
DE60027206T220061221
ß (19)
Bundesrepublik Deutschland
Deutsches Patent- und Markenamt
(10) DE 600 27 206 T2 2006.12.21

(12) Übersetzung der europäischen Patentschrift

(97) EP 1 285 337 B1
(21) Deutsches Aktenzeichen: 600 27 206.0
(86) PCT-Aktenzeichen: PCT/IB00/01720
(96) Europäisches Aktenzeichen: 00 974 724.7
(87) PCT-Veröffentlichungs-Nr.: WO 2001/033344
(86) PCT-Anmeldetag: 01.11.2000
(87) Veröffentlichungstag

der PCT-Anmeldung: 10.05.2001
(97) Erstveröffentlichung durch das EPA: 26.02.2003
(97) Veröffentlichungstag

der Patenterteilung beim EPA: 05.04.2006
(47) Veröffentlichungstag im Patentblatt: 21.12.2006

(51) Int Cl.8: G06F 9/44 (2006.01)

(54) Bezeichnung: DARSTELLUNG VON GRAPHISCHEN OBJEKTEN

(30) Unionspriorität:
99402721 02.11.1999 EP
00300832 03.02.2000 EP

(73) Patentinhaber:
THOMSON Licensing, Boulogne, FR

(74) Vertreter:
Roßmanith, M., Dipl.-Phys. Dr.rer.nat., Pat.-Anw.,
30457 Hannover

(84) Benannte Vertragsstaaten:
AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT,
LI, LU, MC, NL, PT, SE, TR

(72) Erfinder:
JOUET, Canal+ Technologies Societe Anonyme,
Bruno, F-75516 Paris Cedex 15, FR; NGUYEN VAN
HUONG, Canal+ Technologies S.A., Emile, F-75516
Paris Cedex, FR; VILLERS, Jean-Stephane,
F-95800 Cergy, FR

Anmerkung: Innerhalb von neun Monaten nach der Bekanntmachung des Hinweises auf die Erteilung des europä-
ischen Patents kann jedermann beim Europäischen Patentamt gegen das erteilte europäische Patent Einspruch
einlegen. Der Einspruch ist schriftlich einzureichen und zu begründen. Er gilt erst als eingelegt, wenn die Ein-
spruchsgebühr entrichtet worden ist (Art. 99 (1) Europäisches Patentübereinkommen).

Die Übersetzung ist gemäß Artikel II § 3 Abs. 1 IntPatÜG 1991 vom Patentinhaber eingereicht worden. Sie wurde
vom Deutschen Patent- und Markenamt inhaltlich nicht geprüft.
1/115

DE 600 27 206 T2 2006.12.21
Beschreibung

[0001] Die vorliegende Erfindung betrifft graphische Benutzerschnittstellen. Gesichtspunkte der vorliegenden
Erfindung betreffen ein Verfahren zur Steuerung des Aussehens eines graphischen Gegenstandes in einer
graphischen Benutzerschnittstelle. Gesichtspunkte der Erfindung betreffen einen Empfänger/Dekoder, ein
Fernsehsystem, ein Computerprogrammprodukt, eine durch Computer lesbares Medium und ein Signal. Ge-
sichtspunkte der Erfindung besitzen eine besondere, jedoch nicht ausschliessliche Anwendung zur Bereitstel-
lung einer graphischen Benutzerschnittstelle für Geräte wie Empfänger/Dekoder für digitale Fernsehsignale.
Gesichtspunkte der Erfindung besitzen jedoch auch Anwendungen auf Mehrzweckcomputern und anderen
Geräten.

[0002] Die meisten graphischen Benutzerschnittstellen (GUI = graphical user interface) besitzen eine gleich-
artige Gruppe von Grundkomponenten, die von einem Benutzer gehandhabt werden können. Diese beinhalten
Merkmale wie Drucktasten, Schieberegler, Verzeichnisbehälter usw. Derartige Komponenten werden im Allge-
meinen mit "Trickfenstern" (widgets) bezeichnet. Obwohl die Grundfunktion von Trickfenstern innerhalb graphi-
scher Benutzerschnittstellen allgemein gebräuchlich ist, unterscheiden sich die Trickfenster von einer graphi-
schen Benutzerschnittstelle zur anderen durch ihr Erscheinungsbild oder Aussehen.

[0003] Einige graphische Betriebssysteme, wie das X Fenstersystem zum Beispiel, bringen einige Einschrän-
kungen hinsichtlich des Erscheinungsbildes der Trickfenster, die in der graphischen Benutzerschnittstelle dar-
gestellt werden können, mit sich. Dies ermöglicht den Programmierern Anwendungen zu entwickeln, in dem
sie eine Anzahl von verschiedenen Trickfenstergruppen einsetzen, wobei jede ihr eigenes unterschiedliches
Erscheinungsbild hat. Darüber hinaus läuft einer grosse Zahl von Fenstermanagern unter X, die den Gesamt-
eindruck der Fenster, die durch die Anwendungen erstellt werden, beeinflussen. Normalerweise ist es möglich
etwas Kontrolle über das Erscheinungsbild einer Anwendung auszuüben, wie es in der graphischen Schnitt-
stelle dargestellt wird, sowohl während der Entwicklung der Anwendung, als auch in einem gewissen Mass
während der Laufzeit. Das Erscheinungsbild ist jedoch in beiden Fällen durch die fest programmierten Teile der
Trickfenstergruppe oder von dem Fenstermanager vorgegeben. Es ist dem Benutzer nicht möglich das Aus-
sehen einer Anwendung in erheblichem Masse zu verändern, ohne die Trickfenstergruppe, den Fenstermana-
ger, oder beide, erneut zu kodieren. Beide dieser Optionen erfordern einen grossen Umfang an erneuter Ko-
dierungsarbeit und einen hohen Umfang neuer, auf dem zentralen Rechner zu installierender Kodes.

[0004] Ein Vorschlag, um den hohen Umfang an erneuter Kodierarbeit zu verringern, der getan werden muss,
um eine Darstellung zu aktualisieren, ist Elemente eines Fensters in einer graphischen Schnittstellenanzeige
der im Speicher des zentralen Rechners abgelegten Pixelabbilder zu bauen (zum Beispiel Kanten, Begrenzun-
gen und so weiter). Dies kann als ein unabhängiger Gesichtspunkt der Erfindung angesehen werden. Die Pi-
xelabbilder können im Betrieb einen erheblichen Umfang an Speicherplatz erforderlich machen und stellen ei-
nen riesigen Umfang an zu übertragende Daten dar, wenn das Aussehen aktualisiert werden muss. Dies kann
einen erheblichen Nachteil bedeuten, wenn die Graphikschnittstelle mit beschränkten Reserven betrieben wer-
den muss und über eine Verbindung mit begrenzter Bandbreite aktualisiert werden muss. Ein Beispiel einer
derartigen Situation entsteht, wenn eine Anwendung auf einem Empfänger/Dekoder für digitale Fernsehsigna-
le ausgeführt werden muss. Ein derartiger Dekoder besitzt eine begrenzte Speicherkapazität im Vergleich zu
einem Allzweckcomputer und das Betriebssystem (einschliesslich des Erscheinungsbildes der Graphikschnitt-
stelle) wird durch Herunterladen der Daten über einen Kanal, der Teil des empfangenen Fernsehsignals bildet,
aktualisiert.

[0005] "Generic View Handler Class." IBM Technical Disclosure Bulletin, Band 34, Nr.1, Juni 1991 (1991–06),
Seiten 397–398, ISSN 0018-8689 beschreibt eine objektorientierte Betrachtungs-Steuerungsbaureihe, die op-
tische Erscheinung für einen Gegenstand, der mit ihm verbunden ist, behandelt. EP 0798634 beschreibt ein
Gerät und ein Verfahren zur Trennung des Aufbaus und des Einsatzes einer Benutzerschnittstelle von dem
Aufbau und dem Einsatz des funktionalen Teils eines Softwareprogramms. Look and feel Mittel wirken wie Ser-
ver für logische Objekte. Ein Look and feel Mittel steuert das Erscheinungsbild und das Verhalten der Benut-
zerschnittstelle, während Logikobjekte die Funktion des Softwareprogramms erfüllen. Beide Lösungen sind da-
rin begrenzt, dass sie Probleme zeigen, wenn die Betrachtungssteuerung aktualisiert wird.

[0006] Ein ziel dieser Erfindung ist einen Anwendungsentwickler anzubieten mit der Fähigkeit das Erschei-
nungsbild einer Anwendung auf durchgängige und leicht steuerbare Art und Weise zu steuern mit einem Mini-
mum an notwendiger Neukodierung und mit einem Minimum Daten, die an ein Durchführungsumfeld übertra-
gen werden müssen.
2/115

DE 600 27 206 T2 2006.12.21
[0007] Bei einer ersten Betrachtungsweise der vorliegenden Erfindung wird ein Verfahren bereitgestellt zur
Steuerung des Erscheinungsbildes eines objektorientierten Trickfensters in einer graphischen Benutzerschnitt-
stelle, wie im Anspruch 1 ausgeführt.

[0008] Durch genaue Bestimmung eines Betrachtungsgegenstandes anstelle eines Einschlusskodes (em-
bedding code), der das Erscheinungsbild in einer Anwendung steuert, kann die Erfindung eine grössere Flexi-
bilität als bislang bieten, im Hinblick darauf, wie das Erscheinungsbild eines Trickfensters gesteuert wird.

[0009] Vorzugsweise beinhaltet der Betrachtungsgegenstand Kodes oder Parameter, die bestimmen, wie das
Trickfenster dargestellt wird, wobei diese Kodes oder Parameter in einem Speicher abgelegt werden. Der Be-
trachtungsgegenstand kann zum Beispiel mit einem objektorientierten Programmkode bestimmt werden.

[0010] Der Betrachtungsgegenstand kann durch Realisieren einer Betrachtungsgegenstandsgruppe definiert
werden. Ein Betrachtungsgegenstand der auf diese Weise bestimmt wurde, kann einen Zeiger auf eine andere
Betrachtungsgegenstandgruppe enthalten (eine andere als die, von der sie abgeleitet wurde). Dies kann dem
Betrachtungsgegenstand ermöglichen Attribute und/oder andere Verfahren dieser anderen Betrachtungsgrup-
pen anzusteuern. Auf diese Art und Weise kann ein Betrachtungsgegenstand seine Eigenschaften aus zwei
oder mehr Ansichten beziehen, die es ermöglichen eine Ansicht zu erzeugen, die die Vereinigung von zwei
verschiedenen Ansichten darstellt, oder es ermöglicht Eigenschaften den Ansichten zuzufügen.

[0011] Um den graphischen Gegenstand mit dem Betrachtungsgegenstand zu verknüpfen, kann der graphi-
sche Gegenstand ein Attribut beinhalten, um den Betrachtungsgegenstand, der mit dem graphischen Gegen-
stand verbunden ist, zu identifizieren.

[0012] Vorzugsweise bestimmt die Ansicht die aktuellen Farben, die spezifisch benannten Farben zugeordnet
sind. Der Betrachtungsgegenstand kann zum Beispiel die aktuellen Farben, die für zumindest einer schwar-
zen, weissen und einer oder mehreren grauen Abstufungen zugeordnet sind, bestimmen. Auf diese Weise
kann die Ansicht ein bestimmtes Farbschema bestimmen, zum Beispiel, in dem sie den Betrachtungsgegen-
ständen, die mit der Ansicht verknüpft sind, eine bestimmte Farbschattierung gibt.

[0013] Der Betrachtungsgegenstand kann auch eine Farbentafel bestimmen, die die aktuellen zu benutzen-
den Farbwerte einsetzt, die zur Darstellung einer bestimmten Farbe gebraucht werden.

[0014] Um das Erscheinungsbild des Trickfensters zu ändern, kann entweder der Betrachtungsgegenstand
neu bestimmt oder verändert werden, zum Beispiel durch Wechseln der Kodes oder Parameter während der
Übersetzung, oder der Parameter während der Laufzeit), oder ein unterschiedlicher Betrachtungsgegenstand
kann mit dem graphischen Gegenstand verknüpft werden. Das Verfahren kann daher ferner die Veränderung
des Erscheinungsbildes des graphischen Gegenstandes durch Neudefinition oder durch Veränderung des Be-
trachtungsgegenstands oder durch Verknüpfung eines unterschiedlichen Betrachtungsgegenstands mit dem
graphischen Gegenstand, beinhalten.

[0015] Wenn ein Betrachtungsgegenstand neu bestimmt oder verändert wird, dann kann es notwendig wer-
den das Erscheinungsbild der graphischen Gegenstände, die mit jenem Betrachtungsgegenstand verknüpft
sind, zu aktualisieren. Um dies zu erreichen, kann der Betrachtungsgegenstand einen Aktualisierungszähler
beinhalten, dessen Wert aktualisiert wird, wenn der Betrachtungsgegenstand neu bestimmt oder verändert
wird.

[0016] Vorzugsweise speichern graphische Gegenstände den Wert des Aktualisierungszählers des Betrach-
tungsgegenstands, den sie beeinflusst haben. Jedes Mal wenn ein graphischer Gegenstand erneut angezeigt
wird, wird der vom graphischen Gegenstand gespeicherte Wert mit dem Wert des Aktualisierungszählers des
Betrachtungsgegenstands verglichen. Sind die beiden unterschiedlich, dann berücksichtigt der graphische Ge-
genstand die Veränderungen im Betrachtungsgegenstand und speichert den neuen Wert des Aktualisierungs-
zählers.

[0017] Der Betrachtungsgegenstand kann eine Bewertungsmaske beinhalten, die Verfahren anzeigt, die
durch den Betrachtungsgegenstand abgerufen werden können, so dass Verfahren, die vom Betrachtungsge-
genstand nicht zur Anwendung gebracht werden, nicht abgerufen werden. Der graphische Gegenstand kann
auf die Bewertungsmaske des Betrachtungsgegenstands zugreifen, um das Bild des graphischen Gegen-
stands zu optimieren. Auf diese Weise können Abrufe von nicht implementierten Verfahren vermieden werden,
was die Zeichnung des graphischen Gegenstands beschleunigen kann.
3/115

DE 600 27 206 T2 2006.12.21
[0018] Unter einigen Umständen, zum Beispiel wenn ein Betrachtungsgegenstand erstmals erzeugt wird,
kann der Betrachtungsgegenstand mit einem einzigen graphischen Gegenstand verknüpft werden. In einem
bevorzugten Ausführungsbeispiel nist jedoch der Betrachtungsgegenstand mit einer Vielzahl von graphischen
Gegenständen verknüpft. Durch Verknüpfung des Betrachtungsgegenstands mit einer Vielzahl von graphi-
schen Gegenständen, kann für jene Gegenstände ein einheitliches Erscheinungsbild erzielt werden und der
Umfang an Daten, die zur Bestimmung des Betrachtungsgegenstands erforderlich sind, können reduziert wer-
den, im Vergleich zu dem Fall, bei dem das Erscheinungsbild jedes graphischen Gegenstand unabhängig be-
stimmt wurde.

[0019] Daher kann das Verfahren ein Verfahren zur Steuerung des Erscheinungsbilds einer Vielzahl von gra-
phischen Gegenständen in einer graphischen Benutzerschnittstelle sein und kann die Verknüpfung des Be-
trachtungsgegenstandes mit der Vielzahl der graphischen Gegenstände beinhalten.

[0020] Unter bestimmten Umständen, wo keine graphischen Gegenstände mit einem Betrachtungsgegen-
stand verknüpft sind, kann es zum Beispiel wünschenswert sein den Betrachtungsgegenstand zu entfernen,
um den vom Betrachtungsgegenstand belegten Speicherplatz neu zuzuordnen. Dies kann besonders wichtig
bei Vorrichtungen sein, wie bei Empfängern/Dekodern, wo der Speicherplatz begrenzt sein kann. Zu diesem
Zweck (unter anderen) kann der Betrachtungsgegenstand einen Zähler beinhalten, der die Anzahl graphischer
Gegenstände anzeigt, die mit diesem Betrachtungsgegenstand verknüpft sind. Jedes Mal wenn ein graphi-
scher Gegenstand mit einem Betrachtungsgegenstand verknüpft wird, wird der Zähler vorzugsweise zuneh-
men und jedes Mal wenn ein graphischer Gegenstand von einem Betrachtungsgegenstand gelöst wird, wird
der Zähler abnehmen. Wenn der Zähler bei Null steht, kann man unterstellen, dass der Betrachtungsgegen-
stand sicher gelöscht werden kann.

[0021] Im Verfahren der Erfindung ist die Bestimmung eines graphischen Gegenstandes in einer graphischen
Schnittstelle eingeschlossen und beinhaltet die Bereitstellung eines Betrachtungsgegenstandes, der das Er-
scheinungsbild des graphischen Gegenstandes steuert (zum Beispiel durch Bestimmung der Eigenschaften
und/oder Verfahren, die das Erscheinungsbild des graphischen Gegenstandes steuern) und durch Bereitstel-
lung eines Trickfenstergegenstandes, der den Ablauf des graphischen Gegenstandes steuert (zum Beispiel
durch Bestimmung der Eigenschaften und/oder Verfahren, die den Betrieb des graphischen Gegenstandes
steuern). Jede der oben erwähnten Eigenschaften können in Verbindung mit diesem Aspekt bereitgestellt wer-
den.

[0022] Jedes der oben beschriebenen Verfahren beinhalten ferner vorzugsweise die Darstellung des graphi-
schen Gegenstandes, zum Beispiel auf einem Bildschirm, wie auf einem Computerbildschirm oder auf einem
Fernsehbildschirm.

[0023] Jedes der oben beschriebenen Verfahren kann von einem Empfänger/Dekoder ausgeführt werden,
wie ein digitaler oder analoger Empfänger/Dekoder.

[0024] Der begriff Empfänger/Dekoder der hier verwendet wird kann einen Empfänger bedeuten zum Emp-
fang von entweder verschlüsselten oder nicht verschlüsselten Signalen, zum Beispiel Fernseh- und/oder
Rundfunksignalen, die über einige andere Mittel gesendet oder übertragen werden können. Der Begriff kann
auch einen Dekoder bedeuten zur Dekodierung empfangener Signale. Ausführungsbeispiele derartiger Emp-
fänger/Dekoder können einen im Empfänger eingebauten Dekoder zur Dekodierung der empfangenen Signale
einschliessen, zum Beispiel einen Beistelldekoder, wobei nein derartiger Dekoder mit einem räumlich getrenn-
ten Empfänger zusammen arbeiten kann, oder ein derartiger Dekoder, der zusätzliche Funktionen umfasst, wie
einen Web-Browser, einen Videorekorder, oder ein Fernsehgerät.

[0025] Im Hinblick auf ein gerät der Erfindung wird ein gerät bereit gestellt zur Steuerung des Erscheinungs-
bildes eines objektorientierten Trickfensters in einer graphischen Benutzerschnittstelle, wie im Anspruch 6 dar-
gestellt ist.

[0026] Das gerät kann einen passend programmierten Prozessor zur Bestimmung des Betrachtungsgegen-
standes und zur Verknüpfung des Betrachtungsgegenstandes mit dem graphischen Gegenstand und einen
Speicher zum Ablegen des Betrachtungsgegenstandes und des graphischen Gegenstandes einschliessen.
Der Betrachtungsgegenstand kann durch den objektorientierten Programmkode bestimmt werden. Der Be-
trachtungsgegenstand kann durch Realisieren der Betrachtungsgegenstandsgruppe bestimmt werden. Der
Betrachtungsgegenstand kann einen Zeiger auf eine andere Betrachtungsgegenstandsgruppe enthalten.
4/115

DE 600 27 206 T2 2006.12.21
[0027] Das Gerät kann zur Veränderung des Erscheinungsbildes des graphischen Gegenstandes durch Neu-
bestimmung oder Veränderung des Betrachtungsgegenstandes, oder durch Verknüpfung eines unterschiedli-
chen Betrachtungsgegenstandes mit dem graphischen Gegenstand angepasst werden. Der Betrachtungsge-
genstand kann einen Aktualisierungszähler (wie zum Beispiel eine Stelle im Speicher) beinhalten, dessen Wert
aktualisiert wird, wenn der Betrachtungsgegenstand neu bestimmt oder verändert wird.

[0028] Der Betrachtungsgegenstand kann eine Bewertungsmaske beinhalten (zum Beispiel im Speicher ab-
gelegt), die Verfahren, die vom Betrachtungsgegenstand abgerufen werden können, anzeigt.

[0029] Das Gerät kann ein Gerät zur Steuerung des Erscheinungsbildes einer Vielzahl von graphischen Ge-
genständen in einer graphischen Benutzerschnittstelle sein und kann zur Verknüpfung des Betrachtungsge-
genstandes mit einer Vielzahl von graphischen Gegenständen angepasst werden.

[0030] Das Gerät kann ferner Mittel einschliessen, wie zum Beispiel einen Bildschirm (zum Beispiel ein Com-
puterbildschirm oder eine Fernsehbildschirm) zur Darstellung der graphischen Gegenstände.

[0031] Eine Trickfenstergruppe wird zur Erstellung von Gegenständen, wie oben beschrieben, bereitgestellt,
wobei die Trickfenstergruppe eine Vielzahl von Trickfensterklassen und eine oder mehrere Betrachtungsge-
genstandsklassen einschliesst. Höchst typisch umfasst eine Trickfenstergruppe eine Vielzahl von Betrach-
tungsgegenstandsklassen, einschliesslich einer Grundklasse und einer von der Grundklasse abgeleiteten
Klasse.

[0032] Um das Erscheinungsbild des Gegenstandes zu ergänzen, kann die Betrachtungsgegenstandsklasse
gewechselt werden. Dies verändert die Funktion des Gegenstandes nicht, da die Funktion durch die Trickfens-
terklasse gesteuert wird. Darüber hinaus ist es möglich ein Beispiel für die Betrachtungsgegenstandsklasse
von vielen Beispielen der Trickfensterklasse eingesetzt zu werden, wobei der Umfang des belegten Speicher-
platzes minimiert wird.

[0033] Die Betrachtungsgegenstandsklasse kann in einer Bibliothek, die mit einer Anwendung während Lauf-
zeit verknüpft ist, enthalten sein. Ein Benutzer kann daher eine bevorzugte Ansicht für den Gegenstand wäh-
len, in dem er diejenige aus einer Reihe von Bibliotheken auswählt, die verknüpft werden soll, auswählt. Da
die Betrachtungsgegenstandsklasse unabhängig von anderen Gegenständen geändert wird, wird das erneute
Kodieren auf das Nötigste vereinfacht, um das neue Erscheinungsbild zu implementieren.

[0034] Wahlweise kann die Betrachtungsgegenstandsklasse in einer Bibliothek, die mit einer Anwendung
während der Übersetzung verknüpft ist, enthalten sein. Dies erlaubt einem Anwendungsentwickler vollständige
Kontrolle über das Erscheinungsbild auszuüben.

[0035] Die Betrachtungsgegenstandsklasse kann Graphikverfahren exportieren, die aufgerufen werden kön-
nen, um einen Teil einer Komponente auf einer Benutzerschnittstellenanzeige zu zeichnen. Die Trickfenster-
klasse enthält typischerweise einen Kode, der Graphikverfahren aus der Betrachtungsgegenstandklasse ab-
ruft. Betrachtungsgegenstandsklasse kann auch Eigenschaften exportieren, die Daten liefert, die sich auf Ele-
mente einer Komponente beziehen.

[0036] Die Betrachtungsgegenstandsklasse kann eine Vorgabeklasse sein, die eine vorgegebene Ansicht für
Trickfenster in einer graphischen Benutzerschnittstellenanzeige liefert. Wahlweise kann die Betrachtungsge-
genstandsklasse eine von der Vorgabeklasse abgeleitete Klasse sein, wobei die abgeleitete Klasse ein oder
mehrere Verfahren und/oder Eigenschaften der Vorgabeklasse aufhebt. In dieser Anordnung kann ein Benut-
zer oder Entwickler Veränderungen mit nur einer begrenzten Anzahl von Elementen innerhalb des Erschei-
nungsbildes der graphischen Benutzerschnittstelle vornehmen, ohne dass er irgendwelche Teile, die unverän-
dert bleiben sollen, nacharbeiten müsste.

[0037] Das Klassenbeispiel des Betrachtungsgegenstands kann eine Eigenschaft des Klassenbeispiels der
Trickfenster sein. Ein Zeiger auf ein Beispiel der Betrachtungsgegenstandsklasse wird einer Eigenschaft des
Trickfensterklassenbeispiels zugeordnet. Ein derartiger Zeiger kann als Argument an einen Konstrukteur der
Trickfensterklasse ausgegeben.

[0038] Bei einem Verfahren nach den letzten vorangegangen Absatz wird ein Zeiger auf die Betrachtungsge-
genstandsklasse typischerweise in einem Beispielsspeicher des Trickfensterklassenbeispiels abgelegt.
5/115

DE 600 27 206 T2 2006.12.21
[0039] Durch Steuerung des Vorgangs ist nicht notwendigerweise damit gemeint, dass der Gegenstand funk-
tional ist; wobei Schieberegler und Bedienknöpfe und Ähnliches in der Lage sein können, Aktionen auszufüh-
ren, wobei einige graphischen Gegenstände nur zur Dekoration dienen, wie zum Beispiel Symbole oder Teile
von zusammengesetzten Gegenständen. Somit können die Eigenschaften und/oder Verfahren, die den Betrieb
des Gegenstandes steuern ein wenig mehr tun, als die Grundfunktion des Gegenstandes zu bestimmen (zum
Beispiel als Zeiger zu erscheinen) mit dem präzisen Erscheinungsbild, das durch den Betrachtungsgegen-
stand gesteuert wird.

[0040] Es versteht sich, dass die vorliegende Erfindung einzig und allein anhand von Beispielen beschrieben
wurde und Veränderungen von Teilen im Rahmen des Umfangs der Erfindung gemacht werden können.

[0041] Jede in der Beschreibung offen gelegte Eigenschaft und (wo angebracht) die Ansprüche und Zeich-
nungen können unabhängig, oder in jeder geeigneten Kombination, zur Verfügung gestellt werden.

[0042] Wo Eigenschaften des Gerätes hier mit "Mittel für" eine bestimmte Funktion beschrieben wurden, so
ist beabsichtigt, dass diese Ausdrücke breit interpretiert werden und vorzugsweise nicht für irgendein bestimm-
tes hier beschriebenes Ausführungsbeispiel der Erfindung einschränkend interpretiert werden. Eigenschaften
des Gerätes sind bei bevorzugten Ausführungsbeispielen durch einen passend programmierten Computer
oder durch Computern geliefert worden und somit sind Eigenschaften des Gerätes vorzugsweise durch sach-
bezogene Eigenschaften eines Computers, oder eines Produktes, das ein Computerprogramm beinhaltet, er-
stellt worden. Eigenschaften des Gerätes können zum Beispiel durch einen Prozessor, oder andere Teile eines
Computers zur Verfügung gestellt werden, zum Beispiel ein Speicher oder eine Datenablage.

[0043] Eigenschaften einer Betrachtungsweise können bei jeder anderen Betrachtungsweise eingesetzt wer-
den, Verfahrenseigenschaften können im Hinblick auf Geräte und umgekehrt eingesetzt werden.

[0044] Bevorzugte Eigenschaften der vorliegenden Erfindung werden nun beschrieben werden, einzig und al-
lein durch Beispiele unter Bezug auf die begleitenden Zeichnungen, worin:

[0045] Die Fig. 1a einen Überblick über ein typisches digitales Fernsehsystem gibt;

[0046] Die Fig. 1b die hauptsächliche Architektur eines interaktiven Fernsehsystems zeigt;

[0047] Die Fig. 2a ein Blockdiagramm eines Empfängers/Dekoders zeigt;

[0048] Die Fig. 2b die Architektur eines Empfängers/Dekoders zeigt;

[0049] Die Fig. 2c die weitergehende Architektur eines Empfängers/Dekoders zeigt;

[0050] Die Fig. 3 ein Diagramm eines Teiles der Hierarchie von Trickfenstern (widgets) innerhalb einer Trick-
fenstergruppe zeigt;

[0051] Die Fig. 4 ein vereinfachtes Diagramm eines Trickfensters ist, das auf der graphischen Benutzer-
schnittstellenanzeige erscheint;

[0052] Die Fig. 5 die Stelle im Speicher von mehreren Trickfenstern zeigt;

[0053] Die Fig. 6a eine Bildschirmanzeige des Web-Browser zeigt;

[0054] Die Fig. 6b eine Fernbedienung zum Navigieren des Web-Browsers zeigt;

[0055] Die Fig. 7 eine weitere Bildschirmanzeige des Web-Browsers zeigt;

[0056] Die Fig. 8 eine weitere Bildschirmanzeige des Web-Browsers zeigt;

[0057] Die Fig. 9 eine weitere Bildschirmanzeige des Web-Browsers zeigt;

[0058] Die Fig. 10 eine weitere Bildschirmanzeige des Web-Browsers zeigt;

[0059] Die Fig. 11 eine weitere Bildschirmanzeige des Web-Browsers zeigt;
6/115

DE 600 27 206 T2 2006.12.21
[0060] Die Fig. 12 eine weitere Bildschirmanzeige des Web-Browsers zeigt;

[0061] Die Fig. 13 eine weitere Bildschirmanzeige des Web-Browsers zeigt;

[0062] Die Fig. 14 eine weitere Bildschirmanzeige des Web-Browsers zeigt;

[0063] Die Fig. 15 eine weitere Bildschirmanzeige des Web-Browsers zeigt;

[0064] Die Fig. 16 eine weitere Bildschirmanzeige des Web-Browsers zeigt;

[0065] Die Fig. 17 eine weitere Bildschirmanzeige des Web-Browsers zeigt;

[0066] Die Fig. 18 eine weitere Bildschirmanzeige des Web-Browsers zeigt;

[0067] Die Fig. 19 eine weitere Bildschirmanzeige des Web-Browsers zeigt;

[0068] Die Fig. 20 eine weitere Bildschirmanzeige des Web-Browsers zeigt;

[0069] Die Fig. 21 eine weitere Bildschirmanzeige des Web-Browsers zeigt;

[0070] Die Fig. 22 eine weitere Bildschirmanzeige des Web-Browsers zeigt;

[0071] Die Fig. 23 eine weitere Bildschirmanzeige des Web-Browsers zeigt;

[0072] Die Fig. 24 eine weitere Bildschirmanzeige des Web-Browsers zeigt;

[0073] Die Fig. 25 eine weitere Bildschirmanzeige des Web-Browsers zeigt;

[0074] Die Fig. 27 eine weitere Bildschirmanzeige des Web-Browsers zeigt;

[0075] Die Fig. 27 eine weitere Bildschirmanzeige des Web-Browsers zeigt;

[0076] Die Fig. 28 eine weitere Bildschirmanzeige des Web-Browsers zeigt;

[0077] Die Fig. 29 eine weitere Bildschirmanzeige des Web-Browsers zeigt;

[0078] Die Fig. 30 eine weitere Bildschirmanzeige des Web-Browsers zeigt;

[0079] Die Fig. 31 ein Beispiel für einen graphischen Gegenstand ist, der aus Fliesen gebildet ist;

[0080] Die Fig. 32 ein weiteres Beispiel für einen graphischen Gegenstand ist, der aus Fliesen gebildet ist;

[0081] Die Fig. 33 ein weiteres Beispiel für einen graphischen Gegenstand ist, der aus Fliesen gebildet ist;

[0082] Die Fig. 34 ein weiteres Beispiel für einen graphischen Gegenstand ist, der aus Fliesen gebildet ist;

[0083] Die Fig. 35 ein weiteres Beispiel für einen graphischen Gegenstand ist, der aus Fliesen gebildet ist;

[0084] Die Fig. 36 ein weiteres Beispiel für einen graphischen Gegenstand ist, der aus Fliesen gebildet ist;

[0085] Die Fig. 37 ein weiteres Beispiel für einen graphischen Gegenstand ist, der aus Fliesen gebildet ist;

[0086] Die Fig. 38 ein weiteres Beispiel für einen graphischen Gegenstand ist, der aus Fliesen gebildet ist;

[0087] Die Fig. 39 das Verfahren des Fliesens von graphischen Gegenständen zeigt;

[0088] Die Fig. 40 einen typischen Bildpuffer zeigt;

[0089] Die Fig. 41 den Aufbau eines aus Fliesen gebildeten graphischen Gegenstandes zeigt;
7/115

DE 600 27 206 T2 2006.12.21
[0090] Die Fig. 42 schematisch die Wirkungsweise einer virtuellen Tastatur darstellt;

[0091] Die Fig. 43 eine typische Zuordnung von Zeichen zu den Tasten auf der virtuellen Tastatur darstellt;

[0092] Die Fig. 44 Beispiele einer virtuellen Tastatur zeigt; und

[0093] Die Fig. 45 die typischen Abmessungen einer virtuellen Tastatur zeigt.

Darstellung eines digitalen Fernsehsystems

[0094] Ein Überblick eines digitalen Fernsehsystems 1 ist in der Fig. 1a dargestellt. Die Erfindung schliesst
ein hauptsächlich herkömmliches digitales Fernsehsystem 2 ein, das das bekannte MPEG-2 Komprimierungs-
system zur Übertragung von komprimierten digitalen Signalen benutzt. In weiteren Einzelheiten empfängt ein
MPEG-2 Kompressor 3 in einem Sendezentrum einen digitalen Datenstrom (typischerweise einen Strom von
Videodaten). Der Kompressor 3 ist mit einem Multiplexer und Verwürfler (scrambler) 4 über die Verbindung 5
verbunden.

[0095] Der Multiplexer 4 empfängt eine Vielzahl weiterer Eingangssignale, assembliert den Transportstrom
und überträgt komprimierte digitale Signale an den Sender 6 des Sendezentrums über die Verbindung 7, die
natürlich eine breite Vielfalt an Formen, einschliesslich Telefonnetzverbindungen, einnehmen kann. Der Sen-
der 6 überträgt elektromagnetische Signale über die Verbindungsstrecke (uplink) 8 auf einen Satellitentrans-
ponder 9, wo sie elektronisch verarbeitet werden und über eine gedankliche Abwärtsverbindung (downlink) 10
zum Empfänger auf der Erde 12, herkömmlich in Form einer Satellitenschüssel, die dem Endverbraucher ge-
hört, oder gemietet ist, übertragen werden. Andere Übertragungskanäle zur Übertragung von Daten sind
selbstverständlich möglich, wie zum Beispiel terrestrische Übertragung, Kabelübertragung, kombinierte Satel-
liten-/Kabelverbindungen, Telefonnetze usw.

[0096] Die vom Empfänger 12 empfangenen-Signale werden an einen integrierten Empfänger-Dekoder 13
weitergeleitet, der dem Endbenutzer gehört, oder den er gemietet hat und werden mit dem Fernsehgerät des
Endbenutzers verbunden. Der Empfänger-Dekoder 13 dekodiert das komprimierte MPEG-2 Signal in ein Fern-
sehsignal für das Fernsehgerät 14. Obwohl in der Fig. 1a ein getrennter Empfänger/Dekoder gezeigt wird,
kann der Empfänger/Dekoder auch Teil eines integrierten, digitalen Fernsehgerätes sein. Wie hier als Begriff
verwendet, schliesst ein Empfänger/Dekoder einen getrennten Empfänger/Dekoder ein, wie zum Beispiel ei-
nen Beistelldekoder und ein Fernsehgerät, das einen integrierten Empfänger/Dekoder darin beinhaltet.

[0097] Bei einem Mehrkanalsystem bearbeitet der Multiplexer 4 Audio- und Videoinformationen, die er von
eine Anzahl paralleler Quellen empfängt und kommuniziert mit dem Sender 6, um die Informationen weiter mit
einer entsprechenden Anzahl von Kanälen zu übertragen. Zusätzlich zu den audiovisuellen Informationen kön-
nen Nachrichten, oder Anwendungen, oder jede andere Art von digitalen Daten in einige oder alle dieser Ka-
näle einfliessen, in dem sie mit den übertragenen digitalen Audio- und Videoinformationen verschachtelt wer-
den.

[0098] Ein bedingtes Zugangssystem (conditional access system) 15 ist mit dem Multiplexer 4 und dem Emp-
fänger/Dekoder 13 verbunden und ist teilweise im Übertragungszentrum und teilweise im Empfänger/Dekoder
untergebracht. Es gestattet dem Endverbraucher auf digitale Fernsehprogramme von einem oder von mehre-
ren Programmanbietern zuzugreifen. Eine Chipkarte (smartcard), die in der Lage ist verschlüsselte Mitteilun-
gen, die sich auf kommerzielle Angebote (das ist eines oder mehrere Fernsehprogramme, die von Program-
manbieter verkauft werden) zu entschlüsseln, kann in den Empfänger/Dekoder 13 eingeschoben werden.
Wenn man den Empfänger/Dekoder 13 und die Chipkarte einsetzt, kann der Endverbraucher kommerzielle An-
gebote entweder als Abonnement oder Bezahlen je nach Programm kaufen. Wie hier der Begriff Chipkarte
(smartcard) gebraucht wird schliesst dieser, jedoch nicht ausschliesslich, jedes Gerät mit Chipkarten, oder ei-
nen Gegenstand mit ähnlicher Funktion und Leistungsfähigkeit ein, der zum Beispiel einen Mikroprozessor
und/oder einen Speicher besitzt. Unter diesem Begriff sind auch Anordnungen einbezogen, die alternative kör-
perliche Ausgestaltungen einer Karte haben, so zum Beispiel, schlüsselförmige Anordnungen, wie sie oft bei
Fernseh-Dekodersystemen eingesetzt werden.

[0099] Wie oben erwähnt, werden durch das System übertragene Programme am Multiplexer 4 verschlüsselt,
die Bedingungs- und Verschlüsselungsschlüssel für eine gegebene Sendung, die von dem Zugangskontroll-
system 15 bestimmt wird, eingesetzt. Die Übertragung von auf diese Art und Weise verschlüsselten Daten ist
auf dem Gebiet von Fernsehsystemen für das Bezahlfernsehen bekannt. Verschlüsselte Daten werden typi-
8/115

DE 600 27 206 T2 2006.12.21
scherweise zusammen mit einem Kontrollwort zum Entschlüsseln der Daten gesendet, wobei das Kontrollwort
selbst durch einen so genannten Verwertungsschlüssel verschlüsselt und in verschlüsselter Form übertragen
wird.

[0100] Der verschlüsselten Daten und das verschlüsselte Kontrollwort werden dann vom Dekoder 13 emp-
fangen, der einen Zugang zu einem entsprechenden Verwertungsschlüssel besitzt, der auf einer Chipkarte ge-
speichert ist und die in den Dekoder gesteckt wird, damit das verschlüsselte Kontrollwort entschlüsselt wird
und anschliessend die übertragenen Daten entschlüsselt. Ein Abonnent, der bezahlt hat, wird zum Beispiel in
einer monatlich übertragenen Freigabenachricht ECM (entitlement control message) den notwendigen Verwer-
tungsschlüssel empfangen, um das verschlüsselte Kontrollwort zu entschlüsseln, damit er die Übertragungen
ansehen kann.

Interaktives System

[0101] Ein interaktives System 16 das ebenfalls an den Multiplexer 13 und den Empfänger/Dekoder 13 ange-
schlossen werden kann und wiederum teilweise im Übertragungszentrum und teilweise im Empfänger/Deko-
der untergebracht sein kann, erlaubt dem Endbenutzer über einen mit einem Modem verbundenen Rückkanal
17 mit verschiedenen Anwendungen zusammen zu wirken. Der über ein Modem verbundene Rückkanal 17
kann auch für Datenübertragungen, die beim bedingten Zugangssystem 15 gebraucht werden, eingesetzt wer-
den.

[0102] Die Fig. 1b stellt die Hauptarchitektur des interaktiven Fernsehsystems 16 des digitalen Fernsehsys-
tems 1 dar.

[0103] Das interaktive System 16 erlaubt dem Endbenutzer zum Beispiel einen Artikel aus einem Bildschirm-
katalog zu kaufen, und auf Anfrage die lokalen Nachrichten anzusehen und Wetterkarten anzuschauen und
Spiele über das Fernsehgerät zu spielen.

[0104] Das interaktive System 16 beinhaltet im Überblick für Hauptelemente:
– ein Autorensystem 4004 im Übertragungszentrum oder irgendwo anderes, um einem Programmanbieter
Anwendungen zu schaffen, zu entwickeln, Fehler zu beseitigen und zu testen;
– einen Anwendungs- und Datenserver 4006 im Übertragungszentrum, der mit dem Autorensystem 4004
verbunden ist, um einem Programmanbieter es zu ermöglichen Anwendungen und Daten vorzubereiten, zu
authentifizieren und zu formatieren zur Lieferung an den Multiplexer und Verwürfler (scrambler) 4, um diese
in den MPEG-2 Transportstrom (typischerweise den privaten Anteil davon) einzufügen, damit dieser dann
an den Endbenutzer gesendet wird.
– eine virtuelle Maschine, die eine Ablaufmaschine (RTE run time engine) 4008 beinhaltet, die einen aus-
führbaren Kode darstellt, der im Empfänger/Dekoder installiert ist, der dem Endbenutzer gehört, oder der
gemietet ist, um dem Endbenutzer zu gestatten Anwendungen zu empfangen, zu authentifizieren, zu de-
komprimieren und in den Arbeitsspeicher des Dekoders 13 zur Ausführung zu laden. Die Maschine 4008
betreibt auch residente und Allzweckanwendungen. Die Maschine 4008 ist von der Hardware und vom Be-
triebssystem unabhängig; und
– einen Rückkanal über ein Modem 17 zwischen dem Empfänger/Dekoder 13 und dem Anwendungs- und
Datenserver 4006, um den Signalen, die den Server 4006 anweisen, zu erlauben, Daten und Anwendungen
in den MPEG-2 Transportstrom auf Anfrage des Endbenutzers einzufügen.

[0105] Das interaktive System arbeitet unter Verwendung von "Anwendungen", die die Funktionen des Emp-
fänger/Dekoders und verschiedene darin enthaltene Vorrichtungen steuern. Anwendungen sind in der Maschi-
ne 4008 als "Ressourcendateien" enthalten. Ein "Modul" ist eine Reihe von Ressourcendateien und Daten. Ein
"Speicherdatenträger" des Empfängers/Dekoders ist ein Speicherplatz für Module. Module können in den
Empfänger/Dekoder 13 aus dem MPEG-2 Transportstrom heruntergeladen werden.

Empfänger/Dekoder

[0106] Unter Bezug auf die Fig. 2a werden nun die verschiedenen Elemente des Empfängers/Dekoders 13
in Form von funktionalen Blöcken beschrieben.

[0107] Der Empfänger/Dekoder 13 der zum Beispiel ein digitaler Beistelldekoder (DTSB digital set-top box)
sein kann beinhaltet eine zentralen Prozessor 220, der damit verbundene Speicherelemente einschliesst und
geeignet ist, Eingangsdaten aus einer seriellen Schnittstelle 221, einer parallelen Schnittstelle 222 (verbunden
9/115

DE 600 27 206 T2 2006.12.21
mit dem Modem Rückkanal 17 aus der Fig. 1a), einem Modem 223 und Schaltkontakten 224 auf der Vorder-
seite des Dekoders zu empfangen.

[0108] Der Empfänger/Dekoder ist zusätzlich geeignet Eingaben von einer Infrarotfernbedienung 225 über
die Steuereinheit 226 zu empfangen und beinhaltet zwei Chipkartenlesegeräte 227, 228, die geeignet sind je-
weils Bank- und Abonnementchipkarten 242, 240 zu lesen. Das Lesegerät 228 für Chipkarten arbeitet zusam-
men mit einer eingelegten Abonnementchipkarte 240 und mit einer Einheit für den bedingten Zugang 229 (con-
ditional access) zur Bereitstellung des notwendigen Kontrollworts an die Demultiplexer-/Entschlüsselungsein-
heit 230, um dem verschlüsselten Übertragungssignal zu ermöglichen, dekodiert zu werden. Der Dekoder be-
inhaltet ebenfalls einen herkömmlichen Tuner 231 und Demodulator 232, um die Satellitenübertragung zu
empfangen und zu demodulieren, bevor sie durch die Einheit 230 gefiltert und entschachtelt wird.

[0109] Die Verarbeitung von Daten innerhalb des Empfängers/Dekoders wird im Allgemeinen vom zentralen
Prozessor 220 vorgenommen. Die Fig. 2b stellt die Softwarearchitektur des zentralen Prozessors 220 des
Empfänger/Dekoders dar. Unter Bezug auf die Fig. 2b beinhaltet die Softwarearchitektur eine Laufzeitmaschi-
ne 4008, einen Gerätemanager 4068 und ein Vielzahl von Geräten 4062 und Gerätetreibern 4066, um eine
oder mehrere Anwendungen 4056 durchzuführen.

[0110] Wie in dieser Beschreibung verwendet ist eine Anwendung vorzugsweise ein Teil des Computerkodes
zur Steuerung von Funktionen auf hoher Ebene von vorzugsweise des Empfängers/Dekoders 13. Wenn zum
Beispiel der Endbenutzer den Fokus der Fernbedienung 225 auf ein Bedienknopfobjekt positioniert, das auf
dem Bildschirm des Fernsehgerätes 14 zu sehen ist und die Bestätigungstaste drückt, läuft die Anweisungs-
abfolge, die mit dem Bedienknopf verknüpft ist, an.

[0111] Eine interaktive Anwendung schlägt Menüs vor und führt Befehl auf Anfrage des Endbenutzers durch
und liefert Daten, die zum Zweck der Anwendung gehören. Anwendungen können entweder residente Anwen-
dungen sein, das heisst im ROM (oder Flashspeicher oder einem anderen nicht flüchtigen Speicher) des Emp-
fänger/Dekoders 13 abgelegt, oder übertragene und in den RAM- oder Flashspeicher des Empfänger/Deko-
ders 13 herunter geladene Anwendungen sein.

[0112] Anwendungen werden an Speicherorten im Empfänger/Dekoder 13 abgelegt und als Ressourcenda-
teien geführt. Die Ressourcendateien beinhalten Dateien der Beschreibungseinheit für graphische Gegenstän-
de, Dateien für variable Blockeinheiten, Dateien der Anweisungsabfolge, Dateien für Anwendungen und Da-
ten, so wie dies in den oben erwähnten Patentspezifikationen in allen Einzelheiten beschrieben wurde.

[0113] Der Empfänger/Dekoder enthält Speicher, die in einen RAM Datenträger, einen FLASH Datenträger
und einen ROM Datenträger aufgeteilt sind, diese physikalische Organisation ist jedoch zur logischen Organi-
sation unterschiedlich. Der Speicher kann ferner in Speicher-Datenträger, die mit verschiedenen Schnittstellen
verknüpft sind, aufgeteilt werden. Aus einer Sicht kann der Speicher als Teil der Hardware betrachtet werden,
aus einer anderen Sicht kann der Speicher, getrennt von der Hardware dargestellt, als unterstützend, oder das
ganze System beinhaltend betrachtet werden.

Architektur des Computerprogramms (software)

[0114] Der zentrale Prozessor 220 kann als auf die Laufzeitmaschine 4008 gerichtet betrachtet werden und
bildet einen Teil einer virtuellen Maschine 4007. Diese ist einerseits mit Anwendungen (die "high level" Seite)
und andererseits (die "low level Seite), über verschiedenen dazwischen liegenden Logikeinheiten, die nach-
stehend beschrieben werden, mit der Empfänger-/Dekoderhardware 4061 verbunden und schlisset die ver-
schiedenen Eingänge, wie oben beschrieben wurde, mit ein (das bedeutet zum Beispiel die serielle Schnitt-
stelle 221, die parallele Schnittstelle 222, das Modem 223 und die Steuereinheit 226).

[0115] Unter besonderem Bezug auf die Fig. 2b sind verschiedenen Anwendungen 4057 mit der virtuellen
Maschine 4007 verbunden; einige der mehr gemeinsam benutzten Anwendungen können mehr oder weniger
ständige im System angesiedelt sein, wie bei 4057 erwähnt wurde, während andere ins System herunter ge-
laden werden, zum Beispiel aus dem MPEG Datenstrom oder nach Bedarf aus anderen Schnittstellen.

[0116] Die virtuelle Maschine 4007 beinhaltet zusätzlich zur Laufzeitmaschine 4008 einige residente Biblio-
theksfunktionen 4006, die eine Sammlung mit Werkzeugen (toolbox) 4058 einschliesst. Die Bibliothek enthält
verschieden Funktionen in der C-Sprache, die von der Maschine 4008 benutzt wird. Diese schliesst Datenma-
nipulation wie Kompression, Expansion oder Vergleich von Datenstrukturen, Strichzeichnen, usw. ein. Die Bi-
10/115

DE 600 27 206 T2 2006.12.21
bliothek 4006 beinhaltet auch Informationen über Software in Festwertspeichern (firmware) im Empfänger/De-
koder 13, wie Hardware- und Softwarenummern und verfügbarer RAM Speicherplatz und eine Funktion, die
eingesetzt wird, wenn ein neues Instrument 4062 herunter geladen wird. Funktionen können in die Bibliothek
herunter geladen werden und werden im Flash- oder RAM-Speicher abgelegt.

[0117] Die Laufzeitmaschine 4008 ist mit einem Geräteverwaltungsprogramm 4068 verbunden, das mit einer
Reihe von Geräten 4062 verbunden ist, die wiederum mit Gerätetreibern 4060 verbunden sind und die der Rei-
he nach mit den Eingängen oder Schnittstellen verbunden sind. Im weiteren Sinne kann ein Gerätetreiber zur
Bestimmung einer logischen Schnittstelle betrachtet werden, so dass zwei verschiedene Gerätetreiber an ei-
nen gemeinsamen physikalischen Eingang angeschlossen werden können. Ein Gerät wird normalerweise an
mehr als einen Gerätetreiber angeschlossen; wenn ein Gerät an einen einzigen Gerätetreiber angeschlossen
wird, ist das Gerät normalerweise so aufgebaut, dass es die volle Funktionalität, die für den Datenaustausch
notwendig ist, beinhaltet, so dass die Notwendigkeit für einen getrennten Gerätetreiber umgangen wird. Einige
Geräte können unter sich selbst Daten austauschen.

[0118] Jede Funktion des Empfängers/Dekoders 13 ist als Gerät 4062 in der Softwarearchitektur des Emp-
fängers/Dekoders vertreten. Geräte können entweder lokal oder entfernt ausgebaut sein. Lokale Geräte 4064
enthalten Chipkarten, SCART-Anschlusssignale, Modems, serielle und parallele Schnittstellen, eine MPEG Vi-
deo- und Audioabspielvorrichtung und einen MPEG Sektions- und Tabellenextraktor. Die entfernt aufgebauten
Geräte 4066, die an einem entfernten Ort angewendet werden, unterscheiden sich von lokalen Geräten da-
durch, dass eine Schnittstelle und der Arbeitsschritt durch die Systemleitung oder durch den Systementwickler
bestimmt werden muss, als durch einen Gerätetreiber, der vom Hersteller des Empfängers/Dekoders geliefert
und gebaut wurde.

[0119] Die Laufzeitmaschine 4008 läuft unter der Steuerung eines Mikroprozessors und einer gemeinsamen
Schnittstelle für die Anwendungsprogrammierung (API application programming interface). Sie sind in jedem
Empfänger/Dekoder 13 untergebracht, so dass alle Empfänger/Dekoder 13 von der der Anwendung her gese-
hen, identisch sind.

[0120] Die Maschine 4008 führt Anwendungen 4056 auf dem Empfänger/Dekoder 13 durch. Sie führt inter-
aktive Anwendungen 4056 durch und empfängt Ereignisse von ausserhalb des Empfängers/Dekoders 13,
zeigt Graphik und Text an, ruft Geräte für Dienste auf und benutzt Funktionen der Bibliothek 4006, die mit der
Maschine 4008 für spezielle Berechnungen verbunden ist.

[0121] Die Laufzeitmaschine 4008 ist ein ausführbarer Kode, der in jedem Empfänger/Dekoder 13 eingebaut
ist und schliesst einen Interpretierer zum Übersetzen der laufenden Anwendungen ein. Die Maschine 4008
kann an jedes Betriebssystem angepasst werden, einschliesslich Betriebssystemen für eine einzige Anwen-
dung (so wie MS-DOS). Die Maschine 4008 arbeitet auf der Grundlage von Prozessablaufsteuerungseinheiten
(die verschiedene Vorgänge, wie zum Beispiel ein Tastendruck, heranziehen, um verschiedene Aktionen aus-
zuführen) und beinhaltet ihr eigenes Steuerprogramm, um Warteschlangen bei Vorgängen aus den verschie-
denen Hardwareschnittstellen zu bewältigen. Sie wickelt auch die Darstellung von Graphiken und Text ab. Eine
Prozessablaufsteuerungseinheit schliesst eine Reihe von Aktionsgruppen ein. Jeder Vorgang veranlasst die
Prozessablaufsteuerungseinheit sich von ihrer momentanen Aktionsgruppe zu einer anderen Aktionsgruppe
in Abhängigkeit der Art des Vorganges hin zu bewegen und die Aktionen der neuen Aktionsgruppe auszufüh-
ren.

[0122] Die Maschine 4008 schliesst ein Kodeladeprogramm zum Laden und Herunterladen von Anwendun-
gen 4056 in den Speicher des Empfängers/Dekoders 13 ein. Nur der notwendige Kode wird in den RAM- oder
Flashspeicher geladen, um optimalen Gebrauch sicher zu stellen. Die herunter geladenen Daten werden durch
einen Authentifizierungsmechanismus überprüft, um jedwelche Veränderung einer Anwendung 4056 oder die
Ausführung nicht frei gegebener Anwendungen zu verhindern. Die Maschine 4008 schliesst ferner einen De-
komprimierer ein. Wenn der Anwendungskode (eine Form des Zwischenkodes) zur Einsparung von Speicher-
platz und zum schnellen Herunterladen aus dem MPEG Stroms oder über den eingebauten Empfänger-/De-
kodermodus komprimiert wird, muss der Kodevor dem Laden in den RAM-Speicher dekomprimiert werden. Die
Maschine 4008 schliesst auch einen Interpretierer zur Übersetzung des Anwendungskodes zur Aktualisierung
verschiedener variabler Werte und zur Bestimmung von Zustandsveränderungen und einen Fehlerüberprüfer-
kreis ein.
11/115

DE 600 27 206 T2 2006.12.21
Architektur des Empfänger/Dekoders

[0123] Der Empfänger/Dekoder beinhält fünf Softwareschichten, die so organisiert sind, dass sie bei jedem
Empfänger/Dekoder und bei jedem Betriebssystem eingesetzt werden können. Unter Bezug auf die Fig. 2c
sind die verschiedenen Softwareschichten die Anwendungsschicht 250, die Anwendungsprogrammschnittstel-
le (API application programming interface) 252, die virtuelle Maschinenschicht 254, die Geräteschicht 256 und
die System-Software/-Hardwareschicht 258.

[0124] Die Anwendungsschicht 250 umfasst Anwendungen die entweder resident im oder in den Empfän-
ger/Dekoder herunter geladen wurden. Diese können interaktive Anwendungen sein, die vom Kunden benutzt
werden und die zum Beispiel in Java, HTML, MHEG-5 oder anderen Sprachen geschrieben wurden, oder es
können Anwendungen sein, die vom Empfänger/Dekoder benutzt werden, um solche Anwendungen zu betrei-
ben. Diese Schicht basiert auf einer Reihe offener Anwendungsprogrammschnittstelle (APIs application pro-
gramming interface), die von der virtuellen Maschineschicht bereitgestellt werden. Dieses System ermöglich-
tes, dass die Anwendungen in den Flash oder RAM-Speicher des Empfängers/Dekoders während der Über-
tragung oder auf Anfrage herunter geladen werden. Der Anwendungskode kann im komprimierten Format oder
unkomprimierten Format unter Benutzung von Protokollen wie DSMCC (Data Storage Media Command and
Control, Datenspeicherung für Datenträgerführung und Steuerung), NFS (Network File Server, Netzwerkdatei-
server) oder anderen Protokollen.

[0125] Interaktive Anwendungen sind Anwendungen mit den der Benutzer interaktiv arbeitet, zum Beispiel
und Produkte oder Dienstleistungen, wie elektronische Programmführer, Telebaninganwendungen und Spiele
zu erhalten.

[0126] Verschiedene Sicherheitsmerkmale werden für die herunter geladenen Anwendungen und Daten wie
folgt zur Verfügung estellt:
– Nichts kann auf den Empfänger/Dekoder herunter geladen werden, ohne zuerst im beabsichtigten Netz-
werk authentifiziert zu sein, was verhindert, dass keine unregistrierte Software auf dem Empfänger/Dekoder
laufen kann. Das bedeutet, dass jegliche Software, die auf dem Empfänger/Dekoder läuft, erkannt wurde
und komplett getestet wurde.
– Ein Sicherheitsverwaltungsprogramm (security manager) beschränkt den Zugang zu Anwendungen in
verschiedenen Speicherzonen und stellt damit Datenintegrität sicher.
– Das System kann mit jedem bedingten Zugangssystem (conditional access) gekoppelt werden, dass sich
sicherer Prozessoren (zum Beispiel Chipkarten, die in den Empfänger/Dekoder eingeführt werden) bedient.

[0127] Die folgenden eingebauten Anwendungen werden zur Verwaltung der interaktiven Anwendungen be-
nutzt:
– Start. Die Startanwendung 260 ist die erste in Gang gesetzte Anwendung, wenn der Empfänger/Dekoder
eingeschaltet wird. Die Startanwendung beginnt mit den verschiedenen "Managern" (Verwaltungsprogram-
me) in der virtuellen Maschine, wobei die erste der Anwendungsmanager 262 ist.
– Anwendungsmanager. Der Anwendungsmanager 262 verwaltet die interaktiven Anwendungen, die auf
dem Empfänger/Dekoder laufen, das heisst, er startet, stoppt, unterbricht, setz fort, wickelt Vorgänge ab
und bearbeiten die Datenübertragung zwischen Anwendungen. Er erlaubt mehrfache Anwendungen zur
gleichen Zeit zu betreiben und ist damit an der Zuordnung von Ressourcen innerhalb dieser Anwendungen
beteiligt. Diese Anwendung ist für den Benutzer vollkommen transparent.
– Installation. Der Zweck der Installationsanwendung 264 ist den Empfänger/Dekoder zu konfigurieren,
hauptsächlich, wenn er zum ersten Mal benutzt wird. Sie führt Aktionen wie die Abfrage der TV-Kanäle
durch, Einstellen von Datum und Zeit, Erstellen der bevorzugten Benutzereinstellungen und so weiter. Die
Installationsanwendung kann jedoch jedes Mal vom Benutzer eingesetzt werden, um die Konfiguration des
Empfängers/Dekoders zu ändern.
– Zapping (Programmsuche). Die Programmsuchanwendung 268 wird eingesetzt, um die Kanäle mit den
Tasten Programm "+" und Programm "–" und den Zahlentasten zu wechseln. Wenn eine andere Form des
Programmwechsels gebraucht wird, zum Beispiel durch eine Anwendung mit einem Führungszeiger, wird
die Programmsuchanwendung (zapping) angehalten.
– Callback (Rückfrage). Die Rückfrageanwendung (callback) wird zur Entnahme von Werten aus verschie-
denen Parametern, die im Speicher des Empfänger/Dekoder abgelegt sind, eingesetzt und sie gibt diese
Werte an den kommerziellen Betreiber über einen Rückkanal mit Modem 17, oder über andere Mittel zu-
rück.

[0128] Die API-Schicht 252 stellt "high level" Betriebsmittel zur interaktiven Anwendungsentwicklung zur Ver-
12/115

DE 600 27 206 T2 2006.12.21
fügung. Sie schliesst mehrere Paket mit ein, die diese "high level" API kennzeichnen. Die Pakete liefern all not-
wendigen Funktionalitäten, um interaktive Programme zu betreiben. Die Pakete sind über die Anwendungen
zugänglich.

[0129] In einem bevorzugten Ausführungsbeispiel ist die API geeignet in der Java Programmiersprache ge-
schriebene interaktive Anwendungen auszuführen, Ferner kann es HTML und andere Formate interpretieren,
wie MHEG-5. Neben diesen Übersetzern schliesst es auch andere Pakete und Dienstemodule ein, die ab-
schaltbar und erweiterbar, so wie es die Anforderungen aufgeben, sind.

[0130] Die virtuelle Maschinenschicht 254 ist aus Sprachinterpretieren und verschiedenen Modulen und Sys-
temen zusammengesetzt. Es besteht aus allem was zum Empfang und zur Ausführung interaktiver Anwendun-
gen im Empfänger/Dekoder nötig ist, einschliesslich den Folgenden:
– Sprachinterpretierer. Verschiedene Interpretierer können installiert werden, um dem Typ von zu lesenden
Anwendungen zu entsprechen. Dies schliesst Java, HTML, MHEG-5 und andere ein.

[0131] Diensteinformationsmaschine (SI). Die SI-Maschine lädt und überwacht gemeinsame Digitale Video-
übertragung-(DVB) und Programmsysteminformationsprotokoll-(PSIP) Tabellen und lädt sie in den Cachespei-
cher. Sie ermöglicht den Zugang zu diesen Tabellen über Anwendungen, die die darin enthaltenen Informatio-
nen benötigen.

[0132] Steuerprogramm (scheduler) Dieses Modul erlaubt bevorrechtigte, nebenläufige Ablaufkoordination,
wobei jedes Thread seine eigene Ereigniswarteschlange besitzt.

[0133] Speicherverwaltungsprogramm. Dieses Modul verwaltet den Speicherzugriff. Es komprimiert auch au-
tomatisch Daten im Speicher, falls notwendig und führt automatisch eine Speicherbereinigung durch.

[0134] Vorgangsverwaltungsprogramm. (Event Manager) Dieses Modul erlaubt Vorgänge gemäß Vorrang
auszulösen. Es verwaltet den Zugriff auf Zeitgeber und Vorfälle und erlaubt den Anwendungen sich gegenseitig
Vorgänge zu schicken.

[0135] Dynamischer Pogrammbinder. (Dynamic Linker) Dieses Modul erlaubt die Auflösung von Adressen,
die von natürliche Java-Funktionen ausgehen, lädt von einer Java-Klasse ausgehende Verfahren, die in den
RAM Speicher herunter geladen wurden und löst Anweisungen von herunter geladenen natürlichen Kodes in
Richtung ROM.

[0136] Downloader (Herunterladen von Daten). Dieses Modul benutzt automatisches Herunterladen von Da-
ten aus einem entfernten DSMCC Karussell oder über eine NFS Protokoll, mit herunter geladenen Dateien,
auf die in gleicher Weise wie auf die residenten Dateien zugegriffen wird. Aufräumen des Speichers, Kompres-
sion und Authentifizierung werden ebenfalls bereitgestellt.

[0137] Class Manager (Klassenverwaltungsprogramm). Dieses Modul lädt Klassen und löst alle Problem die
sich auf das Herstellen von Bezügen innerhalb der Klassen ergeben.

[0138] Dateisystem. (File System) Dieses Modul ist kompakt und zur Verwaltung eines hierarchischen Datei-
systems mit mehrfachen ROM, flash, RAM und DSMCC Datenträgern optimiert. Flashintegrität ist gegen jeg-
liche Störfälle sicher gestellt.

[0139] Sicherheitsverwaltungsprogramm (Security manager). Dieses Modul authentifiziert Anwendungen und
steuert den Zugrang von Anwendungen auf empfindliche Speicherzonen und andere Zonen des Beistelldeko-
der.

[0140] Graphisches System graphics system). Dieses Modul ist objektorientiert und optimiert. Es beinhaltet
die Verwaltung von Graphikfenstern und von Gegenständen, ebenso wie eine Vektorzeichensatzmaschine mit
Mehrsprachenunterstützung.

[0141] Ferner wird das Modell zur Ressourcenmeldung DAVIC unterstützt, damit kKlientenressourcen wir-
kungsvoll verwaltet werden.

[0142] Die Geräteschnittstellenschicht 256 beinhaltet ein Bausteinverwaltungsprogramm und Bausteine.
Bausteine sind Softwaremodule, die aus logischen Ressourcen, die für die Verwaltung von externen Vorgän-
13/115

DE 600 27 206 T2 2006.12.21
gen und physikalischen Schnittstellen notwendig sind, bestehen. Die Bausteinschicht verwaltet Übertragungs-
kanäle zwischen Treibern und Anwendungen und liefert verbesserte Prüfung von Fehlerausnahmebedingun-
gen. Einige Beispiel für verwaltete Bausteine sind: Chipkartenlesegeräte, Modems, Netzwerke, PCMCIA (Per-
sonal Computer Memory Card International Association), LED Anzeige und so weiter. Programmierer müssen
mit diesen Schichten nicht direkt umgehen, da die API-Schicht die obigen Bausteine steuert.

[0143] Die System-Software/Hardwareschicht 258 wird vom Hersteller des Empfänger/Dekoders zur Verfü-
gung gestellt. Wegen des modularen Aufbaus des System und wegen der durch das OS (OS Operating Sys-
tem = Betriebssystem) bereitgestellten Dienste (so wie Vorgangsplanung und Speicherverwaltung), die Teil der
virtuellen Maschine sind, sind die höheren Schichten nicht an ein besonderes in Echtzeit arbeitendes System
(RTOS) oder an einen besonderen Prozessor gebunden.

Trickfenster-Gruppen

[0144] In einem bevorzugten Ausführungsbeispiel wird eine Trickfenstergruppe zum Einsatz in einer graphi-
schen Benutzerschnittstelle (GUI graphical user interface) bereitgestellt. Eine besondere Anwendung einer
solchen Trickfenstergruppe (widget set) ist Trickfenster in einer GUI-Anzeige eines Empfänger/Dekoders für
das digitale Fernsehen bereit zu stellen. Jedes Trickfenster ist als objektorientiertes Modul implementiert, so
dass für jedes Trickfenster es eine entsprechende Trickfensterklass gibt. Somit kann irgendein Trickfenster aus
einfacheren Bausteintrickfenstern durch Übernahme oder Vereinigung von Klassen anderer Trickfenster auf-
gebaut werden.

[0145] Die Fig. 3 ist ein vereinfachtes Diagramm der Hierarchie von Trickfenstern innerhalb einer Trickfens-
tergruppe. Bei diesem Ausführungsbeispiel enthält die Trickfenstergruppe eine Gruppe einfacher Trickfenster-
klassen 410, einschliesslich, unter anderem, Fenster- und Dialogboxenrahmen, einen Schieberegler, eine
Drucktaste, ein Ankreuzfeld, ein Textfeld und ein Textbearbeitungsfeld. Bei einer nächsten Schwierigkeitsstufe
gibt es die Klassen 420, die mehrere einfache Trickfensterklassen verbinden, oder das verhalten eines einfa-
chen Trickfenster verändern. Ein Trickfenster, zum Beispiel so eines wie ein Verzeichnisfeld kann bearbeitbare
Listenpositionen aus einer Textbearbeitungsfeldklasse erzeugen und dem Benutzer ermöglichen durch die Lis-
te zu blättern, in dem er eine Bildlaufleiste, die von einer Schiebereglerklasse abgeleitet wird, benutzt. Bei einer
noch höheren Schwierigkeitsstufe enthält die Trickfenstergruppe verknüpfte Trickfenster 430, wie zum Beispiel
eine Dialogbox für die Dateiauswahl, die Druckknöpfe beinhaltet, Listen zum Blättern, Textfelder und Textbe-
arbeitungsfelder, die insgesamt in anderen Klassen von Trickfenstergruppen festgelegt sind.

[0146] Jede Trickfensterklasse setzt Verfahren und Vorgangssteuerungsprogramme zur Steuerung des Trick-
fensterbetriebs ein. Die Trickfensterklassen können auch Verfahren zum Zeichnen eines Teils der Trickfenster
beinhalten. Mit dem Ziel ein bestimmtes Erscheinungsbild oder einen bestimmten "Look" für das Trickfenster
bereit zu stellen, beinhalten die Trickfensterklassen Zeichenverfahren einer Betrachtungsgegenstandsklasse,
mit der die Trickfensterklasse verknüpft ist. Dies wird weiter unten in weiteren Einzelheiten beschrieben wer-
den.

Erscheinungsbildklassen – Öffentliche Verfahren und API (look class public methods and API)

[0147] Damit die Betrachtungsgegenstandsklassen und Trickfensterklassen zusammen arbeiten können, ist
es für die Betrachtungsgegenstandsklassen notwendig, eine konsistente Reihe öffentlicher Methoden zu ha-
ben, die garantiert zum Einsatz durch die Trickfensterklasse zur Verfügung stehen. Die Betrachtungsgegen-
standsklasse muss insbesondere eine Standard API bereitstellen, die Verfahren enthalten, die die Trickfens-
terklasse aufrufen kann, um sich selbst auf einer graphischen Benutzerschnittstellenanzeige zu zeichnen.

[0148] Die API, die bei Trickfenstern eingesetzt wird ist in einer Basisklasse bestimmt, aus der alles Ansichten
(looks) abgeleitet werden. Die API beinhaltet die folgenden Elemente:

1. Allgemeine Darstellungsverfahren
2. Besondere Darstellungsverfahren
3. Steuerung der Erstellung und Zerstörung von Vorgängen
4. Steuerung der Ränder
5. Steuerung der Änderungen.

[0149] Allgemeine Darstellungsverfahren sind diejenigen, die für alle Trickfenster zur Verfügung stehen, wäh-
rend besondere Darstellungsverfahren bestimmten Typen von Trickfenstern zueigen sind.
14/115

DE 600 27 206 T2 2006.12.21
[0150] Ansichten werden unter Benutzung einer hierarchischen Architektur gebaut. Eine neue Betrachtungs-
klasse wird durch Übernahme der Attribute, Verfahren und Standardwerte der Klasse, von der sie abgeleitet
wurden, und dann durch Hinzufügen neuer Attribute, Verfahren und Standardwerten, oder durch Überschrei-
ben einiger oder aller Übernommenen erzeugt.

[0151] Eine Betrachtungsklasse wird als Tabelle, die Zeiger für öffentliche Verfahren enthält, organisiert. Eine
Betrachtungsklasse die von einer anderen Betrachtungsklasse abgeleitet wurde kann deshalb ein Verfahren
durch Wechseln des relevanten Zeigers, so dass er auf ein anderes Verfahren zeigt umdefinieren. Eine Be-
trachtungsklasse implementiert typischerweise nur einige der verfügbaren öffentlichen Verfahren.

[0152] Bei einer anderen praktischen Anwendung werden Betrachtungsklassen mit Validierungsmasken ver-
sehen. Eine Validierungsmaske bestimmt, welche Verfahren durch die Betrachtungsklasse aufgerufen werden
können, so das Verfahren, die nicht implementiert sind nicht aufgerufen werden. Ein Trickfenster (widget) kann
auf die Validierungsmaske einer Betrachtungsklasse zugreifen, um die Zeichnung des Trickfensters zu opti-
mieren. In diesem Fall ist kennt das Trickfenster die Verfahren, die nicht implementiert sind und so wird das
Trickfenster die Erzeugung von Aufrufen derartiger Verfahren vermeiden. Auf diese Art und Weise ist es mög-
lich Zeit durch Aufruf unechter Verfahren zu vergeuden.

[0153] Eine Betrachtungsklasse kann aus zwei oder mehr weiteren Klassen (Mehrfachvererbung) abgeleitet
werden. Das kann es gestatten eine Betrachtungsklasse zu schaffen, die eine Verbindung aus zwei oder meh-
reren anderen Ansichten bildet. Wie oben erwähnt wurde nimmt, wenn eine Ansicht erstellt wurde, diese die
Attribute, Verfahren und Standardwerte der Betrachtungsklasse, aus der sie begleitet wurde, an. Um Mehr-
fachvererbungen zu implementieren, enthält die Ansicht auch einen oder mehrere Zeiger für die zusätzlichen
Klassen, aus der sie Attribute, Verfahren und Standardwerte ableitet. Die Ansicht kann dann auf diese Attribute
zugreifen, ohne sie selbst kopieren oder selbst erzeugen zu müssen.

[0154] In anderen Ausführungsbeispielen nimmt, wenn eine Ansicht erstellt wurde, diese die Attribute, Metho-
den und Standardwerte aller Betrachtungsklassen an, von der sie abgeleitet wurden.

[0155] Das Prinzip der Mehrfachvererbung ist auch nützlich in Situationen, wo nicht standardisierte Trickfens-
ter entworfen werden, was die Ansicht veranlassen kann, nicht standardisierte Verfahren einzusetzen. Der Zei-
ger in einer Ansicht kann auf eine zweite Betrachtungsklasse hinweisen, die nicht standardisierte Verfahren
enthält, die zur Darstellung des Trickfensters erforderlich sind.

[0156] Es ist von Bedeutung, dass die verschiedenen Betrachtungsklassen, aus denen eine Ansicht abgelei-
tet wurde, nicht miteinander in Konflikt geraten. Dies kann durch Sicherstellung von zusätzlichen Betrachtungs-
klassen, die nur Methoden beinhalten, die sich nicht in der Haupt-Betrachtungsklasse befinden, aus denen die
Ansicht abgeleitet wurde, erreicht werden, oder durch Ausgeben einer Rangfolge an die verschiedenen Klas-
sen.

[0157] Ein Beispiel der öffentlichen Verfahren einer Betrachtungsklasse wird unten dargelegt:
/*Initialisierung des Vorganges*/
MhwWgtLookInitDefault (MhwWgtLookclass* MhwWgtLookAtts*);
MhwWgtLookInitClass (Void)
MhwWgtLookResetDefault (MhwWgtLookclass*);

MhwWgtLookAttsGetDefault (MhwWgtLookClass*, MhwWgtLookAtts*);
MhwWgtLookAttsInit (MhwWgtLookAtts*);
/*Abfragen und Setzen der Grenzabmessungen*/
MhwWgtLookAttsGetBorderwidthBottom (MhwWgtLookAtts*, Card8*);
MhwWgtLookAttsGetBorderwidthLeft (MhwWgtLookAtts*, Card8*);
MhwWgtLookAttsGetBorderwidthRight (MhwWgtLookAtts*, Card8*);
MhwWgtLookAttsGetBorderwidthTop (MhwWgtLookAtts*, Card8*);
MhwWgtLookAttsSetBorderwidthBottom (MhwWgtLookAtts*, Card8*);
MhwWgtLookAttsSetBorderwidthLeft (MhwWgtLookAtts*, Card8*);
MhwWgtLookAttsSetBorderwidthRight (MhwWgtLookAtts*, Card8*);
MhwWgtLookAttsSetBorderwidthTop (MhwWgtLookAtts*, Card8*);
/*Abfragen und Setzen der Farben*/
MhwWgtLookAttsGetColorBackground (MhwWgtLookAtts*, MhwWgtColor*);
MhwWgtLookAttsGetColorBlack (MhwWgtLookAtts*, MhwWgtColor*);
15/115

DE 600 27 206 T2 2006.12.21
MhwWgtLookAttsGetColorGray (MhwWgtLookAtts*, MhwWgtColor*);
MhwWgtLookAttsGetColorForeground (MhwWgtLookAtts*, MhwWgtColor*);
MhwWgtLookAttsGetColorHighlight (MhwWgtLookAtts*, MhwWgtColor*);
MhwWgtLookAttsGetColorLightGray (MhwWgtLookAtts*, MhwWgtColor*);
MhwWgtLookAttsGetColorMapAndVisual (MhwWgtLookAtts*, MhwWgtColorMapId*, MhwWgtVisual*);
MhwWgtLookAttsGetColorMiddleGray (MhwWgtLookAtts*, MhwWgtColor*);
MhwWgtLookAttsGetColorTransparent (MhwWgtLookAtts*, MhwWgtColor*);
MhwWgtLookAttsGetColorVeryLightGrey (MhwWgtLookAtts*, MhwWgtColor*);
MhwWgtLookAttsGetColorWhite (MhwWgtLookAtts*, MhwWgtColor*);
MhwWgtLookAttsSetColorBackground (MhwWgtLookAtts*, MhwWgtColor*);
MhwWgtLookAttsSetColorBlack (MhwWgtLookAtts*, MhwWgtColor*);
MhwWgtLookAttsSetColorDarkGrey (MhwWgtLookAtts*, MhwWgtColor*);
MhwWgtLookAttsSetColorForeground (MhwWgtLookAtts*, MhwWgtColor*);
MhwWgtLookAttsSetColorHighlight (MhwWgtLookAtts*, MhwWgtColor*);
MhwWgtLookAttsSetColorLightGrey (MhwWgtLookAtts*, MhwWgtColor*);
MhwWgtLookAttsSetColorMapAndVisual (MhwWgtLookAtts*, MhwWgtColorMapId, MhwWgtVisual);
MhwWgtLookAttsSetColorMiddleGrey (MhwWgtLookAtts*, MhwWgtColor*);
MhwWgtLookAttsSetColorTransparent (MhwWgtLookAtts*, MhwWgtColor*);
MhwWgtLookAttsSetColorBackground (MhwWgtLookAtts*, MhwWgtColor*);
MhwWgtLookAttsSetColorVeryLightGrey (MhwWgtLookAtts*, MhwWgtColor*);
MhwWgtLookAttsSetColorWhite (MhwWgtLookAtts*, MhwWgtColor*);
/*Abfragen und Setzen der Übernahmedaten*/
MhwWgtLookAttsGetHeritageData1 (MhwWgtLookAtts*, Void**);
MhwWgtLookAttsSetHeritageData1 (MhwWgtLookAtts*, Void**);
/*Konstruktor*/
MhwWgtLookNew (MhwWgtLookAtts*);
/*Destruktor*/
MhwWgtLookDelete (ein Objekt)
/*Standard API*/
MhwWgtLookDrawAnchor (anObject, aWidget, aX, aY, aW, aH, aText, aLength, anAscent, aState)
MhwWgtLookDrawBackground (anObject, aWidget, aX, aY, aW, aH)
MhwWgtLookCheckSymbol (anObject, aWidget, aX, aY, aW, aH, aState aSymbol)
MhwWgtLookDrawChoice (anObject, aWidget, aX, aY, aW, aH)
MhwWgtLookDrawCross (anObject, aWidget, aX, aY, aW, aH)
MhwWgtLookDrawCursor (anObject, aWidget, aX, aY, aW, anAscent, aH)
 MhwWgtLookDrawForeground (anObject, aWidget, ax1 aY1 aW, aH)
MhwWgtLookDrawFocus (anObject, aWidget, aX, aY, aW, aH)
MhwWgtLookDrawHighlight (anObject, aWidget, aX, aY, aW, aH)
MhwWgtLookDrawInset (anObject, aWidgetl aX, aY, aW, aH)
MhwWgtLookDrawItermr (anObject, aWidget, aX, aY, aW, aH, aTextLength, anAscent, aState)
MhwWgtLookDrawOutset (anObject, aWidget, aX, aY, aW, aH)
MhwWgtLookDrawRelief (anObject, aWidget, aX, aY, aW, aH, aRelief)
MhwWgtLookDrawSelectedBG (anObject, aWidget, aX, aY, aW, aH
MhwWgtLookDrawSlidArrow (anObject, aWidget, aX, aY, aW, aH, aDirection)
MhwWgtLookDrawSlidLift (anObject, aWidget, aX, aY, aW, aH)
MhwWgtLookDrawString (anObject, aWidget, aX, aY, aText, aLength, anAscent)
MhwWgtLookGetBorderWidth (anObject, aBorder)
MhwWgtLookGetClassIddth (anObject)
MhwWgtLookGetClassName (anObject)
MhwWgtLookGetItemBorderWidth (anObject)
MhwWgtLookGetMethodMask (anObject)
MhwWgtLookGetPreferredSizeArrow (anObject)
MhwWgtLookGetPreferredSizeCheck (anObject)
MhwWgtLookGetPreferredsSizeChoice (anObject)
MhwWgtLookGetPreferredSizeCross (anObject)
MhwWgtLookGetUpdateCounter (anObject)
MhwWgtLookIsInstantof (anObject, aClassId)
MhwWgtLookReDrawItema (anObject, aWidget, ax1 aY, aW, aH, aText, aLength, anAscent, aState)
MhwWgtLookRef (anObject)
MhwWgtLookSetBorderWidther (anObject, aBorder, aWidth)
16/115

DE 600 27 206 T2 2006.12.21
MhwWgtLookUnDrawCross (anObject, aWidget, aX, aY, aW, aH)
MhwWgtLookGetUpdateCounter (anObject)
MhwWgtLookUnDrawCross (anObject, aWifget, aX, aY, aW, aH)
MhwWgtLookUnDrawCursor (anObject, aWidget, aX, aY, anAscent, aH)
MhwWgtLookunDrawFocusr (anObject, aWidget, aX, aY, aW, aH)
MhwWgtLookunDrawHighlight (anObject, aWidget, aX, aY, aW, aH)
MhwWgtLookUnDrawRelief (anObject, aWidget, aX, aY, aW, aH)
MhwWgtLookUnRef (anObject)
MhwWgtLookGetBackground (anObject)
MhwWgtLookGetColorBlack (anObject)
MhwWgtLookGetColorDarkGray (anObject)
MhwWgtLookGetColorHighlight (anObject)
MhwWgtLookGetColorLighGray (anObject)
MhwWgtLookGetColorMap (anObject)
MhwWgtLookGetColorMiddleGray (anObject)
MhwWgtLookGetColorTransparent (anObject)
MhwWgtLookGetColorVeryLightGray (anObject)
MhwWgtLookGetColorWhite (anObject)
MhwWgtLookGetColorForeground (anObject)
MhwWgtLookGetColorHeritageData1 (anObject)
MhwWgtLookGetColorHeritageLink1 (anObject)

Erstellen und Anzeigen eines Trickfensters

[0158] Wenn eine Anwendung verlangt, dass ein Trickfenster auf der Anzeige einer graphischen Benutzer-
schnittstelle (GUI graphical user interface) erscheint, ist der erste Vorgang, den die Anwendung ausführen
muss, das Erstellen einer Instanz der Trickfensterklasse. Während der Bildung der Trickfensterinstanz, wird
eine Betrachtungsklasseninstanz mit der Trickfensterklasseninstanz. Das spezielle Aussehen wird wie folgt
gewählt:

1. wenn eine Betrachtungsinstanz von der Anwendung an den Konstruktor geleitet wird, dann benutze ihn.
2. Anderenfalls benutze die Standardansicht, die für die zu schaffende Trickfensterklasse spezifiziert ist,
wenn es eine gibt.
3. Anderenfalls benutze die Standardansicht, die für den Trickfensterkontext spezifiziert ist, wenn es einen
gibt.
4. Anderenfalls benutze die Standardansicht für die Trickfenstergruppe.

[0159] Wenn einmal die Trickfensterklasse realisiert ist, kann die Anwendung eine passende ihrer öffentlichen
Methoden (public method) aufrufen, um sie anzuzeigen.

[0160] Die Trickfensterklasse stellt vorzugsweise auch eine öffentliche Methode zur Verfügung, die mit einem
Zeiger zu einer Betrachtungsklasseninstanz aufgerufen werden kann und diese Betrachtungsklasseninstanz
wird dann mit der Trickfensterklasseninstanz verknüpft. Dies führt dazu, dass sich das Erscheinungsbild des
Trickfensters im Einklang mit der neu verknüpften Betrachtungsklassenmethode verändert. Es sollte verstan-
den werden, dass "Verknüpfung" in Wirklichkeit nichts weiter bedeutet, als den Wert eines Feldes innerhalb
der Trickfensterklassenmethode zu setzen. Um das Trickfenster mit einer unterschiedlichen Betrachtungsklas-
se zu verknüpfen, kann dies, im einfachsten Ausführungsbeispiel, einfach durch Erstellen einer Zuordnung
zum Feld gemacht werden. (Siehe dazu jedoch weiter unten die Bemerkungen in Bezug auf die Speicherver-
waltung und die Methode MhwWgtXxxSetLook.) Viele Trickfensterklasseninstanzen können jedoch mit einer
Betrachtungsklasseninstanz verknüpft werden. Dies ist in Diagrammform in der Fig. 5 dargestellt.

[0161] Wenn eine Trickfensterklassenmethode aufgerufen wird, um das Trickfenster auf einem Bildschirm der
graphischen Benutzerschnittstelle (GUI) darzustellen, baut sie das Bild des Trickfensters in der folgenden Rei-
henfolge auf:

1. Der Hintergrund des Trickfensters (zum Beispiel eine Hintergrundfarbe oder ein Bild)
2. Hintergrundüberzug (zum Beispiel ein Logo)
3. Vordergrund des Trickfensters
4. Vordergrundüberzug (zum Beispiel ein Logo)
5. Der Rand des Trickfensters
6. Hervorhebung
7. Eingabefeld (input focus = blinkender Eingabe-Cursor)
17/115

DE 600 27 206 T2 2006.12.21
[0162] Bei einem vorgegebenen Trickfenster können bestimmte Teil fehlen. Das Vorhandensein oder Fehlen
eines Teils des Trickfensters hängt von den folgenden Kriterien ab:

1. Hard coding (Kode ist nicht flexibel). Einige Teile sind für bestimmte Trickfensterklassen nicht definiert.
2. Optionale Teile. Zum Beispiel der Fokus, das Relief und das Hervorheben können nach Belieben durch
öffentliche Attribute des Trickfensters gesperrt sein.
3. Bestimmung des Aussehens. Ein Aussehen kann ein oder mehrere Teil weglassen.

[0163] In einem typischen Beispiel werden die folgenden Schritte durchgeführt.

[0164] Zuerst wird der Hintergrund durch die Trickfensterklassenmethode selbst gezeichnet, zum Beispiel
durch Ausmalen einer Hintergrundfarbe, eines Hintergrundmusters oder eines Bildes. Der Hintergrundüberzug
wird dann durch Aufruf der öffentlichen Methode der verknüpften Betrachtungsinstanz MhwWgtLookDraw-
Background, in dem geeignete Argumente für die Höhe, die Breite und die Lage des Trickfensters auf dem Bild-
schirm spezifiziert werden. Das Aussehen des Hintergrundes wird dann zum Beispiel durch das Aussehen
durch Überlagerung mit einem Logo verändert.

[0165] Die Trickfensterklassenmethode muss dann den Vordergrund des Trickfensters aufbauen; das ist so-
zusagen die Schaffung der visuellen Objekte, die gegenwärtig durch einen Benutzer oder durch Bildschirmin-
formationen gehandhabt werden, wenn sich das Trickfenster im Einsatz befindet. Das Trickfenster könnte zum
Beispiel ein Ankreuzfeld implementieren, in welchem Fall es die Betrachtungsklassenmethode MhwWgtLook-
DrawCheckSymbol aufruft. Das Aussehen kann dann den Vordergrund verändern, zum Beispiel durch Über-
lagerung mit einem Logo.

[0166] Der Rahmenbezirk des Trickfensters wird dann gezeichnet, wie unten beschrieben werden wird.

[0167] Wenn die Trickfensterklasse bestimmt, dass eines der Objekte innerhalb des Trickfensters Eingangs-
fokus besitzt, ruft es die Betrachtungsklassenmethode MhwWgtLookDrawFocus auf, um dies in dem gezeigten
Trickfenster abzubilden. Auf die gleiche Weise ruft die Trickfensterklasse, wenn ein Teil des Trickfensters her-
vorgehoben werden muss, die Betrachtungsklassemethode MhwWgtLookDrawHighlight auf.

Verwaltung des Trickfensterrahmens

[0168] Ein besonderes Beispiel der Art in der die Ansicht das Erscheinungsbild des Trickfensters auf einem
GUI-Bildschirm (GUI = graphische Benutzerschnittstelle) bei der Verwaltung der Rahmen steuert. Das Ausse-
hen eines Trickfensters mit Rahmen in seiner herkömmlichsten Form auf einen GUI-Bildschirm, ist in der Fig. 4
dargestellt. Das Trickfenster 500 belegt ein rechteckiges Gebiet in der Darstellung einer graphischen Benut-
zerschnittstelle GUI) Das gebiet, welches vom Trickfenster belegt wird, schliesst zwei Bereiche ein: den inne-
ren Anwendungsbereich 510, der durch einen Randbereich umgeben ist.

[0169] Der Randbereich trägt typischerweise zur Funktion des Trickfensters bei (obwohl es in einigen Fällen
von einem Benutzer eingesetzt werden könnte, um das Trickfenster zu bewegen und/oder das Trickfenster in
der Größe anpassen möchte). Daher gibt es einen beträchtlichen Umfang an Gestaltungsvarianten des Rand-
bereiches im Einklang mit den Wünschen des Benutzers. Die Farbe, die Breite, das Hintergrundmuster können
alle ausgewählt werden, um dem Benutzer zu gefallen und um ein durchgehendes Erscheinungsbild zu schaf-
fen. Somit wird die Verantwortung zum Zeichnen der Ränder an die Betrachtungsklasse gegeben.

[0170] Die Ansicht unterstützt 4 Dimensionen zur Spezifikation der breite der Ränder. Diese spezifizieren den
Abstand vom linken, rechten, oberen und unteren des Anwendungsbereichs 510 zur Umrandung des Trick-
fensters. Diese Dimensionen werden jeweils mit L, R, T, B in der Fig. 4 bezeichnet. Werte dieser Dimensionen
werden in der Standardansicht spezifiziert. Eine Anwendung kann eine Klasse definieren, die von einer Stan-
dardansicht abgeleitet wurde, in der die Werte überschrieben werden, um eine Ansicht zu schaffen, die ein
Trickfenster mit einer Umrandung mit einer nicht standardisierten Breite erzeugt. Eine Anwendung (zum Bei-
spiel eine Ansichtenverwaltung) kann ebenfalls die Werte zur Laufzeit wechseln durch, in dem die Ansichtme-
thoden MhwWgtLookAttsBorderwidthBottom, MhwWgtLookAttsBorderwidthLeft, MhwWgtLookAttsBorderwid-
thRight, MhwWgtLookAttsBorderwidthTop aufgerufen werden.

[0171] Innerhalb der Ansichtenklasse gibt es einen Kode, der das detaillierte Layout einer Umrandung, ge-
mäss den Werten, die der Ansichtenklasse über die Trickfensterklasse übermittelt wurden.
18/115

DE 600 27 206 T2 2006.12.21
Farbverwaltung für Trickfenster

[0172] Eine Ansichtenklasse beinhaltet eine Bestimmung der Farben, so dass eine Trickfensterinstanz, die
mit einer bestimmten Ansichteninstanz verknüpft ist, die in dieser Ansichteninstanz definierten Farben einset-
zen wird. In einem Ausführungsbeispiel bestimmt eine Ansicht die folgenden Farben:
– schwarz
– dunkelgrau
– mittelgrau
– hellgrau
– sehr helle Grau
– weiss
– durchsichtig
– Farbe hervorheben

[0173] Die Farbenbestimmung in der Ansicht beim Zeichnen eines Trickfensters gebraucht. Wenn zum Bei-
spiel eine schwarze Linie gezogen werden soll beim Darstellen eines Trickfensters, wird die Farbe, die als
"schwarz" bestimmt wurde benutzt werden. Wenn die Ansicht zum Beispiel eine rote Farbnuancierung haben
soll, dann kann "schwarz" als dunkel definiert werden und "weiss" als hellrosa definiert werden mit verschiede-
nen roten Schatten, die dazwischen bestimmt werden. Bei diesem Beispiel würde normalerweise ein Zeichen-
vorgang eine schwarze Linie anstelle einer dunkelroten ziehen, und so weiter.

[0174] Zusätzlich bestimmt die Ansicht eine Farbübersichtstafel, die die aktuellen zu benutzenden Farbwerte
beim Anzeigen irgendeiner speziellen Farbe auf dem Bildschirm der graphischen Benutzerschnittstelle (GUI)
einsetzt.

Erzeugung eines modifizierten Trickfensters

[0175] Unterstellen wir, dass die Standardansichtmethode MheWgtLookDrawCheckSymbol einen rechtecki-
gen Kasten zeichnet, der entweder leer ist, oder der ein kleines Häkchensymbol enthält in Abhängigkeit seines
Zustandes und dass dies die Ansicht eines normalen Eingabefelds in einer graphischen Benutzerschnittstelle
(GUI) bestimmt. Unterstellen wir nun, dass ein anderes Trickfenster erforderlich ist, in dem entweder ein Häk-
chen oder ein Kreuz dargestellt wird. Das Erscheinungsbild wird vollständig durch die Ansichtklasse gesteuert,
so muss also nur die Ansichtklasse verändert werden. Darüber hinaus kann eine neue Ansichtklasse zur Imp-
lementierung dieses Verhaltens aus der bestehenden Ansichtklasse abgeleitet werden und nur eine Methode
MhwWgtLookDrawCheckSymbol zur Verfügung stellen, um die Methode mit demselben Namen in der Basis-
ansichtklasse zu überschreiben. Darüber hinaus wird mit diesem Argument, wenn die Methode MhwWgtLook-
DrawCheckSymbol aufgerufen wird, ein Zustand auf zutreffend gesetzt und die Methode MhwWgtLookDraw-
CheckSymbol der Basisklasse kann dann aufgerufen werden, um ein Häkchen zu zeichnen. Ein neuer Kode
muss geschrieben werden, nur um den Fall zu behandeln, wo ein Kreuz gezeichnet werden muss. Damit kann
ein neues Trickfenster erstellt werden mit einem Minimum an Programmieraufwand.

[0176] Es sollte klar sein, dass dieses Vorgehen das Erscheinungsbild des ursprünglichen Ankreuzfeldes-
fensters nicht verändert; diese Trickfenster benutzt die Basisansichtklasse, die nicht abgeändert wurde. Um
einen Wechsel des Erscheinungsbildes des ursprünglichen Ankreuzfeldfensters in einer Anwendung auszuü-
ben, muss die Methode MhwWgtLookDrawCheckSymbol in der Basisansichtklasse verändert werden. Alle An-
kreuzfeldfenster, die von dieser Klasse abgeleitet wurden, werden sich dann ihr Erscheinungsbild bei nächster
Gelegenheit verändern (während der Übertragungszeit oder je nachdem während der Laufzeit) nach der die
Ansichtklasse dann mit der Anwendung verbunden ist.

[0177] Im Grundsatz wird die Trickfensterklasse zusammenwirken, um mit jeder Klasse ein Trickfenster zu
erstellen, die einen geeigneten Satz öffentlicher Methoden und Eigenschaften wie eine Ansichtklasse besitzt.
Es gibt jedoch einen Vorteil alle Ansichtklassen aus einer möglichst kleinen Zahl gemeinsamer Basisklassen
abzuleiten und idealerweise gerade aus einer einzigen Basisklasse. Diejenigen, die mit objektorientierter Pro-
grammierung vertraut sind werden verstehen, dass dies den Einsatz von Speicherplatz und anderer Ressour-
cen durch die Ansichtklassen minimiert. Eine abgeleitete Klasse besitzt einen Zeiger auf seine Basisklasse, so
dass sie auf einen Methodenkode und auf statische Daten der Basisklasse zugreifen kann, ohne eine solchen
Kode, oder Daten im Speicher zu verdoppeln.
19/115

DE 600 27 206 T2 2006.12.21
Versionssteuerung

[0178] Es ist möglich, dass einige Trickfensterinstanzen ein sehr langes Leben haben. Zum Beispiel das
Hauptfenster eines Fensterverwaltungsprogramms, ein Trickfenster für eine Taskleiste bei einem Bildschirm-
arbeitsplatz, und so weiter. In solchen Fällen gibt es eine grosse Wahrscheinlichkeit, dass die Ansichtklassen
während der Laufzeit des Trickfensters aktualisiert werden könnten. Man muss die Trickfensterklass dazu brin-
gen sich selbst neu zu zeichnen, wenn dies eintritt.

[0179] Eine Möglichkeit dieses zu erreichen ist, jeder Ansichtsklasse einen Aktualisierungszähler zuzuord-
nen, der als Gemeingut (public property) exportiert wird oder über eine öffentliche Methode (public method)
zugänglich ist. Wenn eine Trickfensterklasse realisiert wird, fragt die Trickfensterklasseninstanz den Aktuali-
sierungszähler der verknüpften Ansicht und speichert den Wert des Aktualisierungszählers im Speicher dezen-
tral zur Trickfensterklasseninstanz. Wenn die Instanz der Ansichtklasse danach aktualisiert wurde, kann die
Trickfensterklasseninstanz diesen Wechsel durch Vergleich der Werte mit den Werten des Aktualisierungszäh-
lers in der Ansichtsklasseninstanz, die in ihrem lokalen Speicher abgelegt sind, erkennen. Wenn die Ansichts-
klasseninstanz aktualisiert wurde, kann das Trickfenster sich neu entwerfen, in dem es die Methoden der An-
sichtklasse einsetzt.

Konstruktion und Destruktion der Ansichtklasseninstanzen

[0180] Im Allgemeinen wird es weniger Instanzen jeder Ansichtklasse als von jeder Trickfensterklasse geben.
In einigen Fällen kann es gerade eine Instanz eine Ansichtbasisklasse geben, auf die sich alle Trickfenster-
klasseninstanzen bei einer Anwendung beziehen. Es kann auch Instanzen aus abgeleiteten Ansichtklassen
geben, auf die sich einige Trickfensterklasseninstanzen einer Anwendung beziehen. Eine Trickfensterklasse
kann jedoch nicht unterstellen, dass es immer eine Ansichtklasseninstanz zu der zeit geben wird, in der die
Trickfensterklasse realisiert wird; die Trickfensterinstanz könnte die erste sein, die eine Verknüpfung mit einer
speziellen Ansichtklasse erfordert.

[0181] Es wird deshalb vorgeschlagen, dass während der Realisierung jeder Trickfensterklasse, der Trick-
fensterklassenkonstruktor die verknüpfte Ansichtsklasse MhwWgtLookNew aufruft. Falls keine Instanz der An-
sichtsklasse besteht, wird eine neue Instanz geschaffen. Ein Wert von 1 wird dann gespeichert in einem Refe-
renzzähler, der im lokalen Speicher der Ansichtsklasseninstanz gehalten wird. Wenn eine Instanz der Ansichts-
klasse bereits besteht, führt der Ansichtsklassenkonstruktor den Zeiger auf sie zurück und erhöht den Refe-
renzzähler.

[0182] Während der Destruktion jeder Trickfensterklasseninstanz, ruft der Destruktor der Trickfensterklasse
den Destruktor MhwWgtLookDelete für die verknüpfte Ansichtsklasseninstanz auf. Der Destruktor MhwWgt-
LookDelete verringert den Referenzzähler. Falls der Zähler grösser als 0 bleibt, läuft der Destruktor ganz ein-
fach zurück. Falls der Destruktor jedoch 0 erreicht, dann sind keine Trickfensterklasseninstanzen (mit Ausnah-
me der, die der Destruktion ausgesetzt ist) verknüpft mit dieser Ansichtsklasseninstanz, wobei in diesem Fall
der Ansichtsklassendestruktor fortfährt, die Ansichtklasseninstanz aus dem Speicher zu löschen.

[0183] Die Trickfensterklassenmethode MhwWgtXxxSetLook kann aufgerufen werden, um die Ansicht, mit
der eine spezifische Trickfensterklasseninstanz verknüpft ist, zu wechseln. Innerhalb dieser Methode wird zu-
erst der Destruktor der abgehenden Ansichtsklasseninstanz aufgerufen und dann wird ein Aufruf an die Be-
zugsfunktion der neuen Ansichtsklasse gemacht, um einen Zeiger zu einer Klasseninstanz zu erhalten. Dies
stellt sicher, dass die Bezugszähler der Ansichtklassen korrekt aktualisiert werden.

[0184] Es müssen auch Vorkehrungen für eine neu zu schaffende Instanz eine Ansichtsklasse getroffen wer-
den, selbst wenn bereits eine Instanz besteht. Dies gestattet es einer Anwendung mehr als eine Instanz ir-
gendeiner gegebenen Ansichtsklasse zu haben und verschiedene Attribute in den verschiedenen Instanzen
zu setzen. Es können zum Beispiel zwei Instanzen der gleichen Ansichtsklasse, die in jeder Richtung identisch
sind, vorhanden sein, ausser eine besitzt alle verbleibenden Attribute in Übereinstimmung mit ihren Standard-
einstellungen und die anderen besitzen unterschiedliche Werte, die einem oder mehreren ihrer Attribute zuge-
ordnet sind (Randbreite, Farbe und so weiter).

Ansichtenverwaltungsprogramm

[0185] Es versteht sich, dass das System der Ansichtsklassen und Instanzen eine sehr genaue Steuerung
über die Gesamtansicht einer Anwendung erlaubt. Nur ein Attribut irgendeiner Ansichtsklasse kann zum Bei-
20/115

DE 600 27 206 T2 2006.12.21
spiel verändert werden, um einen geringfügigen Wechsel der Ansicht einer Anwendung zu bewirken. Dement-
sprechend kann eine Ansichtenverwaltungsprogrammanwendung (look manager) bereitgestellt werden, um
dem Benutzer zu erlauben, diese Attribute, wie erforderlich, zu verändern. Eine derartige Anwendung schliesst
typischerweise eine GUI-Anzeige (graphical user interface) mit ein, die Trickfenster beinhaltet, die die Erfin-
dung verkörpern, damit der Benutzer sofort die Auswirkung durch den Wechsel der Attribute der Ansicht beim
Erscheinen des Trickfensters erkennen kann.

Web Browser

[0186] Die Internetnavigatorschnittstelle wird nun beschrieben unter Bezug auf die beigefügten Zeichnungen.

[0187] Die Fig. 6a zeigt eine Bildschirmaufnahme des Hauptbildes der Navigatoranzeige eines Internetbrow-
sers. Das Hauptbild zeigt eine vertikale Kette 1100, das das Hauptmenü umfasst und verschiedene Schaltflä-
chen als verknüpftes Verzeichnis beinhaltet. Die Schaltflächen sind mit Verbindungselementen der Kette ver-
bunden. Die in der Kette dargestellten Schaltflächen 1100 der Fig. 6a beinhalten eine NEU LADEN/STOP
Schaltfläche 1110, eine VORHER Schaltfläche 1120, eine WEITER Schaltfläche 1130, eine VERLAUF Schalt-
fläche 1140, eine LESEZEICHEN Schaltfläche 1150, EINSTELLUNGEN Schaltfläche 1160 und die BEENDEN
Schaltfläche 1170.

[0188] Die Hauptmenükette 1100 ist so angeordnet, um das HTML Dokument (HTML hyper-text markup lan-
guage = Hypertext-Auszeichnungssprache), das auf dem Bildschirm 1101 dargestellt werden soll, zu überla-
gern. In der Fig. 6a wird kein HTML Dokument gezeigt und der Bildschirm 1101 ist, abgesehen von der Haupt-
menükette, leer.

[0189] Der Web Browser schliesst einige Präferenzen, die vom Benutzer gesetzt werden können, ein. Der
Browser schliesst eine Möglichkeit zum bestimmen mehrere Benutzerprofile ein.

[0190] Der Benutzer hat eine Steuerung mit der er zwischen Objekten auf dem Bildschirm 1101 navigieren,
Objekte hervorheben und Objekte wählen kann. Im vorliegenden Beispiel ist die benutze Steuerung eine Fern-
bedienung 1180. Die Zahlentasten 1181 werden zur Eingabe von Daten benutzt; das Schreibmarkentastenfeld
(cursor keypad) 1182 wird zu Navigieren und die Bildfläche herum benutzt. Das Schreibmarkentastenfeld 1182
beinhaltet eine AUF Taste 1183, eine AB taste 1184, eine LINKS Taste 1185, eine RECHTS Taste 1187. Das
Schreibmarkentastenfeld 1182 beinhaltet auch eine WAHL Taste 1186 mit der Objekte auf dem Bildschirm an-
gewählt werden können.

[0191] Die AUF Taste 1183 und die AB Taste 1184 werden zur Bewegung des Blickfeldes (focus) verwendet,
in diesem Beispiel eine Hervorhebung nach oben und unten in der Kette 1100, um einzeln die Schaltflächen
1110, 1120, 1130, 1140, 1150, 1160 und 1170 hervorzuheben. Wenn eine Schaltfläche hervorgehoben wurde,
kann sie durch Benutzen der Taste 1186 angewählt werden.

[0192] Wenn eine HTML-seite angezeigt wird, ruft jede Taste der Fernbedienung die Kette 1100 (Symbolleis-
te) auf. Die Kette 1100 kann auch durch den Benutzer ein-und ausgeblendet werden. Bei einer Einstellungs-
option wird die Kette 1100 automatisch versteckt, wenn eine HTML Seite angezeigt wird und der Benutzer
wählt AUF in der Kette 110, wenn er zu einer anderen HTML-Seite wechseln will.

[0193] Die Fig. 7 zeigt die Bildschirmanzeige der Fig. 6a mit einem geöffneten HTML Dokument. Informatio-
nen zu dem offenen Dokument werden im Textfeld 1112 gegeben, das in der Kette mit der Schaltfläche NEU
LADEN/STOP 1110 verknüpft ist. Man kann erkennen, dass die Verbindungen mit der Kette 1114 zwischen den
Schaltflächen dem Benutzer visuell anzeigen, dass er sich zwischen den Schaltflächen in der Richtung der Ver-
bindungen hin und her bewegen kann.

[0194] Die Fig. 6a zeigt die hervorgehobene NEU LADEN/STOP Schaltfläche (das hervorgehobene Symbol
(icon) für NEU LADEN/STOP ist weiss auf dunklem Hintergrund anstelle von dunkel auf weissem Hintergrund
wie in der Fig. 7, wo es nicht hervorgehoben ist). Das HTML Dokument kein durch Drücken des WAHL Knopfes
1186, wenn die NEU LADEN/STOP Schaltfläche hervorgehoben ist, neu geladen werden.

[0195] Der Benutzer bewegt die Markierung (highlight) die Kette 1100 nach unten unter Benutzung des AB
Knopfes 1184. In der Fig. 7 wird dann die VORHER Schaltfläche 1120 hervorgehoben. Die Fig. 8 zeigt, wenn
die Markierung auf der VORHER Schaltfläche 1120 ist, erscheint ein "Tooltip" (Quickinfo) einschliesslich einer
Textbox 1122 auf dem Bildschirm. Im vorliegenden Beispiel erscheint der Tooltip sobald das entsprechende
21/115

DE 600 27 206 T2 2006.12.21
Symbol hervorgehoben wird. Eine Präferenz kann eingestellt werden, so dass der Tooltip nach einer Verzöge-
rung erscheint, wenn die Schaltfläche hervorgehoben wird. Die Textbox 1122 schliesst das Wort VORHER ein,
um die Funktion der VORHER Schaltfläche 1120 anzuzeigen. Durch Betätigen der VORHER Schaltfläche
durch Drücken des WAHL Knopfes 1186 bewegt sich der Browser zu der zuvor angezeigten Seite.

[0196] In der Fig. 9 wird die Markierung abwärts zur WEITER Schaltfläche 1130 bewegt und nach kurzer zeit
erscheint ein Tooltip einschliesslich einer Textbox 1132 mit dem Wort "WEITER", um den Benutzer zu unter-
stützen.

[0197] In der Fig. 10 wird die Schaltfläche VERLAUF 1140 hervorgehoben und der damit verbundene Tooltip
1142 erscheint mit dem Wort "VERLAUF". Die VERLAUF Schaltfläche 1140 hat mehr als nur eine Funktion und
so ruft beim Aktivieren des Knopfes WAHL 1186 auf dem Steuertastenfeld eine Unterkette 1144 hervor, die
weitere Optionen in Bezug auf die VERLAUF Funktion anbietet. Die Unterkette 1144 ist in der Fig. 11 darge-
stellt. Die Unterkette 1144 schliesst zusätzliche Schaltflächen, einschliesslich einer ANZEIGE Schaltfläche
1146 und einer HINZUFÜGEN Schaltfläche 1148 ein. Der Benutzer bewegt sich entlang der Unterkette 1144,
in dem er die Knöpf RECHTS und LINKS 1187, 1185 benutzt. Auf der Bildfläche der Fig. 11 ist die Schaltfläche
ANZEIGE hervorgehoben und ein Tooltip (Quickinfo) 1147 erscheint, um dem Benutzer mitzuteilen, dass die
Schaltfläche ANZEIGE hervorgehoben wurde. Es ist anzumerken, dass die Tooltips 1147, die mit der Haupt-
kette 1100 verknüpft sind, auf der rechten Seite der Kette 1100 erschienen sind; die Tooltips für die Unterkette
erscheinen über der Unterkette.

[0198] Die Grösse des Kastens für den Tooltip ist an die Länge des Wortes oder der Wörter, die angezeigt
werden, angepasst. Wo verschiedene Sprachpräferenzen eingestellt werden können, wird die Grösse des
Kastens für den Tooltip vorzugsweise an die Länge des Wortes in der gewählten Sprache angepasst.

[0199] Die Fig. 12 zeigt die Bildschirmanzeige wie man sie erhält, wenn die ANZEIGE Schaltfläche ausge-
wählt wurde. Ein ANZEIGE VERLAUF Fenster 1141 erscheint auf dem Bildschirm mit einer Überschrift 1143
(hier wurde die französische Sprachoption für die Überschrift ausgewählt) und zeigt Einzelheiten 1145 von vo-
rangegangenen Seiten, die vom Benutzer betrachtet wurden. Der Benutzer kann im Text nach oben und nach
unten blättern und eines der Details 1145 hervorheben, indem er den Knopf WAHL 1186 drückt. Die Knöpfe
RECHTS und LINKS werden zum Hervorheben der OK oder LÖSCHEN Knöpfe 1149, 1149' benutzt.

[0200] Die Fig. 13 zeigt die hervorgehobene HINZUFÜGEN Schaltfläche 1148 und ihren verknüpften Tooltip
(Quickinfo). Die HINZUFÜGEN Schaltfläche wird benutzt, um die gegenwärtig gezeigte Seite der Verlaufsliste
hinzuzufügen.

[0201] Die Fig. 14 zeigt die hervorgehobene LESEZEICHEN Schaltfläche 1150 und den mit ihr verknüpften
Tooltip 1151. In der Fig. 15 wurde die LESEZEICHEN Schaltfläche 1150 ausgewählt und die LESEZEICHEN
Unterkette 1152 ist einschliesslich des Tooltips 1151, der ANZEIGE, HINZUFÜGEN und EDITIEREN Schalt-
flächen 1153, 1154, 1155, 1156 dargestellt. In der Fig. 15 ist die ANZEIGE Schaltfläche 1153 und ihr Tooltip
dargestellt. Die ANZEIGE Schaltfläche 1153 ist ausgewählt und das ANZEIGE Fenster 1157 wird gezeigt (sie-
he Fig. 16) (Man kann erkennen, dass, aus Gründen der Übersichtlichkeit, die Lesezeichen Unterkette 1152
nicht dargestellt wird, wenn das Anzeige-Fenster 1157 auf der Bildfläche erscheint). Das ANZEIGE Fenster
1157 beinhaltet eine Überschrift und eine Textbox zum Blättern und listet die Lesezeichen auf. Was das AN-
ZEIGE/VERLAUF Fenster anbetrifft, so schliesst das Fenster die OK und LÖSCHEN Tasten ein. Das Schreib-
markentastenfeld 1182 wird eingesetzt, um um das Fenster herum zu navigieren und ein Lesezeichen auszu-
wählen, wenn erwünscht.

[0202] In der Fig. 17 ist die HINZUFÜGEN Schaltfläche hervorgehoben und ihr Tooltip ist dargestellt. Wenn
die HINZUFÜGEN Schaltfläche ausgewählt wird, wird das HINZUFÜGEN Fenster gezeigt (sieh Fig. 18). Das
HINZUFÜGEN Fenster 1158 beinhaltet zwei Kasten zur Texteingabeund zur Eingabe der URL des Lesezei-
chens und ihren Titel. Daten werden unter Verwendung der Nummerntasten 1181 eingegeben (zum Beispiel
unter Benutzung des Bildschirmtastenfeldes, das hier beschrieben wird). Das Fenster schliesst auch die OK
und LÖSCHEN Tasten, wie oben beschrieben, ein. Der Benutzer navigiert zwischen den Texteingabefeldern
und den OK und LÖSCHEN Tasten, in dem er den Kursor 1182 (Schreibmarke) benutzt.

[0203] Die Fig. 19 zeigt die hervorgehobene LÖSCHEN Schaltfläche 1155 und ihren Tooltip. Durch Auswahl
der LÖSCHEN Schaltfläche 1155 können Lesezeichen gelöscht werden.

[0204] Die Fig. 20 zeigt die hervorgehobene EDITIER Schaltfläche 1156 und ihren Tooltip. Durch Auswahl
22/115

DE 600 27 206 T2 2006.12.21
der EDITIER Schaltfläche 1156 können Lesezeichen editiert werden.

[0205] Die Fig. 21 zeigte eine wechselnde Form der Lesezeichen Unterkette 1152, bei der der Lesezeichen
Tooltip 1151 nicht dargestellt wird. Dies kann Platz auf dem Bildschirm sparen, insbesondere wenn die Unter-
kette lang ist. Das Erscheinungsbild des Tooltips ist eine Option die vom Benutzer gewählt werden kann.

[0206] Die Fig. 22 die hervorgehobene Schaltfläche EINSTELLUNGEN 1160 und ihren Tooltip 1161. Wenn
EINSTELLUNGEN ausgewählt wird, wird das Authentifizierungsfenster 1165 dargestellt (siehe Fig. 22), das
den Benutzer auffordert sich zu identifizieren und das Benutzerpasswort einzugeben, bevor die Einstellungen
geändert werden können. Das Authentifizierungsfenster 1165 schliesst zwei Texteingabefelder für die Eingabe
des Benutzernamens und des Passwortes ein, die mit den Nummerntasten 1181 und den tasten OK und LÖ-
SCHEN eingegeben werden können. Wenn einmal der korrekter Benutzername und das Passwort in das Au-
thentifizierungsfenster 1165 eingegeben worden sind und die OK Taste gedrückt wurde, wird die Unterkette
der Einstellungen 1162 angezeigt, siehe dazu die Fig. 24

[0207] Die Unterkette 1162 der Einstellungen schliesst eine MODEM Schaltfläche 1163 und eine BROWSER
Schaltfläche 1164 ein. Die Fig. 24 zeigt die hervorgehobene MODEM Schaltfläche 1163 mit dem verknüpften
Tooltip. Durch Auswahl der der MODEM Schaltfläche 1163 können die Einstellungen für das Modem geändert
werden. Die Fig. 25 zeigt die hervorgehobene BROWSER Schaltfläche 1164 und der dazugehörige Tooltip.
Wenn die BROWSER Schaltfläche 1164 ausgewählt wurde, wird das Browserfenster 1166 angezeigt, siehe
dazu die Fig. 26. Wieder navigiert der Benutzer um die Objekte im Fenster mit den Kursortasten 1182 herum.
Die Objekte im Browserfenster schliessen eine Klappfenstertabelle 1167 für FARBE. Durch hervorheben der
Tabellenüberschrift und durch Wahl mit den Kursortasten 1182, erscheinen die Elemente in der Tabelle und der
Benutzer kann den Kursor in der Tabelle nach oben und nach unten bewegen und eine neue Browserfarbe mit
dem Kursor wählen. Auf ähnliche Weise kann die Textsprache des Browsers in der Klappfenstertabelle 1168
gewechselt werden. Durch Bewegen des Hervorhebungszeichens auf Tooltipauswahl und durch Drücken der
Wahltaste 1186, kann der Tooltip ein- und ausgeschaltet werden. Das Fenster schliesst wie zuvor die OK und
WAHL Schaltflächen ein.

[0208] Die Fig. 27 zeigt die hervorgehobene VERLASSEN Schaltfläche 1170 und den dazugehörigen Tooltip
1171. Wenn die VERLASSEN Schaltfläche 1170 ausgewählt wurde, erscheint die Unterkette für VERLASSEN
1172 (siehe dazu die Fig. 28). In der Fig. 28 ist die BESTÄTIGEN Schaltfläche 1173 hervorgehoben und der
dazugehörige Tooltip wird angezeigt. Wenn der Benutzer den Webbrowser verlassen möchte, wählt er die BE-
STÄTIGEN Schaltfläche 1173. Wenn der Benutzer die Auswahl für VERLASSEN löschen möchte, dann wählt
er die LÖSCHEN Schaltfläche 1174 aus, die in der Fig. 20 mit dem Tooltip hervorgehoben ist.

[0209] Alternative Gestaltungen der Hauptmenükette 110 können eingesetzt werden, wobei die Form der ein-
zelnen Schaltflächen und die Textur verändert werden können, vorzugsweise ohne die Gesamtform der Kette
zu verändern. Die Farbe kann ebenfalls geändert werden. Die Veränderungen können als Optionen im EIN-
STELLUNGEN – Menü verfügbar gemacht werden, wobei die Form und die Textur der Kette als Ganzes ge-
ändert werden, um dem Browser ein einheitliches Aussehen (Oberfläche) zu verleihen.

[0210] Die Schaltflächen können zum Beispiel eckig, rund, rautenförmige sein oder auch andere Formen ha-
ben, vorzugsweise mit einer Textur, um eine dreidimensionales Erscheinungsbild zu erzeugen. Das Erschei-
nungsbild der Verknüpfungen zwischen den Schaltflächen können so gestaltet werden, dass sie mit dem Er-
scheinungsbild der Schaltflächen übereinstimmen oder alternativ diese ergänzen. Das Erscheinungsbild der
Verknüpfungen kann auch so gewählt werden, dass sie eine strukturelle Einheitlichkeit ausstrahlen, um die
Wahrnehmung des Benutzers zu erhöhen und zu ihm zu zeigen, dass die Schaltflächen sinnvoll untereinander
verknüpft sind.

[0211] Das bogenförmige Aussehen der Kette, wie sie in den Fig. 6–Fig. 30 gezeigt wird, wird vom Entwickler
gewählt und ist vorzugsweise vom Benutzer nicht zu verändern. Andere Konfigurationen der Schaltflächenket-
te und der Unterketten sind möglich, so wie zum Beispiel eine gerade Kette, oder eine halbkreisförmige Kette.
In anderen Ausführungsbeispielen kann die Schaltflächenfolge und Konfiguration der Schaltflächenkette und
der Unterketten durch den Benutzer verändert werden.

[0212] Der Empfänger/Dekoder ermöglicht Internetnavigation und auch das Lesen von Emails.

[0213] Nun soll die die Graphikwerkstatt zum Modellieren eines Navigators behandelt werden.
23/115

DE 600 27 206 T2 2006.12.21
[0214] Die Graphikwerksatt zur Modellierung eines Navigators ist eine Einheit oder eine Sammlung von ele-
mentaren Graphikobjekten. Jedes Graphikobjekt ist die bildliche Darstellung einer der Funktionen des Naviga-
tors auf einem Bildschirm. Jede Funktion des Navigators kann durch ein Graphikobjekt dargestellt werden,
oder durch eine Abfolge von Bildern oder Graphikobjekten (ein Animation), oder einer Ansammlung von Gra-
phikobjekten (zum Beispiel ein Bild im Hintergrund der Bildschirmfläche oder ein Bild im Hintergrund eines Di-
alogfensters dem andere Graphikobjekte hinzugefügt werden können). Es gibt zwei interne Formate für Bilder:
MPEG2 und PIXMAP-GRL.

[0215] Das PNG Format wird bei elementaren Graphikobjekten, die die Funktionalität des "Navigationssys-
tems" darstellen, eingesetzt: Laden, Verbinden, Vorheriges Dokument, Nächstes Dokument, Verlassen, und so
weiter.

[0216] Um ein nicht reckeckiges Bild auf der Graphikebene zu drucken, ist es notwendig eine Ausschnittmas-
ke zu verwenden, die die sichtbaren (bedeutenden) Zonen bestimmt. Diese Maske muss vom Designer in
Form einer Bitmap zur Verfügung gestellt werden: diese Maske wird aus Gründen der Leistungsbeschränkung
nicht vom Programm geplant.

[0217] Die beiden Stufen zum Hinzufügen einer Ausschnittsmaske ist zuerst die Stufe, wo ein Bild dargestellt
wird und dann auf der graphischen Ebene, das Ausfüllen eines Rechtecks der gleichen Abmessung und Posi-
tion des Bildes mit der Folienfarbe, während die Ausschnittmaske angewendet wird, um den nutzbaren Teil des
Bildes sichtbar zu machen.

[0218] Das PIXMAP-GRL Bildformat wird bei Graphikobjekten, die die Navigatorressourcen oder die Benut-
zerschnittstelle anzeigen, verwendet: vertikale Bildlaufleiste, Tabellen, Einfachwahl, Mehrfachwahl, und so
weiter.

[0219] Die Objekte vom PIXMAP-GRL Typ haben variable Abmessungen (jedes Graphikobjekt oder Modell
ist in einfache, elementare Objekte zerlegt) und kann mit Farben versehen werden (wechselnde Farben).

[0220] Das PIXMAP-GRL Bildformat kann man erhalten, in dem man irgendwelche anderen Graphikformate,
die bestens bekannte Verfahren (wie zum Beispiel BMP, JPEG, GIF, PNG, und so weiter) einsetzen, konver-
tiert.

[0221] Die Zerlegung von Graphikobjekten in graphische Elemente wird nach einer Matrix durchgeführt (zum
Beispiel 3 × 3, 4 × 4, oder 1 × 4), was von dem dazustellenden Objekttyp abhängt.

[0222] Die Palette enthält 256 Farben. Diese Palette wird bei Graphikobjekten des Typs PIXMAP und PNG
eingesetzt. In einer Palette gibt es zwei Teile. Der erste Teil besteht aus 26 Farben, die zur Erleichterung der
Darstellung und dem Design der Anwendungen vorgesehen sind. Der zweite Teil besteht aus 230 nicht verän-
derbaren Farben, die zum Einsatz bei Anwendungen zur Verfügung stehen.

[0223] Die maximale Grösse des Bildschirms beträgt 720 Pixel in der Breite und 576 in der Höhe. Um die Sicht
bei einfachen Fernsehgeräten sicher zu stellen, ist es notwendig die Grösse auf 592 Pixel in der Breite und
480 Pixel in der Höhe zu beschränken. Damit hochwertige Fernsehgeräte voll genutzt werden können, wird
der Benutzer die Option zur Anpassung der Grösse des Bildschirms haben. Bei Internetnavigatoren sind die
Seiten im Allgemeinen mit 600 Pixeln in der Breite und 400 Pixeln in der Höhe konzipiert.

[0224] Die allgemeinen Attribute eines Graphikobjekts werden nun im Einzelnen erörtert.

[0225] Ein Graphikobjekt (gemäß dessen, was es darstellt) hat eine genaue Grösse. Die genaue Grösse wird
vom Designer bestimmt und dient als Leitlinie für die Darstellung.

[0226] Jedes Graphikobjekt kann in der Grösse angepasst werden. Je nach Art des Graphikobjekts ist es
möglich die Höhe und die Breite anzupassen. Das Verfahren zur Anpassung der Grösse eines Graphikobjekts
nach PIXMAP-GRL folgt den Empfehlungen der Zerlegung des Graphikobjekts. Das Verfahren zum Zeichnen
von Graphikobjekten mit variabler Grösse wird später erörtert werden.

[0227] Das Bild des Graphikobjekts auf dem Bildschirm wird durch eine mehrfarbige Form wiedergegeben;
das Hintergrundbild sollte wenn möglich einen Farbbereich haben (flüssig, der Effekt von Knetmasse).
24/115

DE 600 27 206 T2 2006.12.21
[0228] Das Bild des Graphikobjekts muss nicht nach seiner Position (Koordinaten), oder nach der Reihenfol-
ge des folgenden oder vorhergehenden Objektes auf dem Bildschirm, gezeichnet werden: der Begriff einer
fliessenden Position des Objekts. Jedes Objekt ist definitionsgemäss von anderen Objekten unabhängig (aus-
ser einem Hintergrundbild).

[0229] Der Text wird durch das Programm gemäss der gewählten Sprache gedruckt. Dies unterstellt, dass
kein Bild Text enthalten sollte. Die Gestaltung eines Objektes liegt in den Händen des Designers. Das allge-
meine Erscheinungsbild kann einem spezifischen Thema entsprechen (zum Beispiel Startrek, 007, die Simp-
sons).

[0230] Der Aspekt des Blickfelds (focus) kann durch mehrere Mittel dargestellt werden: ein rechteckiger Fo-
kus auf dem Graphikobjekt; einem Fokus der den Hintergrund (mit einer anderen Farbe) des Graphikobjekts
hervorhebt, oder mit einem Fokus der die Form des Graphikobjekts färbt.

[0231] Der Normalzustand (ohne Fokus, aktiv, nicht gedrückt) ist die Basis des Graphikobjekts.

[0232] Der gesperrte Zustand eines Graphikobjekts kann durch verschieden Mittel dargestellt werden: Die
form des Objekts in grau (oder mit Zierleiste); Überlegen mit einem markanten Verbotszeichen auf dem in Fra-
ge stehenden Graphikobjekt; Einstellen des Hintergrunds des Objekts auf eine Farbe oder das Objekt unsicht-
bar machen.

[0233] Der unterdrückte Zustand des Graphikobjekts ist die graphische Darstellung eines Objekts das den
Fokus aufgrund eines Klicks erhält, bevor jedoch die Schaltfläche freigegeben ist. Die Darstellung kann eine
umgekehrte Darstellung des Objekts sein, oder es kann derselbe wie der fokussierte Zustand sein.

[0234] In Bezug auf einen Flip-Flop Darstellungseffekt kann ein Bild oder ein Piktogramm (icon) zwei Sichtef-
fekte beinhalten: einen der den Text darstellt (zum Beispiel die Hinterseite einer Euromünze), der andere, der
ein Symbol zeigt (die Vorderseite oder Kopfseite). Dieser visuelle Effekt wird animiert durch ein Programm, das
über einem Taktgeber läuft; ein Taktgeber wird gestartet bei der Darstellung des ersten Piktogramms und so-
bald der Taktgeber den vorbestimmten Wert erreicht, findet der Wechsel des Piktogramms statt: entweder wird
ein zweites Piktogramm oder eine Folge von Piktogrammen, die einen progressiven Übergang darstellen, ge-
zeigt.

[0235] Nun wird die Zerlegung eines Graphikobjekts des Typs PIXMAP-GRL beschrieben. unter Bezug auf
die Fig. 31 bis Fig. 38. Diese Figuren zeigen Beispiele der elementaren graphischen Objekte, die bei dem Ma-
trix- (1201–1209), (1211–1219, und so weiter) eingesetzt werden und dem entsprechenden Graphikobjekt, das
gebildet wird, wenn die elementaren Objekte in der passenden Art und Weise (1210, 1220, und so weiter) kom-
biniert werden. Die Figuren wurden ungefähr mit Faktor 4 vergrössert.

[0236] Um ein Graphikobjekt in der Grösse anzupassen (vergrössern oder verkleinern), wird jedes Graphik-
objekt (ein Design, welches vom Graphikkünstler erstellt wurde) graphische Elemente in Matrixform wie Puz-
zleteile aufgeteilt. Jedes Element wird dann gekennzeichnet entsprechend der 4 Haupteckpunkte und dem
Zentrum (Nord, Süd, West, Ost, Zentrum, Nord-Ost, Nord-West, Süd-Ost. Süd-West. Mittelpunkt des Zen-
trums). Die Breite und Höhe der Matrix hängen von der Art des Objekts ab.

[0237] Bestimmte graphische Elemente (Puzzleteile) werden auf einmal gedruckt (die Ecken). Um das Objekt
breiter oder höher zu machen, werden bestimmte Elemente auf wiederholte Art und weise gedruckt (n Mal Brei-
te oder Höhe des jeweiligen Elements).

[0238] Graphikobjekte, die durch das Matrixzerlegungsverfahren (oder durch Fliesen) gebildet wurden, oder
einen teil davon bilden, werden nun aufgelistet. Diese Graphikobjekte werden in dem HTML-Bereich gezeich-
net.
– Schaltflächenbreite/ohne Text im aktiven Zustand (1210): 3 × 3 Matrix (1201–1209); Grösse der Elemente:
4 Pixel breit und hoch; Elemente zur Anpassung der Breite: Nord – Zentrum (1202), Zentrum (1205), Süd
– Zentrum (1208); Elemente zur Anpassung der Höhe: West – Zentrum (1204), Zentrum (1215), Ost – Zen-
trum (1216).
– Schaltfläche mit/ohne Text im inaktiven, im grau gefärbten Zustand (1230): 3 × 3 Matrix (1221–1229);
Grösse der Elemente: 4 Pixel breit und hoch; Elemente zur Anpassung der Breite: Nord – Zentrum (1222),
Zentrum (1225), Süd – Zentrum (1228); Elemente zur Anpassung der Höhe: West – Zentrum (1224), Zen-
trum (1225), Ost – Zentrum (1226).
25/115

DE 600 27 206 T2 2006.12.21
– "Ankreuzfeld", dargestellt mit/ohne Fokus und durchkreuzt/nicht durchkreuzt (Fig. 34): 1 × 1 Matrix; Grös-
se der Elemente: 16 Pixel breit und hoch; Elemente zur Anpassung der breite: keine; Elemente zur Anpas-
sung der Höhe: keine.
– Liste der Optionen, für eine Einzel- oder Mehrfachwahl (1252, 1253, 1254): 3 × 3 Matrix (1241–1249);
Grösse der Elemente: 4 Pixel breit und hoch; Elemente zu Anpassung der Breite: Nord – Zentrum (1242),
Zentrum (1245), Süd – Zentrum (1248); Elemente zur Anpassung der Höhe: West – Zentrum 1244), Zen-
trum 1245), Ost – Zentrum (1246); kann einen Auf (1250) und/oder ab Indikator (1251) beinhalten; Position:
x. y Ausgangspunkt + Breite und Höhe des Auf Indikators. Auf Indikator (1250): 1 × 1 Matrix, Grösse der
Elemente: 16 Pixel breit und 8 Pixel hoch; Elemente zur Anpassung der Breite: keine; Elemente zur Anpas-
sung der Höhe: keine; Position; y Ausgangspunkt, in der Höhe zentriert.

[0239] Ab Indikator (1251): 1 × 1 Matrix; Grösse der Elemente: 16 Pixel breit und 8 Pixel hoch; Elemente zur
Anpassung der Breite: keine; Elemente zur Anpassung der Höhe: keine; Position: y Ausgangspunkt + Höhe
des Auf Indikators + Höhe der Liste, in der Höhe zentriert.
– Tabelle (zum Zeichnen der Formen) (1260) 3 × 3 Matrix (1270); Grösse der Elemente: 2 Pixel breit und
hoch; Elemente zur Anpassung der Breite: Nord – Zentrum, Zentrum, Süd – Zentrum; Elemente zur Anpas-
sung der Höhe: West – Zentrum, Zentrum, Ost – Zentrum; kann eine Zelle beinhalten.
– Zelle (zum Schreiben eines Eintrags in ein Formular) (1280) 3 × 3 Matrix (1290); Grösse der Elemente: 2
Pixel breit und hoch; Elemente zur Anpassung der Breite: Nord – Zentrum, Zentrum, Süd – Zentrum; Ele-
mente zur Anpassung der Höhe: West – Zentrum, Zentrum, Ost – Zentrum; Kann Text oder ein Bild bein-
halten; Position: x, y Ausgangspunkt + Dicke des Tabellenrahmens.
– Text mit Rahmen (Textfeld) (1300) 3 × 3 Matrix (1310); Grösse der Elemente: 2 Pixel breit und hoch; Ele-
mente zur Anpassung der Breite: Nord – Zentrum, Zentrum, Süd – Zentrum; Elemente zur Anpassung der
Höhe: West – Zentrum, Zentrum, Ost – Zentrum; kann Text beinhalten.
– Rahmen (1320) 3 × 3 Matrix (1325); Grösse der Elemente: 4 Pixel breit und hoch; Elemente zur Anpas-
sung der Breite: Nord – Zentrum, Zentrum, Süd – Zentrum; Elemente zur Anpassung der Höhe: West – Zen-
trum, Zentrum, Ost – Zentrum.
– Vertikale Bildlaufleiste (1330) 1 × 3 Matrix (1270); Grösse der Elemente: 8 Pixel breit und hoch; Elemente
zur Anpassung der Breite: keine; Elemente zur Anpassung der Höhe: Zentrum; mit dem Rahmen verbun-
den (abhängig von der Position des Rahmenobjekts); beinhaltet das Indikatorgraphikobjekt des Indexes im
Verhältnis zur Höhe.
– Horizontale Bildlaufleiste (1340) 3 × 1 Matrix; Grösse der Elemente: 8 Pixel breit und hoch; Elemente zur
Anpassung der Höhe: keine; Elemente zur Anpassung der Breite: Zentrum; mit dem Rahmen verbunden
(abhängig von der Position des Rahmenobjekts); beinhaltet das Indikatorgraphikobjekt des Indexes im Ver-
hältnis zur Breite.
– Horizontale Linie: 1 × 1 Matrix, Grösse der Elemente: 4 Pixel breit und hoch.
– Vertikale Linie: 1 × 1 Matrix, Grösse der Elemente: 4 Pixel breit und hoch.

[0240] Eine Zusammenfassung aller Graphikobjekte in der Web-Browserschnittstelle und der mit ihr ver-
knüpften Funktion werden nun aufgeführt.

[0241] Was nun folgt ist eine nicht erschöpfende Aufstellung der Graphikobjekte, die zur Konstruktion eines
Navigatormodells im Dekoder notwendig sind. Die Tabelle, die hier gezeigt wird, führt die Objekte Element für
Element und die Liste der Objekte, die aus mehreren graphischen Elementen zusammengesetzt sind, auf.
26/115

DE 600 27 206 T2 2006.12.21
27/115

DE 600 27 206 T2 2006.12.21
28/115

DE 600 27 206 T2 2006.12.21
29/115

DE 600 27 206 T2 2006.12.21
30/115

DE 600 27 206 T2 2006.12.21
31/115

DE 600 27 206 T2 2006.12.21
32/115

DE 600 27 206 T2 2006.12.21
[0242] Die folgende Tabelle beschreibt die verschiedenen elementaren Graphikobjekte, die ein Graphikobjekt
bilden, das eine veränderliche Grösse der graphischen Abbildung haben kann. Die Nebeneinanderstellung ele-
mentarer Objekte zur Herstellung eines komplexen Objekts wird durch das Programm (Wiederherstellung des
Puzzles) bewerkstelligt.
33/115

DE 600 27 206 T2 2006.12.21
34/115

DE 600 27 206 T2 2006.12.21
35/115

DE 600 27 206 T2 2006.12.21
36/115

DE 600 27 206 T2 2006.12.21
37/115

DE 600 27 206 T2 2006.12.21
Navigatorfunktionen
38/115

DE 600 27 206 T2 2006.12.21
[0243] Die Java API für den Webbrowser wird nun beschrieben.

[0244] Hier folgt nun die Aufstellung der Java Pakete, die auf der Ebene der Navigatoranwendung im Dekoder
39/115

DE 600 27 206 T2 2006.12.21
gebraucht werden. Die Liste ist in zwei Teile aufgeteilt: in die AWT (Abstract Window Toolkit – abstrakter Fens-
ter-Werkzeugkasten) Klassen der JDK 1.1 und die Java Schnittstellenklassen der verschiedenen Dienste, die
im nativen C-Kode geschrieben sind.

[0245] Das Navigatorpaket, das Browserpaket genannt wird, fasst verschiedene Pakete zusammen: das
Browser-Zeichenpaket, das Dienste anbietet, die es erlauben ein HTML Dokument abzurufen und innerhalb
des Dokumentbrowsers zu navigieren; und das Mediawebtv Paket, das den Aufbau einer Internetverbindung
mit der Authentifizierung des Benutzers erlaubt.

[0246] Nun wird die Struktur der browser.drawer.MhwBookmark Klasse beschrieben.

[0247] Eine Lesezeichenliste ist einem Benutzer zugeordnet. Es gibt innerhalb der Lesezeichenliste keine
Hierarchie.
Constructor: MhwBookmark(subscriberId): öffnet eine bestehende Lesezeichenliste
Constructor: MhwBookmark(subscriberId): erzeugt eine neue Lesezeichenliste
deleteBookmark(): löscht eine Lesezeichenliste.
40/115

DE 600 27 206 T2 2006.12.21
add(URL, Name): fügt eine Eingabe hinzu
remove(itemNumber): löscht eine Eingabe
modify(itemNumber, URL, Name): ändert eine bestehende Eingabe
getList(): gibt eine Liste der Eingaben in die Lesezeichenliste (keine Hierarchie) zurück
getItemCount(): gibt die Anzahl der Eingaben in die Lesezeichenliste
isFull(): boolesch – ist Liste voll?
isEmpty(): boolesch – ist Liste leer?
setHomePage(itemNumber)
setHomepage(): itemNumber
goToURL(sessionNumber): lädt das Dokument, das der gewählten Eingabe entspricht

[0248] Im Falle dass es einen Fehler gibt, wird eine Fehlermeldung durch die Methoden add(), remove(), mo-
dify(), getList(), setHomepage() zurückgegeben (oder einem Vorfall, wenn die Ausprägung asynchron ist).

[0249] Die browser.drawer.MhwHistory Klasse erlaubt das Navigieren von einem Dokument zum anderen in-
nerhalb einer Liste von zuvor gezeigten Dokumenten. Es gibt in der Verlaufsliste keine Hierarchie. Die Einzel-
heiten der Klasse werden nun aufgeführt.
Constructor: MhwHistory(sessionNumber)
getList(): gibt die Verlaufsliste zurück (keine Hierarchie)
getCurrent(): erhält die gegenwärtige URL
setCurrent(indexNumber): verändert die gegenwärtige URL
getNext(): erhält die URL der nächsten Eingabe
getPrevious(): erhält die URL der vorangegangenen URL
getItemCount(): gibt die Anzahl der Eingaben im Verlauf zurück
addEventsRegister(): abonniert Fehlerereignisse aus der Verlaufsliste
removeEventsRegister()

[0250] Im Falle, dass es einen Fehler gibt, wird eine Fehlermeldung durch die Methoden getList(), getNext(),
getPrevious(), setCurrent() zurückgegeben (oder einem Vorfall, wenn die Ausprägung asynchron ist).

[0251] Die Ereignisse sind: addEventsRegister(sessionNumber): [abonniert die Fehlerereignisse der Ver-
laufsliste]; and removeEventsRegister(sessionNumber) [abbestellen].

[0252] Die browser.drawer:MhwDocument Klasse erlaubt das laden und Anzeigen eines HTML Dokumentes
im Dekoder. Die Einzelheiten der Klasse werden nun erläutert.
Constructor: MhwDocument(sessionNumber)
freeze(): hält die Anzeige des aktuellen Dokuments (Laden des Dokuments geht weiter)
unfreeze(): startet die Anzeige des aktuellen Dokuments erneut
isPending(): falls das Dokument gerade geladen wird
stop(): hält das Laden des aktuellen Dokuments an
reload(): lädt das Dokument erneut
getDocumentInfo(): gibt den Titel und die URL des Dokumentes zurück
addStatusRegister(): abonniert die Information zum Zustand und Ende des Ladens
goToURL(url): lädt eine Webseite
submit(login, password, URL): reicht Authentifizierung zum Laden einer Webseite ein
getStatisticsDocument(): gibt die Anzahl der laufenden Anfragen und der URL des gerade zu ladenden Doku-
ments zurück

[0253] Die browser.mediawebtv.MhwConnection Klasse vereinigt die Benutzerverbindungs- und Authentifi-
zierungsfunktionalität. Die Einzelheiten der Klasse werden nun erörtert:
Constructor: MhwConnection(subscriberId)
start(): fragt Verbindung an
stop(): fragt Verbindungsende an
cancel(): löscht die Verbindung
setAuthentificationType(type): setzt den
Authentifizierungsmodus auf den CANAL+ Modus (msd/Passwort) oder durch Anmeldung/Passwort)
getAttributes(): führt die Verbindungsattribute zurück
setAttributes(attributes): verändert die Verbindungsattribute
setPassword(password): verändert das Passwort
setPassword(password): erhält das Passwort
41/115

DE 600 27 206 T2 2006.12.21
setRutoCheckPassword(bAutoCheck): legt fest, ob das Passwort automatisch mit dem Bestätigungspasswort
geprüft werden muss
getAutoCheckPassword(bAutoCheck): liest fest, ob das Passwort automatisch mit dem Bestätigungspasswort
geprüft werden muss
getIPClient(ipaddress, netmask): liest die gewählte IP und das Netzwerkmaskenpaar
setIPClient(ipaddress, netmask): verändert die gewählte IP und das Netzwerkmaskenpaar
getDNS(dns1, dns2): liest die primären und sekundären DNS Adressen
setDNS(dns1, dns2): verändert die primären und sekundären DNS Adressen
getURLConfigServer(url): liest die Adresse des Konfigurationsservers
setURLConfigServer(url): verändert die Adresse des Konfigurationsservers
getQueryCommand(queryCmd, typeOfQuery): liest nach Type die Anfrage, die an den Konfigurationsservers
gesendet werden soll
setQueryCommand(queryCmd, typeOfQuery): verändert die Anfrage nach typequeryAcquisitions(tableAcqui-
sitions, typeOfAcquisitions, NumberOfAcquisitions): liest die Liste der Akquisitionen.
startAcquisition(acquisitionId): startet einen Zukauf (Daten/Video)
stopAcquisition(acquisitionId): hält einen Zukauf (Daten/Video) an
addStatusRegister(): Abonnement ist über den Verbindungsstatus zu informieren.

[0254] Die Ereignisse sind: Verbindungsverlust; laufende Verbindung; aufgebaute Verbindung; Anforderung
Verbindungsbestätigung; Verbindungsfehler; Modemstatus ein/aus; Initialisierung im Gange; Wählvorgang;
Fehler, aber Modem ist an; Serverstatus; ungültiger Anschluss; ungültige URL; Anmeldefehler; und ungültiges
Passwort.
removeStatusRegister(): stellt Netzwerkverbindungsstatus ab
isConnected subscriberId(): gibt boolesch zurück und dem Modem Status für verbunden/trennen
isPending(): gibt boolesch für Modem beim Aufbau der Verbindung zurück
getExtendedProviderUrl(providerUrl): liest den momentan abonnierten Anbieter
setExtendedProviderUrl(providerUrl): ändert den momentan abonnierten Anbieter

[0255] Die browser.mediawebtv.MhwConfiguration Klasse verwaltet das profil jedes Benutzers und seine
oder ihre Präferenzen. Die Einzelheiten der Klasse werden nun aufgeführt.
Constructor: MhwConfoguration()
readprofile(subscriberId): lese das Profil
writeProfile(subscriberId, profile): schreibe das Profil
readDefaultProfile(): lese das Standardprofil
writeDefaultProfile(profile): verändert das Standardprofil
getUserCount(): Anzahl der Nutzer
newUser(profile): Identifizierung eines neuen Benutzers
getLastConnect(): der letzte verbundene Nutzer

[0256] Die höchste Anzahl von Profilen ist momentan auf 5 festgelegt, aber dies stellt keine strenge Begren-
zung dar; grösser Anzahl von Profilen können bei Bedarf gespeichert werden.

[0257] Im Falle eines Fehlers wird eine Fehlermeldung durch die Methoden WriteProfile() und writeDefault-
Profile() (oder ein Ereignis, wenn das momentane Auftreten asynchron ist) zurück geschickt.

[0258] Die browswer.mediawebtv.MhwMultiSession Klasse erlaubt es eine Navigatorsession auszuwählen.
Eine Session ist eine Instanz des Navigators, die automatisch durch eine andere Instanz eingeleitet wurde.
Wenn der Navigator startet, wird eine Session erzeugt nach dem Aufbau einer authentifizierten Verbindung.
Die Einzelheiten der Klasse werden nun erläutert.
Constructor: MhwMultiSession
getCurrentSessionNumber()
setCurrentSessionNumber(int number)
getPreviousSession()
addSession(): giert die Anzahl der erzeugten Sessions zurück
removeSession(int numSession)

[0259] Das Navigatormodell für den Dekoder wird nun in weiteren Einzelheiten beschrieben unter Bezug auf
die Fig. 6a und Fig. 7–Fig. 30.

[0260] Das hier vorgestellte Modell ist ein einfaches Beispiel eines Navigators und gibt eine allgemeine Idee
42/115

DE 600 27 206 T2 2006.12.21
der grundsätzlichen Funktionen. Es gibt vollkommene Freiheit auf der Ebene der graphischen Darstellung. Die
einzige wichtige Eigenschaft sind die Zonen und Bilder innerhalb denen Funktionen der gleichen Art gruppiert
sind und die allgemeine Benutzerschnittstelle.

[0261] Der Navigator verwendet alle verfügbaren Graphiken (MPEG, PIXMAP) des graphischen Studios. Die
Bildschirmdarstellungen dieses Modells sind in Baumform organisiert und jede bildet zusammen eine An-
sammlung unverzichtbarer Funktionen. Jede Funktion oder Option auf dem Bildschirm wird durch Bewegen
eines Fokus angesteuert mit Hilfe von Pfeiltasten (auf der Fernbedienung) oder durch Einsatz der Tastatur mit
einem Kursor/Zeiger. Die Auswahl einer Aktion wird durch einen Kontrollklick oder durch eine vorbestimmte
Taste (zum Beispiel "OK") erzielt.

[0262] Wenn keine physische Tastatur vorhanden ist, um Text mit der Fernbedienung einzugeben, ist es not-
wendig, eine virtuelle Tastatur bereit zu stellen. Dies wird durch Bewegung des Fokus erreicht mit einer Mög-
lichkeit schnell einzutippen durch Abbilden der Tasten der Fernbedienung auf der virtuellen Tastatur; mit ande-
ren Worten: das Bild der Tasten auf der Fernbedienung wird sichtbar (in nachgezeichneter Form) mit Umran-
dung oder leicht undurchlässig auf dem Bild der virtuellen Tastatur. Die virtuelle Tastatur wird in weiteren Ein-
zelheiten in diesem Dokument erfolgen.

[0263] Die Fig. 30 zeigt die Kette der obersten Ebene der Navigatorfunktionsschaltflächen (1410) mit einem
Teil einer Webseite die daneben sichtbar ist (1411).

[0264] Der Hauptnavigatorbildschirm wird nun beschrieben unter besonderem Bezug auf die Fig. 30.

[0265] Die Navigatorfunktionen sind in mehreren Schichten zusammen gefasst. Der Hauptbildschirm zeigt
eine vertikale Leiste (Hauptmenü) (1410), das aus einer Reihe von Schaltflächen zusammengesetzt ist: Neu
laden/Stop (1401), vorherige Seite (1402), nächste Seite (1403), Verlauf kürzlich besuchter Seiten, Lesezei-
chen, verbinden/trennen, Konfiguration, Navigator verlassen (1408).

[0266] Die Navigator GUI (graphical user interface) graphische Benutzerschnittstelle (Hauptbildschirm) wird
angezeigt, wenn eine Funktionstaste gedrückt wird (entweder auf der Fernbedienung oder auf der Tastatur).
Wenn der GUI auf dem TV-Bildschirm erscheint, wird das HTML Dokument (1411) (welches der GUI über-
deckt) in den Speicher geladen, aber die Aktualisierung des Dokumentes wird angehalten, um das Anzeige-
verhalten des GUI nicht zu beeinflussen. Das HTML Dokument wird erneut angezeigt, wenn der Navigator GUI
verlassen wird. Diese Einschränkung wird aufgehoben, wenn die Leistungsmerkmale eventuell zufrieden stel-
lend sind, wobei die gleichzeitige Darstellung des HTML Dokuments und der graphischen Benutzerschnittstelle
(GUI) ermöglicht wird.

[0267] Die graphische Benutzerschnittstelle (GUI) wird von der TV Bildschirmfläche auf Tastendruck (auf der
Fernbedienung oder der Tastatur) verschwinden, oder durch Anklicken ausserhalb der GUI Schaltflächenbe-
reiche. Die Anzeige des gegenwärtig zu ladenden oder im Cache-Speicher zu speichernden HTML Dokuments
wird dann gestartet oder erneut begonnen.

[0268] Eine Schaltfläche ist in Wirklichkeit ein rechteckiger oder quadratischer Bereich (zum Beispiel 32 × 32
Pixel). Wenn der Graphikkursor einen Bereich berührt, erhält dieser Bereich (Fenster) den Fokus (vergleiche
die Funktion EnterNotify(WindowId)).

[0269] Wenn die Schaltflächengraphik zum Beispiel einen Reifen darstellt, muss festgestellt werden, ob die
gegenwärtige Position des Kursors tatsächlich die Pixel des Reifens abdeckt. Es ist daher notwendig, den Wert
des Pixels im Kernbereich des Mauszeigers in der Ausschnittsmaske der Schaltfläche zu finden (durch Berech-
nung der relativen Position, getpixel() in der Ausschnittsmaske, dann den Pixelwert prüfen). Dieses Erken-
nungsverfahren erlaubt es die Prüfung zu verbessern, ob ein Klick ausgeführt, oder vor dem Beginn der Schalt-
flächenfunktion nicht ausgeführt wurde.

[0270] Wenn der Mauszeiger den rechteckigen oder quadratischen Bereich verlässt, dann verliert der Bereich
den Fokus (vergl. LeaveNotify(WindowId)).

[0271] Die erklärende Schaltflächenübersicht wird nun im Einzelnen beschrieben.

[0272] Wenn der Mauszeiger oder der rechteckige Fokus mit der Schaltfläche, die eine Funktion darstellt, zu-
sammenfällt, wird ein kurzer Satz (tooltip) angezeigt entweder waagerecht oder senkrecht, der die Funktion
43/115

DE 600 27 206 T2 2006.12.21
dieser Schaltfläche erläutert. Wenn die Schaltfläche entweder durch einen Mausklick oder durch eine Funkti-
onstaste ausgewählt wird, erscheint eine Liste mit Schaltflächen, die die Untermenüoptionen enthalten. Das
System der kurzen erklärenden Sätze (tooltips) wird auch bei den Schaltflächen der Untermenüs eingesetzt.

[0273] Navigation der Menüoptionen wird mit den Pfeiltasten auf der Fernbedienung oder der Tastatur er-
reicht. Die letzte Schaltfläche auf dem Hauptbildschirm, auf der der Fokus lag, wird für die nächste Anzeige
des Hauptbildschirms gespeichert.

[0274] Nun wird die virtuelle Tastatur in weiteren Einzelheiten unter Bezug auf die Fig. 42–Fig. 45 erläutert.

[0275] Die Fig. 42 zeigt schematisch, wie die im Moment sichtbare virtuelle Tastatur (1501) auf dem zugrunde
liegenden Gitter der virtuellen Tastatur (1501, 1506) abgebildet wird.

[0276] Die Fig. 43 zeigt eine typische Darstellung von Zeichen auf den Tasten einer virtuellen Tastatur.

[0277] Die Fig. 44 zeigt die Bilder, die bei der virtuellen Tastatur benutzt werden mit dem ersten (1545) und
zweiten (1546) Nummernblock, die jeweils den Fokus besitzen (und auch verschiedene Arten von Fernbedie-
nungen 1542 und 1543) zeigen.

[0278] Die Fig. 45 zeigt eine typische virtuelle Tastaturausführung mit typischen überlagerten Dimensionie-
rungen.

[0279] Zuerst wird die virtuelle Tastatur als ein Werkzeug wahrgenommen, das von der Anwendung, bei der
sie eingesetzt wird, unabhängig ist. Man kann sie innerhalb des Webbrowseranwendung und gleichermassen
bei der Mailanwendung benutzen. Darüber hinaus ist ihr Aussehen vollständig von der betroffenen Anwendung
unabhängig.

[0280] Die virtuelle Tastatur wird vom Zeitpunkt an, zu dem der Benutzer ein editierbares Gebiet auf dem Bild-
schirm wählt, angezeigt, wenn er keine wirkliche Tastatur, oder eine Fernbedienung mit Tastatur besitzt. Der
Fokus wird auf das Ende des Textes in dem editierbaren Gebiet gelegt. Beim Drücken von "OK" (auf der Fern-
bedienung oder der virtuellen Tastatur), oder "Löschen (auf der virtuellen Tastatur) verschwindet er.

[0281] Die virtuelle Tastatur, die auf dem Bildschirm (1501) sichtbar ist, besteht aus drei Blöcken mit 10 Tasten
(die drei Nummernblöcke der Fernbedienung darstellen), die Seite an Seite beieinander liegen (1502, 1503,
1504). Der Benutzer kann den Fokus (1505) mit den Pfeiltasten auf der Fernbedienung von einem Block zum
anderen verschieben. Nachdem ein Block ausgewählt wurde, wird das entsprechende Zeichen, das auf der
virtuellen Tastatur aufgedruckt ist, durch Drücken einer Taste auf dem Nummernblock der Fernbedienung ein-
gegeben.

[0282] Der Benutzer kann auch die AUF- und AB-Pfeiltasten benutzen. Dies bringt die gleiche virtuelle Tas-
tatur auf den Bildschirm, jedoch mit unterschiedlichen Zeichen auf den tasten (1506). Somit kann man durch
Hin- und Herschalten zwischen einer Reihe von 5 virtuellen Tastaturen alle Zeichen eines westlichen Compu-
ters darstellen. Es ist auch möglich weitere Tastaturen hinzuzufügen, falls dafür Bedarf entstehen sollte.

[0283] Unter Bezug auf die Fig. 44 und um eine sofortige Beziehung zwischen den Nummernblöcken der
Fernbedienung und dem Fokus der virtuellen Tastatur herzustellen, zeigt ein Überlagerungsbild der Fernbe-
dienung den Fokus (1542, 1542). Somit kann der Benutzer leicht erkennen, dass nur ein Teil der Tastatur den
Fokus besitzt und dass der Rest der Zeichen durch Hin- und Herbewegen des Fokus mit den Pfeiltasten er-
reicht werden kann. Die Tastatur ist gedanklich mit den letzteren Punkten aufgebaut.

[0284] Die Lösung mit einer virtuellen Tastatur nimmt wenig Bildschirmhöhe in Anspruch und erlaubt leicht die
Anzahl verfügbarer Zeichen zu erweitern. Im Standardbetrieb wird die virtuelle Tastatur mit einem Miniatural-
phabet dargestellt.

[0285] Bestimmte Schaltflächen haben wichtige Sonderfunktionen:
– "OK" auf der Fernbedienung zur Bestätigung der aktuellen Wahl (wenn das Feld nur eine Zeile hat, be-
stätigt auch das ¶ Zeichen (1521) oder kann alternativ so gewählt werden, dass es keine Funktion besitzt;
andernfalls entspricht es nur zur Zeilenumschaltung).
– "Löschen" (1522) auf der virtuellen Tastatur, zum Verlassen des Werkzeugs ohne Bestätigung (die Ver-
änderungen, die nach dem Öffnen der Tastatur gemacht wurden, gehen verloren).
44/115

DE 600 27 206 T2 2006.12.21
– "Rücktaste" (1523) auf der virtuellen Tastatur, zum Löschen des zuletzt eingegeben Zeichens.
– Die Auf, Ab, Links, Rechts Pfeiltasten, um in der Editierzone sich hin- und herzubewegen.
– "Tab" (1520) auf der virtuellen Tastatur, zum Einfügen einer konfigurierbaren Anzahl von Zwischenräumen
"in einem Rutsch" (vier standardmässig).

[0286] Die Tastatur befindet sich immer im "Einfügen" Modus.

[0287] Ein Beispiel einer Tastatur ist in der Fig. 44 dargestellt und wird später erläutert.

[0288] Mit den 5 Tastaturen (5 × 3), die in der Fig. 43 gezeigt werden und den beiden Schriftarten, die für die
Webbrowseranwendung (Arialweb und Courier) installiert sind, können alle Zeichen einer herkömmlichen Tas-
tatur abgedeckt werden. Die Abmessungen der Tastatur auf dem Bildschirm betragen 272 Pixels breit mal 184
Pixel hoch.

[0289] Die virtuelle Tastatur und die funktionalen Verbindungen in Bezug auf ihren Einsatz bei den verschie-
denen Anwendungen wurden innerhalb des "canalplus.virtualkd" Paketes entwickelt.

[0290] Die Klassen die innerhalb des Paketes "MhwVirtualKbd" (die graphische Beschreibung der virtuellen
Tastatur und der Verhaltensklasse), "MhwVkTextField" (die aus "java.awt.TextField" abgeleitet ist und die eine
virtuelle Tastatur zulässt, die innerhalb der globalen Anwendung definiert ist und das Textfeld zur Steuerung
der Ereignisse gemeinsam benutzt) und MhwTextArea" (eine Klasse die von "java.awt.Textarea" geerbt wurde
und die eine virtuelle Tastatur zulässt, die innerhalb der globalen Anwendung definiert ist und die Textfeldklasse
zur Steuerung der Ereignisse benutzt).

[0291] Die MhwVirtualKbd Klasse wird nun in weiteren Einzelheiten beschrieben.

[0292] Der Konstruktor der MhwVirtualKbd" Klasse wird als "privat" definiert. Daher kann nur eine einzigartige
virtuelle Tastatur konstruiert werden, wenn die Hauptanwendung, die sie einsetzen könnte, gestartet wird zum
Beispiel wenn eine wirkliche Tastatur fehlt). Das Ziel ist daher eine Tastatur vorzustellen, die besonders für die
laufende Anwendung konfiguriert ist und die erscheint, wenn der Benutzer ein Textfeld eingibt (Einfach- oder
Mehrfachzeile).

[0293] Wenn die Tastatur erzeugt wird, werden die vier (statischen) Hauptvariablen, die konfiguriert werden
können, gesetzt sein:
– Ursprung (parent): Container, "Ursprung" der virtuellen Tastatur, die selbst vorhanden sein muss zum Zeit-
punkt, zu dem die Tastatur geschaffen wird. Sie wird mit dem "setParent"-Verfahren gesetzt, das eine Null-
PointerException" zurückspielt, wenn das "parent" im Argument "Null" beträgt
– beschreibende Datei (descriptive file (die ASCIII Datei, die die Tastatur sowohl in Bezug auf die Graphiken
hinter den Bildern, die die verschiedenen Tastaturen betreffen, und die man erhält, wenn die virtuelle Tas-
tatur benutzt wird, beschreibt, als auch die auf die Tasten gedruckte Beschriftung. Die Zeichen sind durch
ihren Unicode Kode spezifiziert. Der Name der beschreibenden Datei kann gesetzt werden, in dem man
das "setScreenFile"-Verfahren benutzt.
– Anzahl der Bildschirmdarstellungen: Anzahl der von der virtuelle Tastatur initialisierten und benutzten
"Nummernblöcke". Diese Anzahl, die durch "setScreensNumber" gesetzt wird, entspricht der Anzahl an
Tastaturen, deren Eigenschaften in der oben genau erläuterten beschreibenden Datei eingespeichert sind.
– Eingangskoordinaten: dies sind die Koordinaten der oberen linken Ecke des Hintergrundbildes der Tasta-
tur in dem Ursprungscontainer (parent container) (der oben beschrieben wurde). Dies wird eingestellt, in
dem man das "setCoordInit" Verfahren benutzt.

[0294] Sobald die Tastatur eingestellt ist, kann man entscheiden, ob sie gebraucht wird, oder auch nicht, in
dem man das "getInstance" Verfahren einsetzt, das die Tastatur der laufenden Anwendung findet, falls sie be-
steht (falls die virtuelle Tastatur der Anwendung noch nicht besteht und wenn die Anwendung sie benutzt, dann
schafft das "getInstance" Verfahren eine und benutzt dazu die Variablen [die vier zuvor Beschriebenen], die
man eingesetzt hätte).

[0295] Die Ereignisverwaltung wird nun beschrieben.

[0296] Gemäß den vorhergehenden Beschreibungen funktioniert die virtuelle Tastatur, wenn einmal ange-
zeigt, alleine durch Auswertung der Vorgänge, die an sie übertragen werden durch: den Nummernblock, die
"OK"-Taste und die vier Richtungspfeiltasten auf der Fernbedienung. Diese Tasten werden besondere Rollen
45/115

DE 600 27 206 T2 2006.12.21
für die im Gebrauch befindliche Tastatur übernehmen.

[0297] Die "OK" Taste besitzt eine wichtige Rolle, da sie dem Benutzer erlaubt zwei Dinge auszuführen: "Zu-
rück" zum Textfeld, um Informationen einzugeben und dann den Betrieb der virtuellen Tastatur anzuzeigen und
zu starten und dann "Verlassen", um das Textfeld "zu verlassen" und die Änderungen zu speichern.

Pfeiltasten

[0298] Die "rechten" und die "linken" Pfeile gestatten das Bild der Fernbedienung (in dem der Nummernblock,
der den Fokus besitzt, angezeigt wird) auf den drei Nummernblöcken, die auf der virtuellen Tastatur dargestellt
sind, hin- und herzubewegen. Die Tasten des Nummernblocks auf der Fernbedienung sind folglich "vorherbe-
stimmt", abhängig von der Tastatur mit dem Fokus, um die verschiedenen Zeichen darzustellen.

[0299] Im häufigsten Fall verursacht das "Drücken" dieser Knöpfe, wenn die virtuellen Tastatur aktive ist, au-
tomatisches Einfügen des Zeichens auf dieser Taste in das laufende Textfeld an der durch den Kursor bezeich-
neten Stelle.

[0300] Von den Zeichen können sechs als "besondere" Zeichen betrachtet werden und veranlassen das auf
der Taste dargestellte Zeichen nicht direkt auch im Textfeld angezeigt zu werden;
Rücktaste (BackSpace): "< (1523): wenn die Taste auf der Fernbedienung, die diesem Zeichen entspricht, ge-
drückt wird, wird das Zeichen unmittelbar links von der Kursorposition im laufenden Feld gelöscht.
Tab: ">>" (1520): wenn der Knopf auf der Fernbedienung, der diesem Zeichen entspricht, gedrückt wird, wird
eine konfigurierbare Anzahl von Zwischenräumen (' '), standardmäßig 4, an der laufenden Kursorposition ein-
gefügt.
Eingabe: "¶" (1521): wenn der Knopf auf der Fernbedienung, der diesem Zeichen entspricht, gedrückt wird,
wird ein Zeilenvorschub (line feed) an der Kursorposition eingefügt. Eigentlich ist das laufende Textfeld eine
Instanz der "MhwVkTextField" Klasse, das bedeutet eine, die nur eine editierbare Zeile hat, Drücken dieser
Taste hat entweder keine Auswirkung, oder verursacht Bestätigung diese Feldes. wenn im Gegensatz dieses
Textfeld eine Instanz der "MhwVkTextArea" Klasse ist, besteht sie aus mehreren editierbaren Zeilen und dieses
Zeichen verursacht einen Zeilenvorschub (wenn der Kursor sich auf der letzten editierbaren Zeile befindet, hat
das Drücken dieser Taste keine Auswirkung).
Löschen: "¢ (1522): wenn der Knopf auf der Fernbedienung, der diesem Zeichen entspricht, gedrückt wird,
werden alle Veränderungen, die in dem laufenden Textfeld, im Anschluss an die Öffnung der virtuellen Tastatur,
vorgenommen wurden, annulliert. Mit anderen Worten: der Inhalt wird auf den Wert zurückgeführt, den er hatte,
bevor die Veränderungen vorgenommen wurden und die virtuelle Tastatur wird ausgeblendet.
Linker Pfeil: wenn der Knopf auf der Fernbedienung, der diesem Zeichen entspricht, gedrückt wird, wird der
Kursor im laufenden Textfeld einen Platz nach links bewegt. Ist der Kursor bereits in der "Null" Position (es kann
keine Bewegung mehr nach links vorgenommen werden), hat die Taste keine Auswirkung.
Rechter Pfeil: wenn der Knopf auf der Fernbedienung, der diesem Zeichen entspricht, gedrückt wird, wird der
Kursor im laufenden Textfeld einen Platz nach rechts bewegt. Befindet sich der Kursor bereits hinter dem letz-
ten Zeichen im Textfeld (und kann nicht weiter nach rechts bewegt werden), dann hat die Taste keine Auswir-
kung.
"Auf" Pfeil: wenn der Knopf auf der Fernbedienung, der diesem Zeichen entspricht, gedrückt wird, wird der Kur-
sor im laufenden Textfeld einen Platz nach oben bewegt. Befindet sich der Kursor bereits in der ersten Zeile
des Textfeldes (oder wenn das laufende Textfeld nur eine Zeile hat: MhwVkTextField)), hat die Taste keine Aus-
wirkung.
"Ab" Pfeil: wenn der Knopf auf der Fernbedienung, der diesem Zeichen entspricht, gedrückt wird, wird der Kur-
sor im laufenden Textfeld einen Platz nach unten bewegt. Befindet sich der Kursor bereits in der letzten Zeile
des Textfeldes (oder wenn das laufende Textfeld nur eine Zeile hat: MhwVkTextField)), hat die Taste keine Aus-
wirkung.

[0301] Die "findLocation" Methode bestimmt die Lage der virtuellen Tastatur auf dem Bildschirm und versucht
die "bebaute" Fläche zu minimieren.

[0302] Die MhwVkTextField Klasse ist einfach eine Spezialisierung der "TextField" Klasse im "java.awt" Paket.
Sie verwaltet zusätzlich einen booleschen Wert, der den Gebrauch (oder auch nicht) der virtuellen Tastatur ver-
waltet.

[0303] Wenn der boolesche Wert "wahr" ist, wird eine "base" Instanz der "TextField" Klasse geschaffen und
ein virtueller Tastaturempfänger, der innerhalb der laufenden Anwendung zur Verfügung steht, wird gleichzeitig
46/115

DE 600 27 206 T2 2006.12.21
hinzugefügt, wobei die "addKeyListener" Methode angewendet wird. Wenn nicht, dann wird eine "normale"
TextArea erzeugt.

[0304] Wenn das Textfeld den Fokus besitzt, dann wenn der Benutzer "OK" drückt und der Boolesche Ver-
knüpfung den Einsatz der virtuellen Tastatur spezifiziert, wird die virtuelle Tastatur angezeigt und erhält den
Fokus. Es verwaltet alle Ereignisse und kann das Textfeld ausfüllen. Wenn der Benutzer abermals "OK" drückt,
wird sein Text bestätigt und die Tastatur verlässt den Fokus. Wenn der Gebrauch der virtuellen Tastatur nicht
beabsichtigt ist (boolesch = unwahr), dann hat das Textfeld das gleiche Verhalten wie ein Standardtextfeld in
"java.awt".

[0305] Die MhwVkTextArea Klasse ist einfach eine Spezialisierung der "TextArea" Klasse im "java.awt" Paket.
Sie verwaltet zusätzlich einen booleschen Wert, der den Gebrauch (oder auch nicht) der virtuellen Tastatur ver-
waltet.

[0306] Die Konstruktoren sind genau die gleichen, wie jene der "TextArea" Klasse in dem "java.awt" Paket,
mit einem einfachen zusätzlichen Argument: eine Boolesche, die den Gebrauch der virtuellen Tastatur spezi-
fiziert.

[0307] Wenn der boolesche Wert "wahr" ist, wird eine "base" Instanz der "TextField" Klasse geschaffen und
ein virtueller Tastaturempfänger, der innerhalb der laufenden Anwendung zur Verfügung steht, wird gleichzeitig
hinzugefügt, wobei die "addKeyListener" Methode angewendet wird. Wenn nicht, dann wird eine "normale"
TextArea erzeugt.

[0308] Wenn das Textfeld den Fokus besitzt, dann wenn der Benutzer "OK" drückt und der Boolesche Ver-
knüpfung den Einsatz der virtuellen Tastatur spezifiziert, wird die virtuelle Tastatur angezeigt und erhält den
Fokus. Es verwaltet alle Ereignisse und kann das Textfeld ausfüllen. Wenn der Benutzer abermals "OK" drückt,
wird sein Text bestätigt und die Tastatur verlässt den Fokus. Wenn der Gebrauch der virtuellen Tastatur nicht
beabsichtigt ist (boolesch = unwahr), dann hat das Textfeld das gleiche Verhalten wie ein Standardtextfeld in
"java.awt".

[0309] Die folgende Sektion beschreibt ferner die Implementierung von Eigenschaften, die oben beschrieben
wurden und insbesondere die Wiederherstellung graphischer Objekte (zum Beispiel Textfelder, Schaltflächen,
Schieberegler, Listen, Ankreuzfelder, Auswahlmöglichkeiten, und so weiter) aus einer Reihe graphischer Ele-
mente.

[0310] Die Fig. 39 zeigt eine Schaltfläche, der zum Beispiel aus 9 Elementen besteht: den 4 Ecken (NW 2100,
NO 2101, SW 2102, SO 2103), den 4 Seiten (N 2104, O 2105, W 2106 und S 2107) und dem Zentrum (C2108).

[0311] Typischerweise, aber nicht notwendigerweise, ist jedes der neun Elemente quadratisch (4 × 4 Pixel, 8
× 8 Pixel, 16 × 16 Pixel) Die Blöcke N, O, W, S und C Elemente sind innerhalb dem erforderlichen Gebiet ge-
kachelt (bestimmt durch die Grösse der Komponente zusammen mit dem Rand durch das Aussehen be-
stimmt). Dieses Gebiet muss nicht ein Mehrfaches der Grösse der Elemente sein. Gegenwärtig verläuft die Ka-
chelung von links nach rechts oder von oben nach unten, somit erscheinen alle unvollständig gezeichneten
Elemente am unteren Rand und an den rechten Seiten. Man kann ins Auge fassen "zentriert" und "rechts" bün-
dig ausgerichtete Kachelregeln hinzuzufügen, wenn man dies als nützlich empfindet. Im Allgemeinen haben
die NW, NO, SW und SO Elemente die gleiche Grösse wie der Rand und daher ist die Kachelung nicht not-
wendig. Falls sie jedoch kleiner als erforderlich sind, wird die Kachelung automatisch vorgenommen.

[0312] Eine kurze Beschreibung folgt, wie dies implementiert wird. Die Arbeit wird in drei Gebiete aufgeteilt:
die Vorrichtung, die in dem nativen WGT Modul eingebaut ist, erlaubt die Erstellung und Zuordnung verschie-
dener Ansichten mit verschiedenen WGT Trickfenstern; die Entwicklung des nativen "LookPixmap" Moduls, in
dem die Funktionen zum Zeichnen der verschiedenen graphischen Merkmale der Komponenten eingeschlos-
sen sind; und der Entwicklung des mhw.awt Java Paketes zur Verbindung mit dem nativen Kode.

[0313] Diese drei Entwicklungsgebiete werden in den folgenden Sektionen beschrieben.

[0314] Der WGT Modul Ansichtsvorrichtung wird nun beschrieben unter Bezug auf die Fig. 40 und Fig. 41.

[0315] Das Ziel dieser Sektion ist zu beschreiben, wie der WGT Modul verändert wurde, so dass er in der
Lage ist das Aussehen der verschiedenen verwalteten graphischen Objekte zu steuern. Neue Ansichten kön-
47/115

DE 600 27 206 T2 2006.12.21
nen in neuen Klassen definiert werden, die, wenn nötig, hinzugefügt werden können, in dem der WGT Modul
unberührt bleibt. Eine Standard WGT Ansicht (LookWgt) wird standardmässig zur Verfügung gestellt, umge-
setzt und den Trickfenstern zugeordnet, so dass diese Anwendungen, die diese Möglichkeit nicht nutzen wol-
len, dies nicht müssen.

[0316] Die folgenden Eigenschaften können erforderlich sein: eine Anzahl verschiedener Ansichten kann de-
finiert werden für jeden Objekttyp; eine verschiedene Ansicht kann unabhängig jedem Objekt gegeben werden,
und standardmässig kann die Ansicht, die durch den aktuellen WGT definiert ist bei den Objekten eingesetzt
werden.

[0317] Zwei verschiedene Techniken zum Zeichnen der Ansicht eines Objekts müssen möglich sein: bitmap
und vektorielle Technik.

[0318] Bei der Bitmap Technik wird das Objekt durch Kombination einer Anzahl vorbestimmter Bitmap Ele-
mente gezeichnet, um eine einzige Bitmap zu erzeugen, die dann gezeichnet wird. Um Objekte mit variabler
Grösse zu erzeugen, können Elemente wiederholt werden entlang der Seite der Elemente, damit man ein Ob-
jekt der erforderlichen Grösse aufbauen kann.

[0319] Weder die Grösse noch die genaue Anordnung jeder dieser Elemente ist definiert. Die Idee ist, dies
so offen wie möglich zu lassen, damit die Erzeugung eines neuen Aussehens durch die WGT nicht allzu sehr
eingeschränkt ist. Die Betrachtungsklasse muss die Bitmap Elemente bestimmen und die Regeln, um sie zu-
sammen als eine Funktion der erforderlichen Objektgrösse zu montieren.

[0320] Die LookPixmap (nativ) und die PixmapLook (Java) Klassen, die später beschrieben werden, benut-
zen ausschliesslich diese Methode. Es gibt nichts, um die Entwickler daran zu hindern, ihren eigenen Look zu
schaffen, der von der LookPixmap, oder auch nicht, abgeleitet ist, die die vektorielle Methode benutzt.

[0321] Bei der vektoriellen Technik wird das Objekt unter Benutzung einer Reihe grundlegender Zeichenope-
rationen gezeichnet, so wie zum Beispiel DrawRectancle(), DrawArc(). Die Betrachtungsklasse muss die Re-
geln zur Zeichnung des Objekts als Funktion der erforderlichen Objektgrösse bestimmen.

[0322] Es ist durchaus möglich eine Betrachtungsklasse durch Kombination von sowohl der Bitmap- als auch
der vektoriellen Technik in Betracht zu ziehen. Der Bitmap Ansatz, zum Beispiel, kann für die Grundform einer
Schaltfläche eingesetzt werden, während die der vektorielle Ansatz für die Hervorhebung eingesetzt werden
könnte.

[0323] Der WGT Modul Look Mechanismus wird nun in mehr Einzelheiten erläutert.

[0324] Die folgenden Mechanismen wurden aufgenommen:
– Unterteilung der aktuellen Zeichenmethode für jedes Objekt in sieben Funktionen, wovon bestimmte in
der Betrachtungsklasse, die dem Objekt zugeordnet sind, enthalten sind: Drawbackground(): MhwWgt-
LookDrawBackground(); DrawForeground(); MhwWgtLookDrawForeground(); MhwWgtLookDrawRelief();
MhwWgtLookDrawFocus(); MhwWgtLookHighlight()
– Erzeugung einer abstrakten Klasse MhwWgtLook
– Erzeugung einer Klasse MhwWgtLookWgt, abgeleitet von MhwWgtLook und realisiert wenn WGT gestar-
tet wird.
– Hinzufügung einer g_TheDefaultLook globalen Variablen, um die Ansicht einzurichten, die jedem Objekt,
wenn es erzeugt wird, zugeordnet werden wird, wenn kein spezifischer Look MhwWgtXXXAttsSetLook
nicht zugeordnet wurde.
– Hinzufügung einer öffentlichen Methode MhwWgtSetDefaultLook(context), um den standardmässigen
Look für Objekte zu wechseln.
– Hinzufügung von zwei öffentlichen Methoden zu den Objektklassen, MhwWgtSetXXXAttrLook(*object,
*look) und MhwWgtGetXXXAttsLook(*object).

[0325] Diese Aspekte werden in den folgenden Sektionen dargestellt, beginnend mit der Methode zum Zeich-
nen.

[0326] Jede Zeichenfunktion ruft nun die folgenden Methoden auf, wenn sie beansprucht wird: DrawBack-
ground(); MhwWgtDrawBackground(); DrawForeground(); MhwWgtLookDrawForeground(); MhwWgtLook-
DrawRelief(); MhwWgtLookDrawFocus(); und MhwWgtLookHighlight().
48/115

DE 600 27 206 T2 2006.12.21
[0327] Die beiden MethodenFrawBackground() und DrawBackground() sind Teil von Wgt und werden unbe-
rücksichtigt des Aussehens aufgerufen. Die anderen sind eigentlich Zeiger für die entsprechenden Funktionen
in der Look Klasse, die mit dem in Frage stehenden Trickfenster verknüpft sind. Auf diese Art und Weise imp-
lementiert die Look Klasse die Zeichenfunktionen für diese Teile.
Background (Hintergrund) Dieser ermöglicht der Ansicht (look) hinter dem gesamten Trickfenster zu zeichnen.
Foreground (Vordergrund) Dieser kann benutzt werden um ein Bild zu zeichnen mit einer anderen Graphik
über dem Mittelteil des Trickfensters (wobei die Rahmen ausgeschlossen sind).
Relief Dies wird aufgerufen, wenn die relief flag des Trickfensters gesetzt ist und wird eingesetzt um einen Rah-
men oder relief für das Trickfenster zu zeichnen.
Focus (Fokus) Dieser wird aufgerufen, wenn das Trickfenster den Fokus besitzt. Es kann benutzt werden um
dies graphisch anzuzeigen.
Highlight (Hervorhebung) Diese wird aufgerufen, wenn das Trickfenster hervorgehoben wird. es kann benutzt
werden, um dies graphisch anzuzeigen.

[0328] Die abstrakte Klasse MhwWgtLook wird bestimmt und enthält folgendes:
WgtCoreLookClassMethod; WgtCoreLookClassField; WgtCoreLookClass; WgtCoreLookPart; und WgtCore-
LookObject.

[0329] Diese sind unten beschrieben.
49/115

DE 600 27 206 T2 2006.12.21
50/115

DE 600 27 206 T2 2006.12.21
[0330] (Die Card8, Card16 und so weiter, Datentypen sind Pseudonyme für Nummerntypen, die die angege-
bene Anzahl an Bits haben, zum Beispiel Card8 entspricht einem "char", Card16 entspricht einem "short",
usw.)

[0331] Jede Zeichenmethode ist für jeden Objekttyp identisch. Für Ansichten, die eine unterschiedliche Me-
thode für jedes Verfahren benötigen, oder zumindest für bestimmte Methoden, muss die Methode in der Be-
trachtungsklasse den Trickfenstertyp identifizieren und entsprechend vorgehen.

[0332] Beachten Sie bitte den Zweck der DrawNothing() Methode. Sie gibt einfach OK zurück, wenn sie auf-
gerufen wird. Bestimmte Eigenschaften sind bei einer gegebenen Ansicht nicht notwendigerweise implemen-
tiert, so dass der WGT nicht notwendigerweise das Vorhandensein einer gegebenen Funktion prüfen muss,
jede nicht implementierte Funktion sollte auf diese Methode verweisen.

[0333] Beachten Sie auch Mask. Dies ist ein privater, nur lesbarer (read-only) boolescher Datenbereich, wo
51/115

DE 600 27 206 T2 2006.12.21
jedes Element einer der obigen Methoden entspricht. Wenn ein Element auf 1 gesetzt wird, dann wird die ent-
sprechende Methode neu definiert. Andernfalls wird die Methode nicht neu definiert. Auf diese Art und Weise
kann, wenn gewünscht, WGT in einem einzigen Arbeitsgang herausfinden, welche Methoden aufgerufen wer-
den müssen.

[0334] Die Betrachtungsklasse wird zur Bestimmung der Schnittstelle zwischen irgendeiner Betrachtungsbe-
stimmung und WGT benutzt. WGT benutzt nur diese Methoden, um die gewünschte Ansicht darzustellen.
Wenn zusätzlichen Funktionalitäten einer Ansicht erwünscht sind, können diese in einer erweiterten Ansich-
tenstruktur einbezogen werden. aber es liegt an der Anwendung und nicht an WGT, diese Methoden/Parame-
ter zu berücksichtigen. Auf diese Art und Weise können zusätzliche Attribute hinzugefügt werden.

[0335] Eine abgeleitete Ansichtsstruktur muss alle diese Methoden und Attribute enthalten und sie kann
ebenfalls ihre eigenen hinzufügen. WGT wird jedoch nur jene Methoden berücksichtigen, die in der MhwWgt-
Look Struktur definiert sind.

[0336] Nun wird die MhwWgtLookWgt Klasse erläutert.

[0337] Damit bestehende Anwendungen nicht verändert werden müssen, um mit der veränderten Version der
WGT kompatibel zu bleiben, wird eine Basisansichten-Klasse erzeugt, die die Ansicht, die WGT Objekte im
Moment besitzen, bestimmt und durch WGT realisiert.

[0338] Es ist eine Unterklasse von MhwWgtLook und wird MhwWgtLookWgt genannt. Wenn diese Klasse
realisiert wird, werden die Werte aller Zeiger in der Struktur so gesetzt, dass sie auf die WGT-bestimmten Me-
thoden hinweisen.

[0339] Dies Basisklasse enthält sonst nichts anderes – sie definiert ganz einfach die Ansicht, die WGT mo-
mentan liefert.
52/115

DE 600 27 206 T2 2006.12.21
[0340] In Bezug auf die WGT Initialisierung muss eine Instanz der MhwWgtLookwgt Klasse geschaffen wer-
den, wenn der WGT gestartet wird. WGT wird dadurch Zugriff auf diese Methoden bekommen, wenn die An-
wendung keine unterschiedliche Ansicht spezifiziert. Die g_TheDefaultLook global Variable (unten beschrie-
ben) muss anfänglich so gesetzt werden, dass auf diese Ansicht hinweist.

[0341] Die Vorgänge zur Bestimmung des Aussehens und zum Setzen der Standardansichten werden nun
erläutert.
53/115

DE 600 27 206 T2 2006.12.21
[0342] WGT ist nicht zur Bestimmung und Realisierung neuer Ansichtenobjekte zuständig. Anwendungen
müssen dies selbst vornehmen. Alle Ansichtenobjekte müssen sich in eine MhwWgtLook Struktur einbetten
lassen. Siehe auch unten unter die Verwaltung von Ansichten.

[0343] Bezüglich der Standardansichten muss ein Feld:
MhwWgtLook *DefaultLook

[0344] Zum MhwWgtContext Objekt hinzugefügt werden, unter Hinweis auf die Instanz von MhwWgtLook, die
bei jedem neuen Objekt, das von diesem Kontext erzeugt wurde, angewendet werden muss. Wenn ein neuer
WGT Kontext erzeugt wurde, muss das Feld so gesetzt werden, dass es auf WgtBasicLook hinweist.

[0345] Bezüglich der Einrichtung der Standardansicht für einen Kontext, wird eine öffentliche Methode zur
Verfügung gestellt:
MgwWgtSetDefaultLook(MhwWgtContext, aContext, MhwWgtLook aLook)
zur Einrichtung des DefaultLook Feldes in aContext um auf den aLook hinzuweisen.

[0346] Zur Verknüpfung einer Ansicht mit einem Objekt, wird das folgende Attribut zur coreAtts Struktur in der
core Klasse hinzugefügt:
MhwWgtLook *Look

[0347] Dieses Attribut wird auf diese Art und Weise für jedes gestaltete Objekt erzeugt. Wann auch immer ein
Objekt realisiert wird, wird Look eingerichtet, um auf die DefaultLook globale Variable hinzuweisen.

[0348] Zwei neue öffentliche Methoden sollten zur Core-Klasse hinzugefügt werden, um der Look Instanz, die
mit dem zu Objekt verknüpft ist, zu ermöglichen, verändert zu werden:
MhwWgtSetXXXAttsLook(MhwWgtWidget anObject, MhwWgtLook aLook) und MhwWgtGetXXXAtts-
Look(MhwWgtWidget an Object, MhwWgtLook *aLook).

[0349] Die Verwaltung der Ansichten wird nun erläutert.

[0350] WGT liefert keine Ansichtenverwaltung. Um eine Ansicht, ausser der Standardansicht, zu benutzen,
muss eine Anwendung zuerst sicher stellen, dass eine oder mehrere Look Klassen realisiert und initialisiert
sind und dass immer wenn sie ein neues WGT Objekt erzeugt, die MhWWgtSetCoreAttsLook() Methode ein-
setzt, um das Objekt mit der gewünschten Ansicht zu verbinden. Wenn sie eine gegebene Ansicht für alle zu-
künftigen Trickfenster einsetzen möchte, kann sie die MhwWgtSetDefaultLook() Methode, wie oben beschrie-
ben, benutzen.

[0351] Eine Anwendung, die irgendeine Ansicht, ausser der durch die Standardeinstellung bestimmte, einset-
zen möchte, ist für die Erzeugung und Realisierung der Ansicht zuständig. In einem anderen Ausführungsbei-
spiel der Erfindung kann eine Anwendung Ansichten aus entfernter Quelle herunterladen. In diesem Fall muss
jedoch die Anwendung selbst die erforderlichen Klassen, die von MhwWgtLook abgeleitet sind, zur Verfügung
stellen.

[0352] Eine Ansicht soll erst durch die Anwendung, die sie erzeugt hat, zerstört werden, bis alle Trickfenster,
die sie benutzen, zerstört sind. Dies verlangt die Hinzufügung eines refCounter Feldes, um die Anzahl der "Kli-
enten" zu zählen.
Look=MhwNewLook()
MhwLookRef(Look);
...
MhwLookUnref(Look);
Look=0

[0353] Dies ersetzt free (look). Die Ansicht (look) wird augenblicklich zerstört, wenn ihr refCounter Feld 0 ent-
spricht.
SetXxxLook(widget), look) (
If(widget->core.look)
MhwLookUnref(widget->core.look);
Widget->core.look=look;
If(look)
MhwLookRef(look);
54/115

DE 600 27 206 T2 2006.12.21
)

[0354] Die WGT Modulliste der APIs zur Implementierung von Looks folgt hier:

[0355] Der Look/LookPixmap Modul wird nun in weiteren Einzelheiten beschrieben.

[0356] Die MhwWgtLookPixmap Klasse wird aus der MhwWgtLook Klasse abgeleitet, wie oben beschrieben
wurde. Im Wesentlichen arbeitet sie durch Rekonstruktion der verschiedenen Elemente jeder Komponente, um
ein graphische Bild der erforderlichen Grösse zu erzeugen, wie oben beschrieben wurde.

[0357] Diese Bilder werden für Folgendes benötigt: Hintergründe für Schaltflächen; Relief (das ist zum Bei-
spiel der Rand um die aktive Zone von Textfeldern); ein Symbol für die Auswahl Komponente; Ankreuzfelder;
Schiebregler; und Schiebereglerlifte.

[0358] Unter Bezug auf die Fig. 40 werden Bilder nicht komprimiert, um Bereitstellzeit zu vermindern, jedoch
in einem besonderen Format gespeichert, das so ausgelegt ist, um so weit wie möglich belegten Speicherplatz
zu minimieren. Die Farbe aller Pixel (2152) wird in einem einzigen Bit beschrieben, welche die Indexnummer
(2151) der Farbe in der aktuellen Farbtabelle darstellt. Die Fig. 40 zeigt einen beispielhaften Puffer, image, der
ein 4 × 4 Bild (2153) enthält.

[0359] Das Bild (2153) in der Fig. 40 würde folgendermassen gespeichert werden:
Card8 slidLiftSeVrImage4 [4] [4] =
(
(0, 0, 0, 1),
(0, 0, 1, 2),
(0, 1, 2, 3),
(1, 2, 3, 4)
55/115

DE 600 27 206 T2 2006.12.21
);

[0360] Die LookPixMap Bildstruktur wird nun erläutert.

[0361] Zur Identifizierung der Grösse eines Bildpuffers, wird eine Struktur, LookPixmapImage, definiert, ein-
schliesslich dem oben beschriebenen Bildpuffer, zusammen mit der Breite und Höhe des Bildes. Die Struktur,
wie unten beschrieben, wird eingesetzt, um die Daten für jedes graphische Element aufzunehmen.

[0362] Bilder können verschiedene Grössen haben, obwohl sie für einen gegebenen Elementetyp hauptsäch-
lich gleich sein werden. Das zentrale Element (xxxxxC), jedoch, hat oft die Grösse 1 × 1. Die MhwWgtLook-
PixmapAllImages Struktur fasst alle Bildelemente, wie unten dargestellt, zusammen:

Typedef struct
(
LookPixmapImage *relnoNW; Nordwest Ecke des Reliefs – Status Normal
LookPixmapImage *relnoSW, Südwest Ecke des Reliefs – Status Normal
56/115

DE 600 27 206 T2 2006.12.21
LookPixmapImage *relnoNE; Nordost Ecke des Reliefs – Status Normal
LookPixmapImage *relnoSE; Südost Ecke des Reliefs – Status Normal
LookPixmapImage *relnoN; Nord Rand des Reliefs – Status Normal
LookPixmapImage *relnoW; West Rand des Reliefs – Status Normal
LookPixmapImage *relnoE; Ost Rand des Reliefs – Status Normal
LookPixmapImage *relnoS; Sued Rand des Reliefs – Status Normal
LookPixmapImage *relnoC; Mittelfläche des Reliefs – Status Normal
LookPixmapImage *relfoNW; Status – nur Fokus
LookPixmapImage *relfoSW;
LookPixmapImage *relfcNW;
LookPixmapImage *relfoSE;
LookPixmapImage *relfoN;
LookPixmapImage *relfoW;
LookPixmapImage *relfoE;
LookPixmapImage *relfoS;
LookPixmapImage *relfoC;
LookPixmapImage *relhiNW; Status – nur Hervorhebung
LookPixmapImage *relhiSW;
LookPixmapImage *relhiNE;
LookPixmapImage *relhiSe;
LookPixmapImage *relhiN;
LookPixmapImage *relhiW;
LookPixmapImage *relhiE;
LookPixmapImage *relhiE;
LookPixmapImage *relhiS;
LookPixmapImage *relhiC;
LookPixmapImage *relfhNW; Status – Fokus und Hervorhebung
LookPixmapImage *relfhSW;
LookPixmapImage *relfhNE;
LookPixmapImage *relfhSE;
LookPixmapImage *relfhN;
LookPixmapImage *relfhW;
LookPixmapImage *relfhE;
 LookPixmapImage *relfhS;
LookPixmapImage *relfhC;
 LookPixmapImage *butnoNW; Schaltflächenelemente
LookPixmapImage *butnoSW;
LookPixmapImage *butnoNE;
LookPixmapImage *butnoSE;
LookPixmapImage *butnoN;
LookPixmapImage *butnoW;
LookPixmapImage *butnoE;
LookPixmapImage *butnoS;
LookPixmapImage *butnoC;
LookPixmapImage *butfoNW;
LookPixmapImage *butfoSW;
LookPixmapImage *butfoNE;
LookPixmapImage *butfoSE;
LookPixmapImage *butfoN;
LookPixmapImage *butfow;
LookPixmapImage *butfoE;
57/115

DE 600 27 206 T2 2006.12.21
[0363] Diese Sektion beschreibt das LookPixmap Modul einschliesslich der LookPixmap Klasse, die geschaf-
fen wurde, um eine Reihe verschiedener Ansichten beim Webbrowser einzusetzen.

[0364] Dieser Modul enthält die folgenden Ressourcendateien: MhwWgtLookPixmap.h; MhwWgtLook-
PixmapStruct.h; MhwWgtLookPixmapClass. c; MhwWgtLookPixmapPrivate. c; MhwWgtLookPixmapImages.
h; MhwWgtLookPixmapImages2. h; MhwWgtLookPixmapImages3.h; MhwWgtLookPixmapImages4.h;
MhwWgtLookPixmapImages5. h; und MhwWgtLookPixmapImages6. h;

[0365] Der LookPixmap Modul wird nun beschrieben einschliesslich Einzelheiten der bevorzugten Methode
zur Bildung und Gebrauch von LookPixmap Objekten.

[0366] Jede Software die WGT zur Schaffung und Verwaltung von Trickfenstern einsetzt, kann das Look-
Pixmap Modul benutzen, um alternative Ansichten den WGT Trickfenstern zu liefern. Für eine Anwendung zum
Einsatz der LookPixmap Ansicht, muss ein LookPixmap Objekt geschaffen werden. Dies kann unter Einsatz
des folgenden Kodes erledigt werden:

LookPixmapImage *butfoS;
LookPixmapImage *butfoC;
LookPixmapImage *buthiNW;
LookPixmapImage *buthiSW;
LookPixmapImage *buthiNE;
LookPixmapImage *buthiSE;
LookPixmapImage *buthiN;
LookPixmapImage *buthiW;
LookPixmapImage *buthiE;
LookPixmapImage *buthiS;
LookPixmapImage *buthiC;
LookPixmapImage *butfhNW;
LookPixmapImage *butfhSW;
LookPixmapImage *butfhNE;
LookPixmapImage *butfhSE;
LookPixmapImage *butfhN;
LookPixmapImage *butfhW;
LookPixmapImage *butfhS;
LookPixmapImage *butfhS;
LookPixmapImage *butfhC;
LookPixmapImage *choice; Wahlsymbol
LookPixmapImage *chcklna; Ankreuzfeldsymbol – Typ 1 nicht gewählt, kein Fokus
LookPixmapImage *chck1a; Ankreuzfeldsymbol – Typ 1 ausgewählt, kein Fokus
LookPixmapImage *chck1flna; Ankreuzfeldsymbol – Typ 1 nicht gewählt, Fokus
LookPixmapImage *chck1fla; Ankreuzfeldsymbol – Typ 1 ausgewählt, Fokus
LookPixmapImage *chck2na; Ankreuzfeldsymbol – Typ 2 nicht gewählt, kein Fokus
LookPixmapImage *chck2a; Ankreuzfeldsymbol – Typ 2 ausgewählt, kein Fokus
LookPixmapImage *chckf2na; Ankreuzfeldsymbol– Typ 2 nicht gewählt, Fokus
LookPixmapImage *chckf2a; Ankreuzfeldsymbol – Typ 2 ausgewählt, Fokus
LookPixmapImage *slidNeVr; Schieberegler Hintergrundelemente
LookPixmapImage *slidEVr;
LookPixmapImage *slidSeVr;
LookPixmapImage *slidSwHr;
LookPixmapImage *slidSHr;
LookPixmapImage *slidSeHr;
LookPixmapImage *slidSeVrHr;
LookPixmapImage *slidLiftNeVr;
 LookPixmapImage *slidLiftEVr;
LookPixmapImage *slidLiftSeVr;
LookPixmapImage *slidLiftSwHr;
LookPixmapImage *slidLiftSHr;
LookPixmapImage *slidLiftSeHr;
)
MhwWgtLookPixmapAllImages;
58/115

DE 600 27 206 T2 2006.12.21
 WgtErr = MhwWgtLkWebInitClass();
WgtErr = MhwWgtLkWebAttsInit(LookPxmapValues);
WgtErr = MhwWgtLkWebInitDefault/&PixmapLook, &LookPixmapValues);
PicmapLookObject = MhwWgtLkWebNew(6LookPixmapValues);

[0367] Eine Methode zur Einrichtung der Standardansicht wird nun beschrieben.

[0368] Eine Anwendung kann ein gegebenes Ansichtobjekt standardmässig nutzen. Standardmässig ist die
Standardansicht das LookWgt Objekt, das durch WGT erzeugt wurde. Um eine andere Standardansicht ein-
zurichten, unter der Voraussetzung, dass sie, wie oben beschrieben, bereits erstellt wurde, kann die folgende
Funktion verwendet werden:
MhwwgtSetDefaultLook((MhwWgtLook) PixmapLookObject);

[0369] Alle anschliessend erzeugten WGT Trickfenster werden mit der LookPixmap Ansichtenklasse ver-
knüpft und nicht die WGT Standard LookWgt.

[0370] Eine Anwendung kann eine Ansicht für einen gegebenen Typ von Trickfenster, oder ein gegebenes
Trickfenster wählen oder einrichten, wie nun beschrieben werden wird.

[0371] Eine Anwendung kann die Ansicht für ein gegebenes Trickfenster einrichten, wenn das Objekt durch
Aufruf der folgenden Funktion erzeugt wird, kurz bevor das Trickfenster erzeugt wird:
MhwWgtXXXAttsSetLook(MhwWgtXXXAtts*, MhwWgtLook);

[0372] Sie kann die Ansicht eines Objektes nach Erzeugung einrichten, in dem die folgende Funktion benutzt
wird:
MhwWgtXXXSetLook(MhwWgtXXXWidget*, MhwWgLook);
(wobei xxx der Typ des Trickfensters ist, zum Beispiel LIST).

[0373] Die Methode zum Einsatz der LookPixmap Bilder wird nun erläutert.

[0374] Ein einzelnes LookPixmap Objekt setzt einen einzigen Satz Bilder ein. Man kann ohne Zweifel die An-
sicht dramatisch ändern, nur durch Wechseln der Bilder.

[0375] Man kann die Bilder, die für ein gegebenes LookPixmap Objekt benutzt werden, ändern, in dem die
folgenden Funktionen aufgerufen werden:
MhwWgtLookPixmapSetImages(MhwWgtLookPixmap*, MhwWgtLookPixmapAllImages*);

[0376] Richtet die Bilder, die für alle Trickfenster benutzt werden, die das spezifizierte LookPixmap Objekt ein-
setzen, in der spezifizierten Bilderreihe ein.
MhwWgtLookPixmapSetDefaultImages(MhwWgtLookPixmap*);

[0377] Richtet die Bilder, die für alle Trickfenster, die das spezifizierte LookPixmap Objekt einsetzen, in die
spezifizierte Standardbilderreihe ein.

[0378] Wenn man verschiedene Bilder für verschiedene Trickfenster benutzen will, muss man ein Look-
Pixmap Objekt für jede erforderliche Bilderreihe schaffen. Jedes Bild wird dann mit der entsprechenden Ansicht
zugeordnet und man verknüpft dann jede Ansicht mit dem entsprechenden Trickfenster.

[0379] Die API des LookPixmap Moduls wird nun beschrieben unter Bezug auf die Fig. 39 und Fig. 41.

[0380] Die folgenden öffentlichen APIs stehen zur Verfügung:

MhwWgtLkWebClass PixmapLook;
MhwWgtLkWeb PixmapLookObject;
MhwWgtLkWebAtts LookPixmapValues;
MhwWgtError WgtErr;
59/115

DE 600 27 206 T2 2006.12.21
MhwWgtLookPixmapSetImages()

Prototyp

MhwWgtError MhwWgtLookPixmapSetImages(MhwWgtLkWeb aLook, MhwWgtLookPixmapAllImages*
someImages);

Beschreibung:

[0381] Richtet die Bilderreihen, die von aLook benutzt werden bei den Bilderreihen ein, die auf someImages
hinweisen.

[0382] Meldet zurück:
MHW_WGT_SUCCESS

Beschreibung:

[0383] Richtet die Bilderreihen, die von aLook benutzt werden bei den Bilderreihen ein, die in
MhwWgtLookPixmap programmiert sind und durch anImageID identifiziert werden.

[0384] Meldet zurück:
MHW_WGT_SUCCESS

Beschreibung:

[0385] Richtet die Bilderreihen, die von aLook benutzt werden bei den Bilderreihen ein, die in
MhwWgtLookPixmap programmiert sind und durch die Kennung 1 identifiziert werden.

Parameter:

aLook Das MhwWgtLkWeb Objekt, mit dem die Bilder ver-
knüpft werden sollen, someImages

someImages Die Bilderreihe, die mit aLook verknüpft werden sollen

MhwWgtLookPixmapSetImagesID()

Prototyp

MhwWgtError MhwWgtLookPixmapSetImagesID (MhwWgtLkWeb aLook, Card8 anImageID;

Parameter:

aLook Das MhwWgtLkWeb Objekt, mit dem die Bilder ver-
knüpft werden sollen, und durch anImageID identifi-
ziert sind.

anImageID Die Kennung der Bilderreihe, programmiert in Mhw-
WgtLookPixmap zur Verknüpfung mit aLook

MhwWgtLookPixmapSetDefaultImages()

Prototyp:

MhwWgtError MhwWgtLookPixmapSetDefaultI-
mages

(MhwWgtLkWeb aLook
60/115

DE 600 27 206 T2 2006.12.21
[0386] Meldet zurück:
MHW_WGT_SUCCESS

Beschreibung:

[0387] Kommt zum Einsatz zum Wechseln eines einzelnen Bildes durch die momentane MhwWgtLookPixma-
pAllImages Struktur, um auf das festgelegte Bild hinzuweisen. Erzeugt eine LookPixelmapImage Struktur und
richtet die laufende MhwWgrLookPixmapAllImages Struktur ein, auf die durch aLook hingewiesen wurde, um
auf diese LookPixmapImage für das Element hinzuweisen, spezifiziert durch anElementID.

[0388] Meldet zurück:
MHW_WGT_SUCCESS

Beschreibung:

[0389] Nimmt die 9 Bilder des elemX und zeichnet sie in das bestimmte MHW Fenster. Die Regeln zum Auf-
bau des Bildes sind durch aDrawMode bestimmt (momentan besteht nur
MHW_WGT_LIKWEB_DRAW_NORMAL). Das endgültige Bild wird in dem Fenster mit der oberen linken Ecke
bei (anX, aY) positioniert und mit einer Grösse aWidth × aHeight gezeichnet.

[0390] Wenn eines oder mehrere Elemente Null Grösse haben (entweder elemXX.width oder elemXX.height

Parameter:

aLook Das MhwWgtLkWeb Objekt, mit dem die Bilder ver-
knüpft werden sollen, und durch anImageID identifi-
ziert sind.

MhwWgtLookPixmapLoadImages()

Prototyp:

MhwWgtError MhwWgtLookPixmapSetLoadImage (MhwWgtLkWeb aLook, Int32 anElementID, Int32
aWidth, Int32 aHeight, Card8* anImageBuffer);

Parameter:

aLook Das MhwWgtLkWeb Objekt mit dem die durch anIma-
geID identifizierten Bilder verknüpft werden.

anElementID Die Kennung der zu wechselnden Elemente
aWidth Die Breite in Pixel des neuen Bildes
aHeight Die Höhe in Pixel des neuen Bildes
anImageBuffer Der Puffer der die neuen Bilddaten enthält

LookPixmapMakeImageFromElements()

Prototyp:

MhwWgtError LookPixmapMakeImageFromEle-
ments

(LookPixmapImage* elemN

LookPixmapImage* elemE,
LookPixmapImage* elemW,
LookPixmapImage* elemS,
LookPixmapImage* elemNW,
LookPixmapImage* elemE,
LookPixmapImage* elemSW,
LookPixmapImage* elemSE,
LookPixmapImage* elemC, Card16 anX,
Card16 aY, Card16 aWidth, Card16
aHeight, MHWWindowID aWindow,
LookPixmapDrawMode aDrawMode);
61/115

DE 600 27 206 T2 2006.12.21
ist null) wird dieses Element nicht gezeichnet.

[0391] Meldet zurück:
MHW_WGT_SUCCESS

[0392] Das Mhw.awt Java Schnittstellenpaket wird nun erläutert.

[0393] Drei Java Klassen wurden entwickelt, so dass der Look Mechanismus, der durch WGT bestimmt ist
durch Java Anwendungen ausgeschöpft werden kann. Diese sind: mhw.awt.WgtLook; und mhw.awt.Pixmap-
Look.

[0394] Die Look Klasse ist die abstrakte Klasse, die der MhwWgtLook Klasse entspricht, die oben beschrie-
ben wurde.

[0395] Die WgtLook Klasse wird eingesetzt, um Instanzen der WGT Klasse MhwWgtLookWgt zu erzeugen
und zu bearbeiten.

[0396] Die PixmapLook Klasse wird eingesetzt, um Bilder, die von der WgtLook Klasse benutzt werden zu
speichern.

[0397] Die Mhw.awt.PixmapLook API wird nun beschrieben, beginnend mit Einzelheiten der Konstruktoren.

PixmapLook

public PixmapLook()

[0398] Erzeugt eine neue Instanz eines PixmapLook Objekts mit den auf Standardbilder voreingestellten Bil-
dern (ID=1).

PixmapLook

public PixmapLook(int imageID)

[0399] Erzeugt eine neue Instanz eines PixmapLook Objekts mit Bildern die zu den durch imageID spezifi-

Parameter:

elemN, elemE, elemW, elemS, elemNW, elemE,
elemSW, elemC, elemSE:

das jeweils zu zeichnende Bild oben, rechts, links, un-
ten, obere linke Ecke, obere rechte Ecke, unten linke
Ecke, unten rechte Ecke und Mitte.

anX Die x-Position im Fenster, aWindow zum Zeichnen
des endgültigen Bildes.

aY Die y-Position im Fenster, aWindow zum Zeichnen
des endgültigen Bildes.

aWidth Die Breite, in Pixel, des neuen Bildes
aHeight Die Höhe, in Pixel, des neuen Bildes
aWindow Das Fenster, in dem das gebaute Bild gezeichnet wer-

den soll.
aDrawMode Der Modus in dem das Bild aufgebaut werden soll.

MHW_WGT_LIKWEB_DRAW_NORMAL: Setzt die
NW (2100), NO (2101, SW (2102), und S = (2103)
Elemente in den vier Ecken (2200, 2201, 2202, 2203)
ohne Kacheln. Kachelt horizontal die N und S Ele-
mente. Kachelt vertikal die W und O Elemente. Ka-
chelt sowohl horizontal als auch vertikal die C Ele-
mente. Obwohl es für alle Bildgrössen funktioniert,
wird nur zugesichert, dass es das Gebiet korrekt ka-
chelt, vorausgesetzt dass das zentrale Gebiet (2208)
rechteckig ist.
62/115

DE 600 27 206 T2 2006.12.21
zierten Bildern voreingestellt sind.

[0400] Die Methoden werden nun beschrieben.

SetImages

Public void SetImages()

[0401] Richten die laufenden Bilder für dieses PixmapLook Objekt auf den Standardwert (ID=1) ein.

[0402] Lädt ein festgelegtes Bildelement. Jedes PixmapLook Objekt hat einen Satz von (94) Bildern, die damit
verknüpft sind. Diese Bilder stellen die Elemente der graphischen Komponenten wie folgt dar:
0 relnoNW; 1 relnoSW; 2 relnoNE; 3 relnoSE; 4 relnoN; 5 relnoW; 6 relnoE; 7 relnoS; 8 relnoC; 9 relfoNW;
10relfoSW; 11relfoNE; 12relfoSE; 13relfoN; 14relfoW; 15relfoE; 16relfoS; 17relfoC; 18relhiNW; 19relhiSW;
20relhiNE; 21relhiSE; 22relhiN; 23relhiW; 24relhiE; 25relhiS; 26relhiC; 27relfhNW; 28relfhSW; 29relfhNE;
30relfhSE; 31relfhN; 32relfhW; 33relfhE; 34relfhS; 35relfhC; 36 butnoNW; 37 butnoSW; 38 butnoNE; 39 but-
noSE; 40 butnoN; 41 butnoW; 42 butnoE; 43 butnoS; 44 butnoC; 45 butfoNW; 46 butfoSW; 47 butfoNE; 48
butfoSE; 49 butfoN; 50 butfoW; 51 butfoE; 52 butfoS; 53 butfoC; 54 buthiNW; 55 buthiSW; 56 buthiNE; 57
buthiSE; 58 buthiN; 59 buthiW; 60 buthiE; 61 buthiS; 62 buthiC; 63 butfhNW; 64 butfhSW; 65 butfhNE; 66 butfh-
SE; 67 butfhN; 68 butfhW; 69 butfhE; 70 butfhS; 71 butfhC; 72 choice; 73 chcklno; 74 chcklse; 75 chcklfo; 76
chcklfs; 77 chck2no; 78 chck2se; 79 chck2fo; 80 chck2fs; 81 slidNeVr; 82 slidEVr; 83 slidSeVr; 84 slidSwHr;
85 slidSHr; 86 slidSeHr; 87 slidSeVrHr; 88 slidLiftNeVr; 89 slidLiftEvr; 90 slidLiftSeVr; 91 slidLifSwHr; 92 slid-
LiftSHr; 93 slidLiftSeHr.
width spezifiziert die Breite des genehmigten Bildes
height spezifiziert die Höhe genehmigten Bildes
buffer enthält die Bilddaten. Diese sind in Form einer Byteanordnung, wobei jedes Byte den Farbpalettenindex,
der für jeden Pixel eingesetzt werden muss, darstellt. Der Index der für Pixel (x, y) benutzt wird ist buffer[buf-
fer(y*width) + x].

[0403] Baut ein Bild, basierend auf 9 Elementen/N, E, W, S, NW, NO, SW, SO, C) und zeichnet es in ein Fens-
ter, das mit der Komponente aComponent verknüpft ist, mit der oberen linken Ecke bei (anX, aY9 und mit der
Grösse aWidth × aHeight. Die Bildpuffer werden als zweidimensionale Anordnung weiter gegeben, wobei eine
Dimension die Bildnummer angibt (0–8 entspricht N, O, W, S, NW. NO. SW, SO, C) und die andere enthält die
Daten. Die Breiten und die Höhen jedes Puffers werden in die Breiten- und Höhenfelder gegeben.

DownloadLookDir

Public java.lang.String DownloadLookDir()

[0404] sLädt ein "look" Verzeichnis aus dem MPEG Strom herunter. Meldet eine Zeichenkette, die Daten für
jede Ansichtenbilder, die heruntergeladen werden können, enthält und die durch Zeilenvorschubzeichen ge-
trennt sind. Die Zeilennummer eines Titels (0 bis n – 1) entspricht der Kennung (ImageSet), die mit Image Sek-

LoadImage

MakeImageFromElements

Public void akeImageFromElements(int [] widths,
Int [] heights,
Byte [] [] buffers,
Int anX,
Int aY
Int aWidth,
Int aHeight,
Java.awt.Component aComponent
63/115

DE 600 27 206 T2 2006.12.21
tion DownLoadLookImages(intImageSet) benutzt wird.

[0405] Das Verzeichnis ist in der Tat eine einfache Textdatei, die die Zeichenkette, die zurückgemeldet wird,
enthält. Der Dateipfad ist fest programmiert in der Quelle – gegenwärtig /home/users/mstoddar/mh-
plus/util/looks/images.dir.

[0406] Dies kann nach Bedarf geändert werden. Diese kann daher im Dekoder benutzt, um automatisch aus
dem MPEG Strom herunter zu laden.

[0407] Das Format der Datei ist:
<Image Set Title 1><\t><Image Set Description><\t><URL Resource><\t><URL Preview><\n>
<Image Set Title 2><\t><Image Set Description><\t><URL Resource><\t><URL Preview><\n>
<Image Set Title 3><\t><Image Set Description><\t><URL Resource><\t><URL Preview><\n>
<Image Set Title 4><\t><Image Set Description><\t><URL Resource><\t><URL Preview><\n>

[0408] Meldet "" zurück, wenn nicht erfolgreich.

DownloadLookImages

public void DownloadLookImages(int ImageSet)

[0409] Lädt eine neue Reihe Bilder aus dem MPEG Strom herunter, die durch die Zeilennummer (0 bis n – 1)
einer der Eingänge, die in DownLoadLookDir() zurückgegeben wurden, identifiziert sind und ordnet sie dieser
Ansicht zu.

[0410] Die Datei, die die Daten enthält hat das folgende Format:
WWWWHHHHWWWWHHHH ... eine Reihe 4-Bitketten (leading spaces), die die dezimalwerte der Breiten und
Höhen aller 94 Bilder beinhalten (in der gleichen Reihenfolge wie in der Methode LoadImage()). Die Datenpuf-
fer für jedes folgende Bild, auch im selben Format wie LoadImage(). Es wird keine Angleichung zwischen den
Bildern vorgenommen, der Beginn des nächsten Bildes startet beim Byte das dem vorhergehenden folgt.

[0411] Der Dateipfad ist fest programmiert in der Quellegegenwärtig
/home/users/mstoddar/mhplus/util/looks/images.<ImageSet>.

[0412] Dies kann nach Bedarf geändert werden. Diese kann daher im Dekoder benutzt, um automatisch aus
dem MPEG Strom herunter zu laden.
public void DownloadLookImages(string ImageURL)

[0413] Lädt eine Reihe neuer Bilder aus dem MPEG Strom herunter, durch die spezifizierte URL identifiziert
und ordnet sie der Ansicht zu.

[0414] Die Datei, die die Daten enthält hat das oben angegebene Format.

[0415] Die Struktur der Dateien wird nachstehend aus Vereinfachungsgründen im C Syntax aufgeführt:

Card8 relnoNWwidth [4] Zeichenfolgedarstellung mit Dezimalwert
Card8 relnoSWheight [4]
Card8 relnoSWwidth [4]
Card8 relnoSWheight [4]
Card8 relnoNEwidth [4]
Card8 relnoNEheight [4]
Card8 relnoNheight [4]
Card8 relnoWwidth [4]
Card8 relnoWheight [4]
Card8 relnoEwidth [4]
Card8 relnoEheight [4]
Card8 relnoSwidth [4]
64/115

DE 600 27 206 T2 2006.12.21
Card8 relnoSheight [4]
Card8 relnoCwidth [4]
Card8 relnoCheight [4]
Card8 relfoNWwidth [4]
Card8 relfoNWheight [4]
Card8 relfoSWwidth [4]
Card8 relfoNEwidth [4]
Card8 relfoNEheight [4]
Card8 relfoSEwidth [4]
Card8 relfoSEheight [4]
Card8 relfoNwidth [4]
Card8 relfoNheight [4]
Card8 relfoWwidth [4]
Card8 relfoWheight [4]
Card8 relfoEwidth [4]
Card8 relfoEheight [4]
Card8 relfoSwidth [4]
Card8 relfoSheight [4]
Card8 relfoCwidth [4]
Card8 relfoCheight [4]
Card8 relhiNWwidth [4]
Card8 relhiNWheight [4]
Card8 relhiSWwidth [4]
Card8 relhiNEwidth [4]
Card8 relhiNEheight [4]
Card8 relhiSEwidth [4]
Card8 relhiSEheight [4]
Card8 relhiNwidth [4]
Card8 relhiNheight [4]
Card8 relhiWwidth [4]
Card8 relhiWheight [4]
Card8 relhiEwidth [4]
Card8 relhiEheight [4]
Card8 relhiSwidth [4]
Card8 relhiSheight [4]
Card8 relhiCwidth [4]
Card8 relhiCheight [4]
Card8 relfhNWwidth [4]
Card8 relfhNWheight [4]
Card8 relfhSWwidth [4]
Card8 relfhNEwidth [4]
Card8 relfhNEheight [4]
Card8 relfhSEwidth [4]
Card8 relfhSEheight [4]
Card8 relfhNwidth [4]
Card8 relfhNheight [4]
Card8 relfhWwidth [4]
65/115

DE 600 27 206 T2 2006.12.21
Card8 relfhwheight[4]
Card8 relfhEwidth [4]
Card8 relfhEheight [4]
Card8 relfhSwidth [4]
Card8 relfhSheight [4]
Card8 relfhCwidth [4]
Card8 relfhCheight [4]
Card8 butnoNWwidth [4]
Card8 butnoNWheight [4]
Card8 butnoSWwidth [4]
Card8 butnoNEwidth [4]
Card8 butnoNEheight [4]
Card8 butnoSEwidth [4]
Card8 butnoSEheight [4]
Card8 butnoNwidth [4]
Card8 butnoNheight [4]
Card8 butnoWwidth [4]
Card8 butnoWheight [4]
Card8 butnoEwidth [4]
Card8 butnoEheight [4]
Card8 butnoSwidth [4]
Card8 butnoSheight [4]
 Card8 butnoCwidth [4]
Card8 butnoCheight [4]
Card8 butfoNWwidth [4]
Card8 butfoNWheight [4]
Card8 butfoSWwidth [4]
Card8 butfoNEwidth [4]
Card8 butfoNEheight [4]
Card8 butfoSEwidth [4]
Card8 butfoSEheight [4]
Card8 butfoNwidth [4]
Card8 butfoNheight [4]
Card8 butfoWwidth [4]
Card8 butfoWheight [4]
Card8 butfoEwidth [4]
Card8 butfoEheight [4]
Card8 butfoSwidth [4]
Card8 butfoSheight [4]
Card8 butfoCwidtht [4]
Card8 butfoCheight [4]
Card8 buthiNWwidtht [4]
Card8 buthiNWheight [4]
Card8 buthiSWwidtht [4]
Card8 buthiNEwidtht [4]
Card8 buthiNEheight [4]
66/115

DE 600 27 206 T2 2006.12.21
Card8 buthiSEwidth [4]
Card8 buthiSEheight [4]
Card8 buthiNwidth [4]
Card8 buthiNheight [4]
Card8 buthiWwidth [4]
Card8 buthiWheight [4]
Card8 buthiEwidth [4]
Card8 buthiEheight [4]
Card8 buthiSwidth [4]
Card8 buthiSheight [4]
Card8 buthiCwidth [4]
Card8 buthiCheight [4]
Card8 butfhNWwidth [4]
Card8 butfhNWheight [4]
Card8 butfhSWwidth [4]
Card8 butfhNEwidth [4]
Card8 butfhNEheight [4]
Card8 butfhSEwidth [4]
Card8 butfhSEheight [4]
Card8 butfhNwidth [4]
Card8 butfhNheight [4]
Card8 butfhWwidth [4]
Card8 butfhWheight [4]
Card8 butfhEwidth [4]
Card8 butfhEheight [4]
Card8 butfhSwidth [4]
Card8 butfhSheight [4]
Card8 butfhCwidth [4]
Card8 butfhCheight [4]
Card8 choicewidth [4]
Card8 choiceheight [4]
Card8 chcklnowidth [4]
Card8 chckinoheight [4]
Card8 chcklewidth [4]
Card8 chcklseheight [4]
Card8 chcklfowidth [4]
Card8 chcklfoheight [4]
Card8 chcklfswidth [4]
Card8 chcklfsheight [4]
Card8 chck2nowidth [4]
Card8 chck2noheight [4]
Card8 chck2sewidth [4]
Card8 chck2seheight [4]
Card8 chck2fowidth [4]
Card8 chck2foheight [4]
Card8 chck2fswidth [4]
Card8 chck2fsheight [4]
Card8 slidNeVrwidth [4]
Card8 slidNeVrheight [4]
Card8 slidEVrwidth [4]
Card8 slidVrheight [4]
67/115

DE 600 27 206 T2 2006.12.21
Card8 slidSeVrwidth [4]
Card8 slidSeVrheight [4]
Card8 slidSwHrwidth [4]
Card8 slidSwHrheight [4]
Card8 slidSHrwidth [4]
Card8 slidSHrheight [4]
Card8 slidSeHrwidth [4]
Card8 slidSeHrheight [4]
Card8 slidSeVrHrwidth [4]
Card8 slidSeVrHrheight [4]
Card8 slidLiftNeVrwidth [4]
Card8 slidLiftNeVrheight [4]
Card8 slidLiftEVrwidth [4]
Card8 slidLiftVrheight [4]
Card8 slidLiftSeVrwidth [4]
Card8 slidLiftSeVrheight [4]
Card8 slidLiftSwHrwidth [4]
Card8 slidLiftSwHrheight [4]
Card8 slidLiftSHrwidth [4]
Card8 slidLiftSHrheight [4]
Card8 slidLiftSeHrwidth [4]
Card8 slidLiftSeHrheight [4]
Card8 RelnoNWbuffer [width × height]
Card8 RelnoSWbuffer [width × height]
Card8 RelnoNEbuffer [width × height]
Card8 RelnoSEbuffer [width × height]
Card8 RelnoNbuffer [width × height]
Cardß RelnoWbuffer [width × height]
Card8 RelnoEbuffer [width × height]
Card8 RelnoSbuffer [width × height]
Card8 RelnoCbuffer [width × height]
Card8 RelfoNWbuffer [width × height]
Card8 RelfoSWbuffer [width × height]
Card8 RelfoNEbuffer [width × height]
Card8 RelfoSEbuffer [width × height]
Card8 RelfoNbuffer [width × height]
Card8 RelfoWbuffer [width × height]
Card8 RelfoEbuffer [width × height]
Card8 RelfoSbuffer [width × height]
 Card8 RelfoCbuffer [width × height]
Card8 RelhiNWbuffer [width × height]
Card8 RelhiSWbuffer [width × height]
Card8 RelhiNEbuffer [width × height]
Card8 RelhiSEbuffer [width × height]
Card8 RelhiNbuffer [width × height]
Card8 RelhiWbuffer [width × height]
Card8 RelhiEbuffer [width × height]
Card8 RelhiSbuffer [width × height]
Card8 RelhiCbuffer [width × height]
Card8 RelfhNWbuffer [width × height]
Card8 RelfhSWbuffer [width × height]
68/115

DE 600 27 206 T2 2006.12.21
Card8 RelfhNEbuffer [width × height]
Card8 RelfhSEbuffer [width × height]
Card8 RelfhNbuffer [width × height]
Card8 RelfhWbuffer [width × height]
Card8 RelfhEbuffer[width × height]
Card8 RelfhSbuffer [width × height]
Card8 RelfhCbuffer [width × height]
Card8 ButnoNWbuffer [width × height]
Card8 ButnoSWbuffer [width × height]
Card8 ButnoNEbuffer [width × height]
Card8 ButnoSEbuffer [width × height]
Card8 ButnoNbuffer [width × height]
Card8 ButnoWbuffer [width × height]
Card8 ButnoEbuffer [width × height]
Card8 ButnoSbuffer [width × height]
Card8 ButnoCbuffer [width × height]
Card8 ButfoNWbuffer [width × height]
Card8 ButfoSWbuffer [width × height]
Card8 ButfoNEbuffer [width × height]
Card8 ButfoSEbuffer [width × height]
Card8 ButfoNbuffer [width × height]
Card8 ButfoWbuffer [width × height]
Card8 ButfoEbuffer [width × height]
Card8 ButfoSbuffer [width × height]
Card8 ButfoCbuffer [width × height]
Card8 ButhiNWbuffer [width × height]
Card8 ButhiSWbuffer [width × height]
Card8 ButhiNEbuffer [width × height]
Card8 ButhiSEbuffer [width × height]
Card8 ButhiNbuffer [width × height]
Card8 ButhiWbuffer [width × height]
Card8 ButhihiEbuffer [width × height]
Card8 ButhiSbuffer [width × height]
 Card8 ButhiCbuffer [width × height]
Card8 ButfhNWbuffer [width × height]
Card8 ButfhSWbuffer [width × height]
Card8 ButfhNEbuffer [width × height]
Card8 ButfhSEbuffer [width × height]
Card8 ButfhNbuffer [width × height]
Card8 ButfhWbuffer [width × height]
Card8 ButfhEbuffer [width × height]
Card8 ButfhSbuffer [width × height]
Card8 ButfhCbuffer [width × height]
Card8 Choicebuffer [width × height]
Card8 chcklnobuffer [width × height]
Card8 chcklsebuffer [width × height]
Card8 chcklfobuffer [width × height]
Card8 chcklfsbuffer [width × height]
 Card8 chck2nobuffer [width × height]
Card8 chck2sebuffer [width × height]
Card8 chck2fobuffer [width × height]
69/115

DE 600 27 206 T2 2006.12.21

Card8 chck2fsbuffer [width × height]
Card8 slideNeVrbuffer [width × height]
Card8 slideEVrbuffer [width × height]
Card8 slideSeVrbuffer [width × height]
Card8 slideSwHrbuffer [width × height]
Card8 slideSHrbuffer [width × height]
Card8 slideSeHrbuffer [width × height]
Card8 slideSeVrbuffer [width × height]
Card8 slideNeVrbuffer [width × height]
Card8 slideLiftNeVrbuffer [width × height]
Card8 slideLiftEVrbuffer [width × height]
Card8 slideLiftSeVrbuffer [width × height]
Card8 slideLiftSwHrbuffer [width × height]
Card8 slideLiftSHrbuffer [width × height]
Card8 slideLiftSeHrbuffer [width × height]

Zum Beispiel
70/115

DE 600 27 206 T2 2006.12.21
reDrawAll

public void reDrawAll()

[0416] Findet das Trickfenster mit dem Fokus, dann die Vorgänger, bis keine mehr vorliegen. Oberstes Fens-
ter wird dann auf unsichtbar gesetzt und wieder auf sichtbar. Dann sollte das ganze Fenster neu gezeichnet
werden.

[0417] Die verschiedenen, oben beschriebenen, Verfahren zur Darstellung eines oder mehrerer graphischer
Objekte und zur Navigation zwischen einer Vielzahl derartiger Objekte, oder zum Empfangen von Eingaben
durch den Benutzer, können auch vorzugsweise, jedoch nicht ausschliesslich, auf anderen Gebieten im Rah-
men des Empfangs von Rundfunksendungen durch Rundfunksenderbetreiber eingesetzt werden. Jede Funk-
tionalität eines Beistelldekoders, der über visuelle Interaktivität mit dem Benutzer arbeitet, kann im Allgemei-
nen solche Verfahren einsetzen.

[0418] Eine Kette mit Symbolen, möglicherweise mit Unterketten, die hinzugefügt wurden und über die man
navigieren kann, können bei einer Anwendung für den Einkauf über Fernsehangebote (home shopping) zum
Einsatz kommen, um dem Benutzer die Anzeige von Artikeln zu erlauben, Preise anzusehen, Aufträge abge-
ben oder auf andere Weise mit der Anwendung interaktiv zu arbeiten. Das graphische Objekt, auf dem man
einen Auftrag erteilen kann, könnte, wenn es hervorgehoben wird, in der oben beschriebenen Weise automa-
tisch zwischen den Kaufsymbolen (zum Beispiel ein Dollarzeichen, $) und Text hin- und herspringen und den
bis dahin ausgegebenen Betrag, oder das Wort "Kaufen" in der Sprache des Benutzers anzeigen. Alternativ
oder zusätzlich könnte ein graphisches Objekt, das das Wort "Kaufen" in der Sprache des Abonnenten bein-
haltet, erscheinen, immer dann wenn das "Kaufen" Symbol gewählt wird.

[0419] Das "Kaufen" Symbol im obigen Beispiel kann neben ein Symbol gesetzt werden, das beim Anklicken
die Liste der bislang getätigten Einkäufe aufzeigt und ein anderes Symbol, das beim Anklicken Lieferoptionen
für das gerade gekaufte Produkt anzeigt, um so eine logische Abfolge der Symbole in der Kette, in der der Be-
nutzer navigieren kann, anzubieten. Wenn das "Kaufen" Symbol ausgewählt wurde, kann eine Unterkette mit
verschiedenen Unteroptionen erscheinen, die verschiedene Kreditpläne für teurere Produkte einschliesst. Ir-
gendwelche Information die vom Benutzer verlangt werden, wie zum Beispiel Strasse, Lieferadresse, können
mit der virtuellen Tastatur eingegeben werden.

Start des Puffers 1 data. (relnNW) (8 × 8 Bytes)

Start des Puffers 2 data. (relnSW) (8 × 8 Bytes)

Start des Puffers 3 data. (relnNE) (8 × 8 Bytes)

Start des Puffers 4 data. (relnSE) (8 × 8 Bytes)
71/115

DE 600 27 206 T2 2006.12.21
[0420] Bei einem elektronischen Programmführer können ähnliche Verfahren benutzt werden, zum interakti-
ven Browsern und zur Darstellung verschiedener Kanäle, Themen und Zeit und Datum. Eine weitere kunden-
spezifische Anpassung kann für die Umgruppierung der graphischen Optionen in der Kette nach Vorliebe des
Kunden denkbar sein; im Fall einer Kette von Kanälen können die vom Benutzer bevorzugten Kanäle an die
Spitze der Kette programmiert werden. Eine solche Präferenz kann vom Benutzer angegeben werden oder
vom Programm abgeleitet werden.

[0421] Weitere Anwendungen für die oben beschriebene Verfahren schliessen Online-Kataloge ein, Nach-
richten und Wetterinformationen auf Anfrage, Spiele und die allgemeine Verwaltung des Beistelldekoders (Ver-
walten der Konfiguration, usw.) Im Fall von Spielen kann der Kopf/Schwanz Flip-Flop Effekt benutzt werden,
um in-game Animationen bereit zu stellen, ohne notwendigerweise zusätzliche zu schreibende Verfahren er-
forderlich zu machen und die virtuelle Tastatur kann als alternative Form zur Steuerung fortgeschrittener Spiel-
arten benutzt werden.

[0422] Es sollte auch gewürdigt werden, dass alle Verfahren zur Interaktion über die Fernbedienung, wie hier
beschrieben wurde, ersetzt, oder ergänzt werden können durch eine Maus, (oder andere Richtungssteuerun-
gen, wie zum Beispiel ein Rollerball oder Steuerknüppel (Joystick)) und oder durch eine Tastatur (oder durch
andere Vorrichtungen, die eine Vielzahl von Tasten besitzen), entweder durch Simulation der Tasten einer
Fernbedienung (zum Beispiel durch Einsatz der Nummerntasten 0–9; der Pfeiltasten und der Rücklauftaste auf
einer Tastatur) oder direkt (zum Beispiel unter Einsatz der Maus, um auf die Schaltflächen zu klicken und der
Tastatur, um direkt Text einzugeben, anstatt die virtuelle Tastatur zu benutzen).

[0423] Die oben beschriebene virtuelle Tastatur kann bei jedem Gerät eingesetzt werden, das eine Vielzahl
von Tasten besitzt, wie zum Beispiel Spielgeräte oder Mobiltelefone, zum Beispiel. Im letzteren Fall kann die
virtuelle Tastatur im Wesentlichen, wie beschrieben wurde, auf dem Bildschirm des Telefons (bei Telefonen mit
einer genügend grossen Bildfläche) abgebildet werden, oder in einer komprimierten Form (für Telefone mit klei-
neren Anzeigeflächen). Eine derartige Kompression der virtuellen Tastatur könnte dazu führen, dass nur der
Symbolnummernblock zu einer bestimmten Zeit gezeigt wird, vorzugsweise mit einer Empfehlung der Symbole
oder Art der Symbole auf die durch Bedienen der links, rechts, auf- und ab-Tasten zugegriffen werden kann
(oder deren Entsprechungen, zum Beispiel im Fall von Richtungssteuerungen der rollerartigen Ausführung).
Die komprimierte virtuelle Tastatur kann bei anderen Anwendungen eingesetzt werden, insbesondere dort, wo
es wenig Platz zur Anzeige der Tastatur gibt.

[0424] Der Begriff "Ankreuzfeld" (check box) kann sich auf ein graphisches Objekt jeglicher Form beziehen,
zum Beispiel rund, die in der Lage ist verschiedene Zustände anzuzeigen, vorzugsweise zwei Zustände, die
"kontrolliert" und "nicht kontrolliert" entsprechen, aber möglicherweise mehr als zwei Zustände und die ihren
Zustand in durchgängiger Art und Weise verändern, wenn sie vom Benutzer angeklickt, oder angewählt wer-
den. Der "kontrollierte" Zustand kann durch ein Häkchen, Kreuz oder eine andere Ausschmückung in dem
Kästchen angezeigt werden.

[0425] Zur Erleichterung der Bezugnahme haben die unten benutzten Begriffe die folgenden bevorzugten Be-
deutungen:
HTML: HyperTextMarkup Language, eine Sprache die Dokumente beschreibt, die im Internet ausgetauscht
werden. Das Dokument kann Bezüge zu Seiten, Formatierungsinformationen, Ton und Bilder, usw. einschlies-
sen.
HTTP: HyperText Transport Protocol, ein Protokoll zur Kommunikation zwischen Internetservern, die HTML
Dokumente und Navigationsanwendungen enthalten, die das HTML Dokument abbilden.
MPEG-2: Motion Picture Expert Group, ein Kodierverfahren bewegter Bilder und Ton in Echtzeit.
PPP: Point-to-Point Protocol, ein Verbindungsprotokoll für Fernzugriff, das zwei Computern erlaubt über ein
Modem vernetzt zu werden.
PROXY SERVER: Eine auf dem Server befindliche Anwendung, die es erlaubt, sichere Internetverbindungen
aufzubauen und die auch HTTP und FTP Anfragen puffert.
SESSION: Eine Instanz einer Art Verbindung oder einer Anwendung im Speicher zu einer gegebenen Zeit.
URL: Uniform Resource Locator, eine Adresse, die zur Lokalisierung einer Datei oder von Ressourcen im In-
ternet dient. Die Verbindung zu einer Seite bezeichnet die Adresse der Ressource, die in der Webseite enthal-
ten ist.
WWW: World Wide Web, Internet Netzwerk, das lokale oder entfernte Dokumente benutzt. Ein Web Dokument
ist eine Web-Seite und die Verbindungen in der Seite erlauben die Navigation zwischen verschiedenen Seiten
und zwischen verschiedenen Themenkreisen, unberücksichtigt ob diese in einem lokalen oder entfernten
Netzwerk angesiedelt sind.
72/115

DE 600 27 206 T2 2006.12.21
GUI Graphical User Interface. Graphische Benutzerschnittstelle.
WGT: Widget Toolkit. "Werkzeugkasten" für Trickfenster.

[0426] Es ist wohlverstanden, dass die vorliegende Erfindung oben einzig und allein anhand von Beispielen
beschrieben wurde und dass Veränderungen von Einzelheiten innerhalb des Bereichs der Erfindung erfolgen
können.

[0427] Jede offen gelegte Eigenschaft in der Beschreibung und (wo angezeigt) der Ansprüche und Zeichnun-
gen, können unabhängig oder in jeder passenden Kombination vorgesehen werden.

[0428] In jeder oder allen zuvor erwähnten Eigenschaften, wurden bestimmte Eigenschaften der vorliegenden
Erfindung durch Einsatz von Rechnerprogrammen implementiert. Es wird jedoch gewiss dem Fachmann deut-
lich werden, dass jede dieser Eigenschaften durch Einsatz von Hardware, oder einer Kombination von Hard-
ware und Software, implementiert werden können. Ferner ist leicht zu verstehen, dass die Funktionen, die von
der Hardware, der Computersoftware und dergleichen vollzogen werden, mit elektrischen und ähnlichen Sig-
nalen durchgeführt werden.

[0429] Eigenschaften, die sich auf die Speicherung von Informationen beziehen, können auf geeigneten Spei-
cherorten oder Speicherplätzen implementiert werden. Eigenschaften, die sich auf die Datenverarbeitung be-
ziehen, können durch passende Prozessoren oder Steuerungsmittel implementiert werden, entweder in Soft-
ware oder in Hardware oder in einer Kombination von beiden.

[0430] In irgendeiner oder allen der zuvor erwähnten Formen, wobei die Erfindung in jeder Form ausgeführt
werden kann, können einige oder alle der folgend Formen ausgeführt werden: in einem Verfahren zum Betrieb
eines Rechnersystems; im Rechner selbst; in einem Rechnersystem, wenn programmiert mit, oder angepasst
oder eingerichtet ist, das Verfahren zum Betrieb dieses System auszuführen; und/oder in einem durch einen
Rechner lesbaren Speichermittel, das ein darauf aufgenommenes Programm besitzt, das geeignet ist, nach
dem Verfahren zum Betrieb des System zu arbeiten.

[0431] Wie hier durchgehend als Begriff verwendet wurde, kann "Computer System" durch "Computer",
"Rechner", "System", "Ausrüstung", "Gerät", "Maschine" oder ähnliche Begriffe ersetzt werden.

[0432] Referenznummern, die in den Ansprüchen auftauchen, sind nur zur Illustration und sollten keine ein-
schränkende Auswirkung auf den Umfang der Ansprüche darstellen.

[0433] Die Antragsteller erklären hiermit, zur Abwendung von Einwänden, dass sie die Urheberechte in den
beigefügten Zeichnungen beanspruchen.

[0434] Kurzdarstellung: Schwerpunkte der vorliegenden Erfindung betreffen ein Verfahren zur Steuerung des
Erscheinungsbildes eines graphischen Objekts in einer graphischen Benutzerschnittstelle. In einem Ausfüh-
rungsbeispiel der Erfindung schliesst ein Objekt, wie zum Beispiel ein Trickfenster (widget) in einer graphi-

Titel: Darstellung graphischer Objekte
73/115

DE 600 27 206 T2 2006.12.21
schen Benutzerschnittstelle, eine Instanz einer Trickfensterklasse (widget class) ein, in der Eigenschaften
und/oder Verfahren bestimmt sind, die die Bedienung des Objekts steuern und eine damit verknüpfte Instanz
eine Betrachtungsobjektsklasse, in der die Eigenschaften und/oder Verfahren bestimmt sind, die das Erschei-
nungsbild des Objekts steuern.

Patentansprüche

1. Ein Verfahren zur Steuerung des Aussehens eines objektorientierten Trickfensters (widget) (430; 500)
bei einer graphischen Benutzerschnittstelle (graphical user interface GUI), die beinhaltet:
Bestimmung eines Betrachtungsgegenstands; und
Verknüpfung des Betrachtungsgegenstands mit dem Trickfenster (430; 500);
wobei der Betrachtungsgegenstand einen Kode oder Kodeparameter enthält, die bestimmen, wie das Trick-
fenster (430; 500) dargestellt wird und
wobei der Betrachtungsgegenstand die Erscheinung des Trickfensters (430; 500) bestimmt,
dadurch gekennzeichnet, dass
der Betrachtungsgegenstand ein Aktualisierungszählwerk beinhaltet, dessen Wert aktualisiert wird, wenn der
Betrachtungsgegenstand neu definiert oder verändert wird.

2. Verfahren nach Anspruch 1, wobei der Betrachtungsgegenstand durch einen objektbezogenen Pro-
grammkode bestimmt wird.

3. Verfahren nach Anspruch 1, wobei das Trickfenster ein Attribut zur Kennzeichnung des Betrachtungs-
gegenstands beinhaltet, der mit dem Trickfenster (430; 500) verknüpft ist.

4. Verfahren nach Anspruch 1, das ferner die Veränderung der Erscheinung des Trickfensters (430; 500)
durch Neudefinition oder Veränderung des Betrachtungsgegenstands, oder durch Verknüpfung eines anderen
Betrachtungsgegenstands mit einem Trickfenster (430; 500) beinhaltet.

5. Verfahren nach Anspruch 1, das ferner die Steuerung des Aussehens einer Vielzahl von Trickfenstern
(430; 500) in einer graphischen Benutzerschnittstelle beinhaltet, durch Verknüpfung des Betrachtungsgegen-
stands mit der Vielzahl von Trickfenstern (430; 500).

6. Vorrichtung (13) zur Steuerung des Aussehens eines objektorientierten Trickfensters (430; 500) in einer
graphischen Benutzerschnittstelle, die beinhaltet:
Mittel (220) zur Bestimmung eines Betrachtungsgegenstands; und
Mittel (220) zur Verknüpfung des Betrachtungsgegenstands mit dem Trickfenster (430; 500);
wobei der Betrachtungsgegenstand einen Kode oder Kodeparameter beinhaltet, die bestimmen, wie das Trick-
fenster (430; 500) dargestellt wird und
wobei der Betrachtungsgegenstand das Aussehen des Trickfensters (430; 500) bestimmt
dadurch gekennzeichnet, dass
der Betrachtungsgegenstand ein Aktualisierungszählwerk beinhaltet, dessen Wert aktualisiert wird, wenn der
Betrachtungsgegenstand neu definiert oder verändert wird.

Es folgen 41 Blatt Zeichnungen
74/115

DE 600 27 206 T2 2006.12.21
Anhängende Zeichnungen
75/115

DE 600 27 206 T2 2006.12.21
76/115

DE 600 27 206 T2 2006.12.21
77/115

DE 600 27 206 T2 2006.12.21
78/115

DE 600 27 206 T2 2006.12.21
79/115

DE 600 27 206 T2 2006.12.21
80/115

DE 600 27 206 T2 2006.12.21
81/115

DE 600 27 206 T2 2006.12.21
82/115

DE 600 27 206 T2 2006.12.21
83/115

DE 600 27 206 T2 2006.12.21
84/115

DE 600 27 206 T2 2006.12.21
85/115

DE 600 27 206 T2 2006.12.21
86/115

DE 600 27 206 T2 2006.12.21
87/115

DE 600 27 206 T2 2006.12.21
88/115

DE 600 27 206 T2 2006.12.21
89/115

DE 600 27 206 T2 2006.12.21
90/115

DE 600 27 206 T2 2006.12.21
91/115

DE 600 27 206 T2 2006.12.21
92/115

DE 600 27 206 T2 2006.12.21
93/115

DE 600 27 206 T2 2006.12.21
94/115

DE 600 27 206 T2 2006.12.21
95/115

DE 600 27 206 T2 2006.12.21
96/115

DE 600 27 206 T2 2006.12.21
97/115

DE 600 27 206 T2 2006.12.21
98/115

DE 600 27 206 T2 2006.12.21
99/115

DE 600 27 206 T2 2006.12.21
100/115

DE 600 27 206 T2 2006.12.21
101/115

DE 600 27 206 T2 2006.12.21
102/115

DE 600 27 206 T2 2006.12.21
103/115

DE 600 27 206 T2 2006.12.21
104/115

DE 600 27 206 T2 2006.12.21
105/115

DE 600 27 206 T2 2006.12.21
106/115

DE 600 27 206 T2 2006.12.21
107/115

DE 600 27 206 T2 2006.12.21
108/115

DE 600 27 206 T2 2006.12.21
109/115

DE 600 27 206 T2 2006.12.21
110/115

DE 600 27 206 T2 2006.12.21
111/115

DE 600 27 206 T2 2006.12.21
112/115

DE 600 27 206 T2 2006.12.21
113/115

DE 600 27 206 T2 2006.12.21
114/115

DE 600 27 206 T2 2006.12.21
115/115

	Titelseite
	Beschreibung
	Patentansprüche
	Anhängende Zeichnungen

