown are set forth for 
purposes of illustration only. The RAM DONE signal 
is shown in Figure 8C.

The generation of RAM accessing signals at the 
appropriate time is controlled in part by 
arbitration logic 310. As shown in Figure 10, 
arbitration logic 310 receives memory access input 
related signals CACHE request CACHERQ, data request 
DATRQ and plot request PLTRQ. Each of these input 
signals are temporarily stored in latches 325, 327, 
329, respectively. If a Mario instruction is to be 
executed out of RAM or ROM, the process is initiated 
by the receipt of a CACHE request signal CACHERQ 
which is used in the context of Figure 10 to confirm 
that the instruction is not being executed out of 
CACHE RAM and therefore must be executed out of RAM 
or ROM. Thus, the CACHE request CACHERQ signal 
indicates that the instruction can not be executed 
out of CACHE 94. The data request signal DATARQ is 
generated as a result of decoding an instruction 
requiring RAM access (e.g., the load byte, load word 
instructions). Additionally, the arbitration logic 
310 receives a plot request signal PLTRQ which is 
generated by the plot controller 200 in response to 
the decoding of a plot command.
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The arbitration logic 310 is only enabled (as 
indicated by a status register SUSPEND mode bit 
being in a "0" state) when the Mario chip is running 
and when the Mario owner bit is set. After receipt 
and storage of the CACHE request, data request, and 
plot request signals, latches 325, 327, and 329 
generate CRQ, DRQ and PRQ signals, respectively.
Gates 331, 333 and 335 receive these signals from 
the respective latch non-inverting output and 
establish the priority for these signals. In this 
regard, the CACHE request signal has the highest 
priority, the data request the second highest 
priority and the plot request signal has the lowest 
priority. The CACHE request signal is assigned the 
top priority since it indicates that an attempt has 
been made to execute an instruction nut of CACHE and 
that it is necessary to access the instruction from 
RAM. The gating circuits 333 and 335 operate to 
ensure that a lower priority request does not 
operate to set latches 339 and 341, if a higher 
priority request has already set its respective 
latch. The latches 337, 339, 341 can only be set if 
the system is not in SUSPEND mode since the SUSPEND 
mode signal is input to each of gates 331, 333,
335.’ The SUSPEND mode signal will be at a low logic 
level state when the Mario chip owns, i.e., has free 
access to, RAM. The latches 337, 339 and 341 cannot 
be set if SUSPEND is set to "1" nor when any of the 
acknowledge latches 337, 339 and 341 are already at 
"1" (i.e., a cycle is already in progress). The 
gates 331, 333 and 335 establish the priority of RAM 
access. The Data acknowledge latch 339 will not be 
set if the CACHE REQUEST latch 337 is set, nor will

ι
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the Plot acknowledge latch 341 be set if either 
CACHE or DATA request latches are set.

• «·• « ■• · · ·

The cache acknowledge signal CACK is generated 
as soon as latch 337 is set by the cache request 
signal and as soon as it established by the logic 
circuitry in Figure 10 that the CACHE 94 (or RAM) is 
available. The data acknowledgement signal DACK and 
plot request acknowledgment signal PACK are likewise 
generated to acknowledge the data request and plot 
request signals if the logic circuitry in Figure 10 
determines that the RAM is not otherwise busy.

• · ·

• · · ·• I··♦·

·· · • · ·• · ·

The non-inverting output of latches 337, 339, 
and 341 are coupled to gating circuit 343 which in 
turn, via NOR gate 344 resets gray counter 345 which 
generates timing signals for RAM accesses. It will 
be appreciated by those skilled in the art, that a 
gray counter is a counter where only one output bit 
changes at one time, which conveniently may be used 
to control RAM access time.

A DONE signal generated by timing signal 
generator 312 is received by NOR gate 344, and 
latches 337, 339, 341. The DONE signal indicates 
that a RAM cycle has been completed. The generation 
of the DONE Bignal triggers the clearing of the 
appropriate latch in the arbitration logic 310 to 
clear the request that has been latched. The DONE 
signal is also coupled to the originating circuit, 
e.g., the cache controller 68 or plot controller 52, 
to indicate that the RAM access has been completed.

(t
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In accordance with an alternative embodiment of 
the present invention, the Mario chip may use a dual 
clocking system. Thus, Mario chip processor need 
not be driven by the same clock which drives, for 
example, the RAM controller circuitry identified 
above. The RAM controller 88 may, for example, be 
driven by the 21 MHz clock signal received from the 
Super NES and the Mario chip processor may be driven 
by another variable frequency clock. In this 
fashion, the Mario chip processor will not be 
constrained to operate at 21 MHz clocking rate.

The Mario chip in accordance with this 
exemplary embodiment may use an asynchronous ,state 
machine control circuit such as that shown in Figure 
11 for performing a resynchronizing dual clock 
interfacing function. The Figure 11 circuitry may 
be used to interface with Mario chip processor if it 
is implemented using a different clocking system 
than a memory controller operating at another 
clocking rate.

The resynchronization circuit shown in Figure 
11 receives an incoming clock signal DIN which is 
not synchronous with a clock signal CK. The 
resynchronizing circuitry generates a signal from 
DIN which is synchronous with CK, whether DIN is of 
higher or lower frequency than the clock rate CK.

As exemplified in Figure 12, in response to the 
signal DIN, the circuitry shown in Figure 11. 
Transitions through states 010, 110, 100, 101, 111, 
and back to the initial state 010. The Figure 11

I .. λ.'1'-’-!.·. *
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resynchronization circuitry may be employed in any 
interface circuit receiving dual clock signals such 
as ROM controller 104 and RAM controller 88.

The circuit shown in Figure 11 responds to the 
incoming signal DIN by switching from its idle or 
reset state "010" to form state "110" due to latch A 
being set by gate F. As soon as the resynchronizing 
clock CK goes low (which may already be true), latch 
B is reset by Gate E forming state "100". When the 
clock goes high again, latch C is set forming state 
"101" by Gate A.

Latch C generates the output from the circuit 
as indicated at Q in Figure 11. When the input 
signal goes low again, latch B is set again by Gate 
C forming state "111". When the clock CK goes low 
again after reaching state "111", then latch A is 
reset by Gate G forming state Oil. Thereafter, 
clock CK goes high again and latch C is reset by 
Gate B returning the state machine to its idle 
state, then the output becomes inactive.

Figure 13 shows the Figure 4B ROM controller 
104 in further detail. The ROM controller 104 
includes a cache loader 400 which controls in part 
the loading of the Mario chip cache RAM 94 with 
currently executing program instructions stored in 
ROM 10 or in the cartridge RAM. Instructions are 
loaded into cache RAM 94 in 16-byte groupings. When 
a jump instruction is encountered, in the middle of 
a 16 byte segment, a complete 16-byte segment must 
nevertheless be continued to be filled before the

.· v 
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jump may be executed. The CACHE load circuit 400 
includes a 2-bit state machine which responds to the 
decoding of the jump instruction by ensuring that 
the remaining bytes of the 16 byte CACHE segment are 
loaded into cache RAM 94. The first state of the 
cache loading logic state machine is the idle state 
which is true if either program execution is outside 
the range of cache or if the program data has 
already been loaded into cache. The second states 
indicates that the loading of cache and the
executing the instructions from the cartridge ROM or 
RAM are occurring at the same time. The third state 
is triggered by the decoding of the jump instruction 
which state remains in effect until all the bytes in 
the 16 byte cache segment has been loaded. The 
fourth state is encountered when the jump is 
executed and the jump falls on an address which does 
not precisely correspond to a caehe 16 byte boundary 
in which case the cache is filled from the beginning 
of the boundary to the part of the 16 byte segment 
corresponding to the address to which the program 
has branched.

The cache controller 68 shown in Figure 4B 
generates a CACHE signal which .is input to cache 
loader 400 and which indicates that the requested 
instruction is not presently available in the cache 
RAM 94. Accordingly, the instruction must be 
fetched from ROM. The code bank signal identifies 
the most significant three bits of the address to be 
accessed and indicates whether the program ROM or 
the RAM is to be accessed. Cache loader 400 aleo 
includes a counter (not shown) which during program

ft J 
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execution maintains a count corresponding to the 
least significant bits of the program counter PC. 
This counter is loaded via the PC input of cache 
loader 400.

• · ·• « ··· · ·• ···• ·• · · ·

····• · ····

• * ···♦

• ··» · «• «• * ·• · ·
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The cache load circuitry 400 in the ROM 
controller 104 also receives WAIT and GO control 
signals which indicate that the Mario processor is 
not being held in the WAIT state for any reason and 
that the Mario chip is in the "go" or "running" 
mode. Under such circumstances the cache loading 
circuit 400 generates a CODEFETCH control signal 
which is coupled to NOR gate 408 shown in Figure 13, 
which, in turn, is coupled to the clear input of ROM 
timing counter 406. When cache load circuit 400 
generates a code fetch signal CODE FETCH, logic 
circuitry within the ROM controller 104 initiates a 
code fetch on a higher priority then the data fetch 
as this code fetch must be initiated prior to data 
fetch. Arbitration circuitry incorporating priority 
logic such as shown in conjunction with Figure 10 
may be used to enable the generated signal to be 
given a higher priority than the DATA FETCH.

When the clear signal is removed from the ROM 
timing counter 406, a count cycle is initiated. ROM 
timing counter 406 is used to generate the ROMRDY 
timing signal which indicates that ROM data is 
available at ROM data pins, which signal is output 
from gating circuit 410.

The ROM data ready signal ROMRDY gating ie 
coupled to the resynchronization circuit 402, which

A.
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may, for example, comprise the resynchronization 
circuitry described above in Figure 11. After 
synchronization is obtained with the processor 
clock, signal ROM DCK is generated to reset latch 
404 and to generate a DATAFETCH signal indicative of 
a data fetch triggered by the accessing of register 
R14 which results in the EN_R14 signal. The 
DATAFETCH signal is generated when ROM timing 
counter 406 has reached a predetermined count to 
ensure that data is available at ROM data pins.

The ROM controller shown in Figure 13 generates 
a ROM address at the output from multiplexer 414 
which selects address information from one of the 
following inputs. The code bank register 412 is 
loaded from the Super NES data bus HD to define from 
which ROM program bank the Mario code is to be 
executed. The code bank register 412 provides 8 
bits of a 23 bit RC/M address to multiplexer 414.
The least significant bits of the ROM address are 
obtained from the contents of the program counter 
PC. When data is being written into cache RAM, the 
least significant 4 bits from the CACHE LOAD signal 
are generated by cache load 400. An additional 
multiplexer 414 address input is generated from the 
contents of Mario general register R14 whenever 
register R14 is accessed.

The accessing of register R14 resulte in the 
data fetch latch 404 generating a DATAFETCH signal 
which is utilized as a control input for causing 
multiplexer 414 to select its R14 input (and the 
contents of the data bank register 416 which is
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loaded from the Super NES data bus HD). The data 
bank register 416 contains the most significant bits 
of the data bank associated with an R14 fetching 
operation.

The DATA FETCH signal additionally is coupled 
to gate 408 which will initiate counting by the ROM 
timing counter 406 which, in turn, generates a ROM 
ready signal ROMRDY via gate 410. When the ROMRBY 
signal is generated, data is available from the ROM 
data bus ROM D[7:0].

The address multiplexer 414 also receives a ROM 
address from the Super NES address bus HA. The 
Super NES address bus will be selected depending 
upon the state of the signal "ROM" which is coupled 
to multiplexer 414 control inputs. The "ROM” 
control signal indicates to the Mario ROM controller 
that the Super NES has control of the ROM address 
bus.

After a jump instruction is decoded, the 
address multiplexer 414 is fed the contents of the 
program counter plus the four least significant bits 
generated by the counter within the cache loader 
400. This permits the cache segment to be loaded 
with the remainder of the 16 bytes which were being 
loaded prior to the jump being decoded.

The multiplexer 422 provides the data path 
within the ROM controller 104 from the ROM data pins 
ROMD to the Mario chip’s destination bus Z. The 
DATAFETCH signal which has been generated by latch
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404 and the ROMRDY signal generated by ROM timing 
counter 406 are coupled to gate 418 to enable the 
loading of ROM buffer 420. ROM data from the ROM 
data bus ROMD [7...J] is loaded into ROM buffer 
420.

The multiplexer 422 selects an input in 
response to the decoding of an instruction code 
(such as GET B which is the automatic data fetch 
triggered by the accessing of register R14). If a 
code fetch operation is decoded, the ROM controller 
104 will couple instructions to the instruction bus 
in the Mario chip as indicated in Figure 15A. If a 
GET B instruction is decoded then the buffered byte 
stored in register 420 is placed on the Z bus. 
Certain GET B instruction operations involve data on 
the X bus as is indicated via the corresponding 
inputs to multiplexer 422 shown in Figure 13. The 
data coupled to destination Z bus may then be loaded 
into one of the Mario general registers 76.

The cache controller 68 is shown in further 
detail in Figure 14. Cache controller 68 includes a 
tag latch 506. Tag latch 506 includes, for example, 
64 latches which indicate whether instructions are 
stored in the cache RAM 94 (which is shown for 
illustration purposes as being embodied in the cache 
controller).

Each of the 64 flags in tag latches 506 
corresponds to 16 bits of information etored in the 
cache RAM 94. Cache RAM 94 is loaded with
instructions at the same time instructions are being
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executed from ROM or RAM. When a jump instruction 
is executed, as noted above, the RAM 94 is loaded 
with the remaining bytes of the 16 byte segment via 
the cache loader 400 described in conjunction with 
the ROM controller 104 shown in Figure 13. Until 
these remaining bytes are loaded, the entire 16 byte 
segment cannot be flagged as loaded via tag latch 
506.

• ··• · ··»· ·• ···• ·*···• 0·0 · ♦• ·· β
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Focussing on gating circuit 510, when the 
program counter has counted from 0 to 15, the 14 bit 
subtractor 502 has output an out-of-range signal 
(which is inverted) and when the ROM controller has 
output its ROM data ready signal ROMRDY (indicating 
that a byte is ready to be output), gating circuit 
510 sets the tag latch 506 at the location addressed 
by demultiplexer 504.

When a cache instruction is decoded, a control 
signal is generated on bus 501 which indicates that 
subsequent instructions are to be executed from the 
cache RAM memory 94. The control signal on bus 501 
is coupled to the cache base register 500 load input 
and serves to load cache base register 500 with the 
13 most significant bits of program counter PC. At 
the same time, as indicated in Figure 14, the tag 
latches 506 are cleared.

The output of the cache base register 500 and 
the most significant bits of the program counter 
(e.g., bits 3-15) are coupled to subtrac-’- 502, 
which determines whether the address input from the 
program counter PC is within the cache RAM 94

Α ί
/ς
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range. The subtractor 502 outputs, for example, its 
six least significant bits, as the most significant 
bits of the cache RAM address, the three least 
significant address bits being coupled from the 
program counter PC.

The out-of-range signal O/RANGE is generated 
from a carry output signal from the subtractor 502 
and is inverted. The inverted out-of-range signal 
when high serves to initiate the setting of one 
latch in latch array 506. The latch set will depend 
upon the cache address output from subtractor 502 
via demultiplexer 504 and corresponds to a 16-byte 
segment in cache RAM 94 to indicate that an 
instruction is stored in cache corresponding to the 
output cache RAM address. The tag latches 506 
outputs are coupled to a multiplexer 512 which 
couples one of the 64 teg latch signals to NOR gate 
514 based upon the multiplexer select input which 
selects one latch signal to be output corresponding 
to one of 64 select lines output from DEMUX 504.
The other input to NOR gate 514 is the out-of-range 
signal which indicates that an external fetch is 
required since the desired instruction cannot be 
found in the cache RAM 94.

Figure 15A shows a block diagram of the ALU 
controller/instruction decoder 60 shown in Figure 
4A. As indicated in Figure 15, the ALU
controller/instruction decoder 60 receives 
instructions from the cache RAM 94, ROM controller 
104, and RAM controller 88. These Mario chip 
components are not part of the ALU/instruction
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decoder 60 but are depicted in Figure 15 for 
illustration purposes only.

Multiplexer 525 selects an instruction output 
from either cache RAM 94, ROM controller 104, or RAM 
controller 88 and inputs the selected instruction to 
pipeline latch 527. Selection by multiplexer 525 
between RAM or ROM based instructions depends upon 
the state of a predetermined bit in the code bank 
register, e.g., bit 4. Thus, depending upon the 
address information loaded into the code bank 
register, an instruction from ROM or RAM will be 
decoded. Alternatively, multiplexer 525 selects an 
instruction from c? he RAM 94 depending upon the 
state of a control . .gnal CACHE CTL from the cache 
controller 68 which indicates that an instruction to 
be executed is within the range of cache RAM 94 and 
that an appropriate tag bit has been set as
described in conjunction with the cache controller 
68.

• · · ·» a«··« The pipeline latch 527 receives an 8-bit 
instruction from multiplexer 525 when enabled by a 
program counter enable signal PCEN.IL.IH which is 
generated by, for example, the ROM controller 104 
(or the RAM controller 88) if an instruction is 
being fetched by the ROM (or RAM). Since it takes 
more than one processing cycle to fetch an 
instruction from RAM or ROM, the instruction 
decoding operations are triggered by the program 
counter enable signal PCEN generated by the 
respective ROM or RAM controllers 104, 88.
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On the other hand, if the instruction is 
executed out of a cache RAM 94, the program counter 
enable signal PCEN is active at all times and the 
instruction execution is performed at the full 
processor clock rate. Since the ROM 10 access time 
is much slower than cache RAM 94 or cartridge RAM 
access times, it is necessary for the PCEN signal to 
be generated at less frequent intervals for ROM 
accesses than either the corresponding cache RAM, or 
the dynamic or static RAM decoding enable signal.

The instruction temporarily stored in the 
pipeline latch 527 is output to conventional 
instruction decoding circuitry, as schematically 
represented by gating circuitry 537, 539 and 541, to 
generate the signals indicative of operation codes 
1, 2, . . . N.

• · · ·• · • · · ·

The instruction which is loaded into pipeline 
latch 527 is also coupled to look-ahead logic 551. 
Look-ahead logic 551 Berves to provide a predecoding 
indication of the operation code which will eerve to 
select appropriate registers in the Mario chip 
register block 76. Thus, in order to optimize the 
speed of execution prior to decoding the opcode, the 
register required to be accessed is quickly 
determined to enable high speed access of data that 
is required by the instruction.

The look-ahead lc.’ic 551 is responsive to the 
instruction opcode bits as well as various program 
decoding control flags. The instruction decoding 
circuit 60 includes program control flag detector
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logic 543 which is responsive to previously decoded 
operation codes to generate ALT 1 and ALT 2 signals 
to indicate that the corresponding prefix
instructions, as described above, have been
decoded. A related ALT 1 PRE signal described below 
is also generated by flag detector logic 543. 
Additionally, IL and IH signals are generated to 
indicate that instructions requiring immediate data 
have been decoded (whers L and H refers to low byte 
and high byte, respectively). The IH and IL flags 
operate to preclude the immediate data related 
instructions from being decoded as operation codes. 
Accordingly, not IL (IL) and not IH (IH) signals are 
also required to enable pipeline latch 527. ALT 1 
and ALT 2 signals, as previously described, serve to 
modify a subsequently generated opcode and are input 
to decoding logic 537, 539, 541, etc., as, for 
example, shown at gating circuit 541 to modify the 
output opcode in accordance with the previous 
discussion of these signals.

The look-ahead logic 551 generates register 
select signals based on the predecoded opcodes and 
eignals which are generated when prior operation 
codes (e,g., prefix codes ALT 1 or ALT 2) are 
decoded. For example, as shown within program 
control flag detect logic 543, if an ALT 1 signal is 
decoded by decoding logic 545, an ALT 1 PRE signal 
is generated, which signal is output by program 
control flag detector logic 543 and which signal, in 
turn, is coupled to the look-ahead logic 531 via OR 
gate 549. The ALT 1 PRE signal also Bets ALT 1 
latch 547. OR gate 549 also outputs the ALT 1

&
MS
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signal from latch 547 and couples the ALT 1 signal 
to decoding logic 537, 539, 541, etc.

The look-ahead logic schematically represented 
in Figure 15 illustrates how the four register 
select control bits XSELO, XSEL1, XSEL2, and XSEL3 
are generated. These four control bits are then 
coupled to multiplexers 620 and 622 described in 
conjunction with the register control logic 76 in 
Figure 17 which selects the contents of one of the 
16 registers to be output to the X bus for use by an 
instruction being executed.

Thus, ar\ instruction prior to being loaded into 
the pipeline latch 527 is coupled to look ahead 
decoding logic element 529 which generates a 
register selection bit XSEL-UO which, in turn, is 
latched in latch 535 and then output as signal 
XSELO. The latch 535 is enabled by the program 
counter signal PCEN. Similarly, logic circuit 531 
generates XSEL_U1 which is latched in latch 533 
which is output as signal XSEL1. The ALT 1 PRE 
signal is coupled to the various decoding logic 
circuits 529, 531, etc., in the look-ahead logic 551 
and is utilized to define the appropriate register 
selected by the register control logic 76. For 
example, as shown in look-ahead circuit 551, the ALT 
1 PRE signal ie one of the signals coupled to logic 
circuit 531 which generates XSEL-U1, which is 
latch.ed in latch 533 which, in turn, outputs signal 
XSEL1. ·
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Figure 15B shows exemplary timing signale for 
demonstrating the operation of look-ahead logic 
551. Figure 15B shows a clock signal CK, and an 
exemplary instruction opcode relating to cache RAM 
data accessing. Timing signals are also shown 
indicating when pipeline latch 527 is loaded, when 
the instruction decoding operation is to be 
performed, when register select signals are 
generated, and when the information from the 
registers are loaded on the destination Z bus.

As shown in Figure 15B, the cache RAM data 
opcode (opcode 1) will become valid at some point in 
time after the rising edge of the clock pulse CK.
The opcode is stored in pipeline latch 527 until, 
for example, the rising edge of the second clock 
pulse, at which time opcode 2 is loaded into the 
latch 527. The instruction decoder 60 begins 
decoding the instruction corresponding to opcode 1, 
just after receiving the output from latch 227 at a 
point in time schematically represented in Figure 
18. The result of the instruction decoding will, as 
described above, appropriately couple control 
signals to Mario chip components such as the ALU 50, 
cache controller 68, and plot hardware 52, etc.

The look-ahead circuit 551 shown in Figure 15 
begins the register select decoding process by 
generating a signal XSEL-U, at a point in time prior 
to the decoding of opcode 2. The XSEL-UO signal 
represents the output of decoding logic 529 prior to 
being latched in latch 535. The XSEL-0 signal is 
output, for example, by latch 535 at a point in time
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so that the data required for the instruction will 
be accessible as early as possible in the 
instruction execution cycle for coupling to the 
appropriate bus as quickly as possible.

A portion of the register control logic 78 is 
shown in Figure 16 for generating Y and Z bus 
related register select signals. Multiplexer 604 
selects which of the 16 registers will be written 
from the Z bus. Multiplexer 606 selects which 
register feeds the Y bus.

Multiplexers 604 and 606 receive inputs from 
4-bit registers 600 and 602, respectively. The 
registers 600 and 602 are utilized in implementing 
the "FROM" and "TO" prefix instructions described 
above. The registers 600 and 602 are respectively 
enabled by the decoding of "TO" and "FROM" prefixes 
which operate to couple the least significant bits 
of the instruction bus to registers 600 and 602. 
Register 600 and 602 are cleared in response to an 
instruction which serves to reset the control flags 
described above.• ··• · ···

Multiplexers 604 and 606 additionally receive 
inputs from various registers in registers block 
76. Additionally, the multiplexers 604, 606 receive 
an input from the least significant bits or the 
instruction bus to implement instructions whose 
least significant four bits define the instruction 
destination or source register. Additionally, 
predetermined least significant bits from the Super 
NES address bus are coupled to multiplexers 604 and
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606 in order to provide the of Super NES with access 
to the register set. The multiplexers 604 and 606 
eelect the register feeding the Z and Y bus, 
respectively.

Figure 17 shows register block 76 and 
additional register selection control logic embodied 
within the Figure 4B register control logic 78. A 
FROMX register 618 is set by a FROMSET signal which 
is generated upon the decoding of a FROM
instruction. Upon receipt of the FROMSET signal/ 
the contents of the Y bus is loaded into register 
618. The data loaded in register 618, then becomes 
the data which is used in subsequent instruction 
execution. The contents of register 618 is coupled 
as one of the inputs to multiplexer 622.
Multiplexer 622 also receives the contents of 
register RO (which is used as a default register) as 
one of its inputs.

Another input to multiplexer 622 is the output 
of multiplexer 620. Multiplexer 620 receives as 
input the contents of the program counter (i.e., 
register R15), inputs from registers used in 
executing the MERGE instruction, and register Rl 
(which is used, for example, in executing the plot 
instruction). The multiplexer 620 selects one of 
these inputs based on the state of the XSEL2 and 
XSEL3 bits generated by the look-ahead logic 551 
shown in Figure 15A.

An additional input to multiplexer 622 is
coupled to the contents of the Y bus to place the
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same data on the X bus as is on the Y bus. As noted 
previously, another input to multiplexer 622 is the 
output of FROM X register 618 described above. The 
output of multiplexer 622 is selected based on the 
state of the XSELO and XSEL1 bits generated in 
Figure 15A and is coupled to the X bus.

The special purpose functions associated with 
many of the register R0-R15 have been described in 
detail above and will not be repeated here. The 
output of registers R0-R3 are coupled to multiplexer 
608, the outputs of registers R4-R7 are coupled to 
multiplexer 610, the outputs of registers R8-R11 are 
coupled to multiplexer 612 and the outputs of 
registers R12-R15 are coupled to multiplexer 614.
One of the four respective inputs to multiplexers 
608, 610, 612 and 614 are selected by the Y SEL 1 
and YSELO bits which are output from multiplexer 606 
shown in Figure 16. The outputs from multiplexer 
608, 610, 612, and 614 are, in turn, input to 
multiplexer 616. One of the four inputs to 
multiplexer 616 is selected based on the state of 
the Y SEL 2 and Y SEL 3 bits output from multiplexer 
606 in Figure 16. Multiplexer 616 has its output 
coupled to buffer register 617, whose output is, in 
turn, coupled to the Y bus.

Turning to the inputs to registers R0 to R15, 
each register has an enable input selected by ZSEL 
bits 0 to 3 which are generated as described above 
in conjunction with Figure 16. Each register also 
has a clock input CK and a data input DATA-IN via
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which data is received from the Z bus after being 
appropriately buffered.

Register R4, which is used in conjunction with 
various multiply operation, also includes disable 
low and disable high bit inputs and enable low and 
enable high bit inputs. Register R15, the program 
counter PC, receives a signal CCHLD from the cache 
loader 400 in the ROM controller of Figure 13 which 
inhibits a jump operation until the current 16 byte 
cache segment is loaded into cache RAM. The prograia 
counter additionally receives a program loop pending 
signal LOOPEN from the instruction decoder which 
indicates that a branch operation should take place 
and enables the loading of the PC with the contents 
of register R13. Register R15 additionally receives 
a power-on reset signal RESET and sn input RN which 
loads the program counter with the contents of 
register R13 when a loop instruction is being 
executed.

As indicated above, the graphics coprocessor of 
the present invention in combination with the host 
video game system may be advantageously utilized to 
create a variety of special effects involving, for 
example, the rotation, enlargement, and/or reduction 
of polygon-based objects. Figure 18 is a flowchart 
of an exemplary Mario chip program for drawing a 
trapezoid to illustrate how the Mario chip may be 
programmed to generate a portion of a polygon-based 
object to be displayed. A Mario program for 
generating such a polygon is set forth below
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together with a detailed explanation as to how the 
Mario hardware executes the program.

Turning first to the high level flowchart shown 
in Figure 18, initially certain of the registers in 
register block Rl to R15 are associated with 
variables utilized in the generation of the 
trapezoid (e.g., register Rl stores the pixel X 
position, register R2 stores the pixel Y position 
line, register R7 stores the trapezoid height, 
etc.). Thereafter, as indicated in block 650, a 
loop counter is set up and initial pixel values are 
computed.

As indicated in block 652, a check is then made 
to determine the length of one of the trapezoid 
horizontal lines. If the result of subtracting the 
starting point of the line from the end point of the 
lines is a negative value (-VE), then the routine 
branches to block 660. If the result of subtracting 
the starting point of the line from the ending point 
of the line is a positive value which indicates that 
the length of the line has not been exceeded, then a 
loop counter is decremented (654) and a plot pixel 
instruction is executed to result in the plotting of 
the appropriate pixel (656).

As indicated in block 658, a check is then made 
to determine whether the contents of the loop 
counter is zero. If the loop counter ie not zero, 
then a jump is effected to branch back to block 654 
to decrement the loop counter (654) and plot another 
pixel (656).
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If the loop counter is equal to zero, then the 
left polygon side X coordinate and the right polygon 
side X coordinate are updated (660). Thereafter, 
the Y HEIGHT of the trapezoid (662) is decremented 
(662) and if the result is not zero, then the 
routine will be reexecuted by branching back to 
block 650 (664) and the Y coordinate is incremented 
so as to move to the next scan line (665). If Y 
HEIGHT is equal to zero, then the routine will have 
been fully executed and the trapezoid will be 
complete (666).

In order to illustrate the use of the Mario 
chip instruction set to generate graphics, an 
exemplary program for drawing a trapezoid to 
implementing the Figure 18 flowchart is set forth 
below.
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; Draw trapezoid loop
rx = 1 plot x pos
ry - 2 plot y pos
rxl = 3 top left x pos
rxlinc - 4 top left x pos increment
rx2 5 top right x pos
rx2inc = 6 top right x pos increment
rdy = 7 trapezoid y height
rlsn = 12 loop count, hline length
rloop 13 loop label

• · ·• · · hlines• · · ·• · · ·6 · miwt rloop,hlines 2 ; set start of• · · ·• · ·• · · hline loop• · · ·• · · ·• · hlines 1• · · ·• · *• · · mfrom rxl ; x = (rxl)>> 8• · · mto rx
mhib

• · ·• · ·• · · ·• · · mfrom rx2
mhib

• ·• · · · · mto rlen
• · · ·• ·• · · · msub rx ; length, rlen =

(rx2>>8) -
• · ·• · ·• · (rxl>>8)
• · ·• · ·• · · mbmi hlines 3 ; if rlen<0 then

skip hline
mnop
mine rlen ; always draw on

pixel

hlines2



mloop
mplot ; draw hline

hlines3
mwith
madd

rxl
rxlinc

mwith rx2
madd rx2inc

mdec rdy
mbne hlinesl
mine ry

; rxl+=rxlinc

; rx2+=rx2inc

; rdy-=l
; repeat rdy time 
; and next y down

·»··• 9 «• · ·

• ·• · · · ·
··««

• « Λ• I·*
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To demonstrate how the Mario chip hardware 
operates to execute a program, the following 
explanation is directed to the trapezoid generating 
program set forth above. Prior to executing the 
trapezoid generating program, the host computer 
system, e.g., the Super NES, writes directly to the 
code bank register and into the screen base 
register, as explained above in conjunction with the 
description of the Figure 5 flowchart.
Additionally, the "uper NES writes the low byte of 
the XEQ address to a local register in the ROM 
controller 104 which is decoded from the Super NES 
address bus HA. The Super NES then writes a high 
byte to the ROM controller 104 which is combined 
with the contents of the local register and coupled 
to the Z bus. Thereafter, the register R15 which 
operates as the Mario chip program counter is 
enabled.

Upon detecting the trailing edge of the above 
Super NES write operation to the ROM controller 104, 
the Mario "GO" flag is set. If the program counter 
minus the cache base register is giiater than the 
cache size or if the cache flag times the program 
counter minus the cache base register di ided by 16 
is equal to zero, then the program counter contents 
are passed to ROM 10 and the ROM timing counter 
(Fig. 13 block 406) is started.

Initially, prior to executing the draw 
trapezoid subroutine, the variables used with the

‘jsl
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trapezoid loop program are associated with Super 
Mario registers as indicated in the initial portion 
of the trapezoid program listing, e.g., "rx" which 
is the "plot X position" is be associated with 
register Rl and variable the "rloop" is associated 
with register R13.

• · · «• ·

After these register assignments are made, the 
trapezoid program begins execution, as follows. When 
the ROM timing counter 406 in the ROM controller 104 
reaches a count of 5 (approximately 200
nanoseconds), the first instruction to be executed 
"IWT rloop, hlines 2" is latched into the pipeline 
register 62 shown in Figure 4A from the ROM dat 
bus. The data is simultaneously written into the 
U'.che RAM 94. In executing the instruction "IWT 
rloop, hlines", the program counter is incremented.. 
The "IL” and ”IM” flags are set to signify that the 
following two bytes in the instruction stream are 
immediate data. When the ROM timing counter 406 
reaches 5, the immediate data (low byte) is written 
to the cache RAM 94 and held in a temporary register 
in ROM controller 104. The ROM fetch mechanism is 
repeated and the high byte of the immediate data is 
combined with the low byte and routed to the Z bus. 
Register R13 is enabled and the Z bus contents is 
stored therein in order to set the loop counter.
From this point on in the routine, each instruction 
is fetched from memory until the loop instruction is 
encountered.

In executing the instruction FROM .RX1", the 
lowest four bits of the instruction code are loaded

/// /A
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into the four bit "FROM Y" register 602 in the 
register controller (See Fig. 16). Additionally, 
the data from RX1 (register R3) is enabled onto the 
Y bur and is stored in the 16 bit "FROM X" register 
618. In executing the "TO RX" instruction, the 
lowerst fovr bits of the instruction code are loaded 
into the lour bit "enable Z" register 600 in the 
register controller (See Fig. 16).

The "HIB" instruction is executed by placing 
the sixteen bit contents of the "FROM X" register 
onto the X bus. The ALU places the top byte of the 
X bus onto the low byte of the Z bus and sets the 
top byte of the Z bus to zero. This removes the 
fractional part of the X position and leaves the 
starting point for the first horizontal line in 
register RX (register Rl).

In executing the instruction "FROM RX2", 
similar operations are performed as indicated above 
in executing "FROM RX1" instruction. The "HIB" 
instruction causes operations (similar to those 
described above) with respect to the top right X 
coordinate of the trapezoid leaving the end point of 
the first horizontal line in register RO (the 
default register operating as the accumulator).

The "RLEN" instruction and the "SUB RX" 
instruction are executed by subtracting the start of 
the line from the end of line RLEN (R12) - RO - Rx.

9The sign flag will be set if there is a negative 
result to indicate an error condition.

ft"
?
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The "ΒΜΙ HLINES3" instruction is a two byte 
instruction, where the first byte sets a flag, if 
the sign flag is set. The second byte is the branch 
offset (where R15 equals R15 plus the instruction), 
if the conditional flag is set. If not, R15 remains 
unaltered and normal program execution continues.

The "INC RLEN" instruction is executed such 
that the line length register has one added to it to 
ensure that at least one pixel is plotted. The 
"LOOP" instruction operates to cause the computation 
of R12 = R12 -1. If R12 is not zero, then R15 (the 
program counter) is loaded with the contents of R13 
to thereby effect a jump.

If the program at this point is in the range of 
the cache RAM 94, then the cache load circuit 400 
will detect the jump and will continue to load the 
cache RAM 94 suspending execution as it does bo.

When it is completed, the program counter is loaded 
with its new value and the following instruction is 
fetched from cache RAM 94.

In order to execute the "PLOT" instruction, the 
loop/plot instruction pair form a horizontal line 
draw algorithm. The "PLOT" instruction will set the 
screen pixel addressed by RI, R2 (as X and Y 
coordinates) to the color set in the "COLOR 
register" 54 shown in Figure 4A. The address of the 
character containing the pixel is computed by plot 
hardware 52. The new pixel data is held in a 
character line buffer (the color matrix), until the 
Mario chip moves onto plotting at a different
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character position. When all the color information 
is copied into the second level of the double buffer 
mechanism within the color matrix, then the
information is written to the external RAM.

The ’’WITH RXI" and "ADD RXI INC” instructions 
are executed to update the left side X coordinate of 
the trapezoid. Similarly, the "WITH RX2" and "ADD 
RX2 INC" operates to update the right side of the 
trapezoid. The "DEC RDY", BNE, Hlinesl" and "INC 
RY" instructions operate to move onto the next Y 
position (the next scan line) until the trapezoid is 
completed.

The following program listing exemplifies how 
the Mario chip may be programmed to rotate an array 
of 8-bit X, Y, and Z points. This routine
illustrates programming for the graphics coprocessor 
in accordance with an exemplary embodiment of the 
present invention to perform rotation operations.
The listing for this routine is set forth below:• · · · ·

LISTING ROTATE:



Rotate an array of 8 bit x,y,z points

by a rotation matrix in the registers
rmatl211< rmat2113, rmat2322, rmat3231, rmat0033

• · ·• · ·• · · ·• ···• ·• · · ·
• · ·

• · · · ·
• · · ·

-7
ce

matrix elements are 8 bit signed fractions 
ie 127 = 127/128 = approx. 1

-128 = -128/128 = -1
these are stored compactly as 2 8 bit elements 
per register

rx = 1 ; x
ry 2 ; y
rz = 3 ; z
rt = 4 ; temp
rmatl211 = 5 ; matrix elements 11 and 12
rmat2113 = 6 ; matrix elements 13 and 21
rmat2322 = 7 ; matrix elements 22 and 23
rmat3231 = 8 ; matrix elements 31 and 32
rmat0033 = 9 ; matrix elements 33
routptr = 10 ; ptr to rotated points

buffer

msh_rotpoints8
miwt

miwt

rl4,pointsaddr

rl2,numpoints

miwt routptr,m_rotpnts

ROM ptr to 
points to be 
rotated 
Number of 
points to 
rotate 
;RAM ptr to
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rotate points 
buffer

meache

, mmove

; set cache addr

rl3,pc ;init loop addr

mmatrotploop

mto rx ; get x
• · · mgetb
* · · ·• · · « mine Π4• ·• · · ·• · · mfrom rmatl211 ; 11
• · · ·• · · · mto rt
·· · ·• · ·• · ·• · ·

mmult rx ;mll*x

mto ry ; get y
• · ·• · · mgetb
« · ·• · · ·• · · mine Π4•« · mfrom rmat2113 ; 21

• ·• · · « · mhib• « · « ·• · mmult ry m21*y• · · · mto rt
• · ·• ♦ ·• · madd rt

• · ·» a ·
mto rz ; get z
mget b
mine rl4
mfrom rmat 3231 ; 31
mmult rz ;m31*z
madd rt

madd rO
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• · · ·• a·»··

mhib
mstb (routptr) ; store
mine routptr

mfrom rmatl211 ; 12
mhib
mto rt
mmult rx ; ml2*x

mfrom rmat2322 ;22
mmult ry ;m22*y
mto rt
madd rt

mfrom rmat3231 ;32
mhib
mmult rz ; m32*z
madd rt

madd rO
mhib
mstb (routptr) ; store
mine routptr

mfrom rmat2113 ; 13
mto rt
mmult rx ; ml3*x

mfrom rmat2322 ; 23
mhib
mmult ry ; n»23*y
mto rt
madd rt

Z<t -.·? -
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mfrora rmat0033
mmult rz
madd rt

madd rO
mhib
mstb (routptr)

mloop
mine routptr

33
m33*z

store rotated z

• · · · ·
• · · ·» · • · « ·
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,.. Figures 19, 20 and 21 exemplify some of the special effects which may be 

generated while using the programmable graphics coprocessor of the present invention 

in combination with the host computer system, e.g. the Super NES. As shown in Figure 

19, the side view of an object, i.e. a helicopter, is portrayed. This figure is not intended

5 to accurately reflect the high quality display that can be generated by using the Mario 

chip. Figures 20 and 21 show enlarged and rotated views of the helicopter set forth in 

Figure 19. The graphics coprocessor of the present invention may be used to generate 

3-D type (and other) special effects including those involving rotated and scaled 

polygon-based objects at high speed, while only minimally burdening the host video

10 game processing system.

The graphics microprocessor and the video game system described herein include 

many unique and advantageous features, some of which are summarized below.

• · · ·• · ·• · ·

• · · ·• · · ·

• · ·• · ·• · ·• · · ·

• · ·• · ·• · ·• · · ·

15 The unique graphics processor is pluggably connected to a host microprocessor.

In order to maximize processing speed, the graphics processor may operate in parallel 

with the host microprocessor. In one exemplary embodiment, the game cartridge in 

which the graphics processor resides also includes a read-only memory (ROM) and a 

random-access memory (RAM).

20

The graphics processor arbitrates memory transactions between its own needs and 

data fetches from the host microprocessor. The processor is capable of executing 

programs simultaneously with the host microprocessor to permit high speed processing, 

heretofore not achievable in prior art video game systems.

25

The graphics processor operates in conjunction with a three bus architecture 

embodied on the game cartridge which permits effective utilization of the RAM and 

ROM cartridge memories by optimizing the ability of both the host and cartridge 

processors to efficiently use such memory devices.

30

The fully user programmable graphics processor includes a unique instruction set 

which is designed to permit high speed processing. The instruction set is designed to

940825,p:\opci\dbw,20005.92,128
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ο · ·
• ·

• · · · • · ·• ·• ft
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efficiently implement arithmetic operations associated with 3-D graphics and, for 

example, includes special instructions executed by dedicated hardware for plotting 

individual pixels in the host video game system's character mapped display.

5 The instruction set includes unique pixel-based instructions which, from the

programmer's point of view, create a "virtual" bit map by permitting the addressing of 

individual pixels — even though the host system is character based. The pixel data is 

converted on the fly by the graphics processor to character data of a format typically 

utilized by the host character based 16-bit machine. Thus, for example, although the

10 programmer may use a unique "PLOT" instruction to plot a pixel, when related data is 

read to RAM, the data is converted to a character-based format which the 16-bit host 

machine is able to utilize.

Special purpose pixel plotting hardware executes this instruction to efficiently

15 permit high speed 3-D type graphics to be implemented. The plot hardware assists in 

converting in real time from pixel coordinate addressing to character map addressing of 

the nature utilized by the host system. Advantageously, the processor may be 

programmed by specifying X and Y coordinates which define the location of each pixel 

on the display screen.

20 .

Thus, graphic operations are performed based on a programmer specifying pixels

and the plot hardware on the fly converts pixel specifications into properly formatted 

character data. The character data is then mapped into the desired place for display in 

the host processor's video RAM.

25

The plotting hardware responds to various plotting related instructions to permit 

programmable selection of an X and Y coordinate on the display screen and a 

predetermined color for a particular pixel and to plot corresponding pixels such that the 

X and Y coordinate is converted into an address which corresponds to a character

30 definition of the form which is used to drive the host processor's video RAM.

While the invention has been described and illustrated in detail, it should be

940825,p:\opci\dbw^O6O5.92,129
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understood that the detailed disclosure is for purposes of illustration and example only. 

While the foregoing embodiment is considered to be a preferred embodiment, it should 

be understood that numerous variations and modifications may be made therein by those 

skilled in art and is intended that the following claims cover such variations and

5 modifications within the spirit and scope of the present invention.

940825,p:\opa\dbwi0605.92.130



J

- 131 -

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. An external memory system for an information processing system used with a 

display screen, and having a microprocessor for executing a videographics program and

5 a video memory for storing character data indicative of a plurality of characters which 

when combined define a display frame, said external memory system including:

a program memory for storing at least some of the instructions of said 

videographics program, and

a conversion circuit coupled to said program memory for receiving display data 

10 in terms of a pixel specification for processing said pixel specification and for converting

said pixel specification data into character data of a form used by said video memory.

2. An external memory system according to claim 1, wherein said pixel specification 

includes coordinate data defining the location of the pixel on the display screen and

15 wherein said conversion circuit receives said pixel specification from said program 

memory.

3. An external memory system according to claim 2, wherein said conversion circuit 

includes address converter circuitry for receiving pixel coordinate data and for generating

20 a character specifying address.

4. An external memory system according to claim 1, further including storage means, 

buffer memory means for temporarily storing character data generated by said conversion 

circuit, and means for coupling character data stored in said buffer memory to said

25 storage means.

5. An external memory system according to claim 2, further including register means 

for temporarily storing pixel coordinate data from said program memory.

30 6. An external memory system according to claim 1, further including a 

programmable graphics processor coupled to said program memory and wherein said 

conversion circuit is embodied within said graphics processor.

940825,p:\opo\dbw,2Q605.92,131
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7. .... An external memory system according to claim 6, wherein said programmable 

graphics processor includes a first source common bus, a second source common bus and 

a destination common bus, said conversion circuit receiving data from said first source 

bus and said second source bus and for forwarding data to said destination bus.

5

8. An external memory system according to claim 1, wherein said pixel necification 

includes the display coordinate of a pixel and color information to be associated with said 

display coordinate, and further including color register means for receiving and for 

temporarily storing said color information.

10

9. An external memory system according to claim 8, further including a register 

matrix for receiving pixel color information from said color register means.

• · · ·• · · ·

• · · · ··
• · · • ·

10. An external memory system according to claim 1, further including storage means 

15 and a memory controller for controlling access to said storage means, said conversion

circuit including address converting means for generating a character address, and 

character data generating means for generating character data including data 

corresponding to said pixel specification, and means for transferring the character address 

and character data generated by said conversion circuit to said memory controller.

20

11. An external memory system according to claim 1, further including storage means 

and means for coupling character information to said conversion circuit from said storage 

means to be associated with said pixel specification being processed by said conversion 

circuit

25 „

12. An external memory system according to claim 1, further including means for 

storing character data, wherein said conversion circuit includes means for receiving, from 

said means for storing, character data information regarding other pixels to be displayed 

in the vicinity of pixel currently being processed.

30

//

13. An external memory system according to claim 1, wherein the program memory 

and said conversion circuit are embodied within a video game cartridge.

•Z
3/

940825,p:\opcr\dbw,20605.92,132
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14. s. An external memory system according to claim 1, wherein said conversion circuit 

includes a color matrix for storing data relating to the specified pixel and other pixels in 

a character including the specified pixel.

5 15. Au external memory system according to claim 14, wherein said color matrix

includes a plurality of rows and columns and wherein the color matrix is loaded by row 

and read out by column.

16. An external memory system according to claim 15, further including register

10 means for temporarily storing said pixel specification including pixel coordinate data and 

wherein said color matrix is addressed in part by at least a portion of the contents of said 

register means.

• · · ·• · · ·• ·• ····»• ·• · ·• · «• · β ·• · · ·

• β · ·• · · ·• · ·• · ·• ·• ·«« * ·• · ·• · ·• · · ·
• · · ·• ·«• · ·• · ·• · · ·• · ·9 9 9

17. An external memory system according to claim 1, further including bit pending 

15 means for recording whether the pixel being processed is part of the current character

being processed.

18. An external memory system according to claim 17, further including storage 

means and means for transferring the character data generated by said conversion circuit

20 to said storage means depending upon the state of said bit pending means.

19. An external memory system according to claim 2, further including means for 

indicating bits of a character associated with a pixel specification being processed which 

do not need to be updated.

25

20. An external memory system according to claim 19, wherein said conversion circuit 

includes means for generating a character address in response to a predetermined state 

of said means for indicating.

1
t · /

940825, p:'topei\dbw,20605.92,133

21. An external memory system according to claim 1, further including address

register means for storing a character address generated by said conversion circuit, an

address comparator, coupled to the address register means, for comparing the current

30

W · >κ;«
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character address generated by said conversion circuit with a previously generated 

addicss.-

22. An external memory system according ω claim 21, further including character 

5 memory means for storing character data and control means responsive to said address 

comparator for writing out the address stored in said address register means to said

character memory means.

• ft ft
• · a• · ·a·· ·• · · ·

• · · • · · ·• · · ·
<5 *• *

» . 6 ί» 
»0 ftO 4 C • <4• ¢-

23. A graphics processor eomprisir^:

10 means for receiving data in terms of a pixel specification; and

a conversion circuit for processing the pixel specification data and for generating

character data in terms of a character specification specifying a character including a 

specified pixel.

15 24. A graphics processor according to claim 23, wherein said pixel specification

includes the display coordinate of a pixel and color information io be associated with said 

display coordinate, and further including color register means for receiving and for 

temporarily storing said color information.

V ft ft ft ft···

• · ft• ft ft ft
• ••ft

20 25. A graphics processor according to clai™ 23, further including a register matrix for

receiving pixel color information from said color register means.

26. A graphics processor according to claim 23, further including storage means and 

means for coupling character information to said conversion circuit from said storage

25 means to be associated with said pixel specification being processed by said conversion 

circuit.

30

■ . - ί']
- ci/

27. A graphics processor for use in an. information processing system having a main 

processing unit for executing a videographics program stored in at least one memory 

device, said graphics processor including:

me: .as for receiving program instructions from said at least one memory; and 

means, responsive to at least one predetermined program instruction, for

940825,p:\opci\dbw,206Q5.92,134
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converting pixel-based format data associated with said at least one predetermined 

instruction into a character-based data format.

28. A graphics processor according to claim 27, further including a first source 

5 common bus, a second source common bus and a destination common bus, and wherein

means for converting receives data from said first source bus and said second source bus 

and forwards data to said destination bus.

29. A graphics processor according to claim 27, wherein said graphics processor is 

10 coupled in use to storage means, and further including memory controller for controlling

access to said storage means, said means for converting including address converting 

means for generating a character address, and character data generating means for 

generating character data including data corresponding to said pixel-based data and 

means for transferring the character address and character data generated by said means

15 for converting to said memory controller.

30. An external memory system substantially as hereinbefore described with reference 

to the accompanying drawings.

20 31. A graphics processor substantially as hereinbefore described with reference to the

accompanying drawings.

• · · · ··

25

DATED this 25th day of August, 1994

30 A/N INC.

By its Patent Attorneys

,■ · DAVIES COLLISON CAVE

940825,p:\opcr\dbw,20605.?2,135
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ABSTRACT OF THE DISCLOSURE

-4

A fully programmable, graphics microprocessor is 
disclosed which is designed to be embodied in a 
removable external memory unit for connection with a 
host information processing system. In an exemplary 
embodiment, a video game system is described 
including a host video game system and a pluggable 
video game cartridge housing the graphics 
microprocessor. The game cartridge also includes a 
read-only program memory (ROM) and a random-access 
memory (RAM). The graphics coprocessor operates in 
conjunction with a three bus architecture embodied on 
the game cartridge. The graphics processor using 
this bus architecture may execute programs from 
either the program ROM, external RAM or ite own 
internal cache "AM. The fully user programmable 
graphics coprocessor has an instruction set which is 
designed to efficiently implement arithmetic 
operations associated with 3-D graphics and, for 
example, includes special instructions executed by 
dedicated hardware for plotting individual pixels in 
the host video game system's character mapped display 
which, from the programmer's point of view, creates a 
"virtual" bit map by permitting the addressing of 
individual pixels — even though the host system is 
character based. The graphics coprocessor interacts 
with the host coprocessor such that the graphics 
coprocessor's 16 general registers are accessible to 
the host processor at all times.
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