
(19) United States
US 20070 198978A1

(12) Patent Application Publication (10) Pub. No.: US 2007/0198978A1
Dice et al. (43) Pub. Date: Aug. 23, 2007

(54) METHODS AND APPARATUS TO
IMPLEMENT PARALLEL TRANSACTIONS

(76) Inventors: David Dice, Foxborough, MA (US);
Nir N. Shavit, Cambridge, MA (US)

Correspondence Address:
BARRY W. CHAPIN, ESQ.
CHAPIN INTELLECTUAL PROPERTY LAW,
LLC
WESTBOROUGH OFFICE PARK
17OO WEST PARK DRIVE

WESTBOROUGH, MA 01581 (US)

(21) Appl. No.: 11/475,604

(22) Filed: Jun. 27, 2006

Related U.S. Application Data

(60) Provisional application No. 60/775,564, filed on Feb.
22, 2006. Provisional application No. 60/775,580,
filed on Feb. 22, 2006. Provisional application No.
60/789.483, filed on Apr. 5, 2006.

Publication Classification

(51) Int. Cl.
G06F 9/46 (2006.01)

(52) U.S. Cl. .. 71.8/100

(57) ABSTRACT

A computer system includes multiple processing threads that
execute in parallel. The multiple processing threads have
access to a global environment including i) shared data
utilized by the multiple processing threads, ii) a globally
accessible register or buffer of version information that
changes each time a respective one of the multiple process
ing threads modifies the shared data, and iii) respective lock
information indicating whether one of the multiple process
ing threads has locked the shared data preventing other
processing threads from modifying the shared data. To
prevent data corruption, each of the processing threads
aborts if a given processing thread detects a change in the
version information or another processing thread has a lock
on the shared data. This technique is well suited for use in
applications such as processing threads that Support a high
number of reads with a corresponding number of fewer
respective writes to shared data.

GLOBAL ENVIRONMENT
205-1 102 205-2

N 135 N
VERSION INFO LOCKNFO

READ OPERATION 120-1 120-2 WRITE OPERATION

FORA GIVEN TRANSACTION,
210 N PERFORMREAD OF FIRST

DATA FROM SHARED DAAIF
LOCKBIT NOT SET

FOR FIRST READ OF DATA,
215 N STORE CURRENT VALUE OF

VERSION INFON LOCAL
BUFFER

FOREACHSUBSECUENT
220-READ, VERIFY THAT LOCKBIT

NOf SET AND THAT CURRENT
VERSION INFOSAMEAS

VALUE OF WERSONINFON
LOCALUFFER FOR FIRST

READ, ABORT IF EITHER LOCK
BSET OR COMPARE

FAILURE SHARED DATA
(E.G., GLOBAL DATA)

125

VERIFY CURRENT VERSION
NFO EQUALS WERSON INFO
IN LOCAL BUFFER, RETRIEVE
LOCKBIT, FINLOCK MODE
THENABORT, IFNOT IN LOCK Nass
MODEEN SET LOCKBIT ON
TO OBTAIN LOCK FOR THE

GIVENTRANSACTION

INTATE MODIFICATION OF
SHAREDDATA ACCORDING N2so
TO TRANSACTION OUTCOME

AFTERMODYING SHARED
DATA, UPDATE VERSION INFON 265

ANDSET LOCK OFF

US 2007/0198978A1 Patent Application Publication Aug. 23, 2007 Sheet 1 of 6

Z?? I NEWNOXHIANE T\/8O715)

| -0 || ||

LNETTOESÆTIS HOVE XHO-?

US 2007/0198978A1 Patent Application Publication Aug. 23, 2007 Sheet 2 of 6

US 2007/0198978A1 Patent Application Publication Aug. 23, 2007 Sheet 3 of 6

SSE OORJd W-07 ||

VIVO GEHVHS 92 },

HOSSEQOHd € ? ?.

US 2007/0198978A1

CJEl-HICJOW BALLOBdSEM V ELVGdn ‘w’ LWQ QEHVHS ETSISSE OOV ATTVEOTS) JO NOILWOI-HICJOWN BHL HELHW (III QNV 'CIVE HHL HLINN BONVQHOOOV NI V LWQ QEYHVHS ET GISSE OOV ATTW.GOTO EHL HO NOILWOI+IClOW ELVILINI (II BHL ?NILNBAH8d w LVQ QIBYJVHS ETGISSE OOV ATTVEOTS) EHL NO XOOT ENILO.EdSEH W NIWLGO (I :9NICI(mTONI ESWHCH LIWWOO EHL ‘CIV/EHHL SÐNISSE OO}Jd NEAIS) EHL O L LOEdSE}}

Patent Application Publication Aug. 23, 2007 Sheet 6 of 6

US 2007/0198978 A1

METHODS AND APPARATUS TO MPLEMENT
PARALLEL TRANSACTIONS

RELATED APPLICATIONS

0001. This application claims the benefit of and priority
to U.S. Provisional Patent Application Ser. No. 60/775,564
(Attorney’s docket no. SUN06-01 (060711)p, filed on Feb.
22, 2006, entitled “Switching Between Read-Write Locks
and Transactional Locking, the entire teachings of which
are incorporated herein by this reference.
0002 This application is related to U.S. Patent Applica
tion identified by Attorney’s docket no. SUN06-04(060720),
filed on same date as the present application, entitled
METHODS AND APPARATUS TO IMPLEMENT PAR
ALLEL TRANSACTIONS, which itself claims the benefit
of and priority to U.S. Provisional Patent Application Ser.
No. 60/775,580 (Attorney’s docket no. SUN06
02p(060720), filed on Feb. 22, 2006, entitled “Transactional
Locking, the entire teachings of which are incorporated
herein by this reference.
0003. This application is related to U.S. Patent Applica
tion identified by Attorney’s docket no. SUN06-06(060908),
filed on same date as the present application, entitled
METHODS AND APPARATUS TO IMPLEMENT PAR
ALLEL TRANSACTIONS, which itself claims the benefit
of and priority to U.S. Provisional Patent Application Ser.
No. 60/789,843 (Attorney’s docket no. SUN06
05(060908)p, filed on Apr. 5, 2006, entitled “Globally
Versioned Transactional Locking, the entire teachings of
which are incorporated herein by this reference.
0004. This application is related to U.S. Patent Applica
tion identified by Attorney’s docket no. SUN06-08(061191),
filed on same date as the present application, entitled
METHODS AND APPARATUS TO IMPLEMENT PAR
ALLEL TRANSACTIONS, which itself claims the benefit
of and priority to U.S. Provisional Patent Application Ser.
No. 60/775,564 (Attorney’s docket no. SUN06
01(060711)p, filed on Feb. 22, 2006, entitled “Switching
Between Read-Write Locks and Transactional Locking,” the
entire teachings of which are incorporated herein by this
reference.

BACKGROUND

0005 There has been an ongoing trend in the information
technology industry to execute Software programs more
quickly. For example, there are various conventional
advancements that provide for increased execution speed of
Software programs.
0006. One technique for increasing execution speed of a
program is called parallelism. Parallelism is the practice of
executing or performing multiple things simultaneously.
Parallelism can be possible on multiple levels, from execut
ing multiple instructions at the same time, to executing
multiple threads at the same time, to executing multiple
programs at the same time, and so on. Instruction Level
Parallelism or ILP is parallelism at the lowest level and
involves executing multiple instructions simultaneously.
Processors that exploit ILP are typically called multiple
issue processors, meaning they can issue multiple instruc
tions in a single clock cycle to the various functional units
on the processor chip.

Aug. 23, 2007

0007. There are different types of conventional multiple
issue processors. One type of multiple-issue processor is a
SuperScalar processor in which a sequential list of program
instructions are dynamically scheduled. A respective pro
cessor determines which instructions can be executed on the
same clock cycle, and sends them out to their respective
functional units to be executed. This type of multi-issue
processor is called an in-order-issue processor since issu
ance of instructions is performed in the same sequential
order as the program sequence, but issued instructions may
complete at different times (e.g., short instructions requiring
fewer cycles may complete before longer ones requiring
more cycles).
0008 Another type of multi-issue processor is called a
VLIW (Very Large Instruction Width) processor. A VLIW
processor depends on a compiler to do all the work of
instruction reordering and the processor executes the
instructions that the compiler provides as fast as possible
according to the compiler-determined order. Other types of
multi-issue processors issue out of order instructions, mean
ing the instruction issue order is not be the same order as the
order of instructions as they appear in the program.
0009 Conventional techniques for executing instructions
using ILP can utilize look-ahead techniques to find a larger
amount of instructions that can execute in parallel within an
instruction window. Looking-ahead often involves deter
mining which instructions might depend upon others during
execution for such things as shared variables, shared
memory, interference conditions, and the like. When sched
uling, a handler associated with the processor detects a
group of instructions that do not interfere or depend on each
other. The processor can then issue execution of these
instructions in parallel thus conserving processor cycles and
resulting in faster execution of the program.
0010. One type of conventional parallel processing
involves a use of coarse-grained locking. As its name
Suggests, coarse-grained locking prevents conflicting groups
of code from operating on different processes at the same
time based on use of lockouts. Accordingly, this technique
enables non-conflicting transactions or sets of instructions to
execute in parallel.
0011) Another type of conventional parallel processing
involves a use of fine-grain locking. As its name Suggests,
fine-grain locking prevents conflicting instructions from
being simultaneously executed in parallel based on use of
lockouts. This technique therefore enables non-conflicting
instructions to execute in parallel.

SUMMARY

0012 Conventional applications that support parallel
processing can Suffer from a number of deficiencies. For
example, although easy to implement from the perspective
of a software developer, coarse-grained locking techniques
provide very poor performance because of limitations on
parallelism. Although fine-grain lock-based concurrent soft
ware can perform exceptionally well during run-time, devel
oping Such code can be a very difficult task for a respective
one or more software developers.
0013 Techniques discussed herein deviate with respect
to conventional applications such as those discussed above
as well as other techniques known in the prior art. For

US 2007/0198978 A1

example, embodiments herein include novel techniques for
enhancing performance associated with transactions execut
ing in parallel.

0014. In general, a technique according to embodiments
herein provides a unique way for each of multiple processes
to operate in parallel using (e.g., based on reading, modi
fying, and writing to) a same set of shared data without
causing corruption to the shared data. For example, accord
ing to one embodiment herein, a computer system includes
multiple processing threads that execute in parallel. The
multiple processing threads have access to a global envi
ronment including i) shared data utilized by the multiple
processing threads, ii) a globally accessible register or buffer
of version information that changes each time a respective
one of the multiple processing threads modifies the shared
data, and iii) respective lock information indicating whether
one of the multiple processing threads has locked the shared
data preventing other processing threads from modifying the
shared data.

00.15 Each of the multiple processing threads accesses
the version information (associated with the globally acces
sible shared data) and/or respective lock information at
multiple times during execution of a respective processing
thread to determine whether to abort execution of the
respective processing thread as a result of another process
ing thread modifying the shared data. For example, if a given
processing thread identifies (during a course of executing
each of multiple successive reads) that another one of
multiple processing threads modified the shared data or is
currently modifying the shared data, the given processing
thread aborts further operations and re-executes from the
beginning again.

0016 One way that respective processing threads notify
each other of changes to the shared data is to update the
respective version information associated with the shared
data. For example, a respective processing thread can incre
ment the version information after modifying contents of the
shared data. If the given processing thread identifies that the
version information is a first value at a respective time of a
first read of shared data and a second value at a time of a
second or Subsequent read of shared data, then the given
processing thread can immediately abort to end a respective
transaction of multiple instructions.

0017. The lock information associated with the shared
data also can be used to identify whether to abort a respec
tive transaction. In one embodiment, the lock information is
a single lock bit value set and reset by the respective
processing threads. Only one processing thread can obtain a
lock over the shared data at a time.

0018. Accordingly, each of the multiple processing
threads is initially optimistic that the corresponding process
ing thread will be able to complete a respective transaction
prior to having to self-abort as a result of another processing
thread contemporaneously modifying the shared data. If
another processing thread modifies the shared data during
the execution of a given processing thread, it can’t be certain
that the given processing thread and its results have not been
corrupted. Self-aborting of a processing thread thus prevents
potential corruption.

0.019 Techniques herein are well suited for use in appli
cations such as processing threads that Support a high

Aug. 23, 2007

number of reads and fewer respective writes to shared data
because, in Such an instance, one processing thread will
rarely or less frequently (if at all) modify contents of the
shared data and cause abortion of other processing threads.
However, it should be noted that configurations herein are
not limited to Such use and thus configurations herein and
deviations thereof are well suited for use in other environ
ments as well.

0020. In addition to the embodiments discussed above,
other embodiments herein include a computerized device
(e.g., a host computer, workstation, etc.) configured to
Support the techniques disclosed herein such as use of a
globally accessible version information enabling parallel
execution of transaction performed by different processes. In
Such embodiments, a computer environment can include a
memory System, a processor (e.g., a processing device), a
respective display, and an interconnect connecting the pro
cessor and the memory system. The interconnect can also
Support communications with the respective display (e.g.,
display screen or display medium). The memory system can
be encoded with one or more applications that, when
executed on a respective processor, Supports parallel pro
cessing according to techniques herein.

0021. Yet other embodiments of the present disclosure
include software programs to perform the method embodi
ment and operations Summarized above and disclosed in
detail below in the Detailed Description section of this
disclosure. More specifically, one embodiment herein
includes a computer program product (e.g., a computer
readable medium). The computer program product includes
computer program logic (e.g., Software instructions)
encoded thereon. Such computer instructions can be
executed on a computerized device to Support parallel
processing according to embodiments herein.
0022. For example, the computer program logic, when
executed on at least one processor associated with a com
puting system, causes the processor to perform the opera
tions (e.g., the methods) indicated herein as embodiments of
the present disclosure. Such arrangements as further dis
closed herein can be provided as software, code and/or other
data structures arranged or encoded on a computer readable
medium Such as an optical medium (e.g., CD-ROM), floppy
or hard disk, or other medium Such as firmware or micro
code in one or more ROM or RAM or PROM chips or as an
Application Specific Integrated Circuit (ASIC). The soft
ware or firmware or other Such configurations can be
installed on a computerized device to cause one or more
processors in the computerized device to perform the tech
niques explained herein.

0023 Yet another more particular technique of the
present disclosure is directed to a computer program product
or computer environment that includes a computer readable
medium having instructions stored thereon to facilitate use
of shared information among multiple processes. Each of the
multiple processes can Support a technique of i) initiating
execution of a given processing thread including multiple
instructions, the given processing thread producing a respec
tive transaction outcome based on use of globally accessible
shared data also accessible by other processing threads
executing in parallel; ii) during execution of the given
thread, initiate multiple reads of data from the globally
accessible shared data for purposes of producing the trans

US 2007/0198978 A1

action outcome; and iii) for each of the multiple reads, verify
whether a respective globally accessible version information
associated with the globally accessible shared data remains
set to a constant value during execution of the given pro
cessing thread or portion thereof (such as from a first read to
a next Successive read), the globally accessible version
information being changed to a new respective data value
each time one of the processing threads modifies the glo
bally accessible shared data. Other embodiments of the
present disclosure include hardware and/or software pro
grams to perform any of the method embodiment steps and
operations Summarized above and disclosed in detail below.
0024. It is to be understood that the system of the
invention can be embodied as a Software program, as
Software and hardware, and/or as hardware alone. Example
embodiments of the invention may be implemented within
computer systems, processors, and computer program prod
ucts and/or Software applications manufactured by Sun
Microsystems Inc. of Palo Alto, Calif., USA.

BRIEF DESCRIPTION OF THE DRAWINGS

0.025 The foregoing and other objects, features, and
advantages of the present application will be apparent from
the following more particular description of preferred
embodiments of the present disclosure, as illustrated in the
accompanying drawings in which like reference characters
refer to the same parts throughout the different views. The
drawings are not necessarily to scale, with emphasis instead
being placed upon illustrating the embodiments, principles
and concepts.
0026 FIG. 1 is a diagram illustrating a computer envi
ronment including multiple parallel processes that access
shared data according to embodiments herein.
0027 FIG. 2 is a diagram of one of multiple processing
threads utilizing a global accessible environment according
to embodiments herein.

0028 FIG. 3 is a diagram of a sample architecture
Supporting shared use of data according to embodiments
herein.

0029 FIG. 4 is a diagram of a flowchart illustrating a
technique Supporting simultaneous execution of multiple
processing threads according to an embodiment herein.
0030 FIGS. 5 and 6 combine to form a flowchart illus
trating a technique Supporting simultaneous execution of
multiple processing threads according to an embodiment
herein.

DETAILED DESCRIPTION

0031. The present disclosure describes a unique way for
each of multiple processes to operate in parallel using a
common set of data (e.g., shared data) without causing
corruption to the shared data. For example, as will be
discussed in this specification, a computer system includes
multiple processing threads that execute in parallel. The
multiple processing threads have access to a global envi
ronment including i) shared data utilized by the multiple
processing threads, ii) a globally accessible register or buffer
of version information that changes each time a respective
one of the multiple processing threads modifies the shared
data, and iii) respective lock information indicating whether

Aug. 23, 2007

one of the multiple processing threads has locked the shared
data preventing other processing threads from modifying the
shared data.

0032 To prevent data corruption, each of the processing
threads monitors a status of the version information and the
lock information during execution. If a given one of the
multiple processing threads detects a change in the version
information or another processing thread has a lock on the
shared data, the given processing thread aborts and restarts
execution again from the beginning. In one embodiment,
each of the processes checks whether version information
associated with shared content changes upon initiation of
each of one or more successive read operations.
0033. This technique of aborting a given processing
thread is well Suited for use in parallel processing applica
tions that Support a high number of reads relative to a
corresponding number of fewer respective writes to shared
data. For example, when there are a fewer number of
processing threads changing the shared data, there will be a
fewer number of processing threads will need to abort a
respective transaction as a result of changes to the shared
data.

0034 FIG. 1 is a block diagram of a computer environ
ment 100 according to an embodiment herein. As shown,
computer environment 100 includes shared data 125 and
corresponding metadata 135 in global environment 102
(e.g., a respective repository or global work environment)
that is globally accessible by multiple processes 140 such as
process 140-1, process 140-2. . . . process 140-M. In one
embodiment, each of processes 140 (e.g., processing
threads) has a corresponding local repository 110 for storing
information Such as an instantaneous value of version infor
mation 120-1 at different times during execution of a cor
responding set of multiple instructions.

0035) In the context of a general embodiment herein,
metadata 135 enables each of processes 140 to identify
whether content associated with shared data 125 has been
“locked” (e.g., via checking lock information 120-2). Addi
tionally, metadata 135 enables the processes 140 to identify
whether any portions of shared data 125 have changed
during execution of a respective transaction (e.g., via use of
version information 120-1).
0036). In one embodiment, version information 120-2 and
version information 120-1 form lock-word. A lock-word is
a shared global variables that contain version information
120-1 and a lock-bit information 120-2. A given globally
accessible shared data structure (e.g., segment) is associated
with only one lock-word. We say that lock-word protects or
guards that data structure. The lock-word is meta-data that
moderates access to the shared data structure.

0037 Each of processes 140 competes to obtain a respec
tive lock on shared data 125. To obtain a lock preventing
other processes from modifying shared data 125, a given
process writes a logic one to a respective lock bit of lock
information 120-2. When set to a logic one, processes 140
other than a respective process holding the lock are, by
protocol, unable to modify contents of shared data 125.
Critically, M4 is a cooperative protocol. Threads use M4 to
avoid races or undesirable interference. It’s cooperative in
the sense that all threads accessing the shared data will, by
convention, use appropriate access protocol. (Nothing

US 2007/0198978 A1

would stop an errant from accessing the data. Upon release
of a lock based on a respective process setting the lock bit
to a logic Zero, the processes 140 can again compete to
obtain a lock on shared data 125.

0038. In addition to lock information 120-2, metadata
135 includes version information 120-1 that is updated each
time a respective process modifies contents of shared data
125. Accordingly, the processes 140 can monitor the version
information to identify whether shared data 125 has been
modified during a respective execution of a processing
transaction (e.g., multiple software instructions).
0039. In one embodiment, each of processes 140 stores
an instantaneous data value (e.g., sampled version value or
sampled version number) of current version information
120-1 in a respective local repository 110 at least some time
during a respective execution of a transaction. Throughout
this specific, the instantaneous data value is defined as a
current value of the version information 120-1 at a time of
reading. As discussed throughout this specific, this value
changes over time as each of the processes 140 modifies the
respective shared data 125 and updates this version infor
mation 120-1 to a new value.

0040 Some time after an initial load of version informa
tion 120-1 associated with shared data 125, a respective
process compares a data value associated with version
information 120-1 in global environment 102 to the data
value previously stored in its local repository 110 to identify
whether another process 140 modified contents of shared
data 125. As will be discussed further in this specification,
a respective process can abort itself and try again if version
information 120-1 changes during respective execution.
0041 Accordingly, the above algorithm includes a single
lock that protects all transactions. Conceptually, the tech
nique herein (e.g., a so-called M4 algorithm) is a read-write
lock that provides automatic and transparent upgrade from
read state to read-write state at the time of the 1st store in a
transaction. The lock consists of a version field with the
low-order bit serving as a write-lock. We describe M4 here
as a specific example of a locking algorithm it may be
beneficial to switch with, but anyone skilled in the art will
know how to make the described Switching mechanism
work for another mechanism that implements transactions
by having a single lock protect all executed transactions.
0042. One embodiment of the M4 algorithm works as
follows. We assume a read-write lock implemented using a
single word, which we call the “lockword (e.g., lock
information 120-2) with a version field (e.g., version infor
mation 120-1).
1. According to One Embodiment, on a Transactional Load:
0.043 (a) if the loading thread holds the write-lock the
load simply executes the load as normal.
0044 (b) If the thread doesn’t hold the write-lock it loads
the lockword.

0045 i. If the lockword indicates that some other thread
holds the write-lock, the reading thread aborts immediately
and retries.

0046)
0047 A. if this is the 1st transactional load, the thread
saves the fetched lockword which contains the version
subfield) into a thread-local variable and then executes the
equested load.

ii. Otherwise:

Aug. 23, 2007

0048 B. If this is not the 1st transactional load the thread
checks the just-loaded version against the version saved in
the threads thread-local variable. If they disagree then the
thread aborts immediately, otherwise the load executes as
normal.

0049. Note that the last two steps A and B can be
modified to carry yet another embodiment herein. For
example, in one embodiment, a transactional load can be
carried out by first fetching data from memory and thereafter
fetching (& validating) the version information. However, if
this is a first load transaction, then the order of operation can
include fetching the version information first, then fetching
the shared data, and then fetching the version information
aga1n.

2. According to One Embodiment, on a Transactional Store:
0050 (a) if the storing thread already holds the write
lock, the store executes normally.
0051 (b) if the storing thread does not hold the write
lock:

0052 i. If there was a previous transactional load, the
thread attempts to CAS (atomic Compare and Swap instruc
tion) the write-lock bit with the previously observed version.
If the CAS is successful the thread now holds the write-lock
and the store executes normal. If the CAS fails then the
transaction aborts immediately.

0053 ii. If there was no prior transactional load in this
transaction the thread loops, trying to toggle the low-order
write-lock bit in the lockword from 0 to 1. Once the thread
has acquired the write-lock it executes the store or write
operation.

0054 According to the M4 technique, there's no need to
track read-sets or write-sets so the overhead is quite low. A
read set is a set of data locations read during a transaction.
A write set is a set of data locations written to during a
transaction as discussed in related applications. After a
thread acquires the write-lock, it can simply store directly
into the global fields without the need to save stores in a log
file (e.g., a log file used for undo puporses). Likewise, loads
don’t need to look-aside into the store-log. Once the write
lock is acquired the operation can’t abort.

0055. In a related manner (since there's only one lock)
there's no possibility of livelock or deadlock. A classic
read-write lock can't normally be upgraded or promoted
from read to read-write state without the application having
been explicitly and intentionally written to refresh any
cached values seen during the read phase. That’s because the
read-write lock implementation might need to drop the lock
to avoid deadlock during the upgrade to a read-write state.
The M4 technique as described herein provides for auto
matic and transparent upgrade from a read-only lock to a
read-write lock. M4 tends to be more profitable (e.g., more
efficient) in circumstances where read-parallelism exists.

0056 Consider, for example, a hash table where most
operations are queries. According to M4, pure readers may
operate completely in parallel. Furthermore, the readers do
not need to store into a shared location to acquire a lock.
Note that traditional SMP systems use snoop- or directory
based cache coherency protocols, concurrent sharing of or
access to cache lines tend to incur high latency and consume

US 2007/0198978 A1

precious coherency bandwidth if stores to the shared line are
frequent. Pure read sharing, however, is typically inexpen
sive.

0057. Furthermore. A number of variations are possible
and it’ll pay to enumerate them in the application. To keep
things straight I'll call them Validate-after-each-ld (VAL)
and validate-at-commit-time (VAC).

Transactional Load in VAL-mode:
if (the loading thread holds the write lock) then

execute the load of the global variable as normal
else

if (this is 1st load in the thread's tXn) then
load lock-word
if (lock-word lock-bit is set) then

optionally spin, waiting for lock-bit to clear
abort current txn

else
save previously fetched lock-word version into
thread-local tXn version variable

execute the load of the global variable placing result in
thread-local temporary variable

load the lock-word
if (the lock-word's lock-bit is set OR

the lock-word's version # differs from the threads
tXn version variable) then abort the tXn.

return the temporary variable (previously fetched value)
as the result of the txn load

0058

Transactional load in VAC-mode:
if (the loading thread holds the write lock) then

execute the load of the global variable as normal
else

if (this is 1st load in the thread's tXn) then load lock-word
if (lock-word lock-bit is set) then

optionally spin, waiting for lock-bit to clear
abort current txn

else
save lock-word version into thread-local tXn version
variable
execute the load of the global variable as normal

0059. In VAL-mode we don't need to re-check the ver
sion at commit-time whereas we must validate the version at
commit-time in VAC-mode. The differences between VAC
and VAL boil down to when and where do we validate that
the saved tXn version remains unchanged. VAC mode moves
validation from the txn LD operation to the commit operator
and defers validation until commit-time. Recall that valida
tion tells us if the previously read global variables are
mutually consistent. VAL mode is the preferred embodiment
as it doesn’t admit so-called "Zombie' transactions. A Zom
bie is a transaction that has read inconsistent data and is
doomed, but has yet to validate and abort. Zombies can
misbehave, dereferencing illegal pointers, generating
divide-by-zero traps, or entering infinite loops. VAC-mode
is slightly more efficient, but admits Zombies. Zombies
require “containment to prevent their misbehavior from
effecting the rest of the system.

0060) Note that VAL- and VAC-mode define two ends of
a spectrum. Another valid Scheme is to validate periodically
during the tXn less frequently than at every tXn load, but

Aug. 23, 2007

more frequently than just at commit-time. Critically, VAL
mode is still more efficient than the read-set validation
performed by previous Software transactional memory
implementations (STMs).
0061 FIG. 2 is a diagram more particularly illustrating
details associated with a respective process according to
embodiments herein. For clarity sake, FIG. 2 illustrates read
and write operations that can be performed by any one of the
multiple processes 140. For example, each of the multiple
processes 140 can simultaneously perform read operations.
In general, the processes 140 do not compete with each other
to perform read type of operations. However, a respective
process must obtain the lock before modifying or writing to
contents of shared data 125.

0062 Each of the multiple processes 140 can perform a
respective read operation 205-1 to retrieve one or more data
values associated with shared data 125. Assume in this
example that process 140-1 carries out read operation 205-1.
Note that each process 140 can operate in a similar manner.
0063. When carrying out such a read operation as illus
trated in step 210, process 140-1 first checks whether a
respective lock bit associated with lock information 120-2
has been set by another process currently modifying shared
data 125. If the lock bit is not set, the respective process
performs a first read of a portion (e.g., one or more locations)
of shared data 125.

0064. In step 215, the respective process 140-1 initiates
retrieval of respective version information 120-1 for storage
in its corresponding local repository 110-1 (e.g., a buffer,
register, allotted memory, etc.) For example, the version
information at a time of first read may be 000145. The
process 140-1 stores this instantaneous data value of 000145
in its local repository 110-1. Note that the local repository
can be a specific location of shared data assigned for use by
only a respective process.
0065. The process eventually performs subsequent reads
in step 220. For each subsequent read of shared data 125, the
process verifies that the lock bit is not set by another one of
the multiple processes 140. Additionally, the process 140-1
checks whether a current value of the version information
120-1 has been modified since the last read. For example, the
process 140-1 compares an instantaneous data value of the
version information 120-1 at a time of the subsequent read
and compares it to the data value stored in local repository
110-1. If they match (e.g., the instantaneous data value of the
version information 120-2 is still 000145), the process 140-1
can continue executing a respective transaction. If not, Such
as when the instantaneous data value of the version infor
mation 120-1 is 000146 indicating that another process
modified shared data 125, then the process 140-1 aborts the
transaction and retries from the start.

0066 Note that in one embodiment, each of the processes
140 increments a respective value of the version information
120-1 upon committing corresponding results of a transac
tion to shared data 125. In this latter case resulting in
abortion, any intermediate data values generated by a
respective processing thread prior to abortion are disre
garded.

0067. Note that the steps 210 through 220 can be modi
fied to carry yet another embodiment herein. For example, in
one embodiment, a transactional load can be carried out by

US 2007/0198978 A1

first fetching data from memory and thereafter fetching (&
validating) the version information. However, for a respec
tive first load transaction, the order of operation can include
first fetching the version information, then fetching the
shared data, and then fetching the version information again.
0068. Each of the processes 140 can also perform a write
operation 205-2. A write operation involves modifying con
tents of shared data 125 during a so-called write phase. At
the write-time in M4, if there were any prior writes in the
threads transaction, then the current thread must hold the
write-lock. In this case the commit operation is a no-op. An
M4 operation is guaranteed to commit normally (no aborts)
if the thread manages to acquire (and validate) the M4 lock
at the time of the 1st transactional write. If there are no
writes in the transaction (e.g., it is a pure read transaction)
then in VAL mode (as discussed above in FIG. 1) the
respective process doesn’t need to do anything, in VAC
mode process validates that the saved thread-local transac
tion version information still matches the version in the
global lock-word.
0069. For example, in step 255, a respective process
140-1 can initially verify that current version information
associated equals the instantaneous data value of version
information 120-1 stored in its local repository 110-1. As
discussed above, the process can abort itself if the version
information changes during a course of executing a respec
tive processing thread or transaction.
0070 The process 140-1 also can retrieve the lock infor
mation 120-2 to identify whether another process currently
has a lock on shared data 125. If the lock bit is set, process
140-1 aborts a respective transaction. If the lock bit is not
set, the process 140-1 sets the lock bit to an active state to
obtain the lock over shared data 125. Once a lock is
obtained, no other processes can modify contents of shared
data 125.

0071. After obtaining a respective lock in step 260, the
process 140-1 initiates modification of shared data 125
according to a respective transaction outcome in step 260.
0072. In step 265, after modifying shared data 125 the
process 140-1 updates the version information 120-1 with a
new value (e.g., to a data value of 000146) and sets the lock
bit (e.g., lock information 120-2) to an inactive state (e.g.,
the process releases a respective lock where the lock bit and
version information are co-located in a single lock-word). In
one embodiment, the process 140-1 simultaneously sets a
lock bit low at a same time of updating the version infor
mation 120-1.

0.073 FIG. 3 is a block diagram illustrating an example
computer system 610 (e.g., an architecture associated with
computer environment 100) for executing parallel processes
140 and other related processes according to embodiments
herein. Computer system 610 can be a computerized device
Such as a personal computer, workstation, portable comput
ing device, console, network terminal, processing device,
etc.

0074 As shown, computer system 610 of the present
example includes an interconnect 111 that couples a memory
system 112 storing shared data 125 (e.g., globally accessible
shared data), metadata 135, one or more processors 113
executing processes 140 (e.g., process 140-1, process 140-2,

. . process 140-M), an I/O interface 114, and a commu

Aug. 23, 2007

nications interface 115. Peripheral devices 116 (e.g., one or
more optional user controlled devices such as a keyboard,
mouse, display screens, etc.) can couple to processor 113
through I/O interface 114. I/O interface 114 also enables
computer system 610 to access repository 180 (that also
potentially stores shared data 125 and/or metadata 135).
Communications interface 115 enables computer system
610 to communicate over network 191 to transmit and
receive information from different remote resources.

0075). Note that each of processes 140 can be executed by
the same processor 113 Supporting parallel processing of
processes 140 or executed by a different set of respective
processors executing one or more of processes 140. In one
embodiment, each of processes 140 executes a respective
transaction associated with the same overall application.
However, the processes 140 can be associated with different
respective applications.

0076 Further note that functionality associated with pro
cesses 140 and/or computer environment 100 can be embod
ied as Software code such as data and/or logic instructions
(e.g., code stored in the memory or on another computer
readable medium Such as a disk) that Support functionality
according to different embodiments described herein. Alter
natively, the functionality associated with processes 140 can
be implemented via hardware or a combination of hardware
and software code. Processor 113 can be one or multiple
separate processors executing multiple processing threads.

0077. It should be noted that, in addition to the processes
140 themselves, embodiments herein include a respective
application and/or set of instructions to carry out processes
140. Such a set of instructions associated with processes 140
can be stored on a computer readable medium Such as a
floppy disk, hard disk, optical medium, etc. The set of
instruction can also be stored in a memory type system Such
as in firmware, RAM (Random Access Memory), read only
memory (ROM), etc. or, as in this example, as executable
code.

0078 Collective attributes associated with processes 140,
global environment 102, and computer environment 100,
etc. will now be discussed with respect to flowcharts in
FIGS. 4-6. For purposes of this discussion, global environ
ment 102, processes 140 and/or computer environment 100
can execute or carry out the steps described in the respective
flowcharts. Note that the steps in the below flowcharts need
not always be executed in the order shown.

0079) Now, more particularly, FIG. 4 is a flowchart 400
illustrating a technique Supporting execution of parallel
transactions in computer environment 100 according to an
embodiment herein. Note that techniques discussed in flow
chart 400 overlap and summarize some of the techniques
discussed above.

0080. In step 410, a user or other source initiates execu
tion of a given process (e.g., processing thread Such as any
one of processes 140) including multiple corresponding
instructions. The given process produces a respective trans
action outcome based on use of globally accessible shared
data 125 also accessible by other processes 140 executing in
parallel.

0081. In step 420, during execution of the given process
(e.g., processing thread), the given process initiates multiple

US 2007/0198978 A1

reads of data from the globally accessible shared data 125
for purposes of producing the transaction outcome.
0082 In step 430, the given process 140-1 verifies
whether an instantaneous data value associated with a
respective globally accessible version information (e.g.,
version information 120-1) changes at a time from a first
read to a next Successive read. As previously discussed, the
globally accessible version information (version information
120-1) changes each time one of the process 140 modifies
contents of the globally accessible shared data 125.
0083 FIGS. 5 and 6 combine to form a flowchart 500
(e.g., flowchart 500-1 and flowchart 500-2) illustrating a
technique Supporting parallel execution of processes 140
according to embodiments herein. Note that techniques
discussed in flowchart 500 overlap with the techniques
discussed above in the previous figures.
0084. In step 510, a given process (e.g., one of the
multiple processing threads executing in parallel) performs
a first read of data from globally accessible shared data 125
if there is no corresponding lock on the globally accessible
shared data 125. A corresponding lock, if present, indicates
that another one of the multiple processing threads is cur
rently modifying the globally accessible shared data 125.
0085. In step 515, the given process stores a data value
associated with the version information 120-1 (e.g., globally
accessible version information) in a local buffer (e.g., a
respective local repository 110) with respect to the given
processing thread for the first read.
0086. In step 520, for each subsequent read issued by the
given process, the given process verifies that there is no lock
on the globally accessible shared data 125 and that a
corresponding data value of the version information 120-1 at
a time of a respective Subsequent read is identical to the data
value stored in the local buffer for the first read the given
processing thread is aborted if the version information 120-1
changes over time.

0087. In step 525, after completing one or more subse
quent reads and during a respective commit phase associated
with the given process, the given process checks whether
any one of the other processing threads currently has a lock
on the globally accessible shared data 125. In one embodi
ment, the given process can further check whether a current
data value associated with the version information 120-1
match the data value in its the local buffer. Recall that the
data value in the local repository associated with the given
process stores a respective data value of the version infor
mation for the first READ. At commit time, the current value
of version information 120-1 should be the same as the data
value in the local repository.

0088. In step 530, if there is a lock as indicated by the
checking or non-matching data value as indicated by the
checking, the given process aborts the commit phase and
re-executes the given process (e.g., transaction) again from
the beginning. If few of the other processes 140 rarely
initiate modification of shared data 125, the given process
will have a good chance of completing if re-executed again
at a later time.

0089. In step 610 of flowchart 500-2 of FIG. 6, if there is
not a lock as indicated by the checking, the given process
initiates a respective commit phase with respect to the given

Aug. 23, 2007

process. In one embodiment, the given process carries out
the following steps during a respective commit phase.
0090 For example, in step 615 of the write phase (e.g., a
period in a transaction from the first write until either abort
or commit), the given process obtains a respective lock on
the globally accessible shared data 125 preventing the other
processing threads from modifying the globally accessible
shared data. As previously discussed, the lock can be
obtained by writing a logic one to a lock bit in lock
information 120-2.

0091. In step 620, after obtaining the lock, the given
process initiates modification of the globally accessible
shared data 125 in accordance with the respective transac
tion outcome associated with the given process.
0092. In step 625, after modification of globally acces
sible shared data 125, the given process updates a respective
data value associated with the version information to indi
cate to the other processing threads that the globally acces
sible shared data 125 has been modified. For example, if the
data value of the version information 120-1 was 000145
before the modification, the process changes the version
information to a data value of 000146.

0093. In step 630, the given process releases the respec
tive lock on the globally accessible shared data 125. For
example, the given process resets the lock bit of lock
information 120-2 to a logic Zero. In one embodiment, the
given process updates the version information and releases
the lock at the same time via a single operation (e.g., store
operation).

0094. As discussed above, techniques herein are well
Suited for use in applications such as those that Support
parallel processing threads in the same processor or in
different processors. However, it should be noted that con
figurations herein are not limited to Such use and thus
configurations herein and deviations thereof are well suited
for use in other environments as well.

0.095 While this invention has been particularly shown
and described with references to preferred embodiments
thereof, it will be understood by those skilled in the art that
various changes in form and details may be made therein
without departing from the spirit and scope of the present
application as defined by the appended claims. Such varia
tions are covered by the scope of this present disclosure. As
Such, the foregoing description of embodiments of the
present application is not intended to be limiting. Rather, any
limitations to the invention are presented in the following
claims. Note that the different embodiments disclosed herein
can be combined or utilized individually with respect to each
other.

We claim:
1. A method comprising:
initiating execution of a given processing thread including

multiple instructions, the given processing thread pro
ducing a respective transaction outcome based on use
of globally accessible shared data also accessible by
other processing threads executing in parallel;

during execution of the given thread, initiating multiple
reads of data from the globally accessible shared data
for purposes of producing the transaction outcome; and

US 2007/0198978 A1

Verifying whether a data value associated with a respec
tive globally accessible version information variable
changes at a time from a first read to a next successive
read during a course of a transaction, the globally
accessible version information variable being changed
to a new respective data value each time one of the
processing threads modifies contents of the globally
accessible shared data.

2. A method as in claim 1, wherein verifying whether the
respective globally accessible version information variable
changes over Successive reads enables the given processing
thread to efficiently detect whether any of the other process
ing threads modified the contents of the globally accessible
shared data during execution of the given thread from the
first read to the next successive read.

3. A method as in claim 2 further comprising:
detecting that another processing thread modified con

tents of the globally accessible shared data during a
respective time between the first read and the next
Successive read based on a change with respect to the
globally accessible version information variable; and

in response to detecting the change, immediately aborting
execution of the given processing thread.

4. A method as in claim 1, wherein verifying whether the
respective globally accessible version information variable
changes from the first read to the next successive read
includes:

initiating the first read to retrieve respective data from the
globally accessible shared data;

for the first read, retrieving and storing a respective data
value associated with the globally accessible version
information variable;

at a later time with respect to the first read, initiating the
next successive read to retrieve respective data from the
globally accessible shared data;

for the next Successive read, retrieving a respective data
value associated with the globally accessible version
information variable; and

verifying that the respective data value of the globally
accessible version information variable for the first read
is identical to the respective data value of the globally
accessible version information variable for the next
Successive read.

5. A method as in claim 1 further comprising:
for the given processing thread, performing the first read

of data from the globally accessible shared data if there
is no corresponding lock on the globally accessible
shared data, the corresponding lock, if present, indi
cating that another one of the multiple processing
threads is in a process of modifying the globally
accessible shared data;

for the first read, storing a data value associated with the
globally accessible version information variable in a
local buffer with respect to the given processing thread;

for each Subsequent read associated with the given pro
cessing thread, verifying that there is no lock on the
globally accessible shared data and that a correspond
ing data value of the globally accessible version infor
mation variable at a time of a respective Subsequent

Aug. 23, 2007

read is identical to the data value stored in the local
buffer for the first read; and

initiating abortion of the given processing thread if there
is a lock on the globally accessible shared data or if a
respective data value associated with the globally
accessible version information variable changes from
the first read to a Subsequent read.

6. A method as in claim 5 further comprising:
aborting further execution of the given processing thread

if there is a corresponding lock on the globally acces
sible shared data, the corresponding lock indicating that
another one of the multiple processing threads is in a
process of modifying the globally accessible shared
data.

7. A method as in claim 1 further comprising:
upon completion of the execution of the processing thread

including the multiple reads, initiating storage of at
least one data value associated with the respective
transaction outcome to the globally accessible shared
data;

prior to storage of the at least one data value to the
globally accessible shared data, checking whether any
of the other processing threads currently has a lock on
the globally accessible shared data, presence of the lock
indicating that another one of the multiple processing
threads is in a process of modifying the globally
accessible shared data; and

aborting the processing thread and corresponding storage
of the at least one data value to the globally accessible
shared data.

8. A method as in claim 1 further comprising:
prior to committing data values associated with the pro

cessing thread to the globally accessible shared data
during a respective commit phase of the given process
ing thread, checking whether a current value of the
globally accessible version information variable
matches the constant value encountered from the first
read to the next successive read; and

aborting the given processing thread if there is not a match
between the current value of the globally accessible
version information variable and the constant value
encountered during the first read to the next successive
read.

9. A method as in claim 1 further comprising:
checking whether any one of the other processing threads

currently has a lock on the globally accessible shared
data;

if there is a lock as indicated by the checking, then abort
and re-execute the given processing thread;

if there is not a lock as indicated by the checking,
initiating a respective commit phase with respect to the
given processing thread, the commit phase including:
i) obtaining a respective lock on the globally accessible

shared data preventing the other processing threads
from modifying the globally accessible shared data,

ii) initiate modification of the globally accessible
shared data in accordance with the respective trans
action outcome associated with the given processing
thread, and

US 2007/0198978 A1

iii) after the modification of globally accessible shared
data, updating a respective data value associated
with the globally accessible version information
variable to indicate to the other processing threads
that the globally accessible shared data has been
modified.

10. A method as in claim 9, wherein the commit phase
further comprises:

iv) releasing the respective lock on the globally accessible
shared data at a same time as updating the respective
data value associated with the globally accessible ver
sion information variable to a new value.

11. A computer system including:
multiple processing threads executing in parallel:

a global environment accessible by the multiple process
ing threads, the global environment including i) shared
data utilized by the multiple processing threads, ii)
version information that changes each time a respective
one of the multiple processing threads modifies the
shared data, and iii) respective lock information indi
cating whether one of the multiple processing threads
has locked the shared data preventing other processing
threads from modifying the shared data; and

each of the multiple processing threads accessing the
version information at multiple times during execution
of a respective processing thread to determine whether
to abort execution of the respective processing thread
as a result of another processing thread modifying the
shared data.

12. A computer system as in claim 11, wherein the
respective processing thread initiates retrieval of an instan
taneous data value associated with the version information at
a time of a first read of data from the set of shared data and
checks whether the instantaneous data value for the first read
matches an instantaneous data value of the version infor
mation at a time of a second read of data from the set of
shared data, a respective match of the instantaneous data
values indicating that no other processing thread modified
contents of the shared data during execution of the respec
tive processing thread.

13. A computer system as in claim 11, wherein each of the
multiple processes continues to execute as long as the
version information associated with the set of shared data
does not change but otherwise abort if the respective pro
cessing thread identifies that the version information asso
ciated with the set of shared data changes over time.

14. A computer system as in claim 13, wherein each of the
respective processing threads checks for changes associated
with the version information each time the respective pro
cessing thread performs a respective Successive read from
the set of shared data.

15. A computer readable medium including:

instructions associated with a given processing thread that
produces a respective transaction outcome based on use
of globally accessible shared data also accessible by
other processing threads executing in parallel;

instructions to initiate multiple accesses of data with
respect to the globally accessible shared data for pur
poses of producing the transaction outcome during
execution of the given processing thread; and

Aug. 23, 2007

instructions to verify, at Successive times during execu
tion of the given processing thread, that a respective
data value associated with a globally accessible version
information variable does not change over time, the
given processing thread aborting further execution if
the globally accessible version information variable
happens to change during a course of executing the
given processing thread, the data value associated with
the globally accessible version information variable
being updated to a new value each time a respective one
of the multiple processing threads modifies the globally
accessible shared data.

16. A computer readable medium as in claim 15, wherein
instructions to verify include:

instructions to carry out each of multiple reads and verify
whether the globally accessible version information
variable remains set to a constant value from a first read
to a next Successive read associated with the given
processing thread.

17. A computer readable medium as in claim 15 further
including:

instructions to initiate a first read to retrieve respective
data from the globally accessible shared data;

instructions to retrieve and store a respective data value
associated with the globally accessible version infor
mation variable at a time associated with the first read:

instructions to initiate a second read to retrieve respective
data from the globally accessible shared data at a later
time with respect to the first read:

instructions to retrieve a respective data value associated
with the globally accessible version information vari
able at a time associated with the second read; and

instructions to verify that the respective data value of the
globally accessible version information variable for the
first read is identical to the respective data value of the
globally accessible version information variable for the
next Successive read.

18. A computer readable medium as in claim 17 further
including:

instructions to abort further execution of the given pro
cessing thread if there is a corresponding lock on the
globally accessible shared data, the corresponding lock
indicating that another one of the multiple processing
threads is in a process of modifying the globally
accessible shared data.

19. A computer readable medium as in claim 15 further
including:

instructions to initiate storage of at least one data value
associated with the respective transaction outcome to
the globally accessible shared data upon completion of
the execution of the given processing thread;

instructions to check whether any of the other processing
threads currently has a lock on the globally accessible
shared data, presence of the lock indicating that another
one of the multiple processing threads is in a process of
modifying the globally accessible shared data prior to
storage of the at least one data value to the globally
accessible shared data; and

US 2007/0198978 A1

instructions to abort the given processing thread and store
the at least one data value to the globally accessible
shared data.

20. A computer readable medium method as in claim 15
further comprising:

instructions to check whether any one of the other pro
cessing threads currently has a lock on the globally
accessible shared data;

instructions to abort and re-execute the given processing
thread if there is a lock as indicated by a checking
process;

instructions to initiate a respective commit phase with
respect to the given processing thread if there is not a
lock as indicated by a checking process, the commit
phase including:
i) instructions to obtain a respective lock on the glo

bally accessible shared data preventing the other
processing threads from modifying the globally
accessible shared data,

Aug. 23, 2007

ii) instructions to initiate modification of the globally
accessible shared data in accordance with the respec
tive transaction outcome associated with the given
processing thread,

iii) instructions to update a respective data value asso
ciated with the globally accessible version informa
tion variable to indicate to the other processing
threads that the globally accessible shared data has
been modified after the modification of globally
accessible shared data, and

iv) instructions to release the respective lock on the
globally accessible shared data at a same time as
updating the respective data value associated with
the globally accessible version information variable
to a new value.

