

US00RE38916E

(19) United States

(12) Reissued Patent

Vogelstein et al.

(10) Patent Number: US RE38,916 E

(45) Date of Reissued Patent: Dec. 6, 2005

(54) APC ANTIBODIES

(75) Inventors: Bert Vogelstein, Baltimore, MD (US);
Kenneth W. Kinzler, Bel Air, MD
(US); Hans Albertsen, Salt Lake City,
UT (US); Rakesh Anand, Chelford
(GB); Mary Carlson, Salt Lake City,
UT (US); Joanna Groden, Cincinnati,
OH (US); Philip John Hedge, Goostrey
(GB); Geoff Joslyn, Fremont, CA (US);
Alexander Fred Markham, Crewe
(GB); Yusuka Nakamura, Tokyo (JP);
Andrew Thilveris, Madison, WI (US);
Raymond L. White, Tiburon, CA (US)

(73) Assignees: The Johns Hopkins University,
Baltimore, MD (US); The University
of Utah, Salt Lake City, UT (US); The
Cancer Institute, Tokyo (JP); Zeneca
Limited, London (GB)

(21) Appl. No.: 09/442,489(22) Filed: Nov. 18, 1999

Related U.S. Patent Documents

Reissue of:

(64) Patent No.: 5,691,454
Issued: Nov. 25, 1997
Appl. No.: 08/452,654
Filed: May 25, 1995

U.S. Applications:

(62) Division of application No. 08/289,548, filed on Aug. 12, 1994, now Pat. No. 5,648,212, which is a division of application No. 07/741,940, filed on Aug. 8, 1991, now Pat. No. 5,352,775.

(30) Foreign Application Priority Data

Jan	. 16, 1991	(GB)	9100962
Jan	. 16, 1991	(GB)	9100963
Jan	. 16, 1991	(GB)	9100974
Jan	. 16, 1991	(GB)	9100975

- (51) **Int. Cl.**⁷ **C07K** 16/32; C12N 5/12; C12N 15/12

(56) References Cited

U.S. PATENT DOCUMENTS

5,098,823 A 3/1992 Bodmer et al.

5,137,806 A * 8/1992 LeMaistre et al. 5,244,801 A * 9/1993 Tobi

FOREIGN PATENT DOCUMENTS

WO WO 89/01481 * 8/1988

OTHER PUBLICATIONS

Kinzler et al., "Identification of FAP Locus Genes from Chromosome 5q21", Science 253: 661-665, 1991.*

Groden et al., "Identification and Characterization of the familial Adenomatous Polyposis Coli Gene", Cell 66:589–600 (1991).*

Joslyn et al. "Identification of Deletion Mutations and Three New Genes at the Familial Polyposis Locus" Cell, 66:601–613 (1991).*

Nishisho et al., "Mutations of Chromosome 5q21 Genes in FAP and Colorectal Cancer Patients" Science, 253:665–669 (1991).*

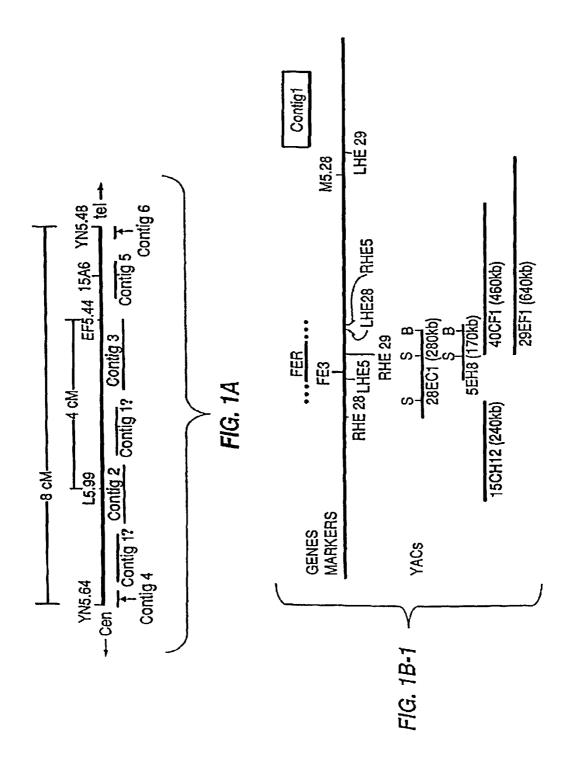
Orita et al., Genomics, vol. 5, pp. 874-879, 1989.*

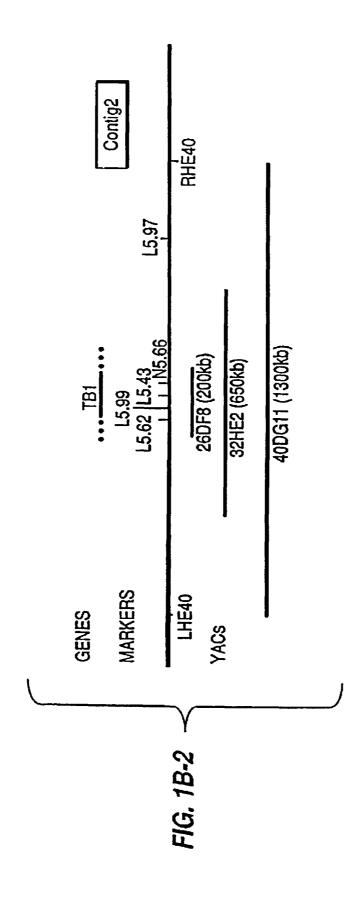
Stanbridge et al., "Identifying Tumor Suppressor Genes in Human Colorectal Cancer", Science 247:12–13 (1990).*

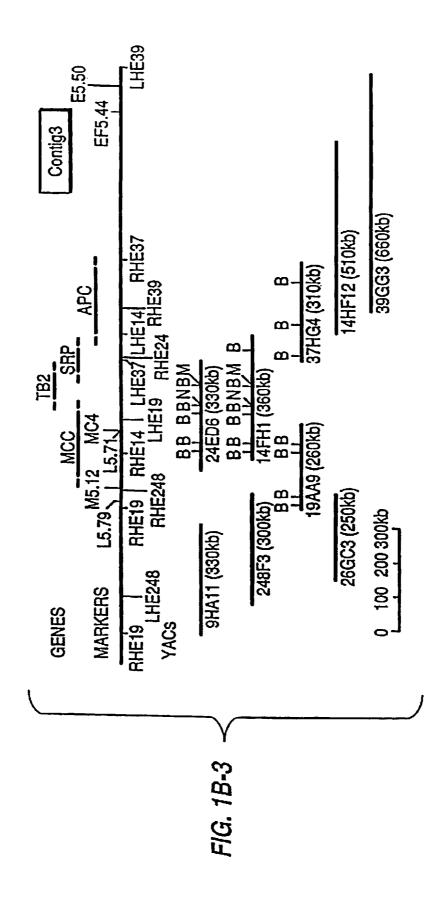
Fearon et al., "Identification of a Chromosome 18q Gene that is Altered in Colorectal Cancer" Science 247:49–56 (1990).*

Baker et al., "Chromosome 17 Deletions and p53 Gene Mutations in Colorectal Carcinomas", Science, 244:217–221 (1989).*

Bodmer et al. "Localization of the Gene for familial Adenomatous Polyposis of Chromosome 5" Nature 328:614–616 (1987).*


Primary Examiner—Christina Chan Assistant Examiner—F. Pierre VanderVegt (74) Attorney, Agent, or Firm—Banner & Witcoff


(57) ABSTRACT


A human gene termed APC is disclosed. Methods and kits are provided for assessing mutations of the APC gene in human tissues and body samples. APC mutations are found in familial adenomatous polyposis patients as well as in sporadic colorectal cancer patients. APC is expressed in most normal tissues. These results suggest that APC is a tumor suppressor.

1 Claim, 40 Drawing Sheets

^{*} cited by examiner

U.S. Patent

Dec. 6, 2005 Sheet

Sheet 4 of 40

US RE38,916 E

F16. 24

TB1 Amino Acid Sequence

VAPVVVGSGR	APRHPAPAAM	VAPYYYGSGR APRHPAPAAM HPRRPDGFDG LGYRGGARDE QGFGGAFPAR SFSTGSDLGH	LGYRGGARDE	OGFGGAFPAR	SFSTGSDLGH	09
WYTTPPDIPG	SRNLHWGEKS	WYTTPPDIPG SRNLHWGEKS PPYGVPTTST PYEGPTEEPF SSGGGGSVQG QSSEQLHRFA	PYEGPTEEPF	SSGGGGSVOG	OSSEOLNRFA	120
GFGIGLASLF	TENVLAHPCI	GFGIGLASLF TENVLAHPCI VLRROCOVNY HAOHYHLTPF TVINIMYSFN KTOGPRALWK	HACHYHLTPF	TVINIMYSFN	KTOGPRALWK	180
GMGSTFIVAG	VTLGAEGIIS	GMGSTFIVOG VTLGAEGIIS EFTPLPREVL HKWSPKOIGE HLLLKSLTYV VAMPFYSASL	HKWSPKOIGE	HLLLKSLTYV	VAMPFYSASL	240
IETVQSEIIR	DNTGILECVK	IETVQSEIIR DNTGILECVK EGIGRVIGMG VPHSKRLLPL LSLIFPTVLH GVLHYIISSV	VPHSKRLLPL	LSLIFPTVLH	GVLHYIISSV	300
IOKFVLLILK	RKTYNSHLAE	IOKFVLLILK RKTYNSHLAE STSPVOSMLD AYFPELIANF AASLC <u>SDVIL YPLETVLHRL</u>	AYFPELIANF	AASLCSDVIL	YPLETVLHRL	360
HIGGTRTIID	NTOLGYEV <u>LP</u>	HIGGTRIID NTOLGYEVLP INTOYEGMRD CINTIRGEEG VFGFYKGFGA VIIOYTLHAA	CINTIRGEEG	VFGFYKGFGA	<u>VIIOY</u> TLHAA	420
VLOITKIIYS TLLD	זררס					434

F16. 2B

TB2 AMINO ACID SEQUENCE

120 180 185 9 ELRRFDRFLH EKNCMTDLLA KLEAKTGVNR SFIALGVIGL VALYLVFGYG ASLLCNLIGF GYPAYISIKA IESPNKEDDT DWLTYWVYG VFSIAEFFSD IFLSWFPFYY ILKCGFLLWC MAPSPSNGAE LLYKRIIRPF FLKHESOMDS VVKDLKDKAK ETADAITKEA KKATVNLLGE

FIG. 3A

Leu G1yGlu Val Leu Glu Ala Ser Ser Ser Gln Ile Asp Leu Glu Arg Leu Lys Glu Leu Asn Leu Asp Ser 65 Lys Leu Arg Ser Lys Met Ser Leu Arg Ser 90 Glu Leu Glu Asp Asn 30 Ser Arg Ser Gly Glu Cys Gln Leu Leu Lys Gln Val 10 His Leu Thr Lys Leu Glu Thr Glu Ala Ser Asn Met Lys 35 Ala Glu Asp Glu Ala Met 60 Lys Met Glu Asn Ser Asn Leu Arg Gln 20 Gly Ser Val Ser Tyr Asp Lys Gln Leu Gln Gly Ser 50 Ser 5 Phe Pro Gly Val Met Ala Ala Ala Gly Ser Arg

FIG. 3B

Arg	Leu	Ala 160	Glu	Glu	Gln	Ile
Gly Ser Phe Pro Arg Arg Gly Phe Val Asn Gly Ser Arg 120	Thr Gly Tyr Leu Glu Glu Leu Glu Lys Glu Arg Ser Leu Leu 135	Ala Asp Leu Asp Lys Glu Glu Lys Glu Lys Asp Trp Tyr Tyr Ala 150	Gln Asn Leu Thr Lys Arg Ile Asp Ser Leu Pro Leu Thr Glu 165	Leu Gln Thr Asp Leu Thr Arg Arg Gln Leu Glu Tyr Glu 180	Ile Arg Val Ala Met Glu Glu Gln Leu Gly Thr Cys Gln 205	Lys Arg Ala Gln Arg Arg Ile Ala Arg Ile Gln Gln Ile
Gly	Ser	Tyr	Leu	Glu 190	\mathtt{Thr}	Gln
Asn 125	Arg	Trp	Pro	Leu	G1y 205	Ile
Val	Glu 140	Asp	Leu	Gln	Leu	Arg
Phe	Lys	Lys 155	Ser	Arg	Gln	Ala
\mathtt{Gl}_{Y}	Glu	Glu	Asp 170	Arg	G1 u	Ile
Arg	Leu	Lys	Ile	Thr 185	Glu	Arg
Arg 120	Glu	Glu	Arg	Leu	Met 200	Arg
Pro	Glu 135	Glu	Lуs	Asp	Ala	Gln 215
Phe	Leu	Lys 150	Thr	Thr	Val	Ala
Ser	Tyr	Asp	Leu 165	Gln	Arg	Arg
Gly	Gly	Leu	Asn	Leu 180	Ile	Lys
Met 115	Thr	Asp	Gln	Ser	Gln 195	
Val Pro	Ser 130	Ala	Leu	Phe	Arg	Met 210
Val	Glu	Leu 145	Gln Leu	Asn	Ala	Asp Met Glu

FIG. 3C

Thr 240	Asp	Ala	Thr	Leu	Ser 320	Ala
Ala	His 255	Met	Glu	Arg	Leu	Leu 335
Gln	Ser	Asn 270	His	Arg	Leu	Leu
Ile Leu Arg Ile Arg Gln Leu Leu Gln Ser Gln Ala Thr 230	Ser Gln Asn Lys His Glu Thr Gly Ser His Asp 250	Gln Asn Glu Gly Gln Gly Val Gly Glu Ile Asn Met Ala 260	Asn Gly Gln Gly Ser Thr Thr Arg Met Asp His Glu Thr 280	Ser Ser Thr His Ser Ala Pro Arg Arg Leu 295	Leu Gly Thr Lys Val Glu Met Val Tyr Ser Leu Leu Ser 310	Thr His Asp Lys Asp Asp Met Ser Arg Thr Leu Leu Ala 325
Gln	Thr	Gla	Met	Ala 300	Tyr	Arg
Leu 235	Glu	Gly	Arg	Ser	Val 315	Ser
Leu	His 250	Val	Thr	His	Met	Met 330
Gln	Lys	G1y 265	Thr	Thr	G1 u	Asp
Arg	Asn	Gln	Ser 280	Ser	Val	Asp
Ile	Gln	\mathtt{Gl}_{Y}	Gly		Lys	Lys
Arg 230	Ser	GIu	Gln	Ser	${ m Th} r$	Asp
Leu	Arg Ser 245	Asn	Gly	Leu Ser	Gly	His 325
Ile	Arg	Gln 260	Asn	Leu	Leu	
Lys Asp	Glu	Arg	G1y 275	Val	His	Gly
	Ala	Ala Glu Arg	Ser	Ser 290	Ser	Met Leu
Glu 225	Glu	Ala	Thr	Ala	Thr 305	Met

FIG. 31

Cys	Val	Ser	G1y 400	Tyr	Asp	Pro
Gly	Ser	Ala	Arg	Ala 415	Met	Cys
Ser 350	Asp	Arg	Lys	Arg	G1y 430	Ile
Ser Ser Gln Asp Ser Cys Ile Ser Met Arg Gln Ser Gly Cys 340	Leu Leu Ile Gln Leu His Gly Asn Asp Lys Asp Ser Val 355	Gly Asn Ser Arg Gly Ser Lys Glu Ala Arg Ala Arg Ala Ser 375	Leu His Asn Ile Ile His Ser Gln Pro Asp Asp Lys Arg Gly 390	Glu Ile Arg Val Leu His Leu Leu Glu Gln Ile Arg Ala Tyr 405	Thr Cys Trp Glu Trp Gln Glu Ala His Glu Pro Gly Met Asp 420	Lys Asn Pro Met Pro Ala Pro Val Glu His Gln Ile Cys Pro
Arg	Asp	Arg 380	Asp	Gln	Glu	His
Met	Asn	Ala	Pro 395	Glu	His	Glu
Ser	Gly	Glu	Gln	Leu 410	Ala	Val
Ile 345	His	Lys	Ser	Leu	Glu 425	Pro
Cys	Leu 360	Ser	His	His	Gln	Ala
Ser	Leu	G1y 375	Ile	Leu	Trp	Pro
Asp	Gln	Arg	11e 390	Val	Glu	Met
Gln	Ile	Ser	Asn	Arg 405	Trp	Pro
Ser 340	Leu	Asn	His	Ile	Cys 420	Asn
Ser		Gly	Leu	Glu	Thr	Lys
Ser	Pro	Leu 370	Ala	Arg	Glu	Gln Asp
Met	Leu	Leu	Ala 385	Arg Arg	Cys	Gln

FIG. 3E

His	Gln 480	e Thr	Asp	Ala	Ile	Lys 560
Arg	Leu	11e 495	Gly Asp	Arg	Val	Ser
His	Leu	Ser	Phe 510	Met	Gln	Asn
Cys Val Leu Met Lys Leu Ser Phe Asp Glu Glu His Arg His 455	Asn Glu Leu Gly Gly Leu Gln Ala Ile Ala Glu Leu Leu Gln 480	Cys Glu Met Tyr Gly Leu Thr Asn Asp His Tyr Ser Ile 485	Arg Tyr Ala Gly Met Ala Leu Thr Asn Leu Thr Phe 500	Asn Lys Ala Thr Leu Cys Ser Met Lys Gly Cys Met Arg Ala 515	Ala Gln Leu Lys Ser Glu Ser Glu Asp Leu Gln Gln Val Ile 535	Val Leu Arg Asn Leu Ser Trp Arg Ala Asp Val Asn Ser Lys 550
Glu 460	Ala	His	Leu	Gly	Leu 540	Asp
Asp	Ile 475	Asp	Asn	Lys	Asp	Ala 555
Phe	Ala	Asn 490	Thr	Met	Glu	Arg
Ser	Gln	Thr	Leu 505	Ser	Ser	Trp
Leu	Leu	Leu	Ala	Cys 520	Glu	Ser
Lys 455	Gly	Gly	Met	Leu	Ser 535	Leu
Met	G1y 470	Tyr	Gly	Thr	Lys	Asn 550
Leu	Leu	Met 485	Ala	Ala	Leu	Arg
Val	Glu	Glu	Tyr 500	Lys	Gln	Leu
Cys	Asn	Cys	Arg	Asn 515	Ala	Val
Val 450	Met	Val Asp	Arg	Ala	Val 530	Ser
Ala Val 450	Ala 465	Val	Leu	Val Ala	Leu	Ala 545

FIG. 3F

Ala	Leu	Ala	Ser	Arg 640	Leu	His
Leu Arg Glu Val Gly Ser Val Lys Ala Leu Met Glu Cys Ala 570	Val Lys Lys Glu Ser Thr Leu Lys Ser Val Leu Ser Ala Leu 580	Leu Ser Ala His Cys Thr Glu Asn Lys Ala Asp Ile Cys Ala 595	Gly Ala Leu Ala Phe Leu Val Gly Thr Leu Thr Tyr Arg Ser 615	Asn Thr Leu Ala Ile Ile Glu Ser Gly Gly Gly Ile Leu Arg 630	Ser Ser Leu Ile Ala Thr Asn Glu Asp His Arg Gln Ile Leu 655	Arg Glu Asn Asn Cys Leu Gln Thr Leu Leu Gln His Leu Lys Ser His
Glu	Ser 590	H Le	Tyr	Ile	Gln	Lys
Met	Leu	Asp 605	Thr	Gly	Arg	Leu
Leu	Val	Ala	Leu 620	Gly	His	His
Ala	Ser	Lys	$\operatorname{Th} r$	G1y 635	Asp	Gln
Lys 570	Lys	Asn	Gly	Ser	G1u 650	Leu
Val	Leu 585	Glu	Val	Glu	Asn	Leu
Ser	Thr	Thr 600	Leu	Ile	Thr	Thr
Gly	Ser	Cys	Phe 615	Ile	Ala	Gln
Val	Glu	His	Ala	Ala 630	Ile	Leu
G1u 565	Lys	Ala	Leu	ren	Leu 645	Cys
Arg	Lys 580	Ser	Ala	Thr	Ser	Asn
Leu	Val	Leu 595	Gly	Asn	Ser	Asn
Lys Thr	Glu	Trp Asn	Asp 610	Thr	Val	Glu
Lys	Leu	Trp	Val Asp 610	Gln 625	Asn	Arg

Ser	Val	Met 720	Lys	Leu	His	Ser
Leu	Ala	Ala	Ala 735	Ser	Gln	Ala
Asn	Gly	Ile	Pro	Pro 750	Ala	Lys
Trp 685	Met	Met	Arg	Leu	Asp 765	Pro
Leu Thr Ile Val Ser Asn Ala Cys Gly Thr Leu Trp Asn Leu 675 685	Arg Asn Pro Lys Asp Gln Glu Ala Leu Trp Asp Met Gly Ala Val 690	Met Leu Lys Asn Leu Ile His Ser Lys His Lys Met Ile Ala Met 710	Gly Ser Ala Ala Leu Arg Asn Leu Met Ala Asn Arg Pro Ala 735	Tyr Lys Asp Ala Asn Ile Met Ser Pro Gly Ser Ser Leu Pro Ser 740	His Val Arg Lys Gln Lys Ala Leu Glu Ala Glu Leu Asp Ala Gln His 755	Glu Thr Phe Asp Asn Ile Asp Asn Leu Ser Pro Lys Ala Ser 775
Thr	Trp	His 715	Ala	Ser	Glu	Leu
Glγ	Leu	Lys	Met 730	Gly	Ala	Asn
Cys	Ala	Ser	Leu	Pro 745	Glu	Asp
Ala 680	Glu	His	Asn	Ser	Leu 760	Ile
Asn	Gln 695	Ile	Arg	Met	Ala	Asn 775
Ser	Asp	Leu 710	Leu	Ile	Lys	Asp
Val	Lys	Asn	Ala 725	Asn	Gln	Phe
Ile	Pro	Lys	Ala	Ala 740	Lys	Thr
Thr 675	Asn	Leu	Ala	Asp	Arg 755	Glu
Leu	Arg 690	Met	Ser	Lys	Val	Ser 770
Ser	Ala	Ser 705	Gly	Tyr	His	Leu

FIG 3H

Val 800	Thr	Pro	Lys	His	Ile 880	Ala
Ser Lys Gln Arg His Lys Gln Ser Leu Tyr Gly Asp Tyr Val 790	Asn 815	Leu	Ser Glu Lys	Leu Glu Arg Gly Ile Gly Leu Gly Asn Tyr 855	Gln	Ser 895
Asp	Phe	Val 830	Ser	Asn	Leu	Val
GΙΥ	r Asn Arg His Asp Asp Asn Arg Ser Asp Asn Phe Asn 815	Thr Val Leu 830	Ser Arg Gly Ser Leu Asp Ser Ser Arg 840	Gly	Glu Asn Pro Gly Thr Ser Ser Lys Arg Gly Leu Gln 875	Ala Ala Gln Ile Ala Lys Val Met Glu Glu Val 885
Tyr	Asp	Thr Val Leu Ser Pro Tyr Leu Asn Thr 820	Ser	Leu 860	Arg	Glu
Leu 795	Ser	Asn	Ser	Gly	Lys 875	Met
Ser	Arg 810	Leu	Asp	Ile	Ser	Val 890
GIn	Asn	Tyr 825	Leu	Gly	Ser	Lys
Lys	Asp	Pro	Ser 840	Arg	Thr	Ala
His	Asp	Ser	G1y	G1u 855	Gly	Ile
Arg 790	His	Leu	Arg	Arg	Pro 870	Gln
Gln	Arg 805	Val	Ser	Glu	Asn	Ala 885
Lγs	Asn	Thr 820	Ser	Leu	Glu	Ala
Ser	T.	Met	Ser 835	Ser	Thr	Thr
Arg	Asp	Gly Asn	Ser	Arg 850	Ala	Thr
His 785	Phe	Gly	Ser	Asp	Pro 865	Ser

Leu	Ala	Asn	Ser 960	Arg	Ser	Ile
Thr Glu Leu 910	Val Thr Asp Glu Arg Asn Ala Leu Arg Arg Ser Ser Ala Ala 915	s Ser Asn Thr Tyr Asn Phe Thr Lys Ser Glu Asn Ser Asn 935	Ser	Asn Asp Gly Tyr Gly Lys Arg 970	Pro Ser Ile Glu Ser Tyr Ser Glu Asp Asp Glu Ser 985	Lys
Thr 910	Ser	Asn	Arg	Gly	Asp 990	His
Thr Ser Gln Glu Asp Arg Ser Ser Gly Ser Thr 900	Ser 925	Glu	Pro Tyr Ala Lys Leu Glu Tyr Lys Arg Ser 950	Tyr	Asp	Ser Tyr Gly Gln Tyr Pro Ala Asp Leu Ala His Lys Ile 1000
Ser	Arg	Ser 940	Tyr	Gly	Glu	Leu
Gly	Arg	Lys	G1u 955	Asp	Ser	Asp
Ser	Leu	Thr	Leu	Asn 970	Tyr	Ala
Ser 905	Ala	Phe	Lys	Ser Val Ser Ser	Ser 985	Pro
Arg	Asn 920	Asn	Ala	Ser	Glu	Tyr 1000
Asp	Arg	Tyr 935	Tyr	Val	Ile	Gln
Glu	Glu	Thr	Pro 950	Ser	Ser	Gly
Gln	Asp	Asn	Ser Met	Ser Leu Asn 965	Pro	Tyr
Ser 900	Thr	Ser	Ser	Leu	Lys 980	Ser
	Val 915	His	Cys	Ser	Met	Cys 995
His	Cys	Thr 930	Thr	Asn Asp	Gly Gln	Phe
Ile	His	His	Arg 945	Asn	Gly	Lys

FIG. 3J

Pro	Ser Leu Lys Tyr Ser Asp Glu Gln Leu Asn Ser Gly Arg 1030	Ile	Ser	Lys	Ser	Asn Gly Ser Glu Thr Asn Arg Val Gly Ser Asn His Gly
Thr	Gly	Ile 1055	Gln	Leu	Arg	His
Asp	Ser	His	Asn 1070	His	Tyr .	Asn
Leu	Asn	Lys	Arg	Lys 1085	Pro	Ser
Glu 1020	ren	Pro	Ser	Asp	Ser 1100	Gly :
Asn His Met Asp Asp Asn Asp Gly Glu Leu Asp Thr Pro 1015	Gln 1035	Ser Gln Asn Glu Arg Trp Ala Arg Pro Lys His Ile Ile 1045	Ile Lys Gln Ser Glu Gln Arg Gln Ser Arg Asn Gln Ser 1060	Pro Val Tyr Thr Glu Ser Thr Asp Asp Lys His Leu Lys i 1085	His Phe Gly Gln Glu Cys Val Ser Pro Tyr Arg Ser 1095	Val (
Asp	Glu	Ala 1050	Arg	Thr	Cys	Arg .
Asn	Asp	Trp	Gln 1065	Ser	Glu	Asn .
Asp	Ser	Arg	Glu	Glu 1080	Gln	Thr
Asp 1015	Tyr	Glu	Ser	Thr	Gln 1095	Glu
Met	$\frac{\text{Lys}}{1030}$	Asn	Gln	Tyr	Gly	Ser
His	Leu	Gln 1045	Lys	Val	Phe	Gly
Asn	Ser	Ser	Ile 1060	Pro	His	Asn
		Pro	Glu	Tyr 1075	Pro	
His Ser Ala 1010	Ile Asn Tyr 1025	Ser	Glu Asp		Gln 109(Gly .
His	Ile 1025	Gln	Glu	Thr Thr	Phe	Arg Gly Ala

FIG. 3K

Ile Asn Gln Asn Val Ser Gln Ser Leu Cys Gln Glu Asp Asp Tyr Glu Asp Asp Lys Pro Thr Asn Tyr Ser Glu Arg Tyr Ser Glu Glu Glu Glu Glu Glu Glu Ilso

His Glu Glu Glu Glu Glu Arg Pro Thr Asn Tyr Ser Ile Lys Tyr Asn Glu 1155

Glu Lys Arg His Val Asp Gln Pro Ile Asp Tyr Ser Leu Lys Tyr Ala 1170

Thr Asp Ile Pro Ser Ser Gln Lys Gln Ser Phe Ser Phe Ser Lys Ser 1185

Ser Ser Gly Gln Ser Ser Lys Thr Glu His Met Ser Ser Ser Glu 1215 Thr Pro Ser Ser Asn Ala Lys Arg Gln Asn Gln Leu His 1220 Asn Thr Ser

FIG. 31

ľhr	/a1	eu 280	11a	31y	iln.	er
Ala ?	ys v	er I	31u A	.le (er G	er S
Na 1	Yr (der 9	in G	ys 1	ra S	e S
178 7 1245	hr J	en S	hr G	13y I	la V 325	er L
I uti	iln 1 260	ler I	hr T	ys G	ro A	er S 340
oz.	le G	er S 275	ıln I	le L	al P	ւ Տ 1
lu E	hr I	.ys s	sn G 290	I n	n n	ln G
Ser Ala Gln Ser Arg Ser Gly Gln Pro Gln Lys Ala Ala Thr 1235	Val Ser Ser Ile Asn Gln Glu Thr Ile Gln Thr Tyr Cys Val 1255	Arg C	Ala Glu Asp Glu Ile Gly Cys Asn Gln Thr Thr Gln Glu Ala 1285	Asn Thr Leu Gln Ile Ala Glu Ile Lys Gly Lys Ile Gly 1300	Ser Ala Glu Asp Pro Val Ser Glu Val Pro Ala Val Ser Gln 1315	Thr Lys Ser Ser Arg Leu Gln Gly Ser Ser Leu Ser Ser 1335
Ser (1240	31n (Ser A	31y ([]e 7	7al 8	rg I
Arg	Asn (s eye	[]e (l ule	oro 1	er 2 335
Ser	Ile	Cys 1270	31n (ner (dsb	ser 3
Gln	Ser	Ile (Asp (1285	thr 1	31u <i>I</i>	s s Ār
Ala	Ser	Pro	Glu 2	Asn 1	4]a (thr I
Ser 1235	Val	Thr	Ala (Ser 1	Arg 1
Ser	Lys 1250	Asp	Ser	Ser 1		Pro Arg 1330
Pro	Cys Lys 1250	Glu Asp Thr Pro Ile Cys Phe Ser Arg Cys Ser Ser Leu Ser Ser Leu 1265	Ser	Asp Ser Ala	Thr Arg	His H
			-	• •	•	

FIG. 3M

a Arg His Lys Ala Val Glu Phe Pro Ser Gly Ala Lys Ser 1350 1360	Tyr	Ser	G1 u	Pro	Pro Gly Gln Thr Met Pro Pro Ser Arg Ser Lys Thr Pro Pro 1430 1435	Lys
Lγs	His 1375	Ser	Ser	Leu	Pro	Asn 1455
Ala	Glu	Val	Gln	Asp	Thr	Lys
Glγ	Pro	Ser	Val	Ser	Lys	Pro
Ser	s Ser Gly Ala Gln Thr Pro Lys Ser Pro Pro Glu His Tyr 1365 1375	Thr Pro Leu Met Phe Ser Arg Cys Thr Ser Val Ser Ser 1380	Ser Phe Glu Ser Arg Ser Ile Ala Ser Ser Val Gln Ser Glu 1395	Ser Gly Met Val Ser Gly Ile Ile Ser Pro Ser Asp Leu Pro 1415	Ser	Pro Gln Thr Ala Gln Thr Lys Arg Glu Val Pro Lys Asn Lys 1450
Pro 135	Ser	Cys	Ser	Ser	Arg 1435	Glu
Phe	Lys 1370	Arg	Ala	H H	Ser	Arg 1450
G]n	Pro	Ser 138	ile	Ile	Pro	Lys
Val	Thr	Phe	Ser 140(Gly	Pro	Thr
Ala 0	Gln	Met	Arg	Ser 1415	Met	Gln
Lys 135(Ala	Leu	Ser	Val	Thr 1430	Ala
His	G1y 136	Pro	Glu	Met	Gln	Thr 1445
Arg	Ser	Thr 138(Phe	Gly	Gly	Gln
A .	LY	Glu	Ser 1399		Pro	Pro
Ser	Ser	Gln	Asp	Cys 1410	Ser	Pro
G1u 134(Pro	Val	Leu	Pro	Asp 1425	Pro

Lys Gln Ala Ala Val	1470
g Glu Ser Gly Pro	1465
Ala Pro Thr Ala Glu Lys Arg	1460

Leu	
Thr	
Asp	
Ala	1485
Asp	
Pro	
Leu	
Val	
~	_
Gln	1480
Val Gln	1480
Val Gln	1480
Gln	1480
Arg Val Gln	1480
Gln Arg Val Gln	1475 1480
Val Gln Arg Val Gln	1475 1480
Ala Val Gln Arg Val Gln	1475 1480

Ser Ser	
Se	
Cys	
Phe Ser	_
	1500
Gly	
Asp	
Pro	
Thr	
Ser	1495
Glu	
Thr	
Ala	
Phe	_
His	1490
Leu	

Val	152
Asp	
Lys	
GIn	
Ile	
Phe Ile	1515
Glu Pro	
Asp	
Len	_
Ser ren	1510
Leu	
Ala	
Ser	
Len	
Ser	1505

y Asn Glu	1535
Asp Asn Gly	
Glu Asn	1530
o Val Gln	
Met Pro Pro	1525
Leu Arg Ile	
Glu Le	

Glu Lys Asp Leu Leu Asp Asp Ser Asp 1560

FIG. 3C

Pro	Ser Ser Arg Lys Gly Lys Lys Pro Ala Gln Thr Ala Ser Lys 1590	Lys	Phe	Pro	Ser	Asn Glu Leu Ala Ala Gly Glu Gly Val Arg Gly Gly Ala Gln 1675
Met	Ser	Tyr 1615	Ser	Thr	Glu	Ala
Ala	Ala	Val	Val 1630	G1y	Ile	Gly
Ser	Thr	Pro	His	Glu 1645	Thr	Gly
Asp Asp Asp Ile Glu Ile Leu Glu Glu Cys Ile Ile Ser Ala Met Pro 1570 1570	Gln	Pro Pro Val Ala Arg Lys Pro Ser Gln Leu Pro Val Tyr Lys 1605	Pro Ser Gln Asn Arg Leu Gln Pro Gln Lys His Val Ser Phe 1620	Gly Asp Asp Met Pro Arg Val Tyr Cys Val Glu Gly Thr Pro 1635	Phe Ser Thr Ala Thr Ser Leu Ser Asp Leu Thr Ile Glu Ser 1655	Arg
IIe	Ala 1595	Gln	Gln	Cys	Asp	Val 1675
Cys	Pro	Ser 1610	Pro	Tyr	Ser	Gly
G1 u	Lys	Pro	Gln 1625	Val	Leu	G1u
Glu	Lys	Lys	Leu	Arg 164(Ser	Glγ
Leu 157	Gly	Arg	Arg	Pro	Thr 1655	Ala
Ile	Lys 159(Ala	Asn	Met	Ala	Ala 1670
Glu	Arg	Val 1605	Gln	Asp	Thr	Leu
Ile	Ser	Pro	Ser 162(Asp	Ser	Glu
Asp)	Ser	Pro	Pro	G1y 1635	Phe	Asn
Asp 157(Thr Lys 1585	Leu Pro	Leu	Pro	Ile Asn 1650	Pro
Asp	Thr 1585	Leu	Leu	Thr	Ile	Pro 1665

FIG. 3P

Phe Glu Lys Arg Asp Thr Ile Pro Thr Glu Gly Arg Ser 1685	Ala Gln Gly Gly Lys Thr Ser Ser Val Thr Ile Pro Glu 1700	Asn Lys Ala Glu Glu Gly Asp Ile Leu Ala Glu Cys Ile 1720	Met Pro Lys Gly Lys Ser His Lys Pro Phe Arg Val Lys 1735	Asp Gln Val Gln Gln Ala Ser Ala Ser Ser Ala Pro 1750	Gln Leu Asp Gly Lys Lys Lys Pro Thr Ser Pro Val 1765	Pro Gln Asn Thr Glu Tyr Arg Thr Arg Val Arg Lys Asn 1780
hr 13	hr Se 705	ly As	er Hi	la Se	ys Ly 17	yr Ar 785
r Asp T	Lys T	Glu G 1720	Lys S	Gln A	Lys L	Glu T
Arç	Gly	Glu	G1y 173	Gln 0	Gly	Thr
u Lys 85	n Gly	s Ala	o Lys	n Val 175	ı Asp 55	Asn A
9 G17	a G11	LY:	: Pr(Glr G	17(Glr
	A12 170	Asr 5	Met	Asp		Pro 178
G1 v	Glu	Asp 171	Ala 0	Met	Asn	11e
Ser Gly Glu	Thr Asp	Leu Asp Asp 1715	Ser 1 1730	Ile	Asn Lys Asn	Pro
Ser	Thr	Leu	Asn	Lys 1745	Asn	Lys

FIG. 3Q

Asn	Asn	Phe 184(Phe	Val	Ĺys	Gln
Asp	Phe	Ala	Cys 1855	Asp	Asn	Asn
Ser	Asp	Phe	Tyr	Asp 1870	Glu	Ser
Phe 1805	Lys	Ser	Pro	Asp	Lys 1885	Thr
Ser Lys Asn Asn Leu Asn Ala Glu Arg Val Phe Ser Asp Asn 1795	Ser Lys Lys Gln Asn Leu Lys Asn Asn Ser Lys Asp Phe Asn 1815	Leu Pro Asn Asn Glu Asp Arg Val Arg Gly Ser Phe Ala Phe 1830	Pro His His Tyr Thr Pro Ile Glu Gly Thr Pro Tyr Cys Phe 1845	Asn Asp Ser Leu Ser Ser Leu Asp Phe Asp Asp Asp Val 1860	Ser Arg Glu Lys Ala Glu Leu Arg Lys Ala Lys Glu Asn Lys 1875	Glu Ala Lys Val Thr Ser His Thr Glu Leu Thr Ser Asn Gln
Arg	Asn	Arg 1835	Gly	Phe	Lys	Glu
Glu	Asn	Val	Glu 1850	Asp	Arg	Thr
Ala	Lys	Arg	Ile	Leu 1865	Leu	His
Asn 180(Leu	Asp	Pro	Ser	Glu 1880	Ser
Leu	Asn 181	Glu	Thr	Ser	Ala	Thr
Asn	Gln	Asn 183(Tyr	Leu	Lys	Val
Asn	Lys	Asn	His 1845	Ser	Glu	LVS
Lys 5	Lys	Pro	His	Asp 186(Arg	Ala
	Ser	Leu	Pro	Asn	Ser 1875	Glu
Asp	Asp (Lys	Ser	Arg	Leu	Ser
Ala	Lys	Asp 1825	Asp	Ser	Asp	Glu

FIG. 3R

Asn Lys Thr Gln Ala Ile Ala Lys Gln Pro Ile Asn Arg 1910 1920	Ser	Gln	Ser	Asn	Lys Glu Thr Glu Pro Pro Asp Ser Gln Gly Glu Pro Ser 1990	Asp
Asn	Gln 1935	Leu	Ser	Glu	Pro	Glu 2015
Ile	Pro	Lys 1950	Asn	Lys	Glu	Val
Pro	Phe	Glu	His 1965	Asn)	Gly	His
Gln	Lys Pro Ile Leu Gln Lys Gln Ser Thr Phe Pro Gln Ser 1925	Ile Pro Asp Arg Gly Ala Ala Thr Asp Glu Lys Leu Gln 1940	Ile Glu Asn Thr Pro Val Cys Phe Ser His Asn Ser Ser 5 1965	Leu Ser Asp Ile Asp Gln Glu Asn Asn Asn Lys Glu Asn 1975	Gln	Ala Ser Gly Tyr Ala Pro Lys Ser Phe His Val Glu Asp 2005
Lys 191	Ser	Thr	Phe	Asn	Ser 1995	Ser
Ala	Gln 193(Ala	Cys	Glu	Asp	Lys 2010
116	$ ext{L} ext{ys}$	Ala 194	val	Gln	Pro	Pro
Ala	Gln	Gly	Pro 196(Asp	Pro	Ala
Gln	Leu	Arg	Thr	11e	Glu	$\mathbf{T}\mathbf{y}\mathbf{r}$
Thr 191	Ile	Asp	Asn	Asp	Thr 1990	G1y
Lys	Pro 192	Pro	Glu	Ser	Glu	Ser 2005
	Lys	11e	Ile	Leu	Lys	Ala
Ala	Pro	Lys Asp	Phe Ala 1955	er	Ile	Gln
Ser	Gly Gln Pro		Phe	Ser S 1970	Pro	Pro
Gln 1905	Gly	Ser	Asn	Leu	Glu 1985	Lys

FIG. 3S

Ile	Pro	Ser	Asn Met Gly Gly Ile Leu Gly Glu Asp Leu Thr Leu Asp Leu 2070	Ser	Val	Ala
Pro Val Cys Phe Ser Arg Asn Ser Ser Leu Ser Leu Ser Ile 2020	Glu Asp Asp Leu Leu Gln Glu Cys Ile Ser Ser Ala Met Pro 2035	Lys Lys Pro Ser Arg Leu Lys Gly Asp Asn Glu Lys His Ser 0	Asp	le Gln Arg Pro Asp Ser Glu His Gly Leu Ser Pro Asp Ser 2085	Phe Asp Trp Lys Ala Ile Gln Glu Gly Ala Asn Ser Ile Val 2100	Leu His Gln Ala Ala Ala Ala Ala Cys Leu Ser Arg Gln Ala
Leu 2030	Ala	Lys	Leu	Pro	Ser 2110	Arg
Ser	Ser 2045	61u	Thr	Ser	Asn	Ser
Ser	Ser	Asn 2060	Leu	Leu	Ala	Leu
Leu	Ile	Asp	Asp 2075	Gly	Gly	Cys
Ser	Cys	Gly	Glu	His 2090	Glu	Ala
Ser 202	Glu	Lys	Gly	Glu	Gln 2105	Ala
Asn	Gln 204(Leu	Leu	Ser	Ile	Ala
Arg	Leu	Arg 205	Ile	Asp	Ala	Ala
Ser	Leu	Ser	G1y 207(Pro	Lys	Ala
Phe)	Asp	Pro	Gly	Arg 208	Trp	Gln
Cys 202(Asp	Lys	Met	Gln	Asp 210(His
Val		Lys	Asn	Ile	Phe	Leu
	Ser	Lys 205	Arg	Asp Il	Asn	Ser
Thr	Asp	Lys	Pro 2065	Lys	Glu	Ser

FIG. 3T

Leu	e His Leu Thr Pro Asp Gln Glu Glu Lys Pro Phe Thr 2150	Leu	Lys	G1u	Iie	Arg Gly Arg Thr Met Ile His Ile Pro Gly Val Arg Asn Ser Ser 2235
Ser	Phe	Thr 2175	Gly	Ser	Ser	Ser
Ile	Pro	Ser	G1y 2190	Asn	Pro	Asn
Gly)	Lys	Lys	Lys	Ser 2205	Met	Arg
Ser Asp Ser Ile Leu Ser Leu Lys Ser Gly Ile Ser Leu 2135	Glu	y Pro Arg Ile Leu Lys Pro Gly Glu Lys Ser Thr Leu 2165	Lys Ile Glu Ser Glu Ser Lys Gly Ile Lys Gly Gly Lys 2180	Lys Ser Leu Ile Thr Gly Lys Val Arg Ser Asn Ser Glu 2200	n Met Lys Gln Pro Leu Gln Ala Asn Met Pro Ser Ile 2215	Val
Lys	Glu 2155	Gly	Gly	Val	Ala	G1y 2235
Leu	Gln	Pro G 2170	Lys	${ m L} \chi_{ m S}$	Gln	Pro
Ser	Asp	Lys	Ser 2185	Gly	Leu	Ile
Leu	Pro	Leu	Gl u	Thr 2200	Pro	His
11e 2139	Thr	Ile	Ser	Ile	Gln 2215	Ile
Ser	Leu 215(Arg	Glu	Leu	Lys	Met 2230
Asp	His	Pro 216	Ile	Ser	Met	Thr
	몺	GJ	Lys 218(Lys	Gln	Arg
Asp	Pro	Lys	Lys	Tyr 2195	Gly	Gly
Ser 2130	Ser	Asn	Thr	Val	Ser 2210	Arg
Ser	G1y 2145	Ser	Glu	Lys	Ile	Ser 2225

FIG. 3U

Pro	Arg	Gln	Ser	Pro 2320	Ile	Ser
Thr 2255	Pro	Arg	Gly	Arg	G1y 2335	Pro
Lys	Ser 2270	Ala	Ser	Ser	Asn	Ser 2350
Len	Thr	Val 2285	Arg	Leu	Arg	Ser
hr Ser Pro Val Ser Lys Lys Gly Pro Pro Leu Lys Thr Pro 2245	ys Ser Pro Ser Glu Gly Gln Thr Ala Thr Thr Ser Pro Arg 2260	Lys Pro Ser Val Lys Ser Glu Leu Ser Pro Val Ala Arg Gln 2275	Gln Ile Gly Gly Ser Ser Lys Ala Pro Ser Arg Ser Gly Ser	Ser Thr Pro Ser Arg Pro Ala Gln Gln Pro Leu Ser Arg Pro 2310	Ser Pro Gly Arg Asn Ser Ile Ser Pro Gly Arg Asn Gly Ile 2325	Pro Asn Lys Leu Ser Gln Leu Pro Arg Thr Ser Ser Pro Ser 2340
Pro	Ala	Ser	Pro	Gln 2315	Pro	Arg
G1y 225(Thr	Leu	Ala	Gln	Ser 2330	Pro
Lys	Gln 226	Glu)	Lys	Ala	I le	Leu 2345
Lys	Gly	Ser 228(Ser	Pro	Ser	Gln
Ser	Glu	Lys	Ser 2295	Arg	Asn	Ser
Val	Ser	Val	Gly	Ser 2310	Arg	Leu
Pro 2249	Pro)	Ser	Gly	Pro	G1y 2325	Lys
Ser	Ser 226(Pro	Ile	Thr	Pro	Asn 234(
Thr	Lys	Lys 2275	Gln)	Ser	Ser	Pro
Ser	Ser	Gly Ala	Ser (2290	Asp	Gln	Pro
Ser	Ala	Gly	Thr	Arg Asp : 2305	Ile	Ser

FIG. 3V

ស ក ក	Leu	Ser Ile Pro Arg Ser Glu Ser Ala Ser Lys Gly 2390	Leu	Ser	Pro	Ser
Thr	Gly	Lys	Glu 2415	Arg	Ala	Glu
ΤΛr	Thr	Ser	Val	Asp 2430	Glu	Phe
Thr Lys Ser Ser Gly Ser Gly Lys Met Ser Tyr Thr Ser 2360	Gln Met Ser Gln Gln Asn Leu Thr Lys Gln Thr Gly Leu 2375	Ala	Met Asn Asn Gly Asn Gly Ala Asn Lys Lys Val Glu Leu 2405	Ser Ser Thr Lys Ser Ser Gly Ser Glu Ser Asp Arg Ser 2420	Val Leu Val Arg Gln Ser Thr Phe Ile Lys Glu Ala 2440	Leu Arg Arg Lys Leu Glu Glu Ser Ala Ser Phe Glu Ser 2455
Met	Lys 2380	Ser	Lys	Glu	Ile	Ala 2460
Lγs	Thr	G1u 2395	Asn	Ser	Phe	Ser
GLy	Leu	Ser	Ala 2410	Gly	Thr	Glu
Ser	Asn	Arg	Gly	Ser 2425	Ser	Glu
G1Y 236(Gln	Pro	Asn	Ser	Gln 2440	Leu
Ser	Gln 237	Ile	Gly	Lys	Arg	Lys 2455
Ser	Ser	Ser 2390	Asn	Thr	Val	Arg
Lys	Met	Ala Ser	Asn 2405	Ser	Leu	Arg
Thr	Gln	Ala	Met	Ser 2	Val	Leu
Ser 2355	Arg	Asn	Gln		Pro 2435	Thr
rhr Ala	Gly 2 2370	Lys	Asn	Arg Met	Arg	Pro 2450
Thr	Pro	Ser 2385	Leu	Ser	Glu	Ser

FIG. 3W

Gln 2480	His	Ser	Ile	Ser	Lys Arg Glu His Ser Lys His Ser Ser Ser Leu Pro Arg 2550	Ala
Ser Ser Arg Pro Ala Ser Pro Thr Arg Ser Gln Ala Gln 2470	Leu Ser Pro Ser Leu Pro Asp Met Ser Leu Ser Thr His 2485	Gln Ala Gly Trp Arg Lys Leu Pro Pro Asn Leu Ser 2500	Glu Tyr Asn Asp Gly Arg Pro Ala Lys Arg His Asp Ile 2525	Ser Pro Ser Arg Leu Pro Ile Asn Arg Ser 2535	Pro	Ser Ala 2575
Gln Gln	Ser	Asn 2510	His	Asn	Leu	Leu
Ser	Leu	Pro	Arg 2525	Ile)	Ser	Trp Arg Arg Thr Gly Ser Ser Ser Ile Leu 2565
Arg	Ser	Pro	Lys	Pro 2540	Ser	Ser
Thr 247	Met)	Leu	Ala	Leu	Ser 2555	Ser
Pro	Asp 249($_{5}^{ m Lys}$	Pro	Arg	His	Ser 2570
Ser	Pro	Arg 250	Arg	Ser	Lys	Ser
Ala	Leu	Trp	G1y 252(Pro	Ser	Gly
Pro 0	Ser	Gly	Asp	Ser 253!	His	Thr
Arg 247	Pro	Gly	Asn	G1u	G1u 255(Arg
Ser	Ser 248!	Ala	Tyr	His Ser Glu	Arg	Arg 2565
	Leu	Gln 250(Glu 5	His	Lys	Trp
Pro	Val	Val	11e (2515	Ser	Trp	Thr
Ser 5	Pro	Ser	Thr	Arg 2530	Thr	Ser
Leu 246	Thr	Ser	Pro	Ala	Gly ' 2545	Val

FIG. 3X

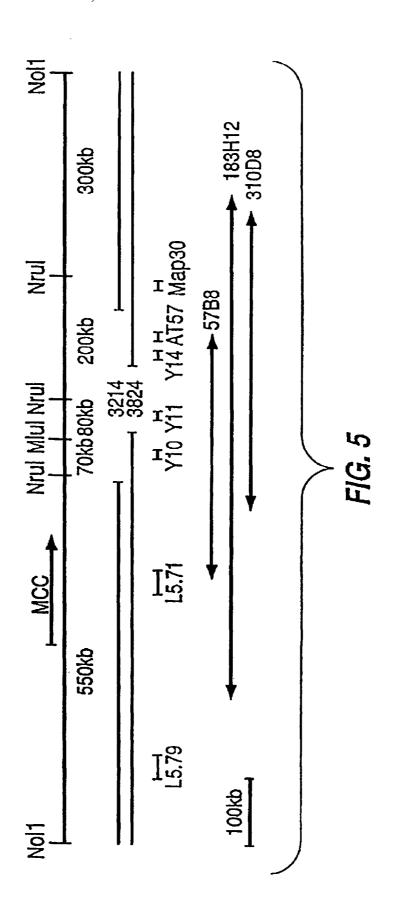
Val	Ala	Asn	er Gln Thr Val Ser Ser Gly Ala Thr Asn Gly Ala Glu Ser 2630	Asp	Gly	Glu
His	Ser	Thr	Glu	Glu 2655	Ser	Ser
Lys 2590	Val	Pro	Ala	Thr	Arg 2670	Val
Glu Ser Ser Glu Lys Ala Lys Ser Glu Asp Glu Lys His Val 2580 2590	Ile Ser Gly Thr Lys Gln Ser Lys Glu Asn Gln Val Ser Ala 2595	Thr Trp Arg Lys Ile Lys Glu Asn Glu Phe Ser Pro Thr Asn 2615	Gly	eu Ile Tyr Gln Met Ala Pro Ala Val Ser Lys Thr Glu Asp 2645	Val Arg Ile Glu Asp Cys Pro Ile Asn Asn Pro Arg Ser Gly 2660	ro Thr Gly Asn Thr Pro Pro Val Ile Asp Ser Val Ser Glu 675
Asp	Asn	Phe 2620	Asn	Ser	Asn	Asp
Glu	Glu	Glu	Thr 2635	Val	Asn	Ile
Ser	Lys	Asn	Ala	Ala 2650	rle	Val
Lys 258	Ser	Glu	Gly	Pro	Pro 2665	Pro
Ala	Gln 260(Lys	Ser	Ala	Cys	Pro 2680
Lys	Lys	11e 261	Ser	Met	Asp	Thr
Glu	Thr	Lys	Val 263(Gln	Glu	Asn
Ser	Gly	Arg	Thr	Tyr 2645	Ile	Gly
Ser 258	Ser	Trp	Gln	Ile	Arg 266(Thr
		\sim	Ser	Leu		Pro 2675
Ser	Ser	G1y 261	${ m Th} x$	Lys Thr	Trp	Ser
Ser	Asn	Lys	Ser ' 2625	Lys	Val	Arg

FIG. 3Y

Lys Ala Asn Pro Asn Ile Lys Asp Ser Lys Asp Asn Gln Ala Lys Gln 2690 Asn Val Gly Asn Gly Ser Val Pro Met Arg Thr Val Gly Leu Glu Asn 2705 Arg Leu Thr Ser Phe Ile Gln Val Asp Ala Pro Asp Gln Lys Gly Thr 2736 Glu Ile Lys Pro Gly Gln Asn Asn Pro Val Pro Val Ser Glu Thr Asn 2740 Glu Ser Pro Ile Val Glu Arg Thr Pro Phe Ser Ser Ser Ser Ser 2750 Lys His Ser Ser Pro Ser Gly Thr Val Ala Ala Arg Val Thr Pro Phe 2770 Asn Tyr Asn Pro Ser Pro Arg Lys Ser Ser Ser Thr Ser Ala							
Ala Asn 2690 Val Gly Leu Thr Ile Lys Ser Pro Ser Pro 2755 Tyr Asn	Gln	Asn 2720	Thr	Asn	Ser	Phe	Ala 2800
Ala Asn 2690 Val Gly Leu Thr Ile Lys Ser Pro Ser Pro 2755 Tyr Asn	Lys	G1 u	G1y 2735	Thr	Ser	Pro	Ser
Ala Asn 2690 Val Gly Leu Thr Ile Lys Ser Pro Ser Pro 2755 Tyr Asn	Ala	Leu	Lys	G1u 2750	ន ក	Thr	Thr
Ala Asn 2690 Val Gly Leu Thr Ile Lys Ser Pro Ser Pro 2755 Tyr Asn	Gln	Glγ	Gln	Ser	Ser 2765	Val	Ser
Ala Asn 2690 Val Gly Leu Thr Ile Lys Ser Pro Ser Pro 2755 Tyr Asn	Asn 2700	Val	Asp	Val	Ser	Arg 2780	Asp
Ala Asn 2690 Val Gly Leu Thr Ile Lys Ser Pro Ser Pro 2755 Tyr Asn	Asp	Thr 2715	Pro	Pro	Ser	Ala	Ala 2795
Ala Asn 2690 Val Gly Leu Thr Ile Lys Ser Pro Ser Pro 2755 Tyr Asn	Lys	Arg	Ala 2730	Val	Phe	Ala	Ser
Ala Asn 2690 Val Gly Leu Thr Ile Lys Ser Pro Ser Pro 2755 Tyr Asn	Ser	Met	Asp	Pro 2745	Pro	Val	Ser
Ala Asn 2690 Val Gly Leu Thr Ile Lys Ser Pro Ser Pro 2755 Tyr Asn	Asp	Pro	Val	Asn	Thr 2760	Thr	Lys
Ala Asn 2690 Val Gly Leu Thr Ile Lys Ser Pro Ser Pro 2755 Tyr Asn	Lys 2695	Val	Gln	Asn	Arg	G1y 2775	Arg
Ala Asn 2690 Val Gly Leu Thr Ile Lys Ser Pro Ser Pro 2755 Tyr Asn	Ile	Ser 2710	Ile	Gln	Glu	Ser	Pro 2790
Ala Asn 2690 Val Gly Leu Thr Ile Lys Ser Pro Ser Pro 2755 Tyr Asn	Asn	Gly	Phe 2725	G1 <i>y</i>	Val	Pro	Ser
Ala 2690 Val Leu Leu Ser Ser Ser 11s	Pro	Asn	Ser	Pro 2740	I i e	Ser	Pro
Ala 2690 Val Leu Leu Ser Ser Ser 11s	Asn)	Gly	Thr	Lуs	Pro 2755	Ser	Asn
Lys Asn 2705 Arg Glu Glu Lys Asn	Ala 2690	Val	Leu	Ile		His 2770	Tyr
	Lys	Asn 2705	Arg	Glu	Glu	Lys	Asn 2785

FIG. 3Z

Glu Ser Ser Gly Thr Gln Ser Pro Lys 2825 LysPro Val Asn Asn Asn Thr 2810 Ser Gly Ser Tyr Leu Val Thr Ser Val 2835 Gln Ile Pro Thr 2805 Lys Thr Asp Ser Thr 2820 Ser Arg His Asp


F16. 44

JILRIROL 233		TCDTCDI COC
LGTCODMEKRAORRIARIOOIEKDILRIROL		I TANKEL OF BALBOTABLEACETATODICE
LGTCODMEKR	•••	
203		763
APC		6

Dec. 6, 2005

F16. 4B

APC	453	MKLSFDEEHRHAMNELGGLOAIAELLOVD	481
M3 MACHR	249	LYWRIYKETEKRIKELAGLOASGTEAETE	277
HCC	220	LYPNLAEERSRWEKELAGLREENESLTAM	
APC	453	MKL SFDEEHRHAMNELGGLOAIAELLOVD	481

	55	ACG	Thr	109	GAG	Glu	163	AAC	Asn	217	\mathtt{TTC}	Phe	271	TAC	Tyr	325	CTG	Len	379				TGG	Trp	487	ATC	Ile	541	٦ ن ن	Lea
		GAG	Glu		CAC	His		GTG	Val		GTG	Val		ပ္ပပ္ပ	Ala		\mathtt{TGG}	Trp		GAT	Asp		TTG	Len		ATC	Ile	1	GAC	Asp
		CGC	Gly		CTG	Leu		GGC	Gly		CTG	Leu		CCA	Pro		CAG	Gln		TCT.	Ser		CIG	Len		ပ္ပဗ္ဗ	Arg	1	AAG	Lys
		GGN	Gly		TIC	Phe		ACC	Thr		TAC	Tyr		TAC	Tyr		ACC	Thr		TTC	Phe		TIC	Phe		AAG	Lys	. !	CIC	Val
		ဗ္ဗဌ	Pro		CGG	Arg	,	AAA	Lys	,	$\mathtt{T}\mathtt{T}\mathtt{G}$	Leu		GGC	G1y		GAT	Asp		TIC	Phe		GGC	Gly		TAC	Tyr	1	STS:	Val
		ပ္ပပ္ပ			GAC	Asp	•	SCC	Ala		GCC	Ala		TTT	Phe		GAT	Asp		GAA	Glu		\mathtt{TGT}	Cys		CHO CHO	Leu		AGT	
		ACA	Thr		TIC	Phe		GAG	Glu		GTG	Val		GGA	Gly	ı	GAA	Glu		GCT	Ala		AAG	Lys		CIG	Leu			Asp
		GGA			AGG	Arg	ì	CIC				Leu		ATA	Ile		AAA		•		Ile		CTG	Len		GAA	Gla	i	ATG	MET
8		CTA				Gla			Lys			Gly		CTG							Ser		ATG	MET			Ala		CAG	Gln
F/6.	28	SC SC SC	Ø,	82			136			190				AAC	Asn	298						406		TYE		_	Gly	514	TCC	Ser
	•	႘				MET			Leu			Val			Cys			Ser			Val		TAC	Tyr		AAT	Asn		GAG	Glu
			TYL			Ala			Leu		GGT	Gly	I	CTC	Lea		GAG	Gla		GGT	Gly	3	TIC	Phe		TCL	Ser		CAC	His
		GIC			S S S S S	Ala		GAC	Asp	•	CII	Leu		CTC	Leu		ATA	Ile			Tyr		CCC	Pro		CCL			AAG	Ĺγs
		CCA			TCT	ഗ			Thr			Ala			Ser			Ala			Val		TTC						CIG	Len
			Ala			MET			MET			Ile		GCC				Lys			Val			Trp			Pro		TTC	Phe
			Ala			Ala			Cys			Phe			Gly			I1e			Trb			Ser			Ala		TTC	Phe
			Val			Pro			Asn			Ser			Tyr			Ser			TVr		CTG				MET		CCI	Pro
		GCA	Ala		GTC	Val		AAG	Lys	•	AGG	Arg	1	GGT	Gly	1	ATC	Ile		ACC	Thr		TIC	Phe		TGC	CYS	1	CGT	Arg

F16. 6B

595 A GCT s Ala	700 TTATATTAGG	770 TGGAATGTGT	840 CAGTGGGCAG	CTGCAGGAAA 980	CACGSATTTT 1050 ATAATTCNGR	1120 TGCATCATGC	CACCTGCCAA 1260	TTAATATGCA 1330 GGCATATGAA 1400
GCG AAG AAA Ala Lys Lys	AGA GAGCTTG	760 TATTAAAGAT	830 AAACTTAATG	TGTTGCTATC 970	GCTCTCCCTG 1040 ACAATTTTAT	1110 GACTACANCA	ACAGTAAGAC 1250	AAATACGTGA 1320 CGTAGTATAT 1390
ACT AAA GAA Thr Lys Glu	ACC TAA Thr CTTCCTA	750 Atttttgaga	820 GGAGCACITI	AAAAGATGTA 960	ACTITACTGG 1030 CCTRTAATGT	1100 GTTACTGTCT	TAACTTCTGT 1240	ATACTTTAGG 1310 TGGTTGTTTC 1380
568 GAT GCC ATC Asp Ala Ile 6	AG AAG AGC 7s Lys Ser 670 CTCTCTGTAC	740 CCTTGGAAAC	810 ATATATAG	TCTGGGTAGG 950	CAGGCTGTGT 1020 GGTTCTACTT	1090 ATATGGAAAT	GTGTCA	CTACTAAATA 1300 GAGATTGGCC 1370
G ACT GCA G u Thr Ala A	r gaa gaa al y glu glu by 600 acrrccrgcc	730 AATAATGTTG	800 TITACIGICI	GTATTTTGCC 940	ATATACCCCA 1010 TAATCTTTAT	1080 GCACATGTAC	AAGGTTGTAT 1220	CTGGTGTGGT 1290 AAATCGAATG 1360
TCC AAA GA Ser Lys Gl	TTA CTG GG Leu Leu Gl 650 CTGGATGGAA	720 TAATTATTT	790 TTTGCTTACT	TTTGGAAAAT 930	AAATAAATT 1000 ACATTTAGGR	1070 ATGTATTTGT		AACCATTGTG 1280 GTGAGAAATG 1350
AAA GAC AAG Lys Asp Lys	ACC GTG AAT Thr Val Asn 640 CTAAACCAGA	710 GACTGTGGTA	780 TGTAAGTTTC	TGTCCACGTT 920	TATAAACTTA 990 CTCTGTAAGTT	1060 1060 AATGTTTTA	TCATGGGGAG	AAGCTGGAGG 1270 AGTGAACAAA 1340

F1G. 6C

	-	ATTG TCAAGATGCT 1600	CITC TITCCCAAIC	GTTCTY	TGARAG	1810 1820 1820 1820 1820 1820 1820 1820		AAAT GCCCTCATCC	ANNCGGATG		TTACACCAT		ATTAAATAT	2160 2170	AAT CAGGTAAGAT	230 2240 TCA CNNCTAATAT
GATAAATCGG 1460	GAGTACCCTG 1530	TIGICIATIG	TTTAGT	TTACAT	TCTGGG	المراسات المراسات	11155	CCATTI	AGTAAA		AATCTGAGTT	20	AACTAACAAG	23	AGNTAACAAT	2 Gacagta
TCACTCTAGT 1450	CACACACACA	CTTTACATAT 1590	NACATGTTGA	CCACCT	TRAGMG	1800	AICIAICIIC 1870	CACTIGIAGE	AGTACAGANC	2010	TGGACTAGAA	2080	TGTATAACTA	2150	GCTCACCTTG	2220 AATACTAAGT
AGTTAGTTAC 1440	CACACACACA	CTGCTATAAA 1580	ANAGSGGAGA 1650	GRAGATITGY	CACCTAGCTC	1790 K KBBD K	AGITAAGICA 1860	AAGTCAGAGT	CTACATAGTA	2000	GCAATTTGTC	2070	CTAAAACAAG	2140	AAGATGATTA	2210 TAAAGATATC
GCAGTTAGTT 1430	CACACACACA	ACTGTCTTAT	TTTTATCTTC	AGGMNCTTCT	CTAATGRCGA	1780	GC1"FGGCAAT	CCTAGTTTAC	1920 CTGCACAKGA	1990	GNTATAGAGA	2060	TTAAACTAGA	2130	AAGGCAAATA	2200 TNAANAATAT
GCTTTATAAA 1420	CACACACACA	AACTAGTAAT	CCATTTCTGG	AMCCAGITIN	CAACAACATG	1770	CCCATAATCT 1840	AAGAGGCTTC	1910 TGTTGATAAG	1980	CIGCOAANIC	2050	TCCTTTTGAA	2120	AGTATTTTT	2190 TCTCATGATG
TACCAGGATA 1410	CACACACACA	TICCCIGAAA	ACANTGGAMN	TTCTTTTTA	GTATCATKAG	1760	TATARAGTMN 1830	GGTCAAACAC	1900	1970	CTCCATTGAT	2040	CTGTTAAGAG	2110	CAGCCAGTAC	2180 CATNACAATG

F/6. 6D

7	250	2260	2270	2280	2290	2300	2310
AATATGGATC	ATC	AGAGCATTTA	TTTTGGGGAG	GAAAACAGTG	GTGATTACCG	GCATTTTATT	AAACTTAAAA
7	2320	2330	2340	2350	2360	2370	2380
CTTTGTAGAA	GAA	AGCAAACAAA	ATTGTTCTTG	GGAGAAAATC	AACTTTTAGA	TTAAAAAAT	TTTAAGTAWC
23	390	2400	2410	2420	2430	2440	2450
TAGGAGT	ATT	TAAATCCTTT	TCCCATAAAT	AAAAGTACAG	TTTTCTTGGT	GGCAGAATGA	AAATCAGCAA
2460	460	2470	2480	2490	2500	2510	2520
CNTCTAG	CAT	ATAGACTATA	TAATCAGATT	GACAGCATAT	AGAATATATT		ATGAGGAGGT
2530	530		2550	2560	2570	2580	2590
ACADAAG!	TIA	CTATTG	TAATGACTTA	CAGGCTAAAA	NTAGNTNTAA		TAAATTCTGA
Š	900	2610	2620		2640		2660
ATGCAAT	TTI	TTTTG	CTTGAGACCA	AAATTTAAGT	TAACTGTTGC	TGGCAGTCTA	AGTGTAAATG
26	670		2690		2710	2720	2730
TTAACAGCAG	CAG	GAGAAGTTAA	GAATTGAGCA		ATGATTTCCC	AAATGAAATA	CIGCCIIGGC
2	2740	2750	2760		2780	2790	2800
TAGAGTTTGA	TGA	AAAACTAATT	GAGCCTGTGC	CTGGCTAGAA	AACAAGCGTT	TATTTGAATG	TGAATAGTGT
28	2810	2820		2840	2850		2870
TTCAAAGGTA		TGTAGTTACA	GAATTCCTAC	CAAACAGCTT	AAATTCTTCA	AGAAAGAATT	CCTGCAGCAG
28		2890		2910		2930	2940
TTATTCCCTT		ACCTGAAGGC	TTCAATCATT	TGGATCAACA	ACTGCTACTC	TCGGGAAGAC	TCCTCTACTC
25		2960	2970	2980	2990	3000	3010
ACAGCTGAAG		AAAATGAGCA	CACCCTTCAC	ACTGTTATCA	CCTATCCTGA	AGATGTGATA	CACTGAATGG
30		3030	3040	3050	3060	3070	3080
AAATAAATAG		ATGTAAATAA	AATTGAGWTC	TCATTTAAAA		GCCCAATGGG	AAAATGACCT
36	3090	3100	3110	3120	3130	3140	3120
CATGTTGTGG	rgg	TTTAAACAGC	AACTGCACCC	ACTAGCACAG	CCCATTGAGC	TANCCTATAT	ATACATCTCT
31	3160						
GTCAGTGCCC		CTC					

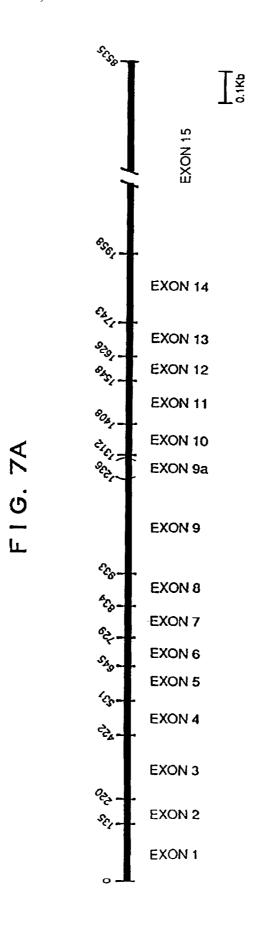
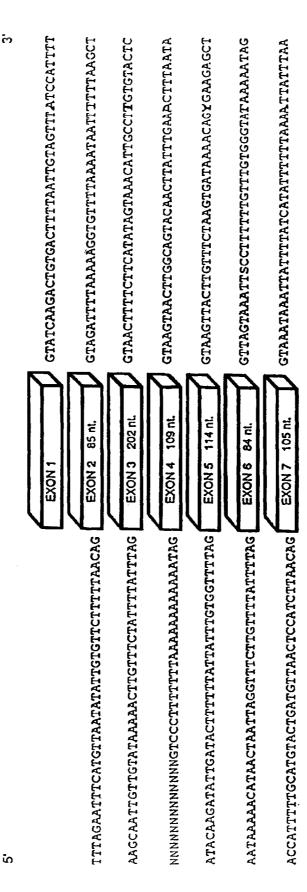



FIG. 7B-

က

Dec. 6, 2005

F1G. 7B-2

TABLETTABATTAR CTTABATABATABATTAR ATTENTAR	EXON 8 99 pt GTAACAGAA	GTAACAGAAGATTACAAACCCTGGTCACTAATGACAACA
	1	
TAAAGTCGTAATTTTGTTTCTAAACTCATTTGGCCCACAG	EXON 9 379 nt. GIAIGITCI	giaigitcictatagigiacaicgtagigcaigiticaaa
ATAACAAAGCATTATGTTTATGTTTGATTTTTTTTAG	EXON 10 96 nl. GTAAGACAA	Gtaagacaaaatgtttttaatgacatagacaattactg
TTAGATGATTGTCTTTTCCTCTTGCCCTTTTTAAATTAG	EXON 11 140 nt GTATGTTTT	GTATGTTTTATAACATGTATTTCTTAAGATAGCTCAGGT
TGNCTTTTAAATGATCCTCTATTCTGTATTTAATTTACAG	EXON 12 78 nt. GTACTATTT	GIACTATTTAGAATTTCACCTGTTTTTTTTTTTTTTTTTT
ATTTTATGTATAAATTAATCTAAAATTGATTAATTTCCAG	EXON 13 117 nL GTACCTTTG	GTACCTTTGAAAACATTTAGTACTATAATATGAATTTCAT
CCAACTCNAATTAGATGACCCATATTCTGTTTCTTACTAG	EXON 14 215 nl. GTATATA	GTATATATAGAGTTTTATATTACTTTTAAAGTACAGAATT
ATTGTGACCTTAATTTTGTGATCTCTTGATTTTATTTCAG	EXON 15	

APC ANTIBODIES

Matter enclosed in heavy brackets [] appears in the original patent but forms no part of this reissue specification; matter printed in italics indicates the additions 5 made by reissue.

This application is a division, of application Ser. No. 08/289,548, filed Aug. 12, 1994, which is a division of application Ser. No. 07/741,940 filed Aug. 8, 1991 (issued as U.S. Pat. No. 5,352,775).

The U.S. Government has a paid-up license in this invention and the right in limited circumstances to require the patent owner to license others on reasonable terms as provided for by the terms of grants awarded by the National Institutes or Health.

TECHNICAL AREA OF THE INVENTION

The invention relates to the area of cancer diagnostics and therapeutics. More particularly, the invention relates to detection of the germline and somatic alterations of wild- 20 type APC genes. In addition, it relates to the rapeutic intervention to restore the function of APC gene product.

BACKGROUND OF THE INVENTION

According to the model of Knudson for tumorigenesis 25 (Cancer Research, Vol. 45, p. 1482, 1985), there are tumor suppressor genes in all normal cells which, when they become non-functional due to mutation, cause neoplastic development. Evidence for this model has been found in the cases of retinoblastoma and colorectal tumors. The impli- 30 of screening for genetic [prodisposition] predisposition to cated suppressor genes in those tumors, RB, p53, DCC and MCC, were found to be deleted or altered in many cases of the tumors studied. (Hansen and Cavenee, Cancer Research, Vol. 47, pp: 5518-5527 (1987); Baker et al., Science, Vol. 244, p. 217 (1989); Fearon et al., Science, Vol. 247, p. 49 35 (1990); Kinzler et al. Science Vol. 251. p. 1366 (1991).)

In order to fully understand the pathogenesis of tumors, it will be necessary to identify the other suppressor genes that play a role in the tumorigenesis process. Prominent among there is the one(s) presumptively located at 5q21. Cytoge- 40 netic (Herrera et al., Am. J. Med. Genet., Vol. 25, p. 473 (1986) and linkage (Leppert et al., Science, Vol. 238, p. 1411 (1987); Bodmer et al., Nature, Vol. 328, p. 614 (1987)) studies have shown that this chromosome region harbors the gene responsible for familial adenomatous polyposis (FAP) 45 and Gardner's Syndrome (GS). FAP is an autosomaldominant, inherited disease in which affected individuals develop hundreds to thousands of adenomatous polyps, some of which progress to malignancy. GS is a variant of FAP in which desmold tumors, osteomas and other soft 50 tissue tumors occur together with multiple adenomas of the colon and rectum. A less severe form of polyposis has been identified in which only a few (2–40) polyps develop. This condition also is familial and is linked to the same chromosomal markers as FAP and GS (Leppert et al., New England 55 Journal of Medicine, Vol. 322, pp. 904-908, 1990.) Additionally, this chromosomal region is often deleted from the adenomas (Vogelstein et al., N. Engl. J. Med., Vol. 319, p. 525 (1988)) and carcinomas (Vogelstein et al., N. Engl. J. Med., Vol. 319, p. 525 (1988); Solomon et al., Nature, Vol. 60 328, p. 616 (1987); Sasaki et al., Cancer Research, Vol. 49, p. 4402 (1989); Delattre et al., Lancet, Vol. 2, p. 353 (1989); and Ashton-Rickardt et al., Oncogene, Vol. 4, p. 1169 (1989)) of patients without FAP (sporadic tumors). Thus, a putative suppressor gene on chromosome 5q21 appears to 65 play a role in the early stages of colorectal neoplasia in [beth] both sporadic and familial tumors.

Although the MCC gene has been identified on 5q21 as a candidate suppressor gene, it does not appear to be altered in FAP or GS patients. Thus there is a need in the art for investigations of this chromosomal region to identify genes and to determine if any of such genes are associated with FAP and/or GS and the process of tumorigenesis.

SUMMARY OF THE INVENTION

It is an object of the present invention to provide a method for diagnosing and prognosing a neoplastic tissue of a

It is another object of the invention to provide a method of detecting genetic predisposition to cancer.

It is another object of the invention to provide a method of supplying wild-type APC gene function to a cell which has lest said gene function.

It is yet another object of the invention to provide a kit for determination of the nucleotide sequence of APC alleles by the polymerase chain reaction.

It is still another object of the invention to provide nucleic acid probes for detection of mutations in the human APC

It is still another object of the invention to provide a cDNA molecule encoding the APC gene product.

It is yet another object of the invention to provide a preparation of the human APC protein.

It is another object of the invention to provide a method cancer.

It is an object of the invention to provide methods of testing therapeutic agents for the ability to suppress neopla-

It is still another object of the invention to provide animals carrying mutant APC alleles.

These and other objects of the invention are provided by one or more of the embodiments which are described below. In one embodiment of the present invention a method of diagnosing or prognosing a neoplastic tissue of a human is provided comprising: detecting somatic alteration of wildtype APC genes or their expression products in a sporadic colorectal cancer tissue, said alteration indicating neoplasia of the tissue.

In yet another embodiment a method is provided of detecting genetic predisposition to cancer in a human including familial adenomatous polyposis (FAP) and Gardner's Syndrome (GS), comprising: isolating a human sample selected from the group consisting of blood and fetal tissue; detecting alteration of wild-type APC gene coding sequences or their expression products from the sample, said alteration indicating genetic predisposition to cancer.

In another embodiment of the present invention a method is provided for supplying wild-type APC gene function to a cell which has lost said gene function by virtue of a mutation in the APC gene, comprising: introducing a wild-type APC gene into a cell which has lost said gene function such that said wild-type gene is expressed in the cell.

In another embodiment a method of supplying wild-type APC gene function to a cell is provided comprising: introducing a portion of a wild-type APC gene into a cell which has lost said gene function such that said portion is expressed in the cell, said portion encoding a part of the APC protein which is required for non-neoplastic growth of said cell. APC protein can also be applied to cells or administered to animals to remediate for mutant APC genes. Synthetic

peptides or drugs can also be used to mimic APC function in cells which have altered APC expression.

In yet another embodiment a pair of single stranded primers is provide for determination of the nucleotide sequence of the APC gene by polymerase chain reaction. ⁵ The sequence of said pair of single stranded DNA primers is derived from chromosome 5q band 21, said pair of primers allowing synthesis of APC gene coding sequences.

In still another embodiment of the invention a nucleic acid probe is provided which is complementary to human wild-type APC gene ceding sequences and which can form mismatches with mutant APC genes, thereby allowing their detection by enzymatic or chemical cleavage or by shifts in electrophoretic mobility.

In another embodiment of the invention a method is provided for detecting the presence of a neoplastic tissue in a human. The method comprises isolating a body sample from a human; detecting in said sample alteration of a wild-type APC gene sequence or wild-type APC expression product, said alteration indicating the presence of a neoplastic tissue in the human.

In still another embodiment a cDNA molecule is provided which comprises the coding sequence of the APC gene.

In even another embodiment a preparation of the human 25 APC protein is provided which is substantially free of other human proteins. The amino acid sequence of the protein is shown in [FIG. 3] FIGS. 3A–3Z (SEQ ID NOS: 7 and 2).

In yet another embodiment of the invention a method is provided for screening for genetic predisposition to cancer, including familial adenomatous polyposis (FAP) and Gardner's Syndrome (GS), in a human. The method comprises: detecting among kindered persons the presence of a DNA polymorphism which is linked to a mutant APC allele in an individual having a genetic predisposition to cancer, said kindered being genetically related to the individual, the presence of said polymorphism suggesting a predisposition to cancer.

In another embodiment of the invention a method of testing therapeutic agents for the ability to suppress a neoplastically transformed phenotype is provided. The method comprises: applying a test substance to a cultured epithelial cell which carries a mutation in an APC allele; and determining whether said test substance suppresses the neoplastically transformed phenotype of the cell.

In another embodiment of the invention a method of testing therapeutic agents for the ability to suppress a neoplastically transformed phenotype is provided. The method comprises: administering a test substance to an animal which carries a mutant APC allele; and determining whether said test substance prevents or suppresses the growth of tumors.

In still other embodiments of the invention transgenic animals are provided. The animals carry a mutant APC allele 55 from a second animal species or have been genetically engineered to contain an insertion mutatation which disrupts an APC allele.

The present invention provides the art with the information that the APC gene, a heretofore unknown gene is, in 60 fact, a target of mutational alterations on chromosome 5q21 and that these alterations are associated with the process of tumorigenesis. This information allows highly specific assays to be performed to assess the neoplastic status of a particular tissue or the predisposition to cancer of an individual. This invention has applicability to Familial Adenomatous Polyposis, sporadic colorectal cancers,

4

Guardner's Syndrome, as well as the less severe familial polyposis discusses above.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A shows an overview of yeast artificial chromosome (YAC) contigs. Genetic distances between selected RFLP markers from within the contigs are shown in centi-Morgans.

FIGS. 1B-1, 1B-2 and 1B-3 show a detailed map of the three central contigs. The position of the six identified genes from within the FAP region is shown: the 5' and 3' ends of the transcripts from these genes have in general not yet been isolated, as indicated by the string of dots surrounding the bars denoting the genes' positions. Selected restriction endonuclease recognition sites are indicated. B, BssH2; S, SstII; M, MluI; N, NruI.

FIGS. 2A and 2B show the sequence of TB1 (FIG. 2A, SEQ ID NO:5) and TB2 (FIG. 2B, SEQ ID NO:6) [genes] proteins. The cDNA sequence of the TB1 gene was determined from the analysis of 11 cDNA clones derived from normal colon and liver, as described in the text. A total of 2314 bp were contained within the overlapping cDNA clones, defining an ORF of 424 amino acids beginning at nucleotide 1. Only the predicted amino acids from the ORF are shown. The carboxy-terminal end of the ORF has apparently been identified, but the 5' end of the TB1 transcript has not yet been precisely determined.

The cDNA sequence of the TB2 gene was determined from the YS-39 clone derived as described in the text. This clone consisted of 2300 bp and defined an ORF of 185 amino acids beginning at nucleotide 1. Only the predicted amino acids are shown. The carboxy terminal end of the ORF has apparently been identified, but the 5' end of the TB2 transcript has not been precisely determined.

[FIGS. 3A–3F] FIGS. 3A–3Z show the sequence of the APC gene product (SEQ ID NO:7). The cDNA sequence was determined through the analysis of 87 cDNA clones derived from normal colon, liver, and brain. A total of 8973 bp were contained within overlapping cDNA clones, defining an ORF of [2842] 2843 amino acids. In frame stop codons surrounded this ORF, as described in the text, suggesting that the entire APC gene product was represented in the ORF illustrated. Only the predicted amino acids are shown.

FIGS. 4A and 4B show the local similarity between human APC (SEQ ID NO:2) and ral2 (SEQ ID NO:8) of yeast. FIG. 4A shows amino acids 203 to 233 of APC, and FIG. 4B shows amino acids 453 to 481 of APC. Local similarity among the APC (SEQ ID NO:2) and MCC genes (SEQ ID NO:10) genes and the m3 muscarinic acetylcholine receptor (SEQ ID NO:9) is shown. The region of the mAChR shown corresponds to that responsible for coupling the receptor to G proteins. The connecting lines indicate identities; dots indicate related amino acids residues.

FIG. 5 shows the genomic map of the 1200 kb NotI fragment at the FAP locus. The NotI fragment is shown as a bold line. Relevant parts of the deletion chromosomes from patients 3214 and 3824 are shown as stippled lines. Probes used to characterize the NotI fragment and the deletions, and three YACs from which subclones were obtained, are shown below the restriction map. The chimeric end of YAC 183H12 is indicated by a dotted line. The orientation and approximate position of MCC are identified above the map.

FIG. 6A-6D show the DNA sequence (SEQ ID NO:3) and predicted amino acid sequence of DP1 (TB2) (SEQ ID

NO:4). The nucleotide numbering begins at the most 5' nucleotide isolated. A proposed initiation methionine (base 77) is indicated in bold type. The entire coding sequence is presented.

FIG. 7A, FIG. 7B-1, and FIG. 7B-2 show the arrangement of exons in DP2.5 (APC). (A) Exon 9 corresponds to nucleotides 933–1312; exon 9a corresponds to nucleotides 1236–1312. The stop codon in the cDNA is at nucleotide 8535. (B) Partial intronic sequence surrounding each exon is shown (SEQ ID NO: 11–38). 5' intron sequences of exons 2, 10 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, and 15 are shown in SEQ ID NOS: 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, respectively. 3' intron sequences of exons 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, and 14 are shown in SEQ ID NOS: 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 15 respectively.

DETAILED DESCRIPTION

It is a discovery of the present invention that mutational events associated with tumorigenesis occur in a previously unknown gene on chromosome 5q named here the APC (Adenomatous Polyposis Coil) gene. Although it was previously known that deletion of alleles of chromosome 5q were common in certain types of cancers, it was not known that a target gene of these deletions was the APC gene. Further it was not known that other types of mutational events in the APC gene and also associated with cancers. The mutations of the APC gene can involve gross rearrangements, such as insertions and deletions. Point mutations have also been observed.

According to the diagnostic and prognostic method of the present invention, alteration of the wild-type APC gene is detected. "Alteration of a wild-type gene" according to the present invention encompasses all forms of mutations— 35 including deletions. The alteration may be due to either rearrangements such as insertions, inversions, and deletions, or to point mutations. Deletions may be of the entire gene or only a portion of the gene. Somatic mutations are those which occur only in certain tissues, e.g., in the tumor tissue, 40 and are not inherited in the germline. Germline mutations can be found in any of a body's tissues. If only a single allele is somatically mutated, an early neoplastic state is indicated. However, if both alleles are mutated then a late neoplastic state is indicated. The finding of APC mutations thus pro- 45 vides both diagnostic and prognostic information. An APC allele which is not deleted (e.g., that on the sister chromosome to a chromosome carrying an APC deletion) can be screened for other mutations, such as insertions, small deletions, and point mutations. It is believed that many 50 mutations found in tumor tissues will be those leading to decreased expression of the APC gene product. However, mutations leading to non-functional gene products would also lead to a cancerous state. Point mutational events may occur in regulatory regions, such as in the promoter of the 55 gene, leading to loss or diminution of expression of the mRNA. Point mutations may also abolish proper RNA processing, leading to loss of expression of the APC gene

In order to detect the alteration of the wild-type APC gene 60 in a tissue, it is helpful to isolate the tissue free from surrounding normal tissues. Means for enriching a tissue preparation for tumor cells are known in the art. For example, the tissue may be isolated from paraffin or cryostat sections. Cancer cells may also be separated from normal 65 cells by flow cytometry. These as well as other techniques for separating tumor from normal cells are well known in the

6

art. If the tumor tissue is highly contaminated with normal cells, detection of mutations is more difficult.

Detection of point mutations may be accomplished by molecular cloning of the APC allele (or alleles) and sequencing that allele(s) using techniques well known in the art. Alternatively, the polymerase chain reaction (PCR) can be used to amplify gene sequences directly from a genomic DAN preparation from the tumor tissue. The DNA sequence of the amplified sequences can then be determined. The polymerase chain reaction itself is well known in the art. See, e.g., Saiki et al., Science, Vol. 239, p. 487, 1988; U.S. Pat. No. 4,683,203; and U.S. Pat. No. 4,683,195. Specific primers which can be used in order to amplify the gene will be discussed in more detail below. The ligase chain reaction, which is known in the art, can also be used to amplify APC sequences. See Wu et al., Genomics, Vol. 4, pp. 560-569 (1989). In addition, a technique known as allele specific PCR can be used. (See Ruano and Kidd, Nucleic Acids Research, Vol. 17, p. 8392, 1989.) According to this technique, primers are used which hybridize at their 3' ends to a particular APC mutation. If the particular APC mutation is not present, an amplification product is not observed. Amplification Refractory Mutation System (ARMS) can also be used as disclosed in European Patent Application Publication No. 0332435 and in Newton et al., Nucleic Acids Research, Vol. 17, p.7, 1989. Insertions and deletions of genes can also be detected by cloning, sequencing and amplification. In addition, restriction fragment length polymorphism (RFLP) probes for the gene or surrounding marker genes can be used to score alteration of an allele or an insertion in a polymorphic fragment. Such a method is particularly useful for screening among kindered persons of an affected individual for the presence of an APC mutation found in that individual. Single stranded conformation polymorphism (SSCP) analysis can also be used to detect base change variants of an allele. (Orita et al., Proc. Natl. Acad. Sci. USA Vol. 86, pp. 2766–2770, 1989, and Genomics, Vol. 5, pp. 874-879, 1989.) Other techniques for detecting insertions and deletions as are known in the art can be used.

Alteration of wild-type genes can also be detected on the basis of the alteration of a wild-type expression product of the gene. Such expression products include both the APC mRNA as well as the APC protein product. The sequences of these products are shown in [FIG. 3] FIGS. 3A–3Z. Point mutations may be detected by amplifying and sequencing the mRNA or via molecular cloning of cDNA made from the mRNA. The sequence of the cloned cDNA can be determined using DNA sequencing techniques which are well known in the art. The cDNA can also be sequenced via the polymerase chain reaction (PCR) which will be discussed in more detail below.

Mismatches, according to the present invention are hybridized nucleic acid duplexes which are not 100% homologous. The lack of total homology may be due to deletions, insertions, inversions, substitutions or frameshift mutations. Mismatch detection can be used to detect point mutations in the gene or its mRNA product. While these techniques are less sensitive than sequencing, they are simpler to perform on a large number of tumor samples. An example of a mismatch cleavage technique is the RNase protection method, which is described in detail in Winter et al., Proc. Nat. Acad. Sci. USA, Vol. 82, p. 7575, 1985 and Meyers et al., Science, Vol. 230, p. 1242, 1985. In the practice of the present invention the method involves the use of a labeled riboprobe which is complementary to the human wild-type APC gene coding sequence. The riboprobe and either mRNA or DNA isolated from the tumor tissue are

annealed (hybridized) together and subsequently digested with the enzyme RNase A which is able to detect some mismatches in a duplex RNA structure. If a mismatch is detected by RNase A, it cleaves at the site of the mismatch. Thus, when the annealed RNA preparation is separated on an electrophoretic gel matrix, if a mismatch has been detected and cleaved by RNase A, an RNA product will be seen which is smaller than the full-length duplex RNA for the riboprobe and the mRNA or DNA. The riboprobe need not be the full length of the APC mRNA or gene but can be a segment of either. [III] If the riboprobe comprises only a segment of the APC mRNA or gene it will be desirable to use a number of these probes to screen the whole mRNA sequence for mismatches.

In similar fashion, DNA probes can be used to detect mismatches, through enzymatic or chemical cleavage. See, e.g., Crotton et al., Proc. Natl. Acad. Sci. USA, Vol. 85, 4397, 1988; and Shenk et al., Proc. Natl. Acad. Sci. USA, Vol. 72, p. 989; 1975. Alternatively, mismatches can be detected by shifts in the electrophoretic mobility of mismatched duplexes relative to matched duplexes. See, e.g., Cariello, Human Genetics, Vol. 42, p. 726, 1988. With either riboprobes or DNA probes, the cellular mRNA or DNA which might contain a mutation can be amplified using PCR (see below) before hybridization. Changes in DNA of the APC gene can also be detected using Southern hybridization, especially if the changes are gross rearrangements, such as deletions and insertions.

DNA sequences of the APC gene which have been amplified by use of polymerase chain reaction may also be 30 screened using allele-specific probes. These probes are nucleic acid oligomers, each of which contains a region of the APC gene sequence harboring a known mutation. For example, one oligomer may be about 30 nucleotides in length, corresponding to a portion of the A PC gene 35 sequence. By use of a battery of such allele-specific probes, PCR amplification products can be screened to identify the presence of a previously identified mutation in the APC gene. Hybridization of allele-specific probes with amplified APC sequences can be performed, for example, on a nylon 40 filter. Hybridization to a particular probe under stringent hybridization conditions indicates the presence of the same mutation in the tumor tissue as in the allele-specific probe.

Alteration of APC mRNA expression can be detected by any technique known in the art. These include Northern blot 45 analysis, PCR amplification and RNase protection. Diminished mRNA expression indicates an alteration of the wildtype APC gene. Alteration of wild-type APC genes can also be detected by screening for alteration of wild-type APC protein. For example, monoclonal antibodies immunoreac- 50 tive with APC can be used to screen a tissue. Lack of cognate antigen would indicate an APC mutation. Antibodies specific for products of mutant alleles could also be used to detect mutant APC gene product. Such immunological assays can be done in any convenient format known in the 55 art. These include Western blots, immunohistochemical assays and ELISA assays. Any means for detecting an altered APC protein can be used to detect alteration of wild-type APC genes. Functional assays can be used, such as protein binding determinations. For example, it is believed 60 that APC protein oligomerizes to itself and/or MCC protein or binds to a G protein. Thus, an assay for the ability to bind to wild type APC or MCC protein or that G protein can be employed. In addition, assays can be used which detect APC biochemical function. It is believed that APC is involved in 65 phospholipid metabolism. Thus, assaying the enzymatic products of the involved phospholipid metabolic pathway

8

can be used to determine APC activity. Finding a mutant APC gene product indicates alteration of a wild-type APC gene

Mutant APC gene or gene products can also be detected in other human body samples, such as, serum, stool, urine and sputum. The same techniques discussed above for detection of mutant APC genes or gene products in tissues can be applied to other body samples. Cancer cells are sloughed off from tumors and appear in such body samples. In addition, the APC gene product itself may be secreted into the extracellular space and found in these body samples even in the absence of cancer cells. By screening such body samples, a simple early diagnosis can be achieved for many types of cancers. In addition, the progress of chemotherapy or radiotherapy can be monitored more easily by testing such body samples for mutant APC genes or gene products.

The methods of diagnosis of the present invention are applicable to any tumor in which APC has a role in tumorigenesis. Deletions of chromosome arm 5q have been observed in tumors of lung, breast, colon, rectum, bladder, liver, sarcomas, stomach and prostate, as well as in leukemias and lymphomas. Thus these are likely to be tumors in which APC has a role. The diagnostic method of the present invention is useful for clinicians so that they can decide upon an appropriate course of treatment. For example, a tumor displaying alteration of both APC alleles might suggest a more aggressive therapeutic regimen than a tumor displaying alteration of only one APC allele.

The primer pairs of the present invention are useful for determination of the nucleotide sequence of a particular APC allele using the polymerase chain reaction. The pairs of single stranded DNA primers can be annealed to sequences within or surrounding the APC gene or chromosome 5q in order to prime amplifying DNA synthesis of the APC gene itself. A complete set of these primers allows synthesis of all of the nucleotides of the APC gene coding sequences, i.e., the exons. The set of primers preferably allows synthesis of both intron and exon sequences. Allele specific primers can also be used. Such primers anneal only to particular APC mutant alleles, and thus will only amplify a product in the presence of the mutant allele as a template.

In order to facilitate subsequent cloning of amplified sequences, primers may have restriction enzyme site sequences appended to their 5' ends. Thus, all nucleotides of the primers are derived from APC sequences or sequences adjacent to APC except the few nucleotides necessary to form a restriction enzyme site. Such enzymes and sites are well known in the art. The primers themselves can be synthesized using techniques which are well known in the art. Generally, the primers can be made using oligonucleotide synthesizing machines which are commercially available. Given the sequence of the APC open reading frame shown in [FIG. 3] FIGS. 3A–3Z (SEQ ID NO:1), design of particular primers is well within the skill of the art.

The nucleic acid probes provided by the present invention are useful for a number of purposes. They can be used in Southern hybridization to genomic DNA and in the RNase protection method for detecting point mutation already discussed above. The probes can be used to detect PCR amplification products. They may also be used to detect mismatches with the APC gene or mRNA using other techniques. Mismatches can be detected using either enzymes (e.g., S1 nuclease), chemicals (e.g., hydroxylamine or osmium tetraoxide and piperidine), or changes in electrophoretic mobility of mismatched hybrids as compared to totally matched hybrids. These techniques are known in the

art. See, Cotton, supra, Shenk, supra, Myers, supra, Winter, supra, and Novack et al., Proc. Natl. Acad. Sci. USA, Vol. 83, p. 586, 1986. Generally, the probes are complementary to APC gene coding sequences, although probes to certain introns are also contemplated. An entire battery of nucleic acid probes is used to compose a kit for detecting alteration of wild-type APC genes. The kit allows for hybridization to the entire APC gene. The probes may overlap with each other or be contiguous.

If a riboprobe is used to detect mismatches with mRNA, it is complementary to the mRNA of the human wild-type APC gene. The riboprobe thus is an anti-sense probe in that it does not code for the APC protein because it is of the opposite polarity to the sense strand. The riboprobe generally will be labeled with a radioactive, colorimetric, or fluorometric material, which can be accomplished by any means known in the art. If the riboprobe is used to detect mismatches with DNA it can be of either polarity, sense or anti-sense. Similarity, DNA probes also may be used to detect mismatches.

Nucleic acid probes may also be complementary to mutant alleles of the APC gene. These are useful to detect similar mutations in other patients on the basis of hybridization rather than mismatches. These are discussed above and referred to as allele-specific probes. As mentioned above, the A PC probes can also be used in Southern hybridizations to genomic DNA to detect gross chromosomal changes such as deletions and insertions. The probes can also be used to select cDNA clones of APC genes from tumor and normal tissues. In addition, the probes can be used to detect APC mRNA in tissues to determine if expression is diminished as a result of alteration of wild-type APC genes.

According to the present invention a method is also provided of supplying wild-type APC function to a cell which carries mutant APC alleles. Supplying such function 35 should suppress neoplastic growth of the recipient cells. The wile-type APC gene or a part of the gene may be introduced into the cell in a vector such that the gene remains extrachromosomal. In such a situation the gene will be expressed by the cell from the extrachromosomal location. If a gene 40 portion is introduced and expressed in a cell carrying a mutant APC allele, the gene portion should encode a part of the APC protein which is required for non-neoplastic growth of the cell. More preferred is the situation where the wildtype APC gene or a part of it is introduced into the mutant 45 cell in such a way that it recombines with the endogenous mutant APC gene present in the cell. Such recombination requires a double recombination event which results in the correction of the APC gene mutation. Vectors for introduction of genes [beth] both for recombination and for extra-50 chromosomal maintenance are known in the art and any suitable vector may be used. Methods for introducing DNA into cells such as electroporation, calcium phosphate co-precipitation and viral transduction are known in the art and the choice of method is within the competence of the 55 routineer. Cells transformed with the wild-type [A PC] APC gene can be used as model systems to study cancer remission and drug treatments which promote such remission.

Similarly, cells and animals which carry a mutant APC allele can be used as model systems to study and test for 60 substances which have potential as therapeutic agents. The cells are typically cultured epithelial cells. These may be isolated from individuals with APC mutations, either somatic or germline. Alternatively, the cell line can be engineered to carry the mutation in the APC allele. After a 65 test substance is applied to the cells, the neoplastically transformed [pheno-type] phenotype of the cell will be

10

determined. Any trait of neoplastically transformed cells can be assessed, including anchorage-independent growth, tumorigenicity in nude mice, invasiveness of cells, and growth factor dependence. Assays for each of these traits are known in the art.

Animals for testing therapeutic agents can be selected after mutageneis of whole animals or after treatment of germline cells or zygotes. Such treatments include insertion of mutant A PC alleles, usually from a second animal species, as well as insertion of disrupted homologous genes. Alternatively, the endogenous APC gene(s) of the animals may be disrupted by insertion or deletion mutation. After test substances have been administered to the animals, the growth of tumors must be assessed. If the test substance prevents or suppresses the growth of tumors, then the test substance is a candidate therapeutic agent for the treatment of FAP and/or sporadic cancers.

Polypeptides which have APC activity can be supplied to cells which carry mutant or missing APC alleles. The sequence of the APC protein is disclosed in [FIG. 3] FIGS. 3A–3Z (SEQ ID NO:7). [These two sequences differ slightly and appear to be indicate the existence of two different forms of the APC protein.] Protein can be produced by expression of the cDNA sequence in bacteria, for example, using known expression vectors. Alternatively, APC can be extracted from APC-producing mammalian cells such as brain cells. In addition, the techniques of synthetic chemistry can be employed to synthesize APC protein. Any of such techniques can provide the preparation of the present invention which comprises the APC protein. The preparation is substantially free of other human proteins. This is most readily accomplished by synthesis in a microorganism or in vitro.

Active APC molecules can be introduced into cells by microinjection or by use of liposomes, for example. Alternatively, some such active molecules may be taken up by cells, actively or by diffusion. Extracellular application of APC gene product may be sufficient to affect tumor growth. Supply of molecules with APC activity should lead to a partial reversal of the neoplastic state. Other molecules with APC activity may also be used to effect such a reversal, for example peptides, drugs, or organic compounds.

The present invention also provides a preparation of antibodies immunoreactive with a human APC protein. The antibodies may be polyclonal or monoclonal and may be raised against native APC protein, APC fusion proteins, or mutant APC proteins. The antibodies should be immunoreactive with APC epitopes, preferably epitopes not present on other human proteins. In a preferred embodiment of the invention the antibodies will immunoprecipitate APC proteins from solution as well as react with APC protein on Western or immunoblots of polyacrylamide gels. In another preferred embodiment, the antibodies will detect APC proteins in paraffin or frozen tissue sections, using immunocytochemical techniques. Techniques for raising and purifying antibodies are well known in the art and any such techniques may be chosen to achieve the preparation of the invention.

Predisposition to cancers as in FAP and GS can be ascertained by testing any tissue of a human for mutations of the APC gene. For example, a person who has inherited a germline APC mutation would be prone to develop cancers. This can be determined by testing DNA from any tissue of the persons's body. Most simply, blood can be drawn and DNA extracted from the cells of the blood. In addition, prenatal diagnosis can be accomplished by testing fetal cells, placental cells, or amniotic fluid for mutation of the APC gene. Alteration of a wild-type APC allele, whether for

example, by point mutation or by deletion, can be detected by any of the means discussed above.

Molecules of cDNA according to the present invention are intron-free, APC gene ceding molecules. They can be made by reverse transcriptase using the APC mRNA as a template. These molecules can be propagated in vectors and cell lines as is known in the art. Such molecules have the sequence shown in SEQ ID NO:3. The cDNA can also be made using the techniques of synthetic chemistry given the sequence disclosed herein.

A short region of homology has been identified between APC and the human m3 muscarinic acetylcholine receptor (mAChR). This homology was largely confined to 29 residues in which 6 out of 7 amino acids (EL(GorA)GLQA) were identical (See [FIG. 4] FIG. 4B (SEQ ID NO: 9)). Initially, it was not known whether this homology was significant, because many other proteins had higher levels of global homology (though few had six out of seven contiguous amino acids in common). However, a study on the sequence elements controlling G protein activation by mAChR subtypes (Lechleiter et al., EMBO J., p. 4381 (1990)) has shown that a 21 amino acid region from the m3 mAChR completely mediated G protein specificity when substituted for the 21 amino acids of m2 mA ChR at the analogous protein position. These 21 residues overlap the 19 25 amino acid homology between APC and m3 mA ChR.

This connection between APC and the G protein activating region of the mAChR is intriguing in light of previous investigations relating G proteins to cancer. For example, the RAS oncogenes, which are often mutated in colorectal cancers (Vogelstein, et al., N. Engl. J. Med., Vol. 319, p. 525 (1988); Bos et al., Nature Vol. 327, p. 293 (1987)), are members of the (1 protein family (Bourne, et al, Nature, Vol. 348, p. 125 (1990)) as is an in vitro transformation suppressor (Noda et al., Proc. Natl. Acad. Sci. USA, Vol. 86, p. 162 (1989)) and genes mutated in hormone producing tumors (Candis et al., Nature, vol. 340, p. 692 (1989); Lyons et al., Science, Vol. 249, p. 655 (1990)). Additionally, the gene responsible for neurofibromatosis (presumably a tumor suppressor gene) has been shown to activate the GTPase activity of RAS (Xu et al., Cell, Vol. 63, p. 835 (1990); Martin et al., Cell, Vol. 63, p. 843 (1990); Ballester et al., Cell, Vol. 63, p. 851 (1990)). Another interesting link between G proteins and colon cancer involves the drug sulindac. This agent has been shown to inhibit the growth of benign colon tumors in patients with FAP, presumably by virtue of its activity as a cyclooxygenase inhibitor (Waddell et al., J. Surg. Oncolong 24(1), 83 (1983); Wadell et al., Am. J. Surg., 157(1), 175 (1989); Charneau et al., Gastroenterologie Clinique at Biologique 14(2), 153 (1990)). Cyclooxygenase is required to convert arachidonic acid to prostaglandis and other biologically active molecules. G proteins are known to regulate phospholipase A2 activity, which generates arachidonic acid from phospholipids (Role et al., Proc. Natl. Acad. Sci. USA, Vol. 84, p. 3623 (1987); Kurachi et al., Nature, Vol. 337, 12 555 (1989)). Therefore we propose that wild-type APC protein functions by interacting with a G protein and is involved in phospholipid metabo-

The following are provided for exemplification purposes only and are not intended to limit the scope of the invention which has been described in broad terms above.

EXAMPLE 1

This example demonstrates the isolation of a 5.5 Mb region of human DNA linked to the FAP locus. Six genes are

12

identified in this region, all of which are expressed in normal colon cells and in colorectal, lung, [ad] and bladder tumors.

The cosmid markers YN5.64 and YN5.48 have previously been shown to delimit an 8 cM region containing the locus for FAP (Nakamura et al., Am. J. Hum. Genet. Vol. 43, p. 638 (1988)). Further linkage and pulse-field gel electrophoresis (PFGE) analysis with additional markers has shown that the FAP locus is contained within a 4 cM region bordered by cosmids EF5.44 and L5.99. In order to isolate clones representing a significant portion of this locus, a yeast artificial chromosome (YAC) library was screened with various 5q21 markers. Twenty-one YAC clones, distributed within six contigs and including 5.5 Mb from the region between YN5.64 and YN5.48, were obtained (FIG. 1A).

Three contigs encompassing approximately 4 Mb were contained within the central portion of this region. The **[YAC's]** YACs constituting these contigs, together with the markers used for their isolation and orientations, are shown in FIG. 1. These YAC contigs were obtained in the following way. To initiate each contig, the sequence of a genomic marker cloned from chromosome 5q21 was determined and used to design primers for PCR. PCR was then carried out on pools of YAC clones distributed in microtiter trays as previously described (Anand et al., Nucleic Acids Research, Vol. 18, p. 1951 (1980)). Individual YAC clones from the positive pools were identified by further PCR or hybridization based assays, and the YAC sizes were determined by PFGE.

To extend the areas covered by the original YAC clones, "chromosomal walking" was performed. For this purpose, YAC termini were isolated by a PCR based method and sequenced (Riley et al., Nucleic Acids Research, Vol. 18, p. 2887 (1990)). PCR primers based on these sequences were then used to rescreen the YAC library. For example, the sequence from an intron of the FER gene (Hao et al., Mol. Cell. Biol., Vol. 9, p. 1587 (1989)) was used to design PCR primers for isolation of the 28EC1 and 5EH8 YACs. The termini of the 28EC1 YAC were sequenced to derive markers RHE28 and LHE28, respectively. The sequences of these two markers were then used to isolate YAC clones 15CH12 (from RHE28) and 40CF1 and 29EF1 (from LHE28). These five [YAC's] YACs formed a contig encompassing 1200 kb (contig 1, FIG. 1B).

Similarly, contig 2 was initiated using cosmid N5.66 sequences, and contig 3 was initiated using sequences both from the MCC gene and from cosmid EF5.44. A walk in the telomeric direction from YAC 14FH1 and a walk in the opposite direction from YAC39GG3 allowed connection of the initial contig 3 clones through YAG 37HG4 (FIG. 1B). YAC37HG4 was deposited at the National Collection of Industrial and Marine Bacteria (NCIMB), P.O. Box 31, 23 St. Machar Drive, Aberdeen AB2 1RY, Scotland, under Accession No. 40353 on Dec. 17, 1990.

Multipoint linkage analysis with the various markers used to define the contigs, combined with PPGE analysis, showed that contigs 1 and 2 were centromeric to contig 3. These contigs were used as tools to orient and/or identify genes which might be responsible for FAP. Six genes were found to lie within this cluster of [YAC's]YACs, as follows:

Contig #1: FER—The FER gene was discovered through its homology to the viral oncogene. ABL (Hao et al., supra). It has an intrinsic tyrosine kinase activity, and in situ hybridization with an FER probe showed that the gene was located at 5q11-23 (Morris et al., Cytogenet. Cell. Genet., Vol. 53, p. 4, (1990)). Because of the potential role of this oncogene-related gene in neoplasia, we decided to evaluate

it further with regards to the FAP locus. A human genomic clone from FER was isolated (MF 2.3) and used to define a restriction fragment length polymorphism (RFLP), and the RFLP in turn used to map FER by linkage analysis using a panel of three generation families. This showed that FER was very tightly linked to previously defined polymorphic markers for the FAP locus. The genetic mapping of FER was complemented by physical mapping using the YAC clones derived from FER sequences (FIG. 1B). Analysis of YAC contig 1 showed that FER was within 600 kb of cosmid marker M5.28, which maps to within 1.5 Mb of cosmid L5.99 by PFGE of human genomic DNA. Thus, the YAC mapping results were consistent with the FER linkage data and PFGE analyses.

Contig 2: TB1-TB1 was identified through a cross-15 hybridization approach. Exons of genes are often evolutionarily conserved while introns and [intergenie] intergenic regions are much less conserved. Thus, it a human probe cross-hybridizes strongly to the DNA from the non-primate species, there is a reasonable chance that it contains exon 20 sequences. Subclones of the cosmids shown in FIG. 1 were used to screen Southern blots containing rodent DNA samples. A subclones of cosmid N5.66 (p 5.66-4) was shown to strongly hybridize to rodent DNA, and this clone was used to screen cDNA libraries derived from normal adult 25 colon and fetal liver. The ends of the initial cDNA clones obtained in this screen were then used to extend the cDNA sequence. Eventually, 11 cDNA clones were isolated, covering 2314 bp. The gene detected by these clones was named TB1. Sequence analysis of the overlapping clones revealed 30 an open reading frame (ORF) that extended for 1302 bp starting from the most 5' sequence data obtained (FIG. 2A). If this entire open reading frame were translated, it would encode 434 amino acids (SEQ ID NO:5). The product of this gene was not globally homologous to any other sequence in 35 the current database but showed two significant local similarities to a family of ADP,ATP carrier/translocator proteins and mitochondrial brown fat uncoupling proteins which are widely distributed from yeast to mammals. These conserved regions of TB1 (underlined in FIG. 2A) may define a 40 predictive motif for this sequence family. In addition, TB1 appeared to contain a signal peptide (or mitochondrial targeting sequence) as well as at least 7 transmembrane domains.

Contig 3: MCC, TB2, SRP and APC—The MCC gene 45 was also discovered through a cross-hydridization approach, as described previously (Kinzler et al., Science Vol. 251, p. 1366 (1991)). The MCC gene was considered a candidate for causing FAP by virtue of its tight genetic linkage to FAP susceptibility and its somatic mutation in sporadic colorectal 50 carcinomas. However, mapping experiments suggested that the ceding region of MCC was approximately 50 kb to proximal to the centromeric end of a 200 kb deletion found in an FAP patient. MCC cDNA probes detected a 10 mb mRNA transcript on Northern blot analysis of which 4151 55 bp, including the entire open reading frame, have been cloned. Although the 3' non-translated portion or an alternatively spliced form of MCC might have extended into this deletion, it was possible that the deletion did not affect the MCC gene product. We therefore used MCC sequences to 60 initiate a YAC contig, and subsequently used the YAC clones to identify genes 50 to 250 kb distal to MCC that might be contained within the deletion.

In a first approach, the insert from YAC24ED6 (FIG. 1B) was radiolabelled and hybridized to a cDNA library from 65 normal colon. One of the cDNA clones (YS39) identified in this manner detected a 3.1 kb mRNA transcript when used

14

as a probe for Northern blot hybridization. Sequence analysis of the YS39 clone revealed that it encompassed 2283 nucleotides and contained an ORF that extended for 555 bp from the most 5' sequence data obtained. If all of this ORF were translated, it would encode 185 amino acids (SEQ ID NO:6) (FIG. 2B). The gene detected by YS39 was named TB2. Searches of nucleotide and protein database revealed that the TB2 gene was not identical to any previously reported sequences nor were there any striking similarities.

Another clone (YS11) identified through the YAC 24ED6 screen appeared to contain portions of two distinct genes. Sequences from one end of YS11 were identical to at least 180 bp of the signal recognition particle protein SRP19 (Lingelbach et al. Nucleic Acids Research, Vol. 16, p. 9431 (1988). A second ORF, from the opposite end of clone YS11, proved to be identical to 78 bp of a novel gene which was independently identified through a second YAC-based approach. For the latter, DNA from yeast cells containing YAC 14FH1 (FIG. 1B) was digested with EcoRI and subcloned into a plasmid vector. Plasmids that contained human DNA fragments were selected by colony hybridization using total human DNA as a probe. These clones were then used to search for cross-hybridizing sequences as described above for TB1, and the cross-hybridizing clones were subsequently used to screen cDNA libraries. One of the cDNA clones discovered in this way (FH38) contained a long ORF (2496 bp), 78 bp of which were identical to the above-noted sequences in YS11. The ends of the FH38 cDNA clone were then used to initiate cDNA walking to extend the sequence. Eventually, 85 cDNA clones were isolated from normal colon, brain and liver cDNA libraries and found to encompass 8973 nucleotides of contiguous transcript. The gene corresponding to their transcript was named APC. When used as probes for Northern blot analysis, APC cDNA clones hybridized to a single transcript of approximately 9.5 kb, suggesting that the great majority of the gene product was represented in the cDNA clones obtained. Sequences from the 5' end of the APC gene were found in YAC 37HG4 but not in YAC 14H1. However, the 3' end of the APC gene was found in 14FH1 as well as 37HG4. Analogously, the 5' end of the MCC ceding region was found in YAC clones 19AA9 and 266C3 but not 24ED6 or 14FH1, while the 3' end displayed the opposite pattern. Thus, MCC and APC transcription units pointed in opposite directions, with the direction of transcription going from centromeric to telometric in the case of MCC, and telomeric to centromeric in the case of APC. PFGE analysis of YAC DNA digested with various restriction endonucleases showed that TB2 and SRP were between MCC and APC, and that the 3' ends of the ceding regions of MCC and APC were separated by approximately 150 kb (FIG. 1B).

Sequence analysis of the APC cDNA clones revealed an open reading frame of 8,535 nucleotides. The 5' end of the ORF contained a methionine codon (codon 1) that was preceded by an in-frame stop codon 9 bp upstream, and the 3' end was followed by several in-frame stop codons. The protein produced by initiation at codon 1 would contain [2,842] 2843 amino acids (SEQ ID NO:7) [(FIG. 3)] FIG. 3A-3Z. The results of database searching with the APC gene product were quite complex due to the presence of large segments with locally biased amino acid compositions. In spite of this, APC could be roughly divided into two domains. The N-terminal 25% of the protein had a high content of leucine residue (12%) and showed local sequence similarities to myosins, various intermediate filament proteins (e.g., desmin, vimentin, neuroflilaments) and Drospophila armadillo/human plakeoglobin. The latter protein is a

component of adhesive junctions (desmosomes) joining epithelial cells (Franke et al., Proc. Natl. Acad. Sci. U.S.A., Vol. 86, p. 4027 (1989); Perfer et al., Cell, Vol. 63, p. 1167 (1990)) The C-terminal 75% of APC (residues 731–2832) is 17% serine by composition with serine residues more or less uniformly distributed. This large domain also contains local concentrations of charged (mostly acidic) and proline residues. There was no indication of potential signal peptide, transmembrane regions, or nuclear targeting signals in APC, suggesting a cytoplasmic localization.

To detect short similarities to APC, a database search was performed using the PAM-40 matrix (Altschul. J. Mol. Biol., Vol. 219, p. 555 (1991). Potentially interesting matches to several proteins were found. The most suggestive of these involved the ral2 gene product of yeast, which is implicated in the regulation of ras activity (Fukul et al., Mol. Cell. Biol., Vol. 9, p. 5617 (1989)). Little is known about how ral2 might interact with rts but it is interesting to note the positively-charged character of this region in the context of the negatively-charged GAP interaction region of ras. A specific electrostatic interaction between ras and GAP-related proteins has been proposed.

Because of the proximity of the MCC and APC genes, and the fact that both [am] are implicated in colorectal tumorigenesis, we searched for similarities between the two predicted proteins. Bourne has previously noted that MCC has the potential to form alpha helical coiled coils (Nature, 25 Vol. 351, p. 188 (1991). Lupas and colleagues have recently developed a program for predicting coiled coil potential from primary sequence data (Science, Vol. 252, p. 1162 (1991) and we have used their program to analyze both MCC and APC. Analysis of MCC indicated a discontinuous 30 pattern of coiled-coil domains separated by putative "hinge' or "sparcer" regions similar to those seen in laminin and other intermediate filament proteins. Analysis of the APC sequence revealed two regions in the N-terminal domain which had strong coiled coil-forming potential, and these 35 regions corresponded to those that showed local similarities with myosin and IF proteins on database searching. In addition, one other putative coiled coil region was identified in the central region of the APC. The potential for both APC and MCC to form coiled coils is interesting in that such structures often mediate homo- and [hetero-oligomerization] heterooligomerization.

Finally, it had previously been noted that MCC shared a short similarity with the region of the m3 muscarinic acetylcholine receptor (mAChR) known to regulate specificity of G-protein coupling. The APC gene also contained a local similarity to the region of the m3 mAChR (SEQ ID NO:9) that overlapped with the MCC similarity (SEQ ID NO:10) (FIG. 4B). Although the similarities to ral2 (SEQ ID NO:8) (FIG. 4A) and m3 mACHR (SEQ ID NO:9) (FIG. 4B) were not statistically significant, they were intriguing in light of 50 previous observations resulting G-proteins to neoplasia.

Each of the six genes described above was expressed in normal colon mucosa, as indicated by their representation in colon cDNA libraries. To study expression of the genes in neoplastic colorectal epithelium, we employed reverse transcription-polymerase chain reaction (PCR) assays. Primers based on the sequences of FER, TB1, TB2, MCC, and APC were each used to design primers for PCR performed with cDNA templates. Each of these genes was found to be expressed in normal colon, in each of ten cell lines derived from colorectal cancers, and in tumor cell lines derived from lung and bladder tumors. The ten colorectal cancer cell lines included eight from patients with sporadic CRC and two from patients with FAP.

EXAMPLE 2

This example demonstrates a genetic analysis of the role of the FER gene in FAP and sporadic colorectal cancers.

16

We considered FER as a candidate because of its proximity to the FAP locus as judged by physical and genetic criteria (see Example 1), and its homology to known tyrosine kinases with oncogenic potential. Primers were designed to PCR-amplify the complete coding sequence of FER from the RNA of two colorectal cancer cell lines derived from FAP patients. cDNA was generated from RNA and used as a template for PCR. The primers used were 5'-AGAAGGATCCCTTGTGCAGTGTGGA-3' (SEQ ID NO:95) and 5'-GACAGGATCCTGAAGCTGAGTTTG-3' (SEQ ID NO:96). The underlined nucleotides were altered from the true FER sequence to create BamHI sites. The cell lines used were JW and Difi, both derived from colorectal cancers of FAP patients. (C. Parkaskeva, B. G. Buckle, D. Sheer, C. B. Wigley, Int. J. Cancer 34, 49 (1984); M. E. Gross et al., Cancer Res. 51, 1452 (1991). The resultant 2554 basepair fragments were cloned and sequences in their entirety. The PCR products were cloned in the BamHI site of Bluescript SK (Stratagene) and pools of at least 50 clones were sequenced en masse using T7 polymerase, as described in Nigro et al., Nature 342, 705 (1989).

Only a single conservative amino acid change (GTG→CTG, creating a val to leu substitution at codon 439) was observed. The region surrounding this codon was then amplified from the DNA of individuals without FAP and this substitution was found to be a common polymorphism, not specifically associated with FAP. Based on these results, we considered it unlikely (though still possible) the FER gene was responsible for FAP. To amplify the regions surrounding codon 439, the following primers were used: 5'-TCAGAAAGTGCTGAAGAG-3' (SEQ ID NO:97) and 5'-GGAATAATTAGGTCTCCAA-3' (SEQ ID NO:98). PCR products were digested with PstI, which yields a 50 bp fragment if codon 439 is leucine, but 26 and 24 bp fragments if it is valine. The primers used for sequencing were chosen from the FER cDNA sequence in Hao et al., supra.

EXAMPLE 3

This example demonstrates the genetic analysis of MCC, TB2, SRP and ACP in FAP and sporadic colorectal tumors. Each of these genes is linked and encompassed by contig 3 (see FIG. 1).

Several lines of evidence suggested that this contig was of particular interest. First, at least three of the four genes in this contig were within the deleted region identified in two FAP patients. (See Example 5 infra.) Second, allelic deletions of chromosome 5q21 in sporadic cancers appeared to be centered in this region. (Ashton-Rickardt et al., Oncogene, in press; and Miki et al., Japn. J. Cancer Res., in press.) Some tumors exhibited loss of proximal RFLP markers (up to and potentially including the 5' end of MCC), but no loss of markers distal to MCC. Other tumors exhibited loss of markers distal to and perhaps including the 3' end of MCC, but no loss of sequences proximal to MCC. This suggested either that different ends of MCC were affected by loss in all such cases, or alternatively, that two genes (one proximal to and perhaps including MCC, the other distal to MCC) were separate targets of deletion. Third, clones from each of the six FAP region genes were used as probes on Southern blots containing tumor DNA from patients with Sporadic CRC. Only two examples of somatic changes were observed in over 200 tumors studied; a rearrangement/ deletion whose centromeric end was located within the MCC gene (Kinzler et al., supra) and an 800 bp insertion within the APC gene between nucleotides 4424 and 5584. Fourth, point mutations of MCC were observed in two tumors (Kinzler et al.) supra strongly suggesting that MCC was a target of mutation in at least some sporadic colorectal cancers

Based on these results, we attempted to search for subtle alterations of contig 3 genes in patients with FAP. We chose ·

to examine MCC and APC, rather than TB2 or SRP, because of the somatic mutations in MCC and APC noted above. To facilitate the identification of subtle alteration, the genomic sequences of MCC and APC exons were determined (see Table I, SEQ ID NO:24–38).

17

ing of the PCR product of patient P21 indicated a C to T transition in codon 413 that resulted in a change from arginine to cysteine. This amino acid variant was not observed in any of 200 DNA samples from individuals without FAP. Cloning and sequencing of the PCR product

18

TABLE I

	APC EXONS
EXON NUCLEOTIDES ¹	EXON BOUNDARY SEQUENCE ²
822 to 930	catgatgttatctgtatttacctatagtctaaattataccatctataatgtgcttaatttttag/GGTTAA (SEQ ID NO:24) ACCAAG/gtaacagaagattacaaaccctggtcactaatgccatgactactttgctaag (SEQ ID NO:25)
931 to 1309	ggatattaagtegtaattttgtttetaaacteatttggeeeacag/GTGGAA(SEQ ID NO:26)ATCCAA/gtatgttetetatagtgtacattegtagtgeatg (SEQ ID NO:27)
1310 to 1405	catcattgctcttcaaataacaaagcattatggtttatgttgatttattt
1406 to 1545	tagatgattgtctttttcctcttgcccttttttaaattag/GGGGAC (SEQ ID NO:30) AACAAG/gtatgtttttataacatgtatttcttaaggatagctcaggtatga (SEQ ID NO:31)
1546 to 1623	gcttggcttcaagttgtctttttaatgatcctctattctgtatttaatttacag/GCTACG(SEQ ID NO:32)CAGCAG/gtactatttagaatttcacctgttttcttttttctctttttctttttgaggcagggtctcactctg (SEQ ID NO:33)
1624 to 1740	gcaactagtatgattttatgtataaattaatctaaaattgatttgacag/GTTAIT (SEQ ID NO:34) AAAAAG/gtacctttgaaaacatttagtactataatatgaatttcatgt (SEQ ID NO:35)
1741 to 1955	caactctaattagatgacccatattcagaaacttactag/GAATCA (SEQ ID NO:36) CCACAG/gtatatatagagttttatattacttttaaagtacagaattcatactctcaaaaa (SEQ ID NO:37)
1956 to 8973	tcttgattttttattcag/GCAAAT (SEQ ID NO:38) GGTATTTATGCAAAAAAAAATGTTTTTGT (SEQ ID NO:1)

¹Relative to predicted translation initiation site

These sequences were used to design primers for PCR analysis of constitutional DNA from FAP patients.

We first amplified eight exons and surrounding introns of the MCC gene in affected individuals from 90 different FAP 35 kindreds. The PCR products were analyzed by a ribonuclease (RNase) protein assay. In brief, the PCR products were hybridized to in vitro transcribed RNA probes representing the normal genomic sequences. The hybrids were digested with RNase A, which can cleave at single base pair mismatches within DNA-RNA hybrids, and the cleavage products were visualized following denaturing gel electrophoresis. Two separate RNase protection analyses were performed for each exon, one with the sense and one with the antisense strand. Under these conditions, approximately 40% of all mismatches are detectable. Although some amino 45 acid variants of MCC were observed in FAP patients, all such variants were found in a small percentage of normal individuals. These variants were thus unlikely to be responsible for the inheritance of FAP.

We next examined three exons of the [A PC] APC gene. 50 The three exons examined included those containing nt 822–930, 931–1309, and the first 300 nt of the most distal exon (nt 1956–2256). PCR and RNase protection analysis were performed as described in Kinzler et al. supra, using the primers underlined in Table I (SEQ ID NO:24–38). The primers for nt 1956–2256 were 5'-GCAAATCCTAAGAGAGAACAA-3' (SEQ ID NO:99) and 5'-GATGGCAAGCTTGAGCCAG-3' (SEQ ID NO:100).

In 90 kindreds, the RNase protection method was used to screen for mutations and in an additional 13 kindreds, the PCR products were cloned and sequenced to search for mutations not detectable by RNase protection. PCR products were cloned into a Bluescript vector modified as described in T. A. Holton and M. W. Graham, Nucleic Acid Res. 19, 1156 (1991). A minimum of 100 clones were pooled and sequenced. Five variants were detected among the 103 kindreds analyzed. Cloning and subsequent DNA sequenc-

from patients P24 and P34, who demonstrated the same abnormal RNase protection pattern indicated that both had a C to T transition at codon 801 that resulted in a change from arginine (CGA) to a stop codon (TGA). This change was not present in 200 individuals without FAP. As this point mutation resulted in the predicted loss of the recognition site for the enzyme Taq I, appropriate PCR products could be digested with Taq I to detect the mutation. This allowed us to determine that the stop codon [co-segregated] cosegregated with disease phenotype in members of the family of P24. The inheritance of this change in affected members of the pedigree provides additional evidence for the importance of the mutation

Cloning and sequencing of the PCR product from FAP patient P93 indicated a C to G transversion of codon 279, also resulting in a stop codon (change from TCA to TGA). This mutation was not present in 200 individuals without FAP. Finally, one additional mutation resulting in a serine (TCA) to stop codon (TGA) at codon 712 was detected in a single patient with FAP (patient P60).

The five germline mutations identified are summarized in Table IIA, as well as four others discussed in Example 9.

TABLE IIA

	Germl	ine mutation	ons of the APC gene i	n FAP and G	S Patie	ents
0	EXTRA- COLO- NIC PATIENT DISEASE	CODON	NUCLEO- TIDE CHANGE	AMINO ACID CHANGE	AGE	
_	93 Osteoma	279	TCA->T <u>G</u> A	Ser->Stop	39	Mandi- bular
•	24	301	CGA-> <u>T</u> GA	Arg->Stop	46	None

²Small case letters represent introns, large case letters represent exons

The entire 5' end of the cloned APC cDNA (at 1956–8973) appeared to be encoded in this exon, as indicated by restriction endonuclease mapping and sequencing of the cloned genomic DNA. The ORF ended at nt 8535. The extreme 3' end of the APC transcript has not yet been identified.

TABLE IIA-continued

Germ	line mutati	ons of the APC gene	in FAP and G	S Patio	ents
EXTRA- COLO- NIC PATIENT DISEASE	CODON	NUCLEO- TIDE CHANGE	AMINO ACID CHANGE	AGE	
34	301	CGA-> <u>T</u> GA	Arg->Stop	27	Des- moid
Tumor					mora
21	413	CGC-> <u>T</u> GC	Arg->Cys	24	Mandi-
Osteoma					bular
60	712	TCA->T <u>G</u> A	Ser->Stop	37	Mandi- bular
Osteoma					
3746	243	CAGAG->CAG	splice- junction		
3460	301	CGA-> <u>T</u> GA	Arg->Stop		
3827	456	CTTTCA->CTTCA	frameshift		
3712	500	T-> <u>G</u>	Tyr->Stop		

^{*}The mutated nucleotides are underlined.

In addition to these germline mutations, we identified several somatic mutations of MCC and APC in sporadic [CRC's S] CRC'CRCs. Seventeen MCC exons were examined in 90 sporadic colorectal cancers by RNAse protection analysis. In each case where an abnormal RNAse protection pattern was observed, the corresponding PCR products were cloned and sequenced. This led to the identification of six point mutations (two described previously) (Kinzler et al., supra), each of which was not found in the germline of these patients (Table IIB).

TABLE IIB

	Somatic Mu	ntations in Sporadic CRC Patien	ts
PATIENT	CODON¹	NUCLEOTIDE CHANGE	AMINO ACID CHANGE
T35	MCC 12	GAG/gtaaga->	(Splice
		GAG/gtaa <u>a</u> a	Donor
T16	MCC 145	ctcag/GGA->	(Splice
		atcag/GGA	Acceptor
T47	MCC 267	CGG->C <u>T</u> G	Arg->Leg
T81	MCC 490	TCG->T <u>T</u> G	Ser->Leu
T35	MCC 506	CGG->C <u>A</u> G	Arg->Gln
T91	MCC 698	GCT->G <u>T</u> T	Ala->Val
T34	APC 288	CCAGT->CC <u>CAGCC</u> AGT	(Insertion)
T27	APC 331	CGA-> <u>T</u> GA	Arg->Stop
T135	APC 437	CAA/gtaa->CAA/g <u>c</u> aa	(Splice Donor)
T20I	APC 1338	CAG-> <u>T</u> AG	Gln->Stop

For splice site mutations, the codon nearest to the mutation is listed The underlined nucleotide were mutated; small case letters represent introns, large case letters represent exons

Four of the mutations resulted in amino acid substitutions and two resulted in the alteration of splice site consensus elements. Mutations at analogous splice site positions in other genes have been shown to alter RNA processing in 60 vivo and in vitro.

Three exons of APC were also evaluated in sporadic tumors. Sixty tumors were screened by RNase protection, and an additional 98 tumors were evaluated by sequencing. The exons examined included nt 822–930, 931–1309, and 65 1406–1545 (Table I). A total of three mutations were identified, each of which proved to be somatic. Tumor T27

contained a somatic mutation of CGA (arginine) to TGA (stop codon) at codon 33. Tumor T135 contained a GT to GC change at a splice donor site. Tumor T34 contained a 5 bp insertion (CAGCC between codons 288 and 289) resulting in a stop at codon 291 due to a frameshift.

We serendipitously discovered one additional somatic mutation in a colorectal cancer. During our attempt to define the sequences and splice patterns of the MCC and APC gene products in colorectal epithelial cells, we cloned cDNA from the colorectal cancer cell line SW480. The amino acid sequence of the MCC gene from SW480 was identical to that previously found in clones from human brain. The sequence of APC in SW480 cells, however, differed significantly, in that a transition at codon 1338 resulted in a change from glutamine (CAG) to a stop codes (TAG). To determine if this mutation was somatic, we recovered DNA from archival paraffin blocks of the original surgical specimen (T201) from which the tumor cell line was derived 28 years ago.

DNA was purified from paraffin sections as described in S. E. Goelz, S. R. Hamilton, and B. Vogelstein. Biochem. Biophys. Res. Comm. 130, 118 (1985). PCR was performed as described in reference 24, using the primers 5'-GTTCCAGCAGTGTCACAG-3' (SEQ ID NO:101) and 5'-GGGAGATTTCGCTCCTGA-3' (SEQ ID NO:102). A PCR product containing codon 1338 was amplified from the archival DNA and used to show that the stop codon represented a somatic mutation present in the original primary tumor and in cell lines derived from the primary and metastic tumor sites, but not from normal tissue of the patient.

The ten point mutation in the MCC and APC genes so far discovered in sporadic. CRCs are summarized in Table IIB. Analysis of the number of mutant and wild-type PCR clones obtained from each of these tumors showed that in eight of the ten cases, the wild-type sequence was present in approximately equal proportions to the mutant. This was confirmed by RFLP analysis using flanking markers from chromosome 5q was demonstrated that only two of the ten tumors (T135 and T201) exhibited an allelic deletion on chromosome 5q. These results are consistent with previous observations showing that 20–40% of sporadic colorectal tumors had allelic deletions of chromosome 5q. Moreover, these data suggest that mutations of 5q21 genes are not limited to those colorectal tumors which contain allelic deletions of this chromosome.

EXAMPLE 4

This example characterizes small, nested deletions in 50 DNA from two unrelated FAP patients.

DNA from 40 FAP patients was screened with cosmids that has been mapped into a region near the APC locus to identify small deletions or rearrangements. Two of these cosmids, L5.71=nd L5.79, hybridized with a 1200 kb NotI fragment in DNAs from most of the FAP patients screened.

The DNA of one FAP patient, 3214 showed only a 940 kb NotI fragment instead of the expected 1200 kb fragment. DNA was analyzed from four other members of the patient's immediate family; the 940 kb fragment was present in her affected mother (4711), but not in the other, unaffected family members. The mother also carried a normal 1200 kb Not1 fragment that was transmitted to her two unaffected offspring. These observations indicated that the mutant polyposis allele is on the same chromosome as the 940 kb Not1 fragment. A simple interpretation is that APC patients 3214 and 4711 each carry a 260 kb deletion within the APC locus

If a deletion were present, then other enzymes might also be expected to produce fragments with altered mobilities. Hybridization of L5.79 to NruI-digested DNAs from both affected members of the family revealed a novel NruI fragment of 1300 kb, in addition to the normal 1200 kb NruI fragment. Furthermore, M1u1 fragments in patients 3214 and 4711 also showed an increase in size consistent with the deletion of an M1uI site. The two chromosome 5 homologs of patient 3214 were segregated in somatic cell hybrid lines; HHW1155 (deletion hybrid) carried the abnormal homolog and HHW1159 (normal hybrid) carried the normal homolog.

Because patient 8214 showed [bray] only a 940 kb NotI fragment, she had not inherited the 1200 kb fragment present in the unaffected father's DNA. This observation suggests that he must be heterozygous for, and have transmitted, either a decision of the L5.79 probe region or a variant NotI fragment too large to resolve on the gel system. As expected, the hybrid cell line HHW1159, which carries the paternal homolog, revealed no resolved Not fragment when probed with L5.79. However, probing of HHW1159 DNA with L5.79 following digestion with other enzymes did reveal 20 restriction fragments, demonstrating the presence of DNA homologous to the probe. The father is, therefore, interpreted as heterozygous for a polymorphism at the NotI site, with one chromosome 5 having a 1200 kb NotI fragment and the other having a fragment too large to resolve consistently 25 on the gel. The latter was transmitted to patient 3214.

When double digests were used to order restriction sites within the 1200 kb NotI fragment, L5.71 and L5.79 were [beth] both found to lie on a 550 kb NotI-NruI fragment and, therefore, on the same side of an NruI site in the 1200 kb NotI fragment. To obtain genomic representation of sequences present over the entire 1200 kb NotI fragment, we constructed a library of small-fragment inserts enriched for sequences from this fragment. DNA from the somatic cell hybrid HHW141, which contains about 40% of chromosome 5, was digested with NotI and electrophoresed under pulsedfield gel (PPG) conditions; EcoRI fragments from the 1200 kb region of this gel were cloned into a phage vector. Probe Map30 was isolated from this library. In normal individuals probe Map30 hybridizes to the 1200 kb NotI fragment and to a 200 kb NruI fragment. This latter hybridization places 40 Map30 distal, with respect to the locations of L5.71 and L5.79, to the NruI site of the 550 kb NotI-NruI fragment.

Because Map30 hybridized to the abnormal, 1300 kb Nru1 fragment of patient 3214, the locus defined by Map30 lies outside the hypothesized deletion. Furthermore, in normal chromosomes Map30 identified a 200 kb NruI fragment and L5.79 identified a 1200 kb NruI fragment; the hypothesized deletion must, therefore, be removing an NruI site, or sites, lying between Map30 and L5.79, and these two probes must flank the hypothesized deletion. A restriction map of the genomic region, showing placement of these probes, is shown in FIG. 5.

A NotI digest of DNA from another FAP patient, 3824, was probed with L5.79. In addition to the 1200 kb normal NotI fragment, a fragment of approximately 1100 kb was 55 observed, consistent with the presence of a 100 kb deletion in one chromosome 5. In this case, however, digestion with NruI and M1uI did not reveal abnormal bands, indicating that if a deletion were present, its boundaries must lie distal to the NruI and M1uI sites of the fragments identified by L5.79. Consistent with this expectation, hybridization of Map30 to DNA from patient 3824 identified a 760 kb M1uI fragment in addition to the expected 860 kb fragment, supporting the interpretation of a 100 kb deletion in this patient. The two chromosome 5 homologs of patient 3824 were segregated in somatic cell hybrid lines; HHW1291 was 65 found to carry only the abnormal homolog and HHW1290 only the normal homolog.

22

That the 860 kb M1u1 fragment identified by Map30 is distinct from the 830 kb M1uI fragment identified previously by L5.79 was demonstrated by hybridization of Map30 and L5.79 to a NotI-M1uI double digest of DNA from the hybrid cell (HHWW1159) containing the nondeleted chromosome 5 homolog of patient 3214. As previously indicated, this hybrid is interpreted as missing one of the NotI sites that define the 1200 kb fragment. A 620 kb NotI-M1uI fragment was seen with probe L5.79, and an 860 kb fragment was seen with Map30. Therefore, the 830 kb M1uI fragment recognized by probe L5.79 must contain a NotI site in HHW1159 DNA; because the 800 kb M1uI fragment remains intact, it does not carry this NotI site and must be distinct from the 830 kb M1u1 fragment.

EXAMPLE 5

This example demonstrates the isolation of human sequences which span the region deleted in the two unrelated FAP patients characterized in Example 4.

A strong prediction of the hybridization that patients 8214 and 3824 carry deletions is that some sequences present on normal chromosome 5 homologs would be missing from the hypothesized deletion homologs. Therefore, to develop genomic probes that might confirm the deletions, as well as to identify genes from the region, YAC clones from a contig seeded by cosmid L5.79 were localized from a library containing seven haploid human genome equivalents (Albertsen et al., Proc. Natl. Acad. Sci. U.S.A., Vol. 87, pp. 4256–4260 (1990)) with respect to the hypothesized deletions. Three clones, YACs 57B8, 310D8, and 183H12, were found to overlap the deleted regions.

Importantly, one end of YAC 57B8 (clone AT57) was found to lie within the patient 3214 deletion. Inverse polymerase chain reaction (PCR) defined the end sequences of the insert of YAC 57b8. PCR primers based on one of these end sequences repeatedly failed to amplify DNA from the somatic cell hybrid (HHW1155) carrying the deleted homolog of patient 3214, but did amplify a product of the expected size from the somatic cell hybrid (HHWW1159) carrying the normal chromosome 5 homolog. This result support the interpretation that the abnormal restriction fragments found in the DNA of patient 3214 result from a deletion.

Additional support for the hypothesis of deletions in DNA from patient 3214 came from subcloned fragments of YAC 183H12, which spans the region in question. Y11, an EcoRI fragment cloned from YAC 183H12, hybridized to the normal, 1200 kb NotI fragment of patient 4711, but failed to hybridize to the abnormal, 940 kb NotI fragment of 4711 or to DNA from deletion cell line HHW1155. This result confirmed the deletion in patient 3214.

Two additional EcoR1 fragments from YAC 183H12. Y10 and Y14, were localized within the patient 3214 deletion by their failure to hybridize to DNA from HHW1155. Probe Y10 hybridizes to a 150 kb NruI fragment in normal chromosome 5 homologs. Because the 3214 deletion creates the 1300 kb NruI fragment seen with the probes L5.79 and Map30 that flank the deletion, these NruI sites and the 150 kb NruI fragment lying between must be deleted in patient 3214. Furthermore, probe Y10 hybridizes to the same 620 kb NotI-M1uI fragment seen with probe L5.79 in normal DNA, indicating its location as L5.79-proximal to the deleted M1uI site and placing it between the M1uI site and the L5.79-proximal NruI site. The M1uI site must, therefore, lie between the NruI sites that define the 150 kb NruI fragment (see FIG. 5).

Probe Y11 also hybridized to the 150 kb NruI fragment in the normal chromosome 5 homolog, but failed to hybridize to the 620 Kb Not1-M1uI fragment, placing it L5.79-distal

to the M1uI site, but proximal to the second NruI site. Hybridization to the same (860 kb) M1uI fragment as Map30 confirmed the localization of probe Y11 L5.79-distal to the M1uI site.

Probe Y14 was shown to be L5.79-distal to both deleted NruI sites by virtue of its hybridization to the same 200 kb NruI fragment of the normal chromosome 5 seen with Map30. Therefore, the order of these EcoRI fragments derived from YAC 183H12 and deleted in patient 3214, with respect to L5.79 and Map30, is L5.79-Y10-Y11-Y14-Map30.

The 100 kb deletion of patient 3284 was confirmed by the failure of aberrant restriction fragments in this DNA to hybridize with probe Y11, combined with positive hybridizations to probes Y10 and/or Y14. Y10 and Y14 each hybridized to the 1100 kb NotI fragment of patient 3824 as well as to the normal 1200 kb NotI fragment, but Y11 hybridized to the 1200 kb fragment only. In the M1u1 digest, probe Y14 hybridized to the 860 kb and 760 kb fragments of patient 3824 DNA, but probe Y11 hybridized only to the 860 k13 fragment. We conclude that the basis for the alteration in fragment size in DNA from patient 3824 is, 20 indeed, a deletion. Furthermore, because probes Y10 and Y14 are missing from the deleted 3214 chromosome, but present on the deleted 3824 chromosome, and they have been shown to flank probe Y11, the deletion in patient 3824 must be nested within the patient 3214 deletion.

Probes Y10, Y11, Y14 and Map30 each hybridized to YAC 310D8, indicating that this YAC spanned the patient 3824 deletion and at a minimum, most of the 3214 deletion. The YAC characterizations, therefore, confirmed the presence of deletions in the patients and provided physical representation of the deleted region.

EXAMPLE 6

This example demonstrates that the MCC coding sequence maps outside of the region deleted in the two FAP patients characterized in Example 4.

An intriguing FAP candidate gene, MCC, recently was ascertained with cosmid L5.71 and was shown to have undergone mutation in colon carcinomas (Kinzler et al., supra). It was therefore of interest to map this gene with respect to the deletions in APC patients. Hybridization of MCC probes with an overlapping series of YAC clones extending in either direction from L5.71 showed that the 3' end of MCC must be oriented toward the region of the two APC deletions.

Therefore, two 3' cDNA clones from MCC were mapped with respect, to the deletions: clone 1CI (bp 2378–4181) and clone 7 (bp 2890–3560). Clone 1CI contains sequences from the C-terminal end of the open reading frame, which stops at nucleotide 2708, as well as 3' untranslated sequence. Clone 7 contains sequence that is entirely 3' to the open reading frame. Importantly, the entire 3' untranslated 50 sequence contained in the cDNA clones consists of a single 2.5 kb exon. These two clones were hybridized to DNAs from the YACs spanning the FAP region. Clone 7 fails to hybridize to YAC 310D8, although it does hybridize to YACs 183H12 and 57B8; the same result was obtained with 55 the cDNA 1CI. Furthermore, these probes did show hybridization to DNAs from both hybrid cell lines (HWW1159 and HWW1155) and the lymphoblastoid cell line from patient 3214, confirming their locations outside the deleted region. Additional mapping experiments suggested that the 3' end of the MCC cDNA clone coding is likely to be located more than 45 kb from the deletion of patient 3214 and, therefore, more than 100 kb from the deletion of patient 3824.

EXAMPLE 7

This example identifies three genes within the deleted 65 region of chromosome 5 in two unrelated FAP patients characterized in Example 4.

24

Genomic clones were used to screen cDNA libraries in three separate experiments. One screening was done with a phage clone derived from YAC 310D8 known to span the 260 kb deletion of patient 3214. A large-insert phage library was constructed from this YAC; screening with Y11 identified $\lambda 205$, which mapped within both deletions. When clone $\lambda 205$ was used to probe a random-, plus oligo(dT)-, primed fetal brain cDNA library (approximately 300,000 phage), six cDNA clones were isolated and each of them mapped entirely within both deletions. Sequence analysis of these six clones formed a single cDNA contig, but did not reveal an extended open reading frame. One of the six cDNAs was used to isolate more cDNA clones, some of which crossed the L5.71-proximal breakpoint of the 3824 deletion, as indicated by hybridization to both chromosome of this patient. These clones also contained an open reading frame, indicating a transcriptional orientation proximal to distal with respect to L5.71. This gene was named DP1 (deleted in polyposis 1). This gene is identical to TB2 described above.

cDNA walks yielded a cDNA contig of 3.0–3.5 kb, and included two clones containing terminal poly(A) sequences. This size corresponds to the 3.5 kb band seen by Northern analysis. Sequencing of the first 3163 bp of the cDNA contig revealed an open reading frame extending from the first base to nucleotide 631, followed by a 2.5 kb 3' untranslated region. The sequence surrounding the methionine codon at base 77 conforms to the Kozak consensus of an initiation methionine (Kozak, 1984). Failed attempts to walk farther, coupled with the similarity of the lengths of isolated cDNA and mRNA, suggested that the NH2-terminus of the DP1 protein had been reached. Hybridization to a combination of genomic and YAC DNAs cut with various enzymes indicated the genomic coverage of DP1 to be approximately 30 kb.

Two additional probes for the locus, YS-11 and YS-39, which had been ascertained by screening of a cDNA library with an independent YAC probe identified with MCC sequences adjacent to L5.71, were mapped into the deletion region. YS-39 was shown to be a cDNA identical in sequence to DP1. Partial characterization of YS-11 had shown that 200 bp of DNA sequence at one end was identical to sequence coding for the 19 kd protein of the ribosomal signal recognition particle. SRP19 (Lingelbach et al., supra). Hybridization experiments mapped YS-11 within [beth] both deletions. The sequence of this clone, however, was found to be complex. Although 454 bp of the 1032 bp sequence of YS-11 were identical to the GenBank entry for the SRP19 gene, another 578 bp appended 5' to the SRP19 sequence was found to consist of previously unreported sequence containing no extended open reading frames. This suggested that YS-11 was either a chemeric clone containing two independent inserts or a clone of an incompletely processed or aberrant message. If YS-11 were a conventional chimeric clone, the independent segments would not be expected to map to the same physical region. The segments resulting from anomalous processing of a continuous transcript, however, would map to a single chromosomal region.

Inverse PCR with primers specific to the two ends of YS-11, the SRP19, end and the unidentified region, verified that both sequences map within the YAC 310D8; therefore, YS-11 is most likely a clone of an immature or anomalous mRNA species. Subsequently, both ends were shown to lie with the deleted region of patient 3824, and YS-11 was used to screen for additional cDNA clones.

Of the 14 cDNA clones selected from the fetal brain library, one clone, V5, was of particular interest in that it contained an open reading frame throughout, although it included only a short identity to the first 78 5' bases of the

YS-11 sequence. Following the 78 bp of identical sequence, the two cDNA sequences diverged at an AG. Furthermore, divergence from genomic sequence was also seen after these 78 bp, suggesting the presence of a splice junction, and supporting the view that YS-11 represents an irregular 5 message.

Starting with V5, successive 5' and 3' walks were performed; the resulting cDNA coding consisted of more than 100 clones, which defined a new transcript, DP2. Clones walking in the 5' direction crossed the 3824 deletion breakpoint farthest from L5.71; since its 3' end is closer to this cosmid than its 5' end, the transcriptional orientation of DP2 is opposite to that of MCC and DP1.

The third screening approach relied on hybridization with a 120 kb M1uI fragment with YAC 57B8. This fragment hybridizes with probe Y11 and completely spans the 100 kb deletion in patient 3824, the fragment was purified on two preparative PFGs labeled, and used to screen a fetal brain cDNA library. A number of cDNA clones previously identified in the development of the DP1 and DP2 contigs were reascertained. However, 19 new cDNA clones mapped into the patient 3824 deletion. Analysis indicated that these 19 formed a new contig, DP3, containing a large open reading frame.

A clone from the 5' end of this new cDNA contig hybridized to the same EcoRI fragment as the 3' end of DP2. Subsequently, the DP2 and DP3 contigs were connected by a single 5' walking step from DP3, to form the single contig DP2.5. The complete nucleotide sequence of DP2.5 is shown in FIG. 9.

The consensus cDNA sequence of DP2.5 suggests that the entire coding sequence of DP2.5 has been obtained and is 8532 bp long. The most 5' ATG codon occurs two codons from an in-frame stop and comforms to the Kozak initiation consensus (Kozak, Nucl. Acids. Res., Vol. 12, p. 857–872 1984). The 3' open reading frame breaks down over the final

26

1.8 kb, giving multiple stops in all frames. A poly(A) sequence was found in one clone approximately 1 kb into the 3' untranslated region, associated with a polyadenylation signal 33 bp upstream (position 9530). The open reading frame is almost identical to the identified as APC above.

An alternatively spliced exon at nucleotide 934 of the DP2.5 transcript of potential interest, it was first discovered by noting that two classes of cDNA had been isolated. The more abundant cDNA class contains a 303 bp exon not included in the other. The presence in vivo of the two transcripts was verified by an exon connection experiment. Primers flanking the alternatively spliced exon were used to amplify, by PCR, cDNA prepared from various adult tissues. Two PCR products that differed in size by approximately 300 bases were amplified from all the tissues tested; the larger product was always more abundant than the smaller.

EXAMPLE 8

This example demonstrates the primers used to identify subtle mutations in DP1, SRP19, and DP25.

To obtain DNA sequence adjacent to the exons of the genes DP1, DP2.5, and SRP19, sequencing substrate was obtained by inverse PCR amplification of DNAs from two YACs 310D8 and 183H12, that span the deletions. Ligation at low concentration cyclized the restriction enzymedigested YAC DNAs. Oligonucleotides with sequencing tails, designed in inverse orientation at intervals along the cDNAs, primed PCR amplification form the cyclized templates. Comparison of these DNA sequences with the cDNA sequences placed exon boundaries at the divergence points. SRP19 and DP1 were each shown to have five exons. DP2.5 consisted of 15 exons. The sequences of the oligonucleotides synthesized to provide PCR amplification primers for the exons of each of these genes are listed in Table III [SEQ ID NO:39–94].

TABLE III

Se	equence of Primers (Jsed for SSCP Analyses	
Exon Primer 1		Primer 2	
	D	P1_	
UP-TCCCCGCCTGCCGCTCTC UP-GTGAACGGCTCTCATGCTGC UP-ATGATATCTTACCAAATGATATAC UP-TACCCATGCTGGCTCTTTTTC UP-ACATTAGGCACAAAGCTTGCAA	(SEQ ID NO:39) (SEQ ID NO:41) (SEQ ID NO:43) (SEQ ID NO:45) (SEQ ID NO:47)	RP-GCAGCGGCGCTCCCGTG RP-ACGTGCGGGGAGGAATGGA RP-TTATTCCTACTTCTTCTATACAG RP-TGGGGCCATCTTGTTCCTGA RP-ATCAAGCTCCAGTAAGAAGGTA	(SEQ ID NO:40) (SEQ ID NO:42) (SEQ ID NO:44) (SEQ ID NO:46) (SEQ ID NO:48)
UP-TGCGGCTCCTGGGTTGTTG UP-TTTTCTCCTGCCTCTTACTGC UP-CCACTTAAAGCACATATATTTAGT UP-TTCTTAAGTCCTGTTTTTCTTTTG UP-CTCAGATTATACACTAAGCCTAAC	(SEQ ID NO:49) (SEQ ID NO:51) (SEQ ID NO:53) (SEQ ID NO:55) (SEQ ID NO:57)	RP-GCCCTTCCTTTCTGAGGAC RP-ATGACACCCCCCATTCCCTC RP-GTATGGAAAATAGTGAAGAACC RP-TTTAGAACCTTTTTTGTGTTGTG RP-CATGTCTCTTACAGTAGTACCA	(SEQ ID NO:50) (SEQ ID NO:52) (SEQ ID NO:54) (SEQ ID NO:56) (SEQ ID NO:58)
UP-AGGTCCAAGGGTAGCCAAGG* UP-AAATACAGAATCATGTCTTGAAGT UP-TAACTTAGATAGCAGTAATTTCCC* UP-ATAGGTCATTGCTTGCTGAT* UP-CTTTTTTTGCTTTTACTGATTAACG UP-GGTAGCCATAGTATGATTATTCT	(SEQ ID NO:59) (SEQ ID NO:61) (SEQ ID NO:63) (SEQ ID NO:65) (SEQ ID NO:67) (SEQ ID NO:69)	RP-TAAAAATGGATAAACTACAATTAAAAG RP-ACACCTAAAGATGACAATTTGAG RP-ACAATAAACTGGAGTACACAAGG RP-TGAATTTTAATGGATTACCTAGGT RP-TGTAATTCATTTTATTCCTAATACCTC RP-CTACCTATTTTTTATACCCACAAAC	(SEQ ID NO:60) (SEQ ID NO:62) (SEQ ID NO:64) (SEQ ID NO:66) (SEQ ID NO:68) (SEQ ID NO:70)
UP-AAGAAAGCCTACACCATTTTTGC UP-ACCTATAGTCTAAATTATACCATC UP-AGTCGTAATTTTGTTTCTAAACTC UP-TCATTCACTCACAGCCTGATGAC* UP-AAACATCATTGCTCTCAAATAAC	(SEQ ID NO:71) (SEQ ID NO:73) (SEQ ID NO:75) (SEQ ID NO:77) (SEQ ID NO:79)	RP-GATCATTCTTAGAACCATCTTGC RP-GTCATGGCATTACTGACCAG RP-TGAAGGACTCCGATTTCACCC* RP-GCTTTGAAACATGCACTACGAT RP-TACCATGATTTAAAAATCCACCAG	(SEQ ID NO:72) (SEQ ID NO:74) (SEQ ID NO:76) (SEQ ID NO:78) (SEQ ID NO:80)
UP-GATGATTGTCTTTTTCCTCTTTGC UP-TTTTAAATGATCCTCTATTCTGTAT UP-TTTCATATTCTTACTGCTAGCATT	(SEQ ID NO:81) (SEQ ID NO:83) (SEQ ID NO:85)	RP-CTGAGCTATCTTAAGAAATACATG RP-ACAGAGTCAGACCCTCCCTCAAAG RP-ATACACAGGTAAGAAATTAGGA	(SEQ ID NO:82) (SEQ ID NO:84) (SEQ ID NO:86)

TABLE III-continued

Sequence of Primers Used for SSCP Analyses Primer 2 Exon Primer 1 UP-TAGATGACCCATATTCTCTTTC (SEO ID NO:87) RP-CAATTAGGTCTTTTTGAGAGTA (SEO ID NO:88) (SEO ID NO.89) RP-GCTTTTTGTTTCGTAACATGAAG (SEO ID NO:90) 3-A UP-GTTACTGCATACACATTGTGAC В UP-AGTACAAGGATGCCAATATTATG* (SEO ID NO:103) RP-ACTTCTATCTTTTCAGAACGAG* (SEO ID NO:104) (SEQ ID NO:105) RP-CTTGTATTCTAATTTGGCATAAGG* (SEQ ID NO:106) UP-ATTTGAATACTACAGTGTTACCC* UP-CTGCCCATACACATTCAAACAC* (SEQ ID NO:107) RP-TGTTTGCGTCTTGCCCATCTT* (SEQ ID NO:108) RP-GTTTCTCTTCATTATATTTTTATGCTA \mathbf{E} UP-AGTCTTAAATATTCAGATGAGCAG* (SEO ID NO:109) (SEQ ID NO:110) UP-AAGCCTACCAATTATAGTGAACG* (SEQ ID NO:111) RP-AGCTGATGACAAAGATGATAATC* (SEQ ID NO:112) (SEQ ID NO:114) UP-AAGAAACAATACAGACTTATTGTG* (SEQ ID NO:113) RP-ATGAGTGGGGTCTCCTGAAC* Η UPATCTCCCTCCAAAAGTGGTGC* (SEQ ID NO:115) RP-TCCATCTGGAGTACTTTCTGTG* (SEQ ID NO:116) Ι UP-AGTAAATGCTGCAGTTCAGAGG* (SEQ ID NO:117) RP-CCGTGGCATATCATCCCCC* (SEQ ID NO:118) J UP-CCCAGACTGCTTCAAAATTACC* (SEQ ID NO:119) RP-GAGCCTCATCTGTACTTCTGC* (SEQ ID NO:120) RP-TTGTGGTATAGGTTTTACTGGTG* (SEQ ID NO:122) K UP-CCCTCCAAATGAGTTAGCTGC* (SEO ID NO:121) UP-ACCCAACAAAAATCAGTTAGATG* (SEQ ID NO:123) ${\tt RP-GTGGCTGGTAACTTTAGCCTC*}$ (SEQ ID NO:124) Ν UP-ATGATGTTGACCTTTCCAGGG* (SEQ ID NO:125) RP-ATTGTGTAACTTTTCATCAGTTGC* (SEQ ID NO:126) М UP-AAAGACATACCAGACAGAGGG* (SEQ ID NO:127) RP-CTTTTTTGGCATTGCGGAGCT* (SEQ ID NO:128) UP-AAGATGACCTGTTGCAGGAATG* (SEQ ID NO:129) RP-GAATCAGACCAAGCTTGTCTAGAT* (SEQ ID NO:130) UP-CAATAGTAAGTAGTTTACATCAAG* (SEQ ID NO:131) RP-AAACAGGACTTGTACTGTAGGA* (SEQ ID NQ:132) UP-CAGCCCCTTCAAGCAAACATC* (SEQ ID NO:133) ${\tt RP-GAGGACTTATTCCATTTCTACC*}$ (SEQ ID NO:134) UP-CAGTCTCCTGGCCGAAACTC* (SEQ ID NO:135) RP-GTTGACTGGCGTACTAATACAG* (SEQ ID NO:136) UP-TGGTAATGGAGCCAATAAAAAGG* (SEQ ID NO:137) RP-TGGGACTTTTCGCCATCCAC* (SEQ ID NO:138) UP-TGTCTCTATCCACACATTCGTC* (SEQ ID NO:139) RP-ATGTTTTTCATCCTCACTTTTGC* (SEQ ID NO:140) UP-GGAGAAGAACTGGAAGTTCATC* (SEQ ID NO:141) RP-TTGAATCTTTAATGTTTGGATTTGC* (SEQ ID NO:142) UP-TCTCCCACAGGTAATACTCCC (SEQ ID NO:143) RP-GCTACAACTGAATGGGGTACG (SEQ ID NO:144) UP-CAGGACAAAATAATCCTGTCCC (SEO ID NO:145) RP-ATTTTCTTACTTTCATTCTTCCTC (SEO ID NO:146)

All primers are read in the 5' to 3' direction, the first primer in each pair lies 5' of the exon it amplifies: the second primer lies 3' of the exon it amplifies. Primers that lie within the exon are identified by an asterisk. UP represents the 21M13 universal primer sequence[:]. RP represents the M13 reverse primer sequence.

With the exception of exons 1, 3, 4, 9, and 15 of DP2.5 (see below), the primer sequences were located in intron sequences flanking the exons. The 5' primer of exon 1 is complementary to the cDNA sequence, but extends just into the 5' Kozak consensus sequence for the initiator methionine, allowing a survey of the translated sequences. The 5' primer of exon 3 is actually in the 5' coding sequences of this exon, as three separate intronic primers simply would not amplify. The 5' primer of exon 4 just overlaps the 5' end of this exon, and we thus fail to survey the 19 most 5' bases of this exon. For exon 9, two overlapping primer sets were used, such that each had one end within the exon. For exon 15, the large 3' exon of DP2.5, overlapping primer pairs were placed along the length of the exon; each pair amplified a product of 250–400 bases.

EXAMPLE 9

This example demonstrates the use of single stranded conformation polymorphism (SSCP) analysis as described by Orita et al. Proc. Natl. Acad. Sci. U.S.A., Vol. 86, pp. 2766–70 (1989) and Genomics, Vol. 5, pp. 874–879 (1989) as applied to DP1, SRP19 and DP2.5.

SSCP analysis identifies most single- or multiple-base changes in DNA fragments up to 400 bases in length. Sequence alterations are detected as shifts in electrophoretic mobility of single-stranded DNA on nondenaturing acrylamide gels; the two complementary strands of DNA segment usually resolve as two SSCP conformers of distinct mobilities. However, if the sample is from an individual heterozygous for a base-pair variant within the amplified segment, often three or more bands are seen. In some cases, even the sample from a homozygous individual will show multiple bands. Base-pair-change variants are identified by differences in pattern among the DNAs of the sample set.

Exons of the candidate genes were amplified by PCR 65 from the DNAs of 61 unrelated FAP patients and a control set of 12 normal individuals. The five exons from DP1

revealed no unique conformers in the FAP patients, although common conformers were observed with exons 2 and 3 in some individuals of both affected and control sets, indicating the presence of DNA sequence polymorphisms. Likewise, none of the five exons of SRP19 revealed unique conformers in DNA from FAP patients in the test panel.

Testing of exons 1 through 14 and primer sets A through N of exon 15, of the DP2.5 gene, however, revealed variant conformers specific to FAP patients in exons 7, 8, 10, 11, and 15. These variants were in the unrelated patients 3746, 3460, 3827, 3712, and 3751, respectively. The PCR-SSCP procedure was repeated for each of these exons in the five affected individuals and in an expanded set of 48 normal controls. The variant bands were reproducible in the FAP patients but were not observed in any of the control DNA samples. Additional variant conformers in exons 11 and 15 of the DP2.5 gene were seen; however, each of these was found in both the affected and control DNA sets. The five sets of conformers unique to the FAP patients were sequenced to determine the nucleotide changes responsible for their altered mobilities. The normal conformers from the host individuals were sequenced also. Bands were cut from the dried acrylamide gels, and the DNA was eluted. PCR amplification of these DNAs provided template for sequenc-

The sequences of the unique conformers from exons 7, 8, 10, and 11 of DP2.5 revealed dramatic mutations in the DP2.5 gene. The sequence of the new mutation creating the exon 7 conformer in patient 3746 was shown to contain deletion of two adjacent nucleotides, at positions 730 and 731 in the cDNA sequence ([FIG. 7,] SEQ ID NO:1). The normal sequence at this splice junction is CAGGGTCA (intronic sequence underlined), with the intron-exon boundary between the two repetitions of AG. The mutant allele in this patient has the sequence CAGGTCA. Although this change is at the 5' splice site, comparison with known consensus sequences of splice junctions would suggest that a functional splice junction is maintained. If this new splice

junction were functional, the mutation would introduce a frameshift that creates a stop codon 15 nucleotides downstream. If the new splice junction were not functional, messenger processing would be significantly altered.

To confirm the 2-base deletion, the PCR product from 5 FAP patient 3746 and a control DNA were electrophoresed on an acrylamide-urea denaturing gel, along with the products of a sequencing reaction. The sample from patient 3746 showed two bands differing in size by 2 nucleotides, with the larger band identical in mobility to the control sample; this result was independent confirmation that patient, 3746 is heterozygous for a 2 bp deletion.

The unique conformer found in exon 8 of patient 3460 was found to carry a C-T transition, at position 904 in the cDNA sequence of DP2.5 [(shown in FIG. 7)], which replaced the normal sequence of CGA with TGA. This point mutation, when read in frame, results in a stop codon replacing the normal arginine codon. This single-base change had occurred within the context of a CG dimer, a potential hot spot for mutation (Barker et al., 1984).

The conformer unique to FAP patient 3827 in exon 10 was found to contain a deletion of one nucleoside (1367, 1368, or 1369) when compared to the normal sequence found in the other bands on the SSCP gel. This deletion, occurring within a set of three T's, changed the sequence from CTTTCA to CTTCA; this 1 base frameshift creates a downstream stop within 30 bases. The PCR product amplified from this patient's DNA also was electrophoresed on an acrylamide-urea denaturing gel, along with the PCR product from a control DNA and products from a sequencing reaction. The patient's PCR product showed two bands differing by 1 bp in length, with the larger identical in mobility to the PCR product from the normal DNA; this result confirmed the presence of a 1 bp deletion in patient 3827.

Sequence analysis of the variant conformer of exon 11 from patient 3712 revealed the substitution of a T by a G at 35 position changing the normal tyrosine codon to a stop codon.

The pair of conformers observed in exon 15 of the DP2.5 gene for FAP patient 3751 also was sequenced. These conformers were found to carry a nucleotide substitution of C to G at position 5253, the third base of a valine codon. No 40 amino acid change resulted from this substitution, suggesting that this conformer reflects a genetically silent polymorphism.

The observation of distinct inactivating mutations in the DP2.5 gene in four unrelated patients strongly suggested 45 that DP2.5 is the gene involved in FAP. These mutations are summarized in Table IIA.

EXAMPLE 10

This example demonstrates that the mutations identified ⁵⁰ in the DP2.5 (APC) gene segregate with the FAP phenotype.

Patient 3746, described above as carrying an APC allele with a frameshift mutation, is an affected offspring of two normal parents. Colonoscopy revealed no polyps in either parent nor among the patient's three siblings.

DNA samples from both parents, from the patient's wife, and from their three children were examined. SSCP analysis of DNA from both of the **[**patients's**]** *patient's* parents displayed the normal pattern of conformers for exon 7, as did DNA from the patient's wife and one of this off-spring. The two other children, however, displayed the same new conformers as their affected father. Testing of the patient and his parents with highly polymorphic VNTR (variable number of tandem repeat) markers showed a 99.98% likelihood that they are his biological parents.

These obserations confirmed that this novel conformer, known to reflect a 2 bp deletion mutation in the DP2.5 gene, 30

appeared spontaneously with FAP in this pedigree and was transmitted to two of the children of the affected individual.

EXAMPLE 11

This example demonstrates polymorphisms in the APC gene which appear to be unrelated to disease (FAP).

Sequencing of variant conformers found among controls as well as individuals with APC has revealed the following polymorphisms in the APC gene; first, in exon 11, at position 1458, a substitution of T to C creating an RsaI restriction site but no amino acid change; and second, in exon 15, at positions 5037 and 5271, substitutions of A To G and G to T, respectively, neither resulting in amino acid substitutions. These nucleotide polymorphisms in the APC gene sequence may be useful for diagnostic purposes.

EXAMPLE 12

This example shows the structure of the APC gene.

The structure of the APC gene is schematically shown in FIG. **8**, with flanking intron sequences indicated (SEQ ID NO:11–38).

The continuity of the very large (6.5 kb), most 3' exon in DP2.5 was shown in two ways. First, inverse PCR with primers spanning the entire length of this exon revealed no divergence of the cDNA sequence from the genomic sequence. Second, PCR amplification with converging primers placed at intervals along the exon generated products of the same size whether amplified from the originally isolated cDNA, cDNA from various tissues, or genomic template. Two forms of exon 9 were found in DP2.5; one is the complete exon; and the other, labeled exon 9A, is the result of a splice into the interior of the exon that deletes bases 934 to 1236 in the mRNA and removes 101 amino acids from the predicted protein (see [FIG. 3] FIGS. 3A–3Z, SEQ ID NO:1 and 2).

EXAMPLE 13

This example demonstrates the mapping of the FAP deletions with respect to the APC exons.

Somatic cell hybrids carrying the segregated chromosomes 5 from the 100 kb (HHW1291) and 260 kb (HHW1155) deletion patients were used to determine the distribution of the APC genes exons across the deletions. DNAs from these cell lines were used as template, along with genomic DNA from a normal control, for PCR-based amplification of the APC exons.

PCR analysis of the hybrids from the 260 kb deletion of patient 3214 showed that all but one (exon 1) of the APC exons are removed by this deletion. PCR analysis of the somatic cell hybrid HHW1291, carrying the chromosome 5 homolog with the 100 kb deletion from patient 3824, revealed that exons 1 through 9 are present but exons 10 through 15 are missing. This result placed the deletion breakpoint either between exons 9 and 10 or within exon 10.

EXAMPLE 14

This example demonstrates the expression of alternately spliced APC messenger in normal tissues and in cancer cell lines.

Tissues that express the APC gene were identified by PCR amplification of cDNA made to mRNA with primers located within adjacent APC exons. In addition, PCR primers that flank the alternatively spliced exon 9 were chosen so that the expression pattern of both splice forms could be asserted. All tissue types tested (brain, lung, aorta, spleen, heart, kidney, liver, stomach, placenta, and colonic mucosa) and cultured cell lines (lymphoblasts, HL60, and choriocarcinoma)

00100,51

expressed both splice forms of the APC gene. We note, however, that expression by lymphocytes normally residing in some tissues, including colon, prevents unequivocal assessment of expression. The large mRNA, containing the complete exon 9 rather than only exon 9A, appears to be the 5 more abundant message.

31

Northern analysis of poly(A)-selected RNA from lymphoblasts revealed a single band of approximately 10 kb, consistently with the size of the sequenced cDNA.

EXAMPLE 15

This example discusses structural features of the APC protein predicted from the sequence.

The cDNA consensus sequence of APC predicts that the longer, more abundant form of the message codes for a [2842 or 2844] 2843 amino acid peptide with a mass of 311.8 kd. This predicted APC peptide was compared with the current data bases of protein and DNA sequences using both Intelligenetics and GCG software packages. No genes with a high degree of amino acid sequence similarity were found. Although many short (approximately 20 amino arid) regions of sequence similarity were uncovered, none was sufficiently strong to reveal which, if any, might represent functional homology. Interestingly, multiple similarities to myosins and keratins did appear. The APC gene also was scanned for sequence motifs of known function; although

multiple glycosylation, phosphorylation, and myristoylation sites were seen, their significance is uncertain.

Analysis of the APC peptide sequence did identify features important in considering potential protein structure. Hydropathy plots (Kyte and Doolittle, J. Mol. Biol. Vol. 157, pp. 105-132(1982)) indicate that the APC protein is notably hydrophilic. No hydrophobic domains suggesting a signal peptide or a membrane-spanning domain were found. Analysis of the first 1000 residues indicates that α -helical rods may form (Cohen and Parry, Trends Biochem, Sci. Vol. 77, pp. 245-248 (1986); there is a scarcity of proline residues and, there are a number of regions containing heptad repeats (apolar-X-X-apolar-X-X-X). Interestingly, in exon 9A, the deleted form of exon 9, two heptad repeat regions are reconnected in the proper heptad repeat frame, deleting the intervening peptide region. After the first 1000 residues, the high proline content of the remainder of the peptide suggests a compact rather than a rod-like structure.

The most prominent feature of the second 1000 residues is a 20 amino acid repeat that is iterated seven times with semiregular spacing (Table 4). The intervening sequences between the seven repeat regions contained 114, 116, 151, 205, 107, and 58 amino acids, respectively. Finally, residues 2200–24000 contain a 200 amino acid basic domain.

TABLE IV

;	Sev	eı	n	Di	ff	er	en	t	Ve	rs	io	ns	0	f	th	е	20	-A	mi	no	Ac	id Rep	eat	
Consensus	: I	?	*	v	E	*	т	P	*	С	F	s	R	*	s	s	L	s	s	L	s	(SEQ	ID	NO:147)
1262:	3	Z	С	V	E	D	\mathbf{T}	Ρ	I	С	F	s	R	С	s	s	L	s	s	L	s	(SEQ	ID	NO:148)
1376:	F	I	\mathbf{T}	V	Q	E	\mathbf{T}	Ρ	L	М	\mathbf{F}	S	R	С	${\bf T}$	S	V	S	S	L	D	(SEQ	ID	NO:149)
1492:	Ε	?	Α	\mathbf{T}	E	s	\mathbf{T}	Ρ	D	G	F	S	С	s	s	s	L	s	Α	L	s	(SEQ	ID	NO:150)
1643:	3	Z	С	V	E	G	\mathbf{T}	Ρ	I	N	F	s	\mathbf{T}	Α	\mathbf{T}	s	L	s	D	L	\mathbf{T}	(SEQ	ID	NO:151)
1848:	7	ľ	Ρ	I	E	G	\mathbf{T}	Ρ	Y	С	F	S	R	N	D	s	L	s	s	L	D	(SEQ	ID	NO:152)
1953:	I	7	Α	I	E	N	Т	Ρ	V	С	Ρ	s	Н	N	s	s	L	s	s	L	S	(SEQ	ID	NO:153)
2013:	F	₹	Н	V	E	D	Т	Ρ	V	С	F	S	R	N	s	S	L	s	s	L	S	(SEQ	ID	NO:154)

Numbers denote the first amino acid of each repeat. The consensus sequence at the top reflects a majority amino acid at a given position. In the consensus sequence. "*" indicates "Xaa"

SEQUENCE LISTING

- (1) GENERAL INFORMATION:
 - (iii) NUMBER OF SEQUENCES: 154
- (2) INFORMATION FOR SEQ ID NO: 1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 9606 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
 - (vii) IMMEDIATE SOURCE:
 - (B) CLONE: DP2.5(APC)
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 34..8562

32

					ESCR											
GGA	CTCG	GAA 1	ATGA	GTC(CA A	GGT1	AGCC	A AGO	Met					ту:	GAT Asp	54
					GTT Val											102
					GAT Asp											150
					AAG Lys 45											198
					GCT Ala											246
					TTA Leu											294
					CTC Leu											342
					GAG Glu											390
					AAT Asn 125											438
					AGG Arg											486
					TGG Trp											534
					CCT Pro											582
					TTG Leu											630
	_	_	_		GGT Gly 205			_			_			_	_	678
					ATT Ile											726
					TCC Ser											774
					GGC Gly											822
					ATC Ile											870
					GAC Asp 285											918
AGC	ACA	CAC	TCT	GCA	CCT	CGA	AGG	CTG	ACA	AGT	CAT	CTG	GGA	ACC	AAG	966

Ser Thi	His	Ser	Ala 300	Pro	Arg	Arg	Leu	Thr 305	Ser	His	Leu	Gly	Thr 310	Lys	
GTG GAA Val Glu															014
GAT GAT Asp Asp															1062
TGT ATA	e Ser														1110
TTA CAT Leu His 360															1158
AGT AAA Ser Lys															1206
CAC TCA His Sen															1254
CAT CTT His Let															1302
CAG GAA Gln Glu 425	ı Ala	His	Glu	Pro	Gly 430	Met	Asp	Gln	Asp	Lys 435	Asn	Pro	Met	Pro	1350
GCT CCT Ala Pro 440	Val	Glu	His	Gln 445	Ile	Cys	Pro	Ala	Val 450	Cys	Val	Leu	Met	Lys 455	1398
CTT TCA Leu Sei															1446
CTA CAC Leu Glr															1494
CTT ACT															1542
GCT TTC Ala Leu 505	Thr	Asn	Leu	Thr	Phe 510	Gly	Asp	Val	Ala	Asn 515	Lys	Ala	Thr	Leu	1590
TGC TCT Cys Ser 520															1638
GAA AGT Glu Sei															1686
TCT TGO Ser Tr															1734
AGT GTO Ser Val															1782
ACC CTC Thr Leu 585	ı Lys														1830
ACT GAG Thr Glu 600															1878

1926 1926																		
The Glu Ser Gly Gly Gly Ite Leu Arg Asn Val Ser Ser Leu Ite Ala 6435					Leu					Gln					Ala		1926	
The Asin Clu Asp Hie Arg Cln Lie Leu Arg Clu Aen Asin Cys Leu Cln 655 655 675 675 675 675 675 675 675 675				Gly					Arg					Leu			1974	
The Lea Lea Cin Hie Lea Lye Ser Hie Ser Lea Thr Ile Val Ser Ann 655 670 675 675 675 675 675 675 675 675 675 675			Glu					Ile					Asn				2022	
Ala Cys Gly Thr Leu Trp Asn Leu Ser Ala Arg Asn Pro Lys Asp Gln 695 SAA GCA TTA TGG GAC ATG GGG GCA GTT MGC ATG CTC ANG ANC CTC ATT glu Ala Leu Trp Asp Met Gly Ala Val Ser Met Leu Lys Asn Leu Ile 700 CAT TCA ANG CAC ANA ATG ATT GCT ATG GGA AGT GCT GCA GCT TTA AGG 2214 CAT TCA ANG CAC ANA ATG ATT GCT ATG GGA AGT GCT GCA GCT TTA AGG 725 ANT CTC ATG GCA ANT AGG CCT GGG ANG TAC ANG GAT GCT ACT ATG AGA AND AGA CTC GCA GCT TTA AGG 725 ANT CTC ATG GCA ANT AGG CCT GGG ANG TAC ANG GAT GCC ANT ATT ATG 735 ANT CTC ATG GCA ANT AGG CCT GGG ANG TAC ANG GAT GCC ANT ATT ATG 736 ANT CTC CCT GGC TCA AGC TTG CCA TCT CTT CAT GTT AGG ANA CAA ANA GCC Ser Pro Gly Ser Ser Leu Pro Ser Leu His Val Arg Lys Gln Lys Ala 750 CTC CCT GGC TCA AGC TTG CCA TCT CTT ATG GAA ACT ATT GAC ANT ATG AGG AGG AGA AGA GT ATG AGA GAC AGA TTA AGT CCC ANG GCA TTT ATG AGA ACT TTT GAC AAT TAC AGA AGA GAC AGA TTA AGT CCC ANG GCA TCT CAT GTT AGG ANA CAA TTT AGA TCC ANG GCA TCT CAT GTT AGG AGA CAC AGA AGA GCC AGA AGA AGA GT TCT CAT GTT AGG AGA CAC AGA GAC AGA TTA AGT CCC ANG GCA TCT CAT GCT AGT ANG CAC AGA GCA CAT AGA AGA TTA AGT CCC ANG GCA TCT CAT GCT AGT AGA AGA GCA CAT AGA GAC AGT TCA GCT AGT AGA AGA CT TCT AGA AGA CAC AGA GCA CAT AGA GCT CAT CAT AGA AGA CT CT CAT GCT AGA AGA CT CT CAT GCT AGA AGA CT TC TAT GCT AGA AGA CAC AGA GCA CAT AGA GCC AGA GCA CAT AGA GCT CAT CAT AGA AGA GCC AGA GCA CAT AGA GCC AGA GCA CAT AGA AGA AGA AGA AGA AGA AGA AGA AGA A		Leu					Lys					Thr					2070	
214 Ala Leu Trp Aap Met Gly Ala Val Ser Met Leu Lys Aen Leu Ile 700 221 TCA AAG CAC AAA ATG ATT GCT ATG GGA AGT GCT GCA GCT TTA AGG 11s Ser Lys His Lys Met Ile Ala Met Gly Ser Ala Ala Ala Leu Arg 715 715 725 AAT CTC ATG GCA AAT AGG CCT GCG AAG TAC AAG GAT GCC AAT ATT ATG 126 AAT CTC ATG GCA AAT AGG CCT GCG AAG TAC AAG GAT GCC AAT ATT ATG 127 AAT CTC ATG GCA AAT AGG CCT GCG AAG TAC AAG GAT GCC AAT ATT ATG 126 AAT CTC GTG GCT AAGC TTG CCA TCT CTT CAT GTT AGG AAA CAA AAA GCC 127 AAT CTC GTG GCT AAGC TTG CCA TCT CTT CAT GTT AGG AAA CAA AAA GCC 129 CTC GCT GGC TCA AGC TTG CCA TCT CTT CAT GTT AGG AAA CAA AAA GCC 129 CTC GGA GAA TTA GAT GCT CAG CAC TTA TCA GAA AAC TTT GAC AAT 745 CTA GAA GCA GAA TTA GAT GCT CAG CAC TTA TCA GAA ACT TTT GAC AAT 129 CTA GAA GCA GAA TTA AGT CCC AAG GCA TCT CAT CGT AGT AAG CAG AAA CAA AAA 120 CTA GAA AGT CTC TAT GGT GAT TAT GTT TTT GAC ACC AAT AGG AAA CAC 120 AAG CAA AGT CTC TAT GGT GAT TAT GTT TTT GAC ACC AAT AGG AAA AGG CAC 124 AAG CAA AGT CTC TAT GGT GAT TAT GTT TTT GAC ACC AAT CGA CAT GAT 129 AAG CAA AGT CTC TAT GGT GAT TAT GTT TTT GAC ACC AAT CGA CAT GAT 129 AAA AT AGG TCA GAC AAT TTT AAT ACT GGC AAC ATG ACT GTC CTT TCA 129 AAAT AGG TCA GAC AAT TTT AAT ACT GGC AAC ATG ACT GTC CTT TCA 129 AAAT AAT AGG TCA GAC AAT TTT AAT ACT GGC AAC ATG ACT GTC CTT TCA 129 AAC CAT AAT AGG TCA GAC AAT TTT CAC AGC TCC TCT TCA TCA ACA GAG 120 AAC TAT TTG AAT ACT ACA GTG TTA CCC AGC TCC TCT TCA TCA ACA GAG 120 AAC TTA GAT AGT TCT CTC TCT GAA AAA GAT AGA AGT TTG GAG AGA GAC 120 ACC TTA GAT AGT TCT CTC TCT GAA AAA GAT AGA AGT TTG GAG AGA GAC 120 ACC TTA GAT AGT TCT CTC TCT GAA AAA GAT AGA AGT TTG GAG AGA GAA 125 ACC TTA GAT AGT TCT GGT GAC ACC TAC CAC GCC ACC GCC AAAT CCA GCC 120 ACC TTA GAT AGT TCT GGT CAC ACC TCC CCA CCC CCC GCC CAG ATT 120 ACC TTA GAT AGT TCT GGT TTG CCA ACC CCC CCC CCC CCC CCC AGC CCC 120 ACC TTA GAG AGA GAT TCC ACC CCT GCC CAT ACC CCC CCC GCC CAG ATT 120 ACC TTA GAG AGA GCC TTG CCA ACT GAC CCA TCCA CCC CCC CCA CCC CCC CCCC C	Ala	Cys				${\tt Trp}$					Arg					Gln	2118	
His Ser Lys His Lys Met Tie Ala Met Gly Ser Ala Ala Ala Leu Arg 725 AAT CTC ATG GCA AAT AGG CCT GGG AAG TAC AAG GAT GCC AAT ATT ATG ASS Leu Met Ala Ass Arg Pro Ala Lys Tyr Lys Asp Ala Ass Ile Met 730 TCT CCT GGC TCA AGC TTG CCA TCT CTT CAT GTT AGG AAA CAA AAA GCC Ser Pro Gly Ser Ser Leu Pro Ser Leu His Val Arg Lys Gln Lys Ala 745 TAG GAA GCA GAA TTA GAT GCT CAG CAC TTA TCA GAA ACT TTT GAC AAT 745 TAG GAA GCA GAA TTA GAT GCT CAG CAC TTA TCA GAA ACT TTT GAC AAT 160 TAG GAA GCA GAA TTA GAT GCT CAG CAC TTA TCA GAA ACT TTT GAC AAT 161 ANTA GAC AAT TTA AGT CCC AAG GCA TCT CAT CGT AGT AGG AGA CAC 161 ASS ASS ASS ASS ASS ASS ASS ASS ASS AS					Asp					Ser					Leu		2166	
Ash Leu Met Ala Ash Arg Pro Ala Lys Tyr Lys Asp Ala Ash Ile Met 730 740 740 740 740 740 740 740 740 740 74				His					Met					Ala			2214	
Ser Pro Gly Ser Ser Leu Pro Ser Leu His Val Arg Lys Gln Lys Ala 745 755 755 755 755 755 755 755 755 755			Met					Ala					Ala				2262	
Leu Glu Ala Glu Leu Asp Ala Gln His Leu Ser Glu Thr Phe Asp Asn 775 ATA GAC AAT TTA AGT CCC AAG GCA TCT CAT CGT AGT AAG CAG AGA CAC CAC CAT CAT CAT CAT CAT CAT CAT CA		Pro					Pro					Arg					2310	
AAAG CAA AGT CTC TAT GGT GAT TAT CTT TAT GAC ACC ACT GAA AGT CTC TAT GGT GAT TAT CTT TAT GAC ACC ACT GAT CTC TCT TCA AGA GAT CAG GAT AGT GAT TAT GTT TAT GAC ACC ACT GAT GAT CTC TCT TCA AGA GAT AGT GAT AGT AGT AGT AGT AGT AG	Leu					Asp					Ser					Asn	2358	
Lys Gln Ser Leu Tyr Gly Asp Tyr Val Phe Asp Thr Asn Arg His Asp Soc Soc Soc Soc Soc Soc Soc Soc Asp Asn Arg Ser Asp Asn Phe Asn Thr Gly Asn Met Thr Val Leu Ser Soc					Ser					His					Arg		2406	
Asp				Leu					Val					Arg			2454	
Pro Tyr Leu Asn Thr Thr Val Leu Pro Ser Ser Ser Ser Arg Gly RACC TTA GAT AGT TCT CGT TCT GAA AAA GAT AGA AGT TTG GAG AGA AGA GAT AGG Ser Leu Asp Ser Ser Arg Glu 845 CGC GGA ATT GGT CTA GGC AAC TAC CAT CAT CAT TCT GAA AAA GAT TTG GAG AGA AGT TCC AGG GAA AGT TCC AGG GAA AGT TCT TCT TCA AAG CGA GGT TTG CAG ATC TCT TCT AGA AGG GGT TTG CAG GAC ACC ACC ACC ACC ACC ACC ACC AC			Arg					Asn					Thr				2502	
Ser Leu Asp Ser Ser Arg 845 Ser Glu Lys Asp Arg Ser Leu Glu Arg Glu 855 GGC GGA ATT GGT CTA GGC AAC TAC CAT CCA GCA ACA GAA AAT CCA GGA ACA GGA GG		Tyr					Val					Ser					2550	
Arg Gly Ile Gly Leu Gly Asn Tyr His Pro Ala Thr Glu Asn Pro Gly 870 ACT TCT TCA AAG CGA GGT TTG CAG ATC TCC ACC ACT GCA GCC CAG ATT CAT ALa Ala Gln Ile 875 ACC AAA GTC ATG GAA GAA GTG TCA GCC ATT CAT ACC TCT CAG GAA GAC 2742 Ala Lys Val Met Glu Glu Val Ser Ala Ile His Thr Ser Gln Glu Asp 900 ACA AGT TCT GGG TCT ACC ACT GAA TTA CAT TGT GTG GTG ACA GAT GAG AGA 2790 ACA AGT TCT GGG TCT ACC ACT GAA TTA CAT TGT GTG ACA GAT GAG AGA 2790 ACA AGT CCT AGA AGA AGC TCT GCT GCC CAT ACA CAT TCA AAC ACT TAC 2838 ACA GCA CTT AGA AGA AGC TCT GCT GCC CAT ACA CAT TCA AAC ACT TAC 2838 ACA AGA ALA Leu Arg Arg Ser Ser Ala Ala His Thr His Ser Asn Thr Tyr	Ser					Arg					Arg					Glu	2598	
The Ser Ser Lys arg Gly Leu Gln Ile Ser Thr Thr Ala Ala Gln Ile 885 GCC AAA GTC ATG GAA GAA GTG TCA GCC ATT CAT ACC TCT CAG GAA GAC 2742 Ala Lys Val Met Glu Glu Val Ser Ala Ile His Thr Ser Gln Glu Asp 900 AGA AGT TCT GGG TCT ACC ACT GAA TTA CAT TGT GTG ACA GAT GAG AGA 2790 AGA AGT TCT GGG TCT ACC ACT GAA TTA CAT TGT GTG ACA GAT GAG AGA 2790 AGA AGT TCT AGA AGA AGC TCT GCT GCC CAT ACA CAT TCA AAC ACT TAC 2838 AAAT GCA CTT AGA AGA AGC TCT GCT GCC CAT ACA CAT TCA AAC ACT TAC 2838 AAA Leu Arg Arg Ser Ser Ala Ala His Thr His Ser Asn Thr Tyr					Leu					Pro					Pro		2646	
Ala Lys Val Met Glu Glu Val Ser Ala Ile His Thr Ser Gln Glu Asp 890 AGA AGT TCT GGG TCT ACC ACT GAA TTA CAT TGT GTG ACA GAT GAG AGA Arg Ser Ser Gly Ser Thr Thr Glu Leu His Cys Val Thr Asp Glu Arg 905 AAT GCA CTT AGA AGA AGC TCT GCT GCC CAT ACA CAT TCA AAC ACT TAC Asn Ala Leu Arg Arg Ser Ser Ala Ala His Thr His Ser Asn Thr Tyr				Lys					Ile					Ala			2694	
Arg Ser Ser Gly Ser Thr Thr Glu Leu His Cys Val Thr Asp Glu Arg 905 910 915 AAT GCA CTT AGA AGA AGC TCT GCT GCC CAT ACA CAT TCA AAC ACT TAC 2838 Asp Ala Leu Arg Arg Ser Ser Ala Ala His Thr His Ser Asp Thr Tyr			Val					Ser					Ser				2742	
asn Ala Leu Arg Arg Ser Ser Ala Ala His Thr His Ser Asn Thr Tyr		Ser					Thr					Val					2790	
	Asn					Ser					Thr					Tyr	2838	

					GAA Glu											2886
_			_		AAG Lys										_	2934
					TAT Tyr											2982
					GAT Asp											3030
	Pro				GCC Ala 1005	His					Ala					3078
					CTA Leu					Asn					Tyr	3126
				Leu	AAC Asn				Gln					Asn		3174
			Arg		AAA Lys			Ile					Lys			3222
		Arg			AGG Arg		Gln					Pro				3270
	Ser				AAA Lys 1085	His					Pro					3318
					CCA Pro					${\tt Gly}$					Glu	3366
				${\tt Gly}$	TCT Ser				Ile					Ser		3414
			Gln		GAT Asp			Glu					Thr			3462
		Arg			GAA Glu		Glu					Glu				3510
	Asn				AAA Lys 1165	Tyr					Arg					3558
					TTA Leu					Asp					Gln	3606
				Ser	TTC Phe				Ser					Ser		3654
			Met		TCA Ser			Glu					Pro			3702
		Lys			AAT Asn		Leu					Ala				3750
					AAG Lys											3798

1240 124	5 1250	50 1255
CAA GAA ACA ATA CAG ACT		
Gln Glu Thr Ile Gln Thr 1260		
TCA AGA TGT AGT TCA TTA Ser Arg Cys Ser Ser Leu 1275		
GGA TGT AAT CAG ACG ACA Gly Cys Asn Gln Thr Thr 1290		
ATA GCA GAA ATA AAA GGA Ile Ala Glu Ile Lys Gly 1305		
GTG AGC GAA GTT CCA GCA Val Ser Glu Val Pro Ala 1320 132	Val Ser Gln His Pro	o Arg Thr L y s Ser Ser
AGA CTG CAG GGT TCT AGT Arg Leu Gln Gly Ser Ser 1340		
GTT GAA TTT CCT TCA GGA Val Glu Phe Pro Ser Gly 1355		
ACA CCC AAA AGT CCA CCT Thr Pro Lys Ser Pro Pro 1370		
TTT AGC AGA TGT ACT TCT Phe Ser Arg Cys Thr Ser 1385		
TCG ATT GCC AGC TCC GTT Ser Ile Ala Ser Ser Val 1400 140	Gln Ser Glu Pro Cys	s Ser Gly Met Val Ser
GGC ATT ATA AGC CCC AGT Gly Ile Ile Ser Pro Ser 1420		
CCA CCA AGC AGA AGT AAA Pro Pro Ser Arg Ser Lys 1435		
ACC AAG CGA GAA GTA CCT Thr Lys Arg Glu Val Pro 1450		
GAG AGT GGA CCT AAG CAA Glu Ser Gly Pro Lys Gln 1465		
CAG GTT CTT CCA GAT GCT Gln Val Leu Pro Asp Ala 1480 148	Asp Thr Leu Leu His	s Phe Ala Thr Glu Ser
ACT CCA GAT GGA TTT TCT Thr Pro Asp Gly Phe Ser 1500		
GAT GAG CCA TTT ATA CAG Asp Glu Pro Phe Ile Gln 1515		
GTT CAG GAA AAT GAC AAT Val Gln Glu Asn Asp Asn 1530		
GAA TCA AAT GAA AAC CAA Glu Ser Asn Glu Asn Gln 1545		
GAA AAG GAC CTA TTA GAT	GAT TCA GAT GAT GAT	I GAT ATT GAA ATA CTA 4758

-continued	
Glu Lys Asp Leu Leu Asp Asp Ser Asp Asp Asp Asp Ile Glu Ile Leu 1560 1565 1570 1575	
GAA GAA TGT ATT ATT TCT GCC ATG CCA ACA AAG TCA TCA CGT AAA GGC Glu Glu Cys Ile Ile Ser Ala Met Pro Thr Lys Ser Ser Arg Lys Gly 1580 1585 1590	4806
AAA AAG CCA GCC CAG ACT GCT TCA AAA TTA CCT CCA CCT GTG GCA AGG Lys Lys Pro Ala Gln Thr Ala Ser Lys Leu Pro Pro Pro Val Ala Arg 1595 1600 1605	4854
AAA CCA AGT CAG CTG CCT GTG TAC AAA CTT CTA CCA TCA CAA AAC AGG Lys Pro Ser Gln Leu Pro Val Tyr Lys Leu Leu Pro Ser Gln Asn Arg 1610 1615 1620	4902
TTG CAA CCC CAA AAG CAT GTT AGT TTT ACA CCG GGG GAT GAT ATG CCA Leu Gln Pro Gln Lys His Val Ser Phe Thr Pro Gly Asp Asp Met Pro 1625 1630 1635	4950
CGG GTG TAT TGT GTT GAA GGG ACA CCT ATA AAC TTT TCC ACA GCT ACA Arg Val Tyr Cys Val Glu Gly Thr Pro Ile Asn Phe Ser Thr Ala Thr 1640 1645 1650 1655	4998
TCT CTA AGT GAT CTA ACA ATC GAA TCC CCT CCA AAT GAG TTA GCT GCT Ser Leu Ser Asp Leu Thr Ile Glu Ser Pro Pro Asn Glu Leu Ala Ala 1660 1665 1670	5046
GGA GAA GGA GTT AGA GGA GGA GCA CAG TCA GGT GAA TTT GAA AAA CGA Gly Glu Gly Val Arg Gly Gly Ala Gln Ser Gly Glu Phe Glu Lys Arg 1675 1680 1685	5094
GAT ACC ATT CCT ACA GAA GGC AGA AGT ACA GAT GAG GCT CAA GGA GGA Asp Thr Ile Pro Thr Glu Gly Arg Ser Thr Asp Glu Ala Gln Gly Gly 1690 1695 1700	5142
AAA ACC TCA TCT GTA ACC ATA CCT GAA TTG GAT GAC AAT AAA GCA GAG Lys Thr Ser Ser Val Thr Ile Pro Glu Leu Asp Asp Asn Lys Ala Glu 1705 1710 1715	5190
GAA GGT GAT ATT CTT GCA GAA TGC ATT AAT TCT GCT ATG CCC AAA GGG Glu Gly Asp Ile Leu Ala Glu Cys Ile Asn Ser Ala Met Pro Lys Gly 1720 1725 1730 1735	5238
AAA AGT CAC AAG CCT TTC CGT GTG AAA AAG ATA ATG GAC CAG GTC CAG Lys Ser His Lys Pro Phe Arg Val Lys Lys Ile Met Asp Gln Val Gln 1740 1745 1750	5286
CAA GCA TCT GCG TCG TCT TCT GCA CCC AAC AAA AAT CAG TTA GAT GGT Gln Ala Ser Ala Ser Ser Ala Pro Asn Lys Asn Gln Leu Asp Gly 1755 1760 1765	5334
AAG AAA AAG AAA CCA ACT TCA CCA GTA AAA CCT ATA CCA CAA AAT ACT Lys Lys Lys Pro Thr Ser Pro Val Lys Pro Ile Pro Gln Asn Thr 1770 1775 1780	5382
GAA TAT AGG ACA CGT GTA AGA AAA AAT GCA GAC TCA AAA AAT AAT TTA Glu Tyr Arg Thr Arg Val Arg Lys Asn Ala Asp Ser Lys Asn Asn Leu 1785 1790 1795	5430
AAT GCT GAG AGA GTT TTC TCA GAC AAC AAA GAT TCA AAG AAA CAG AAT Asn Ala Glu Arg Val Phe Ser Asp Asn Lys Asp Ser Lys Lys Gln Asn 1800 1805 1810 1815	5478
TTG AAA AAT AAT TCC AAG GAC TTC AAT GAT AAG CTC CCA AAT AAT GAA Leu Lys Asn Asn Ser Lys Asp Phe Asn Asp Lys Leu Pro Asn Asn Glu 1820 1825 1830	5526
GAT AGA GTC AGA GGA AGT TTT GCT TTT GAT TCA CCT CAT CAT TAC ACG Asp Arg Val Arg Gly Ser Phe Ala Phe Asp Ser Pro His His Tyr Thr 1835 1840 1845	5574
CCT ATT GAA GGA ACT CCT TAC TGT TTT TCA CGA AAT GAT TCT TTG AGT Pro Ile Glu Gly Thr Pro Tyr Cys Phe Ser Arg Asn Asp Ser Leu Ser 1850 1855 1860	5622
TCT CTA GAT TTT GAT GAT GAT GAT GTT GAC CTT TCC AGG GAA AAG GCT Ser Leu Asp Phe Asp Asp Asp Asp Val Asp Leu Ser Arg Glu Lys Ala 1865 1870 1875	5670

-continued	
GAA TTA AGA AAG GCA AAA GAA AAT AAG GAA TCA GAG GCT AAA GTT ACC Glu Leu Arg Lys Ala Lys Glu Asn Lys Glu Ser Glu Ala Lys Val Thr 1880 1885 1890 1895	5718
AGC CAC ACA GAA CTA ACC TCC AAC CAA CAA TCA GCT AAT AAG ACA CAA Ser His Thr Glu Leu Thr Ser Asn Gln Gln Ser Ala Asn Lys Thr Gln 1900 1905 1910	5766
GCT ATT GCA AAG CAG CCA ATA AAT CGA GGT CAG CCT AAA CCC ATA CTT Ala Ile Ala Lys Gln Pro Ile Asn Arg Gly Gln Pro Lys Pro Ile Leu 1915 1920 1925	5814
CAG AAA CAA TCC ACT TTT CCC CAG TCA TCC AAA GAC ATA CCA GAC AGA Gln Lys Gln Ser Thr Phe Pro Gln Ser Ser Lys Asp Ile Pro Asp Arg 1930 1935 1940	5862
GGG GCA GCA ACT GAT GAA AAG TTA CAG AAT TTT GCT ATT GAA AAT ACT Gly Ala Ala Thr Asp Glu Lys Leu Gln Asn Phe Ala Ile Glu Asn Thr 1945 1950 1955	5910
CCA GTT TGC TTT TCT CAT AAT TCC TCT CTG AGT TCT CTC AGT GAC ATT Pro Val Cys Phe Ser His Asn Ser Ser Leu Ser Ser Leu Ser Asp Ile 1960 1965 1970 1975	5958
GAC CAA GAA AAC AAC AAT AAA GAA AAT GAA CCT ATC AAA GAG ACT GAG Asp Gln Glu Asn Asn Asn Lys Glu Asn Glu Pro Ile Lys Glu Thr Glu 1980 1985 1990	6006
CCC CCT GAC TCA CAG GGA GAA CCA AGT AAA CCT CAA GCA TCA GGC TAT Pro Pro Asp Ser Gln Gly Glu Pro Ser Lys Pro Gln Ala Ser Gly Tyr 1995 2000 2005	6054
GCT CCT AAA TCA TTT CAT GTT GAA GAT ACC CCA GTT TGT TTC TCA AGA Ala Pro Lys Ser Phe His Val Glu Asp Thr Pro Val Cys Phe Ser Arg 2010 2015 2020	6102
AAC AGT TCT CTC AGT TCT CTT AGT ATT GAC TCT GAA GAT GAC CTG TTG Asn Ser Ser Leu Ser Leu Ser Ile Asp Ser Glu Asp Asp Leu Leu 2025 2030 2035	6150
CAG GAA TGT ATA AGC TCC GCA ATG CCA AAA AAG AAA AAG CCT TCA AGA Gln Glu Cys Ile Ser Ser Ala Met Pro Lys Lys Lys Lys Pro Ser Arg 2040 2045 2050 2055	6198
CTC AAG GGT GAT AAT GAA AAA CAT AGT CCC AGA AAT ATG GGT GGC ATA Leu Lys Gly Asp Asn Glu Lys His Ser Pro Arg Asn Met Gly Gly Ile 2060 2065 2070	6246
TTA GGT GAA GAT CTG ACA CTT GAT TTG AAA GAT ATA CAG AGA CCA GAT Leu Gly Glu Asp Leu Thr Leu Asp Leu Lys Asp Ile Gln Arg Pro Asp 2075 2080 2085	6294
TCA GAA CAT GGT CTA TCC CCT GAT TCA GAA AAT TTT GAT TGG AAA GCT Ser Glu His Gly Leu Ser Pro Asp Ser Glu Asn Phe Asp Trp Lys Ala 2090 2095 2100	6342
ATT CAG GAA GGT GCA AAT TCC ATA GTA AGT AGT TTA CAT CAA GCT GCT Ile Gln Glu Gly Ala Asn Ser Ile Val Ser Ser Leu His Gln Ala Ala 2105 2110 2115	6390
GCT GCT GCA TGT TTA TCT AGA CAA GCT TCG TCT GAT TCA GAT TCC ATC Ala Ala Ala Cys Leu Ser Arg Gln Ala Ser Ser Asp Ser Asp Ser Ile 2120 2125 2130 2135	6438
CTT TCC CTG AAA TCA GGA ATC TCT CTG GGA TCA CCA TTT CAT CTT ACA Leu Ser Leu Lys Ser Gly Ile Ser Leu Gly Ser Pro Phe His Leu Thr 2140 2145 2150	6486
CCT GAT CAA GAA GAA AAA CCC TTT ACA AGT AAT AAA GGC CCA CGA ATT Pro Asp Gln Glu Lys Pro Phe Thr Ser Asn Lys Gly Pro Arg Ile 2155 2160 2165	6534
CTA AAA CCA GGG GAG AAA AGT ACA TTG GAA ACT AAA AAG ATA GAA TCT Leu Lys Pro Gly Glu Lys Ser Thr Leu Glu Thr Lys Lys Ile Glu Ser 2170 2175 2180	6582
GAA AGT AAA GGA ATC AAA GGA GGA AAA AAA GTT TAT AAA AGT TTG ATT Glu Ser Lys Gly Ile Lys Gly Gly Lys Lys Val Tyr Lys Ser Leu Ile 2185 2190 2195	6630

	GGA Gly		_			Asn		_	_		${\tt Gly}$	_			_	6678	
	CTT Leu				Met					Arg					Ile	6726	
	T ATT			Val					Ser					Val		6774	
	A AAA s Lys		Pro					Pro					Pro			6822	
_	CAA Gln 226	Thr	_				Pro		_	_		Pro		_		6870	
	A GAA Glu 30					Ala					Gln					6918	
	T AAA Lys				Arg					Asp					Arg	6966	
	GCC Ala			Pro					Ile					Arg		7014	
	A ATT		Pro					Ile					Lys			7062	
	A CTT Leu 234	Pro					Pro					Thr				7110	
	T TCT / Ser					${\tt Tyr}$					Arg					7158	
	AAC Asn				Gln					Lys					Ile	7206	
	A AGA Arg			Ser					Leu					Asn		7254	
	GGA Gly	_	Asn			_	_	Leu					Ser			7302	
	A AGT Ser 242	${\tt Gly}$					Arg					Val				7350	
	G TCA n Ser 10					Glu					Thr					7398	
	G GAG				Ser					Ser					Pro	7446	
	TCT a Ser			Arg					Thr					Pro		7494	
	CCT Pro		Met					His					Ala			7542	
	G CGA															7590	

2505 2510 2515	
GGA AGA CCA GCA AAG CGC CAT GAT ATT GCA CGG TCT CAT TCT GAA AGT Gly Arg Pro Ala Lys Arg His Asp Ile Ala Arg Ser His Ser Glu Ser 2520 2525 2530 2535	7638
CCT TCT AGA CTT CCA ATC AAT AGG TCA GGA ACC TGG AAA CGT GAG CAC Pro Ser Arg Leu Pro Ile Asn Arg Ser Gly Thr Trp Lys Arg Glu His 2540 2545 2550	7686
AGC AAA CAT TCA TCA TCC CTT CCT CGA GTA AGC ACT TGG AGA AGA ACT Ser Lys His Ser Ser Ser Leu Pro Arg Val Ser Thr Trp Arg Arg Thr 2555 2560 2565	7734
GGA AGT TCA TCT TCA ATT CTT TCT GCT TCA TCA GAA TCC AGT GAA AAA Gly Ser Ser Ser Ile Leu Ser Ala Ser Ser Glu Ser Ser Glu Lys 2570 2580	7782
GCA AAA AGT GAG GAT GAA AAA CAT GTG AAC TCT ATT TCA GGA ACC AAA Ala Lys Ser Glu Asp Glu Lys His Val Asn Ser Ile Ser Gly Thr Lys 2585 2590 2595	7830
CAA AGT AAA GAA AAC CAA GTA TCC GCA AAA GGA ACA TGG AGA AAA ATA Gln Ser Lys Glu Asn Gln Val Ser Ala Lys Gly Thr Trp Arg Lys Ile 2600 2605 2610 2615	7878
AAA GAA AAT GAA TTT TCT CCC ACA AAT AGT ACT TCT CAG ACC GTT TCC Lys Glu Asn Glu Phe Ser Pro Thr Asn Ser Thr Ser Gln Thr Val Ser 2620 2625 2630	7926
TCA GGT GCT ACA AAT GGT GCT GAA TCA AAG ACT CTA ATT TAT CAA ATG Ser Gly Ala Thr Asn Gly Ala Glu Ser Lys Thr Leu Ile Tyr Gln Met 2635 2640 2645	7974
GCA CCT GCT GTT TCT AAA ACA GAG GAT GTT TGG GTG AGA ATT GAG GAC Ala Pro Ala Val Ser Lys Thr Glu Asp Val Trp Val Arg Ile Glu Asp 2650 2655 2660	8022
TGT CCC ATT AAC AAT CCT AGA TCT GGA AGA TCT CCC ACA GGT AAT ACT Cys Pro Ile Asn Asn Pro Arg Ser Gly Arg Ser Pro Thr Gly Asn Thr 2665 2670 2675	8070
CCC CCG GTG ATT GAC AGT GTT TCA GAA AAG GCA AAT CCA AAC ATT AAA Pro Pro Val Ile Asp Ser Val Ser Glu Lys Ala Asn Pro Asn Ile Lys 2680 2685 2690 2695	8118
GAT TCA AAA GAT AAT CAG GCA AAA CAA AAT GTG GGT AAT GGC AGT GTT Asp Ser Lys Asp Asn Gln Ala Lys Gln Asn Val Gly Asn Gly Ser Val 2700 2705 2710	8166
CCC ATG CGT ACC GTG GGT TTG GAA AAT CGC CTG ACC TCC TTT ATT CAG Pro Met Arg Thr Val Gly Leu Glu Asn Arg Leu Thr Ser Phe Ile Gln 2715 2720 2725	8214
GTG GAT GCC CCT GAC CAA AAA GGA ACT GAG ATA AAA CCA GGA CAA AAT Val Asp Ala Pro Asp Gln Lys Gly Thr Glu Ile Lys Pro Gly Gln Asn 2730 2735 2740	8262
AAT CCT GTC CCT GTA TCA GAG ACT AAT GAA AGT CCT ATA GTG GAA CGT Asn Pro Val Pro Val Ser Glu Thr Asn Glu Ser Pro Ile Val Glu Arg 2745 2750 2755	8310
ACC CCA TTC AGT TCT AGC AGC TCA AGC AAA CAC AGT TCA CCT AGT GGG Thr Pro Phe Ser Ser Ser Ser Ser Lys His Ser Ser Pro Ser Gly 2760 2765 2770 2775	8358
ACT GTT GCT GCC AGA GTG ACT CCT TTT AAT TAC AAC CCA AGC CCT AGG Thr Val Ala Ala Arg Val Thr Pro Phe Asn Tyr Asn Pro Ser Pro Arg 2780 2785 2790	8406
AAA AGC AGC GCA GAT AGC ACT TCA GCT CGG CCA TCT CAG ATC CCA ACT Lys Ser Ser Ala Asp Ser Thr Ser Ala Arg Pro Ser Gln Ile Pro Thr 2795 2800 2805	8454
CCA GTG AAT AAC AAC ACA AAG AAG CGA GAT TCC AAA ACT GAC ACA Pro Val Asn Asn Asn Thr Lys Lys Arg Asp Ser Lys Thr Asp Ser Thr 2810 2815 2820	8502
GAA TCC AGT GGA ACC CAA AGT CCT AAG CGC CAT TCT GGG TCT TAC CTT	8550

continued

-continued	
Glu Ser Ser Gly Thr Gln Ser Pro Lys Arg His Ser Gly Ser Tyr Leu 2825 2830 2835	
GTG ACA TCT GTT TAAAAGAGAG GAAGAATGAA ACTAAGAAAA TTCTATGTTA Val Thr Ser Val 2840	8602
ATTACAACTG CTATATAGAC ATTTTGTTTC AAATGAAACT TTAAAAGACT GAAAAATTTT	8662
GTAAATAGGT TTGATTCTTG TTAGAGGGTT TTTGTTCTGG AAGCCATATT TGATAGTATA	8722
CTTTGTCTTC ACTGGTCTTA TTTTGGGAGG CACTCTTGAT GGTTAGGAAA AAATAGAAAG	8782
CCAAGTATGT TTGTACAGTA TGTTTTACAT GTATTTAAAG TAGCATCCCA TCCCAACTTC	8842
CTTAATTATT GCTTGTCTAA AATAATGAAC ACTACAGATA GGAAATATGA TATATTGCTG	8902
TTATCAATCA TTTCTAGATT ATAAACTGAC TAAACTTACA TCAGGGGAAA ATTGGTATTT	8962
ATGCAAAAAA AAAATGTTTT TGTCCTTGTG AGTCCATCTA ACATCATAAT TAATCATGTG	9022
GCTGTGAAAT TCACAGTAAT ATGGTTCCCG ATGAACAAGT TTACCCAGCC TGCTTTGCTT	9082
ACTGCATGAA TGAAACTGAT GGTTCAATTT CAGAAGTAAT GATTAACAGT TATGTGGTCA	9142
CATGATGTGC ATAGAGATAG CTACAGTGTA ATAATTTACA CTATTTTGTG CTCCAAACAA	9202
AACAAAAATC TGTGTAACTG TAAAACATTG AATGAAACTA TTTTACCTGA ACTAGATTTT	9262
ATCTGAAAGT AGGTAGAATT TTTGCTATGC TGTAATTTGT TGTATATTCT GGTATTTGAG	9322
GTGAGATGGC TGCTCTTTAT TAATGAGACA TGAATTGTGT CTCAACAGAA ACTAAATGAA	9382
CATTTCAGAA TAAATTATTG CTGTATGTAA ACTGTTACTG AAATTGGTAT TTGTTTGAAG	9442
GGTTTGTTTC ACATTTGTAT TAATTAATTG TTTAAAATGC CTCTTTTAAA AGCTTATATA	9502
AATTTTTCT TCAGCTTCTA TGCATTAAGA GTAAAATTCC TCTTACTGTA ATAAAAACAT	9562
TGAAGAAGAC TGTTGCCACT TAACCATTCC ATGCGTTGGC ACTT	9606
(2) INFORMATION FOR SEQ ID NO: 2:	
(i) SEQUENCE CHARACTERISTICS:	

- (A) LENGTH: 2843 amino acids(B) TYPE: amino acid(D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

Met Ala Ala Ala Ser Tyr Asp Gln Leu Leu Lys Gln Val Glu Ala Leu 1 5 5 10 10 15

His Leu Thr Lys Leu Glu Thr Glu Ala Ser Asn Met Lys Glu Val Leu

Lys Gln Leu Gln Gly Ser Ile Glu Asp Glu Ala Met Ala Ser Ser Gly 55

Gln Ile Asp Leu Leu Glu Arg Leu Lys Glu Leu Asn Leu Asp Ser Ser

Asn Phe Pro Gly Val Lys Leu Arg Ser Lys Met Ser Leu Arg Ser Tyr $85 \hspace{0.5cm} 90 \hspace{0.5cm} 95 \hspace{0.5cm}$

Gly Ser Arg Glu Gly Ser Val Ser Ser Arg Ser Gly Glu Cys Ser Pro $100 \ \ 105 \ \ \ 110$

Val Pro Met Gly Ser Phe Pro Arg Arg Gly Phe Val Asn Gly Ser Arg $115 \\ 120 \\ 125$

Glu Ser Thr Gly Tyr Leu Glu Glu Leu Glu Lys Glu Arg Ser Leu Leu 130 \$135\$

Leu 145	Ala	Asp	Leu	Asp	L y s 150	Glu	Glu	Lys	Glu	L y s 155	Asp	Trp	Tyr	Tyr	Ala 160
Gln	Leu	Gln	Asn	Leu 165	Thr	Lys	Arg	Ile	Asp 170	Ser	Leu	Pro	Leu	Thr 175	Glu
Asn	Phe	Ser	Leu 180	Gln	Thr	Asp	Leu	Thr 185	Arg	Arg	Gln	Leu	Glu 190	Tyr	Glu
Ala	Arg	Gln 195	Ile	Arg	Val	Ala	Met 200	Glu	Glu	Gln	Leu	Gly 205	Thr	Cys	Gln
Asp	Met 210	Glu	Lys	Arg	Ala	Gln 215	Arg	Arg	Ile	Ala	Arg 220	Ile	Gln	Gln	Ile
Glu 225	Lys	Asp	Ile	Leu	Arg 230	Ile	Arg	Gln	Leu	Leu 235	Gln	Ser	Gln	Ala	Thr 240
Glu	Ala	Glu	Arg	Ser 245	Ser	Gln	Asn	Lys	His 250	Glu	Thr	Gly	Ser	His 255	Asp
Ala	Glu	Arg	Gln 260	Asn	Glu	Gly	Gln	Gl y 265	Val	Gly	Glu	Ile	Asn 270	Met	Ala
Thr	Ser	Gly 275	Asn	Gly	Gln	Gly	Ser 280	Thr	Thr	Arg	Met	Asp 285	His	Glu	Thr
Ala	Ser 290	Val	Leu	Ser	Ser	Ser 295	Ser	Thr	His	Ser	Ala 300	Pro	Arg	Arg	Leu
Thr 305	Ser	His	Leu	Gly	Thr 310	Lys	Val	Glu	Met	Val 315	Tyr	Ser	Leu	Leu	Ser 320
Met	Leu	Gly	Thr	His 325	Asp	Lys	Asp	Asp	Met 330	Ser	Arg	Thr	Leu	Leu 335	Ala
Met	Ser	Ser	Ser 340	Gln	Asp	Ser	Cys	Ile 345	Ser	Met	Arg	Gln	Ser 350	Gly	Cys
Leu	Pro	Leu 355	Leu	Ile	Gln	Leu	Leu 360	His	Gly	Asn	Asp	L y s 365	Asp	Ser	Val
Leu	Leu 370	Gly	Asn	Ser	Arg	Gly 375	Ser	Lys	Glu	Ala	Arg 380	Ala	Arg	Ala	Ser
Ala 385	Ala	Leu	His	Asn	Ile 390	Ile	His	Ser	Gln	Pro 395	Asp	Asp	Lys	Arg	Gl y 400
Arg	Arg	Glu	Ile	Arg 405	Val	Leu	His	Leu	Leu 410	Glu	Gln	Ile	Arg	Ala 415	Tyr
Сув	Glu	Thr	C y s 420	Trp	Glu	Trp	Gln	Glu 425	Ala	His	Glu	Pro	Gly 430	Met	Asp
Gln	Asp	Lys 435	Asn	Pro	Met	Pro	Ala 440	Pro	Val	Glu	His	Gln 445	Ile	Сув	Pro
Ala	Val 450	Cys	Val	Leu	Met	Lys 455	Leu	Ser	Phe	Asp	Glu 460	Glu	His	Arg	His
Ala 465	Met	Asn	Glu	Leu	Gly 470	Gly	Leu	Gln	Ala	Ile 475	Ala	Glu	Leu	Leu	Gln 480
Val	Asp	Суѕ	Glu	Met 485	Tyr	Gly	Leu	Thr	Asn 490	Asp	His	Tyr	Ser	Ile 495	Thr
Leu	Arg	Arg	Ty r 500	Ala	Gly	Met	Ala	Leu 505	Thr	Asn	Leu	Thr	Phe 510	Gly	Asp
Val	Ala	Asn 515	Lys	Ala	Thr	Leu	C y s 520	Ser	Met	Lys	Gly	C y s 525	Met	Arg	Ala
Leu	Val 530	Ala	Gln	Leu	Lys	Ser 535	Glu	Ser	Glu	Asp	Leu 540	Gln	Gln	Val	Ile
Ala 545	Ser	Val	Leu	Arg	Asn 550	Leu	Ser	Trp	Arg	Ala 555	Asp	Val	Asn	Ser	L y s 560

Lys	Thr	Leu	Arg	Glu 565	Val	Gly	Ser	Val	Lys 570	Ala	Leu	Met	Glu	Cys 575	Ala
Leu	Glu	Val	L y s 580	Lys	Glu	Ser	Thr	Leu 585	Lys	Ser	Val	Leu	Ser 590	Ala	Leu
Trp	Asn	Leu 595	Ser	Ala	His	Cys	Thr 600	Glu	Asn	Lys	Ala	Asp 605	Ile	Cys	Ala
Val	Asp 610	Gly	Ala	Leu	Ala	Phe 615	Leu	Val	Gly	Thr	Leu 620	Thr	Tyr	Arg	Ser
Gln 625	Thr	Asn	Thr	Leu	Ala 630	Ile	Ile	Glu	Ser	Gly 635	Gly	Gly	Ile	Leu	Arg 640
Asn	Val	Ser	Ser	Leu 645	Ile	Ala	Thr	Asn	Glu 650	Asp	His	Arg	Gln	Ile 655	Leu
Arg	Glu	Asn	Asn 660	Cys	Leu	Gln	Thr	Leu 665	Leu	Gln	His	Leu	Lys 670	Ser	His
Ser	Leu	Thr 675	Ile	Val	Ser	Asn	Ala 680	Cys	Gly	Thr	Leu	Trp 685	Asn	Leu	Ser
Ala	Arg 690	Asn	Pro	Lys	Asp	Gln 695	Glu	Ala	Leu	Trp	Asp 700	Met	Gly	Ala	Val
Ser 705	Met	Leu	Lys	Asn	Leu 710	Ile	His	Ser	Lys	His 715	Lys	Met	Ile	Ala	Met 720
Gly	Ser	Ala	Ala	Ala 725	Leu	Arg	Asn	Leu	Met 730	Ala	Asn	Arg	Pro	Ala 735	Lys
Tyr	Lys	Asp	Ala 740	Asn	Ile	Met	Ser	Pro 745	Gly	Ser	Ser	Leu	Pro 750	Ser	Leu
His	Val	A rg 755	Lys	Gln	Lys	Ala	Leu 760	Glu	Ala	Glu	Leu	Asp 765	Ala	Gln	His
Leu	Ser 770	Glu	Thr	Phe	Asp	Asn 775	Ile	Asp	Asn	Leu	Ser 780	Pro	Lys	Ala	Ser
His 785	Arg	Ser	Lys	Gln	Arg 790	His	Lys	Gln	Ser	Leu 795	Tyr	Gly	Asp	Tyr	Val 800
Phe	Asp	Thr	Asn	Arg 805	His	Asp	Asp	Asn	Arg 810	Ser	Asp	Asn	Phe	Asn 815	Thr
Gly	Asn	Met	Thr 820	Val	Leu	Ser	Pro	Ty r 825	Leu	Asn	Thr	Thr	Val 830	Leu	Pro
Ser	Ser	Ser 835	Ser	Ser	Arg	Gly	Ser 840	Leu	Asp	Ser	Ser	Arg 845	Ser	Glu	Lys
Asp	Arg 850	Ser	Leu	Glu	Arg	Glu 855	Arg	Gly	Ile	Gly	Leu 860	Gly	Asn	Tyr	His
Pro 865	Ala	Thr	Glu	Asn	Pro 870	Gly	Thr	Ser	Ser	L y s 875	Arg	Gly	Leu	Gln	Ile 880
Ser	Thr	Thr	Ala	Ala 885	Gln	Ile	Ala	Lys	Val 890	Met	Glu	Glu	Val	Ser 895	Ala
Ile	His	Thr	Ser 900	Gln	Glu	Asp	Arg	Ser 905	Ser	Gly	Ser	Thr	Thr 910	Glu	Leu
His	Сув	Val 915	Thr	Asp	Glu	Arg	Asn 920	Ala	Leu	Arg	Arg	Ser 925	Ser	Ala	Ala
His	Thr 930	His	Ser	Asn	Thr	Ty r 935	Asn	Phe	Thr	Lys	Ser 940	Glu	Asn	Ser	Asn
Arg 945	Thr	Суѕ	Ser	Met	Pro 950	Tyr	Ala	Lys	Leu	Glu 955	Tyr	Lys	Arg	Ser	Ser 960
Asn	Asp	Ser	Leu	Asn 965	Ser	Val	Ser	Ser	Asn 970	Ąsp	Gly	Tyr	Gly	Lys 975	Arg
Gly	Gln	Met	Lys	Pro	Ser	Ile	Glu	Ser	Tyr	Ser	Glu	Asp	Asp	Glu	Ser

									0011	<u> </u>	404	
	980				985					990		
Lys Phe	C y s Ser 995	Tyr Gly	Gln	Ty r 1000		Ala	Asp	Leu	Ala 1005		Lys	Ile
His Ser 1010		His Met	Asp 1015		Asn	Asp	Gly	Glu 1020		Asp	Thr	Pro
Ile Asn 1025	Tyr Ser	Leu Lys		Ser	Asp	Glu	Gln 1035		Asn	Ser	Gly	Arg 1040
Gln Ser	Pro Ser	Gln Asn 1045	Glu	Arg	Trp	Ala 1050		Pro	Lys	His	Ile 1055	
Glu Asp	Glu Ile 106		Ser	Glu	Gln 1065		Gln	Ser	Arg	Asn 1070		Ser
Thr Thr	Tyr Pro 1075	Val Tyr	Thr	Glu 1080		Thr	Asp	Asp	L y s 1085		Leu	Lys
Phe Gln 1090		Phe Gly	Gln 1095		Glu	Cys	Val	Ser 1100		Tyr	Arg	Ser
Arg Gly 1105	Ala Asn	Gly Ser		Thr	Asn	Arg	Val 1115		Ser	Asn	His	Gl y 1120
Ile Asn	Gln Asn	Val Ser 1125	Gln	Ser	Leu	Cys 1130		Glu	Asp	Asp	Ty r 1135	
Asp Asp	Lys Pro		Tyr	Ser	Glu 1145	_	Tyr	Ser	Glu	Glu 1150		Gln
His Glu	Glu Glu 1155	Glu Arg	Pro	Thr 1160		Tyr	Ser	Ile	L y s 1165		Asn	Glu
Glu Lys 1170		Val Asp	Gln 1175		Ile	Asp	Tyr	Ser 1180		Lys	Tyr	Ala
Thr Asp 1185	Ile Pro	Ser Ser		Lys	Gln	Ser	Phe 1195		Phe	Ser	Lys	Ser 1200
Ser Ser	Gly Gln	Ser Ser 1205	Lys	Thr	Glu	His 1210		Ser	Ser	Ser	Ser 1215	
Asn Thr	Ser Thr		Ser	Asn	Ala 1225		Arg	Gln	Asn	Gln 1230		His
Pro Ser	Ser Ala 1235	Gln Ser	Arg	Ser 1240		Gln	Pro	Gln	L y s 1245		Ala	Thr
Cys Lys 1250		Ser Ile	Asn 1255		Glu	Thr	Ile	Gln 1260		Tyr	Cys	Val
Glu Asp 1265	Thr Pro	Ile Cys 127		Ser	Arg	Cys	Ser 1275		Leu	Ser	Ser	Leu 1280
Ser Ser	Ala Glu	Asp Glu 1285	Ile	Gly	Cys	Asn 1290		Thr	Thr	Gln	Glu 1295	
Asp Ser	Ala Asn 130		Gln	Ile	Ala 1305		Ile	Lys	Gly	Lys 1310		Gly
Thr Arg	Ser Ala 1315	Glu Asp		Val 1320		Glu	Val	Pro	Ala 1325		Ser	Gln
His Pro 1330		Lys Ser	Ser 1335		Leu	Gln	Gly	Ser 1340		Leu	Ser	Ser
Glu Ser 1345	Ala Arg	His Lys		Val	Glu	Phe	Pro 1355		Gly	Ala	Lys	Ser 1360
Pro Ser	L y s Ser	Gly Ala 1365	Gln	Thr	Pro	Lys 1370		Pro	Pro	Glu	His 1375	
Val Gln	Glu Thr 138		Met	Phe	Ser 1385		Cys	Thr	Ser	Val 1390		Ser
Leu Asp	Ser Phe 1395	Glu Ser	Arg	Ser 1400		Ala	Ser	Ser	Val 1405		Ser	Glu

1410 1415 1420	Asp Leu Pro
Asp Ser Pro Gly Gln Thr Met Pro Pro Ser Arg Ser Lys 1425 1430 1435	Thr Pro Pro 1440
Pro Pro Pro Gln Thr Ala Gln Thr Lys Arg Glu Val Pro 1445 1450	Lys Asn Lys 1455
Ala Pro Thr Ala Glu Lys Arg Glu Ser Gly Pro Lys Gln 1460 1465	Ala Ala Val 1470
Asn Ala Ala Val Gln Arg Val Gln Val Leu Pro Asp Ala 1475 1480 148	-
Leu His Phe Ala Thr Glu Ser Thr Pro Asp Gly Phe Ser 1490 1495 1500	Cys Ser Ser
Ser Leu Ser Ala Leu Ser Leu Asp Glu Pro Phe Ile Gln 1505 1510 1515	Lys Asp Val 1520
Glu Leu Arg Ile Met Pro Pro Val Gln Glu Asn Asp Asn 1525 1530	Gly Asn Glu 1535
Thr Glu Ser Glu Gln Pro Lys Glu Ser Asn Glu Asn Gln 1540 1545	Glu Lys Glu 1550
Ala Glu Lys Thr Ile Asp Ser Glu Lys Asp Leu Leu Asp 1555 1560 1569	
Asp Asp Asp Ile Glu Ile Leu Glu Glu Cys Ile Ile Ser 1570 1575 1580	Ala Met Pro
Thr Lys Ser Ser Arg Lys Gly Lys Lys Pro Ala Gln Thr 1585 1590 1595	Ala Ser Lys 1600
Leu Pro Pro Pro Val Ala Arg Lys Pro Ser Gln Leu Pro 1605 1610	Val Tyr Lys 1615
Leu Leu Pro Ser Gln Asn Arg Leu Gln Pro Gln Lys His	Val Ser Phe
1620 1625	1630
Thr Pro Gly Asp Asp Met Pro Arg Val Tyr Cys Val Glu 1635 1640 1649	Gly Thr Pro
Thr Pro Gly Asp Asp Met Pro Arg Val Tyr Cys Val Glu	Gly Thr Pro 5
Thr Pro Gly Asp Asp Met Pro Arg Val Tyr Cys Val Glu 1635 1640 1649 Ile Asn Phe Ser Thr Ala Thr Ser Leu Ser Asp Leu Thr	Gly Thr Pro 5 Ile Glu Ser
Thr Pro Gly Asp Asp Met Pro Arg Val Tyr Cys Val Glu 1640 Ile Asn Phe Ser Thr Ala Thr Ser Leu Ser Asp Leu Thr 1650 Pro Pro Asn Glu Leu Ala Ala Gly Glu Gly Val Arg Gly	Gly Thr Pro The Glu Ser Gly Ala Gln 1680
Thr Pro Gly Asp Asp Met Pro Arg Val Tyr Cys Val Glu 1649 Ile Asn Phe Ser Thr Ala Thr Ser Leu Ser Asp Leu Thr 1650 Pro Pro Asn Glu Leu Ala Ala Gly Glu Gly Val Arg Gly 1665 Ser Gly Glu Phe Glu Lys Arg Asp Thr Ile Pro Thr Glu	Gly Thr Pro The Glu Ser Gly Ala Gln 1680 Gly Arg Ser 1695
Thr Pro Gly Asp Asp Met Pro Arg Val Tyr Cys Val Glu 1649 Ile Asn Phe Ser Thr Ala Thr Ser Leu Ser Asp Leu Thr 1650 Pro Pro Asn Glu Leu Ala Ala Gly Glu Gly Val Arg Gly 1665 Ser Gly Glu Phe Glu Lys Arg Asp Thr Ile Pro Thr Glu 1690 Thr Asp Glu Ala Gln Gly Gly Lys Thr Ser Ser Val Thr	Gly Thr Pro Ile Glu Ser Gly Ala Gln 1680 Gly Arg Ser 1695 Ile Pro Glu 1710 Glu Cys Ile
Thr Pro Gly Asp Asp Met Pro Arg Val Tyr Cys Val Glu 1649 Ile Asn Phe Ser Thr Ala Thr Ser Leu Ser Asp Leu Thr 1650 Pro Pro Asn Glu Leu Ala Ala Gly Glu Gly Val Arg Gly 1665 Ser Gly Glu Phe Glu Lys Arg Asp Thr Ile Pro Thr Glu 1685 Thr Asp Glu Ala Gln Gly Gly Lys Thr Ser Ser Val Thr 1700 Leu Asp Asp Asp Lys Ala Glu Glu Gly Asp Ile Leu Ala	Gly Thr Pro The Glu Ser Gly Ala Gln 1680 Gly Arg Ser 1695 The Pro Glu 1710 Glu Cys The
Thr Pro Gly Asp Asp Met Pro Arg Val Tyr Cys Val Glu 1649 Ile Asn Phe Ser Thr Ala Thr Ser Leu Ser Asp Leu Thr 1650 Pro Pro Asn Glu Leu Ala Ala Gly Glu Gly Val Arg Gly 1665 Ser Gly Glu Phe Glu Lys Arg Asp Thr Ile Pro Thr Glu 1685 Thr Asp Glu Ala Gln Gly Gly Lys Thr Ser Ser Val Thr 1700 Leu Asp Asp Asn Lys Ala Glu Glu Gly Asp Ile Leu Ala 1715 Asn Ser Ala Met Pro Lys Gly Lys Ser His Lys Pro Phe	Gly Thr Pro Ile Glu Ser Gly Ala Gln 1680 Gly Arg Ser 1695 Ile Pro Glu 1710 Glu Cys Ile 5
Thr Pro Gly Asp Asp Met Pro Arg Val Tyr Cys Val Glu 1649 Ile Asn Phe Ser Thr Ala Thr Ser Leu Ser Asp Leu Thr 1650 Pro Pro Asn Glu Leu Ala Ala Gly Glu Gly Val Arg Gly 1665 Ser Gly Glu Phe Glu Lys Arg Asp Thr Ile Pro Thr Glu 1690 Thr Asp Glu Ala Gln Gly Gly Lys Thr Ser Ser Val Thr 1700 Leu Asp Asp Asn Lys Ala Glu Glu Gly Asp Ile Leu Ala 1715 Asn Ser Ala Met Pro Lys Gly Lys Ser His Lys Pro Phe 1730 Lys Ile Met Asp Gln Val Gln Gln Ala Ser Ala Ser Ser	Gly Thr Pro Tile Glu Ser Gly Ala Gln 1680 Gly Arg Ser 1695 Tile Pro Glu 1710 Glu Cys Ile 5 Arg Val Lys Ser Ala Pro 1760
Thr Pro Gly Asp Asp Met Pro Arg Val Tyr Cys Val Glu 1649 Ile Asn Phe Ser Thr Ala Thr Ser Leu Ser Asp Leu Thr 1650 Pro Pro Asn Glu Leu Ala Ala Gly Glu Gly Val Arg Gly 1665 Ser Gly Glu Phe Glu Lys Arg Asp Thr Ile Pro Thr Glu 1685 Thr Asp Glu Ala Gln Gly Gly Lys Thr Ser Ser Val Thr 1700 Leu Asp Asp Asn Lys Ala Glu Glu Gly Asp Ile Leu Ala 1715 Asn Ser Ala Met Pro Lys Gly Lys Ser His Lys Pro Phe 1730 Lys Ile Met Asp Gln Val Gln Gln Gln Ala Ser Ala Ser Ser 1745 Asn Lys Asn Gln Leu Asp Gly Lys Lys Lys Lys Pro Thr	Gly Thr Pro Tile Glu Ser Gly Ala Gln 1680 Gly Arg Ser 1695 Tile Pro Glu 1710 Glu Cys Ile 5 Arg Val Lys Ser Ala Pro 1760 Ser Pro Val 1775
Thr Pro Gly Asp Asp Met Pro Arg Val Tyr Cys Val Glu 1649 Ile Asn Phe Ser Thr Ala Thr Ser Leu Ser Asp Leu Thr 1650 Pro Pro Asn Glu Leu Ala Ala Gly Glu Gly Val Arg Gly 1665 Ser Gly Glu Phe Glu Lys Arg Asp Thr Ile Pro Thr Glu 1685 Thr Asp Glu Ala Gln Gly Gly Lys Thr Ser Ser Val Thr 1700 Leu Asp Asp Asn Lys Ala Glu Glu Gly Asp Ile Leu Ala 1715 Asn Ser Ala Met Pro Lys Gly Lys Ser His Lys Pro Phe 1730 Lys Ile Met Asp Gln Val Gln Gln Gln Ala Ser Ala Ser Ser 1745 Asn Lys Asn Gln Leu Asp Gly Lys Lys Lys Lys Pro Thr 1765 Lys Pro Ile Pro Gln Asn Thr Glu Tyr Arg Thr Arg Val	Gly Thr Pro The Glu Ser Gly Ala Gln 1680 Gly Arg Ser 1695 The Pro Glu 1710 Glu Cys The Arg Val Lys Ser Ala Pro 1760 Ser Pro Val 1775 Arg Lys Asn 1790 Ser Asp Asn

Asp 1825		Leu	Pro	Asn	Asn 1830		Asp	Arg	Val	Arg 1835		Ser	Phe	Ala	Phe 1840
Asp	Ser	Pro	His	His 1845		Thr	Pro	Ile	Glu 1850		Thr	Pro	Tyr	Cys 1855	
Ser	Arg	Asn	Asp 1860	Ser	Leu	Ser	Ser	Leu 1865		Phe	Asp	Asp	Asp 1870		Val
Asp		Ser 1875		Glu	Lys	Ala	Glu 1880		Arg	Lys	Ala	L y s 1885		Asn	L y s
Glu	Ser 1890		Ala	Lys	Val	Thr 1895		His	Thr	Glu	Leu 1900		Ser	Asn	Gln
Gln 1905		Ala	Asn	Lys	Thr 1910		Ala	Ile		L y s 1915		Pro	Ile		Arg 1920
Gly	Gln	Pro	Lys	Pro 1925		Leu	Gln		Gln 1930		Thr	Phe	Pro	Gln 1935	
Ser	Lys	Asp	Ile 1940	Pro	Asp	Arg		Ala 1945		Thr	Asp	Glu	L y s 1950		Gln
Asn	Phe	Ala 1955		Glu	Asn	Thr	Pro 1960		Cys	Phe	Ser	His 1965		Ser	Ser
Leu	Ser 1970		Leu	Ser	Asp	Ile 1975		Gln	Glu	Asn	Asn 1980		Lys	Glu	Asn
Glu 1985		Ile	Lys	Glu	Thr 1990		Pro	Pro		Ser 1995		Gly	Glu	Pro	Ser 2000
Lys	Pro	Gln	Ala	Ser 2005		Tyr	Ala		L y s 2010		Phe	His	Val	Glu 2015	
Thr	Pro	Val	Cys 2020	Phe	Ser	Arg		Ser 2025		Leu	Ser	Ser	Leu 2030		Ile
Asp	Ser	Glu 2035		Asp	Leu	Leu	Gln 2040		Cys	Ile	Ser	Ser 2045		Met	Pro
Lys	L y s 2050		Lys	Pro	Ser	Arg 2055		Lys	Gly	Asp	Asn 2060		Lys	His	Ser
Pro 2065		Asn	Met	Gly	Gl y 2070		Leu	Gly		Asp 2075		Thr	Leu	Asp	Leu 2080
Lys	Asp	Ile	Gln	Arg 2085		Asp	Ser	Glu	His 2090		Leu	Ser	Pro	Asp 2095	
Glu	Asn	Phe	Asp 2100	Trp	Lys	Ala		Gln 2105		Gly	Ala	Asn	Ser 2110		Val
	Ser			Gln		Ala									Ala
Ser	Ser 2130		Ser	Asp	Ser	Ile 2135		Ser	Leu	Lys	Ser 2140		Ile	Ser	Leu
Gly 2145		Pro	Phe	His	Leu 2150		Pro	Asp	Gln	Glu 2155		Lys	Pro	Phe	Thr 2160
Ser	Asn	Lys	Gly	Pro 2165		Ile	Leu	Lys	Pro 2170		Glu	Lys	Ser	Thr 2175	
Glu	Thr	Lys	L ys 2180	Ile	Glu	Ser	Glu	Ser 2185	_	Gly	Ile	Lys	Gly 2190	_	Lys
Lys	Val	Ty r 2195		Ser	Leu	Ile	Thr 2200		Lys	Val	Arg	Ser 2205		Ser	Glu
Ile	Ser 2210	_	Gln	Met	Lys	Gln 2215		Leu	Gln	Ala	Asn 2220		Pro	Ser	Ile
Ser 2225		Gly	Arg	Thr	Met 2230		His	Ile	Pro	Gl y 2235		Arg	Asn	Ser	Ser 2240
Ser	Ser	Thr	Ser	Pro	Val	Ser	Lys	Lys	Gly	Pro	Pro	Leu	Lys	Thr	Pro

				2245	5				2250)				225	5
Ala	Ser	Lys	Ser 226		Ser	Glu	Gly	Gln 2265		Ala	Thr	Thr	Ser 227		Arg
Gly	Ala	L y s 2275		Ser	Val	Lys	Ser 2280	Glu)	Leu	Ser	Pro	Val 228		Arg	Gln
Thr	Ser 2290		Ile	Gly	Gly	Ser 2295		Lys	Ala	Pro	Ser 230		Ser	Gly	Ser
Arg 2305		Ser	Thr	Pro	Ser 231		Pro	Ala	Gln	Gln 231		Leu	Ser	Arg	Pro 2320
Ile	Gln	Ser	Pro	Gly 2325		Asn	Ser	Ile	Ser 2330		Gly	Arg	Asn	Gly 233	
Ser	Pro	Pro	Asn 234		Leu	Ser	Gln	Leu 2345		Arg	Thr	Ser	Ser 235		Ser
Thr	Ala	Ser 2355		Lys	Ser	Ser	Gly 2360	Ser	Gly	Lys	Met	Ser 236		Thr	Ser
Pro	Gl y 2370		Gln	Met	Ser	Gln 2375		Asn	Leu	Thr	Lys 238		Thr	Gly	Leu
Ser 2385		Asn	Ala	Ser	Ser 2390		Pro	Arg	Ser	Glu 239		Ala	Ser	Lys	Gly 2400
Leu	Asn	Gln	Met	Asn 2405		Gly	Asn	Gly	Ala 2410		Lys	Lys	Val	Glu 2415	
Ser	Arg	Met	Ser 242		Thr	Lys	Ser	Ser 2425		Ser	Glu	Ser	Asp 2430	_	Ser
Glu	Arg	Pro 2435		Leu	Val	Arg	Gln 2440	Ser	Thr	Phe	Ile	Lys 244		Ala	Pro
Ser	Pro 2450		Leu	Arg	Arg	Lys 2455		Glu	Glu	Ser	Ala 246		Phe	Glu	Ser
Leu 2465		Pro	Ser	Ser	Arg 247		Ala	Ser	Pro	Thr 247		Ser	Gln	Ala	Gln 2480
Thr	Pro	Val	Leu	Ser 248		Ser	Leu	Pro	Asp 2490		Ser	Leu	Ser	Thr 249	
Ser	Ser	Val	Gln 250		Gly	Gly	Trp	Arg 2505		Leu	Pro	Pro	Asn 251		Ser
Pro	Thr	Ile 2515		Tyr	Asn	Asp	Gl y 2520	Arg	Pro	Ala	Lys	Arg 252		Asp	Ile
Ala	Arg 2530		His	Ser	Glu	Ser 2535		Ser	Arg	Leu	Pro 254		Asn	Arg	Ser
Gly 2545		Trp	Lys	Arg	Glu 2550		Ser	Lys	His	Ser 255		Ser	Leu	Pro	Arg 2560
Val	Ser	Thr	Trp	Arg 2565		Thr	Gly	Ser	Ser 2570		Ser	Ile	Leu	Ser 2575	
Ser	Ser	Glu	Ser 258		Glu	Lys	Ala	L y s 2585		Glu	Asp	Glu	Lys 2590		Val
Asn	Ser	Ile 2595		Gly	Thr	Lys	Gln 2600	Ser	Lys	Glu	Asn	Gln 260		Ser	Ala
Lys	Gly 2610		Trp	Arg	Lys	Ile 2615		Glu	Asn	Glu	Phe 262		Pro	Thr	Asn
Ser 2625		Ser	Gln	Thr	Val 2630		Ser	Gly	Ala	Thr 2635		Gly	Ala	Glu	Ser 2640
Lys	Thr	Leu	Ile	Tyr 264		Met	Ala	Pro	Ala 2650		Ser	Lys	Thr	Glu 265	
Val	Trp	Val	Arg 2660		Glu	Asp	Cys	Pro 2665		Asn	Asn	Pro	Arg 2670		Gly

-continued

Arg Ser Pro Thr Gly Asn Thr Pro Pro Val Ile Asp Ser Val Ser Glu 2695 Lye Ala Asn Pro Asn Ile Lye Asp Ser Lys Asp Asn Can 2700 Asn Val Gly Asn Gly Ser Val Pro Met Arg Thr Val Gly Leu Glu Asn 2705 Asn Val Gly Asn Gly Ser Val Pro Met Arg Thr Val Gly Leu Glu Asn 2705 Arg Leu Thr Ser Phe Ile Gln Val Asp Ala Pro Asp Gln Lys Gly Thr 2735 Glu Ile Lys Pro Gly Gln Asn Asn Pro Val Pro Val Ser Glu Thr Asn 2745 Glu Ile Lys Pro Gly Gln Asn Asn Pro Val Pro Val Ser Glu Thr Asn 2745 Glu Ser Pro Ile Val Glu Arg Thr Pro Phe Ser Ser Ser Ser Ser Ser 2755 Lys His Ser Ser Pro Ser Gly Thr Val Ala Ala Arg Val Thr Pro Phe 2770 Asn Tyr Asn Pro Ser Gly Thr Pro Val Ash Ash Ser Thr Ser Ala 2795 Arg Pro Ser Gln Ile Pro Thr Pro Val Asn Asn Asn Thr Lys Lys Arg 2800 Arg Pro Ser Gln Ile Pro Thr Pro Val Asn Asn Asn Thr Lys Lys Arg 2800 Arg His Ser Gly Ser Tyr Leu Val Thr Ser Val 2830 Arg His Ser Gly Ser Tyr Leu Val Thr Ser Val 2830 Arg His Ser Gly Ser Tyr Leu Val Thr Ser Val 2830 (2) INFORMATION FOR SEQ ID NO: 3: (i) SEQUENCE CHARACTERISTICS: (A) LEMGTH: 3172 base pairs (B) Typer uncleic acid (C) TRANEDEMES: double (D) TOPOLOGY: Linear (ii) MOLECULE Type: cDNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens (vii) IMMEDIATE SOURCE: (A) ORGANISM: Homo sapiens (vii) SEQUENCE DESCRIPTION: SEQ ID NO: 3: GCA GTC GCC GCT CCA GTC TAT CCG GCA CTA GCA ACA GCC CCG GCN GCC Ala Val Ala Ala Pro Val Tyr Pro Ala Leu Gly Thr Ala Pro Gly Gly Ill 1 Ser Ser Ala Ala Ala Pro Val Tyr Pro Ala Leu Gly Thr Ala Pro Gly Gly Ill 1 Ser Ser Man Ala Man Pro Val Tyr Pro Ala Leu Gly Thr Ala Pro Gly Gly Ill 1 Ser Ser Ala Ala Man Ara Glu Arg Gla Aca GCT CGG Glu Thr Val Pro Ala Met Ser Ala Ala Met Arg Glu Arg Phe Asp Arg 20 30 30 30 30 30 30 30 30 30 30 30 30 30																	
Asn val Gly Asn Gly Ser Val Pro Met Arg Thr Val Gly Leu Glu Asn 2710 2710 2710 2710 2710 2720 Arg Leu Thr Ser Phe Ile Gln Val Asp Ala Pro Asp Gln Lys Gly Thr 2725 2740 2740 2745 2730 2735 Glu Ile Lys Pro Gly Gln Asn Asn Pro Val Pro Val Ser Glu Thr Asn 2740 2740 2745 2755 Glu Ser Pro Ile Val Glu Arg Thr Pro Phe Ser Ser Ser Ser Ser Ser 2765 Lys His Ser Ser Pro Ser Gly Thr Val Ala Ala Arg Val Thr Pro Phe 2770 2780 Asn Tyr Asn Pro Ser Pro Arg Lys Ser Ser Ala Asp Ser Thr Ser Ala 2795 2800 Arg Pro Ser Gln Ile Pro Thr Pro Val Ser Ser Gly Thr Gln Ser Pro Lys 2815 Asp Ser Lys Thr Asp Ser Thr Glu Ser Ser Gly Thr Gln Ser Pro Lys 2820 Arg His Ser Gly Ser Tyr Leu Val Thr Ser Val 2830 Arg His Ser Gly Ser Tyr Leu Val Thr Ser Val 2830 (2) INFORMATION FOR SEQ ID No: 3: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 3172 base pairs (B) TYPE: nucleic acid (C) STRANDENNES: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens (vii) IMMEDIATE SOURCE: (B) CLOME: DPI(TB2) (ix) FEATURE: (A) NAME/KY: CDS (B) LOCATION: 1630 (xi) SEQUENCE DESCRIPTION: SEQ ID No: 3: GCA STE CG CC CA GTC TAT CCG GCA CTA GGA ACA GCC CCG GGN GGC Ala Val Ala Ala Pro Val Tyr Pro Ala Leu Gly Thr Ala Pro Gly Gly 1 1 0 15 GAG ACG GTC CCC GCC ATG TCT CCG GCC ATG AGG GAG AGG GTC GAG CALA Val Ala Ala Pro Val Tyr Pro Ala Leu Gly Thr Ala Pro Gly Gly 1 1 0 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Arg &				Gly	Asn	Thr			Val	Ile	Asp			Ser	Glu	
2705 2710 2715 2720 Arg Leu Thr Ser Phe Ile Gln Val Asp Ala Pro Asp Gln Lys Gly Thr 2725 2730 2735 2735 2730 3 2740 2740 2740 2740 2745 2750 2755 2750 2750 2750 2750 2740 2740 2745 2760 2755 2765 2750 2750 2750 2750 2750 2750 2750 275			Asn	Pro	Asn	Ile			Ser	Lys	Asp			Ala	Lys	Gln	
Glu Ile Lys Pro Gly Gln Aen Asn Pro Val Pro Val Ser Glu Thr Aen 2740 Glu Ser Pro Ile Val Glu Arg Thr Pro Phe Ser Ser Ser Ser Ser Ser Ser Ser Ser Se			Gly	Asn	Gly			Pro	Met	Arg			Gly	Leu	Glu		
Glu Ser Pro Ile Val Glu Arg Thr Pro Phe Ser Ser Ser Ser Ser Ser Ser 2755 Lys His Ser Ser Pro Ser Gly Thr Val Ala Ala Arg Val Thr Pro Phe 2776 Lys His Ser Ser Pro Ser Gly Thr Val Ala Ala Arg Val Thr Pro Phe 2775 Asn Tyr Asn Pro Ser Pro Arg Lys Ser Ser Ala Asp Ser Thr Ser Ala 2785 Asn Tyr Asn Pro Ser Pro Thr Pro Val Asn Asn Asn Thr Lys Lys Arg 2805 Arg Pro Ser Gln Ile Pro Thr Pro Val Asn Asn Asn Thr Lys Lys Arg 2815 Asp Ser Lys Thr Asp Ser Thr Glu Ser Ser Gly Thr Gln Ser Pro Lys 2820 Arg His Ser Gly Ser Tyr Leu Val Thr Ser Val 2835 (2) INFORMATION FOR SEQ ID NO: 3: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 3172 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE: (A) CAGAMISM: Homo sapiens (vii) IMMEDIATE SOURCE: (B) CLONE: DPI(TB2) (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 1630 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3: GCA GTC GCC GCT CCA GTC TAT CCG GCA CTA GGA ACA GCC CCG GGN GGC 48 Ala Val Ala Ala Pro Val Tyr Pro Ala Leu Gly Thr Ala Pro Gly Gly 1 1 5 15 GAG ACG GTC CCC GCC ATG TCT GCG GCC ATG AGG GAG AGG TTC GAC CGG Glu Thr Val Pro Ala Met Ser Ala Ala Met Arg Glu Arg Phe Asp Arg 20 25 TTC CTG CAC GAG AAG AAC TCC ATG ACT GAC CTT CTG GCC AAG CTC GAG Phe Leu His Glu Lys Asn Cys Met Thr Asp Leu Leu Ala Lys Leu Glu 35 40 GCC AAA ACC GGC GTG AAC AGG AGC TTC ATC GCT CTT CTG TGT GTC ATC GGA Ala Lys Thr Gly Val Asn Arg Ser Phe Ile Ala Leu Gly Val Ile Gly 50 55 7 60 CTG GTG GCC CTG TTG TCC GTG TTC GTG TGT CTC CTC	Arg I	Leu '	Thr	Ser			Gln	Val	Asp			Asp	Gln	Lys	_		
Lys His Ser Ser Pro Ser Gly Thr Val Ala Ala Ara Val Thr Pro Phe 2770 Asn Tyr Aen Pro Ser Pro Arg Lys Ser Ser Ala Asp Ser Thr Ser Ala 2785 Arg Pro Ser Gln Ile Pro Thr Pro Val Aen Aen Aen Thr Lys Lys Arg 2810 Arg Pro Ser Gln Ile Pro Thr Pro Val Aen Aen Aen Thr Lys Lys Arg 2815 Asp Ser Lys Thr Asp Ser Thr Glu Ser Ser Gly Thr Gln Ser Pro Lys 2825 Arg His Ser Gly Ser Tyr Leu Val Thr Ser Val 2835 Arg His Ser Gly Ser Tyr Leu Val Thr Ser Val 2835 (2) INFORMATION FOR SEQ ID NO: 3: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 3172 base pairs (B) TypE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens (vii) IMMEDIATE SOURCE: (B) CLONE: DP1(TE2) (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 1630 (xi) SEQUENCE DESCRIPTION: SEQ ID No: 3: GAG ACG GTC GCC GCC ATG ATC GCG ACTA GGA ACA GCC CCG GGN GGC ALA Val Ala Ala Pro Val Tyr Pro Ala Leu Gly Thr Ala Pro Gly Gly 15 GAG ACG GTC CCC GCC ATG TCT GCG GCC ATG AGG GAG AGG TTC GAC CGG Glu Thr Val Pro Ala Met Ser Ala Ala Met Arg Glu Arg Phe Asp Arg 20 TTC CTG CAC GAG AAG AAC TGC ATG ACT GAC CTT CTG GCC AAG CTC GAG Phe Leu His Glu Lys Aen Cys Met Thr Asp Leu Leu Ala Lys Leu Glu 410 GCC AAA ACC GGC GTG AAC AGG AGG TTC ATC GGT CTT GGT GTC ATC GGA ALA Leu Gly Val Ile Gly 50 CTG GTG GCC CTG TAC CTG GTT CTG GTT CTG CTC CTC TCG CTC CTG CTC CTG CTC GTG GTG	Glu I	Ile 1	Lys			Gln	Asn	Asn			Pro	Val	Ser			Asn	
Asn Tyr Asn Pro Ser Pro Arg Lys Ser Ser Ala Asp Ser Thr Ser Ala 2785 Arg Pro Ser Gln Ile Pro Thr Pro Val Asn Asn Asn Thr Lys Lys Arg 2805 Arg Pro Ser Gln Ile Pro Thr Pro Val Asn Asn Asn Thr Lys Lys Arg 2815 Asp Ser Lys Thr Asp Ser Thr Glu Ser Ser Gly Thr Gln Ser Pro Lys 2820 Arg His Ser Gly Ser Tyr Leu Val Thr Ser Val 2835 (2) INFORMATION FOR SEQ ID NO: 3: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 3172 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens (vii) IMMEDIATE SOURCE: (B) CLOME: DP1(TB2) (ix) FEATURE: (A) NAME/KFY: CDS (B) LOCATION: 1630 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3: GCA GTC GCC GCT CA GTC TAT CCG GCA CTA GGA ACA GCC CCG GGN GGC Ala Val Ala Ala Pro Val Tyr Pro Ala Leu Gly Thr Ala Pro Gly Gly 1 1 5 15 GAG AGG GTC CCC GCC ATG TCT GCG GCC ATG AGG AGG TTC GAC CGG Glu Thr Val Pro Ala Met Ser Ala Ala Met Arg Glu Arg Phe Asp Arg 20 25 TTC CTG CAC GAG AAG AAC TGC ATG ACT GAC CTT CTG GCC AAG CTC GAG Phe Leu His Glu Lys Asn Cys Met Thr Asp Leu Leu Ala Lys Leu Glu 35 40 40 45 50 55 50 60 CTG GTG GCC TTG TAC CTG GTG TTC GGT TAT GAG GCC CTT CTC CTC CTC CTC CTC CTC CTC CT	Glu 8				Val	Glu	Arg			Phe	Ser	Ser			Ser	Ser	
Arg Pro Ser Gln Ile Pro Thr Pro Val Asn Asn Asn Thr Lys Lys Arg 2805 Asp Ser Lys Thr Asp Ser Thr Glu Ser Ser Gly Thr Gln Ser Pro Lys 2820 Arg His Ser Gly Ser Tyr Leu Val Thr Ser Val 2835 Arg His Ser Gly Ser Tyr Leu Val Thr Ser Val 2835 (2) INFORMATION FOR SEQ ID NO: 3: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 3172 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens (vii) IMMEDIATE SOURCE: (B) CLONE: DP1(TB2) (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 1630 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3: GCA GTC GCC GCT CCA GTC TAT CCG GCA CTA GGA ACA GCC CCG GGN GGC 48 Ala Val Ala Ala Pro Val Tyr Pro Ala Leu Gly Thr Ala Pro Gly Gly 1 5 1 5 10 15 15 15 10 15 15 15 10 15 15 15 10 15 15 15 10 15 15 15 10 15 15 10 15 15 15 10 15 15 15 10 15 15 15 10 15 15 15 15 10 15 15 15 10 15 15 15 15 15 15 15 15 15 15 15 15 15			Ser	Ser	Pro	Ser			Val	Ala	Ala			Thr	Pro	Phe	
Asp Ser Lys Thr Asp Ser Thr Glu Ser Ser Gly Thr Gln Ser Pro Lys 2820 Arg His Ser Gly Ser Tyr Leu Val Thr Ser Val 2835 (2) INFORMATION FOR SEQ ID NO: 3: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 3172 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens (vii) IMMEDIATE SOURCE: (B) CLONE: DP1(TB2) (ix) FEATURE: (A) NAMME/KEY: CDS (B) LOCATION: 1630 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3: GCA GTC GCC GCT CCA GTC TAT CCG GCA CTA GGA ACA GCC CCG GGN GGC 48 Ala Val Ala Ala Pro Val Tyr Pro Ala Leu Gly Thr Ala Pro Gly Gly 1 5 GAG ACG GTC CCC GCC ATG TCT GCG GCC ATG AGG GAG AGG TTC GAC CGG GGL Thr Val Pro Ala Met Ser Ala Ala Met Arg Glu Arg Phe Asp Arg 20 TTC CTG CAC GAG AAG AAC TGC ATG ACT GAC CTT CTG GCC AAG CTC GAG TCC GAG GLU Lys Asn Cys Met Thr Asp Leu Leu Ala Lys Leu Glu 45 GCC AAA ACC GGC GTG AAC AGG AGC TTC GGT CTT CTG GCC AAG CTC GGA Ala Lys Thr Gly Val Asn Arg Ser Phe IIe Ala Leu Gly Val IIe Gly 50 CTG GTG GCC TTG TAC CTG GTG TTC GGT TAT GGA CCC CTC CTC CTC CTC CTC CTC CTC CTC CT			Asn	Pro	Ser			Lys	Ser	Ser			Ser	Thr	Ser		
Arg His Ser Gly Ser Tyr Leu Val Thr Ser Val 2835 (2) INFORMATION FOR SEQ ID NO: 3: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 3172 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens (vii) IMMEDIATE SOURCE: (B) CLONE: DP1(TB2) (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 1630 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3: GCA GTC GCC GCT CCA GTC TAT CCG GCA CTA GGA ACA GCC CCG GGN GGC Ala Val Ala Ala Pro Val Tyr Pro Ala Leu Gly Thr Ala Pro Gly Gly 1 5 10 GAG ACG GTC CCC GCC ATG TCT GCG GCC ATG AGG GAG AGG TTC GAC CGG Glu Thr Val Pro Ala Met Ser Ala Ala Met Arg Glu Arg Phe Asp Arg 20 25 TTC CTG CAC GAG AAG AAC TGC ATG ACT GAC CTT CTG GCC AAG CTC GAG Phe Leu His Glu Lys Asn Cys Met Thr Asp Leu Leu Ala Lys Leu Glu 35 40 GCC AAA ACC GGC GTG AAC AGG AGC TTC ATC GCT CTT GGT GTC ATC GGA Ala Lys Thr Gly Val Asn Arg Ser Phe Ile Ala Leu Gly Val Ile Gly 50 55 CTG GTG GCC TTG TAC CTG GTG TTC GGT TAT GGA GCC TC TCT CTC CTC TGC Leu Val Ala Leu Tyr Leu Val Phe Gly Tyr Gly Ala Ser Leu Leu Cys	Arg I	Pro :	Ser	Gln			Thr	Pro	Val			Asn	Thr	Lys			
(2) INFORMATION FOR SEQ ID NO: 3: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 3172 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens (vii) IMMEDIATE SOURCE: (B) CLONE: DP1(TB2) (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 1630 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3: GCA GTC GCC GCT CCA GTC TAT CCG GCA CTA GGA ACA GCC CCG GGN GGC Ala Val Ala Ala Pro Val Tyr Pro Ala Leu Gly Thr Ala Pro Gly Gly 1 5 10 GAG ACG GTC CCC GCC ATG TCT GCG GCC ATG AGG GAG AGG TCC GAC CGG Glu Thr Val Pro Ala Met Ser Ala Ala Met Arg Glu Arg Phe Asp Arg 20 25 30 TTC CTG CAC GAG AAG AAC TGC ATG ACT GAC CTT CTG GCC AAG CTC GAG Phe Leu His Glu Lys Asn Cys Met Thr Asp Leu Leu Ala Lys Leu Glu 35 40 45 GCC AAA ACC GGC GTG TAC CTG GTG TTC GCT CTT GTG GTC ATC GGA Ala Lys Thr Gly Val Asn Arg Ser Phe Ile Ala Leu Gly Val Ile Gly 55 60 CTG GTG GCC TTG TAC CTG GTG TTC GGT TAT GGA GCC TCT CTC CTC TGC Leu Val Ala Leu Tyr Leu Val Phe Gly Tyr Gly Ala Ser Leu Leu Cys	Asp &	Ser 1				Ser	Thr	Glu			Gly	Thr	Gln			Lys	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 3172 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens (vii) IMMEDIATE SOURCE: (B) CLONE: DP1(TB2) (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 1630 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3: GCA GTC GCC GCT CCA GTC TAT CCG GCA CTA GGA ACA GCC CCG GGN GGC Ala Val Ala Ala Pro Val Tyr Pro Ala Leu Gly Thr Ala Pro Gly Gly 1 5 10 15 GAG ACG GTC CCC GCC ATG TCT GCG GCC ATG AGG GAG AGG TTC GAC CGG Glu Thr Val Pro Ala Met Ser Ala Ala Met Arg Glu Arg Phe Asp Arg 20 25 30 TTC CTG CAC GAG AAG AAC TGC ATG ACT GAC CTT CTG GCC CAG GAG Phe Leu His Glu Lys Asn Cys Met Thr Asp Leu Leu Ala Lys Leu Glu 35 40 45 GCC AAA ACC GGC GTG AAC AGG AGG TTC ATC GCT CTT GGT GTC ATC GGA Ala Lys Thr Gly Val Asn Arg Ser Phe Ile Ala Leu Gly Val Ile Gly 50 55 60 CTG GTG GCC TTG TAC CTG GTG TTC GGT TAT GGA GCC TCT CTC CTC TGC Leu Val Ala Leu Tyr Leu Val Phe Gly Tyr Gly Ala Ser Leu Leu Cys	Arg H				Ser	Tyr	Leu			Ser	Val						
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 3172 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens (vii) IMMEDIATE SOURCE: (B) CLONE: DP1(TB2) (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 1630 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3: GCA GTC GCC GCT CCA GTC TAT CCG GCA CTA GGA ACA GCC CCG GGN GGC Ala Val Ala Ala Pro Val Tyr Pro Ala Leu Gly Thr Ala Pro Gly Gly 1 5 10 15 GAG ACG GTC CCC GCC ATG TCT GCG GCC ATG AGG GAG AGG TTC GAC CGG Glu Thr Val Pro Ala Met Ser Ala Ala Met Arg Glu Arg Phe Asp Arg 20 25 30 TTC CTG CAC GAG AAG AAC TGC ATG ACT GAC CTT CTG GCC CAG GAG Phe Leu His Glu Lys Asn Cys Met Thr Asp Leu Leu Ala Lys Leu Glu 35 40 45 GCC AAA ACC GGC GTG AAC AGG AGC TTC ATC GCT CTT GGT GTC ATC GGA Ala Lys Thr Gly Val Asn Arg Ser Phe Ile Ala Leu Gly Val Ile Gly 50 55 60 CTG GTG GCC TTG TAC CTG GTG TTC GGT TAT GGA GCC TCT CTC CTC TGC Leu Val Ala Leu Tyr Leu Val Phe Gly Tyr Gly Ala Ser Leu Leu Cys					T05	a=0	·	70 1									
(A) LENGTH: 3172 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens (vii) IMMEDIATE SOURCE: (B) CLONE: DP1(TB2) (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 1630 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3: GCA GTC GCC GCT CCA GTC TAT CCG GCA CTA GGA ACA GCC CCG GGN GGC 48 Ala Val Ala Ala Pro Val Tyr Pro Ala Leu Gly Thr Ala Pro Gly Gly 1 5 10 15 GAG ACG GTC CCC GCC ATG TCT GCG GCC ATG AGG GAG AGG TTC GAC CGG Glu Thr Val Pro Ala Met Ser Ala Ala Met Arg Glu Arg Phe Asp Arg 20 25 30 TTC CTG CAC GAG AAG AAC TGC ATG ACT GAC CTT CTG GCC AAG CTC GAG THE Leu His Glu Lys Asn Cys Met Thr Asp Leu Leu Ala Lys Leu Glu 35 40 45 GCC AAA ACC GGC GTG AAC AGG AGC TTC ATC GCT CTT GGT GTC ATC GGA Ala Lys Thr Gly Val Asn Arg Ser Phe IIe Ala Leu Gly Val Ile Gly 50 55 60 CTG GTG GCC TTG TAC CTG GTG TTC GGT TAT GGA GCC TCT CTC CTC CTC CTC Leu Val Ala Leu Tyr Leu Val Phe Gly Tyr Gly Ala Ser Leu Leu Cys	(2) -	INFO	KMAT	TON	FOR	PEÕ	ו עד	NO: J	• :								
(ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Home sapiens (vii) IMMEDIATE SOURCE: (B) CLONE: DP1(TB2) (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 1630 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3: GCA GTC GCC GCT CCA GTC TAT CCG GCA CTA GGA ACA GCC CCG GGN GGC Ala Val Ala Ala Pro Val Tyr Pro Ala Leu Gly Thr Ala Pro Gly Gly 1 15 GAG ACG GTC CCC GCC ATG TCT GCG GCC ATG AGG GAG AGG TTC GAC CGG GOL Thr Val Pro Ala Met Ser Ala Ala Met Arg Glu Arg Phe Asp Arg 20 25 30 TTC CTG CAC GAG AAG AAC TGC ATG ACT GAC CTT CTG GCC AAG CTC GAG HAG CTC GAG GLO CAS AGA ACC GCC GCG GGA GCC TTC CTG GCC AAG CTC GAG ACC CTC GAG ACC CTC GCC AAA ACC GCC GCG ACC ACC ACC ACC AC		(i)	(A (E (C	L) LE 3) TY 2) SI	ENGTI (PE: [RANI	H: 31 nucl	l72 k Leic ESS:	ase acio douk	pain d	cs							
(A) ORGANISM: Homo sapiens (vii) IMMEDIATE SOURCE: (B) CLONE: DP1(TB2) (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 1630 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3: GCA GTC GCC GCT CCA GTC TAT CCG GCA CTA GGA ACA GCC CCG GGN GGC 48 Ala Val Ala Ala Pro Val Tyr Pro Ala Leu Gly Thr Ala Pro Gly Gly 1 5 15 GAG ACG GTC CCC GCC ATG TCT GCG GCC ATG AGG GAG AGG TTC GAC CGG Glu Thr Val Pro Ala Met Ser Ala Ala Met Arg Glu Arg Phe Asp Arg 20 25 30 TTC CTG CAC GAG AAG AAC TGC ATG ACT GAC CTT CTG GCC AAG CTC GAG 144 Phe Leu His Glu Lys Asn Cys Met Thr Asp Leu Leu Ala Lys Leu Glu 35 40 45 GCC AAA ACC GGC GTG AAC AGG AGC TTC ATC GCT CTT GGT GTC ATC GGA 192 Ala Lys Thr Gly Val Asn Arg Ser Phe Ile Ala Leu Gly Val Ile Gly 50 60 CTG GTG GCC TTG TAC CTG GTG TTC GGT TAT GGA GCC TCT CTC CTC TGC 240 Leu Val Ala Leu Tyr Leu Val Phe Gly Tyr Gly Ala Ser Leu Leu Cys	,	(ii)	·														
(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 1630 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3: GCA GTC GCC GCT CCA GTC TAT CCG GCA CTA GGA ACA GCC CCG GGN GGC 48 Ala Val Ala Ala Pro Val Tyr Pro Ala Leu Gly Thr Ala Pro Gly Gly 15 GAG ACG GTC CCC GCC ATG TCT GCG GCC ATG AGG GAG AGG TTC GAC CGG 96 Glu Thr Val Pro Ala Met Ser Ala Ala Met Arg Glu Arg Phe Asp Arg 20 TTC CTG CAC GAG AAG AAC TGC ATG ACT GAC CTT CTG GCC AAG CTC GAG 144 Phe Leu His Glu Lys Asn Cys Met Thr Asp Leu Leu Ala Lys Leu Glu 35 GCC AAA ACC GGC GTG AAC AGG AGC TTC ATC GCT CTT GGT GTC ATC GGA 192 Ala Lys Thr Gly Val Asn Arg Ser Phe Ile Ala Leu Gly Val Ile Gly 50 CTG GTG GCC TTG TAC CTG GTG TTC GGT TAT GGA GCC TCT CTC CTC TGC 240 Leu Val Ala Leu Tyr Leu Val Phe Gly Tyr Gly Ala Ser Leu Leu Cys	((vi)						sap	piens	5							
(A) NAME/KEY: CDS (B) LOCATION: 1630 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3: GCA GTC GCC GCT CCA GTC TAT CCG GCA CTA GGA ACA GCC CCG GGN GGC 48 Ala Val Ala Ala Pro Val Tyr Pro Ala Leu Gly Thr Ala Pro Gly Gly 1 5 10 15 GAG ACG GTC CCC GCC ATG TCT GCG GCC ATG AGG GAG AGG TTC GAC CGG 96 Glu Thr Val Pro Ala Met Ser Ala Ala Met Arg Glu Arg Phe Asp Arg 20 25 30 TTC CTG CAC GAG AAG AAC TGC ATG ACT GAC CTT CTG GCC AAG CTC GAG Phe Leu His Glu Lys Asn Cys Met Thr Asp Leu Leu Ala Lys Leu Glu 35 40 45 GCC AAA ACC GGC GTG AAC AGG AGC TTC ATC GCT CTT GGT GTC ATC GGA Ala Lys Thr Gly Val Asn Arg Ser Phe Ile Ala Leu Gly Val Ile Gly 50 55 60 CTG GTG GCC TTG TAC CTG GTG TTC GGT TAT GGA GCC TCT CTC CTC TGC Leu Val Ala Leu Tyr Leu Val Phe Gly Tyr Gly Ala Ser Leu Leu Cys	(7	vii)						2)									
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3: GCA GTC GCC GCT CCA GTC TAT CCG GCA CTA GGA ACA GCC CCG GGN GGC A1a Val Ala Ala Pro Val Tyr Pro Ala Leu Gly Thr Ala Pro Gly Gly 15 GAG ACG GTC CCC GCC ATG TCT GCG GCC ATG AGG GAG AGG TTC GAC CGG 96 Glu Thr Val Pro Ala Met Ser Ala Ala Met Arg Glu Arg Phe Asp Arg 20 TTC CTG CAC GAG AAG AAC TGC ATG ACT GAC CTT CTG GCC AAG CTC GAG 144 Phe Leu His Glu Lys Asn Cys Met Thr Asp Leu Leu Ala Lys Leu Glu 45 GCC AAA ACC GGC GTG AAC AGG AGG AGG AGG TCC GTC GTC GTC GTC GTC GTC ATC GGA Ala Lys Thr Gly Val Asn Arg Ser Phe Ile Ala Leu Gly Val Ile Gly 50 CTG GTG GCC TTG TAC CTG GTG TTC GGT TAT GGA GCC TCT CTC CTC TGC 240 Leu Val Ala Leu Tyr Leu Val Phe Gly Tyr Gly Ala Ser Leu Leu Cys	1	(ix)	(A) NA	ME/I			30									
GCA GTC GCC GCT CCA GTC TAT CCG GCA CTA GGA ACA GCC CCG GGN GGC ABA ALA VAL ALA Pro VAL Tyr Pro Ala Leu Gly Thr Ala Pro Gly Gly 15 GAG ACG GTC CCC GCC ATG TCT GCG GCC ATG AGG GAG AGG TTC GAC CGG GLU Thr VAL Pro Ala Met Ser Ala Ala Met Arg Glu Arg Phe Asp Arg 20 TTC CTG CAC GAG AAG AAC TGC ATG ACT GAC CTT CTG GCC AAG CTC GAG Phe Leu His Glu Lys Asn Cys Met Thr Asp Leu Leu Ala Lys Leu Glu A5 GCC AAA ACC GGC GTG AAC AGG AGG AGG TCC GTC ATC GGA AGG AGG TCC GAG AAG ACC GGC AAA ACC GGC GTG ACC AACC GCC AAA ACC GCC GTG ACC ACC GAG ACC ACC GAC ACC ACC ACC AC		(xi)	•						SEO I	ID NO): 3						
Ala Val Ala Ala Pro Val Tyr Pro Ala Leu Gly Thr Ala Pro Gly Gly 15 GAG ACG GTC CCC GCC ATG TCT GCG GCC ATG AGG GAG AGG TTC GAC CGG 96 Glu Thr Val Pro Ala Met Ser Ala Ala Met Act GGL Arg Glu Arg Phe Asp Arg 20 TTC CTG CAC GAG AAG AAC TGC ATG ACT GAC CTT CTG GCC AAG CTC GAG 144 Phe Leu His Glu Lys Asn Cys Met Thr Asp Leu Leu Ala Lys Leu Glu 45 GCC AAA ACC GGC GTG AAC AGG AGG AGG AGG TCT GCT GCT GCT GCT GCT GCT GCT GCT G													ccc	ccc	CCM	ccc	40
Glu Thr Val Pro Ala Met Ser Ala Ala Met Arg Glu Arg Phe Asp Arg 20	Ala V				Pro					Leu					${\tt Gly}$		4.6
Phe Leu His Glu Lys Asn Cys Met Thr Asp Leu Leu Ala Lys Leu Glu GCC AAA ACC GGC GTG AAC AGG AGC TTC ATC GCT CTT GGT GTC ATC GGA Ala Lys Thr Gly Val Asn Arg Ser Phe Ile Ala Leu Gly Val Ile Gly CTG GTG GCC TTG TAC CTG GTG TTC GGT TAT GGA GCC TCT CTC CTC TGC Leu Val Ala Leu Tyr Leu Val Phe Gly Tyr Gly Ala Ser Leu Leu Cys				Pro					Ala					Phe			96
Ala Lys Thr Gly Val Asn Arg Ser Phe Ile Ala Leu Gly Val Ile Gly 50 CTG GTG GCC TTG TAC CTG GTG TTC GGT TAT GGA GCC TCT CTC CTC TGC Leu Val Ala Leu Tyr Leu Val Phe Gly Tyr Gly Ala Ser Leu Leu Cys			His					Met					Ala				144
Leu Val Ala Leu Tyr Leu Val Phe Gly Tyr Gly Ala Ser Leu Leu Cys		Lys '					Arg					Leu					192
	Leu V					Leu					${\tt Gly}$					Cys	240

AAC CTG ATA GGA TTT GGC TAC CCA GCC TAC ATC TCA ATT AAA GCT ATA ASN Leu Ile Gly Phe Gly Tyr Pro Ala Tyr Ile Ser Ile Lys Ala Ile

288

-continued

-continued	
85 90 95	
GAG AGT CCC AAC AAA GAA GAT GAT ACC CAG TGG CTG ACC TAC TGG GTA Glu Ser Pro Asn Lys Glu Asp Asp Thr Gln Trp Leu Thr Tyr Trp Val	336
100 105 110	
GTG TAT GGT GTG TTC AGC ATT GCT GAA TTC TCC TGT GAT ATC TTC CTG Val Tyr Gly Val Phe Ser Ile Ala Glu Phe Phe Ser Asp Ile Phe Leu 115 120 125	384
TCA TGG TTC CCC TTC TAC TAC ATG CTG AAG TGT GGC TTC CTG TTG TGG	432
Ser Trp Phe Pro Phe Tyr Tyr Met Leu Lys Cys Gly Phe Leu Leu Trp 130 135 140	
TGC ATG GCC CCG AGC CCT TCT AAT GGG GCT GAA CTG CTC TAC AAG CGC	480
Cys Met Ala Pro Ser Pro Ser Asn Gly Ala Glu Leu Leu Tyr Lys Arg 145 150 155 160	
ATC ATC CGT CCT TTC TTC CTG AAG CAC GAG TCC CAG ATG GAC AGT GTG	528
Ile Ile Arg Pro Phe Phe Leu Lys His Glu Ser Gln Met Asp Ser Val 165 170 175	
GTC AAG GAC CTT AAA GAC AAG TCC AAA GAG ACT GCA GAT GCC ATC ACT	576
Val Lys Asp Leu Lys Asp Lys Ser Lys Glu Thr Ala Asp Ala Ile Thr 180 185 190	
AAA GAA GCG AAG AAA GCT ACC GTG AAT TTA CTG GGT GAA GAA AAG AAG	624
Lys Glu Ala Lys Lys Ala Thr Val Asn Leu Leu Gly Glu Glu Lys Lys 195 200 205	
AGC ACC TAAACCAGAC TAAACCAGAC TGGATGGAAA CTTCCTGCCC TCTCTGTACC	680
Ser Thr 210	
TTCCTACTGG AGCTTGATGT TATATTAGGG ACTGTGGTAT AATTATTTTA ATAATGTTGC	740
CTTGGAAACA TTTTTGAGAT ATTAAAGATT GGAATGTGTT GTAAGTTTCT TTGCTTACTT	800
TTACTGTCTA TATATATAGG GAGCACTTTA AACTTAATGC AGTGGGCAGT GTCCACGTTT	860
TTGGAAAATG TATTTTGCCT CTGGGTAGGA AAAGATGTAT GTTGCTATCC TGCAGGAAAT	920
ATAAACTTAA AATAAAATTA TATACCCCAC AGGCTGTGTA CTTTACTGGG CTCTCCCTGC	980
ACGSATTTTC TCTGTAGTTA CATTTAGGRT AATCTTTATG GTTCTACTTC CTRTAATGTA	1040
CAATTTTATA TAATTCNGRA ATGTTTTTAA TGTATTTGTG CACATGTACA TATGGAAATG	1100
TTACTGTCTG ACTACANCAT GCATCATGCT CATGGGGAGG GAGCAGGGGA AGGTTGTATG	1160
TGTCATTTAT AACTTCTGTA CAGTAAGACC ACCTGCCAAA AGCTGGAGGA ACCATTGTGC	1220
TGGTGTGGTC TACTAAATAA TACTTTAGGA AATACGTGAT TAATATGCAA GTGAACAAAG	1280
TGAGAAATGA AATCGAATGG AGATTGGCCT GGTTGTTTCC GTAGTATATG GCATATGAAT	1340
ACCAGGATAG CTTTATAAAG CAGTTAGTTA GTTAGTTACT CACTCTAGTG ATAAATCGGG	1400
AAATTTACAC ACACACACA ACACACACA ACACACACA	1460
AGTACCCTGT AACTCTCAAT TCCCTGAAAA ACTAGTAATA CTGTCTTATC TGCTATAAAC	1520
TTTACATATT TGTCTATTGT CAAGATGCTA CANTGGAMNC CATTTCTGGT TTTATCTTCA	1580
NAGSGGAGAN ACATGTTGAT TTAGTCTTCT TTCCCAATCT TCTTTTTTAA MCCAGTTTNA	1640
GGMNCTTCTG RAGATTTGYC CACCTCTGAT TACATGTATG TTCTYGTTTG TATCATKAGC	1700
AACAACATGC TAATGRCGAC ACCTAGCTCT RAGMGCAATT CTGGGAGANT GARAGGNWGT	1760
ATARAGIMNC CCATAATCTG CTTGGCAATA GTTAAGTCAA TCTATCTTCA GTTTTTCTCT	1820
GGCCTTTAAG GTCAAACACA AGAGGCTTCC CTAGTTTACA AGTCAGAGTC ACTTGTAGTC	1880
CATTTAAATG CCCTCATCCG TATTCTTTGT GTTGATAAGC TGCACAKGAC TACATAGTAA	1940
GTACAGANCA GTAAAGTTAA NNCGGATGTC TCCATTGATC TGCCAANTCG NTATAGAGAG	2000
CAATTTGTCT GGACTAGAAA ATCTGAGTTT TACACCATAC TGTTAAGAGT CCTTTTGAAT	2060

-continued

TAA	ACTAGAC	TAAAACAAGT	GTATAACTAA	ACTAACAAGA	TTAAATATCC	AGCCAGTACA	2120
GTA	TTTTTA	AGGCAAATAA	AGATGATTAG	CTCACCTTGA	GNTAACAATC	AGGTAAGATC	2180
ATN	IACAATGT	CTCATGATGT	NAANAATATT	AAAGATATCA	ATACTAAGTG	ACAGTATCAC	2240
NNC	TAATATA	ATATGGATCA	GAGCATTTAT	TTTGGGGAGG	AAAACAGTGG	TGATTACCGG	2300
CAT	TTTATTA	AACTTAAAAC	TTTGTAGAAA	GCAAACAAAA	TTGTTCTTGG	GAGAAAATCA	2360
ACI	TTTAGAT	TAAAAAAATT	TTAAGTAWCT	AGGAGTATTT	AAATCCTTTT	CCCATAAATA	2420
AAA	GTACAGT	TTTCTTGGTG	GCAGAATGAA	AATCAGCAAC	NTCTAGCATA	TAGACTATAT	2480
LAA	CAGATTG	ACAGCATATA	GAATATATTA	TCAGACAAGA	TGAGGAGGTA	CAAAAGTTAC	2540
TAT	TGCTCAT	AATGACTTAC	AGGCTAAAAN	TAGNTNTAAA	ATACTATATT	AAATTCTGAA	2600
TGC	AATTTTT	TTTTGTTCCC	TTGAGACCAA	AATTTAAGTT	AACTGTTGCT	GGCAGTCTAA	2660
GTG	TAAATGT	TAACAGCAGG	AGAAGTTAAG	AATTGAGCAG	TTCTGTTGCA	TGATTTCCCA	2720
LAA	GAAATAC	TGCCTTGGCT	AGAGTTTGAA	AAACTAATTG	AGCCTGTGCC	TGGCTAGAAA	2780
ACA	AGCGTTT	ATTTGAATGT	GAATAGTGTT	TCAAAGGTAT	GTAGTTACAG	AATTCCTACC	2840
AAA	CAGCTTA	AATTCTTCAA	GAAAGAATTC	CTGCAGCAGT	TATTCCCTTA	CCTGAAGGCT	2900
TCA	ATCATTT	GGATCAACAA	CTGCTACTCT	CGGGAAGACT	CCTCTACTCA	CAGCTGAAGA	2960
AAA	TGAGCAC	ACCCTTCACA	CTGTTATCAC	CTATCCTGAA	GATGTGATAC	ACTGAATGGA	3020
TAA	'AAATAGA	TGTAAATAAA	ATTGAGWTCT	CATTTAAAAA	AAACCATGTG	CCCAATGGGA	3080
AAA	TGACCTC	ATGTTGTGGT	TTAAACAGCA	ACTGCACCCA	CTAGCACAGC	CCATTGAGCT	3140
ANC	CTATATA	TACATCTCTG	TCAGTGCCCC	TC			3172

(2) INFORMATION FOR SEQ ID NO: 4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 210 amino acids (B) TYPE: amino acid

 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

Ala Val Ala Ala Pro Val Tyr Pro Ala Leu Gly Thr Ala Pro Gly Gly 1 $$ 5 $$ 10 $$ 15

Glu Thr Val Pro Ala Met Ser Ala Ala Met Arg Glu Arg Phe Asp Arg 25

Phe Leu His Glu Lys Asn Cys Met Thr Asp Leu Leu Ala Lys Leu Glu 40

Ala Lys Thr Gly Val Asn Arg Ser Phe Ile Ala Leu Gly Val Ile Gly 50 55

Leu Val Ala Leu Tyr Leu Val Phe Gly Tyr Gly Ala Ser Leu Leu Cys 65 70 75 80

Asn Leu Ile Gly Phe Gly Tyr Pro Ala Tyr Ile Ser Ile Lys Ala Ile $85 \hspace{1cm} 90 \hspace{1cm} 95$

Glu Ser Pro Asn Lys Glu Asp Asp Thr Gln Trp Leu Thr Tyr Trp Val 100 105

Val Tyr Gly Val Phe Ser Ile Ala Glu Phe Phe Ser Asp Ile Phe Leu 115 120 125

Cys Met Ala Pro Ser Pro Ser Asn Gly Ala Glu Leu Leu Tyr Lys Arg

-continued

												0011	O	ucu	
145					150					155					160
Ile	Ile	Arg	Pro	Phe 165	Phe	Leu	Lys	His	Glu 170	Ser	Gln	Met	Asp	Ser 175	Val
Val	Lys	Asp	Leu 180	Lys	Asp	Lys	Ser	L y s 185	Glu	Thr	Ala	Asp	Ala 190	Ile	Thr
Lys	Glu	Ala 195	Lys	Lys	Ala	Thr	Val 200	Asn	Leu	Leu	Gly	Glu 205	Glu	Lys	Lys
Ser	Thr 210														
(2)	INF	ORMA!	rion	FOR	SEQ	ID 1	: :OK	ō :							
	(i)	() ()	A) L1 B) T1 C) S1	ENGTI YPE: IRANI	H: 4: amin DEDNI	CTER: 34 and acc access: Line	mino cid sinq	acio	ds						
	(ii) MOI	LECUI	LE T	YPE:	pro	tein								
	(vi		IGINA A) OI			E: Homo	o sap	piens	5						
	(vii		MEDIZ B) Cl												
	(xi) SE	QUEN	CE DI	ESCR:	IPTI	ON: S	SEQ :	ID NO	D: 5	•				
Val 1	Ala	Pro	Val	Val 5	Val	Gly	Ser	Gly	Arg 10	Ala	Pro	Arg	His	Pro 15	Ala
Pro	Ala	Ala	Met 20	His	Pro	Arg	Arg	Pro 25	Asp	Gly	Phe	Asp	Gly 30	Leu	Gly
Tyr	Arg	Gly 35	Gly	Ala	Arg	Asp	Glu 40	Gln	Gly	Phe	Gly	Gly 45	Ala	Phe	Pro
Ala	Arg 50	Ser	Phe	Ser	Thr	Gly 55	Ser	Asp	Leu	Gly	His 60	Trp	Val	Thr	Thr
Pro 65	Pro	Asp	Ile	Pro	Gly 70	Ser	Arg	Asn	Leu	His 75	Trp	Gly	Glu	Lys	Ser 80
Pro	Pro	Tyr	Gly	Val 85	Pro	Thr	Thr	Ser	Thr 90	Pro	Tyr	Glu	Gly	Pro 95	Thr
Glu	Glu	Pro	Phe 100	Ser	Ser	Gly	Gly	Gl y 105	Gly	Ser	Val	Gln	Gly 110	Gln	Ser
Ser	Glu	Gln 115	Leu	Asn	Arg	Phe	Ala 120	Gly	Phe	Gly	Ile	Gly 125	Leu	Ala	Ser
Leu	Phe 130	Thr	Glu	Asn	Val	Leu 135	Ala	His	Pro	Cys	Ile 140	Val	Leu	Arg	Arg
Gln 145	Сув	Gln	Val	Asn	Ty r 150	His	Ala	Gln	His	Ty r 155	His	Leu	Thr	Pro	Phe 160
Thr	Val	Ile	Asn	Ile 165	Met	Tyr	Ser	Phe	Asn 170	Lys	Thr	Gln	Gly	Pro 175	Arg
Ala	Leu	Trp	Lys 180	Gly	Met	Gly	Ser	Thr 185	Phe	Ile	Val	Gln	Gly 190	Val	Thr
Leu	Gly	Ala 195	Glu	Gly	Ile	Ile	Ser 200	Glu	Phe	Thr	Pro	Leu 205	Pro	Arg	Glu
Val	Leu 210	His	Lys	Trp	Ser	Pro 215	Lys	Gln	Ile	Gly	Glu 220	His	Leu	Leu	Leu
L y s 225	Ser	Leu	Thr	Tyr	Val 230	Val	Ala	Met	Pro	Phe 235	Tyr	Ser	Ala	Ser	Leu 240

Ile Glu Thr Val Gln Ser Glu Ile Ile Arg Asp Asn Thr Gly Ile Leu

-continued													
		245					250					255	
Glu Cys	Val Lys 260		Gly	Ile	Gly	Arg 265	Val	Ile	Gly	Met	Gl y 270	Val	Pro
His Ser	Lys Arg 275	Leu	Leu	Pro	Leu 280	Leu	Ser	Leu	Ile	Phe 285	Pro	Thr	Val
Leu His 290	Gl y Val	. Leu	His	Ty r 295	Ile	Ile	Ser	Ser	Val 300	Ile	Gln	Lys	Phe
Val Leu 305	Leu Ile	e Leu	L y s 310	Arg	Lys	Thr	Tyr	Asn 315	Ser	His	Leu	Ala	Glu 320
Ser Thr	Ser Pro	Val 325	Gln	Ser	Met	Leu	Asp 330	Ala	Tyr	Phe	Pro	Glu 335	Leu
Ile Ala	Asn Phe		Ala	Ser	Leu	Cys 345	Ser	Asp	Val	Ile	Leu 350	Tyr	Pro
Leu Glu	Thr Val	. Leu	His	Arg	Leu 360	His	Ile	Gln	Gly	Thr 365	Arg	Thr	Ile
Ile Asp 370	Asn Thr	Asp	Leu	Gly 375	Tyr	Glu	Val	Leu	Pro 380	Ile	Asn	Thr	Gln
Tyr Glu 385	Gly Met	Arg	Asp 390	Сув	Ile	Asn	Thr	Ile 395	Arg	Gln	Glu	Glu	Gly 400
Val Phe	Gly Phe	Ty r 405	Lys	Gly	Phe	Gly	Ala 410	Val	Ile	Ile	Gln	Ty r 415	Thr
Leu His	Ala Ala		Leu	Gln	Ile	Thr 425	Lys	Ile	Ile	Tyr	Ser 430	Thr	Leu
Leu Gln													
(2) INFO	RMATION	FOR	SEQ	ID I	NO: 6	5 :							
(i)		ENGT	H: 18	35 a r	nino		ds						
	(C) S	YPE: TRANI OPOLO	DEDNI	ESS:	sing	gle							
(ii)	MOLECU												
(vi)	ORIGIN						~						
(vii)	IMMEDI	RGAN:			o sap) Telli	5						
, ,		LONE			ГВ2)								
(xi)	SEQUEN	ICE DI	ESCR:	IPTI	ON: S	SEQ :	ID NO	D: 6	:				
Glu Leu 1	Arg Arg	Phe 5	Asp	Arg	Phe	Leu	His 10	Glu	Lys	Asn	Cys	Met 15	Thr
Asp Leu	Leu Ala 20	Lys	Leu	Glu	Ala	L y s 25	Thr	Gly	Val	Asn	Arg 30	Ser	Phe
Ile Ala	Leu Gly 35	val	Ile	Gly	Leu 40	Val	Ala	Leu	Tyr	Leu 45	Val	Phe	Gly
Tyr Gly 50	Ala Ser	Leu	Leu	С у в 55	Asn	Leu	Ile	Gly	Phe 60	Gly	Tyr	Pro	Ala
Tyr Ile 65	Ser Ile	Lys	Ala 70	Ile	Glu	Ser	Pro	Asn 75	Lys	Glu	Asp	Asp	Thr 80

Phe Phe Ser Asp Ile Phe Leu Ser Trp Phe Pro Phe Tyr Tyr Ile Leu Lys Cys Gly Phe Leu Leu Trp Cys Met Ala Pro Ser Pro Ser Asn Gly 115

Gln Trp Leu Thr Tyr Trp Val Val Tyr Gly Val Phe Ser Ile Ala Glu 85 90 95

-continued

Ala Glu Leu Leu Tyr Lys Arg Ile Ile Arg Pro Phe Phe Leu Lys His Glu Ser Gln Met Asp Ser Val Val Lys Asp Leu Lys Asp Lys Ala Lys 150 155 Glu Thr Ala Asp Ala Ile Thr Lys Glu Ala Lys Lys Ala Thr Val Asn Leu Leu Gly Glu Glu Lys Lys Ser Thr 180 (2) INFORMATION FOR SEQ ID NO: 7: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2843 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens (vii) IMMEDIATE SOURCE: (B) CLONE: APC (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7: Met Ala Ala Ala Ser Tyr Asp Gln Leu Leu Lys Gln Val Glu Ala Leu Lys Met Glu Asn Ser Asn Leu Arg Gln Glu Leu Glu Asp Asn Ser Asn 20 25 30His Leu Thr Lys Leu Glu Thr Glu Ala Ser Asn Met Lys Glu Val Leu 35 40 45 Gln Ile Asp Leu Leu Glu Arg Leu Lys Glu Leu Asn Leu Asp Ser Ser Asn Phe Pro Gly Val Lys Leu Arg Ser Lys Met Ser Leu Arg Ser Tyr 85 90 95 Gly Ser Arg Glu Gly Ser Val Ser Ser Arg Ser Gly Glu Cys Ser Pro $100 \ \ 105 \ \ \ 110$ Val Pro Met Gly Ser Phe Pro Arg Arg Gly Phe Val Asn Gly Ser Arg Glu Ser Thr Gly Tyr Leu Glu Glu Leu Glu Lys Glu Arg Ser Leu Leu Leu Ala Asp Leu Asp Lys Glu Glu Lys Glu Lys Asp Trp Tyr Tyr Ala 145 150150155155 Gln Leu Gln Asn Leu Thr Lys Arg Ile Asp Ser Leu Pro Leu Thr Glu Asn Phe Ser Leu Gln Thr Asp Met Thr Arg Arg Gln Leu Glu Tyr Glu Ala Arg Gln Ile Arg Val Ala Met Glu Glu Gln Leu Gly Thr Cys Gln Asp Met Glu Lys Arg Ala Gln Arg Arg Ile Ala Arg Ile Gln Gln Ile Glu Lys Asp Ile Leu Arg Ile Arg Gln Leu Leu Gln Ser Gln Ala Thr

Glu Ala Glu Arg Ser Ser Gln Asn Lys His Glu Thr Gly Ser His Asp

Ala	Glu	Arg	Gln 260	Asn	Glu	Gly	Gln	Gly 265	Val	Gly	Glu	Ile	Asn 270	Met	Ala
Thr	Ser	Gly 275	Asn	Gly	Gln	Gly	Ser 280	Thr	Thr	Arg	Met	Asp 285	His	Glu	Thr
Ala	Ser 290	Val	Leu	Ser	Ser	Ser 295	Ser	Thr	His	Ser	Ala 300	Pro	Arg	Arg	Leu
Thr 305	Ser	His	Leu	Gly	Thr 310	Lys	Val	Glu	Met	Val 315	Tyr	Ser	Leu	Leu	Ser 320
Met	Leu	Gly	Thr	His 325	Asp	Lys	Asp	Asp	Met 330	Ser	Arg	Thr	Leu	Leu 335	Ala
Met	Ser	Ser	Ser 340	Gln	Asp	Ser	Суѕ	Ile 345	Ser	Met	Arg	Gln	Ser 350	Gly	Суѕ
Leu	Pro	Leu 355	Leu	Ile	Gln	Leu	Leu 360	His	Gly	Asn	Asp	Lys 365	Asp	Ser	Val
Leu	Leu 370	Gly	Asn	Ser	Arg	Gly 375	Ser	Lys	Glu	Ala	Arg 380	Ala	Arg	Ala	Ser
Ala 385	Ala	Leu	His	Asn	Ile 390	Ile	His	Ser	Gln	Pro 395	Asp	Asp	Lys	Arg	Gly 400
Arg	Arg	Glu	Ile	Arg 405	Val	Leu	His	Leu	Leu 410	Glu	Gln	Ile	Arg	Ala 415	Tyr
Cys	Glu	Thr	Cys 420	Trp	Glu	Trp	Gln	Glu 425	Ala	His	Glu	Pro	Gly 430	Met	Asp
Gln	Asp	Lys 435	Asn	Pro	Met	Pro	Ala 440	Pro	Val	Glu	His	Gln 445	Ile	Cys	Pro
Ala	Val 450	Cys	Val	Leu	Met	L y s 455	Leu	Ser	Phe	Asp	Glu 460	Glu	His	Arg	His
Ala 465	Met	Asn	Glu	Leu	Gly 470	Gly	Leu	Gln	Ala	Ile 475	Ala	Glu	Leu	Leu	Gln 480
Val	Asp	Cys	Glu	Met 485	Tyr	Gly	Leu	Thr	Asn 490	Asp	His	Tyr	Ser	Ile 495	Thr
Leu	Arg	Arg	Ty r 500	Ala	Gly	Met	Ala	Leu 505	Thr	Asn	Leu	Thr	Phe 510	Gly	Asp
Val	Ala	Asn 515	Lys	Ala	Thr	Leu	Cys 520	Ser	Met	Lys	Gly	C y s 525	Met	Arg	Ala
Leu	Val 530	Ala	Gln	Leu	Lys	Ser 535	Glu	Ser	Glu	Asp	Leu 540	Gln	Gln	Val	Ile
Ala 545	Ser	Val	Leu	Arg	Asn 550	Leu	Ser	Trp	Arg	Ala 555	Asp	Val	Asn	Ser	Lys 560
Lys	Thr	Leu	Arg	Glu 565	Val	Gly	Ser	Val	Lys 570	Ala	Leu	Met	Glu	Cys 575	Ala
Leu	Glu	Val	L y s 580	Lys	Glu	Ser	Thr	Leu 585	Lys	Ser	Val	Leu	Ser 590	Ala	Leu
Trp	Asn	Leu 595	Ser	Ala	His	Cys	Thr 600	Glu	Asn	Lys	Ala	Asp 605	Ile	Cys	Ala
Val	Asp 610	Gly	Ala	Leu	Ala	Phe 615	Leu	Val	Gly	Thr	Leu 620	Thr	Tyr	Arg	Ser
Gln 625	Thr	Asn	Thr	Leu	Ala 630	Ile	Ile	Glu	Ser	Gly 635	Gly	Gly	Ile	Leu	Arg 640
Asn	Val	Ser	Ser	Leu 645	Ile	Ala	Thr	Asn	Glu 650	Asp	His	Arg	Gln	Ile 655	Leu
Arg	Glu	Asn	Asn 660	Cys	Leu	Gln	Thr	Leu 665	Leu	Gln	His	Leu	L y s 670	Ser	His

Ser	Leu	Thr 675	Ile	Val	Ser	Asn	Ala 680	Cys	Gly	Thr	Leu	Trp 685	Asn	Leu	Ser
Ala	Arg 690	Asn	Pro	Lys	Asp	Gln 695	Glu	Ala	Leu	Trp	Asp 700	Met	Gly	Ala	Val
Ser 705	Met	Leu	Lys	Asn	Leu 710	Ile	His	Ser	Lys	His 715	Lys	Met	Ile	Ala	Met 720
Gly	Ser	Ala	Ala	Ala 725	Leu	Arg	Asn	Leu	Met 730	Ala	Asn	Arg	Pro	Ala 735	Lys
Tyr	Lys	Asp	Ala 740	Asn	Ile	Met	Ser	Pro 745	Gly	Ser	Ser	Leu	Pro 750	Ser	Leu
His	Val	A rg 755	Lys	Gln	Lys	Ala	Leu 760	Glu	Ala	Glu	Leu	Asp 765	Ala	Gln	His
Leu	Ser 770	Glu	Thr	Phe	Asp	Asn 775	Ile	Asp	Asn	Leu	Ser 780	Pro	Lys	Ala	Ser
His 785	Arg	Ser	Lys	Gln	Arg 790	His	Lys	Gln	Ser	Leu 795	Tyr	Gly	Asp	Tyr	Val 800
Phe	Asp	Thr	Asn	Arg 805	His	Asp	Asp	Asn	Arg 810	Ser	Asp	Asn	Phe	Asn 815	Thr
Gly	Asn	Met	Thr 820	Val	Leu	Ser	Pro	Ty r 825	Leu	Asn	Thr	Thr	Val 830	Leu	Pro
Ser	Ser	Ser 835	Ser	Ser	Arg	Gly	Ser 840	Leu	Asp	Ser	Ser	Arg 845	Ser	Glu	Lys
Asp	Arg 850	Ser	Leu	Glu	Arg	Glu 855	Arg	Gly	Ile	Gly	Leu 860	Gly	Asn	Tyr	His
Pro 865	Ala	Thr	Glu	Asn	Pro 870	Gly	Thr	Ser	Ser	L ys 875	Arg	Gly	Leu	Gln	Ile 880
Ser	Thr	Thr	Ala	Ala 885	Gln	Ile	Ala	Lys	Val 890	Met	Glu	Glu	Val	Ser 895	Ala
Ile	His	Thr	Ser 900	Gln	Glu	Asp	Arg	Ser 905	Ser	Gly	Ser	Thr	Thr 910	Glu	Leu
His	Cys	Val 915	Thr	Asp	Glu	Arg	Asn 920	Ala	Leu	Arg	Arg	Ser 925	Ser	Ala	Ala
His	Thr 930	His	Ser	Asn	Thr	Ty r 935	Asn	Phe	Thr	Lys	Ser 940	Glu	Asn	Ser	Asn
Arg 945	Thr	Cys	Ser	Met	Pro 950	Tyr	Ala	Lys	Leu	Glu 955	Tyr	Lys	Arg	Ser	Ser 960
Asn	Asp	Ser	Leu	Asn 965	Ser	Val	Ser	Ser	Ser 970	Asp	Gly	Tyr	Gly	L y s 975	Arg
Gly	Gln	Met	Lys 980	Pro	Ser	Ile	Glu	Ser 985	Tyr	Ser	Glu	Asp	Asp 990	Glu	Ser
Lys	Phe	Cys 995	Ser	Tyr	Gly	Gln	Ty r		Ala	Asp	Leu	Ala 100		Lys	Ile
His	Ser 1010		Asn	His	Met	Asp 1015		Asn	Asp	Gly	Glu 102		Asp	Thr	Pro
Ile 1025		Tyr	Ser	Leu	Lys 1030		Ser	Asp	Glu	Gln 103		Asn	Ser	Gly	Arg 1040
Gln	Ser	Pro	Ser	Gln 1045		Glu	Arg	Trp	Ala 1050		Pro	Lys	His	Ile 1055	
Glu	Asp	Glu	Ile 1060	L y s	Gln	Ser	Glu	Gln 1065	_	Gln	Ser	Arg	Asn 1070		Ser
Thr	Thr	Ty r 1075		Val	Tyr	Thr	Glu 1080		Thr	Asp	Asp	L y s 108		Leu	Lys
Phe	Gln	Pro	His	Phe	Gly	Gln	Gln	Glu	Cys	Val	Ser	Pro	Tyr	Arg	Ser

1090 1095 1100	
Arg Gly Ala Asn Gly Ser Glu Thr Asn Arg Val Gly Ser 1105 1110 1115	r Asn His Gl y 1120
Ile Asn Gln Asn Val Ser Gln Ser Leu Cys Gln Glu As 1125 1130	p Asp Tyr Glu 1135
Asp Asp Lys Pro Thr Asn Tyr Ser Glu Arg Tyr Ser Glu 1145	u Glu Glu Gln 1150
His Glu Glu Glu Glu Arg Pro Thr Asn Tyr Ser Ile Lyr 1155 1160 11	
Glu Lys Arg His Val Asp Gln Pro Ile Asp Tyr Ser Let 1170 1175 1180	u Lys Tyr Ala
Thr Asp Ile Pro Ser Ser Gln Lys Gln Ser Phe Ser Phe 1185 1190 1195	e Ser Lys Ser 1200
Ser Ser Gly Gln Ser Ser Lys Thr Glu His Met Ser Ser 1205 1210	r Ser Ser Glu 1215
Asn Thr Ser Thr Pro Ser Ser Asn Ala Lys Arg Gln Ass 1220 1225	n Gln Leu His 1230
Pro Ser Ser Ala Gln Ser Arg Ser Gly Gln Pro Gln Ly 1235 1240 1240	
Cys Lys Val Ser Ser Ile Asn Gln Glu Thr Ile Gln Th 1250 1255 1260	r Tyr Cys Val
Glu Asp Thr Pro Ile Cys Phe Ser Arg Cys Ser Ser Let 1265 1270 1275	u Ser Ser Leu 1280
Ser Ser Ala Glu Asp Glu Ile Gly Cys Asn Gln Thr Th	r Gln Glu Ala 1295
Asp Ser Ala Asn Thr Leu Gln Ile Ala Glu Ile Lys Gl	u Lys Ile Gly 1310
Thr Arg Ser Ala Glu Asp Pro Val Ser Glu Val Pro Ala 1315 1320 1320 133	
His Pro Arg Thr Lys Ser Ser Arg Leu Gln Gly Ser Ser 1330 1335 1340	r Leu Ser Ser
Glu Ser Ala Arg His Lys Ala Val Glu Phe Ser Ser Gl 1345 1350 1355	y Ala Lys Ser 1360
Pro Ser Lys Ser Gly Ala Gln Thr Pro Lys Ser Pro Pro 1365	o Glu His Tyr 1375
Val Gln Glu Thr Pro Leu Met Phe Ser Arg Cys Thr Ser 1380 1385	r Val Ser Ser 1390
Leu Asp Ser Phe Glu Ser Arg Ser Ile Ala Ser Ser Va. 1395 1400 140	
Pro Cys Ser Gly Met Val Ser Gly Ile Ile Ser Pro Ser 1410 1415 1420	r Asp Leu Pro
Asp Ser Pro Gly Gln Thr Met Pro Pro Ser Arg Ser Lyn 1425 1430 1435	s Thr Pro Pro 1440
Pro Pro Pro Gln Thr Ala Gln Thr Lys Arg Glu Val Pro 1445 1450	o Lys Asn Lys 1455
Ala Pro Thr Ala Glu Lys Arg Glu Ser Gly Pro Lys Gl 1460 1465	n Ala Ala Val 1470
Asn Ala Ala Val Gln Arg Val Gln Val Leu Pro Asp Ala 1475 1480 1480	_
Leu His Phe Ala Thr Glu Ser Thr Pro Asp Gly Phe Ser 1490 1495 1500	r Cys Ser Ser
Ser Leu Ser Ala Leu Ser Leu Asp Glu Pro Phe Ile Gli 1505 1510 1515	n L y s Asp Val 1520

Glu Leu Arg Ile Met Pro Pro Val Gln Glu Asn Asp Asn Gly Asn 1525 1530 1530	
Thr Glu Ser Glu Gln Pro Lys Glu Ser Asn Glu Asn Gln Glu Lys 1540 1545 1550	Glu
Ala Glu Lys Thr Ile Asp Ser Glu Lys Asp Leu Leu Asp Asp Ser 1555 1560 1565	Asp
Asp Asp Asp Ile Glu Ile Leu Glu Glu Cys Ile Ile Ser Ala Met 1570 1580	Pro
Thr Lys Ser Ser Arg Lys Ala Lys Lys Pro Ala Gln Thr Ala Ser 1585 1590 1595	Lys 1600
Leu Pro Pro Pro Val Ala Arg Lys Pro Ser Gln Leu Pro Val Tyr 1605 1610 161	
Leu Leu Pro Ser Gln Asn Arg Leu Gln Pro Gln Lys His Val Ser 1620 1625 1630	Phe
Thr Pro Gly Asp Asp Met Pro Arg Val Tyr Cys Val Glu Gly Thr 1635 1640 1645	Pro
Ile Asn Phe Ser Thr Ala Thr Ser Leu Ser Asp Leu Thr Ile Glu 1650 1655 1660	Ser
Pro Pro Asn Glu Leu Ala Ala Gly Glu Gly Val Arg Gly Gly Ala 1665 1670 1675	Gln 1680
Ser Gly Glu Phe Glu Lys Arg Asp Thr Ile Pro Thr Glu Gly Arg 1685 1690 169	
Thr Asp Glu Ala Gln Gly Gly Lys Thr Ser Ser Val Thr Ile Pro	Glu
Leu Asp Asp Asn Lys Ala Glu Glu Gly Asp Ile Leu Ala Glu Cys 1715 1720 1725	Ile
Asn Ser Ala Met Pro Lys Gly Lys Ser His Lys Pro Phe Arg Val 1730 1735 1740	Lys
Lys Ile Met Asp Gln Val Gln Gln Ala Ser Ala Ser Ser Ser Ala 1745 1750 1755	Pro 1760
Asn Lys Asn Gln Leu Asp Gly Lys Lys Lys Lys Pro Thr Ser Pro 1765 1770	
Lys Pro Ile Pro Gln Asn Thr Glu Tyr Arg Thr Arg Val Arg Lys 1780 1785 1790	Asn
Ala Asp Ser Lys Asn Asn Leu Asn Ala Glu Arg Val Phe Ser Asp 1795 1800 1805	Asn
Lys Asp Ser Lys Lys Gln Asn Leu Lys Asn Asn Ser Lys Asp Phe 1810 1815 1820	Asn
Asp Lys Leu Pro Asn Asn Glu Asp Arg Val Arg Gly Ser Phe Ala 1825 1830 1835	Phe 1840
Asp Ser Pro His His Tyr Thr Pro Ile Glu Gly Thr Pro Tyr Cys 1845 1850 185	
Ser Arg Asn Asp Ser Leu Ser Ser Leu Asp Phe Asp Asp Asp Asp 1860 1865 1870	Val
Asp Leu Ser Arg Glu Lys Ala Glu Leu Arg Lys Ala Lys Glu Asn 1875 1880 1885	Lys
Glu Ser Glu Ala Lys Val Thr Ser His Thr Glu Leu Thr Ser Asn 1890 1895 1900	Gln
Gln Ser Ala Asn Lys Thr Gln Ala Ile Ala Lys Gln Pro Ile Asn 1905 1910 1915	Arg 1920
Gly Gln Pro Lys Pro Ile Leu Gln Lys Gln Ser Thr Phe Pro Gln 1925 1930 193	

Ser Lys Asp Ile		g Gly Ala A 1945	la Thr Asp Gl	u Lys Leu Gln 1950
Asn Phe Ala Ile 1955	e Glu Asn Thr	r Pro Val C 1960	_	s Asn Ser Ser 65
Leu Ser Ser Leu 1970	ı Ser Asp Ile 197	-	lu Asn Asn As 1980	n Lys Glu Asn
Glu Pro Ile Lys 1985	s Glu Thr Glu 1990	ı Pro Pro A	sp Ser Gln Gl 1995	y Glu Pro Ser 2000
Lys Pro Gln Ala	a Ser Gly Tyr 2005		ys Ser Phe Hi 010	s Val Glu Asp 2015
Thr Pro Val Cys		g Asn Ser S 2025	er Leu Ser Se	r Leu Ser Ile 2030
er Glu Asp Asp 2035	Leu Leu Gln 2040		e Ser Ser Ala 2045	Met Pro
ys Lys Lys Pro 050	Ser Arg Leu 2055	Lys Gly As	p Asn Glu Lys 2060	His Ser
rg Asn Met Gly	Gly Ile Leu 2070	Gly Glu As		Asp Leu 2080
sp Ile Gln Arg 2085	-	Glu His Gl 2090	y Leu Ser Pro	Asp Ser 2095
sn Phe Asp Trp 2100	Lys Ala Ile	Gln Glu Gl 2105	y Ala Asn Ser 211	
er Leu His Gln 2115	Ala Ala Ala 2120		s Leu Ser Arg 2125	Gln Ala
er Asp Ser Asp 130	Ser Ile Leu 2135	Ser Leu Ly	s Ser Gly Ile 2140	Ser Leu
er Pro Phe His	Leu Thr Pro 2150	Asp Gln Gl 21		Phe Thr 2160
sn Lys Gly Pro 2165		Lys Pro Gl 2170	y Glu Lys Ser	Thr Leu 2175
hr Lys Lys Ile 2180	Glu Ser Glu	Ser Lys Gl 2185	y Ile Lys Gly 219	
al Tyr Lys Ser 2195	Leu Ile Thr 2200		l Arg Ser Asn 2205	Ser Glu
er Gly Gln Met 210	Lys Gln Pro 2215	Leu Gln Al	a Asn Met Pro 2220	Ser Ile
rg Gl y Arg Thr	Met Ile His 2230	Ile Pro Gl 22		Ser Ser 2240
er Thr Ser Pro 2245		Lys Gly Pr 2250	o Pro Leu Lys	Thr Pro 2255
er L y s Ser Pro 2260	Ser Glu Gly	Gln Thr Al 2265	a Thr Thr Ser 227	
la Lys Pro Ser 2275	Val Lys Ser 2280		r Pro Val Ala 2285	Arg Gln
er Gln Ile Gly 290	Gly Ser Ser 2295	Lys Ala Pr	o Ser Arg Ser 2300	Gly Ser
sp Ser Thr Pro	Ser Arg Pro 2310	Ala Gln Gl 23		Arg Pro 2320
ln Ser Pro Gly 2325		Ile Ser Pr 2330	o Gly Arg Asn	Gly Ile 2335
ro Pro Asn Lys 2340	Leu Ser Gln	Leu Pro Ar 2345	g Thr Ser Ser 235	
la Ser Thr Lys	Ser Ser Gly	Ser Gly Ly	s Met Ser Tyr	Thr Ser

_	2355	5				2360)				2365	5		
1 y 370	_	Gln	Met	Ser	Gln 2375		Asn	Leu	Thr	L y s 2380		Thr	Gly	Leu
уs	Asn	Ala	Ser	Ser 2390		Pro	Arg	Ser	Glu 2395		Ala	Ser	Lys	Gly 2400
sn	Gln	Met	Asn 2405		Gly	Asn	Gly	Ala 2410		Lys	Lys	Val	Glu 2415	
rg	Met	Ser 2420	Ser	Thr	Lys	Ser	Ser 2425		Ser	Glu	Ser	Asp 2430		Ser
rg	Pro 2435		Leu	Val	Arg	Gln 2440		Thr	Phe	Ile	Lys 2445		Ala	Pro
ro 450		Leu	Arg	Arg	L y s 2455		Glu	Glu	Ser	Ala 2460		Phe	Glu	Ser
er	Pro	Ser	Ser	Arg 2470		Ala	Ser	Pro	Thr 2475		Ser	Gln	Ala	Gln 2480
ro	Val	Leu	Ser 2485		Ser	Leu	Pro	Asp 2490		Ser	Leu	Ser	Thr 2495	
er	Val	Gln 2500	Ala	Gly	Gly	Trp	Arg 2505		Leu	Pro	Pro	Asn 2510		Ser
hr	Ile 2515		Tyr	Asn	Asp	Gly 2520		Pro	Ala	Lys	Arg 2525		Asp	Ile
rg 530		His	Ser	Glu	Ser 2535		Ser	Arg	Leu	Pro 2540		Asn	Arg	Ser
hr	Trp	Lys	Arg	Glu 2550		Ser	Lys	His	Ser 2555		Ser	Leu	Pro	Arg 2560
er	Thr	Trp	Arg 2565		Thr	Gly	Ser	Ser 2570		Ser	Ile	Leu	Ser 2575	
er	Glu	Ser 2580	Ser	Glu	Lys	Ala	L ys 2585		Glu	Asp	Glu	L y s 2590		Val
er	Ile 2595		Gly	Thr	Lys	Gln 2600		Lys	Glu	Asn	Gln 2605		Ser	Ala
ly 610		Trp	Arg	Lys	Ile 2615		Glu	Asn	Glu	Phe 2620		Pro	Thr	Asn
hr	Ser	Gln	Thr	Val 2630		Ser	Gly	Ala	Thr 2635		Gly	Ala	Glu	Ser 2640
hr	Leu	Ile	Ty r 2645		Met	Ala	Pro	Ala 2650		Ser	Lys	Thr	Glu 2655	
rp	Val	Arg 2660	Ile)	Glu	Asp	Cys	Pro 2665		Asn	Asn	Pro	Arg 2670		Gly
er	Pro 2675		Gly	Asn	Thr	Pro 2680		Val	Ile	Asp	Ser 2685		Ser	Glu
la 690		Pro	Asn	Ile	L y s 2695		Ser	Lys	Asp	Asn 2700		Ala	Lys	Gln
al	Gly	Asn	Gly	Ser 2710		Pro	Met	Arg	Thr 2715		Gly	Leu	Glu	Asn 2720
eu	Asn	Ser	Phe 2725		Gln	Val	Asp	Ala 2730		Asp	Gln	Lys	Gly 2735	
le	Lys	Pro 2740	Gly	Gln	Asn	Asn	Pro 2745		Pro	Val	Ser	Glu 2750		Asn
er	Ser 2755		Val	Glu	Arg	Thr 2760		Phe	Ser	Ser	Ser 2765		Ser	Ser
is 770		Ser	Pro	Ser	Gly 2775		Val	Ala	Ala	Arg 2780		Thr	Pro	Phe

```
yr Asn Pro Ser Pro Arg Lys Ser Ser Ala Asp Ser Thr Ser Ala
              2790
                                  2795
ro Ser Gln Ile Pro Thr Pro Val Asn Asn Asn Thr Lys Lys Arg
                              2810
          2805
er Lys Thr Asp Ser Thr Glu Ser Ser Gly Thr Gln Ser Pro Lys
                         2825
is Ser Gly Ser Tyr Leu Val Thr Ser Val
  2835
                      2840
ATION FOR SEQ ID NO: 8:
EQUENCE CHARACTERISTICS:
(A) LENGTH: 31 amino acids
(B) TYPE: amino acid
(D) TOPOLOGY: linear
OLECULE TYPE: peptide
MMEDIATE SOURCE:
(B) CLONE: ral2(yeast)
i) SEQUENCE DESCRIPTION: SEQ ID NO: 8:
Leu Thr Gly Ala Lys Gly Leu Gln Leu Arg Ala Leu Arg Arg Ile Ala
Arg Ile Glu Gln Gly Gly Thr Ala Ile Ser Pro Thr Ser Pro Leu
(2) INFORMATION FOR SEQ ID NO: 9:
     (i) SEQUENCE CHARACTERISTICS:
          (A) LENGTH: 29 amino acids
          (B) TYPE: amino acid
          (D) TOPOLOGY: linear
    (ii) MOLECULE TYPE: peptide
    (vi) ORIGINAL SOURCE:
         (A) ORGANISM: Homo sapiens
   (vii) IMMEDIATE SOURCE:
          (B) CLONE: m3(mAChR)
    (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:
Leu Tyr Trp Arg Ile Tyr Lys Glu Thr Glu Lys Arg Thr Lys Glu Leu
Ala Gly Leu Gln Ala Ser Gly Thr Glu Ala Glu Thr Glu
(2) INFORMATION FOR SEQ ID NO: 10:
     (i) SEQUENCE CHARACTERISTICS:
          (A) LENGTH: 29 amino acids
          (B) TYPE: amino acid
          (D) TOPOLOGY: linear
    (ii) MOLECULE TYPE: peptide
    (vi) ORIGINAL SOURCE:
          (A) ORGANISM: Homo sapiens
   (vii) IMMEDIATE SOURCE:
          (B) CLONE: MCC
    (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:
Leu Tyr Pro Asn Leu Ala Glu Glu Arg Ser Arg Trp Glu Lys Glu Leu
```

-continued

Ala Gly Leu Arg Glu Glu Asn Glu Ser Leu Thr Ala Met 20 25	
(2) INFORMATION FOR SEQ ID NO: 11:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 40 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:	
GTATCAAGAC TGTGACTTTT AATTGTAGTT TATCCATTTT	40
(2) INFORMATION FOR SEQ ID NO: 12:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 40 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:	
TTTAGAATTT CATGTTAATA TATTGTGTTC TTTTTAACAG	40
(2) INFORMATION FOR SEQ ID NO: 13:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 40 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(Vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:	
GTAGATTTTA AAAAGGTGTT TTAAAATAAT TTTTTAAGCT	40
(2) INFORMATION FOR SEQ ID NO: 14:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 40 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:	
AAGCAATTGT TGTATAAAAA CTTGTTTCTA TTTTATTTAG	40
(2) INFORMATION FOR SEQ ID NO: 15:	

(i) SEQUENCE CHARACTERISTICS:

-continued

	(A) LENGTH: 40 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(ii)	MOLECULE TYPE: cDNA	
(vi)	ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 15:	
	TC TTCATATAGT AAACATTGCC TTGTGTACTC	40
011110111	To Tronsmitt immentation from the	
(2) INFO	RMATION FOR SEQ ID NO: 16:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 40 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii)	MOLECULE TYPE: cDNA	
(vi)	ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 16:	
ииииииии	NN NNNGTCCCTT TTTTTAAAAA AAAAAAATAG	40
(2) INFO	RMATION FOR SEQ ID NO: 17:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 40 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii)	MOLECULE TYPE: cDNA	
(vi)	ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 17:	
GTAAGTAA	CT TGGCAGTACA ACTTATTTGA AACTTTAATA	40
(2) INFO	RMATION FOR SEQ ID NO: 18:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 40 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii)	MOLECULE TYPE: cDNA	
(vi)	ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 18:	
ATACAAGA	TA TTGATACTTT TTTATTATTT GTGGTTTTAG	40
(2) INFO	RMATION FOR SEQ ID NO: 19:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 40 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	

(ii) MOLECULE TYPE: cDNA

(vi)	ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 19:	
GTAAGTTA	CT TGTTTCTAAG TGATAAAACA GYGAAGAGCT	40
(2) INFO	RMATION FOR SEQ ID NO: 20:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 40 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii)	MOLECULE TYPE: cDNA	
(vi)	ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 20:	
AATAAAAA	CA TAACTAATTA GGTTTCTTGT TTTATTTTAG	40
(2) INFO	RMATION FOR SEQ ID NO: 21:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 40 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii)	MOLECULE TYPE: cDNA	
(vi)	ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 21:	
GTTAGTA	AT TSCCTTTTT GTTTGTGGGT ATAAAAATAG	40
(2) INFO	RMATION FOR SEQ ID NO: 22:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 40 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii)	MOLECULE TYPE: cDNA	
(vi)	ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 22:	
ACCATTT	TG CATGTACTGA TGTTAACTCC ATCTTAACAG	40
(2) INFO	RMATION FOR SEQ ID NO: 23:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 40 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii)	MOLECULE TYPE: cDNA	
(vi)	ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 23:	
GTAAATAA	AT TATTTTATCA TATTTTTTAA AATTATTTAA	40

(2)	INFO	RMATION FOR SEQ ID NO: 24:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 64 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: cDNA	
	(vi)	ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 24:	
CATO	GATGT'	TA TCTGTATTTA CCTATAGTCT AAATTATACC ATCTATAATG TGCTTAATTT	60
TTAG	}		64
(2)	INFO	RMATION FOR SEQ ID NO: 25:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 52 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: cDNA	
	(vi)	ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 25:	
GTA	ACAGA	AG ATTACAAACC CTGGTCACTA ATGCCATGAC TACTTTGCTA AG	52
(2)	INFO	RMATION FOR SEQ ID NO: 26:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 46 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: cDNA	
	(vi)	ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 26:	
GGAT	TATTA	AA GTCGTAATTT TGTTTCTAAA CTCATTTGGC CCACAG	46
(2)	INFO	RMATION FOR SEQ ID NO: 27:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 40 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: cDNA	
	(vi)	ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 27:	
GTAT	GTTC'	TC TATAGTGTAC ATCGTAGTGC ATGTTTCAAA	40
(2)	INFO	RMATION FOR SEQ ID NO: 28:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 56 base pairs	

-continued

	(B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear		
(ii)	MOLECULE TYPE: cDNA		
(vi)	ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens		
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 28:		
CATCATTO	CT CTTCAAATAA CAAAGCATTA TGGTTTATGT TGATTTTATT TTTCAG	56	
(2) INFO	RMATION FOR SEQ ID NO: 29:		
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 43 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear		
(ii)	MOLECULE TYPE: cDNA		
(vi)	ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens		
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 29:		
GTAAGACA	AAA AATGTTTTTT AATGACATAG ACAATTACTG GTG	43	
(2) INFO	ORMATION FOR SEQ ID NO: 30:		
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 40 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear		
(ii)	MOLECULE TYPE: cDNA		
(vi)	ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens		
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 30:		
TTAGATGA	ATT GTCTTTTTCC TCTTGCCCTT TTTAAATTAG	40	
(2) INFO	RMATION FOR SEQ ID NO: 31:		
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 44 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear		
(ii)	MOLECULE TYPE: cDNA		
(vi)	ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens		
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 31:		
GTATGTTT	TT ATAACATGTA TTTCTTAAGA TAGCTCAGGT ATGA	4 4	
(2) INFO	ORMATION FOR SEQ ID NO: 32:		
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 54 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear		
(ii)	MOLECULE TYPE: cDNA		

(vi) ORIGINAL SOURCE:

US RE38,916 E

101 102

-continued

(A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 32:	
GCTTGGCTTC AAGTTGNCTT TTTAATGATC CTCTATTCTG TATTTAATTT ACAG	54
(2) INFORMATION FOR SEQ ID NO: 33:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 65 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 33:	
GTACTATTTA GAATTTCACC TGTTTTTCTT TTTTCTCTTT TTCTTTGAGG CAGGGTCTCA	60
CTCTG	65
(2) INFORMATION FOR SEQ ID NO: 34:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 52 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 34:	
GCAACTAGTA TGATTTTATG TATAAATTAA TCTAAAATTG ATTAATTTCC AG	52
(2) INFORMATION FOR SEQ ID NO: 35:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 42 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 35:	
GTACCTTTGA AAACATTTAG TACTATAATA TGAATTTCAT GT	42
(2) INFORMATION FOR SEQ ID NO: 36:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 40 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 36:	
CCAACTCNAA TTAGATGACC CATATTCAGA AACTTACTAG	40

(2)	INFORMATION FOR SEQ ID NO: 37:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 54 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
	(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 37:	
GTAT	PATATAG AGTTTTATAT TACTTTTAAA GTACAGAATT CATACTCTCA AAAA	54
(2)	INFORMATION FOR SEQ ID NO: 38:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 41 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
	(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 38:	
ATTO	STGACCT TAATTTTGTG ATCTCTTGAT TTTTATTTCA G	41
(2)	INFORMATION FOR SEQ ID NO: 39:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
	(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 39:	
TCC	CCGCCTG CCGCTCTC	18
(2)	INFORMATION FOR SEQ ID NO: 40:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
	(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 40:	
GCAG	GCGGCGG CTCCCGTG	18
(2)	INFORMATION FOR SEQ ID NO: 41:	
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 20 base pairs(B) TYPE: nucleic acid	

-continued

		<pre>(C) STRANDEDNESS: single (D) TOPOLOGY: linear</pre>		
	(ii)	MOLECULE TYPE: cDNA		
	(vi)	ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens		
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 41	:	
GTGA	ACGG	CT CTCATGCTGC		20
(2)	INFO	RMATION FOR SEQ ID NO: 42:		
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear		
	(ii)	MOLECULE TYPE: cDNA		
	(vi)	ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens		
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 42	:	
ACGT	'GCGG(GG AGGAATGGA		19
(2)	INFO	RMATION FOR SEQ ID NO: 43:		
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear		
	(ii)	MOLECULE TYPE: cDNA		
	(vi)	ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens		
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 43	:	
ATGA	TATC	TT ACCAAATGAT ATAC		24
(2)	INFO	RMATION FOR SEQ ID NO: 44:		
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear		
	(ii)	MOLECULE TYPE: cDNA		
	(vi)	ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens		
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 44	:	
TTAT	TCCT	AC TTCTTCTATA CAG		23
(2)	INFO	RMATION FOR SEQ ID NO: 45:		
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear		
	(ii)	MOLECULE TYPE: cDNA		
	(vi)	ORIGINAL SOURCE:		

(A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 45:	
TACCCATGCT GGCTCTTTTT C	21
(2) INFORMATION FOR SEQ ID NO: 46:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 46:	
TGGGGCCATC TTGTTCCTGA	20
(2) INFORMATION FOR SEQ ID NO: 47:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 47:	
ACATTAGGCA CAAAGCTTGC AA	22
(2) INFORMATION FOR SEQ ID NO: 48:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 48:	
ATCAAGCTCC AGTAAGAAGG TA	22
(2) INFORMATION FOR SEQ ID NO: 49:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 49:	
TGCGGCTCCT GGGTTGTTG	19
(2) INFORMATION FOR SEQ ID NO: 50:	

(1)	EQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii)	MOLECULE TYPE: cDNA	
(vi)	ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 50:	
GCCCCTTC	CT TTCTGAGGAC	20
(2) INFO	RMATION FOR SEQ ID NO: 51:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii)	MOLECULE TYPE: cDNA	
(vi)	ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 51:	
TTTTCTCC	TG CCTCTTACTG C	21
(2) INFO	RMATION FOR SEQ ID NO: 52:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii)	MOLECULE TYPE: cDNA	
(vi)	ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 52:	
ATGACACC	CC CCATTCCCTC	20
(2) INFO	RMATION FOR SEQ ID NO: 53:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii)	MOLECULE TYPE: cDNA	
(vi)	ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 53:	
CCACTTAA	AG CACATATATT TAGT	24
(2) INFO	RMATION FOR SEQ ID NO: 54:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	

-continued

(ii)	MOLECULE TYPE: cDNA	
(vi)	ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 54:	
GTATGGAAA	A TAGTGAAGAA CC	22
(2) INFOR	MATION FOR SEQ ID NO: 55:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii)	MOLECULE TYPE: cDNA	
(vi)	ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 55:	
TTCTTAAGI	C CTGTTTTCT TTTG	24
(2) INFOF	MATION FOR SEQ ID NO: 56:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii)	MOLECULE TYPE: cDNA	
(vi)	ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 56:	
TTTAGAACO	T TTTTTGTGTT GTG	23
(2) INFOF	MATION FOR SEQ ID NO: 57:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii)	MOLECULE TYPE: cDNA	
(vi)	ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 57:	
CTCAGATT <i>I</i>	NT ACACTAAGCC TAAC	24
(2) INFOR	MATION FOR SEQ ID NO: 58:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii)	MOLECULE TYPE: cDNA	
(vi)	ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 58:

CATGTCTCTT ACAGTAGTAC CA	22
(2) INFORMATION FOR SEQ ID NO: 59:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 59:	
AGGTCCAAGG GTAGCCAAGG	20
(2) INFORMATION FOR SEQ ID NO: 60:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 27 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 60:	
TAAAAATGGA TAAACTACAA TTAAAAG	27
(2) INFORMATION FOR SEQ ID NO: 61:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 61:	
AAATACAGAA TCATGTCTTG AAGT	24
(2) INFORMATION FOR SEQ ID NO: 62:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 23 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 62:	
ACACCTAAAG ATGACAATTT GAG	23
(2) INFORMATION FOR SEQ ID NO: 63:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 base pairs	

-continued

	(B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear		
(ii)	MOLECULE TYPE: cDNA		
(vi)	ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens		
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 6	3:	
TAACTTAG	GAT AGCAGTAATT TCCC		24
(2) INFO	ORMATION FOR SEQ ID NO: 64:		
(i)	(A) LENGTH: 23 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear		
(ii)	MOLECULE TYPE: cDNA		
(vi)	ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens		
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 6	4:	
ACAATAAA	ACT GGAGTACACA AGG		23
(2) INFO	ORMATION FOR SEQ ID NO: 65:		
(i)	(A) LENGTH: 23 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear		
(ii)	MOLECULE TYPE: cDNA		
(vi)	ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens		
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 6	5:	
ATAGGTC#	ATT GCTTCTTGCT GAT		23
(2) INFO	ORMATION FOR SEQ ID NO: 66:		
(i)	(A) LENGTH: 24 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear		
(ii)	MOLECULE TYPE: cDNA		
(vi)	ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens		
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 6	6:	
TGAATTTT	TAA TGGATTACCT AGGT		24
(2) INFO	ORMATION FOR SEQ ID NO: 67:		
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear		
(ii)	MOLECULE TYPE: cDNA		

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6	57:
CTTTTTTGC TTTTACTGAT TAACG	25
(2) INFORMATION FOR SEQ ID NO: 68:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 27 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6	58:
TGTAATTCAT TTTATTCCTA ATACCTC	27
(2) INFORMATION FOR SEQ ID NO: 69:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6	59:
GGTAGCCATA GTATGATTAT TTCT	24
(2) INFORMATION FOR SEQ ID NO: 70:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7	70:
CTACCTATTT TTATACCCAC AAAC	24
(2) INFORMATION FOR SEQ ID NO: 71:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7	71:
AAGAAAGCCT ACACCATTTT TGC	23

(2)	INFORMATION FOR SEQ ID NO: 72:		
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear		
	(ii) MOLECULE TYPE: cDNA		
	(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapien	s	
	(xi) SEQUENCE DESCRIPTION: SEQ	ID NO: 72:	
GATC	CATTCTT AGAACCATCT TGC		23
(2)	INFORMATION FOR SEQ ID NO: 73:		
(-)	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear		
	(ii) MOLECULE TYPE: cDNA		
	<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapien</pre>	s	
	(xi) SEQUENCE DESCRIPTION: SEQ	ID NO: 73:	
ACCT	FATAGTC TAAATTATAC CATC		24
(2)	INFORMATION FOR SEQ ID NO: 74:		
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear		
	(ii) MOLECULE TYPE: cDNA		
	(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapien	s	
	(xi) SEQUENCE DESCRIPTION: SEQ	ID NO: 74:	
GTCA	ATGGCAT TAGTGACCAG		20
(2)	INFORMATION FOR SEQ ID NO: 75:		
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear		
	(ii) MOLECULE TYPE: cDNA		
	(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapien	s	
	(xi) SEQUENCE DESCRIPTION: SEQ	ID NO: 75:	
AGTC	CGTAATT TTGTTTCTAA ACTC		24
(2)	INFORMATION FOR SEQ ID NO: 76:		
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear		

-continued

(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 76:	
TGAAGGACTC GGATTTCACC C	21
(2) INFORMATION FOR SEQ ID NO: 77:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 base pairs (B) TYPE: nucleic acid (C) STRANDEDMESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 77:	
TCATTCACTC ACAGCCTGAT GAC	23
(2) INFORMATION FOR SEQ ID NO: 78:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 78:	
GCTTTGAAAC ATGCACTACG AT	22
(2) INFORMATION FOR SEQ ID NO: 79:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 79:	
AAACATCATT GCTCTTCAAA TAAC	24
(2) INFORMATION FOR SEQ ID NO: 80:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens</pre>	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 80:

TACCATGATT TAAAAATCCA CCAG	24
(2) INFORMATION FOR SEQ ID NO: 81:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 81:	
GATGATTGTC TTTTTCCTCT TGC	23
(2) INFORMATION FOR SEQ ID NO: 82:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 82:	
CTGAGCTATC TTAAGAAATA CATG	24
(2) INFORMATION FOR SEQ ID NO: 83:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 83:	
TTTTAAATGA TCCTCTATTC TGTAT	25
(2) INFORMATION FOR SEQ ID NO: 84:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 84:	
ACAGAGTCAG ACCCTGCCTC AAAG	24
(2) INFORMATION FOR SEQ ID NO: 85:	
(i) SECULENCE CHARACTERISTICS.	

	(A) LENGTH: 23 base pairs		
	(B) TYPE: nucleic acid		
	(C) STRANDEDNESS: single (D) TOPOLOGY: linear		
	(D) TOPOLOGI: IIMear		
(ii)	MOLECULE TYPE: cDNA		
()			
(vi)	ORIGINAL SOURCE:		
	(A) ORGANISM: Homo sapiens		
	and the second process of the second process of		
(XI)	SEQUENCE DESCRIPTION: SEQ ID NO: 85:		
ጥጥሮጥልጥጥ	CT TACTGCTAGC ATT	23	
IIICIAII	CI INCIGCINGE AII	23	
(2) INFO	RMATION FOR SEQ ID NO: 86:		
(i)	SEQUENCE CHARACTERISTICS:		
	(A) LENGTH: 22 base pairs (B) TYPE: nucleic acid		
	(C) STRANDEDNESS: single		
	(D) TOPOLOGY: linear		
	•		
(ii)	MOLECULE TYPE: cDNA		
(V1)	ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens		
	(A) CROANIDM: HOMO Supiems		
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 86:		
ATACACAG	GT AAGAAATTAG GA	22	
(2) INFO	RMATION FOR SEQ ID NO: 87:		
, ,	-		
(i)	SEQUENCE CHARACTERISTICS:		
	(A) LENGTH: 22 base pairs		
	(B) TYPE: nucleic acid		
	(C) STRANDEDNESS: single (D) TOPOLOGY: linear		
	(D) TOPOLOGY: Timear		
(ii)	MOLECULE TYPE: cDNA		
(Vi)	ORIGINAL SOURCE:		
	(A) ORGANISM: Homo sapiens		
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 87:		
, ,			
TAGATGAC	CC ATATTCTGTT TC	22	
(2) INFO	RMATION FOR SEQ ID NO: 88:		
` '	~		
(i)	SEQUENCE CHARACTERISTICS:		
	(A) LENGTH: 22 base pairs		
	(B) TYPE: nucleic acid		
	(C) STRANDEDNESS: single		
	(D) TOPOLOGY: linear		
(ii)	MOLECULE TYPE: cDNA		
. ,			
(vi)	ORIGINAL SOURCE:		
	(A) ORGANISM: Homo sapiens		
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 88:		
()			
CAATTAGG'	TC TTTTTGAGAG TA	22	
(2) INFO	RMATION FOR SEQ ID NO: 89:		
(2) 111101	TON DEG ID NO. 07.		
(i)	SEQUENCE CHARACTERISTICS:		
	(A) LENGTH: 22 base pairs		
	(B) TYPE: nucleic acid		
	(C) STRANDEDNESS: single		
	(D) TOPOLOGY: linear		
(ii)	MOLECULE TYPE: cDNA		

-continued

(vi)	ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 89:	
GTTACTGC	AT ACACATTGTG AC	22
(2) INFO	RMATION FOR SEQ ID NO: 90:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii)	MOLECULE TYPE: cDNA	
(vi)	ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 90:	
GCTTTTTG	TT TCCTAACATG AAG	23
(2) INFO	RMATION FOR SEQ ID NO: 91:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii)	MOLECULE TYPE: cDNA	
(vi)	ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 91:	
TCTCCCAC	AG GTAATACTCC C	21
(2) INFO	RMATION FOR SEQ ID NO: 92:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii)	MOLECULE TYPE: cDNA	
(vi)	ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 92:	
GCTAGAAC	TG AATGGGGTAC G	21
(2) INFO	RMATION FOR SEQ ID NO: 93:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii)	MOLECULE TYPE: cDNA	
(vi)	ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 93:	
CAGGACAA	AA TAATCCTGTC CC	22

CAGGACAAAA TAATCCTGTC CC

(2) INFORMATION FOR SEQ ID NO: 94:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 94:	
ATTTTCTTAG TTTCATTCTT CCTC	24
(2) INFORMATION FOR SEQ ID NO: 95:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 95:	
AGAAGGATCC CTTGTGCAGT GTGGA	25
(2) INFORMATION FOR SEQ ID NO: 96:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 96	
GACAGGATCC TGAAGCTGAG TTTG	24
(2) INFORMATION FOR SEQ ID NO: 97:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 97:	
TCAGAAAGTG CTGAAGAG	18
(2) INFORMATION FOR SEQ ID NO: 98:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 19 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single	

	(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(vi	ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 98:	
GGAATAA	TTA GGTCTCCAA	19
(2) INF	ORMATION FOR SEQ ID NO: 99:	
(i	SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(vi	ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 99:	
GCAAATC	CTA AGAGAGAACA A	21
(2) INF	ORMATION FOR SEQ ID NO: 100:	
(i	SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(vi	ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 100:	
GATGGCA	AGC TTGAGCCAG	19
_		
(2) INF	ORMATION FOR SEQ ID NO: 101:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(vi	ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 101:	
GTTCCAG	CAG TGTCACAG	18
/2\ TNE	ORMATION FOR SEQ ID NO: 102:	
, ,		
(1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(vi	ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	

-continued

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 102:	
GGGAGATTTC GCTCCTGA	18
(2) INFORMATION FOR SEQ ID NO: 103:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 103:	
AGTACAAGGA TGCCAATATT ATG	23
(2) INFORMATION FOR SEQ ID NO: 104:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 104:	
ACTTCTATCT TTTTCAGAAC GAG	23
(2) INFORMATION FOR SEQ ID NO: 105:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 105:	
ATTTGAATAC TACAGTGTTA CCC	23
(2) INFORMATION FOR SEQ ID NO: 106:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 106:	
CTTGTATTCT AATTTGGCAT AAGG	24

(2) INFORMATION FOR SEQ ID NO: 107:

((i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear		
į)	ii)	MOLECULE TYPE: cDNA		
7)	vi)	ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens		
(2	ĸi)	SEQUENCE DESCRIPTION: SEQ ID NO:	: 107:	
CTGCC	CATA	C ACATTCAAAC AC		22
(2) II	NFOF	MATION FOR SEQ ID NO: 108:		
•	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear		
į)	ii)	MOLECULE TYPE: cDNA		
7)	vi)	ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens		
(2	ĸi)	SEQUENCE DESCRIPTION: SEQ ID NO:	: 108:	
TGTTTC	GCG1	C TTGCCCATCT T		21
(2) IN	NFOF	MATION FOR SEQ ID NO: 109:		
((i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear		
į)	ii)	MOLECULE TYPE: cDNA		
7)	vi)	ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens		
(3	ĸi)	SEQUENCE DESCRIPTION: SEQ ID NO:	: 109:	
AGTCTI	raa <i>i</i>	T ATTCAGATGA GCAG		24
(2) II	NFOF	MATION FOR SEQ ID NO: 110:		
(SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear		
(i	ii)	MOLECULE TYPE: cDNA		
7)	vi)	ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens		
(2	ĸi)	SEQUENCE DESCRIPTION: SEQ ID NO	: 110:	
GTTTCI	rct1	C ATTATATTT ATGCTA		26
(2) IN	NFOF	MATION FOR SEQ ID NO: 111:		
((i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear		
(i	ii)	MOLECULE TYPE: cDNA		

-continued

	(vi)	ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens		
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 111:		
AAG	CCTAC	CA ATTATAGTGA ACG	23	
(2)	INFO	RMATION FOR SEQ ID NO: 112:		
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear		
	(ii)	MOLECULE TYPE: cDNA		
	(vi)	ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens		
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 112:		
AGC.	[GATG	AC AAAGATGATA ATC	23	
(2)	INFO	RMATION FOR SEQ ID NO: 113:		
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear		
	(ii)	MOLECULE TYPE: cDNA		
	(vi)	ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens		
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 113:		
AAG	AAACAZ	AT ACAGACTTAT TGTG	24	
(2)	INFO	RMATION FOR SEQ ID NO: 114:		
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear		
	(ii)	MOLECULE TYPE: cDNA		
	(vi)	ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens		
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 114:		
ATG	AGTGG	GG TCTCCTGAAC	20	
(2)	INFO	RMATION FOR SEQ ID NO: 115:		
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear		
	(ii)	MOLECULE TYPE: GDNA		
	(vi)	ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens		

ATCTCCCTCC AAAAGTGGTG C

(2) INFORMATION FOR SEQ ID NO: 116:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 116:	
TCCATCTGGA GTACTTTCTG TG	22
(2) INFORMATION FOR SEQ ID NO: 117:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 117:	
AGTAAATGCT GCAGTTCAGA GG	22
(2) INFORMATION FOR SEQ ID NO: 118:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 118:	
CCGTGGCATA TCATCCCCC	19
(2) INFORMATION FOR SEQ ID NO: 119:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 119:	
CCCAGACTGC TTCAAAATTA CC	22
(2) INFORMATION FOR SEQ ID NO: 120:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 21 base pairs(B) TYPE: nucleic acid	

-continued

		<pre>(C) STRANDEDNESS: single (D) TOPOLOGY: linear</pre>	
	(ii)	MOLECULE TYPE: cDNA	
	(vi)	ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 120:	
GAGC	CTCAT	TC TGTACTTCTG C	21
(2)	INFO	RMATION FOR SEQ ID NO: 121:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: cDNA	
	(vi)	ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 121:	
CCCT	CCAA	AT GAGTTAGCTG C	21
(2)	INFO	RMATION FOR SEQ ID NO: 122:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: cDNA	
	(vi)	ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 122:	
TTGT	GGTAT	TA GGTTTTACTG GTG	23
(2)	INFO	RMATION FOR SEQ ID NO: 123:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: cDNA	
	(vi)	ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 123:	
ACCC.	AACA/	AA AATCAGTTAG ATG	23
(2)	INFO	RMATION FOR SEQ ID NO: 124:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: cDNA	
	(vi)	ORIGINAL SOURCE:	

(A) ORGANISM: Homo sapiens

-continued

(XI) SEQUENCE DESCRIPTION:	SEQ ID NO: 124:	
GTGGCTGGTA ACTTTAGCCT C	21	
(2) INFORMATION FOR SEQ ID NO:	125:	
(i) SEQUENCE CHARACTERIST: (A) LENGTH: 21 base p (B) TYPE: nucleic ac: (C) STRANDEDNESS: sin (D) TOPOLOGY: linear	pairs id ngle	
(ii) MOLECULE TYPE: cDNA		
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo se	apiens	
(xi) SEQUENCE DESCRIPTION:	SEQ ID NO: 125:	
ATGATGTTGA CCTTTCCAGG G	21	
(2) INFORMATION FOR SEQ ID NO:	126:	
(i) SEQUENCE CHARACTERIST: (A) LENGTH: 24 base p (B) TYPE: nucleic ac: (C) STRANDEDNESS: sin (D) TOPOLOGY: linear	pairs id ngle	
(ii) MOLECULE TYPE: cDNA		
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sa	apiens	
(xi) SEQUENCE DESCRIPTION:	SEQ ID NO: 126:	
ATTGTGTAAC TTTTCATCAG TTGC	24	
(2) INFORMATION FOR SEQ ID NO:	127:	
(i) SEQUENCE CHARACTERIST: (A) LENGTH: 21 base p (B) TYPE: nucleic ac: (C) STRANDEDNESS: sin (D) TOPOLOGY: linear	pairs id ngle	
(D) TOPOLOGI: Timear		
(ii) MOLECULE TYPE: cDNA		
	apiens	
(ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE:		
(ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sa		
(ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Homo so (xi) SEQUENCE DESCRIPTION:	SEQ ID NO: 127:	
(ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sa (xi) SEQUENCE DESCRIPTION: AAAGACATAC CAGACAGAGG G	SEQ ID NO: 127: 21 128: ICS: pairs id ngle	
(ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE: (A) ORGANISM: Homo so (xi) SEQUENCE DESCRIPTION: AAAGACATAC CAGACAGAGG G (2) INFORMATION FOR SEQ ID NO: (i) SEQUENCE CHARACTERIST: (A) LENGTH: 21 base processed in the control of the control o	SEQ ID NO: 127: 21 128: ICS: pairs id ngle	
(ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE:	SEQ ID NO: 127: 21 128: PICS: pairs id ngle	
(ii) MOLECULE TYPE: cDNA (vi) ORIGINAL SOURCE:	SEQ ID No: 127: 21 128: PICS: pairs id ngle dapiens	

(2) INFORMATION FOR SEQ ID NO: 129:

 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 129:	
AAGATGACCT GTTGCAGGAA TG	22
(2) INFORMATION FOR SEQ ID NO: 130:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 130:	
GAATCAGACC AAGCTTGTCT AGAT	24
(2) INFORMATION FOR SEQ ID NO: 131:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 131:	
CAATAGTAAG TAGTTTACAT CAAG	24
(2) INFORMATION FOR SEQ ID NO: 132:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 132:	
AAACAGGACT TGTACTGTAG GA	22
(2) INFORMATION FOR SEQ ID NO: 133:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	

-continued

(ii)	MOLECULE TYPE: cDNA		
(vi)	ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens		
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 133:		
CAGCCCCTT	C AAGCAAACAT C	21	
(2) INFOR	MATION FOR SEQ ID NO: 134:		
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDMESS: single (D) TOPOLOGY: linear		
(ii)	MOLECULE TYPE: cDNA		
(vi)	ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens		
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 134:		
GAGGACTTA	T TCCATTTCTA CC	22	
(2) INFOR	MATION FOR SEQ ID NO: 135:		
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear		
(ii)	MOLECULE TYPE: cDNA		
(vi)	ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens		
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 135:		
CAGTCTCCT	G GCCGAAACTC	20	
(2) INFOR	MATION FOR SEQ ID NO: 136:		
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear		
(ii)	MOLECULE TYPE: cDNA		
(vi)	ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens		
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 136:		
GTTGACTGG	C GTACTAATAC AG	22	
(2) INFOR	MATION FOR SEQ ID NO: 137:		
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 base pairs (B) TYPE: nucleic acid (C) STRANDEDMESS: single (D) TOPOLOGY: linear		
(ii)	MOLECULE TYPE: cDNA		
(vi)	ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens		

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 137:

TGGTAATGGA GCCAATAAAA AGG	23
(2) INFORMATION FOR SEQ ID NO: 138:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13	8:
TGGGACTTTT CGCCATCCAC	20
(2) INFORMATION FOR SEQ ID NO: 139:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 22 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13	9:
TGTCTCTATC CACACATTCG TC	22
(2) INFORMATION FOR SEQ ID NO: 140:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14	0:
ATGTTTTTCA TCCTCACTTT TTGC	24
(2) INFORMATION FOR SEQ ID NO: 141:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 22 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14	1:
GGAGAAGAAC TGGAAGTTCA TC	22
(2) INFORMATION FOR SEQ ID NO: 142:	
(i) SEQUENCE CHARACTERISTICS:	

-continued

(B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:	142:
TTGAATCTTT AATGTTTGGA TTTGC	25
(2) INFORMATION FOR SEQ ID NO: 143:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 21 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:	143:
TCTCCCACAG GTAATACTCC C	21
(2) INFORMATION FOR SEQ ID NO: 144:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 21 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:	144:
GCTACAACTG AATGGGGTAC G	21
(2) INFORMATION FOR SEQ ID NO: 145:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 22 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:	145:
CAGGACAAAA TAATCCTGTC CC	22
(2) INFORMATION FOR SEQ ID NO: 146:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 24 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: CDNA	

(vi) ORIGINAL SOURCE:

153

```
(A) ORGANISM: Homo sapiens
    (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 146:
ATTTTCTTAC TTTCATTCTT CCTC
(2) INFORMATION FOR SEQ ID NO: 147:
     (i) SEQUENCE CHARACTERISTICS:
          (A) LENGTH: 20 amino acids
          (B) TYPE: amino acid
          (D) TOPOLOGY: linear
    (ii) MOLECULE TYPE: protein
    (vi) ORIGINAL SOURCE:
          (A) ORGANISM: Artificial sequence (consensus)
    (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 147:
Phe Xaa Val Glu Xaa Thr Pro Xaa Cys Phe Ser Arg Xaa Ser Ser Leu Ser
                 5
                                    10
Leu Ser
    20
(2) INFORMATION FOR SEQ ID NO: 148:
     (i) SEQUENCE CHARACTERISTICS:
          (A) LENGTH: 20 amino acids
          (B) TYPE: amino acid
          (D) TOPOLOGY: linear
    (ii) MOLECULE TYPE: protein
    (vi) ORIGINAL SOURCE:
          (A) ORGANISM: Homo sapiens
    (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 148:
Tyr Cys Val Glu Asp Thr Pro Ile Cys Phe Ser Arg Cys Ser Ser Leu
Ser Ser Leu Ser
            20
(2) INFORMATION FOR SEQ ID NO: 149:
     (i) SEQUENCE CHARACTERISTICS:
          (A) LENGTH: 20 amino acids
          (B) TYPE: amino acid
          (D) TOPOLOGY: linear
    (ii) MOLECULE TYPE: protein
    (vi) ORIGINAL SOURCE:
          (A) ORGANISM: Homo sapiens
    (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 149:
His Thr Val Gln Glu Thr Pro Leu Met Phe Ser Arg Cys Thr Ser Val
Ser Ser Leu Asp
            20
(2) INFORMATION FOR SEQ ID NO: 150:
     (i) SEQUENCE CHARACTERISTICS:
          (A) LENGTH: 20 amino acids
          (B) TYPE: amino acid
          (D) TOPOLOGY: linear
    (ii) MOLECULE TYPE: protein
```

```
(vi) ORIGINAL SOURCE:
         (A) ORGANISM: Homo sapiens
    (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 150:
Phe Ala Thr Glu Ser Thr Pro Asp Gly Phe Ser Cys Ser Ser Ser Leu
                                    10
Ser Ala Leu Ser
(2) INFORMATION FOR SEQ ID NO: 151:
     (i) SEQUENCE CHARACTERISTICS:
          (A) LENGTH: 20 amino acids
          (B) TYPE: amino acid
          (D) TOPOLOGY: linear
    (ii) MOLECULE TYPE: protein
    (vi) ORIGINAL SOURCE:
          (A) ORGANISM: Homo sapiens
    (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 151:
Tyr Cys Val Glu Gly Thr Pro Ile Asn Phe Ser Thr Ala Thr Ser Leu
Ser Asp Leu Thr
(2) INFORMATION FOR SEQ ID NO: 152:
     (i) SEQUENCE CHARACTERISTICS:
          (A) LENGTH: 20 amino acids
          (B) TYPE: amino acid
          (D) TOPOLOGY: linear
    (ii) MOLECULE TYPE: protein
    (vi) ORIGINAL SOURCE:
          (A) ORGANISM: Homo sapiens
    (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 152:
Thr Pro Ile Glu Gly Thr Pro Tyr Cys Phe Ser Arg Asn Asp Ser Leu
Ser Ser Leu Asp
(2) INFORMATION FOR SEQ ID NO: 153:
     (i) SEQUENCE CHARACTERISTICS:
          (A) LENGTH: 20 amino acids
          (B) TYPE: amino acid
          (D) TOPOLOGY: linear
    (ii) MOLECULE TYPE: protein
    (vi) ORIGINAL SOURCE:
          (A) ORGANISM: Homo sapiens
    (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 153:
Phe Ala Ile Glu Asn Thr Pro Val Cys Pro Ser His Asn Ser Ser Leu
                                   10
Ser Ser Leu Ser
(2) INFORMATION FOR SEQ ID NO: 154:
     (i) SEQUENCE CHARACTERISTICS:
          (A) LENGTH: 20 amino acids
```

-continued

```
(B) TYPE: amino acid
          (D) TOPOLOGY: linear
    (ii) MOLECULE TYPE: protein
    (vi) ORIGINAL SOURCE:
          (A) ORGANISM: Homo sapiens
    (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 154:
Arg His Val Glu Asp Thr Pro Val Cys Phe Ser Arg Asn Ser Ser Leu
Ser Ser Leu Ser
```

We claim:

1. A preparation of antibodies which specifically binds to a human APC (adenomatous polyposis coli) protein having 20 an amino acid sequence as shown in [SEQ ID NO:1, 2, or 7,] SEQ ID NO:2 or 7 and does not specifically bind to other human proteins.

[2. A preparation of antibodies which specifically binds to a human APC protein which is the product of a mutant allele 25 found in tumor, wherein the antibodies do not specifically bind to other human proteins, and wherein the human APC protein is a mutant form of the amino acid sequence shown in SEQ ID NOS:2 and 7, and the mutant allele is a mutant form of the nucleotide sequence shown in SEQ ID NO:1.] 30 contains an insertion mutation.]

[3. The preparation of claim 2 wherein the mutant allele contains a mutation selected from the group consisting of mutations at codons 243, 279, 288, 301,331,413,437, 456, 500, 712, and 1338.]

[4. The preparation of claim 2 wherein the mutant allele contains a premature stop codon.]

[5. The preparation of claim 2 wherein the mutant allele contains a missense mutation.]

[6. The preparation of claim 2 wherein the mutant allele contains a frameshift mutation.]

[7. The preparation of claim 2 wherein the mutant allele contains a splice junction mutation.

[8. The preparation of claim 2 wherein the mutant allele