Office de la Propriete Canadian CA 2938891 A1 2015/11/19

Intellectuelle Intellectual Property
du Canada Office (21) 2 938 891
- organisme An agency of 12y DEMANDE DE BREVET CANADIEN
d'Industrie Canada Industry Canada
CANADIAN PATENT APPLICATION
(13) A1
(86) Date de depot PCT/PCT Filing Date: 2015/02/18 (51) CLInt./Int.Cl. GO6F 12/02 (2006.01)
(87) Date publication PCT/PCT Publication Date: 2015/11/19 (71) Demandeur/Applicant:
(85) Entree phase nationale/National Entry: 2016/03/04 MICROSOFT TERCNOLOGY LICENSING, LLC, US
86) N° demande PCT/PCT Application No.: US 2015/016237 (72) Inventeursiinventors:
(6) I demande PRTEATIon O BAK, YEVGENIY M., US;
(87) N° publication PCT/PCT Publication No.: 2015/1/5062 IYIGUN, MEHMET, US:
(30) Priorité/Priority: 2014/02/21 (US14/187,031) WANG, LANDY, US;

KISHAN, ARUN U., US
(74) Agent: SMART & BIGGAR

(54) Titre : COMPRESSION DE MEMOIRE MODIFIEE
(54) Title: MODIFIED MEMORY COMPRESSION

100
108
N\ , 112
— —_—
Program Page File

102 I I
116 _.,i Memory Manager

Memory
Controller

o} |

Paged Memory

114 104
, -

Compressed
Store Manager

Page Table

Compressed
Store u

Fig. 1

(57) Abrege/Abstract:
A set of memory pages from a working set of a program process, such as at least some of the memory pages that have been
modified, are compressed Into a compressed store prior to being written to a page file, after which the memory pages can be

B

.

'

e
ok [[f
RO . e s
. M "c'-'-.n:‘-:{\: .«me . m s
.
.

A7 /7]
o~

C an a dg http:vopic.ge.ca - Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC

OPIC - CIPO 191

CA 2938891 A1 201511119

ey 2 938 891
(13) A1

(57) Abrege(suite)/Abstract(continued):

repurposed by a memory manager. The compressed store Is made up of multiple memory pages, and the compressed store
memory pages can be repurposed by the memory manager after being written to the page file. Subsequent requests from the
memory manager for memory pages that have been compressed Into a compressed store are satisfled by accessing the
compressed store memory pages (Including retrieving the compressed store memory pages from the page file if written to the page
file), decompressing the requested memory pages, and returning the requested memory pages to the memory manager.

woO 2015/175062 A3 Il 1} IRFAI00A | O 00 L

(43) International Publication Date
19 November 2015 (19.11.2015)

CA 02938891 2016-08-04

(19) World Intellectual Property
Organization
International Burecau

WIPOIPCT

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(10) International Publication Number

WO 2015/175062 A3

(1)

(21)

(22)

(25)

(26)
(30)

(71)

(72)

International Patent Classification:
GO6F 12/02 (2006.01) GO6F 12/10 (2006.01)
GO6F 12/08 (2006.01)

International Application Number:
PCT/US2015/016237

International Filing Date:
18 February 2015 (18.02.2015)

English
English

Filing Language:
Publication Language:

Priority Data:
14/187,031 21 February 2014 (21.02.2014) us

Applicant: MICROSOFT TECHNOLOGY LICENS-

ING, LLC [US/US]; One Microsoft Way, Redmond,
Washington 98052-6399 (US).

Inventors: BAK, Yevgeniy M.; c/o Microsoft Corpora-
tion, LCA - International Patents (8/1172), One Microsoft
Way, Redmond, Washington 98052-6399 (US). IYIGUN,
Mehmet; c/o Microsoit Corporation, LCA - International
Patents (8/1172), One Microsott Way, Redmond, Washing-

(54) Title: MODIFIED MEMORY COMPRESSION

100

108\
(r(C‘ /—112

Program Page File

102,\ I I [114,

116 — Memory Manager

Memory Compressed

Page lable Controller

,

Store Manager

o~ 1|

Paged Memory

Compressed
Store u

Fig. 1

(81)

(84)

[104

ton 98052-6399 (US). WANG, Landy; ¢/o Microsott Cor-
poration, LCA - International Patents (8/1172), One Mi-
crosoft Way, Redmond, Washington 98052-6399 (US).
KISHAN, Arun U.; ¢/o Microsoft Corporation, LCA - In-
ternational Patents (8/1172), One Microsolt Way, Red-
mond, Washington 98052-6399 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available). ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,

[Continued on next page/

(57) Abstract: A set of memory pages from a working set
of a program process, such as at least some of the memory
pages that have been modified, are compressed into a
compressed store prior to being written to a page file,
after which the memory pages can be repurposed by a
memory manager. The compressed store 1s made up of
multiple memory pages, and the compressed store
memory pages can be repurposed by the memory manager
after being written to the page file. Subsequent requests
from the memory manager for memory pages that have
been compressed into a compressed store are satisfied by
accessing the compressed store memory pages (including
retrieving the compressed store memory pages from the
page file if written to the page file), decompressing the re-
quested memory pages, and returning the requested
memory pages to the memory manager.

CA 02938891 2016-08-04

WO 2015/175062 A3 |00 AA 10 0 A 0 R R

DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, Published:
LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE,
SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG). — before the expiration of the time limit for amending the

claims and to be republished in the event of receipt of

— with international search report (Art. 21(3))

Declarations under Rule 4.17: amendments (Rule 48.2(h))

as to applicant'’s entitlement to apply for and be granted (88)
a patent (Rule 4.17(ii))

as to the applicant’s entitlement to claim the priority of
the earlier application (Rule 4.17(iii))

Date of publication of the international search report:
7 January 2016

10

15

20

25

30

CA 02938891 2016-08-04

WO 2015/175062 PCT/US2015/016237

MODIFIED MEMORY COMPRESSION

Background

[0001] As computer technology has advanced, the performance of computer
processors has increased. The performance of such computer processors, however, 18
sometimes hindered by other bottlenecks 1in the computer. For example, the speed of data
transfer from hard disk drives into random access memory (RAM) i1s a bottleneck in
computer performance. One way to reduce the impact of bottlenecks 1n the computer 1s to
storc more data in RAM. However, the cost of RAM remains high enough that 1t 1s
typically cost prohibitive to use very large amounts of RAM 1n computers.

Summary

[0002] This Summary 1s provided to introduce a selection of concepts 1n a simplified
form that arec further described below in the Detailed Description. This Summary 1s not
intended to 1dentify key features or essential features of the claimed subject matter, nor 1s
it intended to be used to limit the scope of the claimed subject matter.

[0003] In accordance with one or more aspects, a first set of memory pages that have
been modified are identified. The first set of memory pages 1s compressed 1nto a
compressed store that 1s made up of a second set of memory pages. After the first set of
memory pages has been compressed into the compressed store, a memory manager 1S
allowed to repurpose the first set of memory pages. Additionally, the second set of
memory pages are written out to a page file rather than writing out the first set of memory
pages to the page file.

[0004] In accordance with one or more aspects, a computing device includes a
memory, a memory manager configured to manage pages of the memory, and a
compressed store manager. The compressed store manager 18 configured to compress, 1nto
a compressed store associated with a process, a first set of memory pages that have been
modified by the process, the compressed store being made up of a second set of memory
pages. The compressed store manager 1s further configured to allow, for each memory
page of the first set of memory pages, the memory manager to repurpose the memory page
after the memory page has been compressed into the compressed store, and write out the
second set of memory pages to a page file in the absence of writing out the first set of
memory pages to the page file.

Brief Description of the Drawings

[0005] The same numbers are used throughout the drawings to reference like features.

10

15

20

25

30

WO 2015/175062 PCT/US2015/016237
[0006] Fig. 1 1llustrates an example system employing modified memory compression
in accordance with one or more embodiments.

[0007] Fig. 2 1llustrates an example lifecycle of memory pages in accordance with one
or more embodiments.

[0008] Fig. 3 illustrates an example record of paged memory 1n accordance with one
or more embodiments.

[0009] Fig. 4 illustrates an example of compressing memory pages in accordance with
one or more embodiments.

[0010] Fig. 5 1s a flowchart 1llustrating an example process for compressing memory
pages 1n accordance with one or more embodiments.

[0011] Fig. 6 1s a flowchart 1llustrating an example process for retrieving compressed
memory pages 1n accordance with one or more embodiments.

[0012] Fig. 7 illustrates an example memory page map 1n accordance with one or more
embodiments.

[0013] Fig. 8 1llustrates an example region map in accordance with one or more
embodiments.

[0014] Fig. 9 shows an example of out-swapping a working set in accordance with one
or more embodiments.

[0015] Fig. 10 1s a flowchart illustrating an example process for out-swapping the
working set 1n accordance with one or more embodiments.

[0016] Fig. 11 1s a flowchart 1illustrating an example process for in-swapping the
working set 1n accordance with one or more embodiments.

[0017] Fig. 12 1llustrates an example system that includes an example computing
device that 1s representative of one or more systems and/or devices that may implement
the various techniques described herein.

Detailed Description

[0018] Modified memory compression 18 discussed herein. A memory 1n a system 18
made up of multiple blocks or portions referred to as memory pages (or simply pages). A
set of memory pages from a working set of a program, such as at lecast some of the
memory pages In the working set that have been modified, are compressed into a
compressed store prior to being written to a page file. The memory pages can be
repurposed by a memory manager after bemmg compressed ito the compressed store,
regardless of whether the compressed store has been written to the page file. The

compressed store 18 1tself made up of multiple memory pages, and the compressed store

10

15

20

25

30

WO 2015/175062 PCT/US2015/016237
memory pages can be repurposed by the memory manager after being written to the page
file. Subsequent requests from the memory manager for memory pages that have been
compressed into a compressed store are satisfied by accessing the compressed store
memory pages (including retrieving the compressed store memory pages from the page
file 1f written to the page file), decompressing the requested memory pages, and returning
the requested memory pages to the memory manager.

[0019] Additionally, in certain situations such as when a program 1s suspended, the
working set of memory pages 1s out-swapped. Out-swapping the working set of memory
pages includes 1dentifying a list of memory pages 1n the working set of a process of the
program, compressing the identified memory pages, and writing the compressed 1dentified
memory pages to the compressed store 1n sequential order by virtual memory address of
the 1dentified memory pages. Space 1s reserved in the page file for the compressed store,
and the compressed store 1s written out to the reserved space 1n the page file.

[0020] In response to a subsequent determination that the program 1s to be resumed,
the working set of memory pages for the program is in-swapped. In-swapping the
working set of memory pages includes retrieving the compressed store from the page file
and storing the compressed store mnto a set of compressed store memory pages. The
compressed store memory pages are decompressed, and returned to a memory manager for
inclusion 1n the working set of the program.

[0021] Fig. 1 1llustrates an example system 100 employing modified memory
compression 1n accordance with one or more embodiments. The system 100 mcludes a
memory manager 102, a compressed store manager 104, and paged memory 106.
Generally, the memory manager 102 manages storage of data 1n the paged memory 106.
The memory manager 102 allocates portions of the paged memory 106 to various
programs 108 1n the system 100. A program 108, when running, is also referred to herein
as a process (which 1s an instance of a running program 108), so portions of the paged
memory 106 allocated to a program 108 are also referred to as allocated to a process of the
program 108. The pages allocated to a process are owned by or dedicated to that process
and arc used by that process and no other process (and thus are also referred to as private
pages). The programs 108 can be applications, operating system programs, or other
components or modules. The memory manager 102 receives requests from these
programs 108 to retrieve data from the paged memory 106 and to write data to the paged
memory 106. The paged memory 106 can be, for example, any type of CPU (Central

10

15

20

25

30

WO 2015/175062 PCT/US2015/016237
Processing Unit) addressable memory, such as volatile memory (¢.g., RAM) or nonvolatile
memory (€.g., Flash memory).

[0022] The memory manager 102 also allocates one or more portions of the paged
memory 106 to the compressed store manager 104. Although 1llustrated separately, the
compressed store manager 104 1s treated as a program 108 for purposes of allocating
memory pages. The compressed store manager 104 generates one or more compressed
stores 110 for storage of data in compressed form, for example one compressed store 110
for cach program 108. The system 100 also includes a page file 112, which 1s a file on a
storage device 1n which memory pages can be stored. The storage device on which the
page file 112 1s stored 18 a secondary storage device 1n the system 100, and 1n one or more
embodiments has slower read/write times but larger storage capacity than the paged
memory 106. The storage device on which the page file 112 1s stored can be, for example,
Flash memory (¢.g., a solid state disk (SSD)) or magnetic disk. Although a single page
file 112 1s illustrated in Fig. 1, it should be noted that multiple page files can be included
in the system 100.

[0023] Memory manager 102 manages paged memory 106 using paging. The memory
manager 102 organizes the memory 106 (e.g., RAM) into pages, which are a particular
(c.g., fixed) size unit of data. The act of paging refers to reading data in units of pages
from the backing file, which 1s page file 112 m system 100, when the data 1s not 1n the
memory 106. The act of paging also refers to writing dirty (modified) data back 1n units
of pages mto the page file 112. The memory pages are thus also referred to as page file
backed memory pages. Such paging techniques are well known to those skilled 1n the art.
[0024] The memory manager 102 includes a memory controller 114 that operates to
carry out the functionality of the memory manager 102, and a page table 116 that 1s a
record of various information regarding memory pages of the paged memory 106. The
page table 116 includes information indicating where memory pages are stored at any
given time. As discussed m more detail below, memory pages are typically stored 1n
physical memory (paged memory 106) or in a compressed store 110 (which itself may be
stored 1n physical memory or the page file 112), although 1n some situations
uncompressed memory pages may be stored 1n page file 112. For memory pages stored 1n
physical memory, the memory manager 102 accesses the memory pages directly. For
memory pages stored 1 a compressed store 110, the memory manager 102 requests the
memory pages from the compressed store manager 104, which retrieves and decompresses

the memory pages as appropriate, and returns the decompressed memory pages to the

10

15

20

25

30

WO 2015/175062 PCT/US2015/016237
memory manager 102, In the event that an uncompressed memory page 18 stored 1n page
file 112, the memory manager retrieves the memory page from the page file 112.

[0025] The paged memory 106 includes multiple pages that can each be classified as
onc¢ of multiple different types of pages at any given time, and this classification can
change over time. One type of memory page 1s a memory page that has been allocated to
a program 108 and 1s currently being used by the program 108, and this type of memory
page 18 referred to as a working set page (or alternatively an assigned page) in the working
set of a process of the program 108 (also referred to as the working set of the program
108). A memory page currently being used refers to a memory page that has been
accessed by the program 108 within a threshold amount of time (e.g., the previous 20
seconds), or 18 otherwise being accessed by the program 108 in such a manner that the
memory page 1S not to be repurposed by the memory manager 102. Repurposing a
memory page refers to the memory page being re-used by the memory manager 102 for
something else, such as storing different data for the same or a different program or for
other use m the system.

[0026] Another type of memory page 18 a memory page that has been allocated to a
program 108 and 1s not currently being used by the program 108, and this type of memory
page 1s referred to as a standby page (or alternatively a re-assignable page). A memory
page not currently being used refers to a page the contents of which have not been
modified (or has been written to the page file 112 or a compressed store 110 since last
modification) and that has not been accessed by the program 108 within a threshold
amount of time (¢.g., the previous 20 seconds), or 1s otherwise being accessed by the
program 108 1n such a manner that the memory page can be repurposed by the memory
manager 102. A memory page can be repurposed by, for example, being assigned to be a
different type of page (e.g., working), being allocated to a different program, and so forth.
[0027] Another type of memory page 1S a memory page the contents of which have
been modified but not yet copied to the page file 112, and this type of memory page 18
referred to as a modified page (or alternatively a dirty page). A modified memory page 1s
not to be repurposed by the memory manager 102. However, after compressing and
storing a modified memory page in a compressed store 110 as discussed 1n more detail
below, the classification of the memory page can be changed (e.g., to a standby page or a
free page).

[0028] Another type of memory page 1S a memory page that 1s not currently allocated

to a program 108, and with which the memory manager 102 can do anything (including

10

15

20

25

30

WO 2015/175062 PCT/US2015/016237
being repurposed). This type of memory page 1s referred to as a free page (or alternatively
de-allocated page).

[0029] The memory manager 102 uses various rules or criteria to determine when
memory pages of the paged memory 106 are allocated to programs 108, which memory
pages are allocated to which programs 108, which memory pages previously allocated to a
program 108 are to be repurposed, and so forth. The memory manager 102 also
determines the classification for types of memory pages, changing the classifications of
memory pages as appropriate. In one or more embodiments, the memory manager 102
maintains a list or other record of which memory pages of the paged memory 106 are
classified as which type of page. For example, the memory manager 102 can maintain a
list or other record of working set pages, a list or other record of standby pages, a list or
record of modified pages, a list or record of free pages, and so forth.

[0030] The system 100 represents one or more devices. In one or more embodiments,
the components 102 — 108 1llustrated 1n the system 100 are included as part of the same
computing device. Alternatively, the components can be spread across two or more
devices.

[0031] Fig. 2 illustrates an example lifecycle 200 of memory pages in accordance with
on¢ or more embodiments. A memory page can be allocated to a program, and included 1n
a working set 202 of the program. The working set 202 of the program includes working
set pages of the program. The memory manager 102 can trim (also referred to as reduce)
the memory pages 1n the working set 202 of the program at various times and for various
reasons, such as to make memory pages available for other programs. Memory pages that
have been written to (modified) and trimmed from the working set 202 are moved 204 to a
modified list 206 of memory pages.

[0032] The compressed store manager 104 compresses memory pages in the modified
list 206 and adds 208 the compressed memory pages to memory pages of the compressed
storc 110. The compressed store manager 104 can determine the timing of when to
compress memory pages in the modified list in different manners, such as compress
memory pages at regular or irregular intervals, compress memory pages in response to at
lecast a threshold number of memory pages bemng included 1in the modified list, compress
memory pages 1n response to a request from the memory manager 102, compress memory
pages 1n response to a determination that memory pages of a process are to be out-
swapped as discussed 1n more detail below, and so forth. After being compressed and

added to the compressed store 110, the memory pages in the modified list 206 are moved

10

15

20

25

30

CA 02938891 2016-08-04

WO 2015/175062 PCT/US2015/016237

210 to a standby list 212. The standby list 212 1s a list of standby pages, although the
memory pages can alternatively be moved to a list of free pages.

[0033] The compressed store 110 1s 1tself made up of multiple memory pages, also
referred to herein as compressed store memory pages, and these compressed store memory
pages can be moved 214 to the modified list 206 as desired by the compressed store 110 or
the memory manger 102. However, the compressed store memory pages do not have to be
moved to the modified list for a long time (potentially indefinitely) as desired. The
compressed store memory pages can remain 1n the working set of the compressed store.
[0034] For compressed store memory pages moved to the modified list 206, the
memory manager 102 (or alternatively the compressed store manager 104) writes out 216
the compressed store memory pages to the page file 112. Thus, a memory page from the
working set 202, after being compressed and stored 1 a compressed store memory page,
can be written to the page file 112. It should be noted the compressed store manager 104
does not attempt to compress the compressed store memory pages on the modified list
206. The compressed store manager 104 can identify the memory pages it 1s not to
attempt to compress in different manners, such as based on the process that the memory
pages are allocated to (e.g., if allocated to a system process, such as the compressed store
manager 104, no attempt 1s made to compress the memory pages), by maintaining a record
of the compressed store memory pages, and so forth.

[0035] Situations can aris¢ in which a memory page from the working set 202 that 1S
moved to the modified list 206 cannot be compressed or otherwise added to a memory
page of the compressed store 110 1n an expected amount of time (e.g., within a threshold
amount of time), or the system 100 chooses not to compress a memory page at all for
various policy reasons. Such situations may occasionally occur, such as due to heavy
memory usage 1n the system 100, heavy processor usage m the system 100, various
policies applied to the system 100, and so forth. In such situations, the memory manager
102 writes out 218 the uncompressed memory page to the page file 112. Such memory
pages arc thus not included in a memory page of the compressed store 110, but the
memory manager 102 maintains a record (€.g., in the page table 116) that such memory
pages are available from the page file 112 rather than the compressed store manager 104.
[0036] Returning to Fig. 1, pages of the paged memory 106 cach have a corresponding
priority level. Only particular types of memory pages (e.g., modified pages) may have
priority levels, or alternatively all types of memory pages may have priority levels. The

memory manager 102 sets the priority level for each memory page, and can determine the

10

15

20

25

30

WO 2015/175062 PCT/US2015/016237
priority level for a memory page in a variety of different manners. In one or more
embodiments, the priority level for a memory page 1s the priority level assigned by an
operating system to the process or thread that requested allocation of the memory page.
Other criteria can also be used to determine the priority level for a memory page, such as a
request from a program 108, the memory page being associated with a particular type of
retrieval (e.g., speculative retrieval of pages), and so forth. The memory manager 102 can
also change the priority levels of memory pages over time (e.g., lowering the priority
levels of memory pages not accessed by a program 108 for a threshold amount of time,
lowering the priority levels of compressed store memory pages that have been written to
the page file 112 and moved to the standby list 212, and so forth).

[0037] The priority levels can be used 1n various manners 1n the system 100. In one or
more embodiments, memory pages are written to the page file 112 based on their priority
level. Memory pages to be written to the page file 112 that are lower priority are written
to the page file prior to memory pages that are higher priority. This allows higher priority
memory pages to remain in physical memory longer than lower priority memory pages,
and avoids a priority inversion scenario 1n which higher priority memory pages are written
to the page file (and are no longer 1n physical memory) before lower priority memory
pages (which remain in physical memory). Similarly, 1n one or more embodiments
memory pages are repurposed from the standby list based on their priority level. Memory
pages on the standby list that are lower priority are repurposed prior to memory pages that
arc higher priority. This allows higher priority memory pages to remain on the standby
l1st longer than lower priority memory pages.

[0038] Fig. 3 1llustrates an example record 300 of paged memory 1n accordance with
on¢ or more embodiments. A set of multiple (X) priority levels 302 are illustrated, the set
of priority levels 302 including the priority levels that can correspond to pages. The
record 300 of paged memory 1s a record of, for example, modified pages of the paged
memory 106 of Fig. 1. Priority levels with larger numbers can be higher priority than
priority levels with smaller numbers (e.g., priority level 4 can be higher priority than
priority level 1), or vice versa. Alternatively, labels other than numbers can be used to
identify priority levels, such as letters or other characters.

[0039] For cach priority level 302, the record 300 1dentifies a set of zero or more
memory pages having that priority level. For example, pages 304 correspond to priority
level 1, pages 306 correspond to priority level 3, and so forth. The record 300 can be

maintained 1n any of a variety of different manners, such as a list or other data structure

10

15

20

25

30

WO 2015/175062 PCT/US2015/016237
identifymng memory pages corresponding to a particular priority level, using different
storage arcas (¢.g., different caches) for memory pages corresponding to different priority
levels, and so forth.

[0040] Returning to Fig. 1, the compressed store 110 1s implemented as one or more
memory pages allocated to the compressed store manager 104 by the memory manager
102. These memory pages are memory pages 1n user mode virtual address space of the
compressed store manager 104, which provides various functionality. The memory pages
implementing the compressed store 110 do not consume kernel virtual address space, and
provide security to prevent data exposure because no unprivileged user mode program can
access data on the memory pages. Furthermore, by using memory pages in user mode
virtual address space of the compressed store manager 104, the memory manager 102 and
compressed store manager 104 have control over the memory pages using existing
memory manager application programming interfaces (APIs), allowing the compressed
storec manager 104 to control pageability of 1ts backing data, swapping capabilities, and so
forth as it desires.

[0041] In one or more embodiments, the compressed store manager 104 compresses
pages of the paged memory 106 and stores the compressed pages mn a region of a
compressed store 110, also referred to as compressing the memory pages into the
compressed store 110 or into the region of the compressed store 110. The compressed
storc manager 104 gencrates a separate compressed store 110 for (and associated with)
cach program 108, and adds compressed memory pages from the modified list 206 from a
particular program 108 to regions of the compressed store 110 associated with the
particular program. Alternatively, the compressed store manager 104 can generate and
maintain compressed stores 110 at different granularities other than one compressed store
110 for each program 108 (¢.g., the compressed storage manager 104 can generate and
maintain compressed stores 110 for an arbitrary set of programs 108, or for all of the
pageable memory in the system).

[0042] Each region of the compressed store 110 18 made up of multiple memory pages
of the paged memory 106 that are allocated to the compressed store manager 104 by the
memory manager 102. For example, a region may be 128 kilobytes and the memory pages
may cach be 4 kilobytes, although these values are examples and other region and/or page
sizes can alternatively be used. Pages of the paged memory 106 that are being compressed
into a particular region have at least similar priority levels, and the memory pages that

make up a region of the paged memory 106 have at least similar priority levels as the

10

15

20

25

30

WO 2015/175062 PCT/US2015/016237
memory pages compressed into that region. Memory pages having at least similar priority
levels refer to memory pages having the same or stmilar priority levels.

[0043] It should be noted that the operations discussed herein as performed by the
compressed store manager 104 or a compressed store 110 can be performed by one or both
of the compressed store manager 104 and a compressed store 110, that operations
discussed herein as being performed by the compressed store manager 104 can
alternatively be performed by a compressed store 110, and that operations discussed herein
as being performed by a compressed store 110 can alternatively be performed by the
compressed store manager 104. In one or more embodiments, the compressed store
manager 104 1s responsible for managing cach compressed store 110, routing read and
write requests to the appropriate compressed store 110, managing memory for the
compressed store 110 (e.g., requesting memory pages be allocated to a compressed store
110), and so forth. In such situations, cach compressed store 110 can simply be a set of
memory pages. Alternatively, at least some of the control and logic for managing memory
for a compressed store 110 (e.g., requesting a set of pages of the paged memory 106 be
allocated to the compressed store 110 by the memory manager 102) can be implemented
by the compressed store 110 1tself. In such situations, the compressed store 110 includes
one or more memory pages as well as a compressed store module to implement the control
and logic for managing memory for the compressed store 110.

[0044] In one or more embodiments, pages of the paged memory 106 that are being
compressed into a particular region of the compressed store 110 have the same priority
level, and different regions are used for different priority levels. The memory pages that
make up a region of the compressed store 110 have the same priority level as the memory
pages compressed 1nto that region. For example, the compressed store manager 104 can
compress the pages 304 of Fig. 3 into one region that 1s made up memory pages allocated
to the compressed store manager 104 and having priority level 1. By way of another
cxample, the compressed store manager 104 can compress the pages 306 of Fig. 3 1nto
another region that 1s made up of memory pages allocated to the compressed store
manager 104 and having priority level 3. It should be noted that for each priority level,
compressed store manager 104 can create zero or more regions made up of memory pages
corresponding to that priority level.

[0045] Alternatively, pages of the paged memory 106 that are being compressed into a
particular region of the compressed store 110 may have similar but not necessarily the

same priority levels. Which priority levels are similar can be determined in different

10

10

15

20

25

30

WO 2015/175062 PCT/US2015/016237
manners, such as based on whether the priority levels are within a threshold number (e.g.,
1 or 2) of levels of one another. For example, priority level 1 and priority level 2 can be
similar and thus pages of priority level 1 and pages of priority level 2 can be compressed
into the same region, but priority level 1 and priority level 5 may not be similar and thus
pages of priority level 1 and pages of priority level 5 are not compressed into the same
region.

[0046] Similarly, the memory pages that make up a region of the paged memory 106
may have similar but not necessarily the same priority levels as the memory pages
compressed into that region. For example, the memory pages that make up a region of the
compressed store 110 may have priority level 3, and the memory pages compressed 1nto
that region may have priority level 2 or priority level 3. Furthermore, the region can be
made up of memory pages of the same or similar priority level. For example, a region
may be made up of some memory pages having priority level 2 and some memory pages
having priority level 3.

[0047] To create a region, the compressed store manager 104 requests a sct of pages of
the paged memory 106 be allocated to the manager 104 by the memory manager 102. The
allocated set of pages are classified as working set pages, and the compressed store
manager 104 associates the allocated set of pages with a particular compressed store 110.
The compressed store manager 104 compresses memory pages on the modified list 206,
and stores those compressed pages m the set of pages allocated to the compressed store
manager 104.

[0048] Thus, for example, a particular set of pages 1s compressed 1nto an additional set
of pages corresponding to at least similar priority levels. After that particular set of pages
1s compressed, the additional set of pages are also classified as modified pages. Thus,
compressed store manager 104 compresses that particular set of pages into a different set
of pages of the same type (modified) and corresponding to at least similar priority levels.
However, as the compressed store manager 104 compresses that particular set of pages,
the quantity of pages 1 that particular set of pages 1s typically greater than the quantity of
pages 1n the compressed set of pages. The compressed set of pages can then be written to
the page file 112. Various different policies can be applied to determine when (or
whether) the compressed set of pages are written to the page file 112.

[0049] Fig. 4 1llustrates an example of compressing memory pages 1n accordance with
onc or more embodiments. The paged memory 106 mcludes five memory pages 306

having the same priority level (e.g., priority level 3 as discussed above), as illustrated at

11

10

15

20

25

30

WO 2015/175062 PCT/US2015/016237
402. The compressed store manager 104 1s allocated a region of a compressed store
including two memory pages 404 having at least sitmilar priority levels as the memory
pages 306. The compressed store manager 104 compresses the memory pages 306 into the
memory pages 404, as illustrated at 406. After compression, the memory manager 102
can repurpose the memory pages 306 because the compressed version of the memory
pages 306 are stored mn the paged memory 106 as memory pages 404. Thus, after
compression the paged memory 106 stores the memory pages 404 but need not store the
memory pages 306.

[0050] Fig. 5 1s a flowchart illustrating an example process 500 for compressing
memory pages 1n accordance with one or more embodiments. Process 500 1s carried out
by a compressed store manager, such as compressed store manager 104 of Fig. 1, and can
be implemented 1n software, firmware, hardware, or combinations therecof. Process 500 1s
shown as a set of acts and 1s not limited to the order shown for performing the operations
of the various acts. Process 500 1s an example process for compressing memory pages;
additional discussions of compressing memory pages are included herein with reference to
different figures.

[0051] In process 500, a set of one or more memory pages on the modified list are
identified (act 502). The set of one or more memory pages can be i1dentified 1n various
manners, such as being identified in the order the memory pages are added to the modified
list, based on priority levels of pages (e.g., lower priority pages being identified before
higher priority pages), and so forth.

[0052] The set of memory pages 1dentified 1in act 502 are compressed 1nto a region of a
compressed store of the paged memory (act 504). This region of the compressed store 18
made up of one or more compressed store memory pages that have at least sitmilar priority
levels as the set of memory pages 1dentified 1in act 502. As part of the compressing 1n act
504, the compressed store manager maintains a record of where in the region the
compressed version of ecach memory page of the set of memory pages 1s stored. This
record can take various forms, such as for cach compressed version of a memory page a
record of which one or more compressed store memory pages store the compressed
version of the memory page, for cach compressed version of a memory page a record of an
address range 1n the region that stores the compressed version of the memory page, and so
forth.

[00S3] Compressing a memory page refers to compressing the content of (¢.g., data

stored 1n) the memory page. Any of a variety of different public and/or proprictary

12

10

15

20

25

30

CA 02938891 2016-08-04
WO 2015/175062 PCT/US2015/016237
compression techniques can be used to compress a memory page. For example, a memory
page can be compressed using run-length encoding compression algorithms, LZW
compression algorithms, Huffman coding algorithms, and so forth. Multiple different
compression algorithms can optionally be employed, such as different compression
algorithms for different types of content. For example, one compression algorithm may be
used for alphanumeric and/or text content, another compression algorithm may be used for
image content, and another compression algorithm may be used for audio content. The
compression technique used to compress a memory page 1s typically a lossless
compression algorithm, although 1n certain circumstances (¢.g., for certain 1mage and/or
audio content) a lossy compression algorithm may alternatively be used. The particular
compression algorithm may also be device dependent, where a faster device (e.g., with a
more powerful one or more processors) may be configured with a more processor-
intensive compression algorithm that compresses better whereas a slower device (e.g.,
with a less powerful one or more processors) may be configured with a less processor-
intensive algorithm that does not compress as well. The particular compression algorithm
may also be based on a tradeoff with the storage device performance. If the CPU
outperforms the storage device by a large margin, then a more processor-intensive
compression algorithm that compresses better (and thus results 1n less storage device 1/0)
can be used.

[0054] In one or more embodiments, the memory pages are compressed 1n act 504
individually. Alternatively, two or more memory pages can be compressed together (e.g.,
a compression algorithm can be run on two or more memory pages together rather than
individually).

[0055] Additional processing of the set of memory pages can also optionally be
performed 1n act 504. This additional processing can be encrypting the content of the set
of memory pages (¢.g., using symmetric key encryption, public key encryption, and so
forth), generating error-detecting data such as CRC (cyclic redundancy check) data for the
set of memory pages, generating authentication information such as HMAC (Hash
Message Authentication Code) data for the set of memory pages, and so forth.

[0056] The set of memory pages 1dentified 1in act 502 are moved to the standby list (act
506) after being compressed into the compressed store, or alternatively to the free list.
The set of memory pages can be moved to the standby list (or free list) 1n various manners,
such as 1n response to the compressed store manager 104 notifying the memory manager

102 that the set of memory pages can be freed. The set of memory pages 1dentified 1n act

13

10

15

20

25

30

WO 2015/175062 PCT/US2015/016237
502 can be moved to the standby list (or free list) and repurposed because two versions of
the same memory page (one version bemg uncompressed and one version being
compressed) need not be kept in paged memory as 1t may not be an efficient use of paged
memory.

[0057] The compressed store memory pages that make up the region of the
compressed store are written out to the page file by the memory manager (act 508). It
should be noted that the compressed store memory pages need not be written to the page
file immediately. Rather, writing out of the compressed store memory pages can be
delayed until a later time, such as a time when the memory manager 102 desires to free
memory pages for allocation to another program 108, a time when the compressed store
manager 104 desires to write the compressed store memory pages, and so forth. It should
also be noted that any number of techniques can be implemented to improve the speed,
cfficiency, and so forth of writing the compressed store memory pages to the page file
(¢c.g., the compressed store memory pages can be written in contiguous chunks, etc.).
[0058] It should further be noted that the compressed store memory pages are written
to the page file 508 rather than writing out the set of memory pages 1dentified in act 502 to
the page file. Thus, compressed versions of the set of memory pages 1dentified m act 502
arc written to the page file without (or 1n the absence of) writing out the decompressed
versions of the set of memory pages to the page file.

[0059] Once compressed store memory pages that make up the region are written to
the page file, the compressed store memory pages are placed on the standby list at the
priority level of the compressed store memory pages (or alternatively a lower level). At
this point, the compressed store memory pages are treated as available memory 1n the
system 100 and can be repurposed at any time as desired by the memory manager 102.
[0060] In one or more embodiments, the compressed store manager does not allow the
memory manager to write out a compressed store memory page until the compressed store
memory page 1s substantially filled. A compressed store memory page being substantially
filled refers to little if any storage space remaining in the memory page into which
additional compressed memory pages could be stored. For example, at least a threshold
amount of the storage space of the compressed store memory page has been used to store
the compressed memory pages.

[0061] It should be noted that although some of the discussions herein refer to
compressing memory pages of one or more processes, the techniques discussed herein

analogously apply to compressing memory pages for all pageable memory, which can

14

10

15

20

25

30

WO 2015/175062 PCT/US2015/016237
include user mode paged memory and kernel mode paged memory. In such situations the
entire page file 1s represented by the memory 1n the compressed store, and the compressed
store essentially manages the page file as all modified pages go through the compressed
store.

[0062] Fig. 6 1s a flowchart 1llustrating an example process 600 for retrieving
compressed memory pages 1in accordance with one or more embodiments. Process 600 1s
carried out by a compressed store manager, such as compressed store manager 104 of Fig.
1, and can be implemented in software, firmware, hardware, or combinations thercof.
Process 600 1s shown as a set of acts and 1s not limited to the order shown for performing
the operations of the various acts. Process 600 1s an example process for retrieving
compressed memory pages;, additional discussions of retrieving compressed memory
pages are included herein with reference to different figures.

[0063] A request for a memory page 18 received from the memory manager (act 602).
This request can be, for example, 1n response to a request from a program 108 requesting
access to content 1n a memory page after at least one memory page was compressed 1nto a
compressed store 110. The request includes an identifier of at least one memory page,
also referred to as a key. The memory manager can request a single memory page or
multiple memory pages.

[0064] In response to the request, a check 1s made as to whether the requested memory
page 1S 1n a compressed store memory page in paged memory (act 604). As discussed
above, the compressed store memory pages need not be immediately written out to the
page file 112, so the requested memory page may still be available mm a compressed store
memory page of the paged memory 106. It should be noted that the compressed store
memory page may be in a working set of the compressed store manager 104 or on various
l1sts (¢.g., a modified list or a standby list), but still be 1n paged memory.

[0065] If the requested memory page 1s 1n a compressed store 1n paged memory, then
the requested memory page 18 decompressed (act 606) and returned to the memory
manager (act 608). After being decompressed and returned, the compressed memory page
1s deleted from the region of the compressed store 110, thus avoiding duplication of the
memory page between the uncompressed and compressed forms of the memory page.
After the contents of a compressed store memory page have been decompressed and
returned, the compressed store memory page can be repurposed or freed.

[0066] The manner 1n which the requested memory page 158 decompressed can vary

based at least 1n part on the technique used to compress the requested memory page. Any

15

10

15

20

25

30

WO 2015/175062 PCT/US2015/016237
other processing performed on the memory page 1s also verified or undone 1n act 606, such
as decrypting the memory page, verifying error-detecting data, verifying authentication
information, correcting data (if possible) if this verification fails, and so forth. If error-
detecting data or authentication information cannot be verified and/or the data corrected,
then an indication that the requested memory page 1s corrupted can be returned to the
memory manager rather than the decompressed requested memory page.

[0067] If the requested memory page 1S not in a compressed store 1n paged memory,
then a compressed store memory page that includes the requested memory page 1s
retricved from the page file (act 610). Retrieving a compressed store memory page
includes reading the compressed store memory page from the page file and storing the
compressed store memory page into a compressed store 110 of the paged memory 106.
The requested memory page 1s then mm a compressed store 110 1n paged memory, so the
requested memory page 1s decompressed (act 606) and returned to the memory manager
(act 608).

[0068] It should be noted that the acts 604 and 610 can be performed together. For
example, the compressed store manager 104 maintains a record of which memory pages
arc compressed mnto which compressed store memory pages. In response to the request in
act 602, the compressed store manager 104 reads the compressed store memory page in
which the requested memory page 1s compressed. If the compressed store memory page 18
in the compressed store 110 of the paged memory 106, then the compressed storage
manager 104 reads the compressed store memory page from paged memory 106. If the
compressed store memory page 1S not 1n the compressed store 110 of the paged memory
106, then a page fault occurs, the memory manager 102 retrieves the compressed store
memory page from the page file and places the compressed store memory page mto the
paged memory 106, then the compressed storage manager reads the compressed store
memory page from paged memory 106.

[0069] It should also be noted that the compressed storage manager 104 can optionally
choose to decompress and return (and retrieve from the page file 1f need be) one or more
memory pages 1n addition to a requested memory page. For example, the compressed
storage manager 104 can choose to decompress and return one or more memory pages
nearby (¢.g., within a threshold address range) of a requested memory page 1n an attempt
to increase performance by reducing future memory manager requests for memory pages.
[0070] It should further be noted that, with the compressing of memory pages and

retrieval of memory pages discussed herein, the compressed store manager 104 operates to

16

10

15

20

25

30

WO 2015/175062 PCT/US2015/016237
guarantee forward progress of the write (compression) or read (retrieval) request from the
memory manager. The forward progress guaranteed by the compressed store manager 104
refers to preventing deadlocks 1n the system 100 because no memory pages are available
at least 1n part due to the compression of memory pages. The compressed store manager
104 operates to guarantee this forward progress regardless of whether a requested memory
page has alrecady been compressed and stored in the page file 112 and regardless of
whether a requested memory page has been repurposed after being compressed and stored
in the page file 112. In one or more embodiments, forward progress for compressing
memory pages 1S guaranteed by informing the memory manager to write one or more
uncompressed memory pages on the modified list to the page file, thereby freeing one or
more memory pages. Forward progress for retrieving memory pages 18 guaranteed by pre-
allocating the necessary resources (€.g., one or more memory pages 1n the working set of
the compressed storage manager) up-front to ensure that at least one such read will always
have the needed resources to proceed.

[0071] Returning to Fig. 1, each memory page has an identifier (also referred to as a
key) associated with 1t that allows the memory pages to be distinguished from one another.
This 1dentifier can be assigned by any of various components, such as the memory
manager 102 or the compressed store manager 104. The compressed version of a memory
page takes up less space in the paged memory 106 than the memory page itself, so the
same data unit structure 1s not used by compressed store manager 104. For example, the
memory manager 102 may manage paged memory 106 by memory pages, but compressed
store manager 104 would not.

[0072] The compressed store manager 104 maintains a memory page map to i1dentify
in which regions of compressed stores 110 the various compressed memory pages are
stored. Fig. 7 illustrates an example memory page map 702 in accordance with one or
more embodiments. For cach memory page compressed into the compressed store 110,
the memory page map 702 maintains a corresponding record 704 1dentifying where that
compressed memory page 1s stored 1n the regions of memory pages. The compressed store
110 1s 1llustrated as one or more (n) different regions 706(1), ..., 706(n), ecach of which 1s
itself made up of multiple memory pages as discussed above. In one or more
embodiments, a separate memory page map 1S maintained for each compressed store 110
in paged memory 106. Alternatively, memory page maps for multiple compressed stores
can be combined 1nto a single memory page map, and the record 704 can include an

identifier of the compressed store 110 1n which the compressed memory page 1s stored.

17

10

15

20

25

30

CA 02938891 2016-08-04

WO 2015/175062 PCT/US2015/016237

[0073] Each record 704 includes a page key field 710, a region number field 712, an
offset field 714, a size field 716, and a flag(s) ficld 718. The page key field 710 stores the
identifier of the corresponding compressed memory page. This 1dentifier can take any of a
variety of different forms. For example, 1t could be a process identifier and virtual
address, a record 1dentifier, and so forth.

[0074] The region number field 712 stores an 1dentifier of the particular region 706 1n
which the corresponding compressed memory page 18 stored. Although typically a
number, this region could be 1dentified in any of a variety of other manners. The offset
ficld 714 stores an 1dentifier of an offset into the particular region 706 where storage of the
data for the corresponding compressed memory page begins. Alternatively, rather than
region and offset identifiers, one or more ficlds storing any other identifier(s) of the
location 1n the compressed portion where the corresponding compressed memory page 18
stored could be used.

[0075] The size field 716 stores an 1dentifier of the size (e.g., mn bytes) of the
corresponding compressed memory page. Given the region, the offset into the particular
region, and the size of the compressed memory page, a memory address range at which the
compressed memory page 18 stored can be readily identified. The flag(s) field 718 stores
various state 1nformation regarding the corresponding compressed memory page.
Examples of such flags include a selection priority for the memory page used to determine
which memory pages are selected to be compressed, a priority level corresponding to the
memory page, and so forth.

[0076] It 1s to be appreciated that the memory page map 702 1s only an example. In
other embodiments, additional fields can be included 1n each record of the map 702. For
example, error-detecting data such as CRC data, authentication information such as
HMAC data, information describing the use history and/or frequency of the memory page,
and so forth can be included 1n each record of the map 702. Furthermore, one or more of
the fields 710 — 718 can be omitted from the records of the map 702. Additionally, 1t
should be noted that the data in one or more of the fields 710 — 718 can be stored with the
memory page 1n paged memory 106 rather than 1n a separate record.

[0077] In addition to the memory page map 702, the compressed store manager 104
also maintains a region map to identity what memory page 1s stored 1n a particular location
of a region. Thus, the memory page map 702 operates to 1dentify where an 1dentified
compressed memory page 1s stored, whereas the region map operates to 1dentify which

compressed memory page 18 stored 1n a given location of a region.

18

10

15

20

25

30

WO 2015/175062 B PCT/US2015/016237
[0078] Fig. 8 1illustrates an example region map 802 in accordance with one or more
embodiments. For cach offset into a region where a different memory page 1s stored, the
region map 802 maintains a record 804 1dentifying the corresponding compressed memory
page stored at that offset. Each record 804 includes a page key field 806, a region number
field 808, and an offset field 810.

[0079] The page key field 806 stores the 1dentifier of the corresponding compressed
memory page, analogous to page key field 710 of record 704 of Fig. 7. The region
number ficld 808 stores an 1dentifier of the particular region 706 1n which the
corresponding compressed memory page 1s stored, analogous to the region number field
712 of record 704. The offset ficld 810 stores an 1dentifier of an offset into the particular
region 706 where storage of the data for the corresponding compressed memory page
begins, analogous to the offset ficld 714 of record 704. Alternatively, rather than region
and offset 1dentifiers, one or more fields storing any other 1dentifier(s) of the location 1n
the compressed portion where the corresponding compressed memory page 1s stored could
be used.

[0080] It 1s to be appreciated that the region map 802 1s only an example. In other
embodiments, additional fields can be included in each record of the map 802, and/or one
or more of the ficlds 806 — 810 can be omitted from the records of the map ¥02.
Additionally, it should be noted that the data in one or more of the fields 806 — 810 can be
stored with the memory page in paged memory 106 of Fig. 1 rather than 1n a separate
record.

[0081] The memory page map 702 of Fig. 7 and the region map 802 of Fig. 8 can be

implemented in any of a variety of different manners. In one or more embodiments, these

maps ar¢c cach implemented as a B+-tree for increased performance 1n accessing the
individual records. Alternatively, any of a variety of other conventional data structures
can be used to implement these maps, such as AVL trees, hash table, arrays, and so forth.

[0082] Returning to Fig. 1, situations can arise in which the memory manager 102
desires to move the entire working set for a program 108 out of the paged memory 108. In
on¢ or more embodiments, such situations arise when a program 108 1s being suspended 1n
the system 100. As part of the process of suspending the program 108, the working set of
memory pages 1s compressed and stored 1n a compressed store 110, which 1s also referred
to as out-swapping the working set. This compressed store 110 can subsequently be
written to the page file 112. If the program 108 1s to be subsequently resumed (e.g., no

longer suspended), the compressed store 110 1s retrieved from the page file 112 (if 1t was

19

10

15

20

25

30

WO 2015/175062 PCT/US2015/016237
written to the page file 112), and the memory pages in the compressed store 110 are
decompressed and returned to the working set 202, which 1s also referred to as in-
swapping the working set.

[0083] Fig. 9 shows an example of out-swapping a working set in accordance with one
or more embodiments. In Fig. 9, a working set 202 of a particular process of a program
108, Process X, is illustrated. Out-swapping the working set 202 1s performed by
generating a list 902 of memory pages, such as a list of starting virtual addresses and
lengths (e.g., a count of sequential memory pages 1n the working set starting at that
starting virtual address). The list 1s ordered sequentially, such as from smallest address to
largest address (these addresses being virtual addresses of the memory space in which the
process executes). The memory pages of the working set 202 are added to the modified
list 206 1n this same sequential ordering. Furthermore, the memory pages of the working
set 202 are compressed 1n this same sequential ordering, and written to the compressed
storc 110 associated with the program 108 in this same sequential ordering as shown.
Thus, although the memory pages in the working set 202 may be non-contiguous 1n the
working set 202, they are written into contiguous locations 1n the compressed store 110.
[0084] The total size of the compressed store 110 1s also determined, and space
reserved 1n the page file 112 sufficient to store the compressed store 110. When the
compressed store 110 1s written to the page file 112, the compressed store 110 1s written
contiguously to the page file 112. The writing of pages into a contiguous, sequentially
ordered, portion of the page file may enable a subsequent read operation to read a large,
sequentially ordered block of the page file 112 when the pages are read back into working
set 202 during a subsequent in-swapping operation.

[0085] Fig. 10 1s a flowchart 1llustrating an example process 1000 for out-swapping
the working set 1n accordance with one or more embodiments. Process 1000 1s carried out
by a compressed store manager, such as compressed store manager 104 of Fig. 1, and can
be implemented 1n software, firmware, hardware, or combinations thercof. Process 1000
1s shown as a set of acts and 1s not limited to the order shown for performing the
operations of the various acts. Process 1000 1s an example process for out-swapping the
working set; additional discussions of out-swapping the working set are included herein
with reference to different figures.

[0086] In process 1000, a determination 1s made to swap out one or more pages from a
working set of a process mto a page file (act 1002). This determination may be made

(¢c.g., by the memory manager 102 or other policy manager) based on various criteria, such

20

10

15

20

25

30

WO 2015/175062 PCT/US2015/016237
as a determination that the process 1S 1nactive or suspended, that one or more threads
associated with the process have not been active for a particular amount of time, that the
process has been 1n the background for a particular amount of time, that the process has
not used a certain number of pages during a particular amount of time, that the computing
system as a whole has been suspended or 1s mactive, and so forth.

[0087] Once the decision to swap out one or more pages has been made, one or more
candidate pages are 1dentified from a working set of the process and a list of these
candidate memory pages 1s generated (act 1004). The list of candidate memory pages 18
ordered sequentially, such as from smallest virtual address to largest virtual address. In
on¢ or more embodiments, the memory manager 102 analyzes ecach page of the working
set and determines whether each page 1s a candidate for out-swapping based on certain
criteria. In one or more embodiments, candidates for out-swapping may include the
private pages and/or page file backed shared pages in the working set 202. Candidate
pages may also be i1dentified in different manners, such as based on whether those pages
arc clean (pages that have been written to the compressed store 110 but have not been
modified since such writing, such that the current version of the page in physical memory
1s the same as the page 1n the compressed store 110). Further, in one or more
embodiments whether or not a page 1s locked in memory may be considered when
deciding whether the page 1s a candidate for out-swapping.

[0088] The candidate memory pages on the list generated 1in act 1004 are added to the
modified list 206 (act 1006). The candidate memory pages are added to the modified list
in the same sequential ordering as they appear on the list generated 1n act 1004.

[0089] The candidate memory pages in the modified list 206 are compressed and
written to the compressed store 110 associated with the running program that 1s the
process (act 1008). The compression can be performed 1n any of a variety of manners,
analogous to the discussion above regarding Fig. 5. Various other operations (e.g.,
encrypting the content of the memory pages, generating error-detecting data, etc.) can also
optionally be performed on the memory pages, analogous to the discussion above
regarding Fig. 5. The compressed memory pages are written to the compressed store 110
in this same sequential ordering as they appear on the list generated 1in act 1004 and in
which they appear in the modified list 206. Thus, although the memory pages in the
working set 202 may be non-contiguous in the working set 202, they are written into

contiguous locations in the compressed store 110 (e.g., as shown 1n Fig. 9). After a

21

10

15

20

25

30

WO 2015/175062 PCT/US2015/016237
candidate memory page 1s written to the compressed store 110, the candidate memory
page 1s removed from the working set 202 (e.g., and added to a free list).

[0090] Space 18 reserved 1n the page file 112 sufficient to store the compressed store
110 (act 1010). Reserving space 1n the page file 112 refers to setting aside or marking part
of the page file 112 as acceptable for the compressed store 110 to be written into, but
unacceptable for other data to be written into. Space 1n the page file 112 can be reserved
in a variety of different manners, such as by maintaining an allocation table or other record
identifying portions of the page file and whether such portions are reserved (and 1f
reserved, the compressed store 110 for which they are reserved). The reserving can be
performed by, for example, the memory manager 102 or the compressed storage manager
104.

[0091] At some later time, a decision 1s made (¢.g., by the memory manager 102 or
compressed storage manager 104) to write the compressed store 110 including the
compressed out-swapped pages to its reserved space in the page file 112 (act 1012). In
on¢ or more embodiments, this decision may be made based on a determination that a
certain threshold amount of time has passed during which the criteria that led to the
decision to out-swap (1n act 1002) are still valid. For example, a particular amount of time
(c.g., S minutes) may pass 1n which a process 1s still mnactive or suspended. The decision
may also be made based on a determination by the memory manager 102 that more
physical memory 18 needed for use by one or more other programs 108.

[0092] In response to the decision in act 1012 to write the compressed store to the
swap file, the compressed store memory pages are written to the reserved space in the
page file (act 1014). In one or more embodiments, all of the compressed store memory
pages are removed and written to the page file 112 1n one or more write operations.
Alternatively, only a portion of the compressed store memory pages may be removed and
written to the page file 112. In some embodiments, the candidate pages written may be
determined based on pressure for memory (¢.g., based on the memory manager’s need for
more physical memory). After being written to the page file 112, compressed store
memory pages are placed on the standby list at the priority level of the compressed store
memory pages (or alternatively a lower level). At this point, the compressed store
memory pages are treated as available memory on the system and can be repurposed at
any time as desired by the memory manager 102.

[0093] Returning to act 1012, in some situations the decision may be made to not write

out the compressed store. In such situations, the reserved space for the compressed store

22

10

15

20

25

30

CA 02938891 2016-08-04
WO 2015/175062 PCT/US2015/016237

1s retained until in-swapping occurs. In one or more embodiments, the decision may be
made to not write out the compressed store 1f the conditions that led to the 1nitial decision
to out-swap pages (¢.g., in act 1002) are no longer present after a particular threshold
amount of time. For example, the process may be active again or may no longer be
suspended. In other situations, a decision to 1n-swap pages may occur before those
candidate pages have been written to the page file.

[0094] Fig. 11 1s a flowchart illustrating an example process 1100 for in-swapping the
working set 1n accordance with one or more embodiments. Process 1100 1s carried out by
a compressed store manager, such as compressed store manager 104 of Fig. 1, and can be
implemented 1n software, firmware, hardware, or combinations thercof. Process 1100 1s
shown as a set of acts and 1s not limited to the order shown for performing the operations
of the various acts. Process 1100 1s an example process for in-swapping the working set;
additional discussions of in-swapping the working set are included herein with reference
to different figures.

[0095] In process 1100, a determination 1s made to in-swap a compressed store that
was previously out-swapped from a working set for a process (act 1102). In one or more
embodiments, this determination 1s made by the memory manager 102 or other policy
manager, and may be made based on various criteria. Such criteria may include receiving
an 1ndication that the process 1s no longer inactive or suspended, a cessation of those
conditions that led to the decision to out-swap 1n act 1002 of Fig. 10, and so forth.

[0096] A determination 18 made whether the compressed store memory pages of the
out-swapped compressed remain 1n physical memory (act 1104). In some situations,
compressed store memory pages may have been written to the page file but remain 1n
physical memory (¢.g., 1f the pages were cached on the standby list and have not yet been
repurposed). In such situations, these compressed store memory pages that remain in
physical memory can be decompressed rather than reading the compressed store memory
pages from the page file.

[0097] If an out-swapped compressed store memory page 1S not in physical memory,
then the memory page 1s retrieved from the page file (act 1106). Retrieving compressed
storec memory pages includes reading the compressed store memory pages from the page
file and storing the compressed store memory pages into a compressed store 110 of the
paged memory 106. In one or more embodiments, this reading in of compressed store
memory pages reads in large blocks of compressed store memory pages from the page file,

which are therefore more efficient than reads of smaller blocks from arbitrary locations 1n

23

10

15

20

25

30

WO 2015/175062 PCT/US2015/016237
the page file. Further, because the pages were written mto a contiguous block reserved 1n
the page file and were written 1n sequential virtual address order, clusters of multiple
pages may then be read 1n large blocks and 1n sequential virtual address order, providing
for more efficient read operations.

[0098] The out-swapped memory pages 1n the compressed store memory pages of the
compressed store 110 are decompressed (act 1108) and returned to the memory manager
(act 1110). Returning the decompressed memory pages to the memory manager allows
the decompressed memory pages to be included 1n the working set of the program. The
decompression can be performed 1n any of a variety of manners, analogous to the
discussion above regarding Fig. 6. Various other operations (¢.g., decrypting the content
of the memory pages, verifying error-detecting data, etc.) can also optionally be performed
on the memory pages, analogous to the discussion above regarding Fig. 6. After being
decompressed and returned, the compressed memory page 1s deleted from the region of
the compressed store 110. After the contents of a compressed store memory page have
been decompressed and returned, the compressed store memory page can be repurposed or
freed.

[0099] The reserved space for the compressed store 1n the page file 1s also released
(act 1112). The reserved space in the page file 1s then available to store other data.

[00100] Returning to act 1104, if any of the out-swapped memory pages remain 1n
physical memory, then those memory pages are decompressed (act 1108) and returned to
the memory manager (act 1110). The compressed store memory pages storing those out-
swapped compressed memory pages need not be read from the page file m act 1106
because they remain 1n physical memory.

[00101] It should be noted that the retrieval of the out-swapped compressed store
memory pages 1n act 1106 and the decompression of the memory pages in act 1108 can be
performed 1n parallel. In one or more embodiments, memory pages that have been
retrieved from the page file are decompressed while at the same time other out-swapped
compressed store memory pages are being read from the page file. Multiple threads can
be used to decompress memory pages and retrieve compressed store memory pages from
the page file. For example, one thread running on one processor core in the system 100
can manage retrieval of the compressed store memory pages from the page file, and
threads running concurrently or in parallel on the remaining processor cores in the system

100 can manage decompression of memory pages.

24

10

15

20

25

30

CA 02938891 2016-08-04
WO 2015/175062 PCT/US2015/016237
[00102] Thus, the performance of in-swapping compressed store memory pages can be
increased using the techniques discussed herein. The memory pages are compressed, so
fewer memory pages are read than would be read without compression. Furthermore, the
decompression can be performed 1n parallel with the reading of the memory pages, and
multiple decompression threads can run concurrently, further increasing the speed at
which decompressed memory pages can be returned to the memory manager.

[00103] The techniques discussed herein also support various additional functionality.
The number of reads and writes to the storage device that stores the page file can be
reduced due to the memory pages being compressed. Reducing the number of reads and
writes to the storage device can result in an increased lifespan for the storage device, as
well as reduce bottlenecks due to storage device mput/output. Furthermore, the
compression of memory pages can result 1n an mcrease 1n the number of memory pages
available for allocation to programs by the memory manager.

[00104] Furthermore, the out-swapped compressed store memory pages take up a
smaller number of pages than the decompressed versions of the memory pages. The out-
swapped compressed store memory pages are written to the page file 112 and added to the
standby list as discussed above, and due to their compressed nature a larger number of
compressed stores may be able to be kept on the standby list. This may increase the
likelihood that 1f a suspended program 1s resumed, the compressed store memory pages for
the program are 1n physical memory and thus can be mn-swapped quicker than if retrieved
from the page file.

[00105] Additionally, compressed memory pages are stored 1in the compressed stores at
similar priority levels as those memory pages were prior to compression. By maintaining
at least similar priority levels of memory pages, priority inversion scenarios in which
significantly higher priority memory pages are written to the page file before lower
priority memory pages arc avoided.

[00106] Although particular functionality 1s discussed herein with reference to
particular modules, 1t should be noted that the functionality of individual modules
discussed herein can be separated into multiple modules, and/or at least some functionality
of multiple modules can be combined into a single module. Additionally, a particular
module discussed herein as performing an action includes that particular module itself
performing the action, or alternatively that particular module mvoking or otherwise
accessing another component or module that performs the action (or performs the action in

conjunction with that particular module). Thus, a particular module performing an action

25

10

15

20

25

30

WO 2015/175062 PCT/US2015/016237
includes that particular module itself performing the action and/or another module invoked
or otherwise accessed by that particular module performing the action.

[00107] Fig. 12 1llustrates an example system generally at 1200 that includes an
example computing device 1202 that 1s representative of one or more systems and/or
devices that may implement the various techniques described herein. The computing
device 1202 may be, for example, a server of a service provider, a device associated with a
client (e.g., a client device), an on-chip system, and/or any other suitable computing
device or computing system.

[00108] The example computing device 1202 as 1llustrated includes a processing
system 1204, on¢ or more computer-readable media 1206, and one or more 1/0 Interfaces
1208 that are communicatively coupled, one to another. Although not shown, the
computing device 1202 may further include a system bus or other data and command
transfer system that couples the various components, one to another. A system bus can
include any one or combination of different bus structures, such as a memory bus or
memory controller, a peripheral bus, a universal serial bus, and/or a processor or local bus
that utilizes any of a variety of bus architectures. A variety of other examples are also
contemplated, such as control and data lines.

[00109] The processing system 1204 1s representative of functionality to perform one or
more operations using hardware. Accordingly, the processing system 1204 1s illustrated as
including hardware clements 1210 that may be configured as processors, functional
blocks, and so forth. This may include implementation in hardware as an application
specific integrated circuit or other logic device formed using one or more semiconductors.
The hardware elements 1210 are not limited by the materials from which they are formed
or the processing mechanisms employed therein. For example, processors may be
comprised of semiconductor(s) and/or transistors (e.g., electronic integrated circuits (I1Cs)).
In such a context, processor-cxecutable instructions may be electronically-executable
instructions.

[00110] The computer-readable media 1206 1s illustrated as including memory/storage
1212. The memory/storage 1212 represents memory/storage capacity associated with one
or more computer-readable media. The memory/storage 1212 may include volatile media
(such as random access memory (RAM)) and/or nonvolatile media (such as read only
memory (ROM), Flash memory, optical disks, magnetic disks, and so forth). The
memory/storage 1212 may include fixed media (¢.g., RAM, ROM, a fixed hard drive, and

so on) as well as removable media (e.g., Flash memory, a removable hard drive, an optical

26

10

15

20

25

30

CA 02938891 2016-08-04
WO 2015/175062 PCT/US2015/016237
disc, and so forth). The computer-readable media 1206 may be configured in a variety of
other ways as further described below.

[00111] Input/output interface(s) 1208 are representative of functionality to allow a user
to enter commands and information to computing device 1202, and also allow information
to be presented to the user and/or other components or devices using various input/output
devices. Examples of mput devices include a keyboard, a cursor control device (e.g., a
mouse), a microphone (e.g., for voice iputs), a scanner, touch functionality (e.g.,
capacitive or other sensors that are configured to detect physical touch), a camera (e.g.,
which may employ visible or non-visible wavelengths such as infrared frequencies to
detect movement that does not involve touch as gestures), and so forth. Examples of
output devices include a display device (€.g., a monitor or projector), speakers, a printer, a
network card, tactile-response device, and so forth. Thus, the computing device 1202 may
be configured 1n a variety of ways as further described below to support user interaction.
[00112] Computing device 1202 also includes a store manager 1214. Store manager
1214 provides various modified memory compression functionality as discussed above.
Store manager 1214 can implement, for example, the compressed store manager 104 of
Fig. 1. Although illustrated as separate from the computer-readable media 1206, 1t should
be noted that the store manager 1214 can alternatively be implemented as part of the
computer-readable media 1206.

[00113] Various techniques may be described herein in the general context of software,
hardware elements, or program modules. Generally, such modules include routines,
programs, objects, clements, components, data structures, and so forth that perform
particular tasks or implement particular abstract data types. The terms “module,”
“functionality,” and “component” as used heremn generally represent software, firmware,
hardware, or a combination thercof. The features of the techniques described herein are
platform-independent, meaning that the techniques may be implemented on a variety of
computing platforms having a variety of processors.

[00114] An implementation of the described modules and techniques may be stored on
or transmitted across some form of computer-readable media. The computer-readable
media may include a variety of media that may be accessed by the computing device 1202.
By way of example, and not limitation, computer-readable media may include “computer-
readable storage media” and “computer-readable signal media.”

[00115] “Computer-readable storage media” refers to media and/or devices that enable

persistent storage of information and/or storage that 1s tangible, 1n contrast to mere signal

27

10

15

20

25

30

CA 02938891 2016-08-04
WO 2015/175062 PCT/US2015/016237
transmission, carriecr waves, or signals per se. Thus, computer-readable storage media
refers to non-signal bearing media. The computer-readable storage media includes
hardware such as volatile and non-volatile, removable and non-removable media and/or
storage devices implemented 1n a method or technology suitable for storage of information
such as computer readable instructions, data structures, program modules, logic
clements/circuits, or other data. Examples of computer-readable storage media may
include, but are not limited to, RAM, ROM, EEPROM, flash memory or other memory
technology, CD-ROM, digital versatile disks (DVD) or other optical storage, hard disks,
magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage
devices, or other storage device, tangible media, or article of manufacture suitable to store
the desired mnformation and which may be accessed by a computer.

[00116] “Computer-readable signal media” refers to a signal-bearing medium that 1s
configured to transmit instructions to the hardware of the computing device 1202, such as
via a network. Signal media typically may embody computer readable mstructions, data
structures, program modules, or other data in a modulated data signal, such as carrier
waves, data signals, or other transport mechanism. Signal media also include any
information delivery media. The term “modulated data signal” means a signal that has one
or more of 1ts characteristics set or changed 1n such a manner as to encode information n
the signal. By way of example, and not limitation, communication media include wired
media such as a wired network or direct-wired connection, and wireless media such as
acoustic, RF, infrared, and other wireless media.

[00117] As previously described, hardware clements 1210 and computer-readable
media 1206 are representative of instructions, modules, programmable device logic and/or
fixed device logic implemented mm a hardware form that may be employed in some
embodiments to mmplement at least some aspects of the techniques described herein.
Hardware elements may include components of an integrated circuit or on-chip system, an
application-specific integrated circuit (ASIC), a field-programmable gate array (FPGA), a
complex programmable logic device (CPLD), and other implementations in silicon or
other hardware devices. In this context, a hardware element may operate as a processing
device that performs program tasks defined by instructions, modules, and/or logic
embodied by the hardware clement as well as a hardware device utilized to store
instructions for execution, ¢.g., the computer-readable storage media described previously.
[00118] Combinations of the foregoing may also be employed to implement various

techniques and modules described herein. Accordingly, software, hardware, or program

28

10

15

20

25

30

CA 02938891 2016-08-04
WO 2015/175062 PCT/US2015/016237
modules and other program modules may be implemented as one or more 1nstructions
and/or logic embodied on some form of computer-readable storage media and/or by one or
more hardware clements 1210. The computing device 1202 may be configured to
implement particular instructions and/or functions corresponding to the software and/or
hardware modules. Accordingly, implementation of modules as a module that 1s
executable by the computing device 1202 as software may be achieved at least partially 1n
hardware, ¢.g., through use of computer-readable storage media and/or hardware elements
1210 of the processing system. The 1nstructions and/or functions may be
executable/operable by one or more articles of manufacture (for example, one or more
computing devices 1202 and/or processing systems 1204) to mmplement techniques,
modules, and examples described herein.

[00119] As further 1llustrated in Fig. 12, the example system 1200 enables ubiquitous
environments for a secamless user experience when running applications on a personal
computer (PC), a television device, and/or a mobile device. Services and applications run
substantially similar 1in all three environments for a common user experience when
transitioning from one device to the next while utilizing an application, playing a video
game, watching a video, and so on.

[00120] In the example system 1200, multiple devices are interconnected through a
central computing device. The central computing device may be local to the multiple
devices or may be located remotely from the multiple devices. In one or more
embodiments, the central computing device may be a cloud of one or more server
computers that are connected to the multiple devices through a network, the Internet, or
other data communication link.

[00121] In one or more embodiments, this interconnection architecture enables
functionality to be delivered across multiple devices to provide a common and secamless
experience to a user of the multiple devices. Each of the multiple devices may have
different physical requirements and capabilities, and the central computing device uses a
platform to enable the delivery of an experience to the device that 1s both tailored to the
device and yet common to all devices. In one or more embodiments, a class of target
devices 1s created and experiences are tailored to the generic class of devices. A class of
devices may be defined by physical features, types of usage, or other common
characteristics of the devices.

[00122] In various implementations, the computing device 1202 may assume a variety

of different configurations, such as for computer 1216, mobile 1218, and television 1220

29

10

15

20

25

30

WO 2015/175062 PCT/US2015/016237
uscs. Each of these configurations includes devices that may have generally different
constructs and capabilities, and thus the computing device 1202 may be configured
according to one or more of the different device classes. For instance, the computing
device 1202 may be implemented as the computer 1216 class of a device that includes a
personal computer, desktop computer, a multi-screen computer, laptop computer, netbook,
and so on.

[00123] The computing device 1202 may also be implemented as the mobile 1218 class
of device that includes mobile devices, such as a mobile phone, portable music player,
portable gaming device, a tablet computer, a multi-screen computer, and so on. The
computing device 1202 may also be implemented as the television 1220 class of device
that includes devices having or connected to generally larger screens 1n casual viewing
environments. These devices include televisions, set-top boxes, gaming consoles, and so
on.

[00124] The techniques described herein may be supported by these various
configurations of the computing device 1202 and are not limited to the specific examples
of the techniques described herein. This functionality may also be implemented all or 1n
part through use of a distributed system, such as over a “cloud” 1222 via a platform 1224
as described below.

[00125] The cloud 1222 includes and/or is representative of a platform 1224 for
resources 1226. The platform 1224 abstracts underlying functionality of hardware (e.g.,
servers) and software resources of the cloud 1222. The resources 1226 may include
applications and/or data that can be utilized while computer processing 1s executed on
servers that are remote from the computing device 1202. Resources 1226 can also include
services provided over the Internet and/or through a subscriber network, such as a cellular
or Wi-F1 network.

[00126] The platform 1224 may abstract resources and functions to connect the
computing device 1202 with other computing devices. The platform 1224 may also serve
to abstract scaling of resources to provide a corresponding level of scale to encountered
demand for the resources 1226 that are implemented via the platform 1224. Accordingly,
in an 1nterconnected device embodiment, implementation of functionality described herein
may be distributed throughout the system 1200. For example, the functionality may be
implemented 1n part on the computing device 1202 as well as via the platform 1224 that

abstracts the functionality of the cloud 1222.

30

CA 02938891 2016-08-04

WO 2015/175062 PCT/US2015/016237

[00127] Although the subject matter has been described 1n language specific to
structural features and/or methodological acts, 1t 1s to be understood that the subject matter
defined 1n the appended claims 1s not necessarily limited to the specific features or acts
described above. Rather, the specific features and acts described above are disclosed as

example forms of implementing the claims.

31

CA 02938891 2016-08-04

WO 2015/175062 PCT/US2015/016237

Claims

1. A computer-implemented method to increase an amount of memory
available for allocation to programs 1n a computing device, the method comprising:

identifying a first set of memory pages that have been modified;

compressing the first set of memory pages into a compressed store that 1s made up
of a second set of memory pages;

allowing a memory manager to repurpose the first set of memory pages after the
first set of memory pages has been compressed into the compressed store; and

writing out the second set of memory pages to a page file rather than writing out

the first set of memory pages to the page file.

2. A method as recited in claim 1, further comprising allowing the memory
manager to repurpose the second set of memory pages after the second set of memory

pages has been written to the page file.

3. A method as recited in claim 1, the first set of memory pages having been
allocated to a process of a program, and the compressed store being associated with only

the process of the program.

4. A method as recited m claim 3, further comprising, 1n response to
determining to out-swap memory pages of the process:

identifying a list of memory pages in a working set of the process;

compressing the 1identified memory pages;

writing the compressed identified memory pages to the compressed store in
sequential order by virtual memory address of the 1dentified memory pages;

reserving space 1n the page file for the compressed store; and

writing out the compressed store to the reserved space 1n the page file.

32

CA 02938891 2016-08-04
WO 2015/175062 PCT/US2015/016237

5. A method as recited m claim 4, further comprising, 1n response to
determining to in-swap memory pages of the process after out-swapping the memory
pages of the process:

retrieving the compressed store from the page file;

storing the retrieved compressed store mto a third set of memory pages;

decompressing the compressed memory pages 1n the third set of memory pages;
and

returning the decompressed memory pages for inclusion in the working set of the

pProcess.

0. A method as recited in claim 1, further comprising guaranteeing forward
progress 1n returning the first set of memory pages after the first set of memory pages has
been compressed and regardless of whether the second set of memory pages has been

written to the page file or repurposed after being written to the page file.

7. A method as recited 1n claim 1, each of the first set of memory pages
having at least similar priority levels, and each of the second set of memory pages having

at least similar priority levels.

8. A computing device configured to increase an amount of memory available
for allocation to programs of the computing device, the computing device comprising:
a memorys,
a memory manager configured to manage pages of the memory; and
a compressed store manager configured to increase the amount of the memory that
1s available to the memory manager to allocate to the programs of the computing device
by:
compressing, into a compressed store associated with a process, a first set
of memory pages that have been modified by the process, the compressed store
being made up of a second set of memory pages;
allowing, for cach memory page of the first set of memory pages, the
memory manager to repurpose the memory page after the memory page has been
compressed 1nto the compressed store; and
writing out the second set of memory pages to a page file in the absence of

writing out the first set of memory pages to the page file.

33

CA 02938891 2016-08-04
WO 2015/175062 PCT/US2015/016237
9. A computing device as recited in claim &, the compressed store being

associlated with only the process of the program.

10. A computing device as recited 1in claim 9, the compressed store manager
being further configured to:
in response to determining to out-swap memory pages of the process:
identify a list of memory pages in a working set of the process,
compress the 1dentified memory pages,
write the compressed 1dentified memory pages to the compressed store in
sequential order by virtual memory address of the identified memory pages,
reserve space 1n the page file for the compressed store, and
write out the compressed store contiguously to the reserved space in the
page file; and
in response to determining to in-swap memory pages of the process after out-
swapping the memory pages of the process:
retrieve the compressed store from the page file,
store the retrieved compressed store into a third set of memory pages,
decompress the compressed memory pages m the third set of memory
pages, and
return the decompressed memory pages for inclusion 1n the working set of

the process.

34

CA 02938891 2016-08-04

WO 2015/175062 PCT/US2015/016237

1/11
100
108
N\ 112
Program II Page File
102 114 104
116 Memory Manager
Compressed
Memory
Page Table Controller Store Manager

106
Paged Memory

Compressed I
Store

110

CA 02938891 2016-08-04

WO 2015/175062 PCT/US2015/016237

2/11
200
112
Page File
216 \: 218
|
202 204\ 206~ | 210 212
Working Set Modified List Standby List
|
214 \1: 208
I
110

Compressed

Store

Fig. 2

CA 02938891 2016-08-04

WO 2015/175062 PCT/US2015/016237

3/11

CA 02938891 2016-08-04

PCT/US2015/016237

WO 2015/175062

4/11

Paged Memory

|
o _
| & T “
= _
_ "
|
IENIES
la]| |& O
o o |
" “
"e O |
S 0O wE"
| [O al _
- ___—_—__ |
©
S
X

U

Paged Memory

404

ag
X
ag
Y

|
|
|
|
|
|
|
|
|
|
L

a9
F

a9
G

>,
—
O
-
O
=
-
O
)
®
al

106

404

Fig. 4

CA 02938891 2016-08-04

WO 2015/175062 PCT/US2015/016237

S/11

502

ldentify Set Of One Or More Memory

Pages On The Modified List

504

Compress The ldentified Set Of
Memory Pages Into A Region Of A
Compressed Store Made Up Of An

Additional Set Of Memory Pages

506

Move The Identified Set Of Memory
Pages To The Standby List Or The
Free List

503

Write Out The Compressed Store
Memory Pages That Make Up The
Region To The Page File

Fig. S

CA 02938891 2016-08-04

WO 2015/175062 PCT/US2015/016237
6/11

602

Recelve A Request For A Memory

Page From The Memory Manager

Is The
Requested Memory Page In A
Compressed Store Memory Page
In Paged Memory?

No

Retrieve From The Page
File A Compressed Store

Memory Page That
Includes The Requested
Memory Page
006
Decompress The Requested
Memory Page
008

Return The Decompressed

Memory Page To The Memory
Manager

Fig. 6

CA 02938891 2016-08-04

WO 2015/175062 PCT/US2015/016237

7/11

710
712
714
716
713

Flag(s)

I I

706(1)— 706(2) -/ 706(3) 706(n)

Fig. 7

1
/1
8

L
-

-
_

_

_

-

9
10.
K

CA 02938891 2016-08-04

WO 2015/175062 PCT/US2015/016237

9/11
1000
1002
Determine To Out-swap One Or More Pages From
Working Set Of A Process
1004
ldentify One Or More Candidate Pages From Working Set,
Generating List Of Memory Pages Ordered Sequentially
1006
Add Generated List Of Memory Pages To The Modified
List
1008
Compress The Memory Pages And Write In Sequential
Order To The Compressed Store
1010
Reserve Space In Page File For The Compressed Store
1012
Write No
Compressed 1016

Store?

Retain Reserved Space
Until In-swapping Occurs

Yes

1014

Write Compressed Store To Its Reserved Space In Page

File

Fig. 10

CA 02938891 2016-08-04

WO 2015/175062 PCT/US2015/016237

10/11

1100 1102

Determine To In-swap Previously Out-swapped

Compressed Store

Out-swapped
Compressed Store Memory Pages
Remain In Physical Memory?

No

1106

Yes

Retrieve From The Page
File The Out-swapped

Compressed Store
Memory Pages, In Large
Blocks/clusters

1108
Decompress The Memory Pages
1110
Return The Decompressed Memory Pages To
The Memory Manager
1112

Release Location Reservations In Page File

Fig. 11

CA 02938891 2016-08-04

WO 2015/175062 PCT/US2015/016237

11/11

1224
1226

N\
N\
N\
N\ /

N\ /
N\ /7

1222 —~

)

1202
Computing Device
1204 Processing System Computer-readable
Media

1210

Hardware

Clements Memory/Storage
1208

/O Interfaces Store Manager
Computer Television

1220

Mobile
1218

O
ot Sttt e el e et ot

108\
,"(/—112

Program Page File

102; I I 114 4—104
116—-.\ Memory Manager ['

Memory S?om ;:I:,Il'essed
Controller ore Manager

o~}]

Paged Memory
|

Page Table

Compressed
Store u

Fig. 1

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - abstract
	Page 4 - abstract
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - claims
	Page 37 - claims
	Page 38 - claims
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - abstract drawing

