The invention relates to kinase ligands and polyligands. In particular, the invention relates to ligands, homopolyli-
gands, and heteropolyligands that modulate MEK activity. The ligands and polyligands are utilized as research tools or as therapeu-
tics. The invention includes linkage of the ligands, homopolyligands, and heteropolyligands to a cellular localization signal, epitope
tag and/or a reporter. The invention also includes polynucleotides encoding the ligands and polyligands.
MEK LIGANDS AND POLYNUCLEOTIDES ENCODING MEK LIGANDS

Inventors: David R. Bachinsky, Jonathan Carson, Amy Atzel, Thomas D. Reed

5 FIELD OF INVENTION

The invention relates to mammalian kinase ligands, substrates and modulators. In particular, the invention relates to polypeptides, polypeptide compositions and polynucleotides that encode polypeptides that are ligands, substrates, and/or modulators of MEK. The invention also relates to polyligands that are homopolyligands or heteropolyligands that modulate MEK activity. The invention also relates to ligands and polyligands localized to a subcellular region.

BACKGROUND AND PRIOR ART

Kinases are enzymes that catalyze the addition of phosphate to a molecule. The addition of phosphate by a kinase is called phosphorylation. When the kinase substrate is a protein molecule, the amino acids commonly phosphorylated are serine, threonine and tyrosine. Phosphatases are enzymes that remove phosphate from a molecule. The removal of phosphate is called dephosphorylation. Kinases and phosphatases often represent competing forces within a cell to transmit, attenuate, or otherwise modulate cellular signals and cellular control mechanisms. Kinases and phosphatases have both overlapping and unique natural substrates. Cellular signals and control mechanisms, as regulated by kinases, phosphatases, and their natural substrates are a target of research tool design and drug design.

MAP/ERK kinase 1, MEK1, PRKMK1, MAPKK1, MAP2K1, MKK1 are the same enzyme, known as MEK1. MAP/ERK kinase 2, MEK2, PRKMK2, MAPKK2, MAP2K2, MKK2 are the same enzyme, known as MEK2. MEK1 and MEK2 can phosphorylate serine, threonine and tyrosine residues in protein or peptide substrates. To date, few cellular substrates of MEK isoforms have been identified. While individual substrates or ligands have been identified and studied, mixed ligands linked together as polyligands that modulate MEK isoform activity have not been demonstrated before this invention.
Design and synthesis of polypeptide ligands that modulate calcium/calmodulin-dependent protein kinase and that localize to the cardiac sarcoplasmic reticulum was performed by Ji et al. (J Biol Chem (2003) 278:25063-71). Ji et al. accomplished this by generating expression constructs that localized calcium/calmodulin-dependent protein kinase inhibitory polypeptide ligands to the sarcoplasmic reticulum by fusing a sarcoplasmic reticulum localization signal derived from phospholamban to a polypeptide ligand. See also US 7,071,295.

DETAILED DESCRIPTION OF POLYPEPTIDE AND POLYNUCLEOTIDE SEQUENCES

SEQ ID NOS: 1-36 are example polyligands and polynucleotides encoding them.

Specifically, the MEK polyligand of SEQ ID NO: 1 is encoded by SEQ ID NO:2, SEQ ID NO:3, and SEQ ID NO:4, wherein the codons have been optimized for mammalian expression and vector insertion, and wherein SEQ ID NOS:3-4 contain alternative flanking restriction sites applicable to modular cloning methods. SEQ ID NO:1 is an embodiment of a polyligand of the structure A-S1-B-S2-C-S3-D, wherein A is SEQ ID NO:41, B is SEQ ID NO:42, C is SEQ ID NO:49, and D is SEQ ID NO:43, wherein Xaa is alanine or phenylalanine, and wherein S1 is a spacer of the amino acid sequence PGAAG, and S2 is a spacer of amino acid sequence PAGGA, and S3 is a spacer of the amino acid sequence PGAAG. A polyligand of structure A-S1-B-S2-C-S3-D is also called herein a heteropolyligand, shown generically in FIGURE 4D.

SEQ ID NO:5 is an embodiment of a polyligand of the structure X-S1-X-S2-Y-S3-Z, wherein X is SEQ ID NO:44, Y is SEQ ID NO:42, Z is SEQ ID NO:43, wherein Xaa is alanine or phenylalanine, and wherein S1 is a spacer of amino acid sequence PGAAG, S2 is a spacer of the amino acid sequence PAGGA, and S3 is a spacer of the amino acid sequence PGAAG. The MEK polyligand of SEQ ID NO:5 is encoded by SEQ ID NO:6, SEQ ID NO:7 and by SEQ ID NO:8, wherein the codons have been optimized for mammalian expression and vector insertion, and wherein SEQ ID NOS:7-8 contain alternative flanking restriction sites applicable to modular cloning methods. A polyligand of structure X-S1-X-S2-Y-S3-Z is also called herein a heteropolyligand, shown generically in FIGURE
SEQ ID NO:9 is encoded by SEQ ID NO:10, SEQ ID NO:11, and SEQ ID NO:12, wherein the codons have been optimized for mammalian expression and vector insertion, and wherein SEQ ID NOS:1-12 contain alternative flanking restriction sites applicable to modular cloning methods. SEQ ID NO:1 is an embodiment of a polyligand of the structure A-S1-B-S2-C-S3-D, wherein A is SEQ ID NO:41, B is SEQ ID NO:42, C is SEQ ID NO:49, and D is SEQ ID NO:43, wherein Xaa is serine, threonine or tyrosine, and wherein S1 is a spacer of the amino acid sequence PGAAG, and S2 is a spacer of amino acid sequence PAGGA, and S3 is a spacer of the amino acid sequence PGAAG. A polyligand of structure A-S1-B-S2-C-S3-D is also called herein a heteropolyligand, shown generically in FIGURE 4D.

SEQ ID NO:13 is an embodiment of a polyligand of the structure X-S1-X-S2-Y-S3-Z, wherein X is SEQ ID NO:44, Y is SEQ ID NO:42, Z is SEQ ID NO:43, wherein Xaa is serine, threonine or tyrosine, and wherein S1 is a spacer of amino acid sequence PGAAG, S2 is a spacer of the amino acid sequence PAGGA, and S3 is a spacer of the amino acid sequence PGAAG. The MEK polyligand of SEQ ID NO:13 is encoded by SEQ ID NO:14, SEQ ID NO:15 and by SEQ ID NO:16, wherein the codons have been optimized for mammalian expression and vector insertion, and wherein SEQ ID NOS:15-16 contain alternative flanking restriction sites applicable to modular cloning methods. A polyligand of structure X-S1-X-S2-Y-S3-Z is also called herein a heteropolyligand, shown generically in FIGURE 4E.

SEQ ID NO:17 is encoded by SEQ ID NO:18, SEQ ID NO:19, and SEQ ID NO:20, wherein the codons have been optimized for mammalian expression and vector insertion, and wherein SEQ ID 20 NOS:19-20 contain alternative flanking restriction sites applicable to modular cloning methods. SEQ ID NO:17 is an embodiment of a polyligand of the structure A-S1-B-S2-C-S3-D, wherein A is SEQ ID NO:51, B is SEQ ID NO:43, C is SEQ ID NO:42, and D is SEQ ID NO:44, wherein Xaa is alanine or phenylalanine, and wherein S1 is a spacer of the amino acid sequence PGAAG, and S2 is a spacer of amino acid sequence PAGGA, and S3 is a spacer of the amino acid sequence PGAAG. A polyligand of structure A-S1-B-S2-C-S3-D is also called herein a heteropolyligand, shown generically in FIGURE 4D.
SEQ ID NO:21 is encoded by SEQ ID NO:22, SEQ ID NO:23, and SEQ ID NO:24, wherein the codons have been optimized for mammalian expression and vector insertion, and wherein SEQ ID 30 NOS:23-24 contain alternative flanking restriction sites applicable to modular cloning methods. SEQ ID NO:21 is an embodiment of a polyligand of the structure A-S1-A-S2-A, wherein A is SEQ ID NO:45, wherein Xaa is alanine or phenylalanine, and wherein S1 is a spacer of the amino acid sequence PGAAG, and S2 is a spacer of amino acid sequence PAGGA, and S3 is a spacer of the amino acid sequence PGAAG. A polyligand of structure A-S1-A-S2-A is also called herein a homopolyligand, shown generically in FIGURE 2D.

SEQ ID NO:25 is encoded by SEQ ID NO:26, SEQ ID NO:27, and SEQ ID NO:28, wherein the codons have been optimized for mammalian expression and vector insertion, and wherein SEQ ID NOS:27-28 contain alternative flanking restriction sites applicable to modular cloning methods. SEQ ID NO:25 is an embodiment of a monomeric ligand, wherein Xaa is alanine or phenylalanine.

SEQ ID NO:29 is encoded by SEQ ID NO:30, SEQ ID NO:31, and SEQ ID NO:32, wherein the codons have been optimized for mammalian expression and vector insertion, and wherein SEQ ID NOS:31-32 contain alternative flanking restriction sites applicable to modular cloning methods. SEQ ID NO:29 is an embodiment of a monomeric ligand, wherein Xaa is alanine.

SEQ ID NO:33 is encoded by SEQ ID NO:34, SEQ ID NO:35, and SEQ ID NO:36, wherein the codons have been optimized for mammalian expression and vector insertion, and wherein SEQ ID NOS:35-36 contain alternative flanking restriction sites applicable to modular cloning methods. SEQ ID NO:33 is an embodiment of a polyligand of the structure A-S4-B-S5-A-S4-B, wherein A is SEQ ID NO:48, B is SEQ ID NO:50, wherein Xaa is alanine, and wherein S4 is a spacer of the amino acid sequence RRPAAA, and S5 is a spacer of amino acid sequence PGGG. A polyligand of structure A-S4B-S5-A-S4-B is also called herein a heteropolyligand, shown generically in FIGURE 4C.

SEQ ID NOS:37-40 are full length MEK protein substrates or inhibitors. Since MEK undergoes autophosphorylation, MEK is included as a substrate. These sequences have the
following public database accession numbers: NP_002746, NP_002737, XP_055766, NP_002736, NP_001744. Each of the sequences represented by these accession numbers is incorporated by reference herein. In SEQ ID NOS:37-40, the positions of the amino acid(s) phosphorylatable by MEK are represented by Xaa. In wild-type proteins, Xaa is serine, threonine, or tyrosine. In the ligands of the invention, Xaa is any amino acid.

SEQ ID NOS:41-48 are partial sequences of SEQ ID NOS:37-39, which represent examples of sequences comprising kinase active site blocker peptide ligand sequences where the location of the MEK phosphorylatable serine, tyrosine, or threonine in the natural polypeptide is designated as Xaa.

SEQ ID NOS:49-51 are partial sequences of SEQ ID NO:38 or SEQ ID NO:40, which represent examples of peptide kinase inhibitors. 5 SEQ ID NOS:41-51 represent examples of monomeric polypeptide ligand sequences.

Amino acid sequences containing Xaa encompass polypeptides where Xaa is any amino acid.

DETAILED DESCRIPTION OF DRAWINGS

FIGURES 1A-1C show examples of homopolymeric ligands without spacers.

FIGURES 2A-2C show examples of homopolymeric ligands with spacers.

FIGURES 3A-3E show examples of heteropolymeric ligands without spacers.

FIGURES 4A-4F show examples of heteropolymeric ligands with spacers.

FIGURES 5A-5G show examples of ligands and polymeric ligands linked to an optional epitope tag.

FIGURES 6A-6G show examples of ligands and polymeric ligands linked to an optional reporter.
FIGURES 7A-7G show examples of ligands and polymeric ligands linked to an optional localization signal.

FIGURES 8A-8G show examples of ligands and polymeric ligands linked to an optional localization signal and an optional epitope tag.

FIGURES 9A-9G show examples of gene constructs where ligands and polyligands are linked to an optional localization signal, an optional epitope tag, and an optional reporter.

FIGURES 10A-10D show examples of vectors containing ligand gene constructs.

FIGURE 11 shows an example of a sequential cloning process useful for combinatorial synthesis of polyligands.

FIGURES 12-24 show diagrams of vectors containing gene constructs for ligand-beta-galactosidase fusion proteins of the invention.

FIGURE 25 shows the average protein concentration of ligand-beta-galactosidase fusion protein in the lysate of transfected HT-1080 cells.

FIGURE 26 shows the results of image analysis of protein dot blot binding assays of ligand-beta-galactosidase fusion proteins against MEK1 and MEK2 protein targets.

BRIEF DESCRIPTION OF THE INVENTION

The invention relates to polypeptide ligands and polyligands for MEK. An aspect of the invention is to provide novel, modular, inhibitors of MEK (hereafter, the term MEK refers to MEK1 and/or MEK2) 30 activity by modifying one or more natural substrates or inhibitors by truncation and/or by amino acid substitution. A further aspect of the invention is the subcellular localization of an MEK inhibitor, ligand, or polyligand by linking to a subcellular localization signal. Various embodiments of the MEK ligands and polyligands are represented in SEQ ID NOS: 1-51. More specifically, the invention relates to ligands, homopolyligands, and heteropolyligands that comprise any one or more of SEQ ID NOS: 41-51. Additionally, the invention relates to ligands and polyligands comprising one or
more partial sequences of SEQ ID NOS:37-40 or any portion thereof. Furthermore, the
invention relates to polyligands with at least about 80%, 85%, 90%, 95%, 96%, 97%, 98% and
99% sequence identity to a polyligand comprising one or more of SEQ ID NOS :4 1-51 or any portion thereof. Furthermore, the invention relates to polyligands with at least about
80%, 85%, 90%, 95%, 96%, 97%, 98% and 99% sequence identity to a polyligand
comprising one or more partial sequences of SEQ ID NOS:37-40.

Polyligands, which can be homopolyligands or heteropolyligands, are chimeric ligands
composed of two or more monomeric polypeptide ligands. As used herein, the term chimeric
refers to an artificial hybrid or fusion polypeptide containing amino acid sequences from two
different polypeptides or from different regions of the same polypeptide. An example of a
monomeric ligand is the polypeptide represented by SEQ ID NO:43, wherein Xaa is any
amino acid. SEQ ID NO:43 is a selected partial sequence of wild-type full length SEQ ID
NO:39, wherein the amino acid corresponding to Xaa in the wild-type sequence is a serine,
tyrosine, or threonine phosphorylatable by MEK. An example of a homopoligand is a
polypeptide comprising a dimer or multimer of SEQ ID NO:43, wherein Xaa is any amino
acid. An example of a heteropoligand is a polypeptide comprising SEQ ID NO:51 and one
or more of SEQ ID NOS:41-50, wherein Xaa is any amino acid. There are numerous ways to
combine SEQ ID NOS :4 1-51 into homopolymeric or heteropolymeric ligands. Furthermore,
there are numerous ways to combine additional partial sequences of SEQ ID NOS:37-40
with each other and with SEQ ID NOS :4 1-51 to make polymeric ligands.

The polyligands of the invention optionally comprise spacer amino acids before, after, or
between monomers. SEQ ID NO:1 is an embodiment of a polyligand of the structure
A-S1-B-S2-C-S3-D, wherein A is SEQ ID NO:41, B is SEQ ID NO:42, C is SEQ ID NO:49,
and D is SEQ ID NO:43, wherein Xaa is alanine or phenylalanine, and wherein S1, S2, and
S3 are spacers. This invention intends to capture all combinations of homopolyligands
and heteropolyligands without limitation to the examples given above or below. In this
description, use of the term "ligand(s)" encompasses monomeric ligands, polymeric ligands,
homopolymeric ligands and/or heteropolymeric ligands.

Monomeric ligands can be categorized into types. One type of monomeric ligand is a
polypeptide where at least a portion of the polypeptide is capable of being recognized by
MEK as a substrate or pseudosubstrate (active site blocker). The portion of the polypeptide
capable of recognition is termed the recognition motif. In the present invention, recognition motifs can be natural or synthetic. Examples of recognition motifs are well known in the art and include, but are not limited to, naturally occurring MEK substrates and pseudosubstrate motifs (SEQ ID NOS: 41-48 and partial sequences of SEQ ID NOS: 37-39 containing a recognition motif). Another type of monomeric ligand is a polypeptide where at least a portion of the polypeptide is capable of associating with and inhibiting MEK at a location other than the MEK active site.

A polymeric ligand comprises two or more monomeric ligands linked together to create a chimera.

A homopolymeric ligand is a polymeric ligand where each of the monomeric ligands is identical in amino acid sequence, except that a phosphorylatable residue may be substituted or modified in one or more of the monomeric ligands.

A heteropolymeric ligand is a polymeric ligand where some of the monomeric ligands do not have an identical amino acid sequence.

The ligands of the invention are optionally linked to additional molecules or amino acids that provide an epitope tag, a reporter, and/or a cellular localization signal. The cellular localization signal targets the ligands to a region of a cell. The epitope tag and/or reporter and/or localization signal may be the same molecule. The epitope tag and/or reporter and/or localization signal may also be different molecules.

The invention also encompasses polynucleotides comprising a nucleotide sequence encoding ligands, homopolyligands, and heteropolyligands. The nucleic acids of the invention are optionally linked to additional nucleotide sequences encoding polypeptides with additional features, such as an epitope tag, a reporter, and/or a cellular localization signal. The polynucleotides are optionally flanked by nucleotide sequences comprising restriction endonuclease sites and other nucleotides needed for restriction endonuclease activity. The flanking sequences optionally provide unique cloning sites within a vector and optionally provide directionality of subsequence cloning. Further, the nucleic acids of the invention are optionally incorporated into vector polynucleotides. The ligands, polyligands, and polynucleotides of this invention have utility as research tools and/or therapeutics.
DETAILED DESCRIPTION OF THE INVENTION

The present invention relates to ligands and polyligands that are MEK modulators. An aspect of the invention is to provide novel, monomeric and chimeric, modular inhibitors of MEK activity by modifying one or more natural substrates or inhibitors by truncation and/or by amino acid substitution. A further aspect of the invention is the subcellular localization of an MEK inhibitor, ligand, or polyligand by linking to a subcellular localization signal. Various embodiments of ligands and polyligands are represented in SEQ ID NOS: 1-51.

Polyligands are chimeric ligands comprising two or more monomeric polypeptide ligands. An example of a monomeric ligand is the polypeptide represented by SEQ ID NO:42, wherein Xaa is any amino acid. SEQ ID NO:42 is a selected partial sequence of parental full length SEQ ID NO:37, wherein the amino acid corresponding to Xaa in the parent sequence is a serine, tyrosine, or threonine phosphorylatable by MEK. Another example of a monomeric ligand is the polypeptide represented by SEQ ID NO:49. Another example of a monomeric ligand is the polypeptide represented by SEQ ID NO:46. Each of SEQ ID NOS:41-51 represents an individual polypeptide ligand in monomeric form, wherein Xaa is any amino acid. SEQ ID NOS:41-54 are selected examples of partial sequences of SEQ ID NOS:37-40, however, other partial sequences of SEQ ID NOS:37-40 containing a recognition motif or binding association motif may also be utilized as monomeric ligands.

Monomeric ligand partial sequences of SEQ ID NOS:37-40 may be wild-type partial sequences. Additionally, monomeric ligand partial sequences of SEQ ID NOS:37-40 may have MEK phosphorylatable amino acids replaced by other amino acids. Furthermore, monomeric ligands and polyligands may have at least about 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% sequence identity to a ligand comprising an amino acid sequence in one or more of SEQ ID NOS:41-51. Furthermore, monomeric ligands and polyligands may have at least about 80%, 85%, 90%, 95%, 96%, 97%, 98% and 99% sequence identity to a partial sequence of SEQ ID NOS:37-40.

An example of a homopolyligand is a polypeptide comprising a dimer or multimer of SEQ ID NO:50. Another example of a homopolyligand is a polypeptide comprising a dimer or multimer of SEQ ID NO:51. An example of a heteropolyligand is a polypeptide comprising SEQ ID NO:41 and one or more of SEQ ID NOS:42-51, wherein Xaa is any amino acid. There are numerous ways to combine SEQ ID NOS:41-51 into homopolymeric or heteropolymeric ligands. Furthermore, there are numerous ways to combine additional
partial sequences of SEQ ID NOS:37-40 with each other and with SEQ ID NOS :41-51 to make polymeric ligands. Polyligands may comprise any two or more of SEQ ID NOS :41-51, wherein Xaa is any amino acid. SEQ ID NOS:41-51 are selected examples of partial sequences of SEQ ID NOS:37-40, however, additional partial sequences, wild-type or mutated, may be utilized to form polyligands. The instant invention is directed to all possible combinations of homopolyligands and heteropolyligands without limitation.

SEQ ID NOS :4 1-48 show proteins that contain at least one serine or threonine residue phosphorylatable by MEK, the positions of which are represented by Xaa. Since MEK autophosphorylates, MEK itself is included as a substrate. SEQ ID NOS :4 1-48 are partial sequences of SEQ ID NOS:37-39 where, again, the locations of the MEK phosphorylatable residues are represented by Xaa. In nature, Xaa is, generally speaking, serine, tyrosine, or threonine. In one embodiment of the instant invention, Xaa can be any amino acid. Ligands where Xaa is serine, tyrosine, or threonine can be used as part of a polyligand; however, in one embodiment, at least one phosphorylatable serine, tyrosine, or threonine is replaced with another amino acid, such as one of the naturally occurring amino acids including, alanine, aspartate, asparagine, cysteine, glutamate, glutamine, phenylalanine, glycine, histidine, isoleucine, leucine, lysine, methionine, proline, arginine, valine, or tryptophan. The Xaa may also be a non-naturally occurring amino acid. In another embodiment, the MEK phosphorylatable residue(s) are replaced by alanine. In another embodiment, the MEK phosphorylatable residue(s) are replaced by phenylalanine. The ligands and polyligands of the invention are designed to modulate the endogenous effects of MEK.

In general, ligand monomers based on natural MEK substrates are built by identifying a putative MEK phosphorylation recognition motif in a MEK substrate. Sometimes it is desirable to modify the phosphorylatable residue to an amino acid other than serine, tyrosine, or threonine. Additional monomers include the MEK recognition motif as well as amino acids adjacent and contiguous on either side of the MEK recognition motif. Monomeric ligands may therefore be any length provided the monomer includes the MEK recognition motif. For example, the monomer may comprise an MEK recognition motif and at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30-100 or more amino acids adjacent to the recognition motif.

For example, in one embodiment, the invention comprises a polypeptide inhibitor of MEK
comprising at least one copy of a peptide selected from the group consisting of:

a) a peptide at least 80% identical to a peptide comprising amino acid residues corresponding to amino acid residues 165-203 of SEQ ID NO:39, wherein the amino acid residue corresponding to amino acid residue 185 and/or 187 of SEQ ID NO:39 is an amino acid residue other than serine, tyrosine, or threonine;

b) a peptide at least 80% identical to a peptide comprising amino acid residues corresponding to amino acid residues 169-200 of SEQ ID NO:39, wherein the amino acid residue corresponding to amino acid residue 185 and/or 187 of SEQ ID NO:39 is an amino acid residue other than serine, tyrosine, or threonine; and

c) a peptide at least 80% identical to a peptide comprising amino acid residues corresponding to amino acid residues 174-196 of SEQ ID NO:39, wherein the amino acid residue corresponding to amino acid residue 185 and/or 187 of SEQ ID NO:39 is an amino acid residue other than serine, tyrosine, or threonine;

d) a peptide at least 80% identical to a peptide comprising amino acid residues corresponding to amino acid residues 179-194 of SEQ ID NO:39, wherein the amino acid residue corresponding to amino acid residue 185 and/or 187 of SEQ ID NO:39 is an amino acid residue other than serine, tyrosine, or threonine.

As used herein, the terms "correspond(s) to" and "corresponding to," as they relate to sequence alignment, are intended to mean enumerated positions within a reference protein, e.g., ERK1 (SEQ ID NO:38), and those positions that align with the positions on the reference protein. Thus, when the 25 amino acid sequence of a subject peptide is aligned with the amino acid sequence of a reference peptide, e.g., SEQ ID NO:38, the amino acids in the subject peptide sequence that "correspond to" certain enumerated positions of the reference peptide sequence are those that align with these positions of the reference peptide sequence, but are not necessarily in these exact numerical positions of the reference sequence. Methods for aligning sequences for determining corresponding amino acids between sequences are described below.

Additional embodiments of the invention include monomers (as described above) based on any putative or real substrate for MEK, such as substrates identified by SEQ ID NOS:37-39. Furthermore, if the substrate has more than one recognition motif, then more than one monomer may be identified therein.
Another embodiment of the invention is a nucleic acid molecule comprising a polynucleotide sequence encoding at least one copy of a ligand peptide.

Another embodiment of the invention is an isolated polypeptide homopolyligand, wherein the homopolyligand modulates MEK activity.

Another embodiment of the invention is an isolated polypeptide heteropolyligand, wherein the heteropolyligand modulates MEK activity.

Another embodiment of the invention is a nucleic acid molecule wherein the polynucleotide sequence 15 encodes one or more copies of one or more peptide ligands.

Another embodiment of the invention is a nucleic acid molecule wherein the polynucleotide sequence encodes at least a number of copies of the peptide selected from the group consisting of 2, 3, 4, 5, 6, 7, 8, 9 or 10.

Another embodiment of the invention is a vector comprising a nucleic acid molecule encoding at least one copy of a ligand or polyligand.

Another embodiment of the invention is a recombinant host cell comprising a vector comprising a 25 nucleic acid molecule encoding at least one copy of a ligand or polyligand.

Another embodiment of the invention is a method of inhibiting MEK in a cell comprising transfecting a vector comprising a nucleic acid molecule encoding at least one copy of a ligand or polyligand into a host cell and culturing the transfected host cell under conditions suitable to produce at least one copy of the ligand or polyligand.

The invention also relates to modified inhibitors that are at least about 80%, 85%, 90% 95%, 96%, 97%, 98% or 99% identical to a reference inhibitor. A "modified inhibitor" is used to mean a peptide that can be created by addition, deletion or substitution of one or more amino acids in the primary structure (amino acid sequence) of a inhibitor protein or polypeptide. A "modified recognition motif" is a naturally occurring MEK recognition motif that has been modified by addition, deletion, or substitution of one or more amino acids in the primary structure (amino acid sequence) of the motif. For example, a modified MEK recognition
motif may be a motif where the phosphorylatable amino acid has been modified to a
non-phosphorylatable amino acid. The terms "protein," "peptide" and "polypeptide" are used
interchangeably herein. The reference inhibitor is not necessarily a wild-type protein or a
portion thereof. Thus, the reference inhibitor may be a protein or peptide whose sequence
was previously modified over a wild-type protein. The reference inhibitor may or may not be
the wild-type protein from a particular organism.

A polypeptide having an amino acid sequence at least, for example, about 95% "identical" to
a reference an amino acid sequence is understood to mean that the amino acid sequence of
the polypeptide is identical to the reference sequence except that the amino acid sequence
may include up to about five modifications per each 100 amino acids of the reference amino
acid sequence encoding the reference peptide. In other words, to obtain a peptide having an
amino acid sequence at least about 95% identical to a reference amino acid sequence, up to
about 5% of the amino acid residues of the reference sequence may be deleted or substituted
with another amino acid or a number of amino acids up to about 5% of the total amino acids
in the reference sequence may be inserted into the reference sequence. These modifications
of the reference sequence may occur at the N-terminus or C-terminus positions of the
reference amino acid sequence or anywhere between those terminal positions, interspersed
either individually among amino acids in the reference sequence or in one or more
contiguous groups within the reference sequence.

As used herein, "identity" is a measure of the identity of nucleotide sequences or amino acid
sequences compared to a reference nucleotide or amino acid sequence. In general, the
sequences are aligned so that the highest order match is obtained. "Identity" per se has an
art-recognized meaning and can be calculated using published techniques. (See, e.g.,
(1988); Biocomputing: Informatics And Genome Projects, Smith, D.W., ed., Academic
Press, New York (1993); Computer Analysis of Sequence Data, Part I, Griffin, A. M., and
Griffin, H. G., eds., Humana Press, New Jersey (1994); von Heinje, G., Sequence Analysis
In Molecular Biology, Academic Press (1987); and Sequence Analysis Primer, Gribskov, M.
and Devereux, J., eds., M Stockton Press, New York (1991)). While there exist several
methods to measure identity between two polynucleotide or polypeptide sequences, the term
"identity" is well known to skilled artisans (Carillo, H. & Lipton, D., Siam J Applied Math
48:1073 (1988)). Methods commonly employed to determine identity or similarity between
two sequences include, but are not limited to, those disclosed in Guide to Huge Computers, Martin J. Bishop, ed., Academic Press, San Diego (1994) and Carillo, H. & Lipton, D., Siam J Applied Math 48:1073 (1988). Computer programs may also contain methods and algorithms that calculate identity and similarity. Examples of computer program methods to determine identity and similarity between two sequences include, but are not limited to, GCG program package (Devereux, J., et al., Nucleic Acids Research 12(i):387 (1984)), BLASTP, ExPASy, BLASTN, FASTA (Atschul, S. F., et al., J Molec Biol 215:403 (1990)) and FASTDB. Examples of methods to determine identity and similarity are discussed in Michaels, G. and Garian, R., Current Protocols in Protein Science, Vol 1. John Wiley & Sons, Inc. (2000), which is incorporated by reference. In one embodiment of the present invention, the algorithm used to determine identity between two or more polypeptides is BLASTP.

In another embodiment of the present invention, the algorithm used to determine identity between two or more polypeptides is FASTDB, which is based upon the algorithm of Brutlag et al. (Comp. App. Biosci. 6:237-245 (1990), incorporated by reference). In a FASTDB sequence alignment, the query and subject sequences are amino sequences. The result of sequence alignment is in percent identity. Parameters that may be used in a FASTDB alignment of amino acid sequences to calculate percent identity include, but are not limited to: Matrix=PAM, k-tuple=2, Mismatch Penalty=1, Joining Penalty=20, Randomization Group Length=0, Cutoff Score=1, Gap Penalty=5, Gap Size Penalty 0.05, Window Size=500 or the length of the subject amino sequence, whichever is shorter.

If the subject sequence is shorter or longer than the query sequence because of N-terminus or C-terminus additions or deletions, not because of internal additions or deletions, a manual correction can be made, because the FASTDB program does not account for N-terminus and C-terminus truncations or additions of the subject sequence when calculating percent identity. For subject sequences truncated at both ends, relative to the query sequence, the percent identity is corrected by calculating the number of amino acids of the query sequence that are N-and C-terminus to the reference sequence that are not matched/aligned, as a percent of the total amino acids of the query sequence. The results of the FASTDB sequence alignment determine matching/alignment. The alignment percentage is then subtracted from the percent identity, calculated by the above FASTDB program using the specified parameters, to arrive at a final percent identity score. This corrected score can be used for
the purposes of determining how alignments "correspond" to each other, as well as percentage identity. Residues of the query (subject) sequences or the reference sequence that extend past the N-or C-termini of the reference or subject sequence, respectively, may be considered for the purposes of manually adjusting the percent identity score. That is, residues that are not matched/aligned with the N-or C-termini of the comparison sequence may be counted when manually adjusting the percent identity score or alignment numbering.

For example, a 90 amino acid residue subject sequence is aligned with a 100 residue reference sequence to determine percent identity. The deletion occurs at the N-terminus of the subject sequence and therefore, the FASTDB alignment does not show a match/alignment of the first 10 residues at the N-terminus. The 10 unpaired residues represent 10% of the sequence (number of residues at the N-and C-termini not matched/total number of residues in the query sequence) so 10% is subtracted from the percent identity score calculated by the FASTDB program. If the remaining 90 residues were perfectly matched the final percent identity would be 90%. In another example, a 90 residue subject sequence is compared with a 100 reference sequence. This time the deletions are internal deletions so there are no residues at the N-or C-termini of the subject sequence which are not matched/aligned with the query.

In this case the percent identity calculated by FASTDB is not manually corrected.

The polyligands of the invention optionally comprise spacer amino acids before, after, or between monomers. The length and composition of the spacer may vary. An example of a spacer is glycine, alanine, polyglycine, or polyalanine. Specific examples of spacers used between monomers in SEQ ID NO:1 are the five amino acid spacers PGAAG and PAGGA. In the instance of SEQ ID NO: 1, the proline-containing spacers are intended to break secondary structure. Spacer amino acids may be any amino acid and are not limited to these alanine, glycine, and proline-containing examples. The instant invention is directed to all combinations of homopolyligands and heteropolyligands, with or without spacers, and without limitation to the examples given above or below.

The ligands and polyligands of the invention are optionally linked to additional molecules or amino acids that provide an epitope tag, a reporter, and/or localize the ligand to a region of a cell (See FIGURES 5A-5G, FIGURES 6A-6G, FIGURES 7A-7G, and FIGURES 8A-8G).
Non-limiting examples of epitope tags are FLAG™, HA (hemagglutinin), c-Myc and His6. Non-limiting examples of reporters are alkaline phosphatase, galactosidase, peroxidase, luciferase and fluorescent proteins. Non-limiting examples of cellular localizations are sarcoplasmic reticulum, endoplasmic reticulum, mitochondria, golgi apparatus, nucleus, plasma membrane, apical membrane, and basolateral membrane. The epitopes, reporters and localization signals are given by way of example and without limitation. The epitope tag, reporter and/or localization signal may be the same molecule. The epitope tag, reporter and/or localization signal may also be different molecules.

Ligands and polyligands and optional amino acids linked thereto can be synthesized chemically or recombinantly using techniques known in the art. Chemical synthesis techniques include but are not limited to peptide synthesis which is often performed using an automated peptide synthesizer. Peptides can also be synthesized utilizing non-automated peptide synthesis methods known in the art. Recombinant techniques include insertion of ligand-encoding nucleic acids into expression vectors, wherein nucleic acid expression products are synthesized using cellular factors and processes.

Linkage of a cellular localization signal, epitope tag, or reporter to a ligand or polyligand can include covalent or enzymatic linkage to the ligand. When the localization signal comprises material other than a polypeptide, such as a lipid or carbohydrate, a chemical reaction to link molecules may be utilized.

Additionally, non-standard amino acids and amino acids modified with lipids, carbohydrates, phosphate or other molecules may be used as precursors to peptide synthesis.

The ligands of the invention have therapeutic utility with or without localization signals. However, ligands linked to localization signals have utility as subcellular tools or therapeutics. For example, 25 ligands depicted generically in FIGURES 7A-7G represent ligands with utility as subcellular tools or therapeutics. MEK ligand-containing gene constructs are also delivered via gene therapy. FIGURES 10B and 10C depict embodiments of gene therapy vectors for delivering and controlling polypeptide expression in vivo. Polynucleotide sequences linked to the gene construct in FIGURES 10B and 10C include genome integration domains to facilitate integration of the transgene into a viral genome and/or host genome.
FIGURE 1OA shows a vector containing an MEK ligand gene construct, wherein the ligand gene construct is releasable from the vector as a unit useful for generating transgenic animals. For example, the ligand gene construct, or transgene, is released from the vector backbone by restriction endonuclease digestion. The released transgene is then injected into pronuclei of fertilized mouse eggs; or the transgene is used to transform embryonic stem cells. The vector containing a ligand gene construct of FIGURE 1OA is also useful for transient transfection of the transgene, wherein the promoter and codons of the transgene are optimized for the host organism. The vector containing a ligand gene construct of FIGURE 1OA is also useful for recombinant expression of polypeptides in fermentable organisms adaptable for small or large scale production, wherein the promoter and codons of the transgene are optimized for the fermentation host organism.

FIGURE 1OD shows a vector containing an MEK ligand gene construct useful for generating stable cell lines.

The invention also encompasses polynucleotides comprising nucleotide sequences encoding ligands, homopolyligands, and heteropolyligands. The polynucleotides of the invention are optionally linked to additional nucleotide sequences encoding epitopes, reporters and/or localization signals. Further, the nucleic acids of the invention are optionally incorporated into vector polynucleotides. The polynucleotides are optionally flanked by nucleotide sequences comprising restriction endonuclease sites and other nucleotides needed for restriction endonuclease activity. The flanking sequences optionally provide cloning sites within a vector. The restriction sites can include, but are not limited to, any of the commonly used sites in most commercially available cloning vectors. Examples of such sites are those recognized by BamHI, ClaI, EcoRI, EcoRV, Spel, AfIII, Ndel, Nhel, Xbal, Xhol, Sphl, Nael, SexAI, HindIII, Hpal, and Pstl restriction endonucleases. Sites for cleavage by other restriction enzymes, including homing endonucleases, are also used for this purpose. The polynucleotide flanking sequences also optionally provide directionality of partial sequence cloning. It is preferred that 5’ and 3’ restriction endonuclease sites differ from each other so that double-stranded DNA can be directionally cloned into corresponding complementary sites of a cloning vector.

Ligands and polyligands with or without localization signals, epitopes or reporters are alternatively synthesized by recombinant techniques. Polynucleotide expression constructs
are made containing desired components and inserted into an expression vector. The expression vector is then transfected into cells and the polypeptide products are expressed and isolated. Ligands made according to recombinant DNA techniques have utility as research tools and/or therapeutics.

The following is an example of how polynucleotides encoding ligands and polyligands are produced. Complimentary oligonucleotides encoding the ligands and flanking sequences are synthesized and annealled. The resulting double-stranded DNA molecule is inserted into a cloning vector using techniques known in the art. When the ligands and polyligands are placed in-frame adjacent to sequences within a transgenic gene construct that is translated into a protein product, they form part of a fusion protein when expressed in cells or transgenic animals.

Another embodiment of the invention relates to selective control of transgene expression in a desired cell or organism. The promotor portion of the recombinant gene can be a constitutive promotor, a non-constitutive promotor, a tissue-specific promotor (constitutive or non-constitutive) or a selectively controlled promotor. Different selectively controlled promotors are controlled by different mechanisms. For example, RheoSwitch® is an inducible promotor system available from New England Biolabs.

Temperature sensitive promotors can also be used to increase or decrease gene expression. An embodiment of the invention comprises a ligand or polyligand gene construct whose expression is controlled by an inducible promotor. In one embodiment, the inducible promotor is tetracycline controllable.

Polyligands are modular in nature. An aspect of the instant invention is the combinatorial modularity of the disclosed polyligands. Another aspect of the invention are methods of making these modular polyligands easily and conveniently. In this regard, an embodiment of the invention comprises methods of modular partial sequence cloning of genetic expression components. When the ligands, homopolyligands, heteropolyligands and optional amino acid expression components are synthesized recombinantly, one can consider each clonable element as a module. For speed and convenience of cloning, it is desirable to make modular elements that are compatible at cohesive ends and are easy to insert and clone sequentially. This is accomplished by exploiting the natural properties of restriction endonuclease site
recognition and cleavage. One aspect of the invention encompasses module flanking
sequences that, at one end of the module, are utilized for restriction enzyme digestion once,
and at the other end, utilized for restriction enzyme digestion as many times as desired. In
other words, a restriction site at one end of the module is utilized and destroyed in order to
effect sequential cloning of modular elements. An example of restriction sites flanking a
coding region module are sequences recognized by the restriction enzymes NgoM IV and
Cla I; or Xma I and Cla I. Cutting a first circular DNA with NgoM IV and Cla I to yield
linear DNA with a 5' NgoM IV overhang and a 3' Cla I overhang; and cutting a second
circular DNA with Xma I and Cla I to yield linear DNA with a 5' Cla I overhang and a 3'
Xma I overhang generates first and second DNA fragments with compatible cohesive ends.
When these first and second DNA fragments are mixed together, annealed, and ligated to
form a third circular DNA fragment, the NgoM IV site that was in the first DNA and the
Xma I site that was in the second DNA are destroyed in the third circular DNA. Now this
vestigial region of DNA is protected from further Xma I or NgoM IV digestion, but flanking
sequences remaining in the third circular DNA still contain intact 5' NgoM IV and 3' Cla I
sites. This process can be repeated numerous times to achieve directional, sequential,
modular cloning events. Restriction sites recognized by NgoM IV, Xma I, and Cla I
endonucleases represent a group of sites that permit sequential cloning when used as
flanking sequences.

Another way to assemble coding region modules directionally and sequentially employs
linear DNA in addition to circular DNA. For example, like the sequential cloning process
described above, restriction sites flanking a coding region module are sequences recognized
by the restriction enzymes NgoM IV and Cla I; or Xma I and Cla I. A first circular DNA is
cut with NgoM IV and Cla I to yield linear DNA with a 5' NgoM IV overhang and a 3' Cla I
overhang. A second linear double-stranded DNA is generated by PCR amplification or by
synthesizing and annealing complimentary oligonucleotides. The second linear DNA has 5'
Cla I overhang and a 3' Xma I overhang, which are compatible cohesive ends with the first
DNA linearized. When these first and second DNA fragments are mixed together, annealed,
and ligated to form a third circular DNA fragment, the NgoM IV site that was in the first
DNA and the Xma I site that was in the second DNA are destroyed in the third circular
DNA. Flanking sequences remaining in the third circular DNA still contain intact 5' NgoM
IV and 3' Cla I sites. This process can be repeated numerous times to achieve directional,
sequential, modular cloning events. Restriction sites recognized by NgoM IV, Xma I, and
CIa I endonucleases represent a group of sites that permit sequential cloning when used as flanking sequences. This process is depicted in FIGURE 1.

One of ordinary skill in the art recognizes that other restriction site groups can accomplish sequential, directional cloning as described herein. Preferred criteria for restriction endonuclease selection are selecting a pair of endonucleases that generate compatible cohesive ends but whose sites are destroyed upon ligation with each other. Another criteria is to select a third endonuclease site that does not generate sticky ends compatible with either of the first two. When such criteria are utilized as a system for sequential, directional cloning, ligands, polyligands and other coding regions or expression components can be combinatorially assembled as desired. The same sequential process can be utilized for epitope, reporter, and/or localization signals.

Polyligands and methods of making polyligands that modulate MEK activity are disclosed. Therapeutics include delivery of purified ligand or polyligand with or without a localization signal to a cell. Alternatively, ligands and polyligands with or without a localization signals are delivered via adenovirus, lentivirus, adeno-associated virus, or other viral constructs that express protein product in a cell.

Example 1
A polypeptide comprising a heteropolyligand, an endoplasmic reticulum cellular localization signal, and a His6 epitope is synthesized. Examples of such polypeptides are generically represented by FIGURES, 8A, 8B, 8D, 8E and 8F. The polypeptide is synthesized on an automated peptide synthesizer or is recombinantly expressed and purified. Purified polypeptide is solubilized in media and added to cells. The polypeptide is endocytosed by the cells, and transported to the endoplasmic reticulum. Verification is performed by immunohistochemical staining using an anti-Hisβ antibody.

Example 2
A transgene is constructed using a cytomegalovirus (CMV) promoter to direct expression of a fusion protein comprising SEQ ID NO:49, SEQ ID NO:48, SEQ ID NO:41, wherein Xaa is alanine (POLYLIGAND), green fluorescent protein (REPORTER), and a plasma membrane localization signal (LOCALIZATION SIGNAL). Such a transgene is generically
represented by FIGURE 9C. The transgene is transfected into cells for transient expression. Verification of expression and location is performed by visualization of green fluorescent protein by confocal microscopy.

Example 3

A transgene construct is built to produce a protein product with expression driven by a tissue-specific promoter. The transgene comprises a synthetic gene expression unit engineered to encode three domains. Each of these three domains is synthesized as a pair of complimentary polynucleotides that are annealed in solution, ligated and inserted into a vector. Starting at the amino-terminus, the three domains in the expression unit are nucleotide sequences that encode an MEK ligand, a FLAG™ epitope, and a nuclear localization signal. The MEK ligand is a monomeric ligand, homopolymeric ligand or heteropolymeric ligand as described herein. Nucleotide sequences encoding a FLAG™ epitope are placed downstream of nucleotide sequences encoding the MEK ligand. Finally, nucleotide sequences encoding the localization signal are placed downstream of those encoding the FLAG™epitope. The assembled gene expression unit is subsequently subcloned into an expression vector, such as that shown in FIGURE 10A, and used to transiently transfect cells. Verification is performed by immunohistochemical staining using an anti-FLAG™ antibody.

Example 4

Modulation of MEK cellular function by subcellularly localized MEK polyligand is illustrated. A transgene construct containing nucleic acids that encode a polyligand fusion protein, epitope, and endoplasmic reticulum localization signal is made. The expression unit contains nucleotides that encode SEQ ID NO:25 (POLYLIGAND), a c-Myc epitope (EPITOPE), and a nuclear localization signal (LOCALIZATION SIGNAL). This expression unit is subsequently subcloned into a vector between an EFl alpha promoter and an SV40 polyadenylation signal. The completed transgenecontaining expression vector is then used to transfect cells. Inhibition of MEK activity is demonstrated by measuring phosphorylation of endogenous substrates against controls and/or observing phenotypes.

Example 5

Ligand function and localization is demonstrated in vivo by making a transgene construct used to generate mice expressing a ligand fusion protein targeted to the nucleus. The
transgene construct is shown generically in FIGURE 1OB. The expression unit contains nucleotides that encode a tetramer of SEQ ID NO:33, a hemaglutinin epitope, and a nuclear localization signal. This expression unit is subsequently subcloned into a vector between nucleotide sequences including an inducible promoter and an SV40 polyadenylation signal.

The completed transgene is then injected into pronuclei of fertilized mouse oocytes. The resultant pups are screened for the presence of the transgene by PCR. Transgenic founder mice are bred with wild-type mice. Heterozygous transgenic animals from at least the third generation are used for the following tests, with their non-transgenic littermates serving as controls.

Test 1: Southern blotting analysis is performed to determine the copy number. Southern blots are hybridized with a radio-labeled probe generated from a fragment of the transgene. The probe detects bands containing DNA from transgenic mice, but does not detect bands containing DNA from non-transgenic mice. Intensities of the transgenic mice bands are measured and compared with the transgene plasmid control bands to estimate copy number. This demonstrates that mice in Example 5 harbor the transgene in their genomes.

Test 2: Tissue homogenates are prepared for Western blot analysis. This experiment demonstrates the transgene is expressed in tissues of transgenic mice because hemaglutinin epitope is detected in transgenic homogenates but not in non-transgenic homogenates.

Test 3: Function is assessed by phenotypic observation or analysis against controls after induction of expression.

These examples demonstrate delivery of ligands to a localized region of a cell for therapeutic or experimental purposes. The purified polypeptide ligands can be formulated for oral or parenteral administration, topical administration, or in tablet, capsule, or liquid form, intranasal or inhaled aerosol, subcutaneous, intramuscular, intraperitoneal, or other injection; intravenous instillation; or any other routes of administration. Furthermore, the nucleotide sequences encoding the ligands permit incorporation into a vector designed to deliver and express a gene product in a cell. Such vectors include plasmids, cosmids, artificial chromosomes, and modified viruses. Delivery to eukaryotic cells can be accomplished in vivo or ex vivo. Ex vivo delivery methods include isolation of the intended recipient's cells or donor cells and delivery of the vector to those cells, followed by treatment
of the recipient with the cells.

Example 6

Fusion proteins were constructed with ligands of the present invention fused to beta-galactosidase.

FIGURE 12 represents a vector that comprises a polynucleotide that encodes the polyligand of SEQ ID NO:33. In the vector of FIGURE 12, the polynucleotide encoding the ligand of SEQ ID NO:33 is linked to a polynucleotide encoding beta-galactosidase to create a ligand fusion protein coding sequence.

FIGURE 13 represents a vector that comprises the polynucleotide of SEQ ID NO:2, which encodes the ligand of SEQ ID NO:1. In the vector of FIGURE 13, the polynucleotide of SEQ ID NO:2 is linked to a polynucleotide encoding beta-galactosidase to create a ligand fusion protein coding sequence.

FIGURE 14 represents a vector that comprises the polynucleotide of SEQ ID NO:6, which encodes the ligand of SEQ ID NO:5. In the vector of FIGURE 14, the polynucleotide of SEQ ID NO:6 is linked to a polynucleotide encoding beta-galactosidase to create a ligand fusion protein coding sequence.

FIGURE 15 represents a vector that comprises the polynucleotide of SEQ ID NO:10, which encodes the ligand of SEQ ID NO:9. In the vector of FIGURE 15, the polynucleotide of SEQ ID NO:10 is linked to a polynucleotide encoding beta-galactosidase to create a ligand fusion protein coding sequence.

FIGURE 16 represents a vector that comprises the polynucleotide of SEQ ID NO:14, which encodes the ligand of SEQ ID NO:13. In the vector of FIGURE 16, the polynucleotide of SEQ ID NO:14 is linked to a polynucleotide encoding beta-galactosidase to create a ligand fusion protein coding sequence.

FIGURE 17 represents a vector that comprises the polynucleotide of SEQ ID NO:18, which encodes the ligand of SEQ ID NO:17. In the vector of FIGURE 17, the polynucleotide of
SEQ ID NO: 18 is linked to a polynucleotide encoding beta-galactosidase to create a ligand fusion protein coding sequence.

FIGURE 18 represents a vector that comprises the polynucleotide of SEQ ID NO:22, which encodes the ligand of SEQ ID NO:21. In the vector of FIGURE 18, the polynucleotide of SEQ ID NO:22 is linked to a polynucleotide encoding beta-galactosidase to create a ligand fusion protein coding sequence.

FIGURE 19 represents a vector that comprises SEQ ID NO:26, which encodes the ligand of SEQ ID NO:25. In the vector of FIGURE 19, the polynucleotide of SEQ ID NO:26 is linked to a polynucleotide encoding beta-galactosidase to create a ligand fusion protein coding sequence.

FIGURE 20 represents another vector that comprises SEQ ID NO:26, which encodes the ligand of SEQ ID NO:25. In the vector of FIGURE 20, the polynucleotide of SEQ ID NO:26 is linked to a polynucleotide encoding beta-galactosidase to create a ligand fusion protein coding sequence.

FIGURE 21 represents a vector that comprises SEQ ID NO:30, which encodes the ligand of SEQ ID NO:29. In the vector of FIGURE 21, the polynucleotide of SEQ ID NO:30 is linked to a polynucleotide encoding beta-galactosidase to create a ligand fusion protein coding sequence.

FIGURE 22 represents another vector that comprises SEQ ID NO:30, which encodes the ligand of SEQ ID NO:29. In the vector of FIGURE 22, the polynucleotide of SEQ ID NO:30 is linked to a polynucleotide encoding beta-galactosidase to create a fusion protein coding sequence.

FIGURE 23 represents a vector that comprises SEQ ID NO:34, which encodes the ligand of SEQ ID NO:33. In the vector of FIGURE 23, the polynucleotide of SEQ ID NO:34 is linked to a polynucleotide encoding beta-galactosidase to create a ligand fusion protein coding sequence.

FIGURE 24 represents another vector that comprises SEQ ID NO:34, which encodes the ligand of SEQ ID NO:33. In the vector of FIGURE 24, the polynucleotide of SEQ ID NO:34
is linked to a polynucleotide encoding beta-galactosidase to create a ligand fusion protein coding sequence.

The vectors of FIGURES 12-24 were transfected into the mammalian cell line HT1080. A vector comprising a polynucleotide encoding the MEK substrate ERK was also transfected in HT1080 cells. Transfections were performed using Fugene δ reagent - purchased from Roche (Basel, Switzerland) - according to the manufacture specifications. Briefly, the cells were seeded into 6-well plates at a density of 300,000 per well in 2ml of DMEM with 10% FBS. 24 hours later, the transfection complexes per each well were prepared by mixing of lug of plasmid DNA with 3ul of Fugeneβ which resulted in 100ul of the DNA/lipid complex dissolved in the serum free DMEM. After 30 minutes of incubation allowing to properly form the complex 100 ul of the mixture was added to each well of cells growing in 2ml of medium. Cells were exposed to the DNA/lipid complexes for 24 hours and subsequently lysed for the RNA and protein analysis.

FIGURE 25 shows the results of protein analyses of the lysate for ligand fusion proteins encoded by the vectors of FIGURES 12-18 and FIGURES 20, 22 and 24. The ligand fusion proteins were quantified using the beta-galactosidase ELISA kit from Roche (#11539426001) according to kit protocol. Values represent the average of two replicates, except for VVN-40647 which represents the value of 1 replicate.

The lysates containing ligand fusion proteins were assayed in a protein dot-blot binding assay for the detection of binding to MEK1 protein or MEK2 protein using the following protocol:

1. Soak a nitrocellulose membrane in TBS for 5 minutes.
2. Place pre-soaked nitrocellulose membrane into dot-blot apparatus, apply vacuum and seal apparatus by tightening screws.
3. Re-hydrate nitrocellulose by adding 100µL of TBS to each well. Briefly apply vacuum but DO NOT completely dry the wells.
4. Confirm flow valve/vacuum chamber of the dot-blot apparatus is open to air and fill wells with 100µL of a 0.5ng/µL solution of either MEK1 or MEK2 target protein for a final assay amount of 50ng of target protein per well.
5. Allow the target protein to filter through the membrane by gravity flow for 40 minutes at room temperature before drawing the remaining liquid
through the membrane by vacuum filtration.

6. Block wells by adding 300 µL of 5% non-fat dried milk in TBS for 1 hour at room temperature.

7. Carefully aspirate the 5% blocking solution from each well.

8. Wash each well once by adding 100 µL of TBS. Pull the TBS through the membrane by vacuum filtration.

9. Add 100 µL of a O-ing/µL solution of each of the MEK inhibitor lysates to by tested to one well containing MEK1 protein and one well containing MEK2 protein for a final assay amount of IOng of inhibitor per well. Incubate inhibitor lysates with MEK1/2 target protein for 40 minutes at room temperature before drawing the remaining lysate through the membrane by vacuum filtration.

10. Wash each well by adding 100 µL 1% SDS in TBS. Pull the 1% SDS in TBS through the membrane by vacuum filtration. Repeat this wash step two additional times for a total of three washes.

11. Apply vacuum and mark the membrane with a pen or pencil (so that membrane can be re-aligned after removal from the apparatus).

12. Turn off vacuum and remove the membrane from the apparatus.

13. Place membrane in a Petri dish (or equivalent vessel) and wash with 1% SDS in TBS for 5 minutes with gentle agitation (add enough 1% SDS in TBS to cover the entire membrane). Repeat this wash step four additional times for a total of five washes.

14. Wash membrane once in TBS (as described in step 13) to remove excess SDS detergent from the membrane.

15. Return membrane to the dot-blot apparatus as described in step 2.

16. Add 100 µL of Beta-Glo beta-galactosidase substrate to each well and incubate for 30 minutes at room temperature.

17. Vacuum filter Beta-Glo substrate through the membrane, remove the membrane from the apparatus and expose the membrane for 15 minutes in the FluorChem imager set for chemiluminescent detection.

The materials used in this assay were:

1. Dot-blot apparatus (Bio-Rad or equivalent)
2. Tris (Sigma, #252859 or equivalent)
3. SDS (ICN #811034 or equivalent)
4. NaCl (EMD #7647-14-5 or equivalent)
5. βeta-Glo Assay Kit (Promega #E4740)
6. Mekl (Cell Signaling #M02-10G-10 or equivalent)
7. Mek2 (Cell Signaling #M03-10G-10 or equivalent)
8. FluorChem imager (Alpha Innotech or equivalent)

The image data was then quantified using the following protocol:

1. Open the dot blot image in the software application, ImageJ.
2. Use the rectangular selection tool to outline the first row.
3. Select Mark First Lane in the Special menu.
4. Move the rectangular selection (by clicking inside it and dragging) and outline (using Mark Next Lane) each of the other lanes in succession.
5. Use Plot Lanes to generate the lane profile plots.
6. Use the line drawing tool to draw base lines and drop lines so that each peak defines a closed area as shown above.
7. Measure the areas of the peaks by clicking inside each one in succession with the wand tool.
8. The data file with the peak measurements (dot intensity values) can then be saved as an Microsoft excel file and normalized and graphed.

FIGURE 26 represents the results of the image analysis of the protein dot blot binding assay, which shows that several of the fusion proteins exhibited binding activity against MEK1 and/or MEK2.

Disclosed are ligands and polyligands that modulate MEK activity and methods of making and using these ligands. The ligands and polyligands are synthesized chemically or recombinantly and are utilized as research tools or as therapeutics. The invention includes linking the ligands and polyligands to cellular localization signals for subcellular therapeutics.
WHAT IS CLAIMED IS:

1. An isolated polypeptide comprising an amino acid sequence at least about 80% identical to SEQ ID NO:1 or SEQ ID NO:5 or SEQ ID NO:9 or SEQ ID NO:13 or SEQ ID NO:17 or SEQ ID NO:21 or SEQ ID NO:25 or SEQ ID NO:29 or SEQ ID NO:33.

2. An isolated chimeric polypeptide homopolyligand whose monomers are selected from the group consisting of polypeptides comprising an amino acid sequence at least 80% identical to any one of SEQ ID NOS:41-51, wherein Xaa is any amino acid.

3. An isolated chimeric polypeptide heteropolyligand whose monomers are selected from the group consisting of polypeptides comprising an amino acid sequence at least 80% identical to any one of SEQ ID NOS:41-51, wherein Xaa is any amino acid.

4. An isolated chimeric polypeptide comprising two or more polypeptides selected from any of SEQ ID NOS:41-51, wherein at least one amino acid designated as Xaa is an amino acid other than serine, tyrosine, or threonine.

5. The isolated chimeric polypeptide of claim 4, wherein the two or more polypeptides are selected from SEQ ID NOS:41-48.

6. The isolated chimeric polypeptide of claim 4, wherein the two or more polypeptides are selected from SEQ ID NOS:49-51.

7. An isolated chimeric polypeptide homopolyligand, wherein the homopolyligand modulates MEK activity.

8. An isolated chimeric polypeptide heteropolyligand, wherein the heteropolyligand modulates MEK activity.

9. A polypeptide inhibitor of MEK comprising at least one copy of a peptide selected from the group consisting of:
 a) a peptide at least 80% identical to a peptide comprising amino acid residues corresponding to amino acid residues 213-225 of SEQ ID NO:37, wherein the amino acid residue corresponding to amino acid residue 218 and/or 222 of SEQ ID NO:37 has been mutated to an amino acid residue
other than serine, tyrosine, or threonine;

b) a peptide at least 80% identical to a peptide comprising amino acid residues corresponding to amino acid residues 211-227 of SEQ ID NO:37, wherein the amino acid residue corresponding to amino acid residue 218 and/or 222 of SEQ ID NO:37 has been mutated to an amino acid residue other than serine, tyrosine, or threonine;

c) a peptide at least 80% identical to a peptide comprising amino acid residues corresponding to amino acid residues 208-229 of SEQ ID NO:37, wherein the amino acid residue corresponding to amino acid residue 218 and/or 222 of SEQ ID NO:37 has been mutated to an amino acid residue other than serine, tyrosine, or threonine; and

d) a peptide at least 80% identical to a peptide comprising amino acid residues corresponding to amino acid residues 210-231 of SEQ ID NO:37, wherein the amino acid residue corresponding to amino acid residue 218 and/or 222 of SEQ ID NO:37 has been mutated to an amino acid residue other than serine, tyrosine, or threonine.

10. A polypeptide inhibitor of MEK comprising at least one copy of a peptide selected from the group consisting of:

a) a peptide at least 80% identical to a peptide comprising amino acid residues corresponding to amino acid residues 293-305 of SEQ ID NO:37, wherein the amino acid residue corresponding to amino acid residue 298 and/or 300 of SEQ ID NO:37 has been mutated to an amino acid residue other than serine, tyrosine, or threonine;

b) a peptide at least 80% identical to a peptide comprising amino acid residues corresponding to amino acid residues 291-308 of SEQ ID NO:37, wherein the amino acid residue corresponding to amino acid residue 298 and/or 300 of SEQ ID NO:37 has been mutated to an amino acid residue other than serine, tyrosine, or threonine;

c) a peptide at least 80% identical to a peptide comprising amino acid residues corresponding to amino acid residues 290-309 of SEQ ID NO:37, wherein the amino acid residue corresponding to amino acid residue 298 and/or 300 of SEQ ID NO:37 has been mutated to an amino acid residue other than serine, tyrosine, or threonine; and

d) a peptide at least 80% identical to a peptide comprising amino acid residues corresponding to
amino acid residues 289-310 of SEQ ID NO:37, wherein the amino acid residue corresponding to
amino acid residue 298 and/or 300 of SEQ ID NO:37 has been mutated to an amino acid residue
other than serine, tyrosine, or threonine.

11. A polypeptide inhibitor of MEK comprising at least one copy of a peptide selected from the
group consisting of:
 a) a peptide at least 80% identical to a peptide comprising amino acid residues corresponding to
 amino acid residues 199-210 of SEQ ID NO:38, wherein the amino acid residue corresponding to
 amino acid residue 202 and/or 204 of SEQ ID NO:38 has been mutated to an amino acid residue
 other than serine, tyrosine, or threonine;

 b) a peptide at least 80% identical to a peptide comprising amino acid residues corresponding to
 amino acid residues 198-217 of SEQ ID NO:38, wherein the amino acid residue corresponding to
 amino acid residue 202 and/or 204 of SEQ ID NO:38 has been mutated to an amino acid residue
 other than serine, tyrosine, or threonine;

 c) a peptide at least 80% identical to a peptide comprising amino acid residues corresponding to
 amino acid residues 187-211 of SEQ ID NO:39, wherein the amino acid residue corresponding to
 amino acid residue 202 and/or 204 of SEQ ID NO:38 has been mutated to an amino acid residue
 other than serine, tyrosine, or threonine; and

 d) a peptide at least 80% identical to a peptide comprising amino acid residues corresponding to
 amino acid residues 191-211 of SEQ ID NO:38, wherein the amino acid residue corresponding to
 amino acid residue 202 and/or 204 of SEQ ID NO:39 has been mutated to an amino acid residue
 other than serine, tyrosine, or threonine.

12. A polypeptide inhibitor of MEK comprising at least one copy of a peptide selected from the
group consisting of:
 a) a peptide at least 80% identical to a peptide comprising amino acid residues corresponding to
 amino acid residues 170-194 of SEQ ID NO:39, wherein the amino acid residue corresponding to
 amino acid residue 185 and/or 187 of SEQ ID NO:39 has been mutated to an amino acid residue
 other than serine, tyrosine, or threonine;

 b) a peptide at least 80% identical to a peptide comprising amino acid residues corresponding to
 amino acid residues 174-198 of SEQ ID NO:39, wherein the amino acid residue corresponding to
amino acid residue 185 and/or 187 of SEQ ID NO:39 has been mutated to an amino acid residue other than serine, tyrosine, or threonine;

c) a peptide at least 80% identical to a peptide comprising amino acid residues corresponding to amino acid residues 176-197 of SEQ ID NO:39, wherein the amino acid residue corresponding to amino acid residue 185 and/or 187 of SEQ ID NO:39 has been mutated to an amino acid residue other than serine, tyrosine, or threonine; and

d) a peptide at least 80% identical to a peptide comprising amino acid residues corresponding to amino acid residues 179-193 of SEQ ID NO:39, wherein the amino acid residue corresponding to amino acid residue 185 and/or 187 of SEQ ID NO:39 has been mutated to an amino acid residue other than serine, tyrosine, or threonine.

13. The polypeptide of each of claims 1-12 linked to a subcellular localization signal, reporter, and/or epitope tag.

14. A composition comprising at least two monomeric ligands, wherein at least a portion of each of said ligands is capable of being recognized by MEK and wherein at least one of said ligands does not contain an amino acid phosphorylatable by MEK.

15. The composition of claim 14 wherein said composition is a homopolymeric ligand.

16. The composition of claim 15, further comprising spacer amino acids between at least two of said monomeric ligands.

17. The composition of claim 15, further comprising a localization signal, reporter, and/or epitope tag.

18. The composition of claim 14, wherein said composition is a heteropolymeric ligand.

19. The composition of claim 18, further comprising spacer amino acids between at least two of said monomeric ligands.

20. The composition of claim 18, further comprising a localization signal, reporter, and/or epitope
21. An isolated polynucleotide encoding a polypeptide of any of claims 1-20.

22. A vector comprising the nucleic acid molecule of claim 21.

23. A recombinant host cell comprising the vector of claim 22.

24. A method of inhibiting MEK in a cell comprising transfecting the vector of claim 22 into a host cell and culturing the transfected host cell under conditions suitable to produce at least one copy of the polypeptide.

25. An isolated polynucleotide encoding each of the polypeptides of claim 24, wherein the polynucleotide is flanked on one end by a sequence cleavable by a first restriction endonuclease, and wherein the polynucleotide is flanked on the other end by a sequence cleavable by a second restriction endonuclease, and wherein the first and second restriction endonucleases generate noncompatible cohesive ends.

26. An isolated polynucleotide encoding each of the polypeptides of claim 24, wherein the polynucleotide is flanked on one end by a sequence cleavable by NgoM IV, and wherein the polynucleotide is flanked on the other end by sequences cleavable by Xma I and Cia I.
FIGURE 1A

LIGAND X LIGAND X

FIGURE 1B

LIGAND X LIGAND X LIGAND X

FIGURE 1C

LIGAND X LIGAND X LIGAND X LIGAND X LIGAND X
FIGURE 2A

| LIGAND X | SPACER | LIGAND X |

FIGURE 2B

| LIGAND A | SPACER | LIGAND A | SPACER | LIGAND A |

FIGURE 2C

| LIGAND X | LIGAND X | SPACER | LIGAND X | SPACER | LIGAND X |
FIGURE 3A

LIGAND X | LIGAND Y

FIGURE 3B

LIGAND X | LIGAND Y | LIGAND Z

FIGURE 3C

LIGAND X | LIGAND Y | LIGAND X | LIGAND Z | LIGAND A

FIGURE 3D

LIGAND A | LIGAND B | LIGAND C | LIGAND D

FIGURE 3E

LIGAND A | LIGAND A | LIGAND B | LIGAND C
FIGURE 6A

FIGURE 6B

FIGURE 6C

FIGURE 6D

FIGURE 6E

FIGURE 6F

FIGURE 6G
<table>
<thead>
<tr>
<th>LIGAND A</th>
<th>LIGAND B</th>
<th>LIGAND C</th>
<th>LIGAND D</th>
<th>EPITOPE</th>
<th>LOCALIZATION SIGNAL</th>
</tr>
</thead>
</table>

FIGURE 8A

<table>
<thead>
<tr>
<th>LOCALIZATION SIGNAL</th>
<th>LIGAND X</th>
<th>LIGAND Y</th>
<th>EPITOPE</th>
</tr>
</thead>
</table>

FIGURE 8B

<table>
<thead>
<tr>
<th>EPITOPE</th>
<th>LIGAND X</th>
<th>SPACER</th>
<th>LIGAND X</th>
<th>LOCALIZATION SIGNAL</th>
</tr>
</thead>
</table>

FIGURE 8C

<table>
<thead>
<tr>
<th>LOCALIZATION SIGNAL</th>
<th>LIGAND X</th>
<th>SPACER</th>
<th>LIGAND Y</th>
<th>EPITOPE</th>
</tr>
</thead>
</table>

FIGURE 8D

<table>
<thead>
<tr>
<th>EPITOPE</th>
<th>LIGAND X</th>
<th>LIGAND Y</th>
<th>LIGAND B</th>
<th>LOCALIZATION SIGNAL</th>
</tr>
</thead>
</table>

FIGURE 8E

<table>
<thead>
<tr>
<th>LOCALIZATION SIGNAL</th>
<th>LIGAND Z</th>
<th>SPACER</th>
<th>LIGAND Y</th>
<th>LIGAND B</th>
<th>EPITOPE</th>
</tr>
</thead>
</table>

FIGURE 8F

<table>
<thead>
<tr>
<th>EPITOPE</th>
<th>LIGAND B</th>
<th>LOCALIZATION SIGNAL</th>
</tr>
</thead>
</table>

FIGURE 8G
<table>
<thead>
<tr>
<th>PROMOTER</th>
<th>LIGAND or POLYLIGAND</th>
<th>EPITOPE</th>
<th>LOCALIZATION SIGNAL</th>
<th>STOP</th>
<th>POLY-A</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIGURE 9A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PROMOTER</th>
<th>OPTIONAL REPORTER</th>
<th>OPTIONAL EPITOPE</th>
<th>LIGAND or POLYLIGAND</th>
<th>OPTIONAL LOCALIZATION SIGNAL</th>
<th>STOP</th>
<th>POLY-A</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIGURE 9B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PROMOTER</th>
<th>LIGAND or POLYLIGAND</th>
<th>REPORTER</th>
<th>LOCALIZATION SIGNAL</th>
<th>STOP</th>
<th>POLY-A</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIGURE 9C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PROMOTER</th>
<th>LIGAND or POLYLIGAND</th>
<th>OPTIONAL EPITOPE</th>
<th>OPTIONAL REPORTER</th>
<th>OPTIONAL LOCALIZATION SIGNAL</th>
<th>STOP</th>
<th>POLY-A</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIGURE 9D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PROMOTER</th>
<th>LIGAND or POLYLIGAND</th>
<th>LOCALIZATION SIGNAL</th>
<th>STOP</th>
<th>POLY-A</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIGURE 9E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PROMOTER</th>
<th>LOCALIZATION SIGNAL</th>
<th>LIGAND or POLYLIGAND</th>
<th>STOP</th>
<th>POLY-A</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIGURE 9F</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PROMOTER</th>
<th>LIGAND or POLYLIGAND</th>
<th>STOP</th>
<th>POLY-A</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIGURE 9G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROMOTER</td>
<td>MEK LIGAND</td>
<td>EPITOPE</td>
<td>LOCALIZATION SIGNAL</td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
<td>---------</td>
<td>---------------------</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>----VECTOR</th>
<th>GENOME INTEGRATION DOMAIN</th>
<th>SELECTION GENE</th>
<th>GENOME INTEGRATION DOMAIN</th>
<th>VECTOR----</th>
</tr>
</thead>
</table>

FIGURE 10C

<table>
<thead>
<tr>
<th>PROMOTER</th>
<th>MEK LIGAND</th>
<th>EPITOPE</th>
<th>LOCALIZATION SIGNAL</th>
<th>STOP</th>
<th>POLY-A</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>----VECTOR</th>
<th>SELECTION GENE</th>
<th>VECTOR----</th>
</tr>
</thead>
</table>

FIGURE 10D
FIGURE 11
FIGURE 12

WW-40637 CMV UTR-1 Kozak MEK1 LacZ hGHpA in WWN-3836
FIGURE 14
FIGURE 15
FIGURE 16
FIGURE 17
FIGURE 18

VVN-40649 CMV UTR-1 Kozak Legacy-MEK-Dcy-45-6 LacZ hGHpA in VVN-3836
FIGURE 19

VVN-40650 UTR-1 Legacy-MEK-Dcy-45-7 LacZ in VVN-3688
FIGURE 20
FIGURE 22
FIGURE 23

VVN-40654 UTR-1 Legacy-MEK-Dcy-45-9 LacZ in VVN-3688
FIGURE 24
<table>
<thead>
<tr>
<th>VECTOR USED FOR TRANSFECTION (VECTOR #)</th>
<th>VECTOR FIGURE #</th>
<th>LIGAND DESIGNATION</th>
<th>LIGAND SEQ ID NO:</th>
<th>AVERAGE CONCENTRATION OF LIGAND FUSION PROTEIN IN LYSATE (ng/ml)</th>
<th>STD DEV</th>
</tr>
</thead>
<tbody>
<tr>
<td>VVN-40637</td>
<td>12</td>
<td>Similar to 45-9</td>
<td>33</td>
<td>50.16</td>
<td>6.65</td>
</tr>
<tr>
<td>VVN-40639</td>
<td>13</td>
<td>MEK-DCY-45-1</td>
<td>1</td>
<td>8.79</td>
<td>0.39</td>
</tr>
<tr>
<td>VVN-40641</td>
<td>14</td>
<td>MEK-DCY-45-2</td>
<td>5</td>
<td>9.80</td>
<td>0.45</td>
</tr>
<tr>
<td>VVN-40643</td>
<td>15</td>
<td>MEK-DCY-45-3</td>
<td>9</td>
<td>25.34</td>
<td>0.95</td>
</tr>
<tr>
<td>VVN-40645</td>
<td>16</td>
<td>MEK-DCY-45-4</td>
<td>13</td>
<td>5.14</td>
<td>0.16</td>
</tr>
<tr>
<td>VVN-40647*</td>
<td>17</td>
<td>MEK-DCY-45-5</td>
<td>17</td>
<td>32.03</td>
<td>N/A</td>
</tr>
<tr>
<td>VVN-40649</td>
<td>18</td>
<td>MEK-DCY-45-6</td>
<td>21</td>
<td>28.57</td>
<td>2.29</td>
</tr>
<tr>
<td>VVN-40651</td>
<td>20</td>
<td>MEK-DCY-45-7</td>
<td>25</td>
<td>43.10</td>
<td>3.24</td>
</tr>
<tr>
<td>VVN-40653</td>
<td>22</td>
<td>MEK-DCY-45-8</td>
<td>29</td>
<td>36.26</td>
<td>3.42</td>
</tr>
<tr>
<td>VVN-40655</td>
<td>24</td>
<td>MEK-DCY-45-9</td>
<td>33</td>
<td>183.81</td>
<td>32.29</td>
</tr>
<tr>
<td>ERK Positive Control</td>
<td>N/A</td>
<td>ERK1 + con</td>
<td>38</td>
<td>213.10</td>
<td>55.99</td>
</tr>
</tbody>
</table>

* VVN-40647 data represents the value of 1 replicate (other replicate was below limit of detection)

FIGURE 25