A light guiding film is provided including a main body, and a light diffusion structure comprising a plurality of micro concave lenses arranged in a first direction and a second direction to form a second dimensional array and the curvature of each concave lens and the junction of the concave lenses are different from zero. Light from a light source passes through the light diffusion structure and is refracted into the main body and then propagates in the main body by total reflection.
LIGHT GUIDING FILM

BACKGROUND OF THE INVENTION

[0001] 1. Field of the Invention
The invention relates to a light guiding film, and in particular relates to a light guiding film allowing light to enter and propagate therein.

[0002] 2. Description of the Related Art
Mobile devices, such as mobile phones, PDAs, or digital cameras, have a side backlight module. Meanwhile, as smaller sizes are preferred, an extra-thin light guiding film is desired. When the light guiding film has a thickness less than 500 µm, it is difficult to direct light into the film from edges thereof. When the light source is a light emitting device (LED), light beams from the LED converge, and, therefore, can be directed into a thinner film than a cold cathode fluorescent lamp (CCFL) can. When the film is too thin, even light beams from LEDs cannot be directed into the film from edges thereof. A complicated method and system must be employed to couple light beams to the film.

[0005] A typical light guide film is provided in U.S. Pat. No. 6,259,854. Light beams are directed from edges of a thick light guide film and propagate by continuous total reflection therein. Light beams exits the light guiding film from a surface with a printed dot or micro optical structure. SID’03 DIGEST, 2003, p1259-1261 discloses a light guiding film. Light beams are directed into the light guiding film from the back and then are reflected. The disclosed structure is complicated and reduces energy of light beams. US patent publication No. 2006/0262564 discloses an optical cap which has a crowned shape. Light beam from an LED is refracted into the light guiding film and propagates therein. The light beams are reflected and then exited from the film. Such a structure cannot have a small thickness and may increase costs. U.S. Pat. No. 5,883,684 discloses a side backlight module having a reflective layer reflecting light beams into a film. Here, light beams lose large amounts energy during refraction and reflection. US patent publication No. 2005/0259939 discloses a bended light guiding film, and light beams enter the film from the edge. US patent publication No. 2004/061440 discloses a thin light guiding film. Light beams are parallel to the film but do not propagate in the film. Japan patent publication No. 2000249837 discloses light beams being directed into a thin film by taper method. Such a method can reduce light intensity and requires longer optical couple distance. US patent publication No. 2004/024441 discloses a light guiding film with a notch corresponding to a light source. Light beams are directed into the film from edges. Applied Optics April 2006, Vol. 45 No. 12 and Optics Express 2008 March 2007/Vol. 15 No. 5 discloses grating diffracts light beams to propagate parallel to the film and couple the light beams to the film.

BRIEF SUMMARY OF INVENTION

[0006] An embodiment of a light guiding film of the invention comprises a main body, and a light diffusion structure comprising a plurality of micro concave lenses arranged in a first direction and a second direction to form a second dimensional array, wherein the curvature of each concave lens and the junction of the concave lenses are different from zero. Light from a light source passes through the light diffusion structure, is refracted into the main body and then propagates in the main body by total reflection.

[0007] The light guiding film further comprises a reflective element adjacent to the main body, wherein the light is reflected by the reflective element to pass through the light diffusion structure, is refracted into the main body and propagates in the main body by total reflection.

[0008] The main body has a first surface on which the light diffusion structure is formed and a second surface. When the light passes through the first surface to enter the light diffusion structure, the reflective element is adjacent to the second surface. When the light passes through the second surface to enter the light diffusion structure, the reflective element is adjacent to the light diffusion structure.

[0009] In another embodiment, the main body has a first surface on which the light diffusion structure is formed and a second surface. The light passes through the first surface to enter the light diffusion structure and propagates in the main body by total reflection.

[0010] A detailed description is given in the following embodiments with reference to the accompanying drawings.

BRIEF DESCRIPTION OF DRAWINGS

[0011] The present invention can be more fully understood by reading the subsequent detailed description and examples with references made to the accompanying drawings, wherein:

[0012] FIG. 1 is a schematic view of an embodiment of a light guiding film of the invention;
[0013] FIG. 2 is a schematic view of a light diffusion structure of the light guiding film of the invention;
[0014] FIG. 3 is a schematic view of another embodiment of a light guiding film of the invention;
[0015] FIG. 4 is a schematic view of another embodiment of a light guiding film of the invention;
[0016] FIG. 5 is a schematic view of another embodiment of a light guiding film of the invention;
[0017] FIGS. 6 and 7 depicts the light diffusion and total reflection of the invention, wherein FIG. 6 shows sphere lens embodiment, and FIG. 7 shows non-sphere lens embodiment;
[0018] FIG. 8 is an SEM diagram of the micro concave lens array of the invention;
[0019] FIG. 9 depicts ELDIM pattern of the light passing through the light diffusion structure;
[0020] FIG. 10 depicts another ELDIM pattern of the light passing through the light diffusion structure;
[0021] FIG. 11 depicts the light diffusion structure formed on a PC film by heat pressing method;
[0022] FIG. 12 depicts a laser source disposed in a light inlet region;
[0023] FIG. 13 is a dark view of FIG. 11;
[0024] FIG. 14 depicts a white LED emitting light as a light source for the light diffusion structure of FIG. 11;
[0025] FIG. 15 depicts a light outgoing structure and a red laser as a light source for the light outgoing structure;
[0026] FIG. 16 depicts a white LED as a light source for the light outgoing structure of FIG. 15; and
[0027] FIG. 17 depicts a bended light guiding film of the invention; and
[0028] FIG. 18 depicts a light guiding film with a carved symbols thereon.

DETAILED DESCRIPTION OF INVENTION

[0029] Referring to FIG. 1, a light guiding film 100 comprises a main body 10 having a first surface 12 and a second
A light diffusion structure 30 is formed on the first surface 12. When Light A from a light source 5 reaches the light diffusion structure 30, Light A is diffused. The diffused light B is reflected by the second surface 14. The reflected light C reaches the interface of the film and air and is reflected by the interface. As the light reaching the interface has an incident angle greater than the critical angle θ_c of total reflection, total reflection occurs on the interface, whereby the light C propagates in the main body 10 by continuous total reflection. Thus, light can be directed into the light guiding film 100 from one surface of the light guiding film 100. The propagation direction of light is substantially perpendicular to the incident direction of light.

The light diffusion structure 30 comprises a plurality of micro concave lenses 32 arranged along a first direction L_1 and a second direction L_2 to form a two dimensional array, as shown in FIG. 2. The structure can be made by laser draging method. The curvatures on each concave lens 32 and the junction of the concave lenses 32 are different from zero.

The critical angle θ_c depends on the material of the light guiding film 100. In general, the light guiding film 100 is made of polycarbonate. The index of refraction of polycarbonate is $n=1.59$, the index of refraction of air is $n=2.0$. As $\theta = \arcsin \left(\frac{n_2}{n_1} \right)$, the critical angle of polycarbonate is 38.97°.

FIG. 3 depicts another embodiment of the light guiding film of the invention. In this embodiment, a reflective element 20 is disposed on the second surface 14. The reflective element 20 reflects light reaching the second surface 14. The reflected light is totally reflected by the first surface 12 and propagates in the main body 10 by continuous total reflection.

FIG. 4 depicts another embodiment of the light guiding film of the invention. The reflective element 20 faces the light diffusion structure 30 on the first surface 12. In this embodiment, light A from the light source 5 enters the main body 10 via the light diffusion structure 30 and is reflected by the reflective element 20. The reflected light B passes through the light diffusion structure 30 again to be diffused. When the diffused light C reaches the interface of the light guiding film 100 and air, continuous total reflection occurs. The light propagates in the main body 10 by continuous total reflection.

FIG. 5 depicts another arrangement of the light guiding film and the light source according to the invention. The light source 5 is inclined to the first surface 12. In such an arrangement, light intensity is not uniformly distributed.

The light diffusion and total reflection in the light guiding film is described as follows. The critical angle of total reflection for the polycarbonate and air is 38.97°.

FIG. 6 depicts the micro concave lens being a semi-sphere lens. 0.1 and 0.2 are incident angle of light beams 1 and 2. $0.1r$ and $0.2r$ are refraction angle of light beams 1 and 2. 0.1 and 0.2 are the central angles of the light beams 1 and 2. 0.1 and 0.2 are the light angles of the refracted light beams 1 and 2. As the micro concave lens is a semi-sphere lens, the normal line passes through the center of the sphere (focus). According to the Snell’s law, $n_2 \sin 0.1 = n_2 \sin 0.1r, n_2 \cos 0.1 = n_2 \cos 0.1r$. When $\theta = 36.8^\circ$, $0.1 = 22.1^\circ$, and $0.2 - 22.8^\circ = 38.97^\circ$. The light cannot be totally reflected. Theoretically, total reflection occurs only when the incident angle exceeds 77°. However, minimal amount of light exceeds the angle. The sphere lens has poor efficiency in directing light.

FIG. 7 depicts a non-sphere lens (elliptic lens, paraboloid lens or hyperboloid lens). β_1 and β_2 are the incident angles of the light beams 1 and 2. The depth of an elliptic lens is b, and the radius of the elliptic lens is a^2. The eccentric ratio $e = (1 - (a^2/b^2)^{1/2})$. When $a = b = 1; e = 0.86$. $\beta_1 = 01$ for the elliptic lens. $\beta_1 = 56.3^\circ$, $\beta_2 = 72.4^\circ$. According to Snell’s law, $\beta_1 = 1.59 \sin 0.1r, 0.1 = \beta_1 - 0.1r = 24.7^\circ$, $0.2 - 2\beta_2 - 0.2r = 35.5^\circ$, which is very close to the critical angle 38.97°. If 0.3 is 38.97°, $\beta_1 = 1.59 \sin 0.1r, 0.1 = \beta_1 - 0.3r = 39.3^\circ$, which exceeds the critical angle. High efficiency is obtained only when the ratio a/b exceeds 2.0.

FIG. 8 is a SEM diagram for a light diffusion structure formed on a PC film of $500 \mu m$. FIG. 9 depicts EL.DIM pattern. High light intensity can be observed exceeding the view angle 45°. When light enters the film, it has a refraction angle of over 45°, which exceeds the critical angle 38.97° for PC material, whereby the light propagates in the film by continuous total reflection.

FIG. 10 depicts light entering the film in another surface, whereby light is condensed. FIG. 11 depicts the light diffusion structure formed on the film by heat—pressing method. An impression head is used to press the film. A reflective sheet is disposed opposite to the light diffusion structure. FIG. 12 depicts a laser source being used, with the laser exiting the film from the edges. FIG. 13 shows light exiting from the edge of the film, showing light having total reflection in the film. FIG. 14 depicts a white LED being used from the structure of FIG. 13. FIG. 15 depicts a PC film with a light outgoing structure (scratches). Light exits the film from the scratches. FIG. 16 depicts a white LED being used for the structure of FIG. 15. FIG. 17 depicts a bended light guiding film (light can propagate in the bended film). FIG. 18 depicts a light guiding film with scarred symbols from which light exits the film.

While the invention has been described by way of example and in terms of preferred embodiment, it is to be understood that the invention is not limited thereto. To the contrary, it is intended to cover various modifications and similar arrangements (as would be apparent to those skilled in the art). Therefore, the scope of the appended claims should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements.

What is claimed is:

1. A light guiding film, comprising:
 a main body; and
 a light diffusion structure comprising a plurality of micro concave lenses arranged in a first direction and a second direction to form a second dimensional array and the curvature of each concave lens and the junction of the concave lenses is different from zero, wherein light from a light source passes through the light diffusion structure, is refracted into the main body and then propagates in the main body by total reflection.

2. The light guiding film as claimed in claim 1 further comprising a reflective element adjacent to the main body, wherein the light is reflected by the reflective element to pass through the light diffusion structure, is refracted into the main body and propagates in the main body by total reflection.

3. The light guiding film as claimed in claim 2, wherein the main body has a first surface on which the light diffusion
structure is formed and a second surface, wherein when the light passes through the first surface to enter the light diffusion structure, the reflective element is adjacent to the second surface, and when the light passes through the second surface to enter the light diffusion structure, the reflective element is adjacent to the light diffusion structure.

4. The light guiding film as claimed in claim 1, wherein the main body has a first surface on which the light diffusion structure is formed and a second surface, and the light passes through the first surface to enter the light diffusion structure and propagates in the main body by total reflection.

5. The light guiding film as claimed in claim 1, wherein the light from the light source is perpendicular or inclined to the light guiding film.

6. The light guiding film as claimed in claim 1, wherein the first direction is substantially perpendicular to the second direction.

7. The light guiding film as claimed in claim 1, wherein the ratio of the width to the depth of each micro concave lens is larger than 2.

8. The light guiding film as claimed in claim 1, wherein the aspect ratio of each micro concave lens is larger than 1.

9. The light guiding film as claimed in claim 1, wherein the depth of the micro concave lens is smaller than the thickness of the micro concave lens.

10. The light guiding film as claimed in claim 1 further comprising a light outgoing structure formed on the first surface or the second surface, wherein the light propagating in the main body exits the main body via the light outgoing structure.

11. The light guiding film as claimed in claim 1, wherein the incident direction of the light is substantially perpendicular to the propagating direction of the light.

12. The light guiding film as claimed in claim 1, wherein the material of the light guiding film is transparent and comprises polycarbonate, PET, COP, COC, PE, PP, PES, PI, PMMA or PS.

13. The light guiding film as claimed in claim 1, wherein the light diffusion structure is formed on the main body by an impression head with a heat pressing method.

14. The light guiding film as claimed in claim 1, wherein the light diffusion structure is formed on the main body by a mold injection method.

15. The light guiding film as claimed in claim 1, wherein the light diffusion structure is formed on the main body by a UV molding method.

16. The light guiding film as claimed in claim 15, wherein the UV molding method employs UV adhesive having the same refraction index as the main body.