[19]

INTELLECTUAL PROPERTY PHILIPPINES

[12] | INVENTION PUBLICATION

[11]] Publication Number: 12014502012 Document Code: B1

[22] | Publication Date: 24/11/2014

[21]] Application Number: 12014502012 Document Code: A

[22] | Date Filed: 9/9/2014

[54] | Title: HIGH-LEVEL SYNTAX EXTENSIONS FOR HIGH EFFICIENCY VIDEO CODING.

[71] | Applicant(s): QUALCOMM INC

[72] | Inventor(s): CHEN YING
WANG YE KUI
ZHANG LI

[30] | Priority Data: 13/3/2013 US201313801731

[51] , HO04N 19/00 20140101AFI20180305BHPH; HO4N 19/50

International Class 8:

20140101ALI20180305BHPH; HO4N 19/503 20140101ALI20180305BHPH;
In one example, a device includes a video coder configured to code a picture order
count (POC) value for a first picture of video data, code a second-dimension picture
identifier for the first picture, and code, in accordance with a base video coding
specification or an extension to the base video coding specification, a second picture
based at least in part on the POC value and the second-dimension picture identifier

[57] | Abstract: of the first picture. The video coder may comprise a video encoder or a video

decoder. The second-dimension picture identifier may comprise, for example, a view
identifier, a view order index, a layer identifier, or other such identifier. The video
coder may code the POC value and the second-dimension picture identifier duing
coding of a motion vector for a block of the second picture, e.g., during advanced
motion vector prediction or merge mode coding.

5

10

15

20

25

30

HIGH-LEVEL SYNTAX EXTENSIONS FOR ,,
HIGH EFFICIENCY VIDEO CODING

TECHNICAL FIELD

This disclosure relates to video coding.

BACKGROUND

Digital video capabilities can be incorporated into a wide range of devices,
including digital televisions, digital direct broadcast systems, wireless broadcast
systems, personal digital assistants (PDAs), laptop or desktop computers, tablet
computers, e-book readers, digital cameras, digital recording devices, digital media
players, video gaming devices, video game consoles, cellular or satellite radio
telephones, so-called “smart phones,” video teleconferencing devices, video
streaming devices, and the like. Digital video devices implement video coding
techniques, such as those described in the standards defined by MPEG-2, MPEG-4,
ITU-T H.263, ITU-T H.264/MPEG-4, Part 10, Advanced Video Coding (AVC), the
High Efficiency Video Coding (HEVC) standard presently ﬁnder development, and
extensions of such standards. The video devices may transmit, receive, encode,
decode, and/or store digital video information more efficiently by implementing such
video coding techniques. |

Video coding techniques include spatial (intra-picture) prediction and/or
temporal (inter-picture) prediction to reduce or remove redundancy inherent in video
sequences. For block-based video coding, a video slice (e.g., a video frame or a
portion of a video frame) may be partitioned into video blocks, which may also be
referred to as treeblocks, coding units (CUs) and/or coding nodes. Video blocks in an
intra-coded (I) slice of a picture are encoded using spatial prediction with respect to
reference samples in neighboring blocks in the same picture. Video blocks in an
inter-coded (P or B) slice of a picture may use spatial prediction with respect to

reference samples in neighboring blocks in the same picture or temporal prediction

with respect to reference samples in other reference pictures—Rictyres may be referred
12
~
to as frames, and reference pictures may be réferred tg*a referen
/n .
& N

10

15

20

25

30

Spatial or temporal predicﬁon results in a predictive block for a block to be
coded. Residual data represents pixel differences between the original block to be
coded and the predictive block. An inter-coded block is encoded according to a
motion vector that points to a block of reference samples forming the predictive
block, and the residual data indicating the difference between the coded block and the
predictive block. An intra-coded block is encoded according to an intra-coding mode
and the residual data. For further compression, the residual data may be transformed
from the pixel domain to a transform domain, resulting in residual transform
coefficients, which then may be quantized. The quantized transform coefficients,
initially arranged in a two-dimensional array, may be scanned in order to produce a
one-dimensional vector of transform coefficients, and entropy coding may be applied

to achieve even more compression.

SUMMARY

In general, this disclosure describes various techniques for supporting
extensions of coding standards, such as the upcoming High Efficiency Video Coding
(HEVC) standard, with only high-level syntax changes. For example, this disclosure
describes techniques in both the HEVC base specification and HEVC extensions of
multiview video codec and/or three-dimensional (3D) video codec, where the base
view is compatible with the HEVC base specification. In general, a “base video
coding specification” may correspond to a video coding specification, such as HEVC
base specification, that is used to code two-dimensional, single-layer video data.
Extensions to the base video coding specification may extend the capabilies of the
base video coding specification to allow for 3D and/or multi-layer video coding.
HEVC base specification represents an example of a base video coding specification,
while MVC and SVC extensions to the HEVC base specification represent examples
of extensions to a base video coding specification.

In one example, a method includes decoding a picture order count (POC)
value for a first picture of video data, decoding a second-dimension picture identifier
for the first picture, and decoding, in accordance with a base video coding

specification, a second picture based at least in part on the POC value and the second-

T e T X

—

5

10

156

20

25

30

dimension picture identifier of the first picture. The second-dimention picture

identifier may be further simplified to a type of the picture, e.g., whether the picture is

a long-term or short-term picture, or whether a picture, when it is a reference picture,

has the same picture order count (POC) value as that of the picture referring to it.

When generating motion vector candidates from neighboring blocks, a candidate may

be considered unavailable when the candidate has a different second-dimension

picture 1dentifier than that of the to-be-predicted motion vector, the second-dimension

picture identider of which is the picture this motion vector points to and identified by

a target reference index.

In another example, a method includes encoding a picture order count (POC)

value for a first picture of video data, encoding a second-dimension picture identifier

for the first picture, and encoding, in accordance with a base video coding

specification, a second picture based at least in part on the POC value and the second-

dimension picture identifier of the first picture.

In another example, a device includes a video decoder configured to decode a

picture order count (POC) value for a first picture of video data, decode a second-

dimension picture identifier for the first picture, and decode, in accordance with a

base video coding specification, a second picture based at least in part on the POC

value and the second-dimension picture identifier of the first picture.

In another example, a device includes a video encoder configured to encode a

picture order count (POC) value for a first picture of video data, encode a second-

dimension picture identifier for the first picture, and encode, in accordance with a

base video coding specification, a second picture based at least in part on the POC

value and the second-dimension picture identifier of the first picture.‘
In another example, a device includes means for decoding a picture order
count (POC) value for a first picture of video data, means for decoding a second-

dimension picture identifier for the first picture, and means for decoding, in

accordance with a base video coding specification, a second picture based at least in

part on the POC value and the second-dimension picture identifier of the first picture.

In another example, a device includes means for encoding a picture order

b e —

count (P.OC) value for a first picture of video data, means for encoding a second-

dimension picture identifier for the first picture, and means for encoding, in

,,,,,

10

15

20

25

30

accordance with a base video coding specification, a second picture based at least in
part on the POC value and the second-dimension picture identifier of the first picture.

In another example, a computer-readable storage medium having stored
thereon instructions that, when executed, cause a processor to decode a picture order
count (POC) value for a first picture of video data, decode a second-dimension picture
identifier for the first picture, and decode, in accordance with a base video coding
specification, a second picture based at least in part on the POC value and the second-
dimension picture identifier of the first picture.

In another example, a computer-readable storage medium having stored
thereon instructions that, when executed, cause a processor to encode a picture order
count (POC) value for a first picture of video data, encode a second-dimension picture
identifier for the first picture, and encode, in accordance with a base video coding
specification, a second picture based at least in part on the POC value and the second-
dimension picture identifier of the first picture.

The details of one or more examples are set forth in the accompanying
drawings and the description below. Other features, objects, and advantages will be

apparent from the description and drawings, and from the claims.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a block diagram illustrating an example video encoding and
decoding system that may utilize techniques for coding video data according to a
high-level syntax only extension of a video coding standard.

FIG. 2 is a block diagram illustrating an example of a video encoder that may
implement techniques for coding video data according to a high-level syntax only
extension of a video coding standard.

FIG. 3 is a block diagram illustrating an example of a video decoder that may
implement techniques for coding video data according to a high-level syntax only
extension of a video coding standard.

FIG. 4 is a conceptual diagram ‘iilﬁstrating an example MVC prediction

pattern.

Lt wa e o

,,,,,

10

15

20

25

30

FIGS. 5-9 are conceptual diagrams illustrating potential problems that should
be overcome to achieve a high-level syntax only HEVC extension.

FIG. 10 is a conceptual diagram illustrating an example set of neighboring
blocks to a current block for use in motion vector prediction. |

FIG. 11 is a flowchart illustrating an example method for encoding video data
in accordance with the techniques of this disclosure.

FIG. 12 is a flowchart illustrating an example method for‘decoding video data

in accordance with the techniques of this disclosure.

DETAILED DESCRIPTION

In general, this disclosure describes various techniques for supporting
extensions of coding standards, such as the upcoming High Efficiency Video Coding

(HEVC) standard, with only high-level syntax (HLS) changes. For example, this

. disclosure describes techniques in both the HEVC base specification and HEVC

extensions of multiview video coding (MVC) and/or three-dimensional video (3DV)
coding where the base view is compatible to the HEVC base specification.

This disclosure describes certain techniques to enable a high-level syntax only
profile in an HEVC extension specification. The term “inter-view” in the context of
MVC/3DV may be substituted by “inter-layer” in the context of Scalable Video
Coding (SVC). That is, although the description of these techniques primarily focuses
on “inter-view” prediction, the same or similar ideas may be applied to “inter-layer”
reference pictures for an HLS-only SVC extension of HEVC.

FIG. 1 is a block diagram illustrating an example video eﬁcoding and
decoding system 10 that may utilize techniques for coding video' data according to a
high-level syntax only extension of a video coding standard. As shown in FIG. 1,
system 10 includes a source device 12 that provides encoded video data to be decoded
at a later time by a destination device 14. In particular, source device 12 provides the
video data to destination device 14 via a computer-readable medium 16. Source
device 12 and destination device 14 may comprise any of a wide 1'ange of devices,
including desktop computers, notebook (i.e., laptop) computers, tablet computers, set-
top boxes, telephone handsets such as so-called “smart” phones, so-called “smart”

pads, televisions, cameras, display devices, digital media players, video gaming

~~~~~



10

15

20

25

30

consoles, video streaming device, or the like. In some cases, source device 12 and
destination device 14 may be equipped for wireless communication.

Destination device 14 may receive the encoded video data to be decoded via
computer-readable medium 16. Computer-readable medium 16 may comprise any
type of medium or device capable of moving the encoded video data from source
device 12 to destination device 14. In one example, computer-readable medium 16
may comprise a communication medium to enable source device 12 to transmit
encoded video data directly to destination device 14 in real-time. The encoded video
data may be modulated according to a communication standard, such as a wireless
communication protocol, and transmitted to destination device 14. The
communication medium may comprise any wireless or wired communication
medium, such as a radio frequency (RF) spectrum or one or more physical
transmission lines. The communication medium may form part of a packet-based
network, such as a local area nétwork, a wide-area network, or a global network such
as the Internet. The communication medium may include routers, switches, base
stations, or any other equipment that may be useful to facilitate communication from
source device 12 to destination device 14.

In some examples, encoded data may be output from output interface 22 to a
storage device. Similarly, encoded data may be accessed from the storage device by
input interface. The storage device may include any of a variety of distributed or
locally accessed data storage media such as a hard drive, Blu-ray discs, DVDs, CD-
ROMs, flash memory, volatile or non-volatile memory, or any other suitable digital
storage media for storing encoded video data. In a further example, the storage device
may correspond to a file server or another intermediate storage device that may store
the encoded video generated by source device 12. Destination device 14 may access
stored video data from the storage device via streaming or download. The file server
may be any type of server capable of storing encoded video data and transmitting that
encoded video data to the destination device 14. Example file servers include a web
server (e.g., for a website), an FTP server, network attached storage (NAS) devices, or
a local disk drive. Destination device 14 may access the encoded video data through
any standard data connection, including an Internet connection. ’fh“i‘sul-nay include a

wireless channel (e.g., a Wi-Fi connection), a wired connection (e.g., DSL, cable

.....

LM



10

15

20

25

30

modem, etc.), or a combination of both that is suitable for accessing encoded video
data stored on a file server. The transmission of encoded video data from the storage
device may be a streaming transmission, a download transmission, or a combination
thereof. |

The techniques of this disclosure are not necessarily limited to wireless -
applications or settings. The techniques may be applied to video coding in support of
any of a variety of multimedia applications, such as over-the-air television broadcasts,
cable television transmissions, satellite television transmissions, Internet streaming
video-transmissions, such as dynamic adaptive streaming over HITP (DASH), digital
video that is encoded onto a data storage medium, decoding of digital video stored on
a data storage medium, or other applications. In some examples, system 10 may be
configured to support one-way or two-way video transmission to support applications
such as video streaming, video playback, video broadcasting, and/or video telephony.

In the example of FIG. 1, source device 12 includes video source 18, video
encoder 20, and output interface 22. Destination device 14 includes input interface
28, video decoder 30, and display device 32. In accordance with this disclosure,
video encoder 20 of source device 12 may be configured to apply the techniques for
coding video data according to a high-level syntax only extension of a video coding
standard. In other examples, a source device and a destination device may include
other components or arrangements. For example, source device 12 may receive video
data from an external video source 18, such as an external camera. Likewise,
destination device 14 may interface with an external display device, rather than
including an integrated display device. .

The illustrated system 10 of FIG. 1 is merely one example. Techniques for
coding video data according to a high-level syntax only extension of a video coding
standard may be performed by any digital video encoding and/or decoding device.
Although generally the techniques of this disclosure are performed by a video
encoding device, the techniques may also be performed by a video encoder/decoder,
typically referred to as a “CODEC.” Moreover, the techniques of this disclosure may
also be performed by a video preprocessdr. Source device 12 and destination device
14 are merely examples of such coding devices in which source devig:é 12 generates

coded video data for transmission to destination device 14. In some examples,



10

15

20

25

30

devices 12, 14 may operate in a substantially symmetrical manner such that each of

devices 12, 14 include video encoding and decoding components. Hence, system 10
may support one-way or two-way video transmission between video devices 12, 14,

e.g., for video streaming, video playback, video broadcasting, or video telephony.

Video source 18 of source device 12 may include a video capture device, such
as a video camera, a video archive containing previously captured video, and/or a
video feed interface to receive video from a video content provider. As a further
alternative, video source 18 may generate computer graphics-based data as the source
video, or a combination of live video, archived video, and computer-generated video.
In some cases, if video source 18 is a video camera, source device 12 and destination
device 14 may form so-called camera phones or video phones. As mentioned above,
however, the techniques described in this disclosure may be applicable to video
coding in general, and may be applied to wireless and/or wired applications. In each
case, the captured, pre-captured, or computer-generated video may be encoded by
video encoder 20. The encoded video information may then be dutpht by output
interface 22 onto a computer-readable medium 16.

Computer-readable medium 16 may include transient media, ‘such as a
wireless broadcast or wired network transmission, or storage media (that is, non-
transitory storage media), such as a hard disk, flash drive, compact disc, digital video
disc, Blu-ray disc, or other computer-readable media. In some examples, a network
server (not shown) may receive encoded video data from source device 12 and
provide the encoded video data to destination device 14, e.g., via network
transmission. Similarly, a computing device of a medium production facility, such as
a disc stamping facility, may receive encoded video data from source device 12 and
produce a disc containing the encoded video data. Therefore, computer-readable
medium 16 may be understood to include one or more computer-readable media of
various forms, in various examples.

Input interface 28 of destination device 14 receives information from
computer-readable medium 16. The information of computer-readable medium 16
may include syntax information defined by video encoder 20, which is also used by
video decoder 30, that includes synfax elements”tﬁhét describe characteristi.cs and/or

processing of blocks and other coded units, e.g., GOPs. Display device 32 displays



10

15

20

25

30

the decoded video data to a user, and may comprise any of a variety of display
devices such as a cathode ray tube (CRT), a liquid crystal display (LCD), a plasma
display, an organic light emitting diode (OLED) display, or another type of display
device. '

Video enéoder 20 and video decoder 30 may operate according to a video
coding standard, such as the High Efficiency Video Coding (HEVC) standard
presently under development, and may conform to the HEVC Test Model (HM). A
recent draft of HEVC, referred to as “HEVC Working Draft 7” or “WD7” is described
in document JCTVC-11003, Bross et al., “High Efficiency Video Coding (HEVC)
Text Specification Draft 7,” Joint Collaborative Team on Video Coding (JCT-VC) of
ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11, 9th Meeting: Geneva,
Switzerland, April 27, 2012 to May 7, 2012, which, as of June 22, 2102, is
downloadable from http://pheni‘x.it-
sudparis.eu/jct/doc_end user/documents/9 Geneva/wgl1/JCTVC-11003-v3.zip. As
noted above, this disclosure includes techniques for extending HEVC using high-level
syntax. Accordingly, video encoder 20 and video decoder 30 may operate according
to a version of HEVC extended using high-level syntax.

Alternatively, video encoder 20 and video decoder 30 may operate according
to other proprietary or industry standards, such as the ITU-T H.264 standard,
alternatively referred to as MPEG-4, Part 10, Advanced Video Coding (AVC), or
extensions of such standards. Again, these extensions may be achieved using high-
level syntax. The techniques of this disclosure, however, are not limited to any
particular coding standard. Other examples of video coding standards include
MPEG-2 and ITU-T H.263. Although not shown in FIG. 1, in some aspects, video
encoder 20 and video decoder 30 may each be integrated with an audio encoder and
decoder, and may include appropriate MUX-DEMUX units, or other hardware and
software, to handle encoding of both audio and video in a common data stream or
separate data streams. If applicable, MUX-DEMUX units may conform to the ITU
H.223 hmltiplexer protocol, or other protocols such as the user datagram protocol
(UDP).

The ITU-T H.264/MPEG-4 (AVC) standard was formulated by the ITU-T
Video Coding Experts Group (VCEG) together with the ISO/IEC Moving Picture



10

15

20

25

30

10

Experts Group (MPEG) as the product of a collective partnership known as the Joint
Video Team (JVT). In some aspects, the techniques described in this disclosure may
be applied to devices that generally conform to the H.264 standard. The H.264
standard 1s described in ITU-T Recommendation H.264, Advanced Video Coding for
generic audiovisual services, by the ITU-T Study Group, and dated Mérch, 2005,
which may be referred to herein as the H.264 standard or H.264 specification, or the
H.264/AVC standard or specification. The Joint Video Team (JVT) continues to
work on extensions to H.264/MPEG-4 AVC.

Video encoder 20 and video decoder 30 each may be implemented as any of a
variety of suitable encoder circuitry, such as one or more microprocessors, digital
signal processors (DSPs), application specific integrated circuits (ASICs), field
programmable gate arrays (FPGAs), discrete logic, software, hardware, firmware or
any combinations thereof. When the techniques are implemented partially in
software, a device may store instructions for the software in a suitable, non-transitory
computer-readable medium and execute the instructions in hardware using one or
more processors to perform the techniques of this disclosure. Each of Video encoder
20 and video decoder 30 may be included in one or more encoders or decoders, either
of which may be integrated as part of a combined encoder/decoder (CODEC) in a
respective device.

The JCT-VC is working on development of the HEVC standard. The HEVC
standardization efforts are based on an evolving model of a video coding device
referred to as the HEVC Test Model (HM). The HM presumes several additional
capabilities of video coding devices relative to existing devices according to, e.g.,
ITU-T H.264/AVC. For example, whereas H.264 provides nine intra-prediction
encoding modes, the HM may provide as many as thirty-three intra-prediction
encoding modes. |

In general, the working model of the HM describes that a video frame or
picture may be divided into a sequence of treeblocks or largest coding units (LCU)
that include both luma and chroma samples. Syntax data within a bitstream may
define a size for the LCU, which is a largest coding unit in terms of the number of
pixels. A slice includes a number of consecutive treeblocks in coding order. A video

frame or picture may be partitioned into one or more slices. Each treeblock may be

......



10

15

20

25

30

11

split into coding units (CUs) according to a quadtree. In general, a qﬁadtree data
structure includes one node per CU, with a root node corresponding to the treeblock.
If a CU is split into four sub-CUs, the node corresponding to the CU includes four
leaf nodes, each of which corresponds to one of the sub-CUs. |

Each node of the quadtree data structure may provide syntax data for the
corresponding CU. For example, a node in the quadtree may include a split flag,
indicating whether the CU corresponding to the node is split into sub-CUs. Syntax
elements for a CU may be defined recursively, and may depend on whether the CU is
split into sub-CUs. If a CU is not split further, 1t is referred as a leaf-CU. In this
disclosure, four sub-CUs of a leaf-CU will also be referred to as leaf-CUs even if
there is no explicit splitting of the original leaf-CU. For example, ifa CU at 16x16
size is not split further, the four 8x8 sub-CUs will also be referred to as leaf-CUs
although the 16x16 CU was never split.

A CU has a similar purpose as a macroblock of the H.264 standard, except that
a CU does not have a size distinction. For example, a treeblock may be split into four
child nodes (also referred to as sub-CUs), and each child node may in turn be a parent
node and be split into another four child nodes. A final, unsplit child node, referred to
as a leaf node of the quadtree, comprises a coding node, also referred to as a leaf-CU.
Syntax data associated with a coded bitstream may define a maximum number of
times a treeblock may be split, referred to as a maximum CU depth, and may also
define a minimum size of the coding nodes. Accordingly, a bitstream may also define
a smallest coding unit (SCU). This disclosure uses the term “block” to refer to any of
a CU, PU, or TU, in the context of HEVC, or similar data structures in the context of
other standards (e.g., macroblocks and sub-blocks thereof in H.264/AVC).

A CU includes a coding node and prediction units (PUs) and transform units
(TUs) associated with the coding node. A size of the CU corresponds to a size of the
coding node and must be square in shape. The size of the CU may range from 8x8
pixels up to the size of the treeblock with a maximum of 64x64 pixels or greater.
Each CU may contain one or more PUs and one or more TUs. Syntax data associated
with a CU may describe, for example, partitioning of the CU into one or more PUs.
i’artitioning modes may differ between whether the CU is skip or direct mode

encoded, intra-prediction mode encoded, or inter-prediction mode encoded. PUs may



10

15

20

25

30

12

be partitioned to be non-square in shape. Syntax data associated with a CU may also
describe, for example, partitioning of the CU into bne or more TUs according to a
quadtree. A TU can be square or non-square (e.g., rectangular) in shape.

The HEVC standard allows for transformations according to TUs, which may
be different for different CUs. The TUs are typically sized based on the size of PUs
within a given CU defined for a partitioned LCU, although this may not always be the
case. The TUs are typically the same size or smaller than the PUs. In some
examples, residual samples corresponding to a CU may be subdivided into smaller
units using a quadtree structure known as “residual quad tree” (RQT). The leaf nodes
of the RQT may be referred to as transform units (TUs). Pixel difference values
associated with the TUs may be transformed to produce transform coefficients, which
may be quantized.

A leaf-CU may include one or more prediction units (PUs). In general, a PU
represents a spatial area corresponding to all or a portion of the corresponding CU,
and may include data for retrieving a reference sample for the PU. Moreover, a PU
includes data related to prediction. For example, when the PU is intra-mode encoded,
data for the PU may be included in a residual quadtree (RQT), which may include
data describing an intra-predictio‘n mode for a TU corresponding to the PU. As
another example, when the PU is inter-mode encoded, the PU may include data
defining one or more motion vectors for the PU. The data defining the motion vector
for a PU may describe, for example, a horizontal cbmponent of the motion vector, a
vertical component of the motion vector, a resolution for the motion vector (e.g., one-
quarter pixel precision or one-eighth pixel precision), a reference picture to which the
motion vector points, and/or a reference picture list (e.g., List 0, List 1, or List C) for
the motion vector.

A leaf-CU having one or more PUs may also include one or more transform
units (TUs). The transform units may be specified using an RQT (also referred to as a
TU quadtree structure), as discussed above. For example, a split flag may indicate

whether a leaf-CU is split into four transform units. Then, each transform unit may be

split further into further sub-TUs. When a TU is not split further, it may be referred

to as a leaf-TU. Generally, for intra coding, all the leaf-TUs belonging to a leaf-CU

share the same intra prediction mode. That is, the same intra-prediction mode is



10

15

20

25

30

13

generally applied to calculate predicted values for all TUs of a leaf-CU. For intra
coding, a video encoder may calculate a residual value for each leaf-TU using the
intra prediction mbde, as a difference between the portion of the CU corresponding to
the TU and the original block. A TU 1s not necessarily limited to the size of a PU.
Thus, TUs may be larger or smaller than a PU. For intra coding, a PU may be
collocated with a corresponding leaf-TU for the same CU. In some examples, the
maximum size of a leaf-TU may correspond to the size of the corresponding leaf-CU.

Moreover, TUs of leaf-CUs may also be associated with respective quadtree
data structures, referred to as residual quadtrees (RQTs). That 1s, a leaf-CU may
include a quadtree indicating how the leaf-CU is partitioned into TUs. The root node
of a TU quadtree generally corresponds to a leaf-CU, while the root node of a CU
quadtree generally corresponds to a treeblock (or LCU). TUs of the RQT that are not
split are referred to as leaf-TUs. In general, this disclosure uses the terms CU and TU
to refer to leaf-CU and leaf-TU, respectively, unless noted otherwise.

A video sequence typically includes a series of video frames or pictures. A

group of pictures (GOP) generally comprises a series of one or more of the video

pictures. A GOP may include syntax data in a header of the GOP, a header of one or -

more of the pictures, or elsewhere, that describes a number of pictures included in the
GOP. Each slice of a picture may include slice syntax data that describes an encoding
mode for the respective slice. Video encoder 20 typically operates on video blocks
within individual video slices in order to encode the video data. A video block may
correspond to a coding node within a CU. The video blocks may have fixed or
varying sizes, and may differ in size according to a speciﬁed coding standard.

As an example, the HM supports prediction in various PU sizes. Assuming
that the size of a particular CU is 2Nx2N, the HM supports intra-prediction in PU
sizes of 2Nx2N or NxN, and inter-prediction in symmetric PU sizes of 2Nx2N, 2NxN,
Nx2N, or NxN. The HM also supports asymmetric partitioning for inter-prediction in
PU sizes of 2NxnU, 2NxnD, nLx2N, and nRx2N. In asymmetric partitioning, one
direction of a CU is not partitioned, while the other direction is partitioned into 25%
and 75%. The portion of the CU corresponding to the 25% partition is indicated by

an “n” followed by an indication of “Up,” “Down,” “Left,” or “Right.” Thus, for



10

15

20

25

30

14

example, “2NxnU” refers to a 2Nx2N CU that is partitioned horizontally with a
2Nx0.5N PU on top and a 2Nx1.5N PU on bottom.

In this disclosure, “NxN” and “N by N” may be used interchangeably to refer
to the pixel dimensions of a video block in terms of vertical and horizontal
dimensions, e.g., 16x16 pixels or 16 by 16 pixels. In general, a 16x16 block will have
16 pixels in a vertical direction (y = 16) and 16 pixels in a horizontal direction (x =
16). Likéwise, an NxN block generally has N pixels in a vertical direction and N
pixels in a horizontal direction, where N represents a nonnegative integer value. The
pixels in a block may be arranged in rows and columns. Moreover, blocks need not
necessarily have the same number of pixels in the horizontal direction as in the
vertical direction. For example, blocks may comprise NxM pixels, where M is not
necessarily equal to N.

Following intra-predictive or inter-predictive coding using the PUs of a CU,
video encoder 20 may calculate residual data for the TUs of the CU.. The PUs may
comprise syntax data describing a method or mode of generating predictive pixel data
in the spatial domain (also referred to as the pixel domain) and the TUs may comprise
coefficients in the transform domain following application of a transform, e.g., a
discrete cosine transform (DCT), an integer traﬁsform, a wavelet transform, or a
conceptually similar transform to residual video data. The residual data may
correspond to pixel differences between pixels of the unencoded picture and
prediption values corresponding to the PUs. Video encoder 20 may form the TUs
including the residual data for the CU, and then transform the TUs to produce
transform coefficients for the CU. |

Following any transforms to produce transform coefficients, video encoder 20
may perform quantization of the transform coefficients. Quantization generally refers
to a process in which transform coefficients are quantized to possibly reduce the
amount of data used to represent the coefficients, providing further compression. The
quantization process may reduce the bit depth associated with some or all of the
coefficients. For example, an n-bit value may be rounded down to an m-bit value
during quantization, where n is greater than m.

Following quantization, the video encoder may scan the transform

coefficients, producing a one-dimensional vector from the two-dimensional matrix



10

15

20

25

30

15

including the quantized transform coefficients. The scan may be designed to place
higher energy (and therefore lower frequency) coefficients at the front of the array
and to place lower energy (and therefore higher frequency) coefficients at the back of
the array. In some examples, video encoder 20 may utilize a predefined scan order to
scan the quantized transform coefficients to produce a serialized vector that can be
entropy encoded. In other examples, video encoder 20 may perform an adaptive scan.
After scanning the quantized transform coefficients to form a one-dimensional vector,
video encoder 20 may entropy encode the one-dimensional vector, e.g., according to
context-adaptive variable length coding (CAVLC), context-adaptive binary arithmetic
coding (CABAC), syntax-based context-adaptive binary arithmetic coding (SBAC),
Probability Interval Partitioning Entropy (PIPE) coding or another entropy encoding
methodology. Video encoder 20 may also entropy encode syntax elements associated
with the encoded video data for use by video decoder 30 in decoding the video data.

To perform CABAC, video encoder 20 may assign a context within a context
model to a symbol to be transmitted. The context may relate to, for example, whether
neighboring values of the symbol are non-zero or not. To perform CAVLC, video
encoder 20 may select a variable length code for a symbol to be transmitted.
Codewords in VLC may be constructed such that relatively shorter codes correspond
to more probable symbols, while longer codes correspond to less probable symbols.
In this way, the use of VLC may achieve a bit savings over, for example, using equal-
Iength codewords for each symbol to be transmitted. The probability determination
may be based on a context assigned to the symbol.

Video encoder 20 may further send syntax data, such as block-based syntax
data, frame-based syntax data, and GOP-based syntax data, to video decoder 30, e.g.,
in a frame header, a block header, a slice header, or a GOP header. The GOP syntax
data may describe a number of frames in the respective GOP, and the frame syntax
data may indicate an encoding/prediction mode used to encode the ‘corresponding
frame.

In general, this disclosure describes various examples of solutions for enabling
a high-level syntax (HLS)-only extension of a video coding standard, such as HEVC.
For example, these techniques may be used to develop an HLS-only extension for a

profile of HEVC, such as MVC or SVC. Various examples are described below. It

,,,,,,



10

15

20

25

30

16

should be understood that although various examples are described separately,
elements of any or all of the examples may be combined in any combination.

In a first example, there are no changes to the current HEVC base
specification. In the HEVC extension, a picture (e.g., a view component) may be
identified by two properties: its picture order count (POC) value and a second-
dimension picture identifier, e.g.., a view_id value (which may identify a view in
which the picture is present). Video encoder 20 may be required to indicate a view
component to be used for inter-view prediction as a long-term reference picture.

In a second example, there are no changes to the current HEVC base
specification. In the HEVC extension, the following changes may apply. A picture
(e.g., a view component) may be identified by two properties: POC value and a
second-dimension picture identifier, e.g., view_1d. In this second example, an
additional picture marking pfocess may be introduced immediately before coding a
current view component, to mark all the inter-view reference pictures as long-term
reference pictures. Another picture marking process may be introduced immediately
after coding a current view component, to mark each inter-view reference picture as
either long-term, short-tem, or “unused for reference,” which is the same as its
previous marking status before the current view component is coded.

In a third example, techniques of the second example are used and
supplemented as follows. In addition to the techniques of the second example, for
each inter-view reference picture, after it is marked as a long-term reference picture,
its POC value is mapped to a new POC value, which is not equivalent to the POC
value of any existing reference picture. After decoding the current view component,
for each inter-view reference picture, its POC value is mapped back to the original
POC value, which is equal to the current view component. For example, the current
view component may belong to view 3 (assuming view identifier is equal to view
order index), and may have a POC value equal to 5. Two inter-view reference
pictures may have their POC values (which are both 5) converted to, e.g., 1025 and
2053. After decoding the current view,component, the POC values of the inter-view
pictures may be converted back to 5.

In a fourth example, techniques of either the second or third examples may be

used and supplemented as follows. In addition to the techniques of the first example

D]

LA

]

LI



10

15

20

25

30

C . C

17

or the second example, as referred to above, in the HEVC base specification, an
additional hook may be used to disable prediction between any motion vector

referring to a short-term picture and another motion vector referring to long-term

‘pictures, especially during advanced motion vector prediction (AMVP).

In a fifth example, in the HEVC extension, a picture may be identified by two
properties: POC value and a second-dimension picture identification, e.g., view_id.
In the HEVC base specification, one or more of the following hooks may be added
(alone or in any combination). In one example (referred to as example 5.1), when
identifying a reference picture during AMVP and merge mode, a second-dimension
picture identification, e.g., view order index, may be used together with POC. In the
context of two-dimensional 2D video decoding in the HEVC base specification, the
second-dimension picture identification may always be set equal to 0.

In another example (example 5.2), prediction between temporal motion vector
and inter-view motion vector is disabled during AMVP (including temporal motion
vector prediction (TMVP)). Whether a property of the motion vector may be decided
by the associated reference index, which indentifies a reference picture and how the
reference picture is being refered to by the picture containing the motion vector, e.g.,
as a long-term reference picture, a short-term reference picture, or an inter-view
reference picture. In another example (example 5.3), prediction between a temporal
short-term motion vector and temporal long-term motion vector may be disabled (e.g.,
explicitly or implicitly). In another example (example 5.4), prediction between
temporal short-term motion vector and temporal long-term motion vector may be
enabled (e.g., explidtly or implicitly).

In another example (example 5.5), prediction between motion vectors
referring to two different inter-view reference pictures may be disabled (e.g.,
explicitly or implicitly). Two inter-view reference pictures may be considered as
having different types if the second-dimension picture identifier values for them are
different. In another example (example 5.6), prediction between motion vectors
referring to two different inter-view refel‘rence pictures may be enabled (e.g., explicitly
or implicitly). In another example (example 5.7), prediction between motion vectors
referring to a long-term picture and an inter-view may be enabled (e.g., explicitly or

implicitly). In another example (example 5.8), prediction between motion vectors



10

15

20

25

30

c . c

18

referring to a long-term picture and an inter-view may be disabled (e.g., explicitly or
implicitly).

In any of the examples above, prediction between two motion vectors referring
to two different temporal short-term reference pictures may always be enabled and
scaling from one to the other based on POC values may be enabled. Additionally or
alternatively, in any of the examples above, prediction between motion vectors
referring to two different long-term pictures may be disabled. Certain details of the
various examples described above are discussed in greater detail below.

In general, this disclosure refers to a “motion vector” or “motion vector data”
as including a reference index (that is, a pointer to a reference picture) and x- and y-
coordinates of the motion vector itself. Both a disparity motion vector and a temporal
motion vector may generally be referred to as “motion vectors.” A reference picture
corresponding to a reference index may be referred to as the reference picture to
which a motion vector refers. If a motion vector refers to a reference picture in the
same view, it is called a temporal motion vector. If a motion vector refers to a
reference picture of a different view, it is called a disparity motion vector.

A temporal motion vector can be a short-term temporal motion vector (“short-
term motion vector”) or a long-term temporal motion vector (“long—tehn motion
vector”). For example, a motion vector is short-term if it refers to a short-term
reference picture, while a motion vector is long-term if it refers to a long-term
reference picture. Note that unless otherwise mentioned, a disparity motion vector
and a long-term motion vector generally describe different categories of motion
vectors, e.g., for inter-view prediction and temporal intra-view prediction,
respectively. Short-term and long-term reference pictures represent examples of
temporal reference pictures.

“ Video encoder 20 and video decoder 30 may be configured to identify a
reference picture from a decoded picture buffer (DPB), which may be implemented as
a reference picture memory. The process of identifying a reference picture from the
DPB may be used in any of the examples of the techniques described in this
disclosure. The process of identifying a reference picture from the DPB may be used
for the following purposes in the HEVC extension specification: reference picture set

construction, reference picture list construction, and/or reference picture marking.

-----



10

15

20

25

30

19

A view component, a texture view component, a depth view component, or a
scalable layer (with, e.g., a specific combination of dependency id and quality id)
may be identified with a picture order count (POC) value ahd a second-dimension
picture identification information. The second-dimension picture identification
information may include one or more of the following: view ID (view_id) in
multiview context; view order index in multiview context; in 3DV (multiview with
depth) context, a combination of view order index and a depth_flag (indicating
whether the current view component is texture or depth), e.g., view order index
multiplied by two plus the value of the depth_flag; in SVC context, layer ID (in a
scalable coding environment, e.g., in AVC-based SVC, the layer ID may be equal to
dependency id multiplied by 16 plus quality id); or a generic layer ID (layer id),
e.g., the value of reserved_one Sbits minus 1, wherein reserved_one 5bits is as
specified in the HEVC base specification. Note that a generic layer ID may be
applicable to mixed 3DV (multiview with depth) and scalability scenarios. The above
mentioned examples may apply to any multiple layer codec, including scalable video
codec, by, e.g., considering each layer as a view. In other words, for multivew video
coding, the various views may be considered separate layers.

In some scenarios, a base layer or dependent view might have multiple
representations, €.g., due to the use of different upsampling/smoothing filters, or due
to the fact of using a view synthesized picture for prediction; thus, in one view
location, there might be two pictures ready for use, where one is the normal
reconstructed dependent view picture, and the other is the synthesized view picture,
both with the same view_id or view order index. In this case, a third-dimension
picture identification may be used.
| Video encoder 20 and video decoder 30 may also be configured to identify a
reference picture from reference picture lists. The decoded picture buffer (DPB) may
be organized into reference picture lists, e.g., RefPicList0 that includes potential
reference pictures having POC values less than the POC value of a current picture and
RefPicListl that includes potential reference pictures having POC values greater than
the POC value of the current picture. Techniques for identifying a reference picture

from a reference picture list are used as a hook for the current HEVC base



10

15

20

25

30

20

specification. Defined functions may be invoked multiple times by a video encoder or
a video decoder during AMVP and merge mode.

A view component, a texture view component, a depth view component, or a
scalable layer (with e.g., a specific combination of dependency id and quality id)
may be identified with POC value and a second-dimension picture identification
information, which can be one of the following: view order index in the context of
either multiview or 3DV. The function viewOIdx( pic ) returns the view order index
of the view to which the picture identified as “pic” belongs. This function returns 0
for any view component, texture view component, or depth view component of the
base view; view ID (view_id); in 3DV context, a combination of view order index and
a depth_flag (indicating whether the current view component is texture or depth):
view order index multiplied by two plus the value of the depth_flag; in SVC context,
layer ID (in a scalable coding environment, e.g., in AVC-based SVC, the layer ID
may be equal to dependency id multiplied by 16 plus quality id); or a generic layer
ID (layer id), e.g., the value of reserved one_5bits minus 1, wherein
reserved_one_5bits is as specified in the HEVC base specification. The function
layerld( pic ) returns the layer_id of picture pic. Layerld(pic) returns O for any
(texture) view component of the base view. Layerld(pic) returns 0 for any picture (or
layer representation) of the SVC base layer. Note that a generic layer ID may be
applicable to mixed 3DV (multiview with depth) and scalability scenarios.

In some scenarios, a base layer or dependent view might have multiple
representations, e.g., due to the use of different upsampling/smooth filters, or due to
the fact of using a view synthesized picture for prediction; thus in one view location,
there might be two pictures ready for use: one is the normal reconstructed dependent
view picture, the other is the synthesized view picture, both with the same view_id or
view order index. In this case, a third-dimension picture identification may be used.

One or more of the above mentioned second-dimension and/or third-
dimension picture identifications may be defined by using the function
AddPicld( pic). v

Video encoder 20 and video décoder 30 may also be configured to identify a
type of an entry in a reference picture list. This may be used as a hook for the current

HEVC base specification. Any or all of the functions defined below may be invoked



D

10

15

20

25

30

21

multiple times by video encoder 20 and/or video decoder 30 during AMVP and/or
merge mode. Anyv or all of the following example techniques may be used to identify
the type of an entry in a reference picture list. In one example, a function
“RefPicType( pic )” returns 0 if the picture pic is a temporal reference picture, and
returns 1 if the picture pic is a not a temporal reference picture. Ih another example, a
function RefPicType( pic ) returns 0 if the picture pic has the same POC as the current
picture, and returns 1 if the picture pic has a different POC than the current picture.

In another example, the results of the examples discussed above may be
achieved by replacing use of the function RefPicType( pic ) by just checking whether
the POC of “pic” (the argument to the function) is equal to the POC of the current
picture. In some examples, an inter-view reference picture may be marked as “unused
for reference.” An inter-view reference picture may be marked as “unused for
reference.” For simplicity, such a picture is referred to as a non-reference picture in
HEVC base specification. In some examples, a picture marked as either “used for
long-term reference” or “used for short-term reference” may be referred to as a
reference picture in HEVC base specification. In some examples, the function
RefPicType( pic ) returns 0 if the picture pic is marked as “used for long term
reference” or “used for short term reference,” and returns 1 if the picture pic is
marked as “unused for reference.” In addition, in some examples, in the HEVC
extension, a view component, immediately after its decoding, may be marked as
“unused for reference,” regardless of the value of the nal ref flag syntax element.

After the entire access unit is coded, the view components of the access unit
may be marked as “used for short-term reference” or “used for long-term reference” if
nal ref flagis true. Alternatively, a view component may only be marked as “used
for short-term reference” or “used for long-term reference” if it is included in the
Reference Picture Set (RPS) of a succeeding view component in decoding order in the
same view, immediately after the RPS for the succeeding view cémponent is derived.
In addition, in the HEVC base specification, a current picture, immediately after its
decoding, may be marked as “unused for reference.”

In some examples, RefPicType( picX, refldx, LX) returns the value of
RefPicType(pic) at the time when picX was the current picture, wherein pic is the

reference picture with index refldx from reference picture list LX of the picture picX.



10

15

20

25

30

22

With respect to the example referred to above as the “fourth example,” video
encoder 20 and video decoder 30 may be configured to enable prediction between
long-term reference pictures without scaling during AMVP and TMVP. With respect
to AMVP, video encoder 20 and video decoder 30 may be configured to perform a
modified derivation process for motion vector predictor (MVP) candidates. Inputs to
the process may include a luma location ( xP, yP ) specifying the top-left luma lsample
of the current prediction unit relative to the top-left sample of the current picture,
variables specifying the width and the height of the prediction unit for luma, nPSW
and nPSH, and the reference index of the current prediction unit partition refldxLX
(with X being 0 or 1). Outputs of the process may include (where N is replaced with
either A or B, where A corresponds to left-neighboring candidates and B corresponds
to above-neighboring candidates, as shown in the example of FIG. 10) the motion
vectors mvLXN of the neighboring prediction units and the availability flags v
availableFlagL XN of the neighboring prediction units. The variable 1sScaledFlagl.X
with X being 0 or 1 may be set equal to 0.

Video encoder 20 and video decoder 30 may derive the motion vector mvLXA and
the availability flag availableFlagL XA in the following ordered steps in one example,

where underlined text represents changes relative to HEVC WD7:

1. Let a set of two sample locations be (XA, yAx), with k = 0, 1, specifying
sample locations with xAg = xP — 1, yAp = yP + nPSH and yA, = yA, -
MinPuSize. The set of sample locations ( XAy, YAy ) represent the sample
locations immediately to the left side of the left partition boundary and its

extended line.

2. Let the availability flag availableFlagl. XA be initially set equal to 0 and the

both components of mvLXA are set equal to 0.

3. When one or more of the following conditions are true, the variable

isScaledFlagl.X is set equal to 1, in this example.

— the prediction unit covering luma location ( XA, yAo ) is available [Ed.
(BB): Rewrite it using MinCbAddrZS{ ][ ] and the availibility process for
minimum coding blocks ] and PredMode is not MODE INTRA.

,,,,,,



b« st bk e

10

15

20

25

30

23

— the prediction unit covering luma location ( XA, yA; ) is available [Ed.
(BB): Rewrite it using MinCbAddrZS[ ][ ] and the availibility process for
minimum coding blocks ] and PredMode is not MODE INTRA.

4. For ( xAg, YAk ) from ( xAq, YAo ) to ( XAy, YA; ) where
yA1 =yAo — MinPuSize, the following applies repeatedly until
availableFlagl. XA is equal to 1:

— If the prediction unit covering luma location ( xAy, yAx ) is available [Ed.
(BB): Rewrite it using MinCbAddrZS[ ][ ] and the availiBility process for
minimum coding blocks ], PredMode is not MODE IN TRA,
predFlagLX[ xAg ][ yAx ] is equal to 1 and the reference index
refldxLX[ xAg ][ yAx ] is equal to the reference index of the current
prediction unit retldxLX, availableFlagl. XA is set equal to 1 and the
motion vector mvLXA is set equal to the motion vector
mvLX[ xAg J[ YA ], refldxA 1s set equal to refldxLX[ xAx ][ YAk ]
and ListA 1s set equal to ListX.

— Otherwise, if the prediction unit covering luma location ( XAk, yAk ) is
available [Ed. (BB): Rewrite it using MinCbAddrZS[ ][ ] and the
availibility process for minimum coding blocks ], PredMode is not
MODE _INTRA, predFlagLY[ xAg ][ yAx ] (with Y =!X) is equal to 1
and PicOrderCnt( RefPicListY[ refldxLY[ xAx ][ yAk ] ]) is equal to
PicOrderCnt( RefPicListX][ refldxLX ] ), availableFlagl. XA is set equal to
1, the motion vector mvLXA is set equal to the motion vector
mvLY[ xAg ][ yAk ], refldxA is set equal to refldxLY[ xAx ][ YAk 1,

ListA is set equal to ListY and mvLXA is set equal to mvLXA.

5. When availableFlagl. XA is equal to 0, for ( xAy, yAx ) from ( xAy, yA¢ ) to
(xAj, yA) where yA; = yA, - MinPuSize, the following applies repeatedly
until availableFlagLXA is equal to 1, in this example:

A

— If the prediction unit covering luma location ( XAy, yAy ) is available [Ed.

YT (BB): Rewrite it using MinCi:iAderS[ 1[ ] and the availibility process for =

minimum coding blocks ], PredMode is not MODE INTRA,

-



C - g

=
.....

predFlagLX[ xAy ][ yAx ] 1s equal to 1, and RefPicLiétX[ refldxLX ] and
RefPicListX] refldxLX[ xAx ][ yAx ] ] are both long-term reference =

pictures or are both short-term reference pictures, availableFlaglL XA is set o

equal to 1, the motion vector mvLXA is set equal to the motion vector

mvLX[ xAg ][ yAx ], refldxA is set equal to refldxLX[ xAy ][ yA ], ListA J
is set equal to ListX. : e

— Otherwise, if the prediction unit covering luma location ( xAy, yAx ) is
available [Ed. (BB): Rewrite it using MinCbAddrZS[ ][ ] and the s
availibility process for minimum coding blocks ], PredMode is not
MODE INTRA, predFlagLY[ xAg ][ yAx ] (with Y = !X) is equal to 1,
and RefPicListX[ refldxLX ] and RefPicListY[ refldxLY[ xAy J[ YAk 11

are both long-term reference pictures or are both short-term reference

pictures, availableFlagL XA is set equal to 1, the motion vector mvLXA is
set equal to the motion vector mvLY[ xAg ][ YAk ], refldxA is set equal to
refldxLY[ xAx ][ yAk ], ListA is set equal to ListY.

— When availableFlaglL. XA is equal to 1, and both RefPicListA[ refldxA ]
and RefPicListX[ refldxLX ] are short-term reference pictures, mvLXA is
derived as specified below (where the notation 8-### refers to sections of

the current draft of HEVC, that is, WD7).
tx = (16384 + ( Abs(td)>>1))/td (8-126)
DistScaleFactor = Clip3( —4096, 4095, (tb * tx +32)>>6) (8-127)

mvLXA = Clip3( —8192, 8191.75, Sign( DistScaleFactor * mvLXA ) *

( (Abs( DistScaleFactor * mvLXA )+ 127)>>8)) (8-128)

where td and tb may be derived as

td = Clip3( —128, 127, PicOrderCntVal —
RicOrderCnt( RefPicListA[-refldxA])) - -- e - (8-129)--



25

tb = Clip3( —128, 127, PicOrderCntVal — )
PicOrderCnt( RefPicListX[ refldxLX ])) (8-130) f
Video encoder 20 and video decoder 30 may be configured to derive the motion i
vector mvLXB and the availability flag availableFlagl. XB in the following ordered
5 steps in one example, where underlined text represents changes relative to HEVC !

WD7 ’ e

1. Let a set of three sample location (xBy, yBy), with k = 0,1,2, specifying sample =

locations with xBg = xP + nPSW, xB = xBy— MinPuSize , i
xB; = xP — MinPuSize and yBy = yP — 1. The set of sample locations j
10 ( xBy, yBx ) represent the sample locations immediately to the upper side of

the above partition boundary and its extended line. [Ed. (BB): Define
MinPuSize in the SPS but the derivation should depend on the use of an AMP

flag |

2. When yP-1 is less than (( yC >> Log2CtbSize ) << ‘LogZCtbSize), the

15 following applies.
xBg = (xB¢>>3)<<3) + ((xBg>>3)&1)*7 | (8-131)
xB; = (xB1>>3)<<3) + (xB>>3)&1)*7 (8-132)

xB; = (xBp>>3)<<3) + ((xB>>3)&1)*7 (8-133)

3. Let the availability flag availableFlagl.XB be initially set equal to 0 and the

20 both components of mvLXB are set equal to 0.

4. For ( xBy, yBy ) from ( xBy, yBo ) to ( xB,, yB; ) where xBq = xP + nPSW,
xB; = xBy — MinPuSize , and xB, = xP — MinPuSize, the following applies
repeatedly until availableFlagl. XB is equal to 1:

— If the prediction unit covering luma location ( xBy, yBy ) is available [Ed.
25 (BB): Rewrite it using MinCbAddrZS[ ][ ] and the availibility process for
minimum coding blocks ], PredMode is not MODE_INTRA,
predFlagLX[ xBy ][ yBx ] is equal to 1, and the reference index

- - - P B i T F ke L LE

refldxLX[ xBy ][ yB«k ] is equal to the reference index of the current

prediction unit refldxLX, availableFlagL.XB is set equal to 1 and the



10

15

20

25

L mairn

30

C . | c

26

motion vector mvLXB is set equal to the motion vector

mvLX[ xBi ][ yBk ], refldxB is set equal to refldxLX[ xBy ][ yBx ]
and ListB is set equal to ListX.

— Otherwise, if the prediction unit covering luma location ( xBy, yBx ) is
available [Ed. (BB): Rewrite it using MinCbAddrZS[ ][ ] and the
availibility process for minimum coding blocks ], PredMode is not
MODE INTRA, predFlagLY[ xBy J[ yBx ] (with Y =!X) is equal to 1,
and PicOrderCnt( RefPicListY[ refldx LY[ xBy ][ yBx ] ] ) is equal to

PicOrderCnt( RefPicListX[ refldxLX ] ), availableFlagLXB is set equal to

1, the motion vector mvLXB is set equal to the motion vector

mvLY[ xBy ][ yBk ], refldxB is set equal to refldxLY[ xBy ][ yBk ], and

ListB is set equal to ListY.

When 1sScaledFlagl. X is equal to 0 and availableFlagLXB is equal to 1,
mvLXA is set equal to mvLXB and refldxA is set equal to refldxB and
availableFlagL XA is set equal to 1.

When isScaledFlagLX is equal to 0, availableFlagLXB is set equal to 0 and

for ( xBy, yBx ) from ( xBo, yBy ) to ( xB3, yB, ) where xBg = xP +nPSW,
xB; =xBy - MinPuSize , and xB, = xP - MinPuSize, the following applies
repeatedly until availableFlagl. XB is equal to 1:

— If the prediction unit covering luma location ( xBy, yBy ) is available [Ed.

(BB): Rewrite it using MinCbAddrZS[ ][ ] and the availibility process for

minimum coding blocks ], PredMode is not MODE INTRA,

predFlagl X[ xBy ][ yBx ] is equal to 1, and RefPicListX[ refldxL.X ] and

RefPicListX[ refldxLX[ xBy ][ yBy ] ] are both long-term reference

pictures or are both short-term reference pictures, availableFlagl. XB is set

equal to 1, the motion vector mvLXB is set equal to the motion vector

mvLX[ xBy ][ yBx ], refldxB is set equal to refldxLX[ xBy ][ yBx ], ListB

is set equal to ListX.

" Otherwise, if the prediction unit covering luma location ( xBy, yBy ) is

available [Ed. (BB): Rewrite it using MinCbAddrZS[ ][ ] and the

......



27

availibility process for minimum coding blocks ], PredMode is not
MODE_INTRA, predFlagL Y[ xBx ][ yBx ] (With Y = !X) is equal to 1,
and RefPicListX[ refldxLX ] and RefPicListY{ refldxLY[ xBy [ yBx 1]

are both long-term reference pictures or are both short-term reference

5 pictures, availableFlagl XB 1is set equal to 1, the motion vector mvLXB is
set equal to the motion vector mvLY[ xBy ][ yBx ], refldxB is set equal to

refldx LY[ xBy ][ yBx ], ListB is set equal to ListY.

~ When availableFlagl XB is equal to 1 and
PicOrderCnt( RefPicListB[ refldxB ] ) is not equal to
10 PicOrderCnt( RefPicListX[ refldxLLX ] ) and both RefPicListB[ refldxB ]
and RefPicListX[ refldx.X ] are short-term reference pictures, mvLXB

ecified helow (where the notation 8-#4## referg to
111eQ BeiowW (wWh notation $-7##F reiers 1o

il ouiaw

may be derived as s

Un uva

sections of the current draft of HEVC).
tx =(16384+ (Abs(td)>>1))/td
15 DistScaleFactor = Clip3( —4096, 4095, (tb *tx +32)>>6) (8-135)

mvLXB =Clip3( -8192, 8191.75, Sign( DistScaleFactor * mvLXA )

( (Abs( DistScaleFactor * mvLXA )+ 127)>>8)) (8-136)

where td and tb may be derived as

20 td = Clip3( —128, 127, PicOrderCntVal —-
PicOrderCnt( RefPicListB[ refldxB ]) ) (8-137)

tb = Clip3( —128, 127, PicOrderCntVal —-
PicOrderCnt( RefPicListX[ refldxLX 1)) (8-138)

Video encoder 20 and video decoder 30 may also be configured to perform a
25  modified derivation process for tempor‘al motion vector prediction (TMVP) for coding
motion vectors of luminance blocks. In one example, inputs to this process include a.
luma location ( xP, yP ) specifying the top-left luma sample of the current prediction

unit relative to the top-left sample of the current picture, variables specifying the

.....

(8-134)



10

15

20

25

28

width and the height of the prediction unit for luma, nPSW and nPSH, and the
reference index of the current prediction unit partition refldxLX (with X being 0 or 1).
Outputs of this process may include the motion vector prediction mvL.XCol and the
availability flag availableFlagL.XCol. |

In one example, video encoder 20 and video decoder 30 may execute a function
RefPicOrderCnt( picX, refldx, LX) that returns the picture order count
PicOrderCntVal of the reference picture with index refldx from reference picture list
LX of the picture picX. This function may be specified as follows, where (8-141) and
like references in this description refer to sections of HEVC WD7:

Reﬂ’icOrderCnt( picX, refldx, LX ) = PicOrderCnt(RefPicListX][ refldx ] of
the picture picX)
(8 141)

Depending on the values of slice _type, collocated from 10 flag, and.
collocated ref idx, the variable colPic, specifying the picture that contains the
collocated partition, may be derived as follows:

- If slice_type is equal to B and collocated_from 10 flag is equal to O, the
variable colPic specifies the picture that contains the collocated partition as specified
by RefPicListl[ collocated ref idx ].

- Otherwise (slice_type is equal to B and collocated from 10 flag is equal to 1
or slice_type is equal to P), the variable colPic specifies the picture that contains the
collocated partition as specified by RefPicList0[ collocated ref idx ].

Variable colPu and its position ( xPCol, yPCol ) may be derived using the

following ordered steps:

1. The variable colPu may be derived as follows

yPRb = yP + nPSH (8-139)

— If (yP >> Log2CtbSize ) is equal to ( yPRb >> Log2CtbSize ), the horizontal
component of the right-bottom luma position of the current prediction unit is

defined by

«PRb = xP + nPSW ' ©(8-140)

-



10

15

20

25

29

and the variable colPu is set as the prediction unit covering the
modified position given by ( ( xPRb >>4) << 4, ( yPRb >>4 ) <<4) inside
the colPic. '

— Otherwise ( ( yP >> Log2CtbSize ) is not equal to ( yPRb >> Log2CtbSize ) ),

colPu is marked as “unavailable.”

2. When colPu is coded in an intra-prediction mode or colPu is marked as

“unavailable,” the following applies.

— Central luma position of the current prediction unit is defined by

xPCtr =(xP + (nPSW >> 1) (8-141)
yPCtr = (yP +(nPSH>>1) (8-142)

— The variable colPu is set as the prediction unit covering the modified
position given by (( xPCtr>>4)<<4, (yPCtr>>4)<<4) inside the
colPic. '

(xPCol, yPCol ) 1s set equal to the top-left luma sample of the colPu relative to the
top-left luma sample of the colPic.
The function LongTermRefPic( picX, refldx, LX ) may be defined as follows.
If the reference pictufe with index refldx from reference picture list LX of the
picture picX was marked as “used for long term reference” at the time when
picX was the current picture, LongTermRefPic( picX, refldx, LX) returns 1;
otherwise LongTermRefPic( picX, refldx, LX) returns 0.
The variables mvLXCol and availableFlagL. XCol may be derived as follows,

where underlined text represents changes relative to HEVC WD7:

— If one or more of the following conditions are true, both components of

mvLXCol are set equal to 0 and availableFlagl. XCol is set equal to 0.
— colPuis coded in an intra prediction mode.
— colPu is marked as f‘unavailable.f’

~ pic_temporal mvp enable flagisequal to 0.



10

15

20

25

C C

30

— Otherwise, the motion vector mvCol, the reference index refldxCol, and the

reference list identifier listCol are derived as follows.

— If PredFlagLO[ xPCol ][ yPCol ] is equal to 0, mvCol, refldxCol, and
listCol are set equal to MvL1[ xPCol ][ yPCol ],
RefldxL1[ xPCol ][ yPCol ], and L1, respectively.

— Otherwise (PredFlagLO[ xPCol ][ yPCol ] is equal to 1), the following
applies.

— If PredFlagL1[ xPCol ][ yPCol ] is equal to 0, mvCol, refldxCol, and
listCol are set equal to MvLO[ xPCol ][ yPCol ],
RefldxLO[ xPCol ][ yPCol ], and L0, respectively.

assignments are made.

— If PicOrderCnt( pic ) of every picture pic in every reference
picture lists is less than or equal to PicOrderCntVal, mvCol,
refldxCol, and listCol are set equal to MvLX[ xPCol ][ yPCol ],
RefldxLX[ xPCol ][ yPCol ] and LX, respectively with X being

the value of X this process is invoked for.

—  Otherwise (PicOrderCnt( pic ) of at least one picture pic in at
least one reference picture list is greater than PicOrderCntVal,
mvCol, refldxCol and listCol are set equal to

MvLN][ xPCol ][ yPCol ], RefldxLN[ xPCol ][ yPCol ] and LN,

respectively with N being the value of collocated from 10 flag. |

— If one of the following conditions is true, the variable availableFlagl. XCol

1S set equal to 0:

— RefPicListX] refldxLX ] is a long-term reference picture and

LongTermRefPic( ‘colPicl reﬂdxCol, listCol ) 1s equal to O:

— RefPicListX] f;:ﬂdeX T isa short-tc?rrr_lr {efcrer}ce pict}lrt; and_

LongTermRefPic( colPic, refldxCol, listCol ) is equal to 1;

53

.......

[



10

15

20

31

— Otherwise, the variable availableFlagLXCol is set equal to 1, and the

following applies.

— If RefPicListX[ refldxLX ] is a long-term reference picture, or
LongTermRefPic( colPic, refldxCol, listCol ) is equal to 1, or
PicOrderCnt( colPic ) - |
RefPicOrderCnt( colPic, refldxCol, listCol ) is equal to
PicOrderCntVal — PicOrderCnt( RefPicListX[ refldxLX ] ),
mvLXCol = mvCol O (8-143)

~  Otherwise, mvLXCol is derived as scaled version of the motion
vector mvCol as specified below

tx = (16384 + (Abs(td)>>1))/td O (8-144)

DistScaleFactor = Clip3( —4096, 4095, (tb * tx +32)>>6) (8-145)

mvLXCol =
Clip3(—8192, 8191.75, Sign( DistScaleFactor * mvCol ) *

( (Abs( DistScaleFactor * mvCol ) + 127 )>>8)) (8-146)

where td and tb may be derived as

td = Clip3(—128, 127, PicOrderCnt( colPic ) —

RefPicOrderCnt( colPic, refldxCol, listCol ) ) (8-147)

tb = Clip3( -128, 127, PicOrderCntVal —

PicOrderCnt( RefPicListX [ refldxLX ])) - (8-148)

In the example above, the availability of the co-located bl.ock:used during

.......

,,,,,,,

TMVP may also depend on the picture type (e.g., whether the picturé is a long-term or
a short-term reference picture) of a reference picture for the co-ldcatéd block. That is,
even when a bottom-right block for TMVP is available (after step 1 in the subcaluse),
the bottom-right block can be further set to be unavailable if the motion vector in the
block refers to a picture type (short—teﬁn or iong-term) which is different from that of
the target reference picture. Likewise, a center block can be further used for TMVP.

| For example, video encoder 20 and video decoder 30 may be configured to

derive a motion vector predictor for a luma motion vector according to the following



10

15

20

25

30

32

detailed example. Inputs to the process, implemented by video encoder 20 and video
decoder 30, may include:

— a luma location ( xP, yP ) specifying the top-left luma s.ample of the
current prediction unit relative to the top-left sample of the current
picture,

- variables specifying the width and the height of the prediction unit for
luma, nPSW and nPSH,

- the reference index of the current prediction unit partition refldxLX
(with X being 0 or 1).

Outputs from the process may include:

- the motion vector prediction mvLXCol,

- the availability flag availableFlagl. XCol. _

The function RefPicOrderCnt( picX, refldx, LX), when exeuted by video
encoder 20 and/or video decoder 30, may return the picture order count
PicOrderCntVal of the reference picture with index refldx from reference picture list
LX of the picture picX. An example implementation of this function is specified as
follows:

RefPicOrderCnt( picX, refldx, LX ) = PicOrderCnt(RefPicListX[ refldx ] of

the picture picX) (8-141)

Depending on the values of slice_type, collocated from 10 flag, and
collocated ref idx, the variable colPic, specifying the picture that contains the
collocated partition, may be derived as follows:

- If slice_type is equal to B and collocated from 10 flag is equal to O,
the variable colPic specifies the picture that contains the collocated
partition as specified by RefPicList1[ collocated ref idx ].

- Otherwise (slice_type is equal to B and collocated from 10 flag is
equal to 1 or slice_type is equal to P) , the variable colPic specifies the
picture that contains the collocated partition as specified by
RefPicList0[ collocated ref idx ].

Video encoder 20 and vid‘e'o\ decoder 30 may derive the variable colPu and its

position ( xPCol, yPCol ) using the following ordered steps:

.

,,,,,,,,

.....



10

15

20

25

30

33

1. Video encoder 20 and video decoder 30 may derive the variable colPu as
follows:
yPRb = yP + nPSH (8-139)

- If ( yP >> Log2CtbSize ) is equal to ( yPRb >> Log2CtbSize ), the
horizontal component of the right-bottom luma position of the current
prediction unit may be defined by

XxPRb = xP + nPSW (8-140)
and the variable colPu may be set as the prediction unit covering the
modified position given by ( ( xPRb >>4 )<< 4, (yPRb>>4 )<< 4)
inside the colPic. .

- Otherwise ( ( yP >> Log2CtbSize ) is not equal to ( yPRb >>
Log2CtbSize ) ), video encoder 20 and video decoder 30 may mark
colPu as “unavailable.” »

2. When colPu is coded in an intra prediction mode or colPu is marked as
“unavailable,” the following applies, in this example:
- Central luma position of the current prediction unit is defined by
xPCtr = (xP + (nPSW >> 1) _ (8-141)
yPCtr=(yP + (nPSH>>1) (8-142)

- The variable colPu is set as the prediction unit covering the modified
position given by ( ( xPCtr >> 4 ) << 4, ( yPCtr >> 4 ) << 4 ) inside the
colPic.

3. Video encoder 20 and video decoder 30 may set ( xPCol, yPCol ) equal to the
top-left luma sample of the colPu relative to the top-left luma sample of the colPic.

The function LongTermRefPic( picX, refldx, LX ) may be defined as follows:

If the reference picture with index refldx from reference picture list LX of the picture
picX was marked as “used for long term reference” at the time when picX was the
current picture, LongTermRefPic( picX, refldx, LX ) returns 1; otherwise
LongTermRefPic( picX, refldx, LX) returns 0.

Video encoder 20 and video decoder 30 may derive the variables mvLXCol

and availableFlagL.XCol as follow'si:A |

availableFlagL. XCol is set to 0, numTestBlock equal to 0.

e,



10

15

20

25

30

34

While numTestBlock is less than 2 and availableFlagL. XCol is equal to 0, the

following are performed in order.

xPCtr = (xP + (nPSW>>1)

yPCtr=(yP +(nPSH>>1)

If colPu covers the position given by ( ( xPCtr >> 4 ) << 4, ( yPCtr >>

4 ) << 4) inside the colPic , numTestBlock is set to 1;

Otherwise, if numTestBlock 1s equal to 1, colPu is set as the prediction

unit covering the modified position given by ( ( xPCtr >>4 ) << 4, (

yPCtr >> 4 ) << 4) inside the colPic, and ( xPCol, yPCol ) is set equal
to the top-left luma sample of the colPu relative to the top-left luma
sample of the colPic.

numTestBlock++

If one or more of the following conditions are true, both components of

mvLXCol are set equal to 0 and availableFlagLXCol 1s set equal to 0.

- colPu is coded in an intra prediction mode.

- colPu is marked as “unavailable”.

- pic_temporal mvp enable flagis equal to O.

Otherwise, the motion vector mvCol, the reference index refldxCol,

and the reference list identifier listCol are derived as follows.

- If PredFlagLO[ xPCol ][ yPCol ] is equal to 0, mvCol,
refldxCol, and listCol are set equal to MvL1[ xPCol ][ yPCol ],
RefldxL1[ xPCol ][ yPCol ], and L1, respectively.

- Otherwise (PredFlagLO[ xPCol ][ yPCol ] is equal to 1), the
following applies.

- If PredFlagL1[ xPCol ][ yPCol ] is equal to 0, mvCol,
refldxCol, and listCol are set equal to MvLO[ xPCol ][
yPCol ], RefldxLO[ xPCol ][ yPCol ], and LO,
respectively. -

- Otherwise (PredFlagL1[ xPCol ][ yPCol ] is equal to 1),
the following assignments are made.

- If PicOrderCnt( pic ) of every picture pic in

every reference picture lists is less than or equal



10

15

20

25

30

35

to PicOrderCntVal, mvCol, refldxCol, and
listCol are set equal to MvLX[ xPCol ][ yPCol ],
RefldxLX[ xPCol ][ yPCol ] and LX,
respectively with X being the value of X this
process is invoked for.

- Otherwise (PicOrderCnt( pic ) of at least one
picture pic in at least one reference picture list is
greater than PicOrderCntVal, mvCol, refldxCol

- and listCol are set equal to MVLN[ xPCol ][
yPCol ], RefldxLN[ xPCol ][ yPCol ] and LN,
respectively with N being the value of

collocated from 10 flag.

- If one of the following conditions is true, the variable

availableFlagl XCol is set equal to 0:

- RefPicListX[ refldxLX ] is a long-term reference picture and
LongTermRefPic( colPic, refldxCol, listCol ) is equal to 0;

- RefPicListX] refldxLX ] is a short-term reference picture and
LongTermRefPic( colPic, refldxCol, listCol ) is equal to 1;

Otherwise, the variable availableFlagl.XCol is set equal to 1, and the

following applies.

- If RefPicListX[ refldxLX ] is a long-term reference picture, or
LongTermRefPic( colPic, refldxCol, listCol ) is equal to 1, or
PicOrderCnt( colPic ) — RefPicOrderCnt( colPic, refldxCol,
listCol ) is equal to PicOrderCntVal — PicOrderCnt(
RefPicListX[ refldxLX ]),

mvLXCol = mvCol (8-143)
- Otherwise, mvLXCol is derived as scaled version of the motion
vector mvCol as specified below
tx = (16384 + ( Abs(td)>>1))/td (8-144)
- DistScaleFactor = Clip3( =4096, 4095, (tb * tx +32 ) >>
6) (8-145)
mvLXCol = Clip3(—8192, 8191.75, Sign( DistScaleFactor * mvCol ) *



10

15

20

25

36

( (Abs( DistScaleFactor * mvCol‘) +127)>>8)) . (8-146)

where td and tb may be derived as:

td = Clip3( —128, 127, PicOrderCnt( colPic ) — RefPicOrderCnt( colPic,
refldxCol, listCol ) ) (8-147)
tb = Clip3( —128, 127, PicOrderCﬁtVal — PicOrderCnt( RefPicListX [ refldxLX ]))

In an alternative example, a long-term motion vector is never predicted from
another long-term motion vector if the POC values of the reference pictures are not
the same. Video encoder 20 and video decoder 30 may be configured according to
the following process for deriving motion vector predictor candidates, where
underlined text represents changes relative to HEVC WD7.

The variable isScalédFlagLX with X being 0 or 1 may be set equal to 0.The
motion vector mvLXA and the availability flag availableFlaglL XA are derived in the
following ordered steps, where ellipses represent text that is the same as that of the

current draft of HEVC and underlines represent changes relative to the current draft of

HEVC:
1.
2.
3.

4.

5. When availableFlagl. XA is equal to 0, for ( xAg, YAk ) from ( xAo, yAo ) to
(xA}, YA; ) where yA; = yAq - MinPuSize, the following applies repeatedly
until availableFlagl XA is equal to 1:

—~ If the prediction unit covering luma location ( xAy, yAx )"is available [Ed.
(BB): Rewrite it using MinCbAddrZS[ ][ ] and the aVailibility process for
minimum coding blocks ], PredMode is not MODE INTRA,
predFlagl. X[ xAy 1[ yAx ] is equal to 1, and RefPicListX[ refldx.X ] and
RefPicListX[ refldxLX[ xAx ][ YAx]] are both long-term reference

pictures with different POC values or are both short-term reference

pictures, availableFlagl. XA is set equal to 1, the motion vector mvLXA is



‘-

ri‘]

37

set equal to the motion vector mvLX[ XA ][ yA« ], refldxA is set equal to

refldxLX[ xAy ][ YAy ], ListA is set equal to ListX.

— Otherwise, if the prediction unit covering luma location ( XA, YAy ) is
available [Ed. (BB): Rewrite it using MinCbAddrZS[][] and the e
availibility process for minimum coding blocks ], PredMode is not
MODE _INTRA, predFlagLY[ xAx ][ yAx ] (with Y = !X) is equal to 1, -
and RefPicListX[ refldxI X ] and RefPicListY[ refldxLY[ xAy I[ Ak 1]

L

are both long-term reference pictures with different POC values or are o

both short-term reference pictures, availableFlagl. XA is set equal to 1, the

motion vector mvLXA is set equal to the motion vector

mvLY[ xAx ][ YA ], refldxA is set equal to refldxLY[ XAy ][ yAx ], ListA

is set equal to ListY.

— When availableFlagLXA is equal to 1, and both RefPicListA[ refldxA ]
and RefPicListX] refldxLX ] are short-term reference pictures, mvLXA is

derived as specified below.
Tx= (16384 + (Abs(td)>>1))/td - (8-126)
DistScaleFactor = Clip3( —4096, 4095, (tb *tx +32)>>6) (8-127)

mvLXA = Clip3( —8192, 8191.75, Sign( DistScaleEactor *mvLXA
) *
( (Abs( DistScaleFactor * mvLXA )+ 127)>>8)) (8-128)

where td and tb may be derived as

td = Clip3( —128, 127, PicOrderCntVal —
PicOrderCnt( RefPicListA[ refldxA ] )) (8-129)

tb = Clip3( —128, 127, PicOrderCntVal -
PicOrderCnt( RefPicListX[ refldxLX ])) (8-130)



10

15

20

25

38

Video encoder 20 and video decoder 30 may derive the motion vector mvLXB

and the availability flag availableFlagl. XB using the following ordered steps, where

again ellipses represent text that is the same as that of HEVC WD7:

1.

2.

When isScaledFlagLX is equal to 0, availableFlagl.XB is set equal to 0 and
for ( xBy, yBx ) from ( xBy, yBy ) to ( xB,, yB, ) where xBy = xP +nPSW,
xB; = xBy - MinPuSize , and xB, = xP - MinPuSize, the following applies
repeatedly until availableFlagLXB is equal to 1:

— If the prediction unit covering luma location ( xBy, yBy ) is available [Ed.

(BB): Rewrite it using MinCbAddrZS[ ][ ] and the availibility process for
minimum coding blocks ], PredMode is not MODE INTRA,
predFlaglL. X[ xBy ][ yBk ] is equal to 1, and RefPicListX[ refldx[.X ] and
RefPicListX[ refldxL X[ xBy ][ yBy ] ] are both long-term reference

pictures with different POC values or are both short-term reference
pictures, availableFlagLXB is set equal to 1, the motion vector mvLXB is
set equal to the motion vector mvLX[ xBy ][ yBk ], refldxB is set equal to

refldxLX[ xBy ][ yB« ], ListB is set equal to ListX.

— Otherwise, if the prediction unit covering luma location ( xBy, yBx ) is

available [Ed. (BB): Rewrite it using MianAderS[ ][ ]-and the
availibility process for minimum coding blocks ], Predede is not
MODE_INTRA, predFlagLY[ xBy ][ yBx ] (with Y = !X) is equal to 1,
and RefPicListX][ reﬂdeX] and RefPicListY[ refldxL Y[ xBy 1[ yBi 1]

are both long-term reference pictures with different POC values or are

both short-term reference pictures, availableFlagLXB is set equal to 1, the

motion vector mvLXB is set equal to the motion vector

......



10

15

20

25

5

39

mvLY[ xBy ][ yBy ], refldxB is set equal to refldxLY[ xBy ][ yBx ], ListB
is set equal to ListY.

— When availableFlagLXB is equal to 1 and i
PicOrderCnt( RefPicListB[ refldxB ] ) is not equal to
PicOrderCnt( RefPicListX[ refldxLX ] ) and both RefPicListB[ refldxB ]
and RefPicListX[ refldxLX ] are short-term reference pictures, mvLXB is o

,,,,,

derived as specified below. : =
tx =(16384+ (Abs(td)>>1))/td (8-134) @
DistScaleFactor = Clip3( —4096, 4095, (tb * tx +32)>>6) (8-135)

mvLXB =Clip3( —-8192, 8191.75, Sign( DistScaleFactor * mvLXA )

( (Abs( DistScaleFactor * mvLXA )+ 127)>>8)) (8-136)
where td and tb may be derived as

td = Clip3( —128, 127, PicOrderCntVal —
PicOrderCnt( RefPicListB[ refldxB ] )) (8-137)

tb = Clip3( —128, 127, PicOrderCntVal —
PicOrderCnt( RefPicListX[ refldxLX ] ) ) (8-138)

Video encoder 20 and video decoder 30 may be configured to derive temporal
luma motion vector predictors according to the following process, where underlined
téxt represents changes relative to HEVC WD7. The variables mvLXCol and
availableFlagl. XCol may be derived as follows:

~ If one or more of the following conditions are true, both components of

mvLXCol are set equal to 0 and availableFlagl.XCol is set equal to 0.
— colPu is coded in an intra-prediction mode.
~ colPu is marked as “unavailable.”

— pic_temporal mvp “enable flag is equal to 0.



10

15

20

25

. C

40

— Otherwise, the motion vector mvCol, the reference index refldxCol, and the

reference list identifier listCol are derived as follows.

~ If PredFlagLO[ xPCol ][ yPCol ] is equal to 0, mvCol, refldxCol, and
listCol are set equal  to MvL1[ xPCol ][ yPCol ],
RefldxL1{ xPCol ][ yPCol ], and L1, respectively.

— Otherwise (PredFlaglO[ xPCol ][ yPCol ] is equal to 1), the following
applies.

— If PredFlagl.1{ xPCol ][ yPCol ] 1s equal to 0, mvCol, refldxCol, and
listCol are set equal to  MvLO[ xPCol ][ yPCol ],
RefldxLO[ xPCol ][ yPCol ], and L0, respectively.

assignments are made.

— If PicOrderCnt( pic) of every picture pic in every reference
picture lists is less than or equal to PicOrderCntVal, mvCol,
refldxCol, and listCol are set equal to MvLX[ xPCol ][ yPCol ],
RefldxLX[ xPCol ][ yPCol ] and LX, respectively with X being

the value of X this process is invoked for.

— Otherwise (PicOrderCnt( pic) of at least one picture pic in at
least one reference picture list is greater than PicOrderCntVal,
mvCol, refldxCol and listCol are set equal to
MVLNJ xPCol ][ yPCol ], RefldxLN[ xPCol ][ yPCol ] and LN,

respectively with N being the value of collocated from 10 flag.

— If one of the following conditions is true, the variable availableFlagl. XCol

is set equal to 0:

~ RefPicListX[ refldxIL.X ] is a long-term reference picture and
LongTermRefPic( colPic, refldxCol. listCol ) is équal to 0

— RefPicListX[ reﬂdeX1 1S a éhort—terrn reference picture and

LongTermRefPic( colPic, refldxCol, listCol ) is equal to 1;




. c

41

— RefPicListX[ refldxLX 1 is a long-term reference picture,

LongTermRefPic( colPic, refldxCol, listCol ) is equal to 1, and

RefPicOrderCnt( colPic, refldxCol, listCol ) 1s not equal to
PicOrderCnt( RefPicListX[ refldxLX ]).

Otherwise, the variable availableFlagLXCol is set equal to 1, and the

following applies.

If RefPicListX[ refldxLX ] is a long-term reference -picture, or
LongTermRefPic( colPic, refldxCol, listCol ) is ‘equal tol, or

.

PicOrderCnt( colPic ) —
10 RefPicOrderCnt( colPic, refldxCol, listCol )  1is equal to
PicOrderCntVal — PicOrderCnt( RefPicListX[ refldxLX 1),
mvLXCol = mvCol
(8-143)

— Otherwise, mvLXCol is derived as scaled version of the motion
15 vector mvCol as specified below
tx = (16384 + (Abs(td)>>1))/td
(8-144)

_ DistScaleFactor = Clip3( —4096, 4095, (tb * tx +32)>>6)
(8-145) |

20 mvLXCol =
' Clip3(—8192, 8191.75, Sign( DistScaleFactor * mvCol ) *
( (Abs( DistScaleFactor * mvCol ) + 127 )>>8)) (8-146)

where td and tb may be derived as

td = Clip3( ~128, 127, PicOrderCnt( colPic ) —
25" RefPicOrderCnt( colPic,

refldxCol, listCol ) ) 4 (8-147)

e e tb = Clip3(—128, 127, PicOrderCntVal — PicOrderCnt(

RefPicListX [ refldxLX ])) (8-148)



10

15

20

25

. g

42

As yet another example, an inter-view reference picture may be marked as
“unused for reference.” For simplicity, such a picture may be referred to as a non-
reference picture in HEVC base specification, and a picture marked as either “used for
long term reference” or “used for short term reference” may be referred to as a
reference picture in HEVC base specification. The terms “reference picture” and
“non-reference picture” may be replaced by “picture marked as “used for reference”
and “picture marked as “unused for reference.”

The function UnusedRefPic( picX, refldx, LX ) may be deﬁn:ed as follows. If
the reference picture with index refldx from reference picture list LX of the picture
picX was marked as “unused for reference” at the time when picX was the current
picture, UnusedRefPic( picX, refldx, LX) returﬁs 1; otherwise UnusedRefPic( picX,
refldx, LX) returns 0.

Video encoder 20 and video decoder 30 may be configured to perform a
derivation process for motion vector predictor candidates as follows, where

underlined text represents changes relative to HEVC WD?7 and ellipses represent text

that is the same as that of HEVC WD7:
The variable isScaledFlagL X with X being O or 1 may be set equal to 0.

The motion vector mvLXA and the availability flag availableFlagLXA may be

derived in the following ordered steps:
1.

2.

5. When availableFlagL.XA is equal to 0, for ( XAy, yAx) from ( XAy, yAo ) to
(xA1, YA ) where yA| =yAy- MinPuSize, the following applies repeatedly
until availableFlagLXA is equal to 1:

]

— If the prediction unit covering luma location ( XAy, yAx ) is available [Ed. -

(BB): Rewrite it using MianderZS[ ][ ] and the availibility process for
minimum coding blocks ], PredMode is not MODE INTRA,



- T

43

predFlagL X[ xAy ][ yAx ] is equal to 1, and RefPicListX[ refldx].X ] and
RefPicListX[ refldxLX[ xAy ][ yAx ] ] are both reference pictures or are

both non-reference pictures, availableFlaglLXA is set equal to 1, the

motion vector mvLXA is set equal to the motion vector
5 mvLX[ xAx ][ yA ], refldxA is set equal to refldxLX[ xAy ][ yAx ], ListA
is set equal to ListX.

— Otherwise, if the prediction unit covering luma location ( xAy, yAy ) is
available [Ed. (BB): Rewrte it using MinCbAddrZS[ ][] and the
availibility process for minimum coding blocks ], PredMode is not

10 MODE INTRA, predFlagLY[ xAy ][ yAx ] (with Y = IX) is equal to 1,
and RefPicListX[ refldxI.X ] and RefPicListY[ refldxLY[ xAx [ yAx 1]

are both reference wpictures o

AN Liea S

=
o
*s
(4
o
2
-y

non-reference pictures

Al S

availableFlagL. XA is set equal to 1, the motion vector mvLXA is set equal
to the motion vector mvLY[ xAx ][ yAx], refldxA is set equal to
15 refldxLY[ xAx ][ yAk ], ListA is set equal to ListY.

—~ When availableFlagLXA is equal to 1, and both RefPicListA[ refldxA ]
and RefPicListX[ refldxLX ] are short-term reference pictures, mvLXA is

derived as specified below.
Tx=(16384 +(Abs(td)>>1))/td (8-126)
20 DistScaleFactor = Clip3( —4096, 4095, (tb *tx +32)>>6) (8-127)

mvLXA = Clip3(—8192, 8191.75, Sign( DistScaleFactor * mvLXA ) *

( (Abs( DistScaleFactor * mvLXA ) +127)>>8)) (8-128)

where td and tb may be derived as

25 td = Clip3( —128, 127, PicOrderCntVal —-
PicOrderCnt( RefPicListA[ refldxA 1)) (8-129)

| e ——nn e e —

tb = Clip3( ~128, 127, PicOrderCntVal —
PicOrderCnt( RefPicListX[ refldxLX ])) | (8-130)



10

15

20

25

44

Video encoder 20 and video decoder 30 may be configured to derive the

motion vector mvLXB and the availability flag availableFlagL. XB using the following

ordered steps, where underlined text represents changes relative to HEVC WDT7:

1.

2.

When isScaledFlagl.X is equal to 0, availableFlagLXB is set equal to 0 and
for (xBy, yBx) from ( xBg, yBo) to ( xB,, yB2) where xBg=xP +nPSW,
xB; =xBg - MinPuSize , and xB; = xP - MinPuSize, the following applies
repeatedly until availableFlagl.XB is equal to 1:

— If the prediction unit covering luma location ( xBy, yBy ) is available [Ed.
(BB): Rewrite it using MinCbAddrZS[ ][ ] and the availibility process for
minimum coding blocks ], PredMode is not MODE INTRA,
predFlagLX[ xBy ][ yBk ] is equal to 1, and RefPicListX[ refldx[X ] and
RefPicListX[ refldxLX[ xBy I[ yBi ] ] are both reference pictures or are

both non-reference pictures, availableFlagLXB is set equal to 1, the

motion vector mvLXB is set equal to the motion vector
mvLX[ xBy ][ yBx ], refldxB is set equal to refldxLX[ ka ][ yBk ], ListB
is set equal to ListX.

— Otherwise, if the prediction unit covering luma locatién ( xBy, yBx ) 18
available [Ed. (BB): Rewrite it ‘using MianAderS[][] and the
availibility process for minimum coding blocks ], PredMode is not
MODE_INTRA, predFlagLY[ xBy ][ yBx ] (with Y = !X) is equal to 1,
and RefPicListX] reﬂdeX] énd RefPicListY[ refldxLY[ xBy 1[ yBi ] ]

are both reference pictures or are both non-reference pictures,

“availableFlagLXB is set equal to 1, the motion vector mvLXB is set equal

11111
)

.



10

15

20

25

' C

45

to the motion vector mvLY[ xBx ][ yBx], refldxB is set equal to
refldxLY| xBy ][ yBk ], ListB is set equal to ListY.

— When availableFlagL XB 1s equal to 1 and
PicOrderCnt( RefPicListB[ refldxB ] ) is not equal to
PicOrderCnt( RefPicListX[ refldxLX ]) and both RefPicListB[ refldxB ]
and RefPicListX[ refldxLX ] are short-term reference pictures, mvLXB is

derived as specified below.
tx = (16384 + ( Abs(td)>>1))/td (8-134)
DistScaleFactor = Clip3( —4096, 4095, (tb *tx +32)>>6) (8-135)

mvLXB =Clip3( —-8192, 8191.75, Sign( DistScaleFactor * mvLXA ) *
( (Abs( DistScaleFactor * mvLXA )+ 127)>>8)) (8-136)

where td and tb may be derived as

td = Clip3( —128, 127, PicOrderCntVal - |
PicOrderCnt( RefPicListB[ refldxB ] ) ) (8-137)

tb = Clip3( —128, 127, PicOrderCntVal —
PicOrderCnt( RefPicListX[ refldxL.X ])) (8-138)

Video encoder 20 and video decoder 30 may be configured to derive temporal
luma motion vector predictors as follows, where underlined text represents changes

relative to HEVC WD7:
The variables mvLXCol and availableFlagl. XCol may be derived as follows.

— If one or more of the following conditions are true, both components of

mvLXCol are set equal to 0 and availableFlagl. XCol is set equal to 0.
— colPu is coded in an intra prediction mode.
— colPu is marked as “unavail\a{ble.”

- pic_temporal_mvp_enable_ﬂag is equal to 0.

e,

i



10

15

20

25

.C. C

46

— Otherwise, the motion vector mvCol, the reference index refldxCol, and the

reference list identifier listCol are derived as follows.

— If PredFlagl.O[ xPCol ][ yPCol ] is equal to 0, mvCol, refldxCol, and

listCol

are set equal to MvL1[ xPCol ][ yPCol ],

RefldxL1[ xPCol ][ yPCol ], and L1, respectively.

— Otherwise (PredFlagLO[ xPCol ][ yPCol ] is equal to 1), the following

applies.

— If PredFlagl.1[ xPCol ][ yPCol ] is equal to 0, mvCol, refldxCol, and
listCol are set equal to MvLO[ xPCol ][ yPCol ],
RefldxLO[ xPCol ][ yPCol ], and L0, respectively.

— Otherwise (PredFlagl.1{ xPCol 1] yPCol 1 is equal to 1), the following

Ja

assignments are made.

If PicOrderCnt(pic) of every picture pic in every reference
picture lists is less than or equal to PicOrderCntVal, mvCol,
refldxCol, and listCol are set equal to MvLX[ xPCol ][ yPCol ],
RefldxLX[ xPCol ][ yPCol ] and LX, respectively with X being

the value of X this process is invoked for.

Otherwise (PicOrderCnt( pic) of at least one picture pic in at
least one reference picture list is greater than PicOrderCntVal,
mvCol, refldxCol and listCol are set equal to
MVLN[ xPCol ][ yPCol ], RefldxLN[ xPCol ][ yPCol ] and LN,
respectively with N being the value of collocated_from_lO_ﬂag.

— If one of the following conditions is true, the variable availableFlagl. XCol

is set equal to O:

RefPicListX[ refldxLX ] is a non-reference picture and

UnusedRefPic( colPic, 1'éﬂdXCol, listCol ) is equal to 0;

RefPicListX[ refldxLX]1 is a referenge_ picture and

UnusedRefPic( colPic, refldxCol, listCol ) is equal to 1;

.......



10

15

20

25

47

— Otherwise, the variable availableFlagLXCol is set equal to 1, and the

following applies.

— If RefPicListX[ refldxLX ] is a long-term reference picture, or
LongTermRefPic( colPic, refldxCol, listCol ) is equal to1, or
PicOrderCnt( colPic ) —

RefPicOrderCnt( colPic, refldxCol, listCol ) 1S equal to
PicOrderCntVal — PicOrderCnt( RefPicListX[ refldxLX ]),
mvLXCol = mvCol (8-143)

— Otherwise, mvLXCol is derived as scaled version of the motion

vector mvCol as specified below
tx =( 16384+ ( Abs(td )>>1))/td
(8-144)

- DistScaleFactor = Clip3( —4096, 4095, (tb * tx + 32 ) >>6 )
(8-145)

mvLXCol =
Clip3(—8192, 8191.75, Sign( DistScaleFactor * mvCol ) *
( (Abs( DistScaleFactor * mvCol ) +127)>>8)) (8-146)

where td and tb are derived as

td = Clip3( ~128, 127, PicOrderCnt( colPic ) — RefPicOrderCnt(

colPic,
refldxCol, listCol ) ) (8-147)

tb = Clip3( —128, 127, PicOrderCntVal — PicOrderCnt(
RefPicListX

[ refldxLX ])) (8-148)
With respect to the example referred to above as the “fifth example,” video
encoder 20 and video decoder 30 may be configured to perform according to any or
all of the following techniq;ueé. In this example, vﬁrediction between motion vectors
referring to different long—feljn reference pictures may be disabled, prediction

between motion vectors referring to different inter-view reference pictures may be



10

15

20

25

30

48

disabled, and prediction between motion vectors referring to an inter-view reference
picture and a long-term reference picture may be disabled.

In this example, the function AddPicld( pic ) returns the view order index or
layer ID of the view or layer the picture pic belongs to. Thus, for any picture “pic”
belonging to the base view or layer, AddPicld( pic ) returns 0. In the:HEVC base
specification, the following may apply: the function AddPicld( pic ) may be defined
as follows: AddPicld( pic ) returns O (or reserved_one 5bits minus 1)1. in this
example, when AddPicld(pic) is not equal to 0, the picture pic is not a temporal
reference picture (i.e., neither a short-term reference picture nor a long-term reference
picture). AddPicld( picX, refldx, LX) may return AddPicld( pic ), wherein pic is the
reference picture with index refldx from reference picture list LX of the picture picX.

Video encoder 20 and video decoder 30 may be confi gufed to.perform a
derivation process for motion vector predictor candidates. Inputs to this process may
include a luma location ( xP, yP ) specifying the top-left luma sample of the current
prediction unit relative to the top-left sample of the current picture, variables
specifying the width and the height of the prediction unit for luma, nPSW and nPSH,
and the reference index of the current prediction unit partition refldxLX (with X being
0 or 1). Outputs of this process may include (where N may be replaced by A, or B):
the motion vectors mvLXN of the neighboring prediction units and the availability
flags availableFlagl. XN of the neighboring prediction units.

The variable isScaledFlagLX with X being O or 1 may be set equal to 0.
Video encoder 20 and video decoder 30 may be configured to derive the motion
vector mvLXA and the availability flag availableFlagl. XA using the following

ordered steps, where underlined text represents changes relative to HEVC WD7:

1. Let a set of two sample locations be (xAx, YAx), with k=0, 1, specifying
sample locations with xAx=xP —1, yAg=yP + nPSH and yA; =yAy -
MinPuSize. The set of sample locations ( XA, yAx) represent the
sample locations irhmedia’iely to the left side of t,he left partition

boundary and it’s extended line.

2. Let the availability flag availableFlagLXA be initially set equal to 0 and

the both components of mvLXA are set equal to 0.

,,,,,



10

15

20

25

49

3. When one or more of the following conditions are true, the variable

isScaledFlagl X is set equal to 1.

— the prediction unit covering luma location ( XAy, yAo ) is available [Ed.
(BB): Rewrite it using MinCbAddrZS[ ][ ] and the availibility process
for minimum coding blocks ] and PredMode is not MODE INTRA.

— the prediction unit covering luma location ( XA, yA; ) is available [Ed.
(BB): Rewrite it using MinCbAddrZS[ ][ ] and the availibility process
for minimum coding blocks } and PredMode is not MODE INTRA.

. For (xAx yAx) from (xAg,yAy) to (xAj;,yA;) where

yA1 = yAo — MinPuSize, if availableFlagl. XA is equal to 0, the following

applies:

— If the prediction unit covering luma location ( xAy, yAk ) is available
[Ed. (BB): Rewrite it using MinCbAddrZS[ ][ ] and the availibility
process for minimum coding blocks ], PredMode is not
MODE INTRA, predFlagLX[ xAx ][ yAx] is equal to 1 and the
reference index refldxLX[ xAy ][ yAx ] is equal to the reference index
of the current prediction unit refldxLX, availableFlagL. XA is set equal
to 1 and the motion vector mvLXA is set equél to the motion vector
mvLX[ xAg ][ YAk ], refldxA is set equal to refldxLX[ xAy ][ yAk ]
and ListA is set equal to ListX.

— Otherwise, if the prediction unit covering luma location ( XAk, yAk ) is
available [Ed. (BB): Rewrite it using MinCbAddrZS[ ][ ] and the
availibility process for minimum coding blocks ], PredMode is not
MODE INTRA, predFlagLY[ xAx ][ yAx ] (with Y = !X) is equal to
1, AddPicld( RefPicListX][ refldxIL.X 1) 1S equal to
AddPicld( RefPicListY[ refldxL Y[ xAx I[ YAx 1] ), and
PicOrderCnt( RefPicListY[‘feﬂdeY[ xAx [ yAx]]) is equal to
PicOrderCnt( RefPicListX[ refldxLX ]), availableFlagLXA is set

equal to 1, the motion vector mvLXA is set equal to the motion vector

,,,,,,,



50

mvLY[ xAx ][ yAx ], refldxA is set equal to refldxLY[ xAx ][ yAk], an
ListA is set equal to ListY and mvLXA is set equal to mvLXA. o

— When availableFlagl. XA is equal to 1, availableFlagl. XA is set to 0 if

one or more of the following are true: !

— One and only one of RefPicListX]refldxI. X] and

ListA[ refldxA 1 is a long-term reference picture;

_  Both RefPicListX[ refldxLX ] and ListA[ refldxA | are long-

-
term reference pictures and PicOrderCnt( ListA[ refldxA 1) is not pos

equal to PicOrderCnt( RefPicListX] refldxL.X 1).

5. When availableFlagl. XA is equal to 0, for ( XAy, yAx ) from ( xAo, yAg )

to (xA;, yA;) where yA; = yAg - MinPuSize, if availableFlagl XA is

ol S Al

equal to 0, the following applies:

— If the prediction unit covering luma location ( XAy, yAx ) is available
[Ed. (BB): Rewrite it using MinCbAddrZS[ ][ ] and the availibility
process for minimum coding blocks ], PredMode is not
MODE INTRA, predFlagLX[ xA¢ ][ yAx] 1s equal to 1, and
AddPicld( RefPicListl X[ refldxI.X 1) 18 equal to
AddPicld( RefPicListLX] refldxLX[ xAk ][ yAk 1),

availableFlagl. XA is set equal to 1, the motion vector mvLXA is set
equal to the motion vector mvLX][ xAy ][ yAx ], refldxA is set equal to
refldxLX[ xAy ][ yAx ], ListA is set equal to ListX.

— Otherwise, if the prediction unit covering luma location ( XAy, YAk ) 18
available [Ed. (BB): Rewrite it using MinCbAddrZS[ ][] and the
availibility process for minimum coding blocks ], PredMode is not
MODE INTRA, predFlagLY[ xAg ].[ yAk ] (with Y = !X) is equal to
1, and  AddPicld( RefPicListLX[ refldxL. X ]) . is equal to
AddPicld( RefPicListLY[ refldxLY[ xAk ][ yAk ]]).

availableFlagLXA is set equal to-1, the motion vector mvLXA is set
equal to the motion vector mvLY[ xAy ][ yAx ], refldxA is set equal to
refldxLY[ xAg ][ YAk ], ListA is set equal to ListY.



10

15

20

51
"
— When availableFlagl. XA is equal to 1, availableFlagl XA is set to 0 if
one or more of the following are true: beut

— One and only one of RefPicListX[refldxLX] and e

ListA[ refldxA ] is a long-term reference picture; )

—  Both RefPicListX[ refldxLX ] and ListA[ refldxA ] are long-

term reference pictures and PicOrderCnt( ListA[ refldxA 1) is not

equal to PicOrderCnt( RefPicListX[ refldxI.X ]). =

— When  availableFlagLXA is equal tol, and  both !
RefPicListA[ refldxA ] and RefPicListX[ refldxLX ] are short-term

reference pictures, mvLXA is derived as specified below.
tx={16384+ ( Abs(td)>>1))/td (8-1206)

DistScaleFactor = Clip3( —4096, 4095, ( tb * tx +32)>> 6 ) (8-127)

mvLXA = Clip3( —-8192, 8191.75, Sign( DistScaleFactor * mvLX
A)*
( (Abs( DistScaleFactor * mvLXA )+127)>>8)) (8-128)

where td and tb may be derived as

td = Clip3( —128, 127, PicOrderCntVal —
PicOrderCnt( RefPicListA[ refldxA 1)) (8-129)

tb = Clip3( —128, 127, PicOrderCntVal — PicOrderCnt(
RefPicListX

[ refldxLX ])) (8-130)

Video encoder 20 and video decoder 30 may be configured to derive the

motion vector mvLXB and the availability ﬂag availableFlagl. XB using the following

ordered steps, where underlined text represents changes with respect to HEVC WD7:

1. Let a set of three sample location (xBy, yBy), with k=0,1,2, specifying

sample locations with xBo=xP+nPSW, xB;=xBy— MinPuSize,



10

156

20

25

52

xB; = xP —MinPuSize and yByx=yP —1. The set of sample locations
( xBy, yBi ) represent the sample locations immediately to the upper side
of the above partition boundary and its extended line. [Ed. (BB): Define

MinPuSize in the SPS but the derivation should depend on the use of an
AMP flag ] |

. When yP-1 is less than (( yC>> Log2CtbSize ) << Log2CtbSize), the

following applies.

xBg = (xBg>>3)<<3) + ((xBg>>3)&1)*7
xB; = (xB>>3)<<3) + ((xB>>3)&1)*7
xB; = (xB,>>3)<<3) + ((xB>>3)&1)*7

Let the availability flag availableFlagl. XB be initially set equal to 0 and

the both components of mvLXB are set equal to 0.

. For ( xBy, yBx ) from ( xBy, yBo ) to ( xB,, yB; ) where xBg =xP + nPSW,

xB; = xBy — MinPuSize , and xB, = xP — MinPuSize, if
availableFlagl XB is equal to 0, the following applies:

— If the prediction unit covering luma location ( xBy, yBx ) is available
[Ed. (BB): Rewrite it using MinCbAddrZS[ ][ ] and ‘the availibility
process for minimum coding blocks ], PredMode is not
MODE INTRA, predFlaglX[ xBy ][ yBx] is equal to 1, and the
reference index refldxLX[ xBy ][ yBxk ] is equal to the reference index
of the current prediction unit refldxLX, availableFlagl.XB is set equal
to 1 and the motion vector mvLXB is set equal to the motion vector

mvLX[ xBy ][ yBx ], refldxB is set equal to refldxLX[ xBy ][ yBk ]
and ListB i1s set equal to ListX.

~ Otherwise, if the prediction unit covering luma location ( xBy, yBx ) 1s
available [Ed. (BB): Rewrite it using MinCbAddrZS[ ][] and the
availibility process for minimum coding blocks ], PredMode is not
MODE_INTRA, predFlagLY[ xBy ][ yB« ] (with Y = !X) is equal to
1, - AddPicld( RefPicListX[ refldx.X ]) 1s equal to

e
(8-131)
(8-132)
(8-133)



10

15

20

25

53

AddPicld( RefPicListL Y[ refldx Y[ xBk [ yBk 11). and
PicOrderCnt( RefPicListY[ reflaxLY[ xBy [ yBx]]) is equal to
PicOrderCnt( RefPicListX[ refldxLX ] ), availableFlagLXB is set

equal to 1, the motion vector mvLXB is set equal to the motion vector

mvLY[ xBg ][ yBx ], refldxB is set equal to refldxLY[ xBy ][ yBk ],
and ListB is set equal to ListY.

— When availableFlagl XA is equal to 1, availableFlagLXA is set to 0 if

one or more of the following are true:

— One and only one of RefPicListX]refldx. X] and

ListB[ refldxB ] is a long-term reference picture.

|

AddPicld( RefPicListX] refldxI. X1) is not  equal to
AddPicld( ListB[ refldxB ]).

—  Both RefPicListX[ refldxLX ] and ListB[ refldxB ] are long-term

reference pictures and PicOrderCnt( ListB[ refldxB 1) is not equal
to PicOrderCnt( RefPicListX[ refIdxLX 1 ).

. When isScaledFlagl.X is equal to 0 and availableFlagLXB is equal to 1,

mvLXA is set equal to mvLXB and refldxA is set equal to refldxB and
availableFlagl. XA 1is set equal to 1.

. When isScaledFlagl.X is equal to 0, availableFlagl. XB is set equal to 0

and for (xBy, yBx) from (xBy, yBo) to (xB,, yB;) where xBy=xP
+nPSW, xB;=xBg-MinPuSize, and xB,= xP - MinPuSize, if
availableFlagl XB is equal to 0, the following applies:

— If the prediction unit covering luma location ( XxBy, yBg ) is available
[Ed. (BB): Rewrite it using MinCbAddrZS[ ][ ] and the availibility
process for minimum coding blocks ], | PredMode is not
MODE INTRA, pr'edFlagLX[ XBe ][ yBk] is equal to 1, and
AddPicld( RefPicListX] refldxLX ] ) is equal to
AddPicld( RefPicListX][ reﬂdeXf xBk ][ yBk11),

availableFlagLXB is set equal to 1, the motion vector mvLXB is set

,,,,,,,



10

15

20

25

54

equal to the motion vector mvLX[ xBy ][ yBx ], refldxB is set equal to

refldxLX[ xBy ][ yBk ], ListB is set equal to ListX.

— Otherwise, if the prediction unit covering luma location ( xBy, yBy ) is
available [Ed. (BB): Rewrite it using MinCbAddrZS[ ][] and the
availibility process for minimum coding blocks ], PredMode is not
MODE INTRA, predFlagLY[ xBy ][ yB« ] (with Y - 'X) 1s equal to
1, and AddPicld( RefPicListXf refldxLX]) is equal to
AddPicld( RefPicListY[ refldxLY[ xBk [ yBk11),

availableFlagLXB 1s set equal to 1, the motion vector mvLXB is set
equal to the motion vector mvLY[ xBy ][ yBk ], refldxB is set equal to
refldx LY xBy ][ yBx ], ListB is set equal to ListY.

— When availableFlagl. XA is equal to 1, availableFlagl XA is set to 0 if

one or more of the following are true:

— One and only one of RefPicListX]refldxI. X] and

ListB[ ( refldxB 1) is a long-term reference picture.

—  Both RefPicListX[ refldxI. X ] and ListB[ refldxB ] are long-term

reference pictures and PicOrderCnt( ListBf refldxB 1) is not equal
to PicOrderCnt( RefPicListX[ refldxI. X 1).

— When availableFlagL. XB 1s equal to 1 and
PicOrderCnt( RefPicListB] refldxB ] ) is not equal to
PicOrderCnt( RefPicListX] refldxL.X ]) ' and both
RefPicListB[ refldxB ] and RefPicListX[ refldxLX ]| are short-term

reference pictures, mvLXB is derived as specified below.

tx= (16384 + (Abs(td)>>1))/td (8-134)

DistScaleFactor = Clip3( —4096, 4095, ( tb * tx + 32 ) >> 6 )(8-135)

mvLXB =Clip3( ;8‘1 92, 8191.75, Sign( DistScaleFactor * mvLX
A)*
( (Abs( DistScaleFactor * mvLXA )+ 127)>>8)) (8-136)

.......

v,



10

15

20

25

30

55

where td and tb may be derived as

td = Clip3( —128, 127, PicOrderCntVal — PicOrderCnt(
RefPicListB[refldxB] ) ) (8-137)

tb = Clip3( —128, 127, PicOrderCntVal —
PicOrderCnt(RefPicListX[refldxLX]) ) (8-138)

Video encoder 20 and video decoder 30 may be configured td derive temporal
luma motion vector predictors as follows. Inputs to the process may include a luma
location ( xP, yP ) specifying the top-left luma sample of the current prediction unit
relative to the top-left sample of the current picture, variables specifying the width

and the height of the prediction unit for luma, nPSW and nPSH, and the reference

- index of the current prediction unit partition refldxL.X (with X being 0 or 1). Outputs

of the process may include the motion vector prediction mvLXCol and the availability
flag availableFlaglL. XCol.

The function RefPicOrderCnt( picX, refldx, LX), which may return the
picture order count PicOrderCntVal of the reference picture with index refldx from
reference picture list LX of the picture picX, may be specified as follows:

RefPicOrderCnt( picX, refldx, LX ) = PicOrderCnt(RefPicListX[ refldx ] of
the picture picX) (8 141)

Depending on the values of slice_type, collocated from 10 flag, and
collocated ref idx, video encoder 20 and video decoder 30 may derive the variable
colPic, specifying the picture that contains the collocated partition, as follows:

- If slice type is equal to B and collocated_from_10_flag is equal to 0, the
variable colPic specifies the picture that contains the collocated partition as specified
by RefPicListl[ collocated ref idx ].

- Otherwise (slice_type is equal to B and collocated _from _10_flag is equal to 1
or slice_type is equal to P) , the variable colPic specifies the picture that contains the
collocated partition as specified by RefPicListO[ collocated ref 1dx ].

Video encoder 20 and video decoder 30 may derive variable colPu and its
poéition ( xPCol, yPCol ) using the following ordered steps, where underlined text

represents changes relative to HEVC WD7:



10

15

20

25

56

1. The variable colPu may be derived as follows

yPRb = yP + nPSH (8-139)

-~ If ( yP >> Log2CtbSize ) is equal to ( yPRb >> Log2CtbSize ), the

horizontal component of the right-bottom luma position of the current

prediction unit is defined by

xPRb = xP + nPSW (8-140)

and the variable colPu is set as the prediction unit covering the
modified position given by ( ( xPRb >>4) << 4, (yPRb>>4)<<4)

inside the colPic.

— Otherwise ( ( yP >> Log2CtbSize ) is not equal to ( yPRb' >> Log2CtbSize

) ), colPu is marked as “unavailable.”

2. When colPu is coded in an intra prediction mode or colPu is marked as

“unavailable,” the following applies.
— Central luma position of the current prediction unit is defined by

xPCtr=(xP + (nPSW>>1) (8-141)
yPCtr=(yP + (nPSH>>1) (8-142)

— The variable colPu is set as the prediction unit covering the modified

position given by ( (xPCtr>>4)<<4, (yPCtr>>4)<<4) inside
the colPic. |

3. (xPCol, yPCol) is set equal to the top-left luma sample of the colPu

relative to the top-left luma sample of the colPic.

The function LongTermRefPic( picX, refldx, LX) is defined as follows.
If the reference picture with index refldx from reference picture list LX of the
picture picX was marked as “used for long term reference” at the time when picX

was the current picture, LongTei‘mRefPic( picX, refldx, LX) returns 1; otherwise

LongTermRefPic( picX, refldx, LX) returns 0.



10

15

20

25

c C

57

The function AddPicld( picX, refldx, LX) returns AddPicld(pic), wherein

pic is the reference picture with index refldx from reference picture list LX of the

picture picX.
The variables mvLXCol and availableFlagL.XCol are derived as follows.

— If one or more of the following conditions are true, both components of

mvLXCol are set equal to 0 and availableFlagl. XCol is set equal to 0.
~ colPu is coded in an intra prediction mode.

— colPu is marked as “unavailable.”

— pic_temporal mvp_enable flagis equal to 0.

— Otherwise, the motion vector mvCol, the reference index refldxCol, and

the reference list identifier listCol are derived as follows.

— If PredFlagLO[ xPCol J[ yPCol ] is equal to 0, mvCol, refldxCol, and
listCol are set equal to MvL1[ xPCol ][ yPCol ],
RefldxL1[ xPCol [ yPCol ], and L1, respectively.

— Otherwise (PredFlagL0[ xPCol ][ yPCol ] is equal to 1), the following
applies.

- If PredFlagL1[ xPCol ][ yPCol ] 1s equal to O,
mvCol, refldxCol, and listCol are set equal to
MvVLO[ xPCol ][ yPCol ], RefldxLO[ xPCol ][ yPCol ], and LO,

respectively.

- Otherwise  (PredFlagL1[ xPCol ][ yPCol] 1s

equal to 1), the following assignments are made:

- If PicOrderCnt( pic ) of every picture pic in
every reference picture lists is less than or equal to
PicOrderCanal, mvCol, refldxCol, and listCol are set equal
to MvVLX] xfCol [ yPCol], RefldxLX[ xPCol ][ yPCol ]

and LX, respéctively with X Bemé ‘the value of X this

process is invoked for.

o



10

15

20

25

58

- Otherwise (PicOrderCnt(pic) of at least
one picture pic in at least one reference picture list is greater
than PicOrderCntVal, mvCol, refldxCol and listCol are set

MVLN] xPCol ][ yPCol ],

RefldxLN[ xPCol ][ yPCol ] and LN, respectively with N

equal to

being the value of collocated from 10 flag.

— If one of the following conditions is true, the variable

availableFlagl XCol is set equal to 0.

— AddPicld( RefPicListX[ refldxL.X 1) - is  not equal to
AddPicld( colPic, refldxCol, listCol );

—  RefPicListX[ refldxLX ] is a short-term reference picture and

LongTermRefPic( colPic, refldxCol, listCol ) is equal to 1;

—  RefPicListX] refldxL.X ] is a long-term reference picture and

LongTermRefPic( colPic, refldxCol, listCol ) is equal to 0;

— RefPicListLX] refldxL. X ] is a long-term reference picture and

LongTermRefPic( colPic, refldxCol, listCol ) is equal to1 and
RefPicOrderCnt( colPic, refldxCol, listCol ) i1s not equal to
PicOrderCnt( RefPicListL. X [ refldxL.X 1).

Otherwise, the variable availableFlaglL XCol is set equal to 1, and the

following applies.

If RefPicListX[ refldxLX ] is a long-term reference picture, or
LongTermRefPic( colPic, refldxCol, listCol ) 1s .equal tol, or
PicOrderCnt( colPic ) -

RefPicOrderCnt( colPic, refldxCol, listCol ) 18 equal  to
PicOrderCntVal — PicOrderCnt( RefPicListX[ refldxLX 1),

mvLXCol = mvCol (8-143)

Otherwise, mvLXCol is derived as scaled version of the motion
vector mvCol as specified below

tx = (16384 + (Abs(td ) >>1))/td | (8-144)

P



10

15

20

25

59

DistScaleFactor = Clip3( —4096, 4095, (tb * tx + 32 )>>6) (8-145) r
mvLXCol = :
Clip3( —8192, 8191.75, Sign( DistScaleFactor * mvCol ) * i

( (Abs( DistScaleFactor * mvCol ) + 127 )>>8)) (8-146)

where td and tb may be derived as

td = Clip3( —128, 127, PicOrderCnt( colPic ) — RefPicOrderCnt( g

froudt

colPic, reﬂd%:o

tb = Clip3( —128, 127, PicOrderCntVal —
PicOrderCnt(RefPicListX

[refldxLX] ) ) (8-148)

Video encoder 20 and video decoder 30 may be configured to perform the
following derivation process for combined bi-predictive merging candidates. Inputs
of the process may include a merging candidate list mergeCandList, reference indices
refldxLON and refldxL1N of every candidate N being in mergeCandList, prediction
list utilization flags predFlagl.ON and predFlagl.1N of every candidate N being in
mergeCandList, motion vectors mvLON and mvL1N of every candidate N being in
mergeCandList, the number of elements numMergeCand within mergeCandList, and
the number of elements numOrigMergeCand within the mergeCandList after the
spatial and temporal merge candidate derivation process. Outputs of this process may
include the merging candidate list mergeCandList, the number of elements
numMergeCand within mergeCandList, reference indices refldxLOcombCandk and
refldxL1combCandk of every new candidate combCandk being added in
mergeCandList during the invokation of this process, prediction list utilization flags
predFlagLOcombCandk and predFlagl.1combCandk of every new candidate
combCandk being added in mergeCandLiét during the invocation of this process, and
motion vectors mvLOcombCandk and mvL1combCandk of every new candidate

combCandk being added in merge;éah;lLisf 'du;ing the invocation of this process.



10

15

20

25

60

When numOrigMergeCand is greater than 1 and less than |
MaxNumMergeCand, the variable numInputMergeCand may be set to
numMergeCand, the variables combldx and combCnt may be set to 0, the variable
combStop may be set to FALSE and the following steps may be repeated until
combStop is equal to TRUE (where ellipses represent the same steps as provided in

the HEVC WD7, and underlined text represents changes relative to HEVC WD7):

1. The variables 10Candldx and [1Candldx are derived using combldx as
specified in Table 8-8.

2. The following assignments are made with 10Cand being the candidate at

position 10Candldx and 11Cand being the candidate at position 11Candldx in

the merging candidate list mergeCandList
(10Cand = mergeCandList[ 10Candldx ],
11Cand = mergeCandList[ 11Candldx ] ).

3. When all of the following conditions are true,
~ predFlagl0l0Cand = =

— predFlagl.111Cand ==

— AddPicld( RefPicListLO[ refldxL0l0Cand ] ) != AddPicld( RefPicListL1[

refldxL.111Cand]) ||  PicOrderCnt( RefPicList0[ refldxL0I0Cand ])
!= PicOrderCnt( RefPicList1 [refldxL111Cand] ) - [
mvL0l0Cand !=mvL111Cand

the following applies.

As an alternative, prediction between two long-term reference pictures may be

enabled without scaling, and prediction between two inter-view reference pictures
may be enabled without scaling. Video encoder 20 and video decoder 30 may be -

configured to perform a derivation process for motion vector predictor candidates as

.....

""""""



5

-
o

15

20

25

follows, where underlined text represents changes relative to HEVC WD7 and ellipses

61

represent text that is the same as that of HEVC WD7:

The variable 1sScaledFlagL X with X being O or 1 may be set equal to 0.

The motion vector mvLXA and the availability flag availableFlagLXA may be

derived in the following ordered steps:

1. ...

2. ...

When availableFlagl XA is equal to 0, for {xA,, yA¢) from { xAg, yA

xky Yirk j 1iULid 473{y }ALG) tO

(xAj, yA;) where yA| = yAy - MinPuSize, the following apialies repeatedly

until availableFlagl. XA is equal to 1:

If the prediction unit covering luma location ( xAy, yAy ) is available [Ed.
(BB): Rewrite it using MinCbAddrZS[ ][ ] and the availibility process for
minimum coding blocks ], PredMode is not MODE _ INTRA,
predFlagLX[ xAx ][ yAk ] is equal = to 1, and
RefPicType(RefPicListX[ refldxLX ]) 1s equal to

RefPicType(RefPicListX[ refldxLX[ xAy [ yAx 11, availableFlagLXA is

set equal to 1, the motion vector mvLXA is set equal to the motion vector

mvLX[ xAy ][ yAx ], refldxA is set equal to refldxLX|[ xAx [ yAx ], ListA
is set equal to ListX.

Otherwise, if the prediction unit covering luma location ( XAy, YAk ) 1S
available [Ed. (BB): Rewrite it using MinCbAddrZS[ ][] and the
availibility process for minimum coding blocks ], PredMode is not
MODE _INTRA, predFlagLY[ xAx ][ yAx] (with Y .= !X) is equal to 1,
and. RefPicType(RefPicListX[ refldxLX]) s equal to
RefPicType(RefPicListY[ refldx LY[ xAk I[ yAk 11)

availableFlagLXA

is set equal to 1, the motion vector mvLXA is set equal to the motion

bR

Y



62

vector mvLY[ xAx ][ yAx], refldxA is  set  equal to
refldxLY] xAx ][ yAk ], ListA is set equal to ListY.

— When availableFlaglL. XA is equal to 1, and both RefPicListA[ refldxA ]
and RefPicListX[ refldxLX ] are short-term reference pictures, mvLXA is

5 derived as specified below.
Tx=(16384+ (Abs(td)>>1))/td (8-126)
DistScaleFactor = Clip3( —4096, 4095, (tb * tx +32)>>6) (8-127)

mvLXA = Clip3( —8192, 8191.75, Sign( DistScaleFactor * mvLXA ) *

10 ( (Abs( DistScaleFactor * mvLXA )+ 127)>>8)) (8-128)

where td and tb may be derived as

td = Clip3( —128, 127, PicOrderCntVal —
PicOrderCnt( RefPicListA[ refldxA ]))

(8-129)

15 tb = Clip3( —128, 127, PicOrderCntVal —
PicOrderCnt( RefPicListX[ refldxLX ]))

(8-130)

Video encoder 20 and video decoder 30 may derive the motion vector mvLXB
and the availability flag availableFlagl. XB using the following ordered steps, where
20  underlined text represents changes relative to HEVC WD7 and ellipses represent text
that is the same as that of HEVC WD7:

1.

2.

o e e e .
3 e

25 4.

......

,,,,,,
D]



10

15

20

25

63

When isScaledFlaglX is equal to 0, availableFlagl.XB is set equal to 0 and
for (xByg, yBx) from (xBg, yBy) to (xB,, sz ) where xBy=xP +nPSW,
xB; =xBg - MinPuSize, and xB, = xP - MinPuSize, the following applies
repeatedly until availableFlagL XB is equal to 1:

— If the prediction unit covering luma location ( xBg, yBy ) is available [Ed.
(BB): Rewrite it using MinCbAddrZS[ ][ ] and the availibility process for
minimum coding blocks ], PredMode 1is not MODE INTRA,
predFlagL X[ xBy ][ yBx ] is equal to - 1, and
RefPicType(RefPicListX[ refldxLX ]) 18 equal to
RefPicType(RefPicListX[ refldxLX[ xBy ][ yBi ] 1), availableFlaglL.XB is

set equal to 1, the motion vector mvLXB is set equal to the motion vector
mvLX[ xBg ][ yBx ], refldxB is set equal to refldxLX[ xBx ][ yBx ], ListB
is set equal to ListX.

— Otherwise, if the prediction unit covering luma location ( xBy, yBx) 1s
available [Ed. (BB): Rewrite it using MinCbAddrZS[ ][] and the
availibility process for minimum coding blocks ], PredMode is not
MODE INTRA, predFlagLY[ xBg ][ yBx ] (with Y = !X) is equal to 1,
and RefPicType(RefPicListX[ refldxL.X ]) is equal to
RefPicType(RefPicListY[ refldxLY[ xBy ][ yBy 1), availableFlagLXB is

set equal to 1, the motion vector mvLXB is set equal to the motion vector
mvLY[ xBy ][ yBk ], refldxB is set equal to refldxLY[ xBy ][ yB« ], ListB
1s set equal to ListY.

— When availableFlaglL XB 1s equal to 1 and
PicOrderCnt( RefPicListB[ refldxB ]) is - not equal to
PicOrderCnt( RefPicListX[ refldxLX ]) and both RefPicListB[ refldxB ]
and RefPicListX[ refldxLX ] are short-term reference pictures, mvLXB i1s

derived as specified below.-

tx=( 16384 + (Abs(td)>>1))/td (3134

v



10

15

20

25

c C

64

DistScaleFactor = Clip3( ~4096, 4095, (tb * tx +32)>>6)  (8-135)

mvLXB =Clip3( -8192, 8191.75, Sign( DistScaleFactor * mvLXA ) *
( (Abs( DistScaleFactor * mvLXA )+ 127)>>8)) (8-136)

where td and tb may be derived as

td = Clip3( —128, 127, PicOrderCntVal -
PicOrderCnt( RefPicListB[ refldxB ] ) )
(8-137)
tb = Clip3( —128, 127, PicOrderCntVal —
PicOrderCnt( RefPicListX] refldxLX ]) )
(8-138)

Video encoder 20 and video decoder 30 may be configured to perform a

derivation process for temporal [luma motion vector prediction, as follows.
The variables mvL.XCol and availableFlagl. XCol may be derived as follows.

— If one or more of the following conditions are true, both components of

mvLXCol are set equal to 0 and availableFlagLXCol is set equal to 0.
— colPu is coded 1n an intra prediction mode.

— colPu is marked as “unavailable.”

— pic_temporal mvp enable flagis equal to 0.

— Otherwise, the motion vector mvCol, the reference index refldxCol, and the

reference list identifier listCol are derived as follows.

— If PredFlagLO[ xPCol ][ yPCol ] is equal to 0, mvCol, refldxCol, and
listCol are set equal to MvL1[ xPCol ][ yPCol ],

A,

RefldxL1[ xPCol ][ yPCol ], ‘arlld L1, respectively.

— Otherwise (PredFlagL0[ xPCol ][ yPCol ] is equal to 1), the following
applies.



c 4

65

— If PredFlagL1[ xPCol ][ yPCol ] is equal to 0, mvCol, refldxCol, and ‘
litCol are set equal to  MvLO[ xPCol ][ yPCol], -

RefldxLO[ xPCol ][ yPCol ], and L0, respectively. w

— Otherwise (PredFlagL1[ xPCol ][ yPCol ] is equal to 1), the following e,

assignments are made.

— If PicOrderCnt( pic) of every picture pic in every reference
picture lists is less than or equal to PicOrderCntVal, mvCol, o
refldxCol, and listCol are set equal to MvLX[ xPCol ][ yPCol ], ‘ ;
RefldxLX[ xPCol ][ yPCol ] and LX, respectively with X being

the value of X this process 1s invoked for.

— Otherwise (PicOrderCnt( pic) of at least one picture pic in at
least one reference picture list is greater than PicOrderCntVal,
mvCol, refldxCol and listCol are set equal to
MVLN[ xPCol ][ yPCol ], RefldxLN[ xPCol ][ yPCol ] and LN,
respectively with N being the value of collocated from 10 flag.

- If RefPicType(RefPicListX] refldxIL.X 1) is not equal to

RefPicType( colPic, refldxCol. listCol ), the variable availableFlagl. XCol

1s set equal to 0.

— Otherwise, the variable availableFlagLXCol is set equal to 1, and the

following applies.

— If RefPicListX[ refldxI.X ] is a long-term reference picture, or
LongTermRefPic( colPic, refldxCol, listCol ) is equal to1l, or
PicOrderCnt( colPic ) -

RefPicOrderCnt( colPic, refldxCol, listCol)  is  equal to
PicOrderCntVal — PicOrderCnt( RefPicListX[ refldxLX ] ),
mvLXCo

— Otherwise, mvLXCol is derived as scaled version of the motion
vector mvCol - as specified below~- -- -

tx = (16384 +(Abs(td)>>1))/td (8-144)



10

15

20

25

66

- DistScaleFactor = Clip3( —4096, 4095, (tb * tx + 32 ) >> 6 )(8-145)

mvLXCol =
Clip3(—8192, 8191.75, Sign( DistScaleFactor * mvCol ) *
( (Abs( DistScaleFactor * mvCol ) + 127 )>>8)) (8-146)
where td and tb may be derivéd as
td = Clip3( —128, 127, PicOrderCnt( colPic ) -
RefPicOrderCnt( colPic,

refldxCol, listCol ) ) (8-147)
tb = Clip3( —128, 127, PicOrderCntVal — PicOrderCnt(
RefPicListX [ refldxLX ])) (8-148)

Section 8.5.2.1.3 of HEVC WD7 may remain the same, for purposes of this example.

different long-term reference pictures may be disabled, prediction between motion

vectors referring to an inter-view reference picture and a long-term reference picture

may be disabled, and prediction between motion vectors referring to different inter-

view reference pictures may be enabled. In this example, video encoder 20 and video

decoder 30 may be configured to perform a derivation process for motion vector

predictor candidates as described below. Inputs to this process may include a luma

location ( xP, yP ) specifying the top-left luma sample of the current prediction unit

relative to the top-left sample of the current picture, variables specifying the width

and the height of the prediction unit for luma, nPSW and nPSH, and the reference

index of the current prediction unit partition refldxLX (with X being 0 or 1). Outputs

of this process may include (with N being replaced by A or B) the motion vectors

mvLXN of the neighboring prediction units and the availability flags

availableFlagLXN of the neighboring prediction units.

The variable isScaledFlagl.X with X being 0 or 1 may be set equal to 0.

Video encoder 20 and video decoder 30 nﬂay derive the motion vector mvLXA and

- the availability flag availableFlagLXA using the following ordered steps, where

underlined text represents changes relafive to HEVC WD7:

1

. Let a'set of two sample locations be (xAk, yAk), with K= (3,‘1, specifying

— o

sample locations with xAk =xP — 1, yAO = yP + nPSH and yAl = yAO -



10

15

20

25

30

2.

3.

4.

67

MinPuSize. The set of sample locations (xAk, yAk) represent the
sample locations immediately to the left side of the left partition boundary

and it’s extended line.

Let the availability flag availableFlagLXA be initially set equal to 0 and

the both components of mvLXA are set equal to 0.

When one or more of the following conditions are true, the variable

isScaledFlagL.X is set equal to 1.

— the prediction unit covering luma location ( XAy, yAy ) is available [Ed.
(BB): Rewrite it using MinCbAddrZS[ ][ ] and the availibility process
for minimum coding blocks ] and PredMode 1s not MODE INTRA.

(BB): Rewrite it using MinCbAddrZS[ ][ ] and the availibility process
for minimum coding blocks ] and PredMode is not MODE INTRA.

For (xAg, yAx) from (xAp yAo) to (xA,yA;) where
yA1 = yAo — MinPuSize, if availableFlagL. XA is equal to 0, the following

applies:

— If the prediction unit covering luma location ( XAy, YAy ) 1s available
[Ed. (BB): Rewrite it using MinCbAddrZS[ ][ ] and the availibility
process for minimum coding blocks ], PredMode is not
MODE INTRA, predFlagLX[ xAx ][ yAx] is equal to 1 and the
reference index refldxLX[ xAy ][ yAx ] is equal to the reference index
of the current prediction unit refldxL.X, availableFlagLXA is set equal
to 1 and the motion vector mvLXA is set equal to the motion vector
mvLX[ xAx ][ yAx ], refldxA is set equal to refldxLX[ xAy ][ yAx ]
and ListA is set equal to ListX.

— Otherwise, if the prediction unit covering luma location ( XAk, yAk ) is

available [Ed. (BB): Rewrite it using MinCbAddrZS[ ][] and the

~availibility process for minimum codinig blocks ], PredMode is not —-- -

MODE INTRA, predFlagL Y[ xAx ][ yAx ] (with Y = !X) is equal to
1, AddPicld( RefPicListX[ refldxL.X ]) is equal to




10

68

AddPicld( RefPicListY[ refldxLY[{ xAk ][ vAk ] 1), and
PicOrderCnt( RefPicListY[ refldxLY[ xAx ][ yAx]]) is equal to
PicOrderCnt( RefPicListX[ refldxLX ]), availableFlagLXA 1is set

equal to 1, the motion vector mvLXA is set equal to the motion vector
mvLY[ xAy ][ YAk ], refldxA is set equal to refldxLY[ xAy ][ YAk ],
ListA is set equal to ListY and mvLXA is set equal to mvLXA.

— When availableFlagl XA is equal to 1, availableFlagl. XA is set to 0 if

the following is true

— One and only one of RefPicListX[refldxLX] and

ListAf refldxA ] is a long-term reference picture.

5. When availableFlagLXA 1is equal to 0, for ( XAy, yAx ) from ( xAg, yAp)
to (xAj, yA;) where yA|=yAq- MinPuSize, if availableFlagl XA is

equal to 0, the following applies:

— If the prediction unit covering luma location ( XAy, yAg ) is available
[Ed. (BB): Rewrite it using MinCbAddrZS[ ][] and the availibility
process for minimum coding blocks ], PredMode is not
MODE INTRA, predFlaglX[ xAx ][ yAx] is equal to 1, and
AddPicld( RefPicListL X[ refldxLX ]) is equal to
AddPicld( RefPicListl X[ refldxEX[ xAk J[ yAk 11),

availableFlagl. XA is set equal to 1, the motion vector mvLXA is set
equal to the motion vector mvLX[ xAg ][ yAx ], refldxA is set equal to
refldxLX[ xAx ][ yAx ], ListA is set equal to ListX.

— Otherwise, if the prediction unit covering luma location ( xAy, yAx ) 1s
available [Ed. (BB): Rewrite it using MinCbAddrZS[ ][] and the
availibility process for minimum coding blocks ], PredMode is not
MODE_INTRA, predFlagLY[ xAg ][ yAx ] (with Y = !X) is equal to
1, and AddPicld( RefPicListLX[ refldx]. X]) is equal to
AddPicld( RefPicListLY][ refldxLY[ xAk I yAk 1),

availableFlagLXA is set equal to 1, the motion vector mvLXA is sét



69

equal to the motion vector mvLY[ xAy ][ yAx ], refldx A is set equal to

refldxLY[ xAx ]{ yAx ], ListA 1s set equal to ListY. .

— When availableFlagl XA is equal to 1. availableFlagl XA is set to 0 if

the following is true:
iy

5 — One and only one of RefPicListX{refldxLX] and

ListAf refldxA 1 is a long-term reference picture.

— When  availableFlaglXA is equal tol, and  both - o
RefPicListA[ refldxA ] and RefPicListX{ refldxLX ] are short-term

reference pictures, mvLXA is derived as specified below.
10 tx =( 16384+ ( Abs(td)>>1))/td (8-126)
DistScaleFactor = Clip3( —4096, 4095, (tb * tx +32)>>6) (8-127)

mvLXA = Clip3( —8192, 8191.75, Sign( DistScaleFactor * mvLX

A)*
( (Abs( DistScaleFactor * mvLXA )+ 127)>>8)) (8;128)

15 where td and tb may be derived as

td = Clip3( ~128, 127, PicOrderCntVal -
PicOrderCnt( RefPicListA[ refldxA 1))

(8-129)
tb = Clip3( —128, 127, PicOrderCntVal — PicOrderCnt(
20 RefPicListX [reﬂd»xLX )
T - (8-130)
— Video encoder 20 and vidéo decoder 30 may be configured to derive the

motion vector mvLXB and the availability flag availableFlagl.XB using the following

ordered steps, where underlined text represénts changes relative to HEVC WD7:

ki e b




10

15

20

25

B e

70

. Let a set of three sample location (xBk, yBk), with k= 0,1,2, specifying

sample locations with xBO=xP +nPSW, xBl=xB0-MinPuSize,
xB2 = xP — MinPuSize and yBk=yP — 1. The set of sample locations
( xBk, yBk ) represent the sample locations immediately to the upper side
of the above partition boundary and its extended line. [Ed. (BB): Define
MinPuSize in the SPS but the derivation should depend on the use of an
AMP flag | |

. When yP-1 is less than (( yC >> Log2CtbSize ) << Log2CtbSize), the

following applies.

xBy = (xBg>>3)<<3) + ((xBg>>3)&1)*7 (8-131)
Aul—\)\ul\>3)/ ) ((X D17 >3)&1)*7 (8-132)

xB; = (xBp>>3)<<3) + ((xB,>>3)&1)*7 v . (8-133)

. Let the availability flag availableFlagLXB be initially set equal to 0 and

the both components of mvLXB are set equal to 0.

. For (xBy, yBx ) from ( xBo, yBg ) to ( xB,, yB, ) where xBy = xP + nPSW,

xB; = xBg — MinPuSize , and xB, = xP — MinPuSize, if
availableFlagl XB is equal to 0, the following applies:

— If the prediction unit covering luma location ( xBy, yBy ) is available
[Ed. (BB): Rewrite it using MinCbAddrZS[ ][ ] and the availibility
process for minimum coding blocks ], PredMode is not
MODE INTRA, predFlagLX[ xBy ][ yBx] is equal to 1, and the
reference index refldxLX[ xBy ][ yBk ] is equal to the reference index
of the current prediction unit refldxLX, availableFlagLXB is set equal
to 1 and the motion vector mvLXB is set equal to the motion vector
mvLX[ xBy ][ yBk ], refldxB is set equal to reﬂdeX[ xBk ][ yBx ]
and ListB is set equal to ListX.

~ Otherwise, if the prediction unit covering luma location ( xBy, yBx ) is
" available [Ed. (BB): Rewrite it using I\ZianAderS[][] and the

availibility process for minimum coding blocks ], PredMode is not

,,,,,,,,,



10

15

20

25

30

71

MODE INTRA, predFlagLY[ xBy ][ yBk ] (with Y = !X) is equal to
1, AddPicld( RefPicListX[ refldxLX 1) is _ equal to
AddPicld( RefPicListL Y[ refldx Y[ xBk J{ yBk 1), : and
PicOrderCnt( RefPicListY[ refldxLY[ xBy ][ yBx]]) is equal to
PicOrderCnt( RefPicListX[ refldxLX ]), availableFlagLXB is set

equal to 1, the motion vector mvLXB is set equal to the motion vector

mvLY[ xBy ][ yBx ], refldxB is set equal to refldxLY[ xBx ][ yBx |,
and ListB is set equal to ListY.

— When availableFlagLXA is equal to 1, availableFlagLXA is set to 0 if

the following is true:

—  One and iny one of RefPicListX[ refldxLX ] and

ListB[ refldxB ] is a long-term reference picture.

. When isScaledFlagL.X is equal to 0 and availableFlagL.XB is equal to 1,

mvLXA is set equal to mvLXB and refldxA is set equal to refldxB and
availableFlagLXA is set equal to 1.

. When isScaledFlagl.X is equal to 0, availableFlagLXB is set equal to O

and for ( xBy, yBx) from (xBg, yBo) to (xB,, yB,) where xBy=xP
+nPSW, xB;=xBg-MinPuSize, and xB,= xP - MinPuSize, if
availableFlagl XB is equal to 0, the following applies:

— If the prediction unit covering luma location (XBk, yByk ) is available
[Ed. (BB): Rewrite it using MinCbAddrZS[ ][ ] and the availibility
process for minimum coding blocks ], PredMode is not
MODE_INTRA, predFlagLX[ xBx ][ yBx] is equal to 1, and
AddPicld( RefPicListX[ refldx[. X ] ) is equal to
AddPicld( RefPicListX[ refldxL X[ xBk ][ yBk 1] ).

availableFlagLXB is set equal to I, the motion vector mvLXB is set
equal to the motion vector mvLX[ xBy ][ yBx ], refldxB is set equal to

refldxLX[ xBy ][ yBk ], ListB is set equal to ListX.

— Otherwise, if the prediction unit covering luma location ( XBy, yBx ) 1s

available [Ed. (BB): Rewrite it using MinCbAddrZS[ ][] and the



10

15

20

25

C C

72

availibility process for minimum coding blocks ], 'PredMode is not
MODE _INTRA, predFlagLY[ xBy ][ yBx ] (with Y = !X) is equal to
1, and AddPicld( RefPicListX[ refldxLX]) is equal to
AddPicld( RefPicListY] refldxI. Y[ xBk ][ yBk 11]),

availableFlaglL. XB is set equal to 1, the motion vector mvLXB is set
equal to the motion vector mvLY[ xBy ][ yBx ], refldxB is set equal to

refldxLY[ xBy ][ yBk ], ListB is set equal to ListY.

— When availableFlagl XA is equal to 1. availableFlagl XA 1is set to 0 if

the following is true:

— One and only one of RefPicListX]refldx.X] and

ListB[ ( refldxB 1) is a long-term reference picture.

— When availableFlagl. XB 18 equal to 1 and

PicOrderCnt( RefPicListB[ refldxB | ) s not equal to
PicOrderCnt( RefPicListX[ refldxLX ]) and both
RefPicListB[ refldxB ] and RefPicListX[ refldxLX ] are short-term

reference pictures, mvLXB is derived as specified below.
tx =(16384+ (Abs(td)>>1))/td . (8-134)
DistScaleFactor = Clip3( —4096, 4095, (tb * tx +32)>>6) (8-135)

mvLXB =Clip3( 8192, 8191.75, Sign( DistScaleFactor * mvLXA

( (Abs( DistScaleFactor * mvLXA )+ 127)>>8)) (8-136)

where td and tb may be derived as

td = Clip3( —128, 127, PicOrderCntVal —-

PicOrderCnt( RefPicListB[refldxB] ) ) (8-137)

tb = Clip3( —128, 127, PicOrderCntVal —

PicOrderCnt(RefPicListX[refldxLX]) ) ' (8-138)

~~~~~~

.......

10

15

20

25

73

Video encoder 20 and video decoder 30 may be configured to implement a
derivation process for temporal luma motion vector prediction, as disussed below.
Inputs to this process may include a luma location (xP, yP) specifying the top-left
luma sample of the current prediction unit relative to the top-left sample of the current
picture, variables specifying the width and the height of the prediction unit for luma,
nPSW and nPSH, and the reference index of the current prediction unit partition
refldxLX (with X being 0 or 1). Outputs of this process may include the motion
vector prediction mvLXCol and the availability flag availableFlagl.XCol.

The function RefPicOrderCnt(picX, refldx, LX), in one example, returns the
picture order count PicOrderCntVal of the reference picture with index refldx from

reference picture list LX of the picture picX, and may be specified as follows:

RefPicOrderCnt(picX, refldx, LX) = PicOrderCnt(RefPicListX] refldx | of
the picture picX) (8-141)

Depending on the values of slice_type, collocated from 10 flag, and
collocated ref idx, video encoder 20 and video decoder 30 may derive the variable
colPic, specifying the picture that contains the collocated partition, as follows:

- If slice_type is equal to B and collocated from 10 flag is equal to 0, the
variable colPic specifies the picture that contains the collocated partition as specified
by RefPicList]] collocated_réf_idx]

- Otherwise (slice type is equal to B and collocated from 10 flag is equal to 1
or slice_type is equal to P) , the variable colPic specifies the picture that contains the
collocated partition as specified by RefPicListO[collocated ref idx].

Video encoder 20 and video decoder 30 may derive variable colPu and its

position (xPCol, yPCol) using the following ordered steps:

1. The variable colPu is derived as follows
yPRb=yP+nPSH - (8-139)

- If (yP >> Log2CtbSize).i,s equal to (yPRb >> Log2CtbSize), the

horizontal component of the right-bottom luma position-of the -current .

prediction unit is defined by

,,,,,,
ot

,,,,,,

.......

10

15

20

25

74

xPRb = xP + nPSW (8-140)

and the variable colPu is set as the prediction unit covering the
modified position given by ((xPRb >>4)<<4, (yPRb>>4)<<4)

inside the colPic.

~ Otherwise ((yP >> Log2CtbSize) is not equal to (yPRb >> Log2CtbSize

)), colPu is marked as “unavailable.”

2. When colPu is coded in an intra prediction mode or colPu is marked as

“unavailable,” the following applies.

— Central luma position of the current prediction unit is defined by

" xPCtr=(xP + (nPSW>> 1) (8-141)
yPCtr = (yP + (nPSH >> 1) (8-142)

— The variable colPu is set as the prediction unit covering the modified
position given by ((xPCtr>>4)<<4, (yPCtr>>4) <<4) inside
the colPic.

3. (xPCol, yPCol) is set equal to the top-left luma sample of the colPu

relative to the top-left luma sample of the colPic.

The function LongTermRefPic(picX, refldx, LX) may be defined as follows:
if the reference picture with index refldx from reference picture list LX of the picture
picX was marked as “used for long term reference” at the time when picX was the
current picture, LongTermRefPic(picX, refldx, LX) returns 1; otherwise
LongTermRefPic(picX, refldx, LX) returns 0. |

Video encoder 20 and video decoder 30 may implement a modified version of
the “AddPicID()” function of HEVC. For example, video encoder 20 and video
decoder 30 may implement AddPicld(picX, refldx, LX) such that this function
returns AddPicld(pic), wherein “pic” is the reference picture with index refldx from

reference picture list LX of the picture picX.

o R i SRRt s

.....

[
......

10

15

20

25

75

Video encoder 20 and video decoder 30 may derive variables mvLXCol and
availableFlagl. XCol as follows, where underlined text represents changes relative to

HEVC WD7:

— If one or more of the following conditions are true, both components of

mvLXCol are set equal to 0 and availableFlagl. XCol 1s set equal to 0.
— colPu is coded in an intra prediction mode.

— colPu is marked as “unavailable.”

— pic_temporal_mvp_enable_flag is equal to 0.

— Otherwise, the motion vector mvCol, the reference index refldxCol, and

the reference list identifier listCol are derived as follows.

— If PredFlagLO[xPCol][yPCol] is equal to 0, mvCol, refldxCol, and
listCol are set equal to MvL1[xPCol][yPCol],
RefldxL1[xPCol][yPCol], and L1, respectively.

— Otherwise (PredFlagL0[xPCol][yPCol] is equal to 1), the following
applies.

- If PredFlagL1[xPCol][yPCol] is equal to O,
mvCol, refldxCol, and listCol are set equal to
MvLO[xPCol][yPCol], RefldxLO[xPCol][yPCol], and LO,

respectively.

- Otherwise (PredFlagL1[xPCol][yPCol] s

equal to 1), the following assignments are made.

- If PicOrderCnt(pic) of every picture pic in
every reference picture lists is less than or equal to
PicOrderCntVal, mvCol, refldxCol, and listCol are set equal
to MvLX[xPCol][yPCol], RefldxLX[vxPCol][yPCol]
and LX, respectively with X being fhe value of X this

process is invoked for.

,,,,,,

,,,,,,

10

156

20

25

il

76

- Otherwise (PicOrderCnt(pic) of at least
one picture pic in at least one reference picture list is greater
than PicOrderCntVal, mvCol, refldxCol and listCol are set

MvLN][xPCol][yPCol],

RefldxLN[xPCol][yPCol] and LN, respectively with N

equal to

being the value of collocated from 10 flag.

If one of the following conditions is true, the variable

availableFlagl. XCol is set equal to 0.

AddPicld(RefPicListX] refldxL. X 1) is not equal to
AddPicld(colPic, refldxCol, listCol);

RefPicListX[refldxLX] is a short-term reference picture and

LongTermRefPic(colPic, refldxCol, listCol) is equal to 1:

RefPicListX] refldxL X 1 is a long-term reference picture and

LongTermRefPic(colPic, refldxCol, listCol) is equal to 0:

therwise, the variable availableFlagl. XCol is set equal to 1, and the

following applies.

If RefPicListX[refldxLX] is a long-term reference picture, or
LongTermRefPic(colPic, refldxCol, listCol) 1s equal tol, or
PicOrderCnt(colPic) —
RefPicOrderCnt(colPic, refldxCol, listCol) is equal to
PicOrderCntVal — PicOrderCnt(RefPicListX[refldxLX]),
mvLXCol = mvCol
(8-143)

Otherwise, mvLXCol is derived as scaled version of the motion

vector mvCol as specified below

tx = (16384 + (Abs(td)>>1))/td (8-144)

DistScaleFactor = Clip3(~4096, 4095, (tb * tx + 32) >> 6)(8-145)

10

15

20

25

30

77

mvLXCol =
Clip3(—8192, 8191.75, Sign(DistScaleFactor * mvCol) *
((Abs(DistSéaleFactor *mvCol) +127)>>8)) (8-146)
where td and tb may be derived as
td = Clip3(-128, 127, PicOrderCnt(colPic) —
RefPicOrderCnt(colPic, refldxCol,

listCol)) (8-147)
tb = Clip3(—128, 127, PicOrderCntVal —
PicOrderCnt(RefPicListX[refldxLX])) (8-148)

Video encoder 20 and video decoder 30 may be configured to perform a
derivation process for combined bi-predictive merging candidates. Inputs of this
process may inctude a merging candidate list mergeCandList, reference indices
refldx LON and refldxL1N of every candidate N being in mergeCandList, prediction
list utilization flags predFlagl.ON and predFlagL.1N of every candidate N being in
mergeCandList, motion vectors mvLON and mvL1IN of every candidate N being in
mergeCandList, the number of elements numMergeCand within mergeCandList, and
the number of elements numOrigMergeCand within the mergeCandList after the
spatial and temporal merge candidate derivation process. Outputs of this process may
include the merging candidate list mergeCandList, the number of elements
numMergeCand within mergeCandList, reference indices refldxLOcombCandk and
refldxL1combCandk of every new candidate combCandk being added in
mergeCandList during the invokation of this process, prediction list utilization flags
predFlagl.OcombCandk and predFlagl.1combCandk of every new candidate
combCandk being added in mergeCandList during the invokation of this process, and
motion vectors mvLOcombCandk and mvL1combCandk of every new candidate
combCandk being added in mergeCandList during the invokation of this process.

This process may be defined as follows, where underlined text represents
changes relative to HEVC WD7 and éllipses represent text that is the same as HEVC
WD7. When numOrigMergeCand is greater than 1 and less than
MaxNumMergeCand, the variable numlInputMergeCand may be set to

numMergeCand, the variables combldx and combCnt may be set to 0, the variable

,,,,,,

,,,,,

10

15

20

25

78

combStop may be set to FALSE and the following steps may be repeated until
combStop is equal to TRUE:

1. The variables 10Candldx and 11Candldx are derived using combldx as
specified in Table §8-8. |

2. The following assignments are made with 10Cand being the candidate at
position 10Candldx and 11Cand being the candidate at position 11CandIdx in
the merging candidate list mergeCandList
(10Cand = mergeCandList[10CandIdx |,
11Cand = mergeCandList[11Candldx]).

3. When all of the following conditions are true,

i AT~ ST NN A — — 1
— prear lagl010Cand == 1

predFlagl111Cand = =

- AddPicId(RefPicListl.O[refldxLO10Cand 1) ‘ I=
AddPicld(RefPicListL1[refldxI.111Cand]) || PicOrderCnt(RefPicList0

[refldxL010Cand]) != PicOrderCnt(RefPicListl [refldxL111Cand]) ||
mvL0I0Cand '= mvL111Cand

the following applies.

In some examples, prediction between two motion vectors referring to two
different long-term reference pictures may be disabled. In other examples, prediction
between two motion vectors referring to two different inter-view reference pictures
may be disabled.

In this manner, video encoder 20 and video decoder 30 represent examples of
a video coder configured to code a picture order count (POC) value for a first picture
of video data, code a second-dimension picture ideﬁtiﬁer for the first picture, and
code a second picture based at least in part on the POC value and the second-

dimension picture identifier of the first picture. Coding the second picture based on

‘‘‘‘‘‘‘

10

15

20

25

30

c c

79

the POC value and the second-dimension picture identifier of the first picture may
include identifying the first picture using both the POC value of the first picture and
the second-dimension picture identifier. |

Moreover, as shown above, coding the second picture may include enabling or
disabling motion vector prediction for a motion vector that refers to the first picture,
based on the POC value and the second-dimension picture identifier of the first
picture and a POC value and a second-dimension picture identifier of a reference
picture to which a candidate motion vector predictbr refers. For example, if the
second-dimension picture identifier of the first picture indicates that the first picture is
a short-term picture, and the second-dimension picture identifier of the reference
picture indicates that the reference picture is a long-term reference picture, video
encoder 20 and video decoder 30 may disable motion vector prediction between a
motion vector referring to the first picture and a motion vector referring to the
reference picture.

Furthermore, as also shown above, coding the second picture may include
coding a motion vector of a block of the second picture that refers to the first picture,
as noted above. Such coding may be based on the POC value of the first picture in
that, 1f a motion vector predictor refers to a reference picture having a different POC
value, video encoder 20 and video decoder 30 may be configured to scale the motion
vector predictor based on POC value differences between the first and second picture,
and the reference picture and the second picture.

Video encoder 20 and video decoder 30 may be configured to perform the
techniques of any or all of the examples described above, alone or in any
combination. Video encoder 20 and video decoder 30 each may be implemented as
any of a variety of suitable encoder or decoder circuitry, as applicable, such as one or
more microprocessors, digital signal processors (DSPs), applicatibn specific
integrated circuits (ASICs), field programmable gate arrays (FPGAs), discrete logic
circuitry, software, hardware, firmware or any combinations thereof. Each of video
encoder 20 and video decoder 30 may bé’included in one or more encoders or
decoders, either of which may be integrated as parf of a combined video

e

encoder/decoder (CODEC). A device including video encoder 20 and/or video

R S

10

15

20

25

30

e v (_,

80

decoder 30 may comprise an integrated circuit, a microprocessor, and/or a wireless
communication device, such as a cellular telephone or tablet computer.

FIG. 2 is a block diagram illustrating an example of video encoder 20 that may
implement techniques for coding video data according to a high-level syntax only
extension of a video coding standard. Video encoder 20 may perform intra- and inter-
coding of video blocks within video slices. Intra-coding relies on spatial prediction to
reduce or remove spatial redundancy in video within a given video frame or picture.
Inter-coding relies on temporal prediction to reduce or remove temporal redundancy
in video within adjacent frames or pictures of a video sequence. Intra-mode (I mode)
may refer to any of several spatial based coding modes. Inter-modes, such as uni-
directional prediction (P mode) or bi-prediction (B mode), may refer to any of several
temporal-based coding modes.

As shown in FIG. 2, video encoder 20 receives a current video block within a
video frame to be encoded. In the example of FIG. 2, video encoder 20 includes
mode select unit 40, reference picture memory 64, summer 50, transform processing
unit 52, quantization unit 54, and entropy encoding unit 56. Mode select unit 40, in
turn, includes motion compensation unit 44, motion estimation unit 42, intra-
prediction unit 46, and partition unit 48. For video block reconstruction, video
encoder 20 also includes inverse quantization unit 58, inverse transform unit 60, and
summer 62. A deblocking filter (not shown in FIG. 2) may also be included to filter
block boundaries to remove blockiness artifacts from reconstructed video. If desired,
the deblocking filter would typically filter the output of summer 62. Additional filters
(in loop or post loop) may also be used in addition to the deblocking filter. Such

filters are not shown for brevity, but if desired, may filter the output of summer 50 (as

an in-loop filter).

During the encoding process, video encoder 20 receives a video frame or slice
to be coded. The frame or slice may be divided into multiple video blocks. Motion
estimation unit 42 and motion compensation unit 44 perform inter-predictive coding
of the received video block relative to one or more blocks in one or more reference
frames to provide temporal predicﬁon. Motion cc')'mpensation unit 44 may code a

motion vector in accordance with the techniques of this disclosure, e.g., during

advanced motion vector prediction (AMVP), temporal motion vector prediction

10

15

20

25

30

C C

81

(TMVP), or merge mode coding. Intra-prediction unit 46 may alternatively perform
intra-predictive coding of the received video block relative to one or more
neighboring blocks in the same frame or slice as the block to be coded to provide
spatial prediction. Video encoder 20 may perform multiple coding passes, €.g., to
select an appropriate coding mode for each block of video data.

Moreover, partition unit 48 may partition blocks of video data into sub-blocks,
based on evaluation of previous partitioning schemes in previous coding passes. For
example, partition unit 48 may initially partition a frame or slice into LCUs, and
partition each of the LCUs into sub-CUs based on rate-distortion analysis (e.g., rate-
distortion optimization). Mode select unit 40 may further prodﬁce a quadtree data
structure indicative of partitioning of an LCU into sub-CUs. Leaf-node CUs of the
quadtree may include one or more PUs and one or more TUs.

Mode select unit 40 may select one of the coding modes, intra or inter, e.g.,
based on error results, and provides the resulting intra- or inter-coded block to
summer 50 to generate residual block data and to summer 62 to reconstruct the
encoded block for use as a reference frame. Mode select unit 40 also provides syntax
elements, such as motion vectors, intra-mode indicators, partition information, and
other such syntax information, to entropy encoding unit 56.

Motion estimation unit 42 and motion compensation unit 44 may be highly
integrated, but are illustrated separately for conceptual purposes. Motion estimation,
performed by motion estimation unit 42, is the process of generating motion vectors,
which estimate motion for video blocks. A motion vector, for example, may indicate
the displacement of a PU of a video block within a current video frame or picture
relative to a predictive block within a reference frame (or other coded unit) relative to
the current block being coded within the current frame (or other coded unit). A
predictive block is a block that is found to closely match the block to be coded, in
terms of pixel difference, which may be determined by sum of absolute difference
(SAD), sum of square difference (SSD), or other difference metrics. In some
examples, video encoder 20 may calculate values for sub-integer pixel positions of
reference pictures stored in reference picture memory 64. For example, video encoder
20 may interpolate values of one-quarter pixel positio;;; on;éighth pixgl poéiﬁons, or

other fractional pixel positions of the reference picture. Therefore, motion estimation

,,,,,,

......

10

15

20

25

30

= (_

82

unit 42 may perform a motion search relative to the full pixel positions and fractional
pixel positions and output a motion vector with fractional pixel precision.

Motion estimation unit 42 calculates a motion vector for a PU of a video block
in an inter-coded slice by comparing the position of the PU to the position of a
predictive block of a reference picture. The reference picture may be selected from a
first reference picture list (List 0) or a second reference picture list (List 1), each of
which 1dentify one or more reference pictures stored in reference picture memory 64.
Motion estimation unit 42 sends the calculated motion vector to entropy encoding unit
56 and motion compensation unit 44.

Motion compensation, performed by motion compensation unit 44, may
involve fetching or generating the predictive block based on the motion vector
determined by motion estimation unit 42. Again, motion estimation unit 42 and
motion compensation unit 44 may be functionally integrated, in some examples.
Upon receiving the motion vector for the PU of the current video block, motion
compensation unit 44 may locate the predictive block to which the motion vector
points in one of the reference picture lists. Summer 50 forms a residual video block
by subtracting pixel values of the predictive block from the pixel values of the current
video block being coded, forming pixel difference values, as discussed below. In
general, motion estimation unit 42 performs motion estimation relative to luma
components, and motion compensation unit 44 uses motion vectors calculated based
on the luma components for both chroma components and luma components. Mode
select unit 40 may also generate syntax elements associated \;vith the video blocks and
the video slice for use by video decoder 30 in decoding the video blocks of the video
slice.

Intra-prediction unit 46 may intra-predict a current block, as an alternative to
the inter-prediction performed by motion estimation unit 42 and motion compensation
unit 44, as described above. In particular, intra-prediction unit 46 may determine an
intra-prediction mode to use to encode a current block. In some examples, intra-
prediction unit 46 may encode a current block using various intra-prediction modes,
e.g., during separate encoding p'as's'es, and intra-pre&iction unit 46 (or mode select unit
40, in some examples) may select an appropriate intra-prediction mode to use from

the tested modes.

-

10

15

20

25

30

C C

83

For example, intra-prediction unit 46 may calculate rate-distortion values
using a rate-distortion analysis for the various tested intra-prediction modes, and
select the intra-prediction mode having the best rate-distortion characteristics among
the tested modes. Rate-distortion analysis generally deternﬁnes an amount of
distortion (or error) between an encoded block and an original, unencoded block that
was encoded to produce the encoded block, as well as a bitrate (that is, a number of
bits) used to produce the encoded block. Intra-prediction unit 46 may calculate ratios
from the distortions and rates for the various encoded blocks to determine which
intra-prediction mode exhibits the best rate-distortion value for the block.

After selecting an intra-prediction mode for a block, intra-prediction unit 46
may provide information indicative of the selected intra-prediction mode for the block
to entropy encoding unit 56. Entropy encoding unit 56 may encode the information
indicating the selected intra-prediction mode. Video encoder 20 vmay include in the
transmitted bitstream configuration data, which may include a plurality of intra-
prediction mode index tables and a plurality of modified intra-prediction mode index
tables (also referred to as codeword mapping tables), definitions of encoding contexts
for various blocks, and indications of a most probable intra-prediction mode, an intra-
prediction mode index table, and a modified intra-prediction mode index table to use
for each of the contexts.

Video encoder 20 forms a residual video block by subtracting the prediction
data from mode select unit 40 from the original video block being coded. Summer 50
represents the component or components that perform this subtraction operation.
Transform processing unit 52 applies a transform, such as a discrete cosine transform
(DCT) or a conceptually similar transform, to the residual block, producing a video
block comprising residual transform coefficient values. Transform processing unit 52
may perform other transforms which are conceptually similar to DCT. Wavelet
transforms, integer transforms, sub-band transforms or other types of transforms could
also be used. In any case, transform processing unit 52 applies the transform to the
residual block, producing a block of residual transform coefficients. The transform
may convert the resiiflual information from a pixel value domain to a transform
domain, such as a frequency domain. Trénsform processing unit 52 may send the

resulting transform coefficients to quantization unit 54. Quantization unit 54

=

10

15

20

25

30

(G C

84

quantizes the transform coefficients to further reduce bit rate. The quantization
process may reduce the bit depth associated with some or all of the coefficients. The
degree of quantization may be modified by adjusting a quantization parameter. In 1
some examples, quantization unit 54 may then perform a scan of the matrix including
the quantized transform coefficients. Alternatively, entropy encoding unit 56 may
perform the scan.

Following quantization, entropy encoding unit 56 entropy codes the quantized
transform coefficients. For example, entropy encoding unit 56 may perform context
adaptive variable length coding (CAVLC), context adaptive binary arithmetic coding
(CABAC), syntax-based context-adaptive binary arithmetic coding (SBAC),
probability interval partitioning entropy (PIPE) coding or another entropy coding
technique. In the case of context-based entropy coding, context may be based on
neighboring blocks. Following the entropy coding by entropy encoding unit 56, the
encoded bitstream may be transmitted to another device (e.g., video decoder 30) or
archived for later transmission or retrieval.

Inverse quantization unit 58 and inverse transform unit 60 apply inverse
quantization and inverse transformation, respectively, to reconstruct the residual block
in the pixel domain, e.g., for later use as a reference block. Motion compensation unit
44 may calculate a reference block by adding the residual block to a predictive block
of one of the frames of reference picture memory 64. Motion compensation unit 44
may also apply one or more interpolation filters to the reconstructed residual block to
calculate sub-integer pixel values for use in motion estimation. Summer 62 adds the
reconstructed residual block to the motion compensated prediction block produced by
motion compensation unit 44 to produce a reconstructed video block for storage in
reference picture memory 64. The reconstructed video block may be used by motion
estimation unit 42 and motion compensation unit 44 as a reference block to inter-code
a block in a subsequent video frame. |

Video encoder 20 may be configured to perform any or all of the various
example techniques discussed with respect to FIG. 1, alone or in any combination.
For example, in accordance with .the techniques of this disclosure, video encoder 20
may encode a picture based on a picture order count (POC) valueﬂo;a— reference

picture and a second-dimension identifier of the reference picture. That is, video

......

,,,,,,

10

15

20

25

30

e C

85

encoder 20 may encode a POC value of a first picture (a reference picture, in this
example), as well as a second-dimension picture identifier for the first picture. The
second dimension picture identifier may comprise, for example, a view identifier for a
view including the first picture, a view order index for the view including the first
picture, a combination of the view order index and a depth flag, a layer identifier for a
scalable video coding (SVC) layer including the first picture, and a generic layer
identifier.

The second-dimension identifier may, additionally or alternatively, comprise a
value indicating whether the first picture is a long-term reference picture or a short-
term reference picture. Alternatively, a separate value may indicate whether the first
picture is a long-term or short-term reference picture, in addition to the POC value
and the second-dimension picture identifier. In some examples, long-term and short-
term indications for reference pictures may indicate whether the reference pictures are
temporal reference pictures or inter-view reference pictures. For example, a long-
term reference picture may correspond to a temporal reference picture (that is, a-
reference picture in the same layer or view), whereas a short-term reference picture
may correspond to an inter-view reference picture. As another example, a long-term
reference picture may correspond to an inter-view reference picture, whereas a short-
term reference picture may correspond to a temporal reference picture.

Likewise, video encoder 20 may disable motion vector prediction between
motion vectors of different types. “Types” of motion vectors may include, for
example, temporal motion vectors, which refer to temporal reference pictures (that is,
pictures in the same view as a current picturé being encoded), and disparity motion
vectors, which refer to inter-view reference pictures (that is, pictures in a view other
than the view including the current picture). Typically, inter-view reference pictures
have the same POC value as the current picture. That is, typically, the inter-view
reference pictures and the current picture occur in the same access unit. Video
encoder 20 may disable motion vector prediction between motion vectors of different
types. That is, if a current motion vector of the current picture is a temporal motion
vector, video encoder 20 may disable motion vector prediction relative to a disparity
motion vector. Likewise, if the current motion vector is a disparity motion vector,

video encoder 20 may disable motion vector prediction relative to a temporal motion

e

10

15

20

25

30

86

vector. Video encoder 20 may otherwise encode the current motion vector using a
motion vector coding process, such as advanced motion vector prediction (AMVP) or
merge mode.

In some examples, video encoder 20 may be configured to code a value
indicating whether the first picture (e.g., a,view component, in multiview video
coding) is a long-term reference picture basd at least in part on whether the first
picture is used for inter-view prediction. For example, video encoder 20 may encode
a syntax element indicating whether the first picture is a long-term or short-term
reference picture in a sequence parameter set (SPS) corresponding to a sequence
including the first picture.

In addition, or in the alternative, video encoder 20 may be configured to mark
inter-view reference pictures as long-term reference pictures, at least temporarily.
Video encoder 20 may further store current statuses of the inter-view reference
pictures, where the statuses may comprise one of long-term reference picture, short-
term reference picture, and unused for reference. Thus, if the first picture comprises
an inter-view picture, video encoder 20 may mark the first picture as a long-term
reference picture. After coding a second picture relative to the first picture, video
encoder 20 may restore a status for the inter-view reference picture based on the
stored status.

Additionally or alternatively, video encoder 20 may temporarily assign new
POC values to inter-view reference pictures while encoding the second picture. For
example, video encoder 20 may determine a set of POC values for current temporal
refenrece pictures and assign unused POC values to the inter-view reference pictures.
Video encoder 20 may also store respective current POC values for each inter-view
reference picture. After encoding the second picture, video encoder 20 may restore
the stored (that is, original) POC values for the inter-view reference pictures. Because
the inter-view reference pictures are typically in the same access unit as the second
picture (that is, the picture currently being encoded), in some examples, video encoder
20 may instead simply set the POC values for the inter-view reference pictures equal
to the POC value of the second picture, that is, the current picture being encoded, such

that storing the POC values is not necessary.

10

15

20

25

30

87

In this manner, video encoder 20 of FIG. 2 represents an example of a video
encoder configured to encode a picture order count (POC) value for a first picture of
video data, encode a second-dimension picture identifier for the first picture, and
encode, in accordance with a base video coding specification, a second picture based
at least in part on the POC value and the second-dimension picture identifier of the
first picture. The base video coding specification may comprise HEVC. In addition,
video encoder 20 may be configured to encode a picture in accordance with an
extension of the base video coding specification, e.g., an SVC or MVC extension of
HEVC. Thus, video encoder 20 also represents an example of a video encoder
configured to encode a picture order count (POC) value for a first picture of video
data, encode a second-dimension picture identifier for the first picture, and encode, in
accordance with an extension of a base video coding specification, a second picture
based at least in part on the POC value and the second-dimension picture identifier of
the first picture.

FIG. 3 is a block diagram illustrating an example of video decoder 30 that may
implement techniques for coding video data according to a high\—level syntgx only
extension of a video coding standard. In the example of FIG. 3, video decoder 30
includes an entropy decoding unit 70, motion compensation unit 72, intra prediction
unit 74, inverse quantization unit 76, inverse transformation unit 78, reference picture
memory 82 and summer 80. Video decoder 30 may, in some examples, perform a
decoding pass generally reciprocal to the encoding pass described with respect to
video encoder 20 (FIG. 2). Motion compensation unit 72 may generate prediction
data based on motion vectors received from entropy decoding unit 70, while intra-
prediction unit 74 may generate prediction data based on intra-prediction mode
indicators received from entropy decoding unit 70.

During the decoding process, video decoder 30 receives an encoded video
bitstream that represents video blocks of an encoded video slice and associated syntax
elements from video encoder 20. Entropy decoding unit 70 of video decoder 30
entropy decodes the bitstream to generate quantized coefficients, motion vectors or
intra-prediction mode indicatoré, and otﬁer éyntéx elements. Entropy decoding unit

70 forwards the motion vectors to and other syntax elements to motion compensation

o,

10

15

20

25

30

88

unit 72. Video decoder 30 may receive the syntax elements at the video slice level
and/or the video block level.

When the video slice is coded as an intra-coded () slice, intra prediction unit
74 may generate prediction data for a video block of the current video slice based on a
signaled intra prediction mode and data from previously decoded blocks of the current
frame or picture. When the video frame is coded as an inter-coded (e.g., B, P, or
GPB) slice, motion compensation unit 72 produces predictive blocks for a video block
of the current video slice based on the motion vectors and other syntax elements
received from entropy decoding unit 70. The predictive blocks may be produced from
one of the reference pictures within one of the reference picture lists. Video decoder
30 may construct the reference frame lists, List 0 and List 1, using default
construction techniques based on reference pictures stored in reference picture
memory §2.

In accordance with the techniques of this disclosure, entropy decoding unit 70
may decode entropy encoded data representative of motion information for a current
block of a current picture. For example, in accordance with AMVP, entropy decoding
unit 70 may decode motion vector difference (MVD) values for the current block.
Motion compensation unit 72 (or another unit of video decoder 30, such as entropy
decoding unit 70) may reconstruct the motion vector for the current block using the
entropy decoded motion information, such as the MVD values. For éxample, motion
compensation unit 72 may determine a set of available motion vector predictors for
the current motion vector, e.g., based on whether the current motion vector refers to a
long-term reference picture or a short-term reference picture (or a temporal or inter-
view reference picture), and whether a set of candidate reference pictures also refer to
long- or short-term reference pictures (or temporal or inter-view reference pictures).

As discussed above, motion compensation unit 72 may determine that
candidate motion vector predictors of different types are not available for use to
predict a current motion vector. For example, when the current motion vector is a
temporal motion vector, motion compensation unit 72 may determine that disparity
motion vectors are unavailable for ﬁse as motion véctor predictors for the current
motion vector. Likewise, when the current motion vector is a disparity motion vector,

motion compensation unit 72 may determine that temporal motion vectors are

.......

''''''

.....

10

15

20

25

30

89

unavailable for use as motion vector predictors for the current motion vector. In some
examples, motion compensation unit 72 may disable motion vector prediction
between long-term and short-term reference pictures as well, or in the alternative.

In the case that the current motion vector is a disparity motion vector, motion
compensation unit 72 may also avoid scaling a motion vector predictor (which may,
likewise, correspond to a disparity motion vector as well). In addition, or in the
alternative, motion compensation unit 72 may assign a temporary POC value to an
inter-view reference picture to which a disparity motion vector predictor refers during
motion vector prediction of a disparity motion vector.

In any case, motion compensation unit 72, or another element of video decoder
30, may reproduce a motion vector for a current block, e.g., using AMVP or merge
mode. Motion compensation unit 72 determines prediction information for a video
block of the current video slice by parsing the motion vectors and other syntax
elements, and uses the prediction information to produce the predictive blocks for the
current video block being decoded. For example, motion compensation unit 72 uses
some of the received syntax elements to determine a prediction mode (e.g., intra- or
inter-prediction) used to code the video blocks of the video slice, an inter-prediction
slice type (e.g., B slice, P slice, or GPB slice), construction information for one or
more of the reference picture lists for the slice, motion vectors for each inter-encoded
video block of the slice, inter-prediction status for each inter-coded video block of the
slice, and other information to decode the video blocks in the current video slice.
Motion compensation unit 72 may code a motion vector in accordance with the
techniques of this disclosure, e.g., during advanced motion vector prediction
(AMVP), temporal motion vector prediction (TMVP), or merge mode coding.

Motion compensation unit 72 may also perform interpolation based on
interpolation filters. Motion compensation unit 72 may use interpolation filters as
used by video encoder 20 during encoding of the video blocks to calculate
interpolated values for sub-integer pixels of reference blocks. In this case, motion
compensation unit 72 may determine the interpolation filters used by video encoder
20 from the received syntax elements and use the iﬁterpolation filters to produce

¢

predictive blocks.

......

10

15

20

25

30

90

Inverse quantization unit 76 inverse quantizes, i.e., de-quantizes, the quantized
transform coefficients provided in the bitstream and decoded by entropy decoding
unit 70. The inverse quantization process may include use of a quantization
parameter QPY calculated by video decoder 30 for each video block in the video slice
to determine a degree of quantization and, likewise, a degree of inverse quantization
that should be applied. Inverse transform unit 78 applies an inverse transform, e.g.,
an inverse DCT, an inverse integer transform, or a conceptually similar inverse
transform process, to the transform coefficients in order to produce residual blocks in
the pixel domain.

After motion compensation unit 72 generates the predictive block for the
current video block based on the motion vectors and other syntax elements, video
decoder 30 forms a decoded video block by summing the residual blocks from inverse
transform unit 78 with the corresponding predictive blocks generated by motion
compensation unit 72. Summer 80 represents the component or components that
perform this summation operation. If desired, a deblocking filter may also be applied
to filter the decoded blocks in order to remove blockiness artifacts. Other loop filters
(either in the coding loop or after the coding loop) may also be used to smooth pixel
transitions, or otherwise improve the video quality. The decoded video blocks in a
given frame or picture are then stored in reference picture memory 82, which stores
reference pictures used for subsequent motion compensation. Reference picture
memory 82 also stores decoded video for later presentation on a display device, such
as display device 32 of FIG. 1.

In this manner, video decoder 30 of FIG. 3 represents an example of a video
decoder configured to decode a picture order count (POC) value for a first picture of
video data, decode a second-dimension picture identifier for the first picture, and
decode a second picture based at least in part on the POC value and the second-
dimension picture identifier of the first picture. The base video coding specification
may comprise HEVC. In addition, video decoder 30 may be configured to encode a
picture in accordance with an extension of the base video coding specification, e.g.,
an SVC or MVC extension of HEVC. Thus, video decoder 30 also represents an
example of a video decoder configured to decode a picture order count (POC) value

for a first picture of video data, decode a second-dimension picture identifier for the

.......

10

15

20

25

30

91

first picture, and decode, in accordance with an extension of a base video coding
specification, a second picture based at least in part on the POC value and the second-
dimension picture identifier of the first picture.

FIG. 4 1s a conceptual diagram illustrating an example MVC prediction
pattern. Multi-view video coding (MVC) is an extension of ITU-T H.264/AVC. A
similar technique may be applied to HEVC. In the example of FIG. 4, eight views

(having view IDs “S0” through “S7”) are illustrated, and twelve temporal locations

(“T0” through “T11”) are illustrated for each view. That is, each row in FIG. 4

corresponds to a view, while each column indicates a temporal location.

Although MVC has a so-called base view which is decodable by H.264/AVC
decoders and stereo view pair could be supported also by MVC, one advantage of
MVC 1s that it could support an example that uses more than two views as a 3D video
input and decodes this 3D video represented by the multiple views. A renderer of a
client having an MVC decoder may expect 3D video content with multiple views.

A typical MVC decoding order arrangement is referred to as time-first coding.
An access unit may include coded pictures of all views for one output time instance.
For example, each of the pictures of time TO may be included in a common access
unit, each of the pictures of time T1 may be included in a second, common access
unit, and so on. The decoding order is not necessarily identical to the output or
display order.

Frames, i.e., pictures, in FIG. 4 are indicated at the intersection of each row
and each column in FIG. 4 using a shaded block including a letter, designating
whether the corresponding frame is intra-coded (that is, an I-frame), or inter-coded in
one direction (that is, as a P-frame) or in multiple directions (that is, as a B-frame). In
general, predictions are indicated by arrows, where the pointed-to frame uses the
pointed-from object for prediction reference. For example, the P-frame of view S2 at
temporal location TO is predicted from the I-frame of view SO at temporal location
TO.

As with single view video encoding, frames of a multiview video coding video
sequence may be predictively encoded with respeét to frames at different temporal
locations. For example, the b-frame of view SO at temporal locatioanl has an arrow

pointed to it from the I-frame of view S0 at temporal location T0, indicating that the

,,,,,,,

,,,,,,,

.......

......
%

10

15

20

25

30

92

b-frame is predicted from the [-frame. Additionally, however, in the context of
multiview video encoding, frames may be inter-view predicted. That is, a view b
component can use the view components in other views for reference. In MVC, for -

example, inter-view prediction is realized as if the view component in another view is’
an inter-prediction reference. The potential inter-view references are signaled in the o
Sequence Parameter Set (SPS) MVC extension and can be modified by the reference

,,,,,,,

picture list construction process, which enables flexible ordering of the inter-
prediction or inter-view prediction references. | -
In the MVC extension of H.264/AVC, as an example, inter-view prediction 1s o
supported by disparity motion compensation, which uses the syntax of the
H.264/AVC motion compensation, but allows a picture in a different view to be used
as a reference picture. Coding of two views can be supported by MVC, which is
generally referred to as stereoscopic views. One of the advantages of MVC is that an
MVC encoder could take more than two views as a 3D video input and an MVC
decoder can decode such a multiview representation. So, a rendering device with an
MVC decoder may expect 3D video contents with more than two views. ‘
In MVC, inter-view prediction (IVP) is allowed among pictures in the same
access unit (that is, with the same time instance). An access unit is, generally, a unit
of data including all view components (e.g., all NAL units) for a com1lnon temporal
instance. Thus, in MVC, inter-view prediction is permitted among pictures in the
same access unit. When coding a picture in one of the non-base views, the picture
may be added into a reference picture list, if it is in a different view but within the
same time instance (e.g., having the same POC value, and thus, in the same access
unit). An inter-view prediction reference picture may be put in any position of a
reference picture list, just like any inter prediction reference picture.
Typically, a reference picture list construction for the first or the second
reference picture list of a B picture includes two steps: reference picture list
initialization and reference picture list reordering (modification). The reference
picture list initialization is an explicit mechanism according to which a video coder
places the reference pictures in 'the reference picfﬁre memory (also known as a
decoded picture buffer) into a list based on the order of POC (Picture Order Count,

aligned with display order of a picture) values.

10

15

20

25

30

93

The video coder may use the reference picture list reordering mechanism to L
modify the position of a picture that was put in the list during the reference picture list "j;;}"
initialization to any new position, or put any reference picture in the reference picture ‘
memory in any position even the picture does not belong to the initialized list. Some)
pictures after the reference picture list reordering (modification) may be put in a -

further position in the list. However, if a position of a picture exceeds the number of

active reference pictures of the list, the picture is not considered as an entry of the

,,,,,,

final reference picture list. The number of active reference pictures may be signaled -
in the slice header for each list. After reference picture lists are constructed (e.g., o
RefPicList0 and RefPicListl, if available), a reference index to a reference picture list

can be used to identify any reference picture included in the reference picture list.

To get a Temporal Motion Vector Predictor (TMVP), firstly a co-located
picture is to be identified. If the current picture is a B slice, a
collocated from 10 flag is signalled in the slice header to indicate whether the co-
located picture is from RefPicList0 or RefPicListl. After a reference picture list is
identified, collocated ref idx, signalled in the slice header, is used to identify the
picture in the picture in the list. A co-located PU is then identified by checking the
co-located picture. Either the motion of the right-bottom PU of the CU containing
this PU, or the motion of the right-bottom PU within the center PUs Qf the CU
containing this PU, is used. When motion vectors identified by the above process are
used to generate a motion candidate for AMVP or merge mode, they need to be scaled
based on the temporal location (reflected by POC).

In HEVC, the sequence parameter set (SPS) includes a flag
sps_temporal_mvp_enable_flag and the slice header includes a flag |
pic_temporal mvp enable flag when sps_temporal mvp_enable flag is equal to 1.
When both pic_temporal_mvp_enable_flag and temporal_id are equal to 0 for a
particular picture, no motion vector from pictures before that particular picture in
decoding order would be used as a temporal motion vector predictor in decoding of
the particular picture or a picture after the particular picture in decoding order.

Currently, the Moving Pictures Experts GroUp (MPEG) is developing a 3DV
standard based on HEVC, for which part of the standardization éfforts also includes

the standardization of the multiview video codec based on HEVC. Similarly, in

10

15

20

25

30

94

HEVC based 3DV, inter-view prediction based on the reconstructed view components
from different views is enabled.

AVC was extended by a multiview extension in a way that the extension
actually fulfills the “HLS-only” (high-level syntax only) requirement. The “HLS-
only” requirement guarantees there is only high-level syntax (HLS) changes in the
Multiview Video Coding (MVC), such that no module in the macroblock level in
AVC needs to be re-designed and can be fully reused for MVC. It is possible that the
“HLS-only” requirement may be fulfilled for an MVC/3DV extension of HEVC, and
also for Scalable Video Coding (SVC) extension of HEVC, if multi-loop decoding 1s
considered as acceptable.

To enable inter-view prediction, HLS changes may be made for the following
purpose: picture identification, where reference picture list construction and marking
need to be able to identify a picture in a specific view.

The HLS changes are not sufficient to fulfill the “HLS-only” requirement in
H.264/MVC, as other constraints, assumptions are made, so that the low-level coding
modules will never encounter a situation of, e.g., handling zero motion related
scaling. Such constraints, modifications, and assumptions are:

o Disabling temporal direct mode if a co-located picture is an inter-view (only)
reference picture

o Considering an inter-view (only) reference picture as not a short-term: related
to spatial direct

¢ Disabling implicit weighted prediction

To fulfil the “HLS-only” requirement, such modifications in an extension must
only be in the high-level syntax. Thus, there should be no modifications for syntax
elements under slice header, and no CU level decoding process changes for the
extension specification; for example, the motion vector prediction of the HEVC
extension specification should be exactly the same as that in the HEVC base
specification. The HLS changes are normative decoder changes of the extension
specification; however, from the base speéiﬁcation point of view, such changes do not
necessarily need to be known and can be informative.

To enable functionalities such as efficient inter-view prediction, both

modifications in the HEVC extension and base specifications may be implemented.

.,

;;;;;

10

15

20

25

30

95

The base specification changes that do not impact the typical decoding processes or
coding efficiency of the base HEVC decoders, but target enabling functionalities in
the extension specification, are called hooks. In most cases, a “HLS-only”
requirement 1s fulfilled with both hooks in the base specification and HLS changes in
the extension specification. If the hooks in base specifications are not defined well,
certain desired functionality might not be enabled in the extension specification or
may need a lot of modifications in the extension specification.

In HLS-only SVC, a base layer representation, possibly after upsampling
and/or filtering, may be put into the reference picture list of the current picture of the
current layer. Such a picture is called an inter-layer reference picture.

Various modifications in both the base specification and the extension
specification of an HLS-only HEVC modification may be made. Given a certain
desired functionality, in a stage that the designs of both base and extension
specifications can be modified, it is a question of trade-off between the base
specification modification and extension specification modification. |

FIGS. 5-9 are conceptual diagrams illustrating potential problems that should
be overcome to achieve an HLS-only HEVC extension. FIG. 5, for example,
illustrates an example in which a current picture 100 includes blocks, such as blocks
102 and 104, predicted using various prediction techniques. Specifically, current
picture 100 corresponds to a picture of a non-base view, while an inter-view reference
picture 110 is a picture of a base view. Block 102 of current picture 100 is inter-view
predicted relative to inter-view reference picture 110 (using disparity motion vector
106), whilé block 104 is predicted using inter-prediction relative to short term (ST)
reference picture 112 of the same non-base view (using temporal motion vector 108).
FIG. 5 therefore illustrates an example in which a current picture includes
neighboring blocks with both a temporal motion vector (temporal motion vector 108)
and an inter-view motion vector (also referred to as a disparity motion vector, namely,
disparity motion vector 106).

This disclosure recognizes that, in some examples, a disparity motion vector
shall not be scaled to predict a femp_orél motion vector. In addition, this disclosure
also recognizes that, in some examples, a temporal motion vector shall not be scaled

to predict a disparity motion vector. This disclosure also recognizes that it should be

P

10

15

20

25

30

(‘.ﬁ,;, (r

96

possible to disable predicting a disparity motion vector from a temporal short-term
motion vector, e.g., during AMVP, and to disable prediction of a temporal motion
vector from a disparity motion vector. Disparity motion vectors typically correspond
to the local disparity of the same object in different views. However, temporal motion
vectors typically correspond to the motion of an object. In HTM, which is the 3DV
reference software, the prediction between motion vectors of the above two categories
is disabled.

FIG. 6 illustrates an example in which a current picture includes blocks
predicted using inter-view reference pictures of different views. Specifically, in this
example, inter-view reference picture 120 is in view 0, and inter-view reference
picture 122 is in view 1. Current picture 124 is in view 2. Current picture 124
includes blocks 126, 128 predicted, using inter-view prediction, from both inter-view
reference picture 120 of view 0 and inter-view reference picture 122 of view 1.
Specifically, in this example, block 126 is predicted from inter-view reference picture
122, while block 128 is predicted from inter-view reference picture 120.

Blocks 126 and 128 are predicted using different disparity motion vectors.
That is, block 126 is predicted using disparity motion vector 130, which refers to a
portion of inter-view reference picture 122, while block 128 is predicted using
disparity motion vector 132, which refers to a portion of inter-view reference picture
120. Accordingly, FIG. 6 represents an example in which a current picture includes
neighboring blocks with inter-view motion vectors that refer to inter-view reference
pictures of different views. |

This disclosure recognizes that it should be possible to identify whether two
disparity motion vectors correspond to the same reference picture. When an entry in
RefPicList0 and an entry in RefPicList] are both inter-view reference pictures, it
should be possible, during AMVP, to identify whether these two reference pictures
are the same. When a RefPicListX (where ‘X’ may represent a value of 0 or 1, for
example) contains two entries that are inter-view reference pictures, it should be

possible, during AMVP, to identify whether these two reference pictures are the same.

Furthermore, two entries with the saine_ POC valué&might not be identical, e. g, when

the two entries correspond to different views, as shown in FIG. 6.

e,

......

10

156

20

25

30

97

FIG. 7 illustrates an example in which a current picture in a non-base view
includes blocks predicted both using inter-view prediction relative to an inter-view
reference picture in a base view and using inter-prediction relative to a long-term (LT)
reference picture in the non-base view. That is, FIG. 7 illustrates an example in which
current picture 140 includes neighboring blocks 146, 148 with both temporal motion
vector 152 (referring to long-term reference picture 144) and inter-view motion vector
150 (referring to inter-view reference picture 142). Inter-view motion vector 150 may
also be referred to as “disparity motion vector 150.” This disclosure recognizes that it
should be possible to disable predicting a disparity motion vector, such és disparity
motion vector 150, from a temporal long-term motion vector, such as temporal motion
vector 152, and to disable predicting a temporal long-term motion vector from a
disparity motion vector.

FIG. 8 illustrates an example in which a current picture in a non-base view
includes blocks that are predicted using inter-prediction, both from a long-term (LT)
reference picture and a short-term (ST) reference picture, of the non-base view. That
18, FIG. 8 illustrates aﬂ example in which current picture 160 includes neighboring
blocks 166, 168 with both temporal long-term and short-term motion vectors.
Specifically, block 166 1s predicted using temporal motion vector 170, which refers to
long-term reference picture 162, while block 168 is predicted using temporal motion
vector 172, which refers to short-term reference picture 164. Therefore, temporal
motion vector 170 may be referred to as a long-term motion vector or a long-term
temporal motion vector, while temporal motion vector 172 may be referred to as a
short-term motion vector or a short-term temporal motion vector. This disclosure
recognizes that it should be possible to disable predicting between temporal short-
term motion vectors and temporal long-term motion vectors, e.g., during AMVP.

FIG. 9 illustrates an example in which a current picture in a non-base view
includes blocks that are predicted using inter-prediction, where the blocks are

predicted relative to different long-term (LT) reference pictures of the non-base view.

‘That is, FIG. 9 illustrates an example in which current picture 180 includes

neighboring blocks 186, 188 with temporal motion vectors 190, 192 referring to long-
term pictures 184, 182, respectively. Specifically, in this example, block 186 is

predicted using temporal motion vector 190, which refers to a portion of long-term

10

15

20

25

30

98

reference picture 184, while block 188 is predicted using temporal motion vector 192,
which refers to a portion of long-term reference picture 182. This disclosure
recognizes that it should be possible to enable and/or disable predicting temporal
long-term motion vectors during AMVP.

FIG. 10 is a conceptual diagram illustrating an example set of neighboring
blocks to a current block. In particular, in this example, the current block has left-
neighboring blocks labeled A0 and Al and above-neighboring blocks B0, B1, and B2.
The current block may be coded using inter-prediction, e.g., temporal prediction or
inter-view prediction. Thus, a video coder, such as video encoder 20 or video decoder
30, may code the current block using a motion vector. Moreover, the video coder
may code the motion vector. In various examples, the video coder rriay code the
motion vector for the current block using techniques described above, e.g., for
advanced motion vector prediction (AMVP), temporal motion vector prediction
(TMVP), or merge mode. A TMVP predictor may correspond to a motion vector for
a block that is co-located with the current block in a previously coded picture.

Motion vectors of one or more of neighboring blocks A0, A1, BO, B1, and B2
may be of different types than the motion vector used to code the current block. For
example, the current block may be coded using a long-term motion vector, while one
or more of blocks A0, A1, B0, B1, and B2 may be coded using a short-term motion
vector. As another example, the current block may be coded using a short-term
motion vector, while one or more of blocks A0, Al, B0, B1, and B2 may be coded
using a long-term motion vector. As yet another example, the current block may be
coded using a disparity motion vector, while one or more of blocks A0, Al, B0, B1,
and B2 may be coded using a temporal motion vector. As still another example, the
current block may be coded using a temporal motion vector, while one or more of
blocks A0, A1, B0, B1, and B2 may be coded using a disparity motion vector. In
such cases, as explained above, a video coder, such as video encoder 20 or video
decoder 30, may disable motion vector prediction between motion vectors of different
types. N

The example of FIG. 10 iilustrates spatial motion vector predictor candidates.
However, it should be understood that temporal motion vector predictor candidates

may also be considered for temporal motion vector prediction (TMVP). Such TMVP

10

15

20

25

30

99

candidates may correspond to motion information for co-located blocks in previously
coded pictures, that is, blocks that are co-located with the block labeled “current
block” in FIG. 10. In addition, in accordance with the techniques of this disclosure, a
TMVP candidate may be considered as unavailable for use as a motion vector
predictor when the motion information of the TMVP candidate and the motion vector
for the current block point to pictures of different types, e.g., short-term and long-term
reference pictures.

FIG. 11 is a flowchart illustrating an example method for encoding video data
in accordance with the techniques of this disclosure. The steps in the example method
of FIG. 11 may, alternatively, be performed in a different order, or substantially in
parallel, in some examples. Likewise, certain steps may be omittéd, and/or other
steps may be added. Although described as being performed by video encoder 20, it
should be understood that other video encoding devices may be configured to perform
a substantially simﬂar method.

In this example, video encoder 20 encodes picture order count (POC) values of
reference pictures for a current picture (200). For example, video encoder 20 may
encode POC values, or data representative of the POC values (such as least significant
bits (LSBs)) for certain reference pictures in a sequence parameter set (SPS) data
structure for a sequence including the current picture. Video encoder 20 may also,
additionally or alternatively, encode POC values for one or more reference pictures in
a slice header of a current slice of the current picture. In some examples, video
encoder 20 may encode data representing POC values of long-term reference pictures
in an SPS and POC values of short-term reference pictures in a slice header. Video
encoder 20 may also encode POC values of inter-view reference pictures, e.g., in the
SPS, the slice header, or elsewhere. In general, POC values of inter-view reference
pictures are the same as the POC value of the current picture being encoded.

Video encoder 20 may also encode second-dimension identifiers of the
reference pictures (202). The second-dimension identifiers may include one or more
of view identifiers for views including the reference pictures, view order indexes for
the views including the reference pictures, a combination of the view order indexes
and depth flags, layer identifiers for scalable video coding (SVC) layers including the

reference pictures, and/or generic layer identifiers. In this manner, the combination of

fcal]

P 2]

—

10

15

20

25

30

100

a POC value for a reference picture and the second-dimension identifier for the
reference picture may be used to identify the reference picture.

Video encoder 20 may further perform a motion search for a current block of
the current picture. That is, motion estimation unit 42 may search the reference
pictures for a reference block that most closely matches the current block. This may
result in motion information, including a motion vector, referring to the reference
block as well as the reference picture in which the reference block occurs. Thus,
motion compensation unit 44 of video encoder 20 may predict the current block using
the motion vector that points to one of the reference pictures (204).

| Video encoder 20 may also encode the motion vector, e.g., usiﬁg advanced
motion vector prediction (AMVP), temporal motion vector prediction (TMVP), or
merge mode. In particular, video encoder 20 may determine a set of available
candidate motion vector predictors (206). For example, referring to FIG. 10, video
encoder 20 may determine whether motion vectors for neighboring blocks A0, Al,
B0, B1, and B2 are available. In particular, in accordance with the techniques of this
disclosure, video encoder 20 may determine that a motion vector of one of these
neighboring blocks is not available when the motion vector of the neighboring block
1s of a different type than the motion vector for the current block. Similarly, video
encoder 20 may determine whether a motion vector for a temporal motion vector
predictor candidate refers to a different type of reference picture than the motion
vector for the current block in determining whether the TMVP candidate is available
for use as a predictor for coding the motion vector of the current block.

As explained above, examples different types of motion vectors include long-
term motion vectors, short-term motion vectors, temporal motion vectors, and
disparity motion vectors. Thus, video encoder 20 may determine a type for the
motion vector of the current block, as well as types for the motion vectors of the
neighboring blocks, and determine that motion vectors of the neighboring blocks of
different types than the type for the current motion vector of the currént block are not
available for use as motion vector predictors for the current motion vector. To
determine the types, video encoder 20 may refer to POC values of thé reference
pictures to which the candidate motion vectors refer, the POC value of the reference

picture to which the current motion vector refers, the second-dimension identifiers of

5

10

16

20

25

30

101

the reference pictures to which the candidate motion vectors refer, and/or the second-
dimension identifier of the reference picture to which the current motion vector refers.

Subsequently, video encoder 20 may select one of the available candidate
motion vector predictors from a neighboring block (which may include a co-located
block in a previously coded picture and/or a corresponding block in a picture of a
differnet view) as a motion vector predictor for the current motion vector (208).
Video encoder 20 may then encode the current motion vector using the selected
motion vector predictor (210).

Furthermore, video encoder 20 may calculate a residual block for the current
block (212). As explained with respect to FIG. 2, summer 50 may calculate pixel-by-
pixel differences between the original, uncoded block and the predicted block formed
by motion compensation unit 44. Transform processing unit 52, quantization unit 54,
and entropy encoding unit 56 may then, respectively, transform, quantize, and scan
the residual block (214). Specifically, transform processing unit 52 may transform the
residual block to produce a block of transform coefficients, quantization unit 52 may
quantize the transform coefficients, and entropy encoding unit 56 may scan the
quantized transform coefficients. Entropy encoding unit 56 may then entropy encode
the quantized transform coefficients and the encoded motion vector information
(216).

In this manner, the method of FIG. 11 represents an example of a method

. including encoding a picture order count (POC) value for a first picture of video data,
encoding a second-dimension picture identifier for the first picture, and encoding, in
accordance with a base video coding specification (or an extension of the base video
coding specification), a second picture based at least in part on the POC value and the
second-dimension picture identifier of the first picture. In addition, the method may
include disabling motion vector prediction between a first motion vector of a first
block of the second picture, wherein the first motion vector refers to a short-term
reference picture, and a second motion vector of a second block of the second picture,
wherein the second motion vector refers to a long-term reference picture.
Additionally or alternatively, the method may include disabling motion vector
prediction between a first motion vector of a first block of the second picture, wherein

the first motion vector refers to an inter-view reference picture, and a second motion

10

15

20

25

30

- 102

vector of a second block of the second picture, wherein the second motion vector
refers to a temporal reference picture. |

FIG. 12 is a flowchart illustrating an example method for decoding video data
in accordance with the techniques of this disclosure. The steps in the example method
of FIG. 12 may, alternatively, be performed in a different order, or substantially in
parallel, in some examples. Likewise, certain steps may be omitted, and/or other
steps may be added. Although described as being performed by video decoder 30, it
should be understood that other video decoding devices may be configured to perform
a substantially similar method.

In this example, video decoder 30 decodes POC values of reference pictures
for a current picture (230). For example, video decoder 30 may decode POC values,
or data representative of the POC values (such as least significant bits (LSBs)) for
certain reference pictures in a sequence parameter set (SPS) data structure for a
sequence including the current picture. Video decoder 30 may reconstruct the POC
values from decoded LSBs for the POC values by appending the LSBs to respective
MSBs derived from, e.g., a previously decoded full POC value. Video decoder 30
may also, additionally or alternatively, decode POC values for one or more reference
pictures 1n a slice header of a current slice of the current picture. In some examples,
video decoder 30 may decode data representing POC values of long-term reference
pictures in an SPS and POC values of short-term reference pictures in a slice header.
Video decoder 30 may also decode POC values of inter-view reference pictures, e.g.,
in the SPS, the slice header, or elsewhere. In general, POC values of inter-view
reference pictures are the same as the POC value of the current picture being encoded.

Video decoder 30 may also decode second dimension identifiers of the
reference pictures (232). The second-dimension identifiers may include one or more
of view identifiers for views including the reference pictures, view order indexes for
the views including the reference pictures, a combination of the view order indexes
and depth flags, layer identifiers for scalable video coding (SVC) layers including the
reference pictures, and/or generic layer identifiers. In this manner, the combination of
a POC value for a reference picture and the second-dimension identifier for the

reference picture may be used to identify the reference picture. Thus, to identify a

......

I

10

15

20

25

30

103

reference picture, motion information may include both a POC value and a second
dimension identifier for the reference picture.

Video decoder 30 may also decode a motion vector for a current block of the
current picture. In particular, video decoder 30 may determine a set of available
candidate motion vector predictors (234). For example, referring to FIG. 10, video
decoder 30 may determine whether motion vectors for neighboring blocks A0, Al,
B0, B1, and B2 are available. In particular, in accordance with the techniques of this
disclosure, video decoder 30 may determine that a motion vector of one of these
neighboring blocks is not available when the motion vector of the neighboring block
is of a different type than the motion vector for the current block. Similarly, video
decoder 30 may determine whether a motion vector for a temporal motion vector
predictor candidate refers to a different type of reference picture than the motion
vector for the current block in determining whether the TMVP candidate is available
for use as a predictor for coding the motion vector of the current block.

As explained above, examples different types of motion vectors include long-
term motion vectors, short-term motion vectors, temporal motion vectors, and
disparity motion vectors. Thus, video decoder 30 may determine a type for the
motion vector of the current block, as well as types for the motion vectors of the -
neighboring blocks, and determine that motion vectors of the neighboring blocks of
different types than the type for the current motion vector of the current block are not
available for use as motion vector predictors for the current motion vector. To
determine the types, video decoder 30 may refer to POC values of the reference
pictures to which the candidate motion vectors refer, the POC value of the reference
picture to which the current motion vector refers, the second-dimension identifiers of

the reference pictures to which the candidate motion vectors refer, and/or the second-

dimension identifier of the reference picture to which the current motion vector refers.

Subsequently, video decoder 30 may select one of the available candidate
motion vector predictors from a neighboring block (which may include a co-located
block in a previously coded picture and/of a corresponding block in a picture of a
differnet view) as a motion vector predictor for the current motion vector (236).
Video decoder 30 may then decode the current motion vector using the selected

motion vector predictor (238). For example, using AMVP, video decoder 30 may

........

10

15

20

25

30

104

decode motion vector difference (MVD) values for the current motion vector, then

apply the MVD values to the selected motion vector predictor. That is, video decoder

" 30 may add an x-component of the MVD value to an x-component of the selected

motion vector predictor, and a y-component of the MVD value to a y-component of
the selected motion vector predictor.

Motion compensation unit 72 of video decoder 30 may then predict the current
block using the motion vector, which points to one of the reference pictures (240).
That is, in addition to the motion vector itself, video decoder 30 may decode reference
picture identifying information for the block to which the motion vector corresponds,
such as a POC value and a second-dimension identifying value. In this manner, video
decoder 30 may determine the reference picture to which the motion vector points
using the POC value and the second-dimension identifying value. Accordingly,
motion compensation unit 72 may form a predicted block for the current block using
the motion vector and reference picture identifying information, that is, the POC value
and the second dimension identifying value.

Entropy decoding unit 70 may further entropy decode quantized transform
coefficients for a residual block corresponding to the current block (242). Entropy
decoding unit 70, inverse quantization unit 76, and inverse transform unit 78,
respectively, inverse scan, quantize, and transform the quantized transform
coefficients to reproduce the residual block (244). Summer 80 of video decoder 30
may then combine (that is, add, on a pixel-by-pixel basis) the predicted block and the
residual block, to reproduce the current block (246).

In this manner, the method of FIG. 12 represents an example of a method
including decoding a picture order count (POC) value for a first picture of video data,
decoding a second-dimension picture identifier for the first picture, and decoding, in
accordance with a base video coding specification (or an extension of the base video
coding specification), a second picture based at least in part on the POC value and the
second-dimension picture identifier of the first picture. In addition, the method may
include disabling motion vector prediction between a first motion vector of a first
block of the second picture, wherein the first motibn vector refers to a short-term
reference picture, and a second motion vector of a second block of the second picture,

wherein the second motion vector refers to a long-term reference picture.

AAAAAA

10

15

20

25

30

105

Additionally or altemnatively, the method may include disabling motion vector
prediction between a first motion vector of a first block of the second picture, wherein
the first motion vector refers to an inter-view reference picture, and a second motion
vector of a second block of the second picture, wherein the second motion vector
refers to a temporal reference picture.

It is to be recognized that depending on the example, certain acts or events of
any of the techniques described herein can be performed in a different sequence, may
be added, merged, or left out altogether (e.g., not all described acts or events are
necessary for the practice of the techniques). Moreover, in certain examples, acts or
events may be performed concurrently, e.g., through multi-threaded processing,
interrupt processing, or multiple processors, rather than sequentially.

In one or more examples, the functions described may be implemented in
hardware, software, firmware, or any combination thereof. If implemented in
software, the functions may be stored on or transmitted over as one or more
instructions or code on a computer-readable medium and executed by a hardware-
based processing unit. Computer-readable media may include computer-readable
storage media, which corresponds to a tangible medium such as data storage media, or
communication media including any medium that facilitates transfer of a computer
program from one place to another, e.g., according to a communication protocol. In
this manner, computer-readable media generally may correspond to (1) tangible
computer-readable storage media which is non-transitory or (2) a communication
medium such as a signal or carrier wave. Data storage media may be any available
media that can be accessed by one or more computers or one or more processors to
retrieve instructions, code and/or data structures for implementation of the techniques
described in this disclosure. A computer program product may include a computer-
readable medium.

By way of example, and not limitation, such computer-readable storage media
can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage,
magnetic disk storage, or other magnetic storage devices, flash memory, or any other
medium that can be used to store desired program code in the form of instructions or
data structures and that can be accessed by a computer. Also, any connection is

properly termed a computer-readable medium. For example, if instructions are

......

,,,,,,

,,,,,

10

15

20

25

30

106

transmitted from a website, server, or other remote source using a coaxial cable, fiber
optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such
as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted
pair, DSL, or wireless technologies such as infrared, radio, and microwave are
included in the definition of medium. It should be understood, however, that
computer-readable storage media and data storage media do not include connections,

carrier waves, signals, or other transitory media, but are instead directed to non-

 transitory, tangible storage media. Disk and disc, as used herein, includes compact

disc (CD), laser disc, optical disc, digital versatile disc (DVD), floppy disk and Blu-
ray disc, where disks usually reproduce data magnetically, while discs reproduce data
optically with lasers. Combinations of the above should also be included within the
scope of computer-readable media.

Instructions may be executed by one or more processors, such as one or more
digital signal processors (DSPs), general purpose microprocessors, application
specific integrated circuits (ASICs), field programmable logic arrays (FPGAs), or
other equivalent integrated or discrete logic circuitry. Accordingly, the term
“processor,” as used herein may refer to any of the foregoing structure or any other
structure suitable for implementation of the techniques described herein. In addition,
in some aspects, the functionality described herein may be provided within dedicated
hardware and/or software modules configured for encoding and decoding, or
incorporated in a combined codec. Also, the techniques could be fully implemented
in one or more circuits or logic elements.

The techniques of this disclosure may be implemented in a wide variety of
devices or apparatuses, including a wireless handset, an integrated circuit (IC) or a set
of ICs (e.g., a chip set). Various components, modules, or units are described in this
disclosure to emphasize functional aspects of devices configured to perform the
disclosed techniques, but do not necessarily require realization by different hardware
units. Rather, as described above, various units may be combined in a codec
hardware unit or provided by a collection of interoperative hardware ﬁnits, including
One Or More processors as described above, 'in,co;ljunction with suitable software

and/or firmware.

.......

,,,,,

107

Various examples have been described. These and other examples are within

the scope of the following claims.

10

15

20

25

108

CLAIMS

1. A method of decoding video data, the method comprising:

g Y,
decoding data of a second picture that refersto a pictufe};;plﬁd count (POC)QﬁI
¥, .

ue
for a first picture of video data; ' O‘?P. eé)

~~~~~

e
decoding data of the second picture that refers to a secgnd-dimension picture e

identifier for the first picture; - =

decoding, in accordance with a base video coding spécification, the second picture ]
based at least in part on the POC value and the second-dimension picture identifier of the

first picture;

determining that a first motion vector of a first block of the second picture refers to
a short-term reference picture, wherein the short-term reference picturé is associated with

data marking the short-term reference picture as being used for short-term reference;

determining that a second motion vector of a second block of the second picture
refers to a long-term reference picture, wherein the long-term reference picture is
associated with data marking the long-term reference picture as being used for long-term

reference; and

based on the determination that the first motion vector refers to the short-term
reference picture and the determination that the second motion vector refers to the long-
term reference picture, disabling motion vector prediction between the first motion vector
of the first block of the second picture and the second motion vector of the second block of
the second picture, wherein the first block and the second block are spatial neighbors in the
second picture, and wherein disabling motion vector prediction between the first motion
vector and the second motion vector comprises decoding the first motion vector without
using the second motion vector to predict the first motion vector and decoding the second

motion vector without using the first motion vector to predict the second motion vector.

2. The metﬁc-\)d of claim 1, wherein decoding the second picture comprises:



10

15

20

25

109

identifying the first picture using the POC value and the second-dimension picture

identifier; and

decoding at least a portion of the second picture relative to the first picture.

3. The method of claim 2, wherein identifying the first picture comprises identifying

the first picture during decoding of a motion vector for a block of the second picture,

wherein

decoding of the motion vector comprises decoding the motion vector according to
at least one of advanced motion vector prediction (AMVP), temporal motion vector

prediction (TMVP), and merge mode.

4. The method of claim 1, further comprising:

enabling prediction between a first short-term motion vector of the second picture

and a second short-term motion vector of the second picture; and

scaling at least one of the first short-term motion vector and the second short-term
motion vector based on a POC value for a first short-term reference picture referred to by

the first short-term motion vector and a POC value for a second short-term reference picture

referred to by the second short-term motion vector.

5. The method of claim 1, further comprising decoding a value indicating whether a
third picture of the video data comprises a long-term reference picture, wherein the value
indicating whether the third picture comprises the long-term reference picture further

indicates whether the third picture is used for inter-view prediction.

6. The method of claim 1 further comprising decoding, in accordance with an extension
to the base video coding specification, a third picture based at least in part on the POC value

and the second-dimension picture identifier of the first picture.



10

15

20

25

30

110

7. The method of claim 6, further comprising, prior to decoding the third picture,
marking all inter-view reference pictures, including the first picture, as long-term reference

pictures.

8. The method of claim 7, further comprising:

storing a status for each of the inter-view reference pictures for the third picture,
wherein the status comprises one of long-term reference picture, short-t‘erm reference
picture, and unused for reference, prior to marking the inter-view reference picture as long-
term reference pictures, wherein the inter-view reference pictures include the first picture;

and

after decoding the second picture, setting new statuses for each of the inter-view

reference pictures based on the stored statuses.

9. The method of claim 6, wherein the base video coding specification comprises High
Efficiency Video Coding (HEVC) base specification, and wherein the extension to the base
video coding specification comprises one of a Scalable Video Coding (SVC) extension to the
HEVC base specification and a Multivview Video Coding {MVC) extension to the HEVC base

specification.

10. The method of claim 6, wherein the second-dimension picture identifier comprises
at least one of a view identifier for a view including the first picture, a view order index for
the view including the first picture, a combination of the view order index and a depth flag, a
layer identifier for a scalable video coding (SVC) layer including the first picture, and a

generic layer identifier.

11. The method of claim 6, further comprising, after decoding the third picture, marking
each inter-view reference picture as one of a long-term reference picture, a short-term

reference picture, and unused for refereice.

......



10

15

20

25

30

111

12. The method of claim 11, further comprising:
after marking an inter-view reference picture as long-term reference picture,
assigning the inter-view reference picture a new POC value that is currently unused; and

after decoding the second picture, restoring an original POC value for the inter-view

reference picture.

13. The method of claim 12, wherein the original POC value comprises the POC value of

the first picture.

14. A method of encoding video data, the method comprising:

encoding data of a second picture that refers to a picture order count (POC) value
for a first picture of video data;

encoding data of the second picture that refers to a second-dimension picture
identifier for the first picture;

encoding, in accordance with a base video coding specification, the second picture
based at least in part of the POC value and the second-dimension picture identifier of the
first picture;

determining that a first motion vector of a first block of the second picture refers to
a short-term reference picture, wherein the short-term reference picture is associated with
data marking the short-term reference picture as being used for short-term reference;

determining that a second motion vector of a second block of the second picture
refers to a long-term reference picture, wherein the long-term reference picture is
associated with data marking the long-term reference picture as bein’é used for long-term
reference; and

based on the determination that the first motion vector refers to the short-term
reference picture and the determination that the second motion vector refers to the long-
term reference picture, disabling motion vector prediction between the first motion vector
of the first block of the second picture and the second motion vector of the second block of
the second picture, wherein the first block and the second block are spatial neighbors in the
second picture, and wherein disabling motion vector prediction between the first motion

vector and the second motion vector cc;mprises encoding the first motion vector without

,,,,,,



10

15

20

25

30

112

using the second motion vector to predict the first motion vector and encoding the second

motion vector without using the first motion vector to predict the second motion vector.

15. The method of claim 14, further comprising:

identifying the first picture using the POC value and the second-dimension picture
identifier; and

coding at least a portion of the second picture relative to the first picture.

16. The method of claim 15, wherein identifying the first picture comprises identifying
the first picture during encoding of the motion vector for a block of the second picture,
wherein encoding of the motion vector comprises encoding the motion vector according to

at least one of advanced motion vector prediction (AMVP), temporal motion vector
prediction (TMVP), and merge mode.

17. The method of claim 14, further comprising:

enabling prediction between a first short-term motion vector of the second picture
and a second short-term motion vector of the second picture; and

scaling at least one of the first short-term motion vector and the second short-term
motion vector based on a POC value for a first short-term reference picture referred to by

the first short-term motion vector and a POC value for a second short-term reference picture

referred to by the second short-term motion vector.

18. The method of claim 14, wherein the second-dimension picture identifier comprises
at least one of a view identifier for a view including the first picture, a view order index for
the view including the first picture, a combination of the view order index and a depth flag, a

layer identifier for a scalable video coding (SVC) layer including the first picture, and a
generic layer identifier.

19. The method of claim 14, further compris‘ing encoding a value indicating whether a

third picture of the video data comprises a long-term reference picture, wherein the value

e




10

15

20

25

30

113

indicating whether the third picture comprises the long-term reference picture further

indicates whether the third picture is used for inter-view prediction.

20. The method of claim 14, further comprising encoding, in accordance with an

extension to the base video coding specification, a third picture based at least in part on the

POC value and the second-dimension picture identifier of the first picture.

21. The method of claim 20, further comprising, prior to encoding the third picture,

marking all inter-view reference pictures as long-term reference pictures.

22, The method of claim 21, further comprising:
storing a status for each of the inter-view reference pictures, wherein the status
comprises ohe of long-term reference picture, short-term reference picture, and unused for
reference, prior to marking the inter-view reference pictures as long-term reference
pictures; and
after coding the second picture, setting new statuses for each of the inter-view

reference pictures based on the stored statuses.

23. The method of claim 20, wherein the base video coding specification comprises High
Efficiency Video Coding (HEVC) base specification, and wherein the extension to the base
video coding specification comprises one of a Scalable Video Coding (SVC} extension to the

HEVC base specification and a Multiview Video Coding (MVC) extension to the HEVC base

specification.

24, The method of claim 20, further comprising, after encoding the third picture,
marking each inter-view reference picture as one of a long-term reference picture, a short-

term reference picture, and unused for reference.



114

25. The method of claim 24, further comprising:
after marking an inter-view reference picture as a long-term reference picture,
assigning the inter-view reference picture a new POC value that is currently unused;

and

5 after coding the second picture, restoring an original POC value for the inter-view

reference picture.

26. The method of claim 25, wherein the original POC value comprises the POC value of
the second picture.

10

27. A device for decoding video date, the device comprising:
a memory configured to store video data; and

a video decoder configured to:

decode data of a second picture that refers to a picture order count {POC) value for

15  afirst picture of video data,

decode data of the second picture that refers to a second-dimension picture

identifier for the first picture,

decode, in accordance with a base video coding specification, the second picture

based at least in part on the POC value and the second-dimension picture identifier of the

20 first picture,

determine that a first motion vector of a first block of the second picture refers to a
short-term reference picture, wherein the short-term reference picture is associated with

data marking the short-term reference picture as being used for short-term reference,

determine that a second motion vector of a second block of the second picture
25  refers to a long-term reference picture, wherein the long-term reference picture is

associated with data marking the long-term reference picture as being use for long-term

reference, and

based on the determination that the first motion vector refers to the short-term
reference picture and the determination that the second motion vector refers to the long-

30  term reference picture, disable motion vector prediction between the first motion vector of




10

15

20

25

30

115

the first block of the second picture and the second motion vector of the second block of the
second picture, wherein the first block and the second block are spatial neighbors in the
second picture, and wherein to disable motion vector prediction between the first motion
vector and second motion vector, the video decoder is configured to decode the first motion
vector without Qsing the second motion vector to predict the first motion vector and decode

the second motion vector without using the first motion vector to predict the second motion

vector.

28. The device of claim 27, wherein the video decoder is configured to identify the first
picture using the POC value and the second-dimension picture identifier, and decode at least

a portion of the second picture relative to the first picture.

29. The device of claim 28, wherein the video decoder is configured to identify the first
picture during decoding of a motion vector for a block of the second picture, and wherein
the video decoder is configured to decode the motion vector according to at least one of

advanced motion vector prediction {(AMVP), temporal motion vector prediction (TMVP), and

merge mode.

30. The device of claim 27, wherein the video decoder is configured to enable prediction
between a first short-term motion vector of the second picture and a second short-term
motion vector of the second picture, and scale at least one of the first short-term motion
vector and the second short-term motion vector based on a POC value for a first short-term
reference picture referred to by the first short-term motion vector and a POC value for a

second short-term reference picture referred to by the second short-term motion vector.

31. The device of claim 27, wherein the second-dimension picture identifier comprises
at least one of a view identifier for a view including the first picture, a view order index for
the view including the first picture, a combination of the view order index and a depth flag, a

layer identifier for a scalable video coding (SVC) layer including the first picture, and a

generic layer identifier.



10

15

20

25

30

116

32. The device of claim 27, wherein the video decoder is configured to decode a value o

indication whether a third picture of the video data comprises a long-term reference picture,

wherein the value indicating whether the third picture comprises the long-term reference

s
picture further indicates whether the third picture is used for inter-view prediction.

33. The device of claim 27, wherein the video decoder is further configured to decode, ’
in accordance with an extension to the base video coding specification, a third picture based

at least in part on the POC value and second-dimension picture identifier of the first picture. L1

34. The device of claim 33, wherein the video decoder is configured to mark all inter-
view reference pictures for the third picture, including the first picture, as long-term
reference pictures prior to decoding the third picture, store a status for each of the inter-
view reference pictures, wherein the status comprises one of long-term reference picture,
short-term reference picture, and unused for reference prior to marking thevinter-view
reference pictures as long-term reference pictures, and, after decoding the third picture, set

new statuses for each of the inter-view reference pictures based on the stored statuses.

35. The device of claim 33, wherein the video decoder is further configured to mark
each inter-view reference picture for the third picture, including the first picture, as one of a
fong-term reference picture, a short-term reference picture, and unused for reference after
decoding the third picture, assign each of the inter-view reference pictures a new POC value
that is currently unused after marking an inter-view reference picture as a long-term

reference picture, and restore an original POC value for the inter-view reference picture

after decoding the second picture.

36. The device of claim 27, wherein the device comprises at least one of:
an integrated circuit;

a microprocessor; and a

wireless communication device that includes the video decoder.

N



10

15

20

25

30

L

_— 117

37. A device for encoding video data, the device comprising:

a memory configured to store video data; and

a video encoder configured to:

encode data of a second picture that refers to picture order count (POC) value for a
first picture of video data,

encode data of the second picture that refers to a second-dimension picture
identifier for the first picture,

encode, in accordance with a base video coding specification, the second picture
based at least in part on the POC value and the second-dimension picture identifier of the
first picture,

determine that a first motion vector of a first block of the second picture refers to a
short-term reference picture, wherein the short-term reference picture is associated with
data marking the short-term reference picture as being used for short-term reference,

determine that a second motion vector of a second block of the second picture
refers to a long-term reference picture, wherein the long-term reference picture is
associated with data marking the long-term reference picture as being used for long-term
reference, and

based on the determination that the first motion vector refers to the short-term
reference picture and the determination that the second motion vector refers to the long-
term reference picture, disable motion vector prediction between the first motion vector of
the first block of the second picture, wherein the first block and the second block are spatial
neighbors in the second picture, and wherein to disable motion vector prediction between
the first motion vector and the second motion vector, the video encoder is configured to
encode the first motion vector without using the second motion vector to predict the first
motion vector and encode the second motion vector without using the first motion vector to

predict the second motion vector.

38. The device of claim 37, wherein the video encoder is configured to identify the first
picture using the POC value and the second-dimension picture identifier, and encode at least

a portion of the second picture relative to the first picture.

[

L]

.....



10

15

20

25

30

118

39. The device of claim 38, wherein the video encoder is configured to identify the first
picture during encoding of a motion vector for a block of the second picture, and wherein
the video encoder is configured to encode the motion vector according to at least one of =
advanced motion vector prediction (AMVP), temporal motion vector prediction (TMVP), and 0

merge mode. oy

40. The device of claim 37, wherein the video encoder is configured to enable prediction

between a first short-term motion vector of the second picture and a second short-term e
motion vector of the second picture, and scale at least one of the first short-term motion
vector and the second short-term motion vector based on a POC value for a first short-term
reference picture referred to by the first short-term motion vector and a POC value for a

second short-term reference picture referred to by the second short-term motion vector

41. The device of claim 37, wherein the second-dimension picture identifier comprises
at least one of a view identifier for a view including the first picture, a view order index for
the view including the first picture, a combination of the view order index and a depth flag, a
layer identifier for a scalable video coding (SVC) layer including the first picture, and a

generic layer identifier.

42. The device of claim 37, wherein the video encoder is configured to encode a value
indicating whether a third picture of the video data comprises a long-term reference picture,
wherein the value indicating whether the third picture comprises the long-term reference

picture further indicates whether the third picture is used for inter-view prediction.

43. The device of claim 37, wherein the video encoder is further configured to encode,
in accordance with an extension to the base video coding specification, a third picture based
at least in part on the POC value and the second-dimension picture identifier of the first

picture.

44. The device of claim 43, wherein the video encoder is configured to mark all inter-
view reference pictures for the third picture, including the first picture, as long-term
reference pictures prior to encoding the third picture, store a status for each for the inter-

view reference pictures, wherein the status comprises one of long-term reference picture,



10

15

20

25

30

119

short-term reference picture, and unused for reference prior to marking the inter-view
reference pictures as long-term reference pictures, and, after encoding the third picture, set

new statuses for each of the inter-view reference pictures based on the stored statuses.

45. The device of claim 43, wherein the video encoder is further configured to mark
each inter-view reference picture for the third picture, including the first picture, as one of a
long-term reference picture, a short-term reference picture,-and unused for reference after
encoding the third picture, assign each of the inter-view reference pictures a new POC value
that is currently unused after marking an inter-view reference picture as a long-term
reference picture, and restore an original POC value for the inter-view reference picture

after encoding the second picture.

46. A device for encoding video data, the device comprising:

means for encoding data of a second picture that refers to a picture order count

(POC) value for a first picture of video data;

means for encoding data of the second picture that refers to a second-dimension

picture identifier for the first picture;

means for encoding, in accordance with a base video coding specification, the
second picture based at least in part on the POC value and the second-dimension picture

identifier of the first picture;

means for determining that a first motion vector of a first block of the second
picture refers to a short-term reference picture, wherein the short-term reference picture is

associated with data marking the short-term reference picture as being used for short-term

reference;

means for determining that a second motion vector of a second block of the second
picture refers to a long-term reference picture, wherein the long-term reference picture is

associated with data marking the long-term reference picture as being used for long-term

reference; and

means for disabling, based on the determination that the first motion vector refers
to the short-term reference picture and the determination that the second motion vector

refers to the long- term reference picture, motion vector prediction between the first

.....



10

15

20

25

30

120

motion vector of the first block of the second picture and the second motion vector of the
second block of the second picture, wherein the first block and the second block are spatial
neighbors in the second picture, and wherein the means for disabling motion vector
prediction between the first motion vector and the second motion vector comprises means
for encoding the first motion vector without using the second motion vector to predict the
first motion vector and means for encoding the second motion vector without using the first

motion vector to predict the second motion vector.

47. A computer-readable storage medium having stored thereon instructions that, when

executed, cause a processor to:

decode data of a second picture that refers to a picture order count (POC) value for

a first picture of video data;

decode data of the second picture that refers to a second-dimension picture
identifier for the first picture;

decode, in accordance with a base video coding specification, the second picture
based at least in part on the POC value and the second-dimension identifier of the first
picture;

determine that a first motion vector of a first block of the second picture refers to a
short-term reference picture, wherein the short-term reference picture is associated with
data marking the short-term reference picture as being used for short-term reference;

determine that a second motion vector of a second block of the second picture
refers to a long-term reference picture, wherein the long-term reference piéture is
associated with data marking the long-term reference picture as being used for long-term
reference; and

based on the determination that the first motion vector refers to the short-term
reference picture and the determination that the second motion vector refers to the long-
term reference picture, disable motion vector prediction between the first motion vector of
the first block of the second picture and the second motion vector of the second block of the
second picture, wherein the first block and the second block are spatial neighbors in the
second picture, and wherein the instructions that cause the processor to disable motion
vector prediction between the first motion vector and the second motion vector comprise

instructions that cause the processor to decode the first motion vector without using the

AY

......



121

second motion vector to predict the first motion vector and decode the second motion

vector without using the first motion vector to predict the second motion vector.




£

Y
.

2

FIG. 1

10

. SOURCE DEVICE DESTINATION DEVICE
E ' .
14
VIDEO SOURCE DISPLAY DEVICE
18 32
VIDEO VIDEO
ENCODER DECODER
20 30
OUTPUT 16 INPUT
INTERFACE = |+ — L~ —— 43|  INTERFACE
22 28

QUALCOMM INCORPORATED
Applicant

e

.....

ROMULO MABANTA BUENAVENTURA

SAYOC & DE LOS ANGELES

By:

" Josi

BRIEL R. BENEDICTO
Pgtent Attorney



|
| RESID. — :
| BLOCKS| TR G| |QUANTIZATION|  quanTizeD |
y (1 NI > UNIT —  RESIDUAL |
VIDEG | v : \ . 52 ' 54 TRANSFORM |
2£ | NTS
DATA : MODE SELECT e N COEFFICIENT :
| UNIT ESTIMATION |
| @0 UNIT |
| 42
[
: 2 :
v MOTION :
- I PAT’TJIT]I_ON COMPENSATION SYNTAX ELEMENTS |
' | UNIT N | R | |
| ' S . . o
| . INTRA |
' ' PREDICTION |
| UNIT o : - : |
g o Y RECON. | —t |
\,§ 3 I — _" ' | sBLocks| INVERSE INVERSE - - ENTROPY ‘|
2 ! ) o - TRANSFORM | _ | QUANTIZATION| _ ¥ | ENCODING | |
‘» € 2 | REF. : + UNIT unir - [T T uNiT |
>0 > | PICTURE : : _ §0 58 - 56 [
83 8 I MERIORY RECONSTRUCTED . | - ' " | |
y O > | 64 ‘ INSTF 1 :
2 = P o = | - VIDEO BLOCKS » ~ VIDEO ENCODER . ) !
] —- > D 4 _ > ] - 20 e |
S m = 5 = | i - . : e - — —_——a
-+ m BV e e e e e e e e e e o
> T - o = 2
g ® o 348
S w - FIG. 2
S m >»<& -2
o 2 > m o
< m o) = O
o m 2 b
a - < >
— m =
o w 2 m
_ = O
c
X
>

Fdd




<
o
g &
| , o
= S 0 5
< > =
(o4 a U [a
(@) = 9 W o>
o w = 29
€ 5 < w S
‘ '8s =28 s
€ 'old z& g8 2 3
- ss 284 wee
A : < << - € 9
o Lo <
O S0
= >
< m <
. . 5 3% ¢
28 L. sMooia | - 3T 7 . _‘w ..
-— Adowaw |- VNais3d | uNn o [ LINN ) ® S<
03aIA ~3dnLold [ , WHOASNVYL NOILVZILNYND | . o |
a3goo3a | | 3oN3u343y 08 3SUIANI 3SHIANI ‘ -
I '44309
| vl | ‘ZILNVND
_ LINN | -
| NOLLOIOYd | | .
VLN 0L
IV“ — 1o ‘ LINN < _ |
I “A SINIWZ3 ONIQ023q WvIdLSLig
| LINN | XVINAS AdOH1INT O3dIn
i | NOILYSNadWOD | Q3a0oN3
I NOILOW I
S D
0t
¥IQ0O30 O3AIA




T10 T11

™ T2 T3 T4 T5 T6 717 T8“ T9

TO

SR SO Y- B
7 SR B >
QUALCOMM INCORPORATED
Applicant

"'ROMULO MABANTA BUENAVENTURA

SAYOC & DE LOS ANGELES




: INTER-VIEW
BASE VIEW REFERENCE

7
X
108

NON-BASE VIEW. | 1™

i .

112
\&?,

~ FIG.5

CURRENT -
PICTURE

 QUALCOMM INCORPORATED
Applicant

ROMULO MABANTA BUENAVENTURA
. SAYOC & DE LOS ANGELES




INTER-VIEW
VIEW 0 REFERENCE
INTER-VIEW 129
VIEW 1 o REFERENCE a
A

132
‘ 126
124
VIEW 2 , ~

CURRENT
PICTURE

FIG. 6

QUALCOMM INCORPORATED
~ Applicant

ROMULO MABANTA BUENAVENTURA

Ny 'SAYOC & DE LOS ANGELES




BASE VIEW

NON-BASE VIEW

INTER-VIEW -
- REFERENCE

~ CURRENT
" PICTURE

FIG. 7

" QUALCOMM INCORPORATED
- Applicant

ROMULO MABANTA BUENAVENTURA
SAYOC & DE LOS ANGELES

Y

SEGABRIEL R. BENEDICTO
Patent Attorney =~

""""

,,,,,,,,,,

,,,,,,,



BASE VIEW

NON-BASE VIEW

INTER-VIEW
. REFERENCE

170

162 164 '
: 172_':

CURRENT
PICTURE

'~ QUALCOMM INCORPORATED
' App/icant

" ROMULO MABANTA BUENAVENTURA
~ SAYOC & DE LOS ANGELES

.' By:.

RIEL R. BENEDICTO
~Patent Attorney

-JO



BASE VIEW

NON-BASE VIEW

INTER-VIEW
'REFERENCE

FIG. 9

CURRENT
PICTURE

QUALCOMM INCORPORATED
- Applicant

ROMULO MABANTA BUENAVENTURA
"SAYOC & DE LOS ANGELES -

A/
E GABRIEL R. BENEDICTO
Patent Attorney




CURRENT
BLOCK

QUALCOMM INCORPORATED
Applicant

ROMULO MABANTA BUENAVENTURA
~ SAYOC & DE LOS ANGELES




FIG. 11

ENCODE POC VALUES OF /200
REFERENCE PICTURES FOR '
CURRENT PICTURE

19

ENCODE SECOND /202
DIMENSION IDENTIFIERS . [ -

" OF REFERENCE PICTURES -

A 4

PREDICT CURRENT BLOCK /204
USING MOTION VECTOR
POINTING TO ONE OF THE

REFERENCE PICTURES

A 4

DETERMINE AVAILABLE  |206"
CANDIDATE MOTION
VECTOR PREDICTORS

A 4

SELECT MOTION ,~208
VECTOR PREDICTOR '

vy

ENCODE MOTION VECTOR | 210
USING SELECTED MOTION -
VECTOR PREDICTOR

A4

CALCULATE RESIDUAL BLOCK ‘
FOR CURRENT BLOCK

v

TRANSFORM, QUANTIZE, AND | 214
SCAN RESIDUAL BLOCK

v

‘ ENTROPY ENCODE QUANTIZED

it /216
TRANSFORM COEFFICIENTS
AND ENCODED MOTION
VECTOR INFORMATION -

B 'QUALCOVI\'/"IM INCORPORATED
i , Applicant

ROMULO MABANTA BUENAVENTURA
Wl ~ 'SAYOC & DE LOS ANGELES

Patent Attorney




FIG. 12

~DECODE POC VALUES OF | ,-230
REFERENCE PICTURESFOR [ -
CURRENT PICTURE

!

DECODESECOND . |22 -~ .~ =
DIMENSION IDENTIFIERS .
OF REFERENCE PICTURES

DETERMINE AVAILABLE  |234 v “
CANDIDATE MOTION ' '

VECTORPREDICTORS = [ - o L1

Y

SELECT MOTION . |236
VECTOR PREDICTOR .

DECODE MOTION VECTOR - 238
USING SELECTED MOTION | .
VECTOR PREDICTOR

Y

PREDICT CURRENT BLOCK /240
USING MOTION VECTOR =~ [~ '
POINTING TO.ONE OF THE
REFERENCE PICTURES -

A 4

ENTROPY DECODE QUANTIZED |~242
TRANSFORM COEFFICIENTS

A

INVERSE SCAN, QUANTIZE, |~244
AND TRANSFORM
RESIDUAL BLOCK

COMBINE DATA OF RESIDUAL
BLOCK AND PREDICTED
BLOCK TO REPRODUCE

CURRENT BLOCK

246

 QUALCOMM INCORPORATED
' " Applicant

_ - ROMULO MABANTA BUENAVENTURA
L S ~SAYOC & DE LOS ANGELES

By:‘

_’7&1055

IEL R. BENEDICTO



	Page 1 - BIBLIOGRAPHY
	Page 2 - DESCRIPTION
	Page 3 - DESCRIPTION
	Page 4 - DESCRIPTION
	Page 5 - DESCRIPTION
	Page 6 - DESCRIPTION
	Page 7 - DESCRIPTION
	Page 8 - DESCRIPTION
	Page 9 - DESCRIPTION
	Page 10 - DESCRIPTION
	Page 11 - DESCRIPTION
	Page 12 - DESCRIPTION
	Page 13 - DESCRIPTION
	Page 14 - DESCRIPTION
	Page 15 - DESCRIPTION
	Page 16 - DESCRIPTION
	Page 17 - DESCRIPTION
	Page 18 - DESCRIPTION
	Page 19 - DESCRIPTION
	Page 20 - DESCRIPTION
	Page 21 - DESCRIPTION
	Page 22 - DESCRIPTION
	Page 23 - DESCRIPTION
	Page 24 - DESCRIPTION
	Page 25 - DESCRIPTION
	Page 26 - DESCRIPTION
	Page 27 - DESCRIPTION
	Page 28 - DESCRIPTION
	Page 29 - DESCRIPTION
	Page 30 - DESCRIPTION
	Page 31 - DESCRIPTION
	Page 32 - DESCRIPTION
	Page 33 - DESCRIPTION
	Page 34 - DESCRIPTION
	Page 35 - DESCRIPTION
	Page 36 - DESCRIPTION
	Page 37 - DESCRIPTION
	Page 38 - DESCRIPTION
	Page 39 - DESCRIPTION
	Page 40 - DESCRIPTION
	Page 41 - DESCRIPTION
	Page 42 - DESCRIPTION
	Page 43 - DESCRIPTION
	Page 44 - DESCRIPTION
	Page 45 - DESCRIPTION
	Page 46 - DESCRIPTION
	Page 47 - DESCRIPTION
	Page 48 - DESCRIPTION
	Page 49 - DESCRIPTION
	Page 50 - DESCRIPTION
	Page 51 - DESCRIPTION
	Page 52 - DESCRIPTION
	Page 53 - DESCRIPTION
	Page 54 - DESCRIPTION
	Page 55 - DESCRIPTION
	Page 56 - DESCRIPTION
	Page 57 - DESCRIPTION
	Page 58 - DESCRIPTION
	Page 59 - DESCRIPTION
	Page 60 - DESCRIPTION
	Page 61 - DESCRIPTION
	Page 62 - DESCRIPTION
	Page 63 - DESCRIPTION
	Page 64 - DESCRIPTION
	Page 65 - DESCRIPTION
	Page 66 - DESCRIPTION
	Page 67 - DESCRIPTION
	Page 68 - DESCRIPTION
	Page 69 - DESCRIPTION
	Page 70 - DESCRIPTION
	Page 71 - DESCRIPTION
	Page 72 - DESCRIPTION
	Page 73 - DESCRIPTION
	Page 74 - DESCRIPTION
	Page 75 - DESCRIPTION
	Page 76 - DESCRIPTION
	Page 77 - DESCRIPTION
	Page 78 - DESCRIPTION
	Page 79 - DESCRIPTION
	Page 80 - DESCRIPTION
	Page 81 - DESCRIPTION
	Page 82 - DESCRIPTION
	Page 83 - DESCRIPTION
	Page 84 - DESCRIPTION
	Page 85 - DESCRIPTION
	Page 86 - DESCRIPTION
	Page 87 - DESCRIPTION
	Page 88 - DESCRIPTION
	Page 89 - DESCRIPTION
	Page 90 - DESCRIPTION
	Page 91 - DESCRIPTION
	Page 92 - DESCRIPTION
	Page 93 - DESCRIPTION
	Page 94 - DESCRIPTION
	Page 95 - DESCRIPTION
	Page 96 - DESCRIPTION
	Page 97 - DESCRIPTION
	Page 98 - DESCRIPTION
	Page 99 - DESCRIPTION
	Page 100 - DESCRIPTION
	Page 101 - DESCRIPTION
	Page 102 - DESCRIPTION
	Page 103 - DESCRIPTION
	Page 104 - DESCRIPTION
	Page 105 - DESCRIPTION
	Page 106 - DESCRIPTION
	Page 107 - DESCRIPTION
	Page 108 - DESCRIPTION
	Page 109 - CLAIMS
	Page 110 - CLAIMS
	Page 111 - CLAIMS
	Page 112 - CLAIMS
	Page 113 - CLAIMS
	Page 114 - CLAIMS
	Page 115 - CLAIMS
	Page 116 - CLAIMS
	Page 117 - CLAIMS
	Page 118 - CLAIMS
	Page 119 - CLAIMS
	Page 120 - CLAIMS
	Page 121 - CLAIMS
	Page 122 - CLAIMS
	Page 123 - DRAWINGS
	Page 124 - DRAWINGS
	Page 125 - DRAWINGS
	Page 126 - DRAWINGS
	Page 127 - DRAWINGS
	Page 128 - DRAWINGS
	Page 129 - DRAWINGS
	Page 130 - DRAWINGS
	Page 131 - DRAWINGS
	Page 132 - DRAWINGS
	Page 133 - DRAWINGS
	Page 134 - DRAWINGS

