

(12)

Oversættelse af europæisk patent

Patent- og
Varemærkestyrelsen

(51) Int.Cl.: **C 07 D 237/06 (2006.01)** **A 61 K 31/165 (2006.01)** **A 61 K 31/33 (2006.01)**
A 61 P 9/00 (2006.01) **A 61 P 13/00 (2006.01)** **A 61 P 25/00 (2006.01)**
A 61 P 27/00 (2006.01) **C 07 D 213/30 (2006.01)** **C 07 D 213/38 (2006.01)**
C 07 D 261/08 (2006.01) **C 07 D 295/08 (2006.01)** **C 07 D 295/18 (2006.01)**
C 07 D 307/14 (2006.01) **C 07 D 307/52 (2006.01)** **C 07 D 309/06 (2006.01)**

(45) Oversættelsen bekendtgjort den: **2015-12-14**

(80) Dato for Den Europæiske Patentmyndigheds
bekendtgørelse om meddelelse af patentet: **2015-10-28**

(86) Europæisk ansøgning nr.: **06829177.2**

(86) Europæisk indleveringsdag: **2006-11-29**

(87) Den europæiske ansøgnings publiceringsdag: **2008-09-03**

(86) International ansøgning nr.: **EP2006011443**

(87) Internationalt publikationsnr.: **WO2007071311**

(30) Prioritet: **2005-12-22 EP 05028147**

(84) Designerede stater: **AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR**

(73) Patenthaver: **Newron Pharmaceuticals S.p.A., Via Ariosto, 21, 20091 Bresso (MI), Italien**

(72) Opfinder: **NAPOLETANO, Mauro, Via Venini, 37, I-20127 MILANO (MI), Italien**
SABIDO-DAVID, Cibele, Via Carlo de Cristoforis, 13, I-20124 Milano (MI), Italien
MORIGGI, Ermanno, Via Egeo, 37, I-21013 Gallarate (VA), Italien
CACCIA, Carla, Via Rogorazza 29D, I-21010 Cardano Al Campo (VA), Italien
FARAVELLI, Laura, Via Roma, 4, I-20024 Garbagnate Milanese (MI), Italien
RESTIVO, Alessandra, Via Domenichino, 2, I-20149 Milano (MI), Italien
 SALVATI, Patricia, Via Valera, 16/C, I-20020 Arese (MI), Italien
THALER, Florian, Via Fratelli Cervi 4a, 21040 Gerenzano (VA), Italien

(74) Fuldmægtig i Danmark: **Awapatent A/S, Rigensgade 11, 1316 København K, Danmark**

(54) Benævnelse: **2-Phenylethylaminderivater som calcium- og/eller natriumkanalmodulatorer**

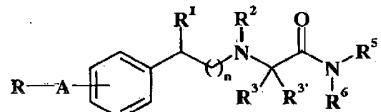
(56) Fremdragne publikationer:
EP-A- 1 588 704
WO-A-90/14334
WO-A-99/35125
WO-A-03/091219
WO-A-2004/089353
WO-A-2005/018627
DE-A1- 2 006 978
GB-A- 586 645

Fortsættes ...

DK/EP 1963280 T3

DESCRIPTION

[0001] The present invention relates to phenylethylamino derivatives, pharmaceutically acceptable salts thereof, pharmaceutical compositions containing them and their use as sodium and/or calcium channel modulators.


[0002] The phenylethylamino derivatives, object of the invention, are active as calcium and/or sodium channel modulators and therefore useful in preventing alleviating and curing a wide range of pathologies, including but not limited to neurological, psychiatric, cardiovascular, inflammatory, ophthalmic, urogenital, and gastrointestinal diseases where the above mechanisms have been described as playing a pathological role.

[0003] The compounds of this invention are substantially free from any MAO inhibitory effect or exhibit a significantly reduced MAO inhibitory effect at dosage that are therapeutically effective in preventing, alleviating and/or curing the above said affections.

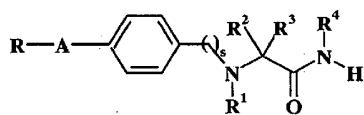
Background of the invention

Chemical Background

[0004] The patent application WO 90/14334 describes mono-substituted N-phenylalkyl alpha-amino carboxamide derivatives of the following general formula

wherein

R is a (C₁-C₈)alkyl, (C₃-C₈)cycloalkyl, furyl, thienyl, pyridyl or a phenyl ring optionally substituted by 1 to 4 substituents independently selected from halo, (C₁-C₆)alkyl, (C₁-C₆)alkoxy and trifluoromethyl; A is a -(CH₂)_m-, -(CH₂)_p-X-(CH₂)_q- group wherein m is an integer of 1 to 4, one of p and q is zero and the other is zero or an integer of 1 to 4, X is -O-, -S- or -NR⁴- in which R⁴ is hydrogen or (C₁-C₄)alkyl; n is 0 or 1; each of R¹ and R² independently is hydrogen or (C₁-C₄)alkyl; R³ is hydrogen, (C₁-C₄)alkyl optionally substituted by hydroxy or phenyl optionally substituted as above; R^{3'} is hydrogen or R³ and R^{3'} taken together form a (C₃-C₆)cycloalkyl ring; each of R⁵ and R⁶ independently is hydrogen or (C₁-C₆) alkyl; and their use as anti-epileptic, anti-Parkinson, neuroprotective, anti-depressant, anti-spastic and/or hypnotic agents.

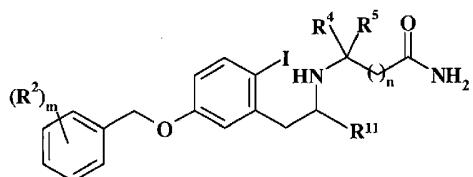

[0005] The compound 2-[2-[4-(3-chlorobenzyloxy)-phenyl]-ethylamino]-acetamide and its hydrochloride salt and the preparation thereof are specifically described in the above patent application. (See also P. Pevarello and al. in J. Med. Chem. 1998, 41, 579-590.)

[0006] The compounds (S)-2-[2-[4-benzyloxy-phenyl]-ethylamino]-acetamide, (S)-2-[2-[4-(2-chlorobenzyloxy)-phenyl]-ethylamino]-acetamide, 2-[2-(4-benzyl-phenyl)-ethylamino]-acetamide and 2-[2-(4-benzylamino-phenyl)-ethylamino]-acetamide are mentioned, but not characterized, in WO 90/14334.

[0007] The patent application WO 04/089353 describes a method and a combination therapy for the treatment of Parkinson's disease by using safinamide ((S)-(+)2-[4-(3-fluoro-benzyloxy)-benzylamino]-propanamide), a safinamide derivative or a MAO-B inhibitor together with anti-Parkinsonian agents. The compound 2-[2-[4-(3-chloro-benzyloxy)-phenyl]-ethylamino]-acetamide is exemplified in the invention.

[0008] The above compound is also prepared and described as anticonvulsant (Pevarello P., Bonsignori A., Dostert P., Heidemperger F., Pinciroli V., Colombo M., McArthur R. A., Salvati P., Post C., Fariello R. G., Varasi M. J. Med. Chem. (1998) 41: 579-590).

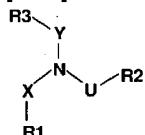
[0009] The patent application WO 99/35125 describes alpha-aminoamide derivatives of the general formula

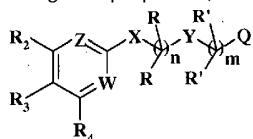


wherein

R is a furyl, thienyl, pyridyl or a phenyl ring; A is a $-(CH_2)_m-$, $-(CH_2)_n-X-$ or $-(CH_2)_v-O-$ group wherein m is an integer of 1 to 4, n is zero or an integer of 1 to 4, X is -S- or -NH- and v is zero or an integer of 1 to 5; s is 1 or 2; R¹ is hydrogen or (C₁-C₄)alkyl; one of R² and R³ is hydrogen and the other is hydrogen or (C₁-C₄)alkyl optionally substituted by hydroxy or phenyl; or R² and R³ taken together form a (C₃-C₆)cycloalkyl ring; or R² and R³ are both methyl; R⁴ is hydrogen or C₁-C₄ alkyl; and their use as analgesic agents.

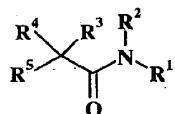
[0010] The compound 2-[2-[4-(3-chloro-benzyloxy)-phenyl]-ethylamino]-propanamide in the above patent application is mentioned.


[0011] The patent application WO 03/091219 describes 5-(benzyloxy)-2-(iodophenyl)-ethylamino derivatives (see formula XII), which are employed as intermediates in the preparation of isoquinolines as monoamine oxidase B inhibitors useful against Alzheimer's disease and senile dementia:


wherein, inter alia, m is 1, 2, or 3; R² is selected from halogen, halogen -(C₁-C₆)alkyl, cyano, (C₁-C₆)alkoxy or halogen -(C₁-C₆)alkoxy; R¹¹ is hydrogen; n is 0, 1 or 2; R⁴ and R⁵ are independently selected from hydrogen, (C₁-C₆)alkyl, -(CH₂)_p-OR⁸, -(CH₂)_p-SR⁸ or benzyl, wherein p is 1 or 2 and R⁸ is hydrogen or (C₁-C₆)alkyl.

[0012] WO 99/26614 discloses substituted 2-(benzylamino)acetamides and their use for treating disorders responsive to the blockade of sodium ion channels, including preventing or ameliorating neuropathic pain.

[0013] WO 03/037865 relates to compounds useful in the treatment of cancer of general formula



wherein the symbols R¹, R², R³, X, U and Y may assume a wide series of meanings. Although some combinations of said broad generic meanings might include phenethylamino derivatives, none of the compounds described in this application is actually disclosed in WO 03/037865. US 5,366,982 (WO 92/01675) relates to compounds having selective leucotriene B₄ (LTB₄) antagonist properties, encompassed by the general formula

wherein the symbols R, R', R², R³, R⁴, X, Y, Z, W, n, m and Q may assume a wide series of meanings. Notwithstanding some combinations of said generic meanings might encompass also phenethylamino derivatives, none of the compounds described in this application is actually disclosed in US 5,366,982.

[0014] WO 98/35957 discloses acetamide derivatives active as antagonists of neuropeptide Y receptor, particularly useful in the treatment of obesity, of general formula

where the symbols R¹, R², R³, R⁴ and R⁵ may assume a wide series of meanings. None of the compounds described in this application is actually disclosed in WO 98/35957.

[0015] EP 1588704A discloses alfa-aminoamide derivatives, including (S)-(+)-2-[4-(2-fluoro-benzylxy)-benzylamino]-propanamide, i.e. ralfinamide, for use in the treatment of Restless Leg Syndrome.

[0016] WO 2005/018627 discloses alfa-aminoamide derivatives, including ralfinamide, for use as therapeutic anti-inflammatory agents

[0017] DE 2006978A1 describes 2-phenylalkylamino-acetamide derivatives bearing a trifluoromethyl substituent on the phenyl ring and a methyl substituent on the ethylamino side chain. The compounds are active as anorexics, analgesics and regulators of lipids exchange.

[0018] GB 586,645A describes phenyl-alchilamino derivatives wherein the aminic nitrogen atom is connected to a carboxyester group through an alkylene chain containing from 2 to 6 carbon atoms of which at least two are in the direct chain connecting the nitrogen atom with the carboxyester group. The physiological activity of said compounds is as stimulators of the uterine smooth muscles.

Biological Background

[0019] Calcium channels are membrane-spanning, multi-subunit proteins that allow controlled entry of calcium ions into cells from the extracellular fluid. Commonly, calcium channels are voltage dependent and are referred to as voltage-gated calcium channels (VGCC). VGCCs are found throughout the mammalian nervous system, where they regulate the intracellular calcium ions levels that are important for cell viability and function. Intracellular calcium ion concentrations are implicated in a number of vital processes in animals, such as neurotransmitter release, muscle contraction, pacemaker activity and secretion of hormones. All "excitable" cells in animals, such as neurons of the central nervous system (CNS), peripheral nerve cells, and muscle cells, including those of skeletal muscles, cardiac muscles and venous and arterial smooth muscles, have voltage dependent calcium channels.

[0020] Calcium channels are a large family with many genetically, physiologically, and pharmacologically distinct subtypes. Based on the biophysical properties of calcium currents recorded from individual neurons, two super-families have been described: High Voltage Activated (HVA) and Low Voltage Activated (LVA) calcium channels. Calcium currents referred as L-Type, P-Type, Q-Type, N-Type, R-Type are HVA and as T-Type are LVA. In particular, the term "L-type" was originally applied to channels with a large single channel conductance and long open time, and "T-type" was applied to channels with a tiny single channel conductance and a transient open time. Further exploration of functional calcium channel diversity identified the "N-type" channel expressed in neurons and the "P-type" channel, which is the dominant type expressed in cerebellar Purkinje neurons and is pharmacologically resistant to known blockers of L-type and N-type calcium channels. From the molecular identity, ten distinct calcium channel subtypes have been identified, cloned and expressed and grouped in three families: Cav1 family (Cav 1.1, 1.2, 1.3, 1.4) is functionally related to the L-type Ca current; Cav2 family (Cav 2.1, 2.2, 2.3) is functionally related to the P/Q, N, R-type currents and Cav3 (Cav 3.1, 3.2, 3.3) family is functionally related to the T-type current.

[0021] It is believed that calcium channels are relevant in certain disease states. A number of compounds useful in treating various cardiovascular diseases in mammals, including humans, are thought to exert their beneficial effects by modulating functions of voltage dependant calcium channels present in cardiac and/or vascular smooth muscle. Compounds with activity against calcium channels have also been implicated for the treatment of pain. In particular N-type calcium channels (Cav2.2), responsible for the regulation of neurotransmitter release, are thought to play a significant role in nociceptive transmission, both due to their tissue distribution as well as from the results of several pharmacological studies. N-type calcium channels were found up-regulated in the ipsilateral dorsal horn in neuropathic pain models of injury (Cizkova D., Marsala J., Lukacova N., Marsala M., Jergova S., Orendacova J., Yaksh T. L. *Exp. Brain Res.* (2002) 147: 456-463). Specific N-type calcium channel blockers were shown to be effective in reducing pain responses in neuropathic pain models (Matthews E. A., Dickenson A. H. *Pain* (2001) 92: 235-246), in the phase II of the formalin test (Diaz A., Dickenson A. H. *Pain* (1997) 69: 93-100) and the hyperalgesia initiated by knee joint inflammation (Nebe J., Vanegas H., Schaible H. G. *Exp. Brain Res.* (1998) 120: 61-69). Mutant mice, lacking the N-type calcium channels, were found to have a decreased response to persistent pain as seen by a decrease in pain response during phase II of the formalin test (Kim C., Jun K., Lee T., Kim S. S., Mcenery M. W., Chin H., Kim H. L., Park J. M., Kim D. K., Jung S. J., Kim J., Shin H. S. *Mol. Cell Neurosci.* (2001) 18: 235-245; Hatakeyama S., Wakamori M., Ino M., Miyamoto N., Takahashi E., Yoshinaga T., Sawada K., Imoto K., Tanaka I., Yoshizawa T., Nishizawa Y., Mori Y., Nidome T., Shoji S. *Neuroreport* (2001) 12: 2423-2427) as well as to neuropathic pain, assessed by a decrease in mechanical allodynia and thermal hyperalgesia in the spinal nerve ligation model. Interestingly, these mice also showed lower levels of anxiety when compared to wild type (Saegusa H.,

Kurihara T., Zong S., Kazuno A., Matsuda Y. Nonaka T., Han W., Toriyama H., Tanabe T., EMBO J. (2001) 20: 2349-2356). The involvement of N-type calcium channels in pain has been further validated in the clinic by ziconotide, a peptide derived from the venom of the marine snail, *Conus Magnus*. A limitation in the therapeutic use of this peptide is that it has to be administered intrathecally in humans (Bowersox S. S. and Luther R. Toxicon, (1998) 36: 1651-1658).

[0022] Sodium channels play an important role in the neuronal network by transmitting electrical impulses rapidly throughout cells and cell networks, thereby coordinating higher processes ranging from locomotion to cognition. These channels are large transmembrane proteins, which are able to switch between different states to enable selective permeability for sodium ions. For this process an action potential is needed to depolarize the membrane, and hence these channels are voltage-gated. In the past few years a much better understanding of sodium channels and drugs interacting with them has been developed.

[0023] Voltage-gated sodium channels were originally classified based on their sensitivity to tetrodotoxin, from low nanomolar (Tetrodotoxin sensitive, TTXs) to high micromolar (Tetrodotoxin resistant, TTXr). So far, 10 different sodium channel α subunits have been identified and classified as Nav1.1 to Nav1.9. Nav1.1 to Nav1.4, Nav1.6 and Nav1.7 are TTXs, whereas Nav1.5, Nav1.8 and Nav1.9 are TTXr, with different degrees of sensitivity. Nav1.1 to Nav1.3 and Nav1.6, are primarily expressed in the CNS, whereas Nav1.4 and Nav1.5 are mainly expressed in muscle (skeletal and heart respectively) and Nav1.8 and Nav1.9 are predominantly expressed in small DRGs.

[0024] It has become clear that a number of drugs having an unknown mechanism of action actually act by modulating sodium channel conductance, including local anaesthetics, class I antiarrhythmics and anticonvulsants. Neuronal sodium channel blockers have found application with their use in the treatment of epilepsy (phenytoin and carbamazepine), bipolar disorder (lamotrigine), preventing neurodegeneration, and in reducing neuropathic pain. Various anti-epileptic drugs that stabilize neuronal excitability are effective in neuropathic pain (gabapentin, carbamazepine).

[0025] In addition, an increase in sodium channel expression or activity has also been observed in several models of inflammatory pain, suggesting a role of sodium channels in inflammatory pain.

[0026] All together these findings indicate that compounds with sodium and/or calcium channel blockade have a high therapeutic potential in preventing, alleviating and curing a wide range of pathologies, including neurological, psychiatric, cardiovascular, urogenital and gastrointestinal diseases, where the above mechanisms have been described as playing a pathological role. There are many papers and patents which describe sodium channel and/or calcium channel modulators or antagonists for the treatment or modulation of a plethora of disorders, such as their use as local anaesthetics, antiarrhythmics, antiemetics, antimanic anti-depressants, agents for the treatment of unipolar depression, cardiovascular diseases, urinary incontinence, diarrhoea, inflammation, epilepsy, neurodegenerative conditions, nerve cell death, neuropathic pain, migraine, acute hyperalgesia and inflammation, renal disease, allergy, asthma, bronchospasm, dysmenorrhea, esophageal spasm, glaucoma, urinary tract disorders, gastrointestinal motility disorders, premature labour, obesity.

[0027] A non-exhaustive list of such papers and patents/patent applications describing sodium and/or calcium channels blockers and uses thereof includes the references shown below.

[0028] C. Alzheimer describes in Adv. Exp. Med. Biol. 2002, 513, 161-181, sodium and calcium channels as targets of neuroprotective substances.

[0029] Vanegas e Schaible (Pain 2000, 85, 9-18) discuss effects of antagonists of calcium channels upon spinal mechanisms of pain, hyperalgesia and allodynia.

[0030] U.S. Patent 5,051,403 relates to a method of reducing neuronal damage associated with an ischemic condition, such as stroke, by administration of binding/inhibitory omega-conotoxin peptide wherein the peptide is characterized by specific inhibition of voltage-gated calcium channel currents selectively in neuronal tissues.

[0031] U.S. Patent 5,587,454 relates to compositions and methods of producing analgesia particularly in the treatment of pain and neuropathic pain.

[0032] U.S. Patent 5,863,952 relates to calcium channel antagonists for the treatment of ischaemic stroke.

[0033] U.S. Patent 6,011,035 relates to calcium channel blockers, useful in the treatment of conditions such as stroke and pain.

[0034] U.S. Patent 6,117,841 relates to calcium channel blockers and their use in the treatment of stroke, cerebral ischemia,

pain, head trauma or epilepsy.

[0035] U.S. Patent 6,362,174 relates to N-type calcium channel blockers in the treatment of stroke, cerebral ischemia, pain, epilepsy, and head trauma.

[0036] U.S. Patent 6,380,198 concerns the use of the calcium channel blocker flunarizine for the topical treatment of glaucoma.

[0037] U.S. Patent 6,420,383 and U.S. Patent 6,472,530 relate to novel calcium channel blockers, useful for treating and preventing a number of disorders such as hypersensitivity, allergy, asthma, bronchospasm, dysmenorrhea, esophageal spasm, glaucoma, premature labor, urinary tract disorders, gastrointestinal motility disorders and cardiovascular disorders.

[0038] U.S. Patent 6,458,781 relates to compounds that act to block calcium channels and their use to treat stroke, cerebral ischemia, pain, head trauma or epilepsy.

[0039] U.S. Patent 6,521,647 relates to the use of calcium channel blockers in the treatment of renal disease in animals, especially chronic renal failure.

[0040] WO 97/10210 relates to tricyclic heterocyclic derivatives, and their use in therapy, in particular as calcium channel antagonists, e.g. for the treatment of ischaemia, in particular ischaemic stroke.

[0041] WO 03/018561 relates to quinoline compounds as N-type calcium channel antagonists and methods of using such compounds for the treatment or prevention of pain or nociception.

[0042] WO 03/057219 relates to sodium channel blockers useful as agents for treating or modulating a central nervous system disorder, such as neuropathic pain, inflammatory pain, inflammation-related pain or epilepsy.

[0043] WO99/14199 discloses substituted 1,2,3,4,5,6-hexahydro-2,6-methano-3-benzazocines-10-oles as potent sodium channel blockers useful for the treatment of several diseases, such as stroke, neurodegenerative disorders, Alzheimer's Disease, Parkinson's Disease and cardiovascular disorders.

[0044] WO01/74779 discloses new aminopyridine sodium channel blockers and their use as anticonvulsants, local anesthetics, as antiarrhythmics, for the treatment or prevention of neurodegenerative conditions, such as amyotrophic lateral sclerosis (ALS), for the treatment or prevention of both, acute or chronic pain, and for the treatment or prevention of diabetic neuropathy.

[0045] WO04/087125 discloses amino acid derivatives as inhibitors of mammalian sodium channels, useful in the treatment of chronic and acute pain, tinnitus, bowel disorders, bladder dysfunction and demyelinating diseases.

[0046] Monoamine oxidase (MAO) is an enzyme present in the outer mitochondrial membrane of neuronal and non-neuronal cells. Two isoforms of MAO exist: MAO-A and MAO-B. MAO enzymes are responsible for the oxidative deamination of endogenous and xenobiotic amines, and have a different substrate preference, inhibitor specificity, and tissue distribution. For MAO-A serotonin, noradrenaline and adrenaline are preferential substrates, and clorgyline is a selective MAO-A inhibitor; whereas MAO-B prefers β -phenylethylamine as a substrate, and is almost selectively inhibited by selegiline. Dopamine, tyramine and tryptamine are oxidized by both MAO-A and MAO-B, in particular in human brain dopamine is deaminated by 80% by MAO-B.

[0047] MAO inhibition allows endogenous and exogenous substrates to accumulate and may thereby, when almost fully inhibited (>90%), alter the dynamics of regular monoamine transmitters. MAO regulate the concentrations in the brain of the most important neurotransmitters such as noradrenaline, serotonin and dopamine which are related to emotion, anxiety and movement. Thus, it is thought that MAO be closely linked to various psychiatric and neurological disorders such as depression, anxiety and Parkinson's disease (PD).

[0048] MAO-A inhibitors are mainly used in psychiatry for the treatment of major, refractory and atypical depression as a consequence of their ability to increase the reduced serotonin and noradrenalin brain levels. More recently, MAO-A inhibitors have been used to treat patients with anxiety disorders such as social phobia, panic disorders, post-traumatic stress disorders and obsessive compulsive disorders.

[0049] MAO-B inhibitors are mainly used in neurology for the treatment of PD.

[0050] There is also recent evidence and interest in the role of MAO-B in other pathological conditions such as Alzheimer disease (AD). So far no evidence have been reported on MAO-B involvement in the metabolism of co-transmitters, such as colecystokinin, substance P, somatostatin and neuropeptides, which are involved in the modulation of pain sensation. For this reason there is no scientific rationale for the use of MAO-B inhibitors in pain syndromes.

[0051] Adverse drug reactions during clinical practice with MAO inhibitors have been reported. First generation of non-selective and irreversible MAO inhibitors, such as tranylcypromide and phenelzine, have serious side effects, including hepatotoxicity, orthostatic hypotension and most importantly hypertensive crisis that occurs following the ingestion of foods containing tyramine (Cooper AJ.-Tyramine and irreversible monoamine oxidase inhibitors in clinical practice.- Br J Psych Suppl 1989;38-45).

[0052] When these non-selective and irreversible MAO inhibitors are used, a strict tyramine-reduced diet must be observed. The pressor sensitivity towards tyramine is normalized 4 weeks after cessation of tranylcypromine therapy and more than 11 weeks after cessation of phenelzine therapy.

[0053] Selegiline, a almost selective and irreversible MAO-B inhibitor, especially when used in combination with levodopa, can cause anorexia/nausea, dry mouth, dyskinesia and orthostatic hypotension in patients with PD, the latter being most problematic (Volz H.P. and Gleiter C.H.- Monoamine oxidase inhibitors. A perspective on their use in the elderly.- Drugs Aging 13 (1998), pp. 341-355).

[0054] In monotherapy, anorexia/nausea, musculoskeletal injuries, and cardiac arrhythmias occurred more often in patients receiving selegiline compared with those receiving placebo. Apart from these adverse effects, increased rates of elevated serum AST and ALT levels were noted.

[0055] The most frequently reported adverse effect of moclobemide, a selective and reversible MAO-A inhibitor, are sleep disturbances, increased anxiety, restlessness, and headache.

[0056] The combination of selective serotonin reuptake inhibitors (SSRIs) and moclobemide has good efficacy in cases of refractory depression, but has created controversy as to whether toxic side effects, such as serotonergic syndrome, result from this combination (Baumann P.-Pharmacokinetic-pharmacodynamic relationship of the selective serotonin reuptake inhibitors. Clin Pharmacokinet 31 (1996), pp 444-469). Because of cardiac arrhythmias and increased liver enzyme levels, electrocardiogram and laboratory values should be checked regularly. Many types of physiologic changes that occur with aging affect the pharmacodynamics and pharmacokinetics of MAO inhibitors. Indeed, pharmacokinetic variables in the elderly are markedly different from those in younger patients. These variables including absorption, distribution, metabolism and excretion have to be taken into account to avoid or minimize certain adverse effects and drug-drug interactions. Elderly patients are generally more susceptible than younger patients to side effects, including adverse drug reactions. Hypertensive crisis may occur more frequently in elderly than in younger patients, because cardiovascular systems of the elderly are already compromised by age.

[0057] The use of sympathomimetic drugs in combination with MAO inhibitors may also elevate blood pressure. In addition, compared with placebo, phenelzine was associated with a significantly higher incidence of drowsiness, tremor, dyskinesia, diarrhea, micturition difficulties, orthostatic effects, and adverse dermatological effects. It is interesting to note that in the elderly, headache is reported with a higher frequency than in younger patients during treatment with moclobemide (Volz H.P. and Gleiter C.H.- Monoamine oxidase inhibitors. A perspective on their use in the elderly. Drugs Aging 13 (1998), pp. 341-355).

[0058] MAO inhibitors are sometimes prescribed for depression. Because of the potential risk of suicide, adverse drug reactions and toxicity due to overdose are important factors to consider when choosing an antidepressant. In addition, when MAO inhibitors are used in high dosage, adverse cardiovascular effects seem to increase considerably; and because MAO selectivity is lost with such high doses, tyramine can induce potentially dangerous hypertensive reactions. Acute overdose with MAO inhibitors causes agitation, hallucinations, hyperpyrexia, hyperreflexia and convulsions. Abnormal blood pressure is also a toxic sign, so that gastric lavage and maintenance of cardiopulmonary function may be required. Overdose of traditional non-selective and irreversible MAO inhibitors are considerably dangerous and sometimes fatal (Yamada and Richelson, 1996. Pharmacology of antidepressants in the elderly. In: David JR, Snyder L., editors. Handbook of pharmacology of aging. Boca Raton: CRC Press 1996).

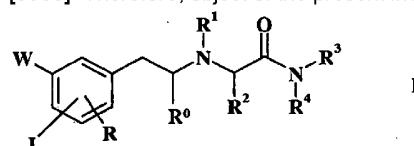
[0059] In the treatment of the affections wherein sodium and calcium channels mechanism(s) play(s) a pathological role and, in particular, of pain syndromes (either of neuropathic or inflammatory type) inhibition of MAO enzymes is of no benefits. The most clinically active anti-nociceptive drugs are devoid of MAO inhibition. On the contrary, MAO inhibitory side effects may impose at least two types of negative limitations.

- 1) Dietary: eating food with high tyramine content may cause severe, even life threatening increase of systemic blood pressure (the so called "cheese-effect").
- 2) Pharmacological: pain is often treated with a combination of drugs such as opioid derivatives and tricyclic antidepressant. With MAO inhibitors such association is dangerous as it may cause the serotoninergic syndrome (agitation, tremors, hallucination, hyperthermia and arrhythmias).

[0060] Thus, eliminating or significantly reducing MAO inhibitory activity in medicaments active as sodium and/or calcium channel modulators useful in preventing, alleviating and curing a wide range of pathologies where said mechanism(s) play(s) a pathological role, including neurological, psychiatric, cardiovascular, inflammatory, ophthalmic, urogenital and gastrointestinal diseases, is an unexpected and substantial therapeutic improvement versus compounds of similar efficacy but with the above mentioned side effects. Said improvement is particularly desirable for the medicaments active as sodium and/or calcium channel modulators useful, in particular, for the treatment of the pain syndromes.

[0061] Taken into account these findings on MAO inhibitors and, in particular, lacking any evidence on MAO-B role in pathological affections like pain, migraine, cardiovascular, inflammatory, urogenital and gastrointestinal diseases, it might be conceivable that MAO-B inhibition should not be an essential feature for compounds indicated for the above pathologies, avoiding any possible side effects during chronic and/or long-term treatments.

[0062] An advantageous solution to the above described problem would consist in providing medicaments which are "selectively active as sodium and/or calcium modulators" or are useful for the "selective treatment" of affections, disorders or diseases wherein the sodium and/or calcium channel mechanism(s) play(s) a pathological role. With this expression are intended medicaments which, when administered to a patient in need thereof in amounts that are effective in the treatment of the above said affections wherein the above said mechanism(s) play(s) pathological role, do not exhibit any MAO inhibitory activity or exhibit a significantly reduced MAO inhibitory activity, thus resulting in avoidance of side effects due to accumulation of endogenous and exogenous monoamine transmitters.


[0063] It is a primary object of this invention the use of phenylethylamino derivatives for the manufacture of medicaments active as sodium and/or calcium channel modulators for the treatment of pathologies where the above said mechanism(s) play(s) a pathological role, said medicaments being substantially free from any MAO inhibitory activity or having significantly reduced MAO inhibitory activity and, therefore, having a reduced potential for unwanted side effects. Said use provides an improved selective resource for the prevention, alleviation and/or cure of the above said pathological affections.

Description of the invention

[0064] We have now found a new class of phenylethylamino derivatives highly potent as sodium and/or calcium channel modulators and substantially free from any MAO inhibitory activity or having significantly reduced MAO inhibitory activity and, thus, having potentially reduced side effects in preventing, alleviating and curing a wide range of pathologies, including but not limited to neurological, psychiatric, cardiovascular, inflammatory, ophthalmic, urogenital and gastrointestinal diseases where the above mechanisms have been described as playing a pathological role.

[0065] In this description and claims, the expression "sodium and/or calcium channel modulator(s)" means compounds able to block sodium and/or calcium currents in a voltage dependent manner.

[0066] Therefore, object of the present invention is a compound of general formula I

wherein:

1. (a)

J

is a group A- $[(CH_2)_n-O]_r$ in *para* position with respect to the ethylamino chain wherein:

n is 1; and
 r is 1;
 A is phenyl substituted with a fluoro group;
 W
 is methoxy;
 R
 is hydrogen;
 R⁰
 is hydrogen;
 R¹
 is hydrogen; (C₁-C₄)alkyl; cyclopropylmethyl; benzyl; or heterocyclylmethyl wherein the heterocyclyl group is selected from furanyl, tetrahydrofuranyl, and pyridinyl optionally substituted with a methoxy group;
 R²
 is hydrogen; (C₁-C₄)alkyl; or phenyl;
 R³
 is hydrogen; or (C₁-C₄)alkyl; and
 R⁴
 is hydrogen; (C₁-C₄)alkyl optionally substituted with a group selected from amino, dimethylamino, and pyrrolidinyl wherein the pyrrolidinyl is optionally substituted with a methyl group; or
 R³ and R⁴
 taken together with the adjacent nitrogen atom form a pyrrolidinyl or morpholinyl ring;
 or
 2. (b)
 J
 is hydrogen;
 W
 is a group A-[(CH₂)_n-O]_r wherein:
 n is 1;
 r is 1;
 A is (C₁-C₄)alkyl; or phenyl substituted with a group fluoro;
 R
 is hydrogen;
 R⁰
 is hydrogen;
 R¹
 is furanylmethyl; or tetrahydrofuranylmethyl;
 R²
 is hydrogen;
 R³
 is hydrogen; or (C₁-C₄)alkyl; and
 R⁴
 is hydrogen; or (C₁-C₄)alkyl optionally substituted with a group selected from amino, and dimethylamino;

if the case, either as a single enantiomer or diastereoisomer or mixture thereof and its pharmaceutically acceptable salts.

[0067] The term "(C₁-C₄)alkyl" or the "(C₁-C₄) alkyl" moiety in the other substituents (e.g. in the terms, mono and di-alkylamino) as used in this description and claims, when no otherwise specified, identifies a straight or branched alkyl radical or moiety; examples of said radicals or moieties include, respectively: methyl, ethyl, propyl, isopropyl, butyl, isobutyl and *tert*-butyl. The term "halo", when no otherwise specified herein, means an halogen atom radical such as fluoro, chloro, bromo and iodo.

[0068] Where the compounds of this invention contain at least one asymmetric carbon atom they can exist as single enantiomers or diastereoisomers or a mixture thereof, the invention includes within its scope all the possible single enantiomers or diastereoisomers of said compounds and the mixtures thereof, e.g., the racemic mixtures.

[0069] Examples of pharmaceutically acceptable salts of the compounds of formula I are salts with organic and inorganic acids such as hydrochloric, hydrobromic, hydroiodic, nitric, sulfuric, phosphoric, acetic, propionic, tartaric, fumaric, citric, benzoic, succinic, cinnamic, mandelic, salicylic, glycolic, lactic, oxalic, malic, maleic, malonic, fumaric, tartaric, p-toluenesulfonic, methanesulfonic, glutaric acid.

[0070] The compounds of formula I are active as calcium and/or sodium channel modulators and therefore useful in preventing alleviating and curing a wide range of pathologies, including but not limited to neurological, psychiatric, cardiovascular, inflammatory, ophthalmic, urologic and gastrointestinal diseases where the above mechanisms have been described as playing a pathological role.

[0071] A preferred group of compounds of formula I of this invention comprises a compound of group (a) defined above wherein:

J

is a group A-[(CH₂)_n-O]_r in *para* position with respect to the ethylamino chain wherein:

n is 1; and

r is 1;

A is phenyl substituted with a fluoro group;

W

is methoxy;

R

is hydrogen;

R⁰

is hydrogen;

R¹

is hydrogen; (C₁-C₄)alkyl; cyclopropylmethyl; benzyl; or heterocyclymethyl wherein the heterocycl group is selected from furanyl, tetrahydrofuranyl, and pyridinyl optionally substituted with a methoxy group;

R²

is hydrogen; (C₁-C₄)alkyl; or phenyl;

R³

is hydrogen; or (C₁-C₄)alkyl; and

R⁴

is hydrogen; (C₁-C₄)alkyl optionally substituted with a group selected from amino, dimethylamino, and pyrrolidinyl wherein the pyrrolidinyl is optionally substituted with a methyl group; or

R³ and R⁴

taken together with the adjacent nitrogen atom form a pyrrolidinyl, or morpholinyl ring;

if the case, either as a single enantiomer or diastereoisomer or mixture thereof and its pharmaceutically acceptable salts.

[0072] Among the group of compounds of formula I of the group (b) herein above defined a preferred group of compounds comprises a compound wherein:

J

is hydrogen;

W

is a group A-[(CH₂)_n-O]_r wherein:

n is 1;

r is 1;

A

is (C₁-C₄)alkyl;

R

is hydrogen;

R⁰

is hydrogen;

R¹

is furanymethyl; or tetrahydrofuranymethyl;

R^2

is hydrogen;

 R^3 is hydrogen; or (C₁-C₄)alkyl; and R^4 is (C₁-C₄)alkyl;

if the case, either as a single enantiomer or diastereoisomer or mixture thereof and its pharmaceutically acceptable salts.

[0073] Most preferably, a compound of formula I according to this invention is selected from the group consisting of:

2-[2-[4-(3-Fluoro-benzyloxy)-3-methoxy-phenyl]-ethylamino]-N-methyl-acetamide;

2-[[2-[4-(3-Fluoro-benzyloxy)-3-methoxy-phenyl]-ethyl]- (tetrahydrofuran-3-ylmethyl)amino]-N-methyl-acetamide;

2-[[2-[4-(3-Fluoro-benzyloxy)-3-methoxy-phenyl]-ethylamino]-1-(morpholin-4-yl)-2-phenyl-ethanone;

2-[[2-[4-(3-Fluoro-benzyloxy)-3-methoxy-phenyl]-ethyl]-benzylamino]-1-(pyrrolidin-1-yl)-ethanone;

2-[[2-[4-(3-Fluoro-benzyloxy)-3-methoxy-phenyl]-ethyl]-benzylamino]-N-(2-amino-2-methyl-propyl)-acetamide;

2-[[2-[4-(3-Fluoro-benzyloxy)-3-methoxy-phenyl]-ethyl]-benzylamino]-N-(2-dimethylamino-ethyl)-acetamide;

2-[[2-[4-(3-Fluoro-benzyloxy)-3-methoxy-phenyl]-ethyl]-benzylamino]-N-[2-(1-methyl-pyrrolidin-2-yl)-ethyl]-acetamide;

2-[[2-[4-(3-Fluoro-benzyloxy)-3-methoxy-phenyl]-ethyl]-cyclopropylmethyl)amino]-N-ethyl-acetamide;

2-[[2-[3-(3-Fluoro-benzyloxy)-phenyl]-ethyl]- (furan-2-ylmethyl)amino]-N-(2-dimethylamino-ethyl)-acetamide;

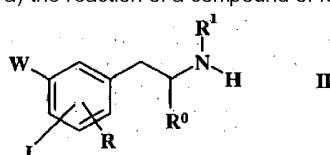
2-[[2-[3-(3-Fluoro-benzyloxy)-phenyl]-ethyl]- (furan-2-ylmethyl)amino]-N-(2-amino-2-methylpropyl)-acetamide;

2-[[2-[(3-Butoxy-phenyl)-ethyl]- (tetrahydrofuran-3-ylmethyl)amino]-N/V-dimethyl-acetamide;

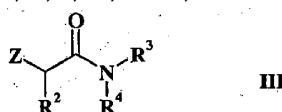
2-[[2-[4-(3-Fluoro-benzyloxy)-3-methoxy-phenyl]-ethyl]- (cyclopropylmethyl)amino]-N-methyl-acetamide;

(S)-2-[2-[4-(3-Fluoro-benzyloxy)-3-methoxy-phenyl]-ethylamino]-N-methyl-4-methyl-valeramide;

2-[[2-[4-(3-Fluoro-benzyloxy)-3-methoxy-phenyl]-ethyl]- (furan-3-ylmethyl)amino]-N-methyl-acetamide;

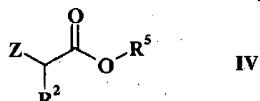

2-[[2-[4-(3-Fluoro-benzyloxy)-3-methoxy-phenyl]-ethyl]-benzylamino]-N-ethyl-acetamide; and

2-[[2-[4-(3-Fluoro-benzyloxy)-3-methoxy-phenyl]-ethyl]- (6-methoxy-pyridin-3-ylmethyl)amino]-N-methyl-acetamide;


if the case, either as a single enantiomer or mixture thereof and its pharmaceutically acceptable salts, preferably its salt with hydrochloric acid.

[0074] The compounds of formula I, object of the present invention, are prepared according to a synthetic process which comprises:

1. a) the reaction of a compound of formula II


wherein

J, W, R, R⁰, and R¹, have the same meanings defined in formula I above, with a compound of formula III

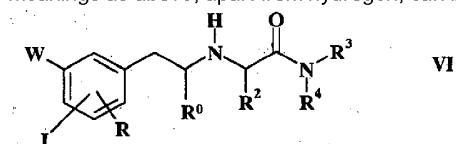
wherein

R², R³ and R⁴ have the same meanings as defined in formula I above and Z is a halogen atom or a good leaving group

such as, for example, methanesulfonyloxy, p-toluenesulfonyloxy or trifluoromethanesulfonate groups; or said reaction is alternatively carried out between a compound of formula II and a compound of formula IV

wherein

R^2 and Z have the meanings defined above and R^5 is a (C1-C4)alkyl group, to give a compound of formula V



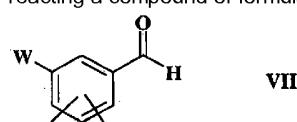
wherein

J , W , R , R^0 , R^1 , R^2 , and R^5 , and have the same meanings as defined above; which is further reacted with an amine of formula HNR^3R^4 where R^3 and R^4 are as defined above, to give the compounds of the invention.

[0075] The amidation reaction which allows the introduction of the substituent $-NR^3R^4$ is carried out according to conventional amidation techniques whereby an ester is converted to the corresponding amide by reaction with the selected amine. According to a practical embodiment of the invention the amidation is carried out in the presence of trimethylaluminium.

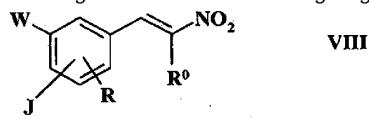
[0076] The compound of formula I wherein J , W , R , R^0 , R^2 , R^3 , and R^4 have the same meanings as above and R^1 has the same meanings as above, apart from hydrogen, can be prepared also through the reaction of a compound of formula VI

wherein


J , W , R , R^0 , R^2 , R^3 , and R^4 , have the same meanings as in formula I above, with a compound R^1-Z , wherein R^1 has the meanings reported above apart from hydrogen and Z is a halogen atom or a good leaving group, e.g. methanesulfonyloxy, p-toluenesulfonyloxy or trifluoromethanesulfonyloxy in the presence of a base or with a carbonyl compound of the formula R^6R^7CO in the presence of a reducing agent, wherein R^6 is: hydrogen; a (C1-C3)alkyl; cyclopropyl; phenyl; furanyl; tetrahydrofuranyl; or pyridinyl where the pyridinyl is optionally substituted with a methoxy group; R^7 is hydrogen.

[0077] A compound of the invention may be converted into another compound of the invention.

[0078] For instance, a compound of formula I wherein J represents a benzyloxy radical may be transformed into the corresponding hydroxy - derivative by catalytic hydrogenation and then reacted with an appropriate reagent to replace the original benzyl moiety with a different group. If desired, a compound of the invention may be converted into a pharmaceutically acceptable salt and/or, if desired, a salt may be converted into a free compound and/or, if desired, a mixture of enantiomers or diastereoisomers of compounds of the invention may be separated into the corresponding single isomers.


[0079] The compounds of formula II, III, IV and VI are commercially available or are prepared from commercially available compounds according to well-known methods.

[0080] According to a practical embodiment of the invention the preparation of a compound of formula II is carried out by reacting a compound of formula VII

wherein

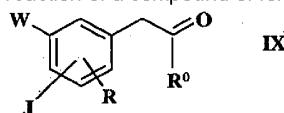
J, W, and R, have the meanings defined in formula I, with a nitroalkane of the formula $R^0\text{-CH}_2\text{-NO}_2$ wherein R^0 has the same meanings defined in formula I to give a compound of formula VIII

wherein

J, W, R, and R^0 have the same meanings as in formula I, which is reduced with a reducing agent such as LiAlH_4 or by catalytic reduction using Pt/H_2 or Pd/H_2 to give a compound of formula II wherein R^1 is hydrogen.

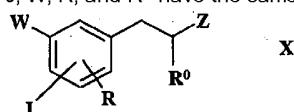
[0081] When it is desired a compound of formula II wherein R^1 has the same meanings as above apart from hydrogen, the compound of formula II wherein R^1 is hydrogen is reacted with a compound of formula R^1Z wherein R^1 has the same meanings as above apart from hydrogen, in the presence of a base, or with a carbonyl compound of formula $R^6R^7\text{CO}$ wherein R^6 and R^7 have the same meanings as defined above, in the presence of a reducing agent.

[0082] The reaction between a compound of formula II and a compound of formula III to give a compound of the invention is carried out according to known methods.

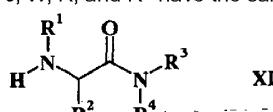

[0083] According to a preferred embodiment of the invention said reaction is carried out in the presence of a base and, more preferably, said base is selected from K_2CO_3 , triethylamine or diisopropylethylamine.

[0084] When a compound of formula I is obtained wherein R^1 is hydrogen (i.e., a compound of formula VI) the introduction of a radical R^1 which is other than hydrogen defined above is carried out according to conventional methods for the preparation of secondary or tertiary amines such as alkylation or reductive amination techniques.

[0085] According to a preferred embodiment of the invention said alkylation reaction is carried out in the presence of a base and, more preferably, said base is selected from K_2CO_3 , triethylamine and diisopropylethylamine.


[0086] According to another preferred embodiment of the invention said reductive amination with a compound $R^6R^7\text{CO}$, wherein R^6 and R^7 have the same meanings as defined above is carried out in the presence of a reducing agent selected from NaBH_4 , NaBH_3CN and (polystyrylmethyl)-trimethylammonium cyanoborohydride.

[0087] As an alternative method, the compounds of formula I are prepared according to a synthetic process which comprises the reaction of a compound of formula IX


wherein

J, W, R, and R^0 have the same meanings as defined in formula I, or a compound of formula X

wherein

J, W, R, and R^0 have the same meanings as defined in formula I and Z is as defined above; with a compound of formula XI

wherein

R^1 , R^2 , R^3 and R^4 have the meanings defined in formula I in the presence of a reducing agent in the case of the reaction of IX with XI or a base in the case of the reaction between X and XI.

[0088] The reaction between a compound of formula IX and a compound of formula XI to give a compound of the invention is a reductive amination and the reaction of a compound of formula X with a compound of formula XI is an alkylation reaction: these

reactions are carried out according to conventional techniques.

[0089] Preferred reducing agents used in the reaction between the compound of formula **IX** and **XI** are selected from NaBH₄, NaBH₃CN and (polystyrylmethyl)-trimethylammonium cyanoborohydride.

[0090] According to a preferred embodiment of the invention the reaction between the compound of formula **X** and **XI** is carried out in the presence of a base and, more preferably, said base is selected from K₂CO₃, triethylamine or diisopropylethylamine.

[0091] In the preparation of the compounds of formula **I** and the starting material and/or intermediates described herein it may be useful to protect certain groups which are sensitive to the reaction conditions.

[0092] The evaluation of the usefulness of the optional protection, as well as the selection of the suitable protecting agent, according to the reaction carried out in the preparation of the compounds of the invention and the functional group to be protected, are within the common knowledge of the skilled person.

[0093] The removal of the optional protective groups is carried out according to conventional techniques.

[0094] For a general reference to the use of protective groups in organic chemistry, see Theodora W. Greene and Peter G.M. Wuts "Protective groups in organic synthesis", John Wiley & Sons, Inc., II Ed., 1991.

[0095] The preparation of the salts of the compounds of formula **I** is carried out according to known methods.

[0096] For the preparation of a single enantiomers or diastereoisomers, if the case, of a compound of formula **I**, said compound may be obtained through a sterically controlled synthesis or by using reagents having the appropriate chirality or separating the desired isomer from the enantiomeric or diastereoisomeric mixture thereof according to conventional procedures. For instance, single optically active enantiomers may be obtained from their racemates by chiral chromatography or by converting them into a mixture of diastereoisomeric derivatives, separating the diastereoisomeric derivatives and restoring the respective enantiomers. Diastereoisomers can be separated from their mixtures by means of conventional techniques based on their different physico-chemical properties, such as chromatography, distillation, or fractional crystallization.

Pharmacology

[0097] The compounds of the invention may be used for the manufacture of a medicament active as calcium and/or sodium channel modulator against disorders caused by dysfunctions of voltage gated calcium and/or sodium channels.

[0098] The activity of the compounds representative of this invention was compared with that of our internal standard "ralfinamide" (S)-(+)-2-[4-(2-fluoro-benzyloxy)-benzylamino]-propanamide and/or "safinamide" (S)-(+)-2-[4-(3-fluoro-benzyloxy)-benzylamino]-propanamide.

[0099] Such compounds are voltage-dependent blockers of the calcium and/or sodium channels with potencies in the low micromolar range as demonstrated by the blockade of the calcium and /or sodium influx (fluorescence assays) and by the voltage-dependent blockade of the currents (patch clamp techniques). The N-type and L-type calcium channel modulating activity of the phenylethylamino derivatives was measured through a fluorescence-based calcium influx assays (Table 1 for N-type and Table 2 for L-type) and through patch clamp techniques in constitutive and/or Cav 2.2 transfected cell lines (Table 4).

[0100] The sodium channel modulating activity of the phenylethylamino derivatives was measured through a fluorescence-based sodium influx assay (Table 3), through patch clamp techniques in constitutive and/or Nav 1.3 transfected cell lines (Table 5) and in cortical neurons (Table 6). The MAO-B activity of the above compounds was measured by using a radioenzymatic assay (Table 7).

[0101] The *in vivo* analgesic activity of the above compounds was assessed in the "rat complete Freund's adjuvant model" and in the "Bennett model of neuropathic pain in rats" (Table 8). The anticonvulsant activity was measured using the "Maximal electroshock test" in mice (Table 9).

[0102] The anti mania activity was measured using the "Amphetamine and chlordiazepoxide-induced hyperlocomotion in mice" model (Fig.1).

[0103] The anti-schizophrenia and anti-addiction activities were assessed using the "test of cognitive impairment in schizophrenia" (Table 10) and the "Cocaine-induced behavioural sensitization test" in rats.

[0104] "Acute bladder irritation by acetic acid in rats" and "Intermediate bladder irritation by cyclophosphamide in rats" tests were used as models for urological diseases.

[0105] The anti migraine activity was measured using the "migraine test" in rats.

[0106] Such substances exhibit also "use and frequency-dependency", i.e. an enhancement of the block during a high frequency stimulation when there is a large accumulation of channels in the inactivated state, such as in neuronal pathological conditions. Functionally, the use-dependent block results in depression of neuronal activity at high frequency firing and with lower blocking capacity at normal firing rate suggesting that the compounds of this invention may selectively, depress abnormal activity of the calcium and/or sodium channels, leaving unaffected the physiological activity, thus decreasing CNS depressant effects (W. A. Catterall, Trends Pharmacol. Sci. (1987) 8: 57-65).

[0107] The compounds of the invention are active in vivo when orally or intraperitoneally administered in the range of 0.1 to 100 mg/kg in different animal models here following described.

[0108] In view of the above described mechanisms of action, the compounds of the present invention are useful in the prevention or treatment of neuropathic pain. Neuropathic pain syndromes include, and are not limited to: diabetic neuropathy; sciatica; non-specific lower back pain; multiple sclerosis pain; fibromyalgia; HFV-related neuropathy; neuralgia, such as post-herpetic neuralgia and trigeminal neuralgia, Morton's neuralgia, causalgia; and pain resulting from physical trauma, amputation, phantom limb, cancer, toxins or chronic inflammatory conditions; central pain such as the one observed in thalamic syndromes, mixed central and peripheral forms of pain such as complex regional pain syndromes (CRPS) also called reflex sympathetic dystrophies.

[0109] The compounds of the invention are also useful for the treatment of chronic pain. Chronic pain includes, and is not limited to, chronic pain caused by inflammation or an inflammatory-related condition, osteoarthritis, rheumatoid arthritis, acute injury or trauma, upper back pain or lower back pain (resulting from systematic, regional or primary spine disease such as radiculopathy), bone pain (due to osteoarthritis, osteoporosis, bone metastasis or unknown reasons), pelvic pain, spinal cord injury-associated pain, cardiac chest pain, non-cardiac chest pain, central post-stroke pain, myofascial pain, sickle cell pain, cancer pain, Fabry's disease, AIDS pain, geriatric pain or pain caused by headache, temporomandibular joint syndrome, gout, fibrosis or thoracic outlet syndromes, in particular rheumatoid arthritis and osteoarthritis.

[0110] The compounds of the invention are also useful in the treatment of acute pain (caused by acute injury, illness, sports-medicine injuries, carpal tunnel syndrome, burns, musculoskeletal sprains and strains, musculotendinous strain, cervicobrachial pain syndromes, dyspepsis, gastric ulcer, duodenal ulcer, dysmenorrhea, endometriosis or surgery (such as open heart or bypass surgery), post operative pain, kidney stone pain, gallbladder pain, gallstone pain, obstetric pain or dental pain).

[0111] The compounds of the invention are also useful in the treatment of headaches such as migraine, tension type headache, transformed migraine or evolutive headache, cluster headache, as well as secondary headache disorders, such as the ones derived from infections, metabolic disorders or other systemic illnesses and other acute headaches, paroxysmal hemicrania, resulting from a worsening of the above mentioned primary and secondary headaches.

[0112] The compounds of the invention are also useful for the treatment of neurological conditions such as epilepsy including simple partial seizure, complex partial seizure, secondary generalized seizure, further including absence seizure, myoclonic seizure, clonic seizure, tonic seizure, tonic clonic seizure and atonic seizure. The compounds of the invention are also useful for the treatment of neurodegenerative disorders of various origins such as Alzheimer Disease and other dementia conditions such as Lewy's body, fronto-temporal dementia and taupathies; amyotrophic lateral sclerosis, Parkinson Disease and other parkinsonian syndromes; other spino cerebellar degeneration and Charcot-Marie-Toot neuropathy.

[0113] The compounds of the invention are also useful for the treatment of cognitive disorders and of psychiatric disorders. Psychiatric disorders include, and are not limited to major depression, dysthymia, mania, bipolar disorder (such as bipolar disorder type I, bipolar disorder type II), cyclothymic disorder, rapid cycling, ultradian cycling, mania, hypomania, schizophrenia, schizophreniform disorders, schizoaffective disorders, personality disorders, attention disorders with or without hyperactive behaviour, delusional disorders, brief psychotic disorders, shared psychotic disorders, psychotic disorder due to a general medical condition, substance-induced psychotic disorders or a psychotic disorder not otherwise specified, anxiety disorders such as generalised anxiety disorder, panic disorders, post-traumatic stress disorder, impulse control disorders, phobic disorders,

dissociative states and moreover in smoke, drug addiction and alcoholism. In particular bipolar disorders, psychosis, anxiety and addiction.

[0114] Compounds of the invention are also useful in the treatment of diseases such as vertigo, tinnitus, muscle spasm, muscular sclerosis, and other disorders including and not limited to cardiovascular diseases (such as cardiac arrhythmia, cardiac infarction or angina pectoris, hypertension, cardiac ischemia, cerebral ischemia) endocrine disorders (such as acromegaly or diabetes insipidus) diseases in which the pathophysiology of the disorder involves excessive or hypersecretory or otherwise inappropriate cellular secretion of an endogenous substance (such as catecholamine, a hormone or a growth factor).

[0115] The compounds of the invention are also useful in the selective treatment of liver disease, such as inflammatory liver diseases, for example chronic viral hepatitis B, chronic viral hepatitis C, alcoholic liver injury, primary biliary cirrhosis, autoimmune hepatitis, non-alcoholic steatohepatitis and liver transplant rejection.

[0116] The compounds of the invention inhibit inflammatory processes affecting all body systems. Therefore are useful in the treatment of inflammatory processes of the muscular-skeletal system of which the following is a list of examples but it is not comprehensive of all target disorders: arthritic conditions such as ankylosing spondylitis, cervical arthritis, fibromyalgia, gut, juvenile rheumatoid arthritis, lumbosacral arthritis, osteoarthritis, osteoporosis, psoriatic arthritis, rheumatic disease; disorders affecting skin and related tissues: eczema, psoriasis, dermatitis and inflammatory conditions such as sunburn; disorders of the respiratory system: asthma, allergic rhinitis and respiratory distress syndrome, lung disorders in which inflammation is involved such as asthma and bronchitis; chronic obstructive pulmonary disease; disorders of the immune and endocrinological systems: periarthritis nodosa, thyroiditis, aplastic anaemia, sclerodoma, myasthenia gravis, multiple sclerosis and other demyelinating disorders, encephalomyelitis, sarcoidosis, nephritic syndrome, Bechet's syndrome, polymyositis, gingivitis.

[0117] Compounds of the invention are also useful in the treatment of gastrointestinal (GI) tract disorders such as inflammatory bowel disorders including but not limited to ulcerative colitis, Crohn's disease, ileitis, proctitis, celiac disease, enteropathies, microscopic or collagenous colitis, eosinophilic gastroenteritis, or pouchitis resulting after proctocolectomy and post ileonatal anastomosis, and irritable bowel syndrome including any disorders associated with abdominal pain and/or abdominal discomfort such as pylorospasm, nervous indigestion, spastic colon, spastic colitis, spastic bowel, intestinal neurosis, functional colitis, mucous colitis, laxative colitis and functional dyspepsia; but also for treatment of atrophic gastritis, gastritis varioforme, ulcerative colitis, peptic ulceration, pyrosis, and other damage to the GI tract, for example, by *Helicobacter pylori*, gastroesophageal reflux disease, gastroparesis, such as diabetic gastroparesis; and other functional bowel disorders, such as non-ulcerative dyspepsia (NUD); emesis, diarrhoea, and visceral inflammation.

[0118] Compounds of the invention are also useful in the treatment of disorders of the genito-urinary tract such as overactive bladder, prostatitis (chronic bacterial and chronic non-bacterial prostatitis), prostadynia, interstitial cystitis, urinary incontinence and benign prostatic hyperplasia, annexities, pelvic inflammation, bartolinities and vaginitis. In particular overactive bladder and urinary incontinence.

[0119] The compounds of the invention are also useful in the treatment of ophthalmic diseases such as retinitis, retinopathies, uveitis and acute injury to the eye tissue, macular degeneration or glaucoma, conjunctivitis.

[0120] It will be appreciated that the compounds of the invention may advantageously be used in conjunction with one or more other therapeutic agents. Examples of suitable agents for adjunctive therapy include a serotonin receptor modulator including a 5HT1B/1D agonist, such as a triptan (e.g. sumatriptan or naratriptan); an adenosine A1 agonist; an adenosine A2 antagonist; a purinergic P2X antagonist, an EP ligand; an NMDA modulator, such as a glycine antagonist; an AMPA modulator; a substance P antagonist (e.g. an NK1 antagonist); a cannabinoid; a nicotinic receptor agonist; an alpha-1 or 2 adrenergic agonist; acetaminophen or phenacetin; a 5-lipoxygenase inhibitor; a leukotriene receptor antagonist; a DMARD (e.g. methotrexate); gabapentin and related compounds; L-dopa and/or dopamine agonists; a catechol-O-methyltransferase inhibitor; a tricyclic antidepressant (e.g. amitriptyline); a neurone stabilising antiepileptic drugs; a monoaminergic uptake inhibitor (e.g. venlafaxine); a matrix metalloproteinase inhibitor; a nitric oxide synthase (NOS) inhibitor, such as an iNOS or an nNOS inhibitor; a free radical scavenger; an alpha-synuclein aggregation inhibitor; a cholinesterase inhibitor, a cholesterol lowering agent; an alpha-secretase modulator; a beta-secretase modulator; a beta-amyloid aggregation inhibitor; an inhibitor of the release, or action, of tumor necrosis factor alpha; an antibody therapy, such as monoclonal antibody therapy; an antiviral agent, such as a nucleoside inhibitor (e.g. lamivudine) or an immune system modulator (e.g. interferon); an opioid analgesic, such as morphine; a vanilloid receptor antagonist; an analgesic, such as a cyclooxygenase-1 and/or cyclooxygenase-2 inhibitor; a local anaesthetic such as lidocaine and derivatives; a stimulant, including caffeine; an H2-antagonist (e.g. ranitidine); a proton pump inhibitor (e.g. omeprazole); an antacid (e.g. aluminium or magnesium hydroxide); an antiflatulent (e.g. semethicone); a decongestant (e.g.

phenylephrine, phenylpropanolamine, pseudoephedrine, oxymetazoline, epinephrine, naphazoline, xylometazoline, propylhexedrine, or levo-desoxyephedrine, naphazoline, xylometazoline, propylhexedrine, or levo-desoxyephedrine); antitussive (e.g. codeine, hydrocodone, carbiphen, carbetapentane, or dextromethorphan); a diuretic; or a sedating or non-sedating antihistamine; other calcium or sodium channel blockers. It is to be understood that the present invention covers the use of a compound of formula (I) or a pharmaceutically acceptable salt thereof in combination with one or more therapeutic agents.

[0121] The compounds of the present invention are useful in human and veterinary medicaments. It is to be understood that as used herein the terms "treatment" or "treating" whenever not specifically defined otherwise, include prevention, alleviation and cure of pathological affection, in particular, they include both treatment of established symptoms and prophylactic treatment. The compounds of the present invention for their therapeutic or preventive use in the above mentioned pathologies will be preferably used as active ingredients in a pharmaceutical composition.

[0122] Therefore, a further object of the present invention are pharmaceutical compositions containing a therapeutically effective amount of a compound of the invention or a salt thereof in admixture with a pharmaceutically acceptable carrier.

[0123] Accordingly, the expression "therapeutically effective" when referred to an "amount", a "dose" or "dosage" of the compounds of this invention is intended as an "amount", a "dose" or "dosage" of any said compounds sufficient for use in both treatment of the established symptoms and the prophylactic treatment of the above said pathological affections.

[0124] The pharmaceutical compositions object of the present invention may be administered in a variety of immediate and modified release dosage forms, e.g. orally, in the form of tablets, troches, capsules, sugar or film coated tablets, liquid solutions, emulsions or suspensions; rectally, in the form of suppositories; parenterally, e.g. by intramuscular and/ or depot formulations; intravenous injection or infusion; locally and transdermally in form of patch and gel and cream.

[0125] Suitable pharmaceutically acceptable, therapeutically inert organic and/or inorganic carrier materials useful in the preparation of such composition include, for example, water, gelatin, gum arabic, lactose, starch, cellulose, magnesium stearate, talc, vegetable oils, cyclodextrins, polyalkyleneglycols.

[0126] The composition comprising the phenylethylamino derivatives of formula I as above defined can be sterilized and may contain further well known components, such as, for example, preservatives, stabilizers, wetting or emulsifying agents, e.g. paraffin oil, mannide monooleate, salts to adjust osmotic pressure, buffers.

[0127] For example, the solid oral forms may contain, together with the active ingredient, diluents, e.g. lactose, dextrose, saccharose, cellulose, corn starch or potato starch; lubricants, e.g. silica, talc, stearic acid, magnesium or calcium stearate, and/or polyethylene glycols; binding agents, e.g. starches, arabic gums, gelatin, methylcellulose, carboxymethylcellulose or polyvinyl pyrrolidone; disintegrating agents, e.g. a starch, alginic acid, alginates or sodium starch glycolate; effervescent mixtures; dyestuffs; sweeteners; wetting agents such as lecithin, polysorbates, laurylsulphates; and, in general, non-toxic and pharmacologically inactive substances used in pharmaceutical formulations. Said pharmaceutical preparations may be manufactured in known manner, for example, by means of mixing, granulating, tabletting, sugar-coating, or film-coating processes.

[0128] The preparation of the pharmaceutical compositions object of the invention can be carried out according to common techniques.

[0129] The oral formulations comprise sustained release formulations that can be prepared in conventional manner, for instance by applying an enteric coating to tablets and granules.

[0130] The liquid dispersion for oral administration may be e.g. syrups, emulsions and suspensions. The syrups may contain as carrier, for example, saccharose or saccharose with glycerine and/or mannitol and/or sorbitol.

[0131] Suspensions and emulsions may contain as a carrier, for example, a natural gum, agar, sodium alginate, pectin, methylcellulose, carboxymethyl-cellulose, or polyvinyl alcohol. The suspensions or solutions for intramuscular injections may contain, together with the active compound, a pharmaceutically acceptable carrier, e.g. sterile water, olive oil, ethyl oleate, glycols, e.g. propylene glycol, and, if desired, a suitable amount of lidocaine hydrochloride. The solutions for intravenous injections or infusion may contain as carrier, for example, sterile water or preferably they may be in the form of sterile, aqueous, isotonic saline solutions.

[0132] The suppositories may contain, together with the active ingredient, a pharmaceutically acceptable carrier, e.g. cocoa butter, polyethylene glycol, a polyoxyethylene sorbitan fatty acid ester surfactants or lecithin.

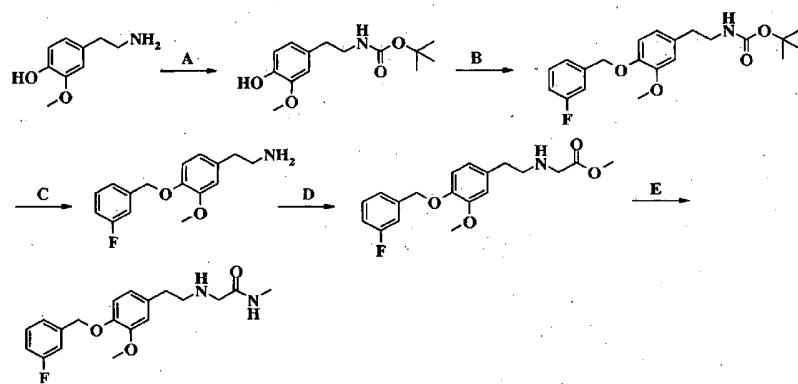
[0133] The pharmaceutical compositions comprising the phenylethylamino derivatives of formula I as above defined will contain, per dosage unit, e.g., capsule, tablet, powder injection, teaspoonful, suppository from about 0.1 to about 500 mg of one or more active ingredients most preferably from 1 to 10 mg.

[0134] Optimal therapeutically effective doses to be administered may be readily determined by those skilled in the art and will vary, basically, with the strength of the preparation, with the mode of administration and with the advancement of the condition or disorder treated. In addition, factors associated with the particular subject being treated, including subject age, weight, diet and time of administration, will result in the need to adjust the dose to an appropriate therapeutically effective level.

EXPERIMENTAL PART

[0135] The ^1H -NMR spectra have been stored in solution of CDCl_3 or DMSO-d_6 with a Varian Gemini 200 MHz spectrometer. The chemical shifts are defined as d with CDCl_3 or DMSO-d_6 and D_2O as inner standard.

[0136] The HPLC/MS analyses are stored with a Gilson instrument by utilizing a X-Terra RP18 column (5 μm , 4.6x50 mm) coupled to a UV detector (220 nm) and a Finnigan Aqa mass spectrometer (electron spray, positive ionization mode). Conditions utilized for the analyses: flow: 1.2 ml/min; column temperature: 50 °C; A/B elution gradient (eluent A: 0.1% formic acid in water; eluent B: 0.1% formic acid in acetonitrile): 5-95% of B from 0 to 8.0 minutes, 95% of B from 8.0 to 9.5 minutes.


[0137] For better illustrating the invention the following examples are now given.

EXAMPLES

Example 1: 2-[2-[4-(3-Fluoro-benzyloxy)-3-methoxy-phenyl]-ethylamino]-N-methyl-acetamide; hydrochloride

[0138] The above compound was synthesized according to **Scheme 1**

Scheme 1

Step A [2-(4-Hydroxy-3-methoxy-phenyl)-ethyl]-carbamic acid *tert*-butyl ester

[0139] 54 g (0.24 mol) of $(\text{Boc})_2\text{O}$ dissolved in 100 ml of dioxane were added at 0 °C to a solution containing 39 g (0.23 mol) of 2-(4-hydroxy-3-methoxy-phenyl)-ethylamine in 230 ml of 1M sodium hydroxide and 390 ml of dioxane. The reaction was stirred at room temperature overnight. Dioxane was removed and aqueous KHSO_4 was added to the residue, until a pH value of 6 was reached. Extraction with ethyl acetate gave an oil that was triturated with hexane. 54.7 g (88% yield) of a white solid were obtained.

^1H -NMR CDCl_3 : 7.26 (s, 1H); 6.88-6.64 (m, 2H); 5.51 (s, 1H); 4.54 (bs, 1H); 3.80 (s, 3H); 3.41-3.27 (m, 2H); 2.72 (t, 2H, $J=7.25$ Hz); 1.44 (s, 9H).

Step B [2-[4-(3-Fluoro-benzyloxy)-3-methoxy-phenyl]-ethyl]-carbamic acid *tert*-butyl ester

[0140] 34.6 g (0.23 mol) of 1-chloromethyl-3-fluoro-benzene in 50 ml of dry dimethylformamide were added to a suspension of 55.9 g (0.209 mol) of [2-(4-hydroxy-3-methoxy-phenyl)-ethyl]-carbamic acid *tert*-butyl ester, 43 g of K_2CO_3 and 3.4 g of potassium iodide in 400 ml of dry dimethylformamide. The reaction was stirred at room temperature overnight. Solvent was removed, water was added to the residue and the product was extracted with ethyl acetate. The crude oil obtained was triturated with diethyl ether. The solid was filtered and 58.2 g (74% yield) of the title product were obtained.

1H -NMR $CDCl_3$: 7.40-6.60 (m, 7H); 5.10 (s, 2H); 4.50-4.60 (bs, 1H); 3.90 (s, 3H); 3.30-3.40 (m, 2H); 3.75 (t, 2H, $J=7.2$ Hz); 1.44 (s, 9H).

Step C 2-[4-(3-Fluoro-benzyloxy)-3-methoxy-phenyl]-ethylamine hydrochloride

[0141] 58.2 g (0.155 mol) of 2-[4-(3-fluoro-benzyloxy)-3-methoxy-phenyl]-ethyl]-carbamic acid *tert*-butyl ester was dissolved in 300 ml of ethyl acetate. 150 ml of anhydrous 2 M hydrochloric acid in ethyl acetate were added and the mixture was stirred at room temperature overnight. The solid was filtered and washed with ethyl acetate and with diethyl ether and 44.2 g (91% yield) of a white solid were obtained.

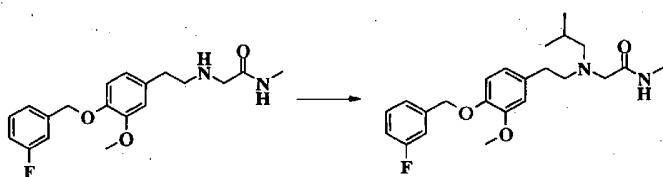
1H -NMR D_2O : 7.31-7.17 (m, 1H); 7.11-6.80 (m, 5H); 6.69-6.61 (m, 1H); 5.02 (s, 2H); 3.69 (s, 3H); 3.05 (t, 2H, $J=6.85$ Hz); 2.74 (t, 2H, $J=6.85$ Hz).

Step D [2-[4-(3-Fluoro-benzyloxy)-3-methoxy-phenyl]-ethylamino]-acetic acid methyl ester hydrochloride

[0142] 1 g (3.2 mmol) of 2-[4-(3-fluoro-benzyloxy)-3-methoxy-phenyl]-ethylamine, 833 mg (6 mmol) of K_2CO_3 , 50 mg of potassium iodide and 0.27 ml (2.9 mmol) of bromo-acetic acid methyl ester were dissolved in 10 ml of dimethylformamide and the mixture was stirred at room temperature overnight. Solvent was removed, water was added to the residue and the residue was extracted with ethyl acetate. The crude product was purified by flash chromatography (dichloromethane/methanol/ NH_3 100:0:0 \rightarrow 100:2.5:0.25 gradient v:v:v). The product obtained was dissolved in anhydrous hydrochloric acid in ethyl acetate. The solvent was removed and the residue was triturated with diethyl ether. 482 mg (39% yield) of the title compound were obtained as a brown solid.

1H -NMR $CDCl_3$: 7.39-7.28 (m, 2H); 7.22-6.92 (m, 2H); 7.04-6.92 (m, 1H); 6.86-6.74 (m, 3H); 5.10 (s, 2H); 3.88 (s, 3H); 3.87-3.80 (m, 2H); 3.78 (s, 3H); 3.41-3.19 (m, 4H).

Step E 2-[2-[4-(3-Fluoro-benzyloxy)-3-methoxy-phenyl]-ethylamino]-*N*-methyl-acetamide hydrochloride


[0143] 900 mg (2.34 mmol) of [2-[4-(3-fluoro-benzyloxy)-3-methoxy-phenyl]-ethylamino]-acetic acid methyl ester were dissolved in 10 ml of dry toluene and 5 ml (10 mmol) of a 2 M solution of methylamine in tetrahydrofuran were added at 0 °C, followed by 5 ml (10 mmol) of a 2 M solution of trimethyl aluminium in heptane. The reaction was stirred at room temperature overnight. The solution was cooled down to 0 °C and poured into methanol. The solvent was removed and the crude product was purified by flash chromatography (dichloromethane/methanol/ NH_3 100:0:0 \rightarrow 100:4:0.4 gradient v:v:v). The product was dissolved in anhydrous hydrochloric acid in ethyl acetate, and the solid was filtered. 590 mg (66% yield) of the title compound were isolated as a hygroscopic solid.

1H -NMR dimethylsulfoxide-d6: 9.06 (m, 2H); 8.46 (bm, 1H); 7.49-6.67 (m, 7H); 5.07 (s, 2H); 3.76 (s, 3H); 3.73-3.63 (bm, 2H); 3.23-3.04 (m, 2H); 2.94-2.80 (bm, 2H); 2.65 (d, 3H, $J=4.36$ Hz).

LC-MS: $MH^+ = 347.4$

Example 2: 2-[[2-[4-(3-Fluoro-benzyloxy)-3-methoxy-phenyl]-ethyl]-isobutylamino]-*N*-methyl-acetamide hydrochloride

[0144] The above compound was synthesized according to Scheme 2

Scheme 2

[0145] 90 mg of 2-[2-[4-(3-Fluoro-benzyloxy)-3-methoxy-phenyl]-ethylamino]-N-methyl-acetamide (0.235 mmol) and 19 mg (0.263 mmol) of 2-methyl-propionaldehyde were dissolved in 6 ml of a dichloromethane/acetic acid (8:2, v:v) mixture and 1.5 ml of methanol. 100 mg (0.425 mmol) of (polystyrylmethyl)trimethylammonium cyanoborohydride (loading: 4.25 mmol/g) were added and the mixture was stirred at room temperature overnight. The resin was filtered and the solvent was removed. The crude product was purified by flash chromatography (dichloromethane/methanol/NH₃ 100:0:0 → 100:2:0.2 gradient v:v:v). The product was dissolved in anhydrous hydrochloric acid in ethyl acetate, the solvent was removed and the residue was triturated with diethyl ether. 80 mg (77% yield) of the title compound were isolated as a hygroscopic solid.

¹H-NMR diinethylsulfoxide-d₆: 9.42 (bm, 1H); 8.73 (bm, 1H); 7.49-6.72 (m, 7H); 5.07 (s, 2H); 4.14-3.87 (m, 2H); 3.77 (s, 3H); 3.42-3.24 (m, 2H); 3.10-2.86 (m, 4H); 2.69-2.65 (m, 3H); 2.16-1.92 (m, 1H); 0.95 (d, 6H).

LC-MS: MH⁺ = 403

Examples 3-6. These compounds were prepared analogously according to the procedure described in **Scheme 2**.

Example 3: 2-[[2-[4-(3-Fluoro-benzyloxy)-3-methoxy-phenyl]-ethyl]-[tetrahydrofuran-3-ylmethyl]amino]-N-methyl-acetamide hydrochloride

[0146] LC-MS: MH⁺ = 431

Example 4: 2-[[2-[4-(3-Fluoro-benzyloxy)-3-methoxy-phenyl]-ethyl]-[cyclopropylmethyl]amino]-N-methyl-acetamide hydrochloride

[0147] LC-MS: MH⁺ = 401

Example 5: 2-[[2-[4-(3-Fluoro-benzyloxy)-3-methoxy-phenyl]-ethyl]-[furan-2-ylmethyl]amino]-N-methyl-acetamide hydrochloride

[0148] LC-MS: MH⁺ = 427

Example 6: 2-[[2-[4-(3-Fluoro-benzyloxy)-3-methoxy-phenyl]-ethyl]-[furan-3-ylmethyl]amino]-N-methyl-acetamide hydrochloride

[0149] LC-MS: MH⁺ = 427

[0150] Example 7. This compound was prepared analogously, according to the procedure described in **Scheme 2**, but was not saltified with hydrochloric acid.

Example 7: 2-[[2-[4-(3-Fluoro-benzyloxy)-3-methoxy-phenyl]-ethyl]-[6-methoxy-pyridin-3-ylmethyl]amino]-N-methyl-acetamide

[0151] LC-MS: $MH^+ = 468$

[0152] **Examples 8-14.** These compounds were prepared analogously, according to the procedure described in **Scheme 2** of Example 2 starting from 2-[2-[4-(3-fluoro-benzyloxy)-3-methoxyphenyl]-ethylamino]-*N,N*-dimethyl-acetamide instead of 2-[2-[4-(3-fluoro-benzyloxy)-3-methoxy-phenyl]-ethylamino]-*N*-methyl-acetamide.

Example 8: 2-[[2-[4-(3-Fluoro-benzyloxy)-3-methoxy-phenyl]-ethyl]-methylamino]-*N,N*-dimethyl-acetamide hydrochloride

[0153] LC-MS: $MH^+ = 375$

Example 9: 2-[[2-[4-(3-Fluoro-benzyloxy)-3-methoxy-phenyl]-ethyl]-cyclopropylmethyl)amino]-*N,N*-dimethyl-acetamide hydrochloride

[0154] LC-MS: $MH^+ = 415$

Example 10: 2-[[2-[4-(3-Fluoro-benzyloxy)-3-methoxy-phenyl]-ethyl]-isopropylamino]-*N,N*-dimethyl-acetamide hydrochloride

[0155] LC-MS: $MH^+ = 403$

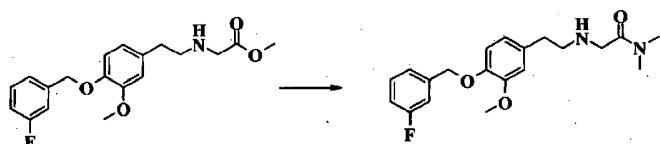
Example 11: 2-[[2-[4-(3-Fluoro-benzyloxy)-3-methoxy-phenyl]-ethyl]-benzylamino]-*N,N*-dimethyl-acetamide hydrochloride

[0156] LC-MS: $MH^+ = 451$

Example 12: 2-[[2-[4-(3-Fluoro-benzyloxy)-3-methoxy-phenyl]-ethyl]-ethylamino]-*N,N*-dimethyl-acetamide hydrochloride

[0157] LC-MS: $MH^+ = 389$

Example 13: 2-[[2-[4-(3-Fluoro-benzyloxy)-3-methoxy-phenyl]-ethyl]-furan-2-ylmethyl)amino]-*N,N*-dimethyl-acetamide hydrochloride


[0158] LC-MS: $MH^+ = 441$

Example 14: 2-[[2-[4-(3-Fluoro-benzyloxy)-3-methoxy-phenyl]-ethyl]-pyridin-3-ylmethyl)amino]-*N,N*-dimethyl-acetamide hydrochloride

[0159] LC-MS: $MH^+ = 452$

Example 15: 2-[4-(3-Fluoro-benzyloxy)-3-methoxy-phenyl]-ethylamino]-*N,N*-dimethyl-acetamide hydrochloride

[0160] The above compound was synthesized according to **Scheme 3**

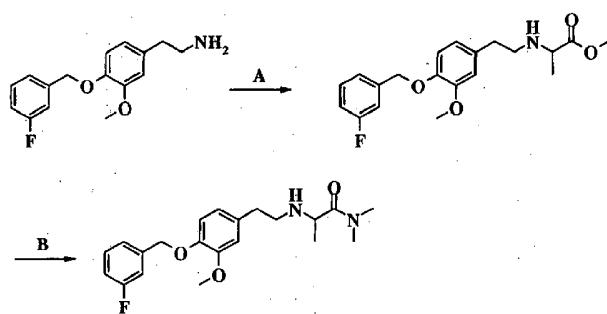
Scheme 3

[0161] 100 mg (0.26 mmol) of 2-[2-[4-(3-fluoro-benzyloxy)-3-methoxy-phenyl]-ethylamino]-acetic acid methyl ester were dissolved in 5 ml of dry toluene. 0.4 ml (0.8 mmol) of a 2 M solution of dimethylamine solution in tetrahydrofuran was added at 0 °C, followed by 0.4 ml (0.8 mmol) of a 2 M solution of trimethyl aluminium in heptane. The reaction was stirred for 4 hours at room temperature. The solution was cooled down to 0 °C and poured into methanol. The solvent was removed and the crude residue was purified by flash chromatography (dichloromethane/methanol/NH₃ 100:5:0.5 v:v:v). The product was dissolved in ethyl acetate/hydrochloric acid. The solvent was removed and the residue was triturated with diethyl ether. 70 mg (68% yield) of the title compound were isolated as a hygroscopic solid.

¹H-NMR CDCl₃: 9.56 (bs, 1H); 7.38-7.27 (m, 2H); 7.21-7.10 (m, 2H); 7.04-6.86 (m, 2H); 6.79-6.76 (m, 2H); 5.10 (s, 2H); 3.93 (t broad, 2H); 3.89 (s, 3H); 3.41-3.15 (m, 4H); 2.94 (s, 6H)

LC-MS: MH⁺ = 361

Example 16: 2-[2-[4-(3-Fluoro-benzyloxy)-3-methoxy-phenyl]-ethylamino]-1-(pyrrolidin-1-yl)-ethanone hydrochloride


[0162] This compound was prepared as described in **Scheme 3** using pyrrolidine in dimethylformamide instead of N,N-dimethylamine, to obtain the desired compound as a white solid (yield 48%).

¹H-NMR CDCl₃: 9.57 (s broad, 1H); 7.38-7.27 (m, 2H); 7.21-7.10 (m, 2H); 7.04-6.76 (m, 4H); 5.10 (s, 2H); 3.89 (s, 3H); 3.84 (t broad, 2H); 3.50-3.14 (m, 8H); 2.07-1.80 (m, 4H)

LC-MS: MH⁺ = 387

Example 17: 2-[2-[4-(3-Fluoro-benzyloxy)-3-methoxy-phenyl]-ethylamino]-N,N-dimethyl-propionamide hydrochloride

[0163] The above compound was synthesized according to **Scheme 4**

Scheme 4

Step A 2-[2-[4-(3-Fluoro-benzyloxy)-3-methoxy-phenyl]-ethylamino]-propionic acid methyl ester hydrochloride

[0164] A solution of 0.75 g (2.4 mmol) of 2-[4-(3-fluoro-benzyloxy)-3-methoxy-phenyl]-ethylamine, 0.88 ml (5.05 mmol) of diisopropylethylamine and 0.294 ml (2.64 mmol) of 2-bromo-propionic acid methyl ester in 10 ml of dry tetrahydrofuran was kept at 75 °C for 48 hours. The reaction mixture was poured into water and the product was extracted with ethyl acetate. The solvent was removed and the crude residue was purified by flash chromatography (dichloromethane/methanol/NH₃ 100:0:0 → 100:2:0.2 gradient). The product was dissolved in ethyl acetate/hydrochloric acid. The solvent was removed and the residue was triturated with diethyl ether. 300 mg (31% yield) of a white solid were isolated.

¹H-NMR D₂O: 7.35-7.18 (m, 1H); 7.16-6.80 (m, 5H); 6.75-6.62 (m, 1H); 5.05 (s, 2H); 4.06-3.88 (m, 1H); 3.77-3.64 (m, 6H); 3.18 (bt, 2H), 2.83 (bt, 2H); 1.43-1.34 (m, 3H)

Step B 2-[2-[4-(3-Fluoro-benzyloxy)-3-methoxy-phenyl]-ethylamino]-N,N-dimethyl-propionamide hydrochloride

[0165] 125 mg (0.31 mmol) of 2-[2-[4-(3-fluoro-benzyloxy)-3-methoxy-phenyl]-ethylamino]-propionic acid methyl ester were dissolved in 5 ml of dry toluene. 0.785 ml (1.57 mmol) of a 2 M solution of dimethylamine in tetrahydrofuran were added at 0 °C, followed by 0.47 ml (0.94 mmol) of a 2 M solution of trimethyl aluminium in heptane. The reaction was stirred for 5 hours at room temperature. The solution was cooled down to 0 °C and poured into methanol. The solvent was removed and the crude product was purified by flash chromatography (dichloromethane/methanol/NH₃ 100:5:0.5). The product was dissolved in ethyl acetate/hydrochloric acid. The solvent was removed and the solid was filtered. 94 mg (74% yield) of the title compound were isolated as a hygroscopic solid.

¹H-NMR CDCl₃: 8.01 (bs, 1H); 7.38-7.09 (m, 3H); 7.03-6.72 (m, 4H); 5.08 (s, 2H); 4.49-4.30 (m, 1H); 3.86 (s, 3H); 3.42-3.07 (m, 4H); 2.98 (d, 6H, J=7.51 Hz); 1.69-1.60 (m, 3H).

Example 18: (S)-2-[2-[4-(3-Fluoro-benzyloxy)-3-methoxy-phenyl]-ethylamino]-N-methyl-4-methyl-valeramide

[0166] LC-MS: MH⁺ = 403

[0167] This compound was prepared analogously, according to the procedure described in **Scheme 4**

Example 19: 2-[2-[4-(3-Fluoro-benzyloxy)-3-methoxy-phenyl]-ethylamino]-2-phenyl-N,N-dimethyl-acetamide hydrochloride

[0168] The above compound was synthesized according to **Scheme 5**
Scheme 5

Step A 2-[2-[4-(3-Fluoro-benzyloxy)-3-methoxy-phenyl]-ethylamino]-2-phenyl-acetic acid methyl ester

[0169] A solution of 0.75 g (2.4 mmol) of 2-[4-(3-fluoro-benzyloxy)-3-methoxy-phenyl]-ethylamine, 0.88 ml (5.05 mmol) of diisopropylethylamine and 0.416 ml (2.64 mmol) of 2-bromo-2-phenyl-acetic acid methyl ester in 10 ml of dry tetrahydrofuran was kept at 75 °C for 48 hours. The reaction mixture was poured into water and the product was extracted with ethyl acetate. The crude product was purified by flash chromatography (dichloromethane/methanol/NH₃ 100:0:0 → 100:2:0.2 gradient v:v:v). 600 mg (50% yield) of the title compound were obtained as a yellow oil.

¹H-NMR D₂O: 7.45-7.16 (m, 6H); 7.10-6.84 (m, 3H); 6.81-6.70 (m, 2H); 6.57 (dd, 1H, J=8.37 and 2.16 Hz); 4.99 (s, 2H); 4.93 (s, 1H); 3.63 (d, 6H, J=2.38 Hz); 3.13-2.68 (m, 4H).

Step B 2-[2-[4-(3-Fluoro-benzyloxy)-3-methoxy-phenyl]-ethylamino]-N,N-dimethyl-2-phenyl-acetamide

[0170] This compound was synthesized according to the procedure described in **Scheme 6**, step **B**, using 115 mg of 2-[2-[4-(3-fluoro-benzyloxy)-3-methoxy-phenyl]-ethylamino]-2-phenyl-acetic acid methyl ester (0.27 mmol), 1.06 ml (2.1 mmol) of a 2 M solution of dimethylamine in tetrahydrofuran and 0.53 ml (1.06 mmol) of a 2 M solution of trimethyl aluminium in heptane. 66 mg (52% yield) of the title compound were isolated as a white solid.

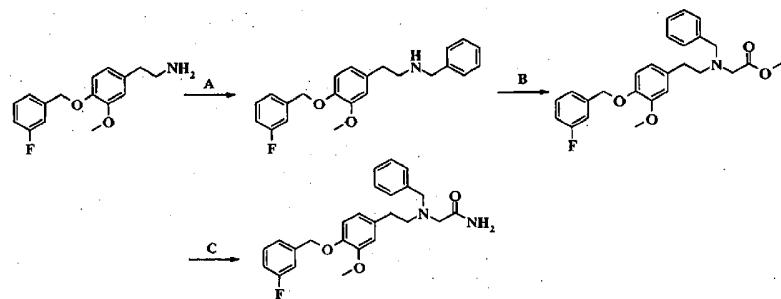
¹H-NMR CDCl₃: 8.52 (bs, 1H); 7.47-7.10 (m, 9H); 7.03-6.92 (m, 2H); 6.81-6.62 (m, 3H); 5.42 (bs, 1H); 5.10 (s, 2H); 3.58 (s, 3H); 3.24-2.99 (m, 4H); 2.91 (d, 6H)

[0171] **Examples 20-21:** These compounds were prepared according to the procedure described in **Scheme 5** using the relevant amine in step B.

Example 20: 2-[2-[4-(3-Fluoro-benzyloxy)-3-methoxy-phenyl]-ethylamino]-1-(morpholin-4-yl)-2-phenyl-ethanone hydrochloride

[0172] (yield 51%).

¹H-NMR CDCl₃: 8.59 (bs, 1H); 7.48-7.26 (m, 6H); 7.21-7.10 (m, 2H); 7.04-6.92 (m, 2H); 6.79-6.63 (m, 3H); 5.50 (bs, 1H); 5.09 (s, 2H); 3.85 (s, 3H); 3.76-3.33 (m, 6H); 3.23-2.91 (m, 6H).


Example 21: 2-[2-[4-(3-Fluoro-benzyloxy)-3-methoxy-phenyl]-ethylamino]-1-(pyrrolidin-1-yl)-2-phenyl-ethanone hydrochloride

[0173] LC-MS: MH⁺ = 463

Example 22: 2-[[2-[4-(3-Fluoro-benzyloxy)-3-methoxy-phenyl]-ethyl]-benzylamino]-acetamide hydrochloride

[0174] The above compound was synthesized according to **Scheme 6**

Scheme 6

Step A [2-[4-(3-fluoro-benzyloxy)-3-methoxy-phenyl]-ethyl]-benzylamine

[0175] A mixture of 4.4 g (16 mmol) of 2-[4-(3-fluoro-benzyloxy)-3-methoxy-phenyl]-ethylamine, 1.72 g (16 mmol) of benzaldehyde, 100 ml of ethanol and 30 g of 4 molecular sieves, was refluxed overnight. The reaction mixture was cooled down to room temperature, 50 mg of PtO₂ were added and the mixture was hydrogenated at 15 psi for 5 hours. The catalyst was filtered off and the solvent was removed under reduced pressure. The crude reaction product was purified by flash chromatography (dichloromethane/methanol/NH₃ 85:15:1.5, v:v:v) and 2.72 g (46% yield) of the title compound were isolated as a yellow oil.

¹H-NMR CDCl₃: 10.12 (bs, 1H); 7.60-7.26 (m, 8H); 7.19-7.09 (m, 2H); 7.03-6.91 (m, 1H); 6.77-6.59 (m, 3H); 5.08 (s, 2H); 4.01 (t broad, 2H); 3.18-2.88 (m, 4H).

Step B 2-[[2-[4-(3-Fluoro-benzyloxy)-3-methoxy-phenyl]-ethyl]-benzylamino]-acetic acid methyl ester

[0176] 1.7 g (4.65 mmol) of [2-[4-(3-fluoro-benzyloxy)-3-methoxy-phenyl]-ethyl]-benzylamine, 1.74 ml (10 mmol) of diisopropylethylamine and 0.5 ml (5.11 mmol) of 2-bromo-acetic acid methyl ester were dissolved in 20 ml of acetonitrile and the reaction was stirred at 70 °C overnight. The solvent was removed under reduced pressure, water was added to the residue and the product was extracted with ethyl acetate. The crude product was purified by flash chromatography (hexane%ethyl acetate 100:0 → 80:20 gradient v:v) and 1.94 g (95% yield) of the title compound were isolated as a yellow oil.

¹H-NMR CDCl₃: 7.72-7.65 (m, 2H); 7.47-7.28 (m, 5H); 7.21-7.10 (m, 2H); 7.04-6.93 (m, 1H); 6.85-6.67 (m, 3H); 5.11 (s, 2H); 4.68-4.30 (m, 2H); 3.89 (s, 3H); 3.72 (s, 3H); 3.68-3.15 (m, 6H).

Step C 2-[[2-[4-(3-Fluoro-benzyloxy)-3-methoxy-phenyl]-ethyl]-benzylamino]-acetamide hydrochloride

[0177] 80 mg (0.18 mmol) of 2-[[2-[4-(3-fluoro-benzyloxy)-3-methoxy-phenyl]-ethyl]-benzylamino]-acetic acid methyl ester were dissolved in 3 ml of dioxane and 2 ml of NH₃ 30%. The solution was heated with microwaves at 100 °C for 8 hours. The solvent was removed and the crude reaction residue was purified by flash chromatography (dichloromethane/methanol/NH₃ 100:0:0 → 95:5:0.5 gradient v:v:v). The product was dissolved in anhydrous hydrochloric acid in ethyl acetate. The solvent was removed and the residue was triturated with diethyl ether. 30 mg (36% yield) of the title compound were isolated as a yellow solid.

¹H-NMR dimethylsulfoxide-d₆: 10.00 (bs, 1H); 7.95, 7.69 (2 bs, 2H); 7.63-6.67 (m, 12H); 5.06 (s, 2H); 4.42 (bs, 2H); 3.86 (bs, 2H); 3.75 (s, 3H); 3.38-3.12 (bs., 2H); 3.10-2.87 (bs., 2H).

LC-MS: MH⁺ = 423

[0178] Examples 23-29. These compounds were prepared according to the procedure described in **Scheme 6** step C, using the relevant amine

Example 23: 2-[[2-[4-(3-Fluoro-benzyloxy)-3-methoxy-phenyl]-ethyl]-benzylamino]-N-ethyl-acetamide hydrochloride

[0179] LC-MS: MH⁺ = 451

Example 24: 2-[[2-[4-(3-Fluoro-benzyloxy)-3-methoxy-phenyl]-ethyl]-benzylamino]-N-isopropyl-acetamide hydrochloride

[0180] LC-MS: MH⁺ = 465

Example 25: 2-[[2-[4-(3-Fluoro-benzyloxy)-3-methoxy-phenyl]-ethyl]-benzylamino]-N-ethyl-N-methyl-acetamide hydrochloride

[0181] LC-MS: MH⁺= 465

Example 26: 2-[[2-[4-(3-Fluoro-benzyloxy)-3-methoxy-phenyl]-ethyl]-benzylamino]-1-(pyrrolidin-1-yl)-ethanone hydrochloride

[0182] LC-MS: MH⁺= 477

Example 27: 2-[[2-[4-(3-Fluoro-benzyloxy)-3-methoxy-phenyl]-ethyl]-benzylamino]-N-(2-amino-2-methyl-propyl)-acetamide hydrochloride

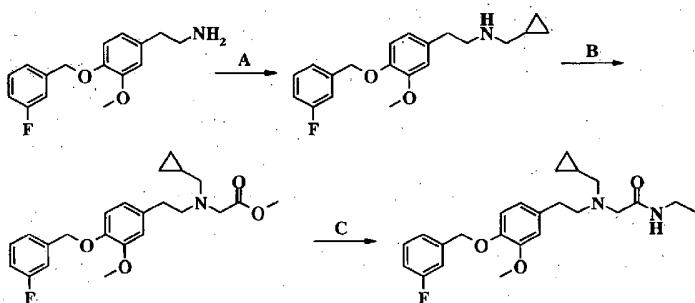
[0183] LC-MS: $MH^+ = 494$

Example 28: 2-[[2-[4-(3-Fluoro-benzyloxy)-3-methoxy-phenyl]-ethyl]-benzylamino]-N-(2-dimethylamino-ethyl)-acetamide hydrochloride

[0184] LC-MS: $MH^+ = 494$

Example 29: 2-[[2-[4-(3-Fluoro-benzyloxy)-3-methoxy-phenyl]-ethyl]-benzylamino]-N-[2-(1-methyl-pyrrolidin-2-yl)-ethyl]-acetamide hydrochloride

[0185] LC-MS: $MH^+ = 534$


Example 30: 2-[[2-[4-(3-Fluoro-benzyloxy)-3-methoxy-phenyl]-ethyl]-benzylamino]-N-methyl-acetamide

[0186] This compound was prepared analogously, according to the procedure described in **Scheme 6** step C, using the relevant amine, but was not salified with hydrochloric acid.

LC-MS: $MH^+ = 437.4$

Example 31: 2-[[2-[4-(3-Fluoro-benzyloxy)-3-methoxy-phenyl]-ethyl]-cyclopropylmethyl)amino]-N-ethyl-acetamide hydrochloride

[0187] The above compound was synthesized according to **Scheme 7**
Scheme 7

Step A [2-[4-(3-Fluoro-benzyloxy)-3-methoxy-phenyl]-ethyl]-cyclopropylmethyl)amine

[0188] A suspension of 0.66 g (2.1 mmol) of 2-[4-(3-fluoro-benzyloxy)-3-methoxy-phenyl]-ethylamine, 0.151 g (2.1 mmol) of cyclopropanecarbaldehyde, 0.3 ml of triethylamine and 3 g of molecular sieves in 6 ml of ethanol was stirred under reflux for 3 hours. The mixture was cooled to 0 °C and 0.2 g (5 mmol) of NaBH4 was added portionwise. The reaction mixture was stirred at room temperature overnight. 3 ml of aqueous ammonium chloride were added, the solvent was removed under reduced pressure and the residue was extracted with ethyl acetate. The crude residue was purified by flash chromatography (dichloromethane/methanol/NH3 100:0:0 → 95:5:0.5 gradient v:v:v) to get 0.3 g of the desired compound as an oil (43% yield).

¹H-NMR CDCl3: 9.80 (bm, 2H); 7.37-6.67 (m, 7H); 5.09 (s, 2H); 3.86 (s, 3H); 3.22 (bs, 4H); 2.92-2.80 (m, 2H); 0.93-0.78 (m, 1H); 0.75-0.63 (m, 2H); 0.49-0.38 (m, 2H).

Step B 2-[[2-[4-(3-Fluoro-benzyloxy)-3-methoxy-phenyl]-ethyl]-cyclopropylmethyl)-amino]-acetic acid methyl ester

[0189] 0.271 g (0.82 mmol) of [2-[4-(3-fluoro-benzyloxy)-3-methoxy-phenyl]-ethyl]-(cyclopropylmethyl)amine, 0.140 ml (1 mmol) of triethylamine and 0.155 g (0.89 mmol) of bromo-acetic acid methyl ester were dissolved in 5 ml of acetonitrile and the reaction was carried out at 70 °C overnight. Solvent was removed *under vacuum*, water was added to the residue and the product was extracted with ethyl acetate. The crude product was purified by flash chromatography (hexane/ethyl acetate 100:0 → 80:20 gradient v:v) and 0.32 g (97% yield) of the title compound was isolated as a yellow oil.

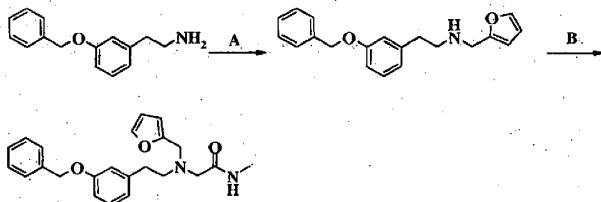
¹H-NMR CDCl₃: 7.38-7.28 (m, 1H); 7.22-7.10 (m, 2H); 7.04-6.91 (m, 1H); 6.80-6.62 (m, 3H); 5.11 (s, 2H); 3.88 (s, 3H); 3.70 (s, 3H); 3.59-3.50 (m, 2H); 3.00-2.53 (m, 6H); 0.96-0.78 (m, 1H); 0.58-0.46 (m, 2H); 0.18-0.07 (q broad, 2H).

Step C 2-[[2-[4-(3-Fluoro-benzyloxy)-3-methoxy-phenyl]-ethyl]-cyclopropylmethyl)amino] -N-ethyl-acetamide

[0190] 105 mg (0.26 mmol) of 2-[[2-[4-(3-fluoro-benzyloxy)-3-methoxy-phenyl]-ethyl]-cyclopropylmethyl)amino]-acetic acid methyl ester were dissolved in 5 ml of dry toluene. 0.5 ml of a 2 M (1 mmol) solution of ethylamine in tetrahydrofuran were added at 0 °C, followed by 0.4 ml (0.8 mmol) of a 2 M solution of trimethyl aluminium in heptane. The reaction was stirred for 4 hours at room temperature. The solution was cooled to 0 °C and poured into methanol. The solvent was removed and the crude product was purified by flash chromatography (ethyl acetate/hexane 0:100 → 85:15 gradient v:v) to obtain 52 mg (48% yield) of the title compound as a hygroscopic solid.

LC-MS: MH⁺ = 415

¹H-NMR CDCl₃: 8.85 (bs, 1H); 7.39-6.64 (m, 7H); 5.09 (s, 2H); 4.19 (m, 2H); 3.86 (s, 3H); 3.61-3.42 (m, 2H); 3.42-3.09 (m, 6H); 1.36-1.17 (m, 1H); 1.22 (t, 3H, J=7.3 Hz); 0.81-0.65 (m, 2H); 0.53-0.41 (m, 2H).


Example 32: 2-[[2-[4-(3-Fluoro-benzyloxy)-3-methoxy-phenyl]-ethyl]-cyclopropylmethyl)amino]-N-isopropyl-acetamide hydrochloride

[0191] This compound was prepared according to the procedure described here above using isopropyl amine instead of ethyl amine. 63 mg of the desired compound (52% yield) were isolated as a hygroscopic solid.

LC-MS: MH⁺ = 429

Example 33: 2-[[2-(3-Benzylbenzyl)-ethyl]-furan-2-ylmethyl)amino]-N-methyl-acetamide hydrochloride

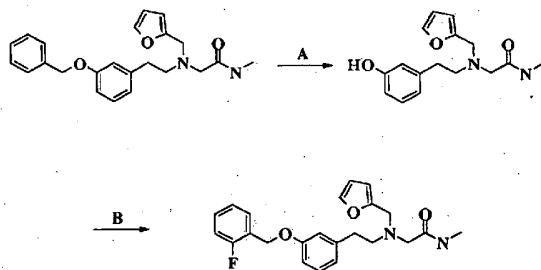
[0192] The above compound was synthesized according to **Scheme 8**
Scheme 8

Step A [2-(3-Benzylbenzyl)-ethyl]-furan-2-ylmethyl)amine

[0193] A suspension of 30.2 g (133 mmol) of 2-(3-benzyloxy-phenyl)-ethylamine, 11.0 ml (133 mmol) of furan-2-carboxaldehyde, and 60 g of 4Å molecular sieves in 300 ml of ethanol was kept under reflux for 3 hours. The mixture was cooled to 0 °C and 10.8 g (286 mmol) of NaBH₄ were added portionwise. The reaction mixture was stirred at room temperature overnight. 60 ml of aqueous ammonium chloride were added, the solvent was removed *under vacuum* and the residue was extracted with ethyl acetate. The crude product was purified by flash chromatography (dichloromethane/methanol/NH₃ 100:1:0.1 v:v:v) and 22.4 g (55% yield) of the title compound were isolated as a yellow oil.

¹H-NMR CDCl₃: 10.1 (b, 1H); 7.4-6.3 (m, 12H); 5 (s, 2H); 4.2 (t, 2H, J=4.9 Hz); 3.2-3.0 (m, 4H).

Step B 2-[[2-(3-Benzyl-phenyl)-ethyl]-furan-2-ylmethyl]amino]-N-methyl-acetamide hydrochloride


[0194] A solution of 3.0 g (9.8 mmol) of [2-(3-benzyl-phenyl)-ethyl]-furan-2-ylmethyl)amine, 15.0 g (10.7 mmol) of 2-chloro-N-methyl-acetamide and 1.87 ml (10.7 mmol) of di-isopropylethylamine in 50 ml of acetonitrile was stirred under reflux for 24 hours. The solvent was removed under reduced pressure and the crude reaction mixture was purified by flash chromatography (ethyl acetate/hexane 1:1 v:v). The product isolated was dissolved in anhydrous hydrochloric acid in ethyl acetate. The solvent was removed *under vacuum* and the residue was triturated with diethyl ether. 2.66 g (65% yield) of the title compound were isolated as a hygroscopic solid.

¹H-NMR CDCl₃: 8.8 (b, 1H); 7.5-7.2 (m, 7H); 6.9-6.8 (m, 4H); 6.5 (m, 1H), 5.0 (s, 2H); 4.5-4.3 (m, 2H); 4.0-3.8 (m, 2H); 3.2 (m, 4H); 3-2.8 (m, 3H)

LC-MS: MH⁺ = 379

Example 34: 2-[[2-[3-(2-Fluoro-benzyl)-phenyl]-ethyl]-furan-2-ylmethyl]amino]-N-methyl-acetamide hydrochloride

[0195] The above compound was synthesized according to **Scheme 9**
Scheme 9

Step A 2-[[2-(3-Hydroxy-phenyl)-ethyl]-furan-2-ylmethyl]amino]-N-methyl-acetamide

[0196] 400 mg of Pd/C (10%) were added to a solution of 4.12 g (10.9 mmol) of 2-[[2-(3-benzyl-phenyl)-ethyl]-furan-2-ylmethyl]amino]-N-methyl-acetamide hydrochloride in 100 ml of methanol. The hydrogenation was carried out at 30 psi for 90 minutes at room temperature. The catalyst was filtered off, the solvent was removed and the crude product was purified by flash chromatography (ethyl acetate/hexane 1:1 + triethylamine). 2.1 g (67% yield) of the title compound were isolated as a white solid.

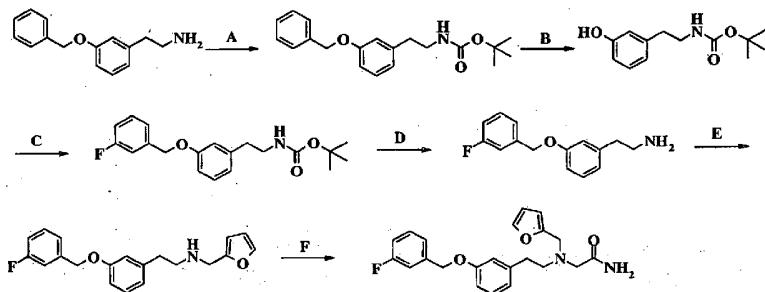
¹H-NMR CDCl₃: 7.37 (d, 1H, J=2.1); 7.20 (t, 1H, J=7.2); 6.75-6.67 (m, 4H); 6.33-6.31 (m, 1H); 6.20 (m, 1H); 5.72 (b, 1H); 3.72 (s, 2H); 3.14 (s, 2H); 2.74 (m, 4H); 2.56 (d, 3H, J=4.1).

LC-MS: MH⁺ = 289

Step B 2-[[2-[3-(2-Fluoro-benzyl)-phenyl]-ethyl]-furan-2-ylmethyl]amino]-N-methyl-acetamide hydrochloride

[0197] A solution of 60 mg (0.21 mmol) of 2-[[2-(3-hydroxy-phenyl)-ethyl]-furan-2-ylmethyl]-amino]-N-methyl-acetamide, 36 mg (0.25 mmol) of 1-chloromethyl-2-fluoro-benzene, 44 mg of K₂CO₃ (0.32 mmol) and 3 mg of potassium iodide in 4 ml of dimethylformamide was refluxed overnight. The solvent was removed *under vacuum* and the crude product was purified by preparative HPLC. The isolated product was dissolved in ethyl acetate/hydrochloric acid. The solvent was removed *under vacuum* and the residue was triturated with diethyl ether. 65 mg (72% yield) of the title compound were isolated as a white solid.

¹H-NMR CDCl₃: 12.67 (b, 1H); 8.79 (m, 1H); 7.55-7.05 (m, 5H); 6.88 (m, 4H); 6.49 (m, 1H); 5.11 (s, 2H); 4.45 (m, 2H); 3.72 (m, 2H); 3.24 (m, 4H); 2.88 (d, 3H, J=4.56 Hz).


LC-MS: MH⁺ = 397.3

[0198] **Example 35.** This compound was prepared according to the procedure described in **Scheme 9** using the relevant reagents.

Example 35: 2-[[2-[3-(3-Fluoro-benzyloxy)-phenyl]-ethyl]-furan-2-ylmethyl]amino]-N-methyl-acetamide hydrochloride

Example 36: 2-[[2-[3-(3-Fluoro-benzyloxy)-phenyl]-ethyl]-furan-2-ylmethyl]amino]-acetamide

[0199] The above compound was synthesized according to **Scheme 10**
Scheme 10

Step A [2-(3-Benzyl-phenyl)-ethyl]-carbamic acid *tert*-butyl ester

[0200] 4.8 g of $(Boc)_2O$ (22 mmol) in 10 ml of dichloromethane were added to a suspension of 5.27 g of 2-(3-benzyloxy-phenyl)-ethylamine-HCl (20 mmol) in 20 ml of dichloromethane and 2.78 ml of triethylamine (20 mmol). The reaction was stirred for 1 hour at room temperature. After evaporation of the solvent, an aqueous solution containing 5% citric acid was added to the residue and the product was extracted with ethyl acetate. The title product was isolated as a colorless oil in quantitative yield. 1H -NMR $CDCl_3$: 7.45-6.78 (m, 9H); 5.05 (s, 2H); 4.54 (bs, 1H); 3.48-3.28 (m, 2H); 2.77 (t, 2H); 1.44 (s, 9H).

Step B [2-(3-Hydroxy-phenyl)-ethyl]-carbamic acid *tert*-butyl ester

[0201] 1 g of Pd/C 10% was added to a solution of 13 g (0.039 mol) of [2-(3-benzyloxy-phenyl)-ethyl]-carbamic acid *tert*-butyl ester in 100 ml of ethanol. The mixture was hydrogenated at 40 psi overnight. The catalyst was filtered off and washed with ethanol. The solvent was removed under vacuum and 9.4 g of the title compound were obtained as a colourless oil in quantitative yield.

1H -NMR $CDCl_3$: 7.22-7.12 (m, 1H); 6.78-6.66 (m, 3H); 4.56 (bs, 1H); 3.42-3.30 (m, 2H); 2.74 (t, 2H); 1.44 (s, 9H).

Step C [2-[3-(3-Fluoro-benzyloxy)-phenyl]-ethyl]-carbamic acid *tert*-butyl ester

[0202] 2.87 g (19.8 mmol) of 1-chloromethyl-3-fluoro-benzene in 5 ml of dry dimethylformamide were added to a suspension of 4.66 g (19.6 mmol) of [2-(3-hydroxy-phenyl)-ethyl]-carbamic acid *tert*-butyl ester, 4 g of K_2CO_3 and 0.3 g of potassium iodide in 50 ml of dry dimethylformamide. The reaction was first stirred at room temperature overnight, then was heated up to 50 °C for 6 hours. After evaporation of the solvent, water was added to the residue and the product was extracted with ethyl acetate. 7 g of crude oil were obtained. Purification by flash chromatography using a mixture of ethyl acetate/hexane (1:9 → 2:8 gradient) gave 5.9 g (86% yield) of the title product as a colourless oil.

1H -NMR $CDCl_3$: 7.40-6.68 (m, 8H); 5.05 (s, 2H); 4.53 (bs, 1H); 3.44-3.30 (m, 2H); 2.77 (t, 2H); 1.44 (s, 9H).

Step D 2-[3-(3-Fluoro-benzyloxy)-phenyl]-ethylamine

[0203] A solution of 10.36 g (30 mmol) of [2-[3-(3-fluoro-benzyloxy)-phenyl]-ethyl]-carbamic acid *tert*-butyl ester in 100 ml of dichloromethane and 15 ml of trifluoroacetic acid was stirred at room temperature overnight. The solvent was removed, a 5% K₂CO₃ solution in water was added and the product was extracted with ethyl acetate to obtain the title compound in quantitative yield as a sticky oil.

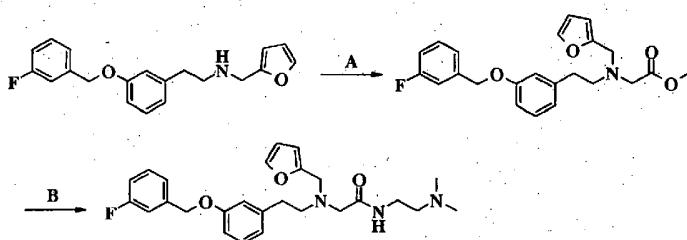
¹H-NMR dimethylsulfoxide-d₆: 8.04 (bs, 3H); 7.49-6.72 (m, 8H); 5.09 (s, 2H); 3.08-2.75 (m, 4H).

Step E [2-[3-(3-fluoro-benzyloxy)-phenyl]-ethyl]-furan-2-ylmethyl)amine

[0204] 1.44 g (15 mmol) of furan-2-carboxaldehyde and 7.5 g of molecular sieves 3Å were added to a solution of 2.45 g (10mmol) of 2-[3-(3-fluoro-benzyloxy)-phenyl]-ethylamine in 50 ml of dry ethanol. The reaction mixture was refluxed for 3 hours. The molecular sieves were filtered off and the solution was cooled to 5 °C. 0.57 g (15 mmol) of NaBH₄ was added under N₂ and the reaction was stirred at room temperature overnight. Solvent was removed, a 5% NaHCO₃ aqueous solution was added to the residue and the product was extracted with ethyl acetate. The crude product was purified by flash chromatography (dichloromethane/methanol/NH₃ 100:0:0 → 100:2:0.2, v:v:v). 2.2 g (68% yield) of an oil were obtained.

¹H-NMR CDCl₃: 7.44-6.12 (m, 11H); 5.04 (s, 2H); 3.79 (s, 2H); 2.96-2.73 (m, 4H).

Step F 2-[[2-[3-(3-Fluoro-benzyloxy)-phenyl]-ethyl]-furan-2-ylmethyl)amino]-acetamide


[0205] A solution of 1.8 g (5.53 mmol) of [2-[3-(3-fluoro-benzyloxy)-phenyl]-ethyl]-furan-2-ylmethyl)amine, 0.57 g (6.08 mmol) of 2-chloro-acetamide and 0.92 ml (6.62 mmol) of triethylamine in 5 ml of dry dimethylformamide was heated at 120 °C for 2 hours with microwaves. Solvent was removed under vacuum, water was added and the product was extracted with ethyl acetate. The crude reaction mixture was purified by flash chromatography (dichloromethane/methanol 95:5 v:v). 2.1 g (99% yield) of a yellow oil were isolated.

¹H-NMR DMSO-d⁶: 7.84-6.48 (m, 11H); 5.08 (s, 2H); 4.48 (s, 2H); 3.87 (s, 2H); 3.33-2.87 (m, 4H).

Example 37: 2-[[2-[3-(3-Fluoro-benzyloxy)-phenyl]-ethyl]-furan-2-ylmethyl)amino]-N-(2-dimethylamino-ethyl)-acetamide dihydrochloride

[0206] The above compound was synthesized according to **Scheme 11**

Scheme 11

Step A 2-[[2-[3-(3-Fluoro-benzyloxy)-phenyl]-ethyl]-furan-2-ylmethyl)amino]-acetic acid methyl ester

[0207] 0.46 g (3.05 mmol) of 2-bromo-acetic acid methyl ester were added to a solution of 0.9 g (2.76 mmol) of [2-[3-(3-fluoro-benzyloxy)-phenyl]-ethyl]-furan-2-ylmethyl)amine and 0.39 g (3.05 mmol) of di-isopropylethylamine in 15 ml of acetonitrile. Solvent was removed, water was added to the residue and the product was extracted with ethyl acetate. Purification by flash chromatography (ethyl acetate/hexane 1:9 → 2:8 gradient v:v) gave 0.9 g (82% yield) of a clear oil.

¹H-NMR CDCl₃: 7.40-7.11 (m, 5H); 7.06-6.94 (m, 1H); 6.83-6.74 (m, 3H); 6.33-6.29 (m, 1H); 6.20 (d, 1H, J=3.34Hz); 5.04 (s, 2H); 3.90 (s, 2H); 3.70 (s, 3H); 3.40 (s, 2H); 2.92-2.72 (m, 4H).

Step B 2-[[2-[3-(3-Fluoro-benzyloxy)-phenyl]-ethyl]-furan-2-ylmethyl)amino]-N-(2-dimethylamino-ethyl)-acetamide

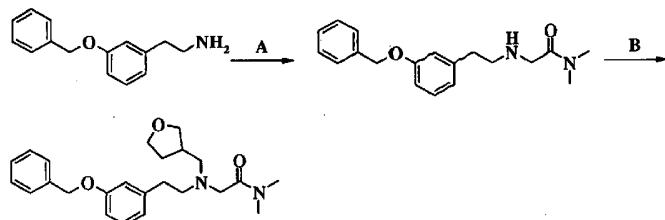
dihydrochloride

[0208] 100 mg (0.25 mmol) of 2-[[2-[3-(3-fluoro-benzyloxy)-phenyl]-ethyl]-furan-2-ylmethyl]-amino]-acetic acid methyl ester were dissolved in 5 ml of dry toluene. 66 mg (0.75 mmol) of *N,N*-dimethyl-ethane-1,2-diamine were added at 0 °C followed by 0.4 ml (0.8 mmol) of 2 M triethyl aluminium in heptane. The reaction mixture was heated to 60 °C overnight. The solution was cooled at 0 °C and poured into methanol. The solvent was removed *under vacuum* and the crude product was purified by flash chromatography (dichloromethane/methanol/NH₃ 100:2:0.2, v:v:v). The product was dissolved in ethyl acetate/hydrochloric acid, and the solid obtained was filtered. 80 mg (65% yield) of the title compound were isolated as hygroscopic solid.

¹H-NMR D₂O: 7.48-6.29 (m, 11H); 4.95 (s, 2H); 4.33 (s, 2H); 3.88 (s, 2H); 3.48-3.34 (m, 2H); 3.32-3.17 (m, 2H); 3.15-3.04 (m, 4H); 2.97-2.77 (m, 2H); 2.72 (s, 6H)

Example 38: 2-[[2-[3-(3-Fluoro-benzyloxy)-phenyl]-ethyl]-furan-2-ylmethyl]amino]-N-(2-amino-2-methyl-propyl)-acetamide dihydrochloride

[0209] 100 mg (0.25 mmol) of 2-[[2-[3-(3-fluoro-benzyloxy)-phenyl]-ethyl]-furan-2-ylmethyl]amino]-acetic acid methyl ester and 1 ml of 2-methyl-propane-1,2-diamine were heated at 120 °C for 3 hours with microwaves. The reaction mixture was cooled to room temperature, water was added and the product was extracted with ethyl acetate. The crude product was purified by flash chromatography (dichloromethane/methanol 95:5 v:v). The product was dissolved in ethyl acetate/hydrochloric acid, the solvent was removed and the resulting salt was triturated with diethyl ether. 95 mg (72% yield) of the title compound were isolated as a hygroscopic solid.


¹H-NMR CDCl₃: 10.95 (bs, 1H); 9.13 (bs, 1H); 8.46 (bs, 3H); 7.47-6.32 (m, 11H); 4.99 (s, 2H); 4.89-4.45 (m, 2H); 4.45-4.09 (bs, 2H); 3.87-3.00 (m, 6H); 1.52 (s, 6H).

LC-MS: MH⁺ = 454

Example 39: 2-[[2-(3-Benzyl-phenyl)-ethyl]-tetrahydrofuran-3-ylmethyl]amino]-N,N-dimethyl-acetamide hydrochloride

[0210] The above compound was synthesized according to **Scheme 12**

Scheme 12

Step A 2-[2-(3-Benzyl-phenyl)-ethylamino]-N,N-dimethyl-acetamide

[0211] A mixture of 4.32 g (19 mmol) of 2-(3-benzyloxy-phenyl)-ethylamine, 7.9 ml (57 mmol) of triethylamine, 1.95 ml (19 mmol) of 2-chloro-*N,N*-dimethyl-acetamide and 332 mg (2 mmol) of potassium iodide in 110 ml of dry dimethylformamide was heated at 80 °C for 3 hours. Solvent was removed *under vacuum* and the crude reaction mixture was purified by flash chromatography (dichloromethane/methanol/NH₃ 100:3:0.5, v:v:v). 3 g (51% yield) of the title compound were isolated as a yellow solid.

LC-MS: MH⁺ = 313

Step B 2-[[2-(3-Benzyl-phenyl)-ethyl]-tetrahydrofuran-3-ylmethyl]amino]-N,N-dimethyl-acetamide hydrochloride

[0212] 1.06 g (22 mmol) of NaBH₄ were added portionwise to a mixture 2.9 g (9.3 mmol) of 2-[2-(3-benzyloxy-phenyl)-

ethylamino]-*N,N*-dimethyl-acetamide, 1.28 ml (14.1 mmol) of tetrahydrofuran-3-carbaldehyde and 4 g of 4 Å molecular sieves in 130 ml of 1,2-dichloroethane. The reaction mixture was stirred at room temperature overnight. Aqueous ammonium chloride was added, the solvent was removed *under vacuum*, the residue was extracted with ethyl acetate and the organic phase was washed with an aqueous saturated solution of K_2CO_3 . The solvent was removed under reduced pressure and the product was dissolved in anhydrous anhydrous hydrochloric acid in ethyl acetate. The solvent was removed and the product was triturated with diethyl ether. 3.2 g (80% yield) of the title compound were isolated as a yellow solid.

1H -NMR (CDCl₃) 7.45-7.32 (m, 5H); 7.23-7.19 (m, 1H); 6.89-6.85 (m, 3H); 5.05 (s, 2H); 4.14-2.98 (m, 14H); 2.92 and 2.86 (2s, 6H); 2.82-2.71 (m, 1H).

LC-MS: $MH^+ = 397$

Example 40: 2-[[2-(3-Butoxy-phenyl)-ethyl]- (tetrahydrofuran-3-ylmethyl)amino]-*N,N*-dimethyl-acetamide hydrochloride

[0213] The above compound was synthesized according to **Scheme 13**

Scheme 13

[0214] A solution of 2-[[2-(3-hydroxy-phenyl)-ethyl]- (tetrahydrofuran-3-ylmethyl)amino]-*N,N*-dimethyl-acetamide (1.0 g 3.3 mmol), 1-bromobutane (0.43 ml, 4 mmol), potassium carbonate (680 mg 5 mmol), potassium iodine (50 mg, 0.3 mmol), in DMF (30 ml) was refluxed for 16 h. After filtration over celite pad, the solution was evaporated from the solvent and the crude oil obtained purified by preparative HPLC. The hydrochloride salt was prepared by adding HCl 1N in AcOEt to the free amine dissolved in ethyl ether. After filtration, 690 mg (50% yield) the title compound was obtained as a white solid of 99% purity.

1H -NMR (CDCl₃) 12.54 (broad signal, 1H); 7.25-6.73 (m, 4H); 4.28-3.16 (m, 12H); 3.93 (t, 2H); 2.92 (s, 3H); 2.87 (s, 3H); 2.85-2.67 (m, 1H); 2.36-1.86 (m, 2H); 1.83-1.66 (m, 2H); 1.58-1.38 (m, 2H); 0.97 (t, 3H J=8.3 Hz)

LC-MS: $MH^+ = 363.43$

Example 40bis: 2-[[2-(3-Butoxy-phenyl)-ethyl]- (tetrahydrofuran-3-ylmethyl)amino]-*N,N*-dimethyl acetamide (R) and (S) enantiomers

[0215] The racemic mixture of 2-[[2-(3-butoxy-phenyl)-ethyl]- (tetrahydrofuran-3-ylmethyl)amino]-*N,N*-dimethyl-acetamide hydrochloride obtained according to Example 40 was separated using the chiral column CHIRALPAC® AD 20 μ m - 250 x 21 mm, mobile phase methanol/diethylamine 100/0.1 (v/v), flow rate 20 ml/min detection UV 275 nm, temperature 25 °C.

[0216] The retention time of the first and the second eluted enantiomer, obtained as a honey-like yellowish bases, was 5.2 min and 6.7 min respectively. The $[\alpha]_D$ of the first eluted enantiomer is -10°, c = 0.1, MeOH (20 °C) and the $[\alpha]_D$ of the second eluted enantiomer is: +10°, c = 0.1, MeOH (20 °C)

[0217] The enantiomeric excess of both was >99.5%

Example 41: 2-[[2-(3-Butoxy-phenyl)-ethyl]- (furan-2-ylmethyl)amino]-*N*-methyl-acetamide hydrochloride

[0218] This compounds was prepared according to the procedure described in **Scheme 13** starting from 2-[[2-(3-hydroxy-phenyl)-ethyl]- (furan-2-ylmethyl)amino]-*N*-methyl-acetamide prepared as described in the Example 34

LC-MS: $MH^+ = 345$

Example 42: N-Type calcium channel influx assay

[0219] IMR32 human neuroblastoma cells constitutively express both L- and N-type channels. Under differentiating conditions, IMR32 cells preferentially express on the membrane surface N-type calcium channels. The remaining L-type calcium channels were blocked using the selective L-type blocker nifedipine. In these experimental conditions only N-type channels can be detected. IMR32 cells were differentiated using 1 mM dibutyryl-cAMP and 2.5 μ M bromodeoxyuridine for 8 days (4 times) in 225 cm^2 flask, then detached, seeded at 200,000 cells/well on 96 poly-L-lysine-coated plates and further incubated for 18-24 h in the presence of differentiating buffer before use.

[0220] The Ca^{2+} Kit Assay (Molecular Devices), based on a-fluorescent calcium indicator and able to detect the calcium influx determined by depolarizing conditions, was used for the assay. Differentiated cells were incubated with dye loading for 30 minutes at 37 °C then, nifedipine alone (1 μ M) or in the presence of ω -conotoxin (as reference standard) or test compounds were added for further 15 minutes.

[0221] The fluorescence (excitation: 485 nm, emission: 535 nm wavelength) was measured before and after (30-40 s) the automated injection of 100 mM KCl depolarizing solution using a Victor plate reader (Perkin Elmer).

[0222] The inhibition curves were calculated from 5 concentrations, each in triplicate, and the IC_{50} determined using a linear regression analysis.

[0223] The compounds of the present invention inhibit N-type calcium channels with pharmacologically significant IC_{50} values.

[0224] The results obtained with some compounds, which are representative of the entire class of compounds of the invention, compared with the internal standard ralfinamide, are reported in Table 1.

Table 1

COMPOUND	IC_{50} [μ M]
2-[[2-[3-(3-Fluoro-benzyl)oxy]-phenyl]-ethyl]-furan-2-ylmethyl)amino]-N-(2-amino-2-methyl-propyl)-acetamide dihydrochloride	2.6
2-[[2-[4-(3-Fluoro-benzyl)oxy]-3-methoxy-phenyl]-ethyl]-cyclopropylmethyl)amino]-N-methyl-acetamide hydrochloride	2.1
2-[2-[4-(3-Fluoro-benzyl)oxy]-3-methoxy-phenyl]-ethyl]amino]-1-(morpholin-4-yl)-2-phenyl-ethanone hydrochloride	6.0
2-[[2-[4-(3-Fluoro-benzyl)oxy]-3-methoxy-phenyl]-ethyl]-isobutylamino]-N-methyl-acetamide hydrochloride	4.8
2-[[2-[4-(3-Fluoro-benzyl)oxy]-3-methoxy-phenyl]-ethyl]-benzylamino]-1-(pyrrolidin-1-yl)-ethanone hydrochloride	2.2
2-[[2-[4-(3-Fluoro-benzyl)oxy]-3-methoxy-phenyl]-ethyl]-benzylamino]-N-(2-amino-2-methyl-propyl)-acetamide hydrochloride	2.6
2-[[2-[4-(3-Fluoro-benzyl)oxy]-3-methoxy-phenyl]-ethyl]-benzylamino]-N-(2-dimethylamino-ethyl)-acetamide dihydrochloride	1.9
2-[[2-[3-(3-Fluoro-benzyl)oxy]-phenyl]-ethyl]-furan-2-ylmethyl)amino]-N-(2-dimethylamino-ethyl)-acetamide dihydrochloride	1.9
2-[[2-[4-(3-Fluoro-benzyl)oxy]-3-methoxy-phenyl]-ethyl]-benzylamino]-N,N-dimethyl-acetamide hydrochloride	1.1
(S)-(+)-2-[4-(2-Fluoro-benzyl)oxy]-benzylamino]-propanamide (ralfinamide)	23

[0225] Data expressed as IC_{50} values at μ M concentration demonstrate that the compounds of the invention are highly potent as inhibitors of N-type calcium channels.

Example 43: L-Type calcium channel influx assay

[0226] AtT20/D16v-F2 mouse pituitary tumour cell line preferentially expresses L-type calcium channels. The remaining N-type calcium channels were blocked using the selective N-type blocker ω -conotoxin. In these experimental conditions only L type channels can be detected.

[0227] AtT20 cells were grown in DMEM with 10% of FBS, 4mM glutamine. The cells were seeded at 200,000 cells/well on 96 poly-L-lysine-coated plates and further incubated for 18-24h, before use.

[0228] The Ca⁺⁺ Kit Assay (Molecular Devices), which is based on a fluorescent calcium indicator to detect the calcium influx determined by depolarizing conditions, was used for the assay.

[0229] Cells were incubated with the calcium dye loading for 30 min at 37°C. Then, ω -conotoxin alone (1 μ M) or in presence of nifedipine (as reference standard) or test compound were added for further 15 min.

[0230] The fluorescence (excitation: 485-emission: 535 nm wavelength) was measured before and after (30-40 sec) the automated injection of 100 mM KCl depolarizing solution using a Victor plate reader (Perkin Elmer).

[0231] The inhibition curves were calculated from 5 concentrations, each in triplicate, and the IC₅₀ determined using a linear regression analysis.

[0232] The results, obtained with some compounds which are representative of the entire class of compounds of the invention, compared with the internal standard ralflinamide, are reported in Table 2.

Table 2

COMPOUND	IC ₅₀ [μ M]
2-[[2-[3-(3-Fluoro-benzyl)-phenyl]-ethyl]-furan-2-ylmethyl]amino]-N-(2-amino-2-methyl-propyl)-acetamide dihydrochloride	2.9
2-[[2-[4-(3-Fluoro-benzyl)-3-methoxy-phenyl]-ethyl]-cyclopropylmethyl]amino]-N-methyl-acetamide hydrochloride	3.8
2-[2-[4-(3-Fluoro-benzyl)-3-methoxy-phenyl]-ethylamino]-1-(morpholin-4-yl)-2-phenyl-ethanone hydrochloride	7.1
2-[[2-[4-(3-Fluoro-benzyl)-3-methoxy-phenyl]-ethyl]-isobutylamino]-N-methyl-acetamide hydrochloride	3.1
2-[[2-[4-(3-Fluoro-benzyl)-3-methoxy-phenyl]-ethyl]-benzylamino]-1-(pyrrolidin-1-yl)-ethanone hydrochloride	1.6
2-[[2-[4-(3-Fluoro-benzyl)-3-methoxy-phenyl]-ethyl]-benzylamino]-N-(2-amino-2-methyl-propyl)-acetamide dihydrochloride	2.4
2-[[2-[4-(3-Fluoro-benzyl)-3-methoxy-phenyl]-ethyl]-benzylamino]-N-(2-dimethylamino-ethyl)-acetamide dihydrochloride	1.2
2-[[2-[4-(3-Fluoro-benzyl)-3-methoxy-phenyl]-ethyl]-cyclopropylmethyl]amino]-N-ethyl-acetamide hydrochloride	1.8
(S)-2-[2-[4-(3-Fluoro-benzyl)-3-methoxy-phenyl]-ethylamino]-N-methyl-4-methyl-valeramide	1.0
2-[[2-[4-(3-Fluoro-benzyl)-3-methoxy-phenyl]-ethyl]-furan-3-ylmethyl]amino]-N-methyl-acetamide hydrochloride	1.7
2-[[2-[3-(3-Fluoro-benzyl)-phenyl]-ethyl]-furan-2-ylmethyl]amino]-N-(2-dimethylamino-ethyl)-acetamide dihydrochloride	3.4
2-[[2-[4-(3-Fluoro-benzyl)-3-methoxy-phenyl]-ethyl]-benzylamino]-N,N-dimethyl-acetamide hydrochloride	4.6
(S)-(+)2-[4-(2-Fluoro-benzyl)-benzylamino]-propanamide (ralflinamide)	26

[0233] Data expressed as IC₅₀ values at μ M concentration demonstrate that the compounds of the invention significantly interfere with L-type calcium channels.

Example 44: TTXs-sodium channel influx assay

[0234] ND7/23 rat dorsal root ganglion-derived cell line endogenously expresses a mixed population of TTXs sodium channels (such as Nav1.3 Nav1.2, Nav1.1, Nav1.6). These cells lack of TTXr sodium channels as shown by the absence of their respective

transcripts.

[0235] ND7/23 cells were grown in DMEM supplemented with 10% FBS and 1mM sodium piruvate. The cells were seeded at 50,000 cells/well on 96 poly-L-lysine-coated plates and further incubated for 18-24h before use.

[0236] The Membrane Potential Kit Assay (Molecular Devices), based on a negatively charged fluorescent dye able to monitor changes in membrane potential caused by the sodium influx due to the channel opening, was used for the assay.

[0237] Cells were incubated with the dye loading for 30 minutes at 25°C. Then, 100nM of the toxin *Anemonia sulcata* (used as enhancer of the channel opener response) alone or in the presence of TTX (as reference standard) or test compound were added for further 15 minutes.

[0238] The fluorescence (excitation:530nm, emission: 565 nm wavelength) was measured before and after (40-45 s) the automated injection of the sodium channel opener veratridine (100 μ M) using a Victor plate reader (Perkin Elmer).

[0239] The inhibition curves were calculated from 5 concentrations, each in triplicate, and the IC₅₀ determined using a linear regression analysis.

[0240] The compounds of the present invention inhibit TTXs sodium channels with pharmacologically significant IC₅₀ values.

[0241] The results, obtained with some compounds which are representative of the entire class of compounds of the invention, compared with the internal standard ralfinamide, are reported in Table 3.

Table 3

COMPOUND	IC ₅₀ [μ M]
2-[2-[4-(3-Fluoro-benzyl)oxy]-3-methoxy-phenyl]-ethylamino]-1-(morpholin-4-yl)-2-phenyl-ethanone hydrochloride	2.1
2-[[2-[4-(3-Fluoro-benzyl)oxy]-3-methoxy-phenyl]-ethyl]-benzylamino]-N-ethyl-acetamide hydrochloride	1.2
2-[[2-[4-(3-Fluoro-benzyl)oxy]-3-methoxy-phenyl]-ethyl]-[(cyclopropylmethyl)amino]-N-methyl-acetamide hydrochloride	3.5
2-[[2-[4-(3-Fluoro-benzyl)oxy]-3-methoxy-phenyl]-ethyl]-[(6-methoxy-pyridin-3-ylmethyl)amino]-N-methyl-acetamide	2.9
2-[[2-(3-Butoxy-phenyl)-ethyl]-[(tetrahydrofuran-3-ylmethyl)amino]-N,N-dimethyl-acetamide hydrochloride	2.0
(S)-(+)-2-[4-(2-Fluoro-benzyl)oxy]-benzylamino]-propanamide (ralfinamide)	9.5

Example 45: Patch clamp studies of calcium currents inhibition

Cells and methods:

[0242] Functional inhibition of the N-type Ca currents was studied using whole cell patch clamp methods (Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. *Pflugers Arch.* (1981) 391: 85-100) on HEK293 cells expressing recombinant human N-type channels, obtained after transient transfection of h α 1B (hCav2.2) + β 1b + α 2 δ -1 subunits.

[0243] Membrane currents were recorded and filtered at 5 kHz with an Axon Axopatch 200B amplifier and digitized with an Axon Digidata 1322A (Axon Instruments, CA, USA). Voltage clamping of membrane potentials and data acquisition were controlled online with Axon pClamp8 software. Measuring and reference electrodes were AgCl-Ag electrodes. Cells had initial seal resistances of >1 G Ω and access resistances of 4.2 ± 0.2 M Ω . Cells were continuously superfused with extracellular solutions using a Biologic RSC-200.

[0244] For calcium currents recording the control bath solution contained (mM): Choline chloride (70), MgCl₂ (1), BaCl₂ (20), TEA-Cl (50), Hepes (10), Glucose (10). Internal pipette solution consisted of (mM): CsCl (140), EGTA (10), MgCl₂ (2), Hepes

(10), MgATP (1), GTP Tris (0.3).

[0245] Compounds were dissolved as 20 mM stock solutions in DMSO and then diluted to the final concentration in the external solutions.

[0246] Voltage protocols and data analyses:

A two-step protocol was used to determine the voltage dependence of the block:

N-type current was activated by a 600 ms step pulse to +10 mV (test pulse) from a 5000 ms preconditioning potential of -110 mV (resting condition) or -50/-55 mV (half maximal steady-state inactivated condition), respectively.

[0247] The amplitude of calcium current peaks evoked by the respective test pulses at a frequency of 0.06 Hz were measured before and after exposure to the test substance. Tonic block of currents was calculated as the difference between the peak calcium current measured at the end of a stabilization period in the control external bath solution and peak currents measured at the end of test substance perfusion period (when steady state is reached) divided by control peaks. Drug concentration-inhibition curves were obtained by plotting tonic blocks versus drug concentrations. Dose-response curves were fitted to the tonic block data, according to the logistic equation: $y = A2 + (A1-A2)/[1 + (x/IC_{50})^p]$. A1 and A2 are fixed values of 0 and 1 corresponding to 0 and 100% current inhibition, x is the drug concentration, IC₅₀ is the drug concentration resulting in 50% current inhibition and p is the corresponding slope factor.

[0248] The compounds of the present invention inhibit N-type calcium channels with pharmacologically significant IC₅₀ values.

[0249] The results, obtained with some compounds, which are representative of the entire class of compounds of the invention, compared with the internal standard ralfinamide, are reported in Table 4.

Table 4

COMPOUND	IC ₅₀ [μM] (V _{half})
2-[[2-[4-(3-Fluoro-benzyloxy)-3-methoxy-phenyl]-ethyl]-cyclopropylmethyl]amino]-N-methyl-acetamide hydrochloride	5.2
2-[[2-[4-(3-Fluoro-benzyloxy)-3-methoxy-phenyl]-ethyl]-tetrahydrofuran-3-ylmethyl]amino]-N-methyl-acetamide hydrochloride	11
(S)-(+)-2-[4-(2-Fluoro-benzyloxy)-benzylamino]-propanamide (ralfinamide)	15

[0250] Data expressed as IC₅₀ values at μM concentration demonstrate that the compounds of the invention are highly potent as inhibitors of N-type calcium channels.

Example 46: Patch clamp studies of sodium currents inhibition

[0251] Cells and methods: Functional inhibition of the sodium currents was studied using whole cell patch clamp methods (Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J., Pflugers Arch. (1981) 391 (2): 85-100) on HEK293 cells expressing recombinant Nav 1.3 channels. Membrane currents were recorded as described in the example above.

[0252] For sodium current recording control bath solution contained (mM): NaCl (80), Choline chloride (38), CaCl₂ (1.3), MgCl₂ (2), KCl (2), CdCl₂ (0.4), NiCl₂ (0.3), TEA-Cl (20), Hepes (10), Glucose (10). Internal pipette solution consisted of (mM): EGTA (10), NaCl (10), CaCl₂ (1.3), MgCl₂ (2), Hepes (10), CsF (130), MgATP (1).

[0253] Compounds were dissolved as 20 mM stock solutions in DMSO and then diluted to the final concentration in the external solutions.

[0254] Voltage protocols and data analyses: A two-step protocol was used to determine the voltage dependence of the block:

sodium current was activated by a 30 ms step pulse to 10 mV (test pulse) from a 2000 ms preconditioning potential of -100 mV (resting condition) or -50 mV (half maximal steady-state inactivated condition), respectively.

[0255] The amplitude of sodium current peaks evoked by the respective test pulses at a frequency of 0.06 Hz were measured before and after exposure to the test substance. Tonic block of currents was calculated as the difference between the Na current peak measured at the end of a stabilization period in the control external bath solution and the current peak measured at the end of test substance perfusion period (when steady state is reached) divided by control peaks. Drug concentration-inhibition curves were obtained by plotting tonic blocks versus drug concentrations. Dose-response curves were fitted to the tonic block data, according to the logistic equation: $y = A2 + (A1-A2)[1 + (x/IC_{50})^p]$. A1 and A2 are fixed values of 0 and 1 corresponding to 0 and 100% current inhibition, x is the drug concentration, IC₅₀ is the drug concentration resulting in 50% current inhibition and p is the corresponding slope factor.

[0256] The compounds of the present invention inhibit sodium channels with pharmacologically significant IC₅₀ values.

[0257] The results, obtained with compounds which are representative of the entire class of compounds of the invention, compared with the internal standard raloxifene, are reported in Table 5.

Table 5

COMPOUND	IC ₅₀ [μ M] (V _{half})
2-[[2-[4-(3-Fluoro-benzyloxy)-3-methoxy-phenyl]-ethyl]-cyclopropylmethyl]amino]-N-methyl-acetamide hydrochloride	9.8
2-[[2-(3-Butoxy-phenyl)-ethyl]-tetrahydrofuran-3-ylmethyl]amino]-N,N-dimethyl-acetamide hydrochloride	3.1
(S)-(+)-2-[4-(2-Fluoro-benzyloxy)-benzylamino]-propanamide (raloxifene)	15

[0258] Data expressed as IC₅₀ values at μ M concentration demonstrate that the compounds of the invention are potent as inhibitors of sodium channels.

Example 47: Inhibition of sodium currents in cortical neurons

[0259] Cell Preparation and culturing: cortical neurons were prepared from embryonic Wistar rats (E17-E19). Brains of E17 / E19 rats were removed and placed in ice-cold Hank's solution (Hank's solution (Life tech.14170-088) + glucose 30% + Pen-Strep 100x (Life Tech. 15140-122) 100U-100 μ g/ml and Hepes-NaOH 5mM).

[0260] Cortex were isolated, cut in small parts and washed twice with Hank's solution. The solution was removed except 1-2 ml and the tissue was mechanically dissociated. After the mechanical dissociation, 5 ml of complete DMEM (Dulbecco's modified Eagle medium) (Gibco 41966-029) + FBS (Hyclone) 10% + Glutamine (Life Tech. 25030-024) 2mM + Pen-Strep 100U-10 μ g/ml were added, and cell suspension was centrifuged for 5 min at 1000 rpm. Supernatant was removed and 5 ml of complete Neurobasal medium was added (Neurobasal medium (Life tech.21103-049) + B27 (Life tech.17504-044) 2% + Glutamine 2mM + Pen-Strep 100U-100 μ g/ml).

[0261] Cells were counted and diluted in Neurobasal medium to a concentration of 400000 cells per poly-D-lysine 5 μ g/ml treated Petri dish.

[0262] Cortical neurons were used from day 6th till day 11th after plating, and once a week Neurobasal medium was changed.

[0263] Whole Cell Patch Clamp Recordings: Experiments on cortical neurons were carried out using standard whole cell patch clamp methods (Hamill et al., 1981). Membrane currents were recorded and filtered at 5 kHz with an Axon Axopatch 200B amplifier and data digitized with an Axon Digidata 1322A (Axon Instruments, CA, USA). Protocol playing and data acquisition were controlled online with Axon pClamp8 software. Measuring and reference electrodes were AgCl-Ag electrodes. A Sutter Instrument P-87 Puller (CA, USA) was used for pulling patch clamp pipettes with a resistance of 2-3 M Ω from Harvard borosilicate glass tubes. Cells were continuously superfused with extracellular solutions, using a solution changer Biologic RSC-200.

[0264] Solutions: Sodium current recording control bath solution contained (mM): NaCl 60, CholineCl 60, CaCl₂ 1.3, MgCl₂ 2, KCl 2, CdCl₂ 0.4, NiCl₂ 0.3, TEACl 20, Hepes 10, Glucose 10. Internal pipette solution consisted of (mM): CsF 65, CsCl 65, NaCl 10, CaCl₂ 1.3, MgCl₂ 2, Hepes 10, EGTA 10, MgATP 1.

[0265] Voltage protocols and data analyses: cells were clamped at -90 mV, then a two step protocol was used to determine the voltage dependence of the block. Sodium currents were activated by a 30ms step pulse to -10mV (test pulse) from a 2000ms preconditioning potential of -110mV (resting condition) and a potential of ~ -50mV (half maximal steady-state condition).

[0266] Drug concentration-inhibition curves were obtained by plotting tonic blocks in the resting and depolarized condition, versus drug concentrations. Dose-response curves were fitted to the tonic block data, according to the logistic equation: $y = A2 + (A1-A2)/[1+(x/IC50)^p]$. A1 and A2 are fixed values of 0 and 1 corresponding to 0 and 100% current inhibition, x is the drug concentration, IC₅₀ is the drug concentration resulting in 50% current inhibition and p is the corresponding slope factor.

[0267] The compounds of the present invention inhibit sodium currents of cortical neurons with pharmacologically significant IC₅₀ values.

[0268] The results, obtained with compounds which are representative of the entire class of compounds of the invention, compared with the internal standard ralflinamide, are reported in Table 6.

Table 6

COMPOUND	IC ₅₀ [μ M] (V _{half})
2-[[2-(3-Butoxy-phenyl)-ethyl]-tetrahydrofuran-3-ylmethyl]amino]-N,N-dimethyl-acetamide hydrochloride	0.5
(S)-(+)-2-[4-(2-Fluoro-benzyl)oxy]-benzylamino]-propanamide (ralflinamide)	9

Example 48: In vitro MAO-A and MAO-B enzyme activities assay

Membrane preparations (crude mitochondrial fraction)

[0269] Male Wistar rats (Harlan, Italy) - 175-200 g) were sacrificed under light anaesthesia and brains were rapidly removed and homogenized in 8 volumes of ice-cold 0.32 M sucrose buffer containing 0.1 M EDTA, pH 7.4. The crude homogenate was centrifuged at 2220 rpm for 10 minutes and the supernatant recovered. The pellet was homogenized and centrifuged again. The two supernatants were pooled and centrifuged at 9250 rpm for 10 minutes at +4 °C. The pellet was resuspended in fresh buffer and centrifuged at 11250 rpm for 10 minutes at +4 °C. The resulting pellet was stored at -80 °C.

In vitro enzyme activities assay

[0270] The enzyme activities were assessed with a radioenzymatic assay using the substrates ¹⁴C-serotonin (5-HT) and ¹⁴C-phenylethylamine (PEA) for MAO-A and MAO-B, respectively.

[0271] The mitochondrial pellet (500 μ g protein) was resuspended in 0.1 M phosphate buffer (pH 7.4). 500 μ l of the suspension were added to a 50 μ l solution of the test compound or buffer, and incubated for 30 min at 37 °C (preincubation) then the substrate (50 μ l) was added. The incubation was carried out for 30 minutes at 37 °C (¹⁴C-5-HT, 5 μ M) or for 10 minutes at 37 °C (¹⁴C-PEA, 0.5 μ M).

[0272] The reaction was stopped by adding 0.2 ml of 37% HCl or perchloric acid. After centrifugation, the deaminated metabolites were extracted with 3 ml of diethyl ether (5-HT) or toluene (PEA) and the radioactive organic phase was measured by liquid scintillation spectrometry at 90% efficiency. The amount of neutral and/or acidic metabolites formed as a result of MAO activity was obtained by measuring the radioactivity of the eluate.

[0273] The activity of MAO in the sample, corresponding to a percentage of radioactivity compared with the control activity in the absence of the inhibitor, was expressed as nmoles of substrate transformed/mg protein/min.

[0274] The results, as far as the MAO-B inhibition is concerned, obtained with some compounds which are representative of the entire class of compounds of the invention, are reported in Table 7.

Table 7

COMPOUND	%Inhibition MAO-B at 100 µM
2-[[2-[3-(3-Fluoro-benzyl)oxy]-phenyl]-ethyl]-furan-2-ylmethyl)amino]-N-(2-amino-2-methyl-propyl)-acetamide dihydrochloride	31
2-[[2-[4-(3-Fluoro-benzyl)oxy]-3-methoxy-phenyl]-ethyl]amino]-N,N-dimethyl-2-phenyl-acetamide hydrochloride	0
2-[[2-[4-(3-Fluoro-benzyl)oxy]-3-methoxy-phenyl]-ethyl]amino]-1-(morpholin-4-yl)-2-phenyl-ethanone hydrochloride	0
2-[[2-[4-(3-Fluoro-benzyl)oxy]-3-methoxy-phenyl]-ethyl]-isobutylamino]-N-methyl-acetamide hydrochloride	53
2-[[2-[4-(3-Fluoro-benzyl)oxy]-3-methoxy-phenyl]-ethyl]-benzylamino]-1-(pyrrolidin-1-yl)-ethanone hydrochloride	11
2-[[2-[4-(3-Fluoro-benzyl)oxy]-3-methoxy-phenyl]-ethyl]-benzylamino]-N-(2-amino-2-methyl-propyl)-acetamide dihydrochloride	32
2-[[2-[4-(3-Fluoro-benzyl)oxy]-3-methoxy-phenyl]-ethyl]-benzylamino]-N-(2-dimethylamino-ethyl)-acetamide dihydrochloride	33
2-[[2-[4-(3-Fluoro-benzyl)oxy]-3-methoxy-phenyl]-ethyl]-benzylamino]-N-[2-(1-methyl-pyrrolidin-2-yl)-ethyl]-acetamide dihydrochloride	39
2-[[2-[3-(3-Fluoro-benzyl)oxy]-phenyl]-ethyl]-furan-2-ylmethyl)amino]-N-(2-dimethylamino-ethyl)-acetamide dihydrochloride	34
2-[[2-[4-(3-Fluoro-benzyl)oxy]-3-methoxy-phenyl]-ethyl]-benzylamino]-N,N-dimethyl-acetamide hydrochloride	3.0
2-[[2-[4-(3-Fluoro-benzyl)oxy]-3-methoxy-phenyl]-ethyl]-benzylamino]-N-ethyl-acetamide hydrochloride	4.0
(S)-(+)-2-[4-(3-Fluoro-benzyl)oxy]-benzylamino]-propanamide (safinamide)	100

[0275] Data expressed as percentage of MAO-B inhibition observed in the presence of 100 µM of compound, demonstrate that the compounds of the invention are weak inhibitors of MAO-B, if compared with the internal standard safinamide.

Example 49: Complete Freund's adjuvant model of chronic inflammatory pain

[0276] Monoarthritis was induced in rats (200 g weight) by an intra-plantar injection into the left hind paw of 100 µl of complete Freund's adjuvant (CFA) containing heat-killed and dried *Mycobacterium tuberculosis* in a mixture of paraffin oil and an emulsifying agent, mannide monooleate. The CFA injection produced an area of localized edema and inflammation starting from few h after injection, with a progressive reduction in the mechanical withdrawal threshold.

[0277] Each animal was allowed to develop the arthritis over a period of 8-9 days before testing.

Mechanical Allodynia

[0278] Mechanical allodynia thresholds were determined according to the method of Chaplan *et al.* (Chaplan S. R., Bach F. W., Pogrel J. W., Chung J. M., Yaksh T. L. *J Neurosci Methods* (1994) 53: 55-63). Rats were placed in individual plastic boxes of 24 x 10 x 15 cm on a mesh metal floor and allowed to acclimate for about 30 minutes before testing. A series of calibrated von Frey hairs (Stoelting, Wood Dale, IL) with logarithmically incremental stiffness ranging from 2.83 to 5.88 expressed Log₁₀ of [10 x force in (mg)] were applied to the paw with a modified up-down method (Dixon W. J. *J. Am. Stat. Assoc.* (1965) 60: 967-978). In the

absence of a paw withdrawal response to the initially selected hair, a thicker hair corresponding to a stronger stimulus was presented until a sharp withdrawal was recorded. The procedure was repeated twice. Each hair was presented perpendicularly against the paw, with sufficient force to cause slight bending, and held 2-3 s. The stimulation of the same intensity was applied five/six times to the hind paw at intervals of few sec. The mechanical threshold was expressed as Log10 of [10 x force in (mg)] indicating the force of the Von Frey hair to which the animal reacts (paw withdrawn, licking or shaking).

[0279] The mechanical allodynia thresholds were measured before (pre-drug) and at 30, 60, 90, 120, 240 and 360 minutes after the treatment. A 24 h threshold was also measured.

[0280] The compounds of the invention were administered in a range of doses of 0,1 - 100 mg/kg.

Example 50: Bennett model of neuropathic pain in rats

[0281] Effects on neuropathic pain are tested in the chronic constriction injury model in the rat (Bennett, G.J. and Xie, Y.K., A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man, *Pain*, 33 (1988) 87-107). Under pentobarbital anesthesia (Nembutal, 50mg/kg, i.p.), unilateral multiple ligations are performed on male Sprague-Dawley rats (140-160g) at the right common sciatic nerve. The sciatic nerve is exposed by blunt dissection at the level of mid-thigh and four loose ligatures (5-0 chromic catgut) are placed around the nerve taking care not to interrupt the epineurial circulation. After operation, animals are allowed to recover for one week. Animals develop a cold allodynia which is stable for at least five weeks. Cold allodynia is tested on a metal plate cooled by a water bath to a constant temperature of 4°C. The animals, randomly assigned to groups of 10 for each test dose and vehicle, are observed for periods of 2 minutes before and after application of test compound and the number of brisk withdrawal reactions is counted. Several time points after application are tested. Percent maximal possible effect (%MPE) and standard error of the mean (SEM) of each time point is determined with the pre-test value used as 100%MPE. The area under the data (AUD) is calculated for the observation period and expressed as percent inhibition of vehicle control as shown in Table 8. Significance is calculated by paired t-test on the percent AUD values.

Table 8

COMPOUND	Dose [mg/kg] p.o.	Change vs. Control [%]
2-[[2-(3-Butoxy-phenyl)-ethyl]-tetrahydrofuran-3-ylmethyl]amino]-N,N-dimethyl-acetamide hydrochloride	0.1	35.7
(S)-(+)2-[4-(2-Fluoro-benzyl)oxy]-benzylamino]-propanamide (rafinamide)	1.0	23.7

Example 51: Maximal electroshock test (MES) in mice

[0282] The maximal electroshock test (MES) is used commonly in the screening of anti-epileptic drugs in rodent models.

[0283] Animals and Apparatus: Male CD1 mice weighing 25 g were used. The procedure described by White *et al.* (White H. S., Woodhead J. H., Franklin M. R., Swinyard E. A., and Wolf H. H. *Antiepileptic Drugs* (1995) 4th ed: 99-110, Raven Press, Ltd., New York) was followed. An Ugo Basile electroconvulsive generator (Model ECT UNIT 7801) was used to deliver an electrical stimulus sufficient to produce a hindlimb tonic extensor response in at least 97% of control animals. The stimulus was delivered intra-aurally through clip electrodes in mice (0.7 s of a 40 mA shock, with a pulse train of 80 Hz having a pulse duration of 0.4 ms). The acute effect of compounds administered intraperitoneally or orally 15-60 minutes before MES induction were examined and compared with a vehicle control group. Ten mice were studied per group. Complete suppression of the hindlimb tonic extensor component of seizures was taken as evidence of anticonvulsant activity.

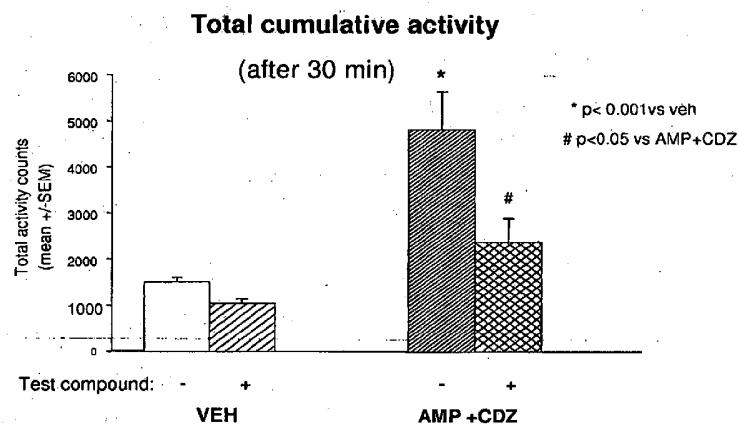
[0284] The compounds of the invention were administered i.v., orally or intraperitoneally at the doses of 0,1 - 100 mg/kg.

[0285] The results, obtained with a compound representative of the entire chemical class of the invention, administered i.v., 5 minutes before testing, compared with the internal safinamide, and reported in Table 9, demonstrate that these compounds are active as anticonvulsant drugs.

Table 9

COMPOUND	50% Protection
2-[[2-(3-Butoxy-phenyl)-ethyl]-tetrahydrofuran-3-ylmethyl]amino]-N,N-dimethyl-acetamide hydrochloride	(0.8 mg/kg/iv)
(S)-(+)-2-[4-(3-Fluoro-benzyl)oxy]-benzylamino]-propanamide (safinamide)	(4.0 mg/kg/iv)

Example 52: Amphetamine and chlordiazepoxide-induced hyperlocomotion in mice


[0286] In this model, mice are treated with a mixture of d-amphetamine plus an anxiolytic dose of the benzodiazepine, chlordiazepoxide (Rushton R, Steinberg H. Combined effects of chlordiazepoxide and d-amphetamine on activity of rats in an unfamiliar environment. *Nature* 1966; 211:1312-3.; R. Arban, G. Maraia, K. Brackenborough, L. Winyard, A. Wilson, P. Gerrard, C. Large. Evaluation of the effects of lamotrigine, valproate and carbamazepine in a rodent model of mania *Behavioural Brain Research*, 158: 123-132). The model has been claimed to mimic some aspects of mania in bipolar disorder. Importantly, the hyperactivity induced by the mixture of d-amphetamine and chlordiazepoxide could be prevented by prior administration of the established mood stabilizer, lithium, as well as other mood stabilizers drugs (e.g. magnesium valproate and carbamazepine). Therefore, this model has face and predictive validity as a model of bipolar disorder and represents a valuable tool to determine, if a test compound could be a potential mood stabilizer drug candidate.

[0287] Amphetamine (AMP) (2.5 mg/kg) plus chlordiazepoxide hydrochloride (CDZ) (3 mg/kg/ip) were administered to male Albino Swiss mice (25-32 g) in a volume of 10 ml/kg. The locomotor activity was recorded using Opto-M3 System (Columbus Instruments) which is multi-channel activity monitor. Opto-M3 system has 10 infrared emitters and respective amount of receivers (0.5" beam spacing), attached to the PC computer and calculating both ambulatory activity and total counts. Thus the system differentiates forward locomotion (ambulation) from stereotyped like movement (total counts). Mice were pretreated with the test compound (5 mg/kg) and 10 min later, with AMP (2.5 mg/kg) or AMP jointly with CDZ (3 mg/kg). After successive 30 min. the mice were treated again with the same dose of the test compound and were placed individually in the motor activity cages. The locomotor activity (ambulation and total activity count) was evaluated for 30 min. Each group consisted of 8-10 mice.

[0288] Statistical analysis: the data were evaluated by an analysis of variance (ANOVA), followed, when appropriate, by individual comparison with the control using Dunnett's test. Amphetamine-chlordiazepoxide administration induced a significant increase in locomotor activity.

[0289] The effect of the compound 2-[[2-(3-Butoxy-phenyl)-ethyl]-tetrahydrofuran-3-ylmethyl]amino]-N,N-dimethyl-acetamide hydrochloride, representative of the entire chemical class of this invention, was assessed as its capacity of preventing the amphetamine-chlordiazepoxide induced increase in locomotor activity as shown in Fig.1.

Fig.1

Example 53: Cognitive impairment in schizophrenia method

[0290] Cognitive impairment is often associated with schizophrenia and it has come to be recognized as a core element of the

disorder, bearing on patient's recovery and re-integration into society.

[0291] Particular interest has recently attracted a pharmacological model of cognitive dysfunctions in schizophrenia, which is based on the effects of glutamate NMDA receptor antagonists such as phencyclidine (PCP) and ketamine (Javitt *et al.*, 1991) which impair attention and increase "impulsivity" and "compulsive" perseveration in mice performing a complex task (Greco *et al.*, 2005).

Materials and Methods

[0292] *Animals:* Male DBA/2N mice (Charles River, Italy) were used. The mice weighed 25-30 g at the start of the experiments, and were housed under temperature-controlled conditions (21°C) with a 12 h light 12 h dark cycle (light on 7:00 am-7:00 pm). Food (Rieper, Italy) was available *ad libitum*. The animals had two hours of access to water at the end of each day's testing.

[0293] *The five-choice serial reaction time task apparatus:* The test apparatus consisted of four 21.6 x 17.8 x 12.7 cm chambers (Med Associates Inc. USA), as previously described [Greco, 2005 #26]. Stimuli and recording of responses, were managed by a SmartCtrl™ Package 8 In/16 Out (Med Associates Inc. USA) with additional interfacing by MED-PC for Windows (Med Associates Inc. USA). The running program for the 5-CSRT task was custom-written.

[0294] *Behavioural procedures: habituation to liquid reinforcer and nose-poking in the holes.* Mice were handled for one week and their body weight recorded. They were then water-deprived by allowing them 2-h access to water in the early evening until their body weight had stabilised (8 days). Then, over the next two days the mice were habituated in their home cages to the reinforcer (10% sucrose solution) used afterwards in the operant procedures. On the following two days mice were habituated to the operant boxes. During this stage, 10% sucrose solution was available in a small bowl placed below the receptacle hole of the box. First, mice had to learn that every 5 sec the liquid reward was available in a small cup in the receptacle hole. During this period head entries were recorded. During the next period, mice were trained to poke their noses into the illuminated holes. Immediately after a poke in the water receptacle a LED at the rear of one of the holes was turned on. A nose-poke in the lighted hole extinguished the light stimulus and the liquid dipper provided a 0.01 mL liquid reward in the receptacle hole. Any response in one of the other four holes had no consequence and was not recorded. The light stimulus was presented in all five holes in random order. A mouse was switched to the 5-CSRT task after it had completed at least 50 rewarded nose-poke trials in one 30-min session.

[0295] *The five-choice serial reaction time task.* The start of the session was signalled by illumination of the house-light and the delivery of a 0.01 mL liquid reward. Nose poking in the receptacle hole began the first trial. After a fixed delay (the inter-trial interval, ITI), the LED at the rear of one of the holes came on for a short period. The LED stimulus was presented the same number of times in each hole during a complete session, with the order of presentation randomised by the computer. While the light was on, and for a short period afterwards (the limited hold), responses in the hole that was illuminated (correct response) resulted in the liquid reward. Responses in the holes that had not been illuminated (incorrect responses) or failure to respond within the limited hold (omissions) caused the house-lights to be turned off for a short period (time out). Responses in the holes while the house-light was off restarted the time out. After the delivery of the liquid reward, or at the end of time out, the mouse started the next trial by poking its nose into the receptacle hole. Responses made in the holes after a correct response (perseverative responses), or after the end of time out before nose-poking into the receptacle hole, resulted in a period of time out. Responses in the holes during the ITI (anticipatory responses) also resulted in a period of time out. After anticipatory responses a nose-poke into the receptacle hole restarted the current trial. Each daily session consisted of 100 trials or 30 min of testing, whichever was completed sooner, after which all lights were turned off and further responses had no effect. In the first session of the test schedule, the stimulus and limited hold each lasted 1 min and, depending on individual performance, they were progressively reduced to 1 sec. The stimulus duration was reduced in the following sequence: 60, 30, 10, 5, 2.5, 2, 1.5 and 1 sec (baseline). The ITI and time out both lasted 2 sec during the first session and the ITI was raised to 5 sec in subsequent sessions; time out was not changed. Throughout the whole period of training and experiments each mouse had one session per day on a 5-CSRT task.

[0296] *Drugs and treatment schedules.* The test compound was dissolved in water and was administered intraperitoneally (IP) at the dose of 10 mg/kg. Five minutes after the treatment mice were injected with vehicle (saline) or PCP (1.5 mg/kg) and 10 min later they started the test session. In each experiment the various combination of the test compound with vehicle or PCP were administered according to a Latin-square design. At least 48 h were left between the drug testing days. During these intervening days the mice were tested on the 5-CSRT task to re-establish baseline performance and to check for any residual effects of drugs.

[0297] *Statistical analysis:* The main dependent variables selected for analysis were: (a) the percentage of correct responses (total correct responses/total correct + total incorrect responses x 100); (b) percentage of omissions (total omissions/ total correct responses + total incorrect responses + total omissions x 100); (c) the number of anticipatory responses in the holes during the ITI; (d) the number of perseverative responses in the holes after a correct response. Correct responses and omissions, as percentages, were transformed according to the formula $2\arcsin(\text{SQRT } (\%/\text{X}100))$, to normalize the distributions in accordance with the ANOVA model (Winer, 1971).

[0298] The effects of the test compound (n=12) on PCP induced deficits in the 5-CSRT task were analysed independently by a within subjects 2 x 2 ANOVA with factors Drug (test compound) and PCP. Subsequently the treatment group means were compared using a *post-hoc* Tukey-Kramer test. Statistical software (SAS Institute Inc., USA) was run on Micro VAX 3500 computer (Digital, USA).

[0299] As shown in table 10, PCP caused a profound effect on attentional performance of DBA/2N mice as shown by increased anticipatory and perseverative responses. A representative compound of our invention, administered 10 mg/kg i.p., can reverse PCP-induced increase in anticipatory and perseverative responses. These results support the use of this kind of compounds for the treatment of psychiatric disorders.

Table 10

	N of anticipatory responses	N of perseverative responses
Veh+veh	1.8±0.5	19.3±14
2-[[2-(3-Butoxy-phenyl)-ethyl]- (tetrahydrofuran-3-ylmethyl)amino]-N,N-dimethyl-acetamide hydrochloride	3.3±0.7	20.9±1.3
10 mg/Kg		
Veh+PCP	10.2±2.8*	31.2±5.8*
2-[[2-(3-Butoxy-phenyl)-ethyl]- (tetrahydrofuran-3-ylmethyl)amino]-N,N-dimethyl-acetamide hydrochloride	3.7±1.6 #	15.7±3.1#
10 mg/Kg +PCP		

Example 54: Cocaine-induced behavioural sensitization test

[0300] Drug addiction is a pathological behaviour characterized by compulsive drug seeking and intake. One animal model of these behavioral changes is the long-lasting increase in locomotor activity induced by repeated administration of psychostimulant drugs in rodents (Robinson T. E. and Berridge K.C. *Brain Res. Brain Res. Rev.* (1993) 18, 247-91) known as drug-induced behavioural sensitization. The effect of test compounds were evaluated in a model of cocaine-induced behavioral sensitization in rat.

[0301] Locomotor activity apparatus: Male Wistar rats weighing 200-250 g upon arrival were used.

[0302] Locomotor activity was measured in sixteen identical metal wire hanging cages each measuring 36 cm (L) x 25 cm (W) x 20 cm (H). Each cage contained two sets of infrared emitter-detector photocells positioned along the long axis 1 cm above the grid floor and 8 cm from the front and back of the cage. Background noise was provided by a white noise generator. Movement within the cages produced photocell interruptions, which were automatically recorded by an IBM-compatible computer.

[0303] Sensitization procedure and treatment: Animals were habituated to the locomotor activity chambers for 2-3 consecutive days before the experiment. Rats received 5 daily i.p. injections of cocaine (15 mg/kg) or saline and either the test compound (0.1-100 mg/kg) or its vehicle and locomotor activity was recorded for 3 h. Ten days after the last injection of cocaine or saline (day 15), the animals were challenged with 15 mg/kg of cocaine in absence of the test compound and locomotor activity was again monitored for 3 h.

[0304] By the fifth day of treatment with cocaine, animals pretreated i.p. with vehicle showed an increased locomotor response (20% higher than the first day, $p < 0.05$). Ten days after the last injection of cocaine or saline, the animals were challenged with

15 mg/kg of cocaine in absence of the test compound and locomotor activity was again monitored for 3 h. The rats previously treated with cocaine and that had not received the test compound are expected to show an increased locomotor activity response to cocaine (30% higher than first day, $p < 0.05$). If the rats that had been pretreated with the test compound during the 5 day-cocaine treatment did not show an increase in locomotor activity the test compound is considered to have an effect in preventing psychostimulant drugs addiction. (Koob G. F., Sanna P. P., Bloom F. E. *Neuron* (1998) 21: 467-476 ; Robinson T. E., Berridge K. C. *Brain Res Brain Res Rev* (1993) 18: 247-291)

[0305] Statistical analysis: Data (total number of beam breaks in 3 hours) were analyzed using a two way ANOVA with repeated measures on one factor including the four experimental groups (i.e., saline/vehicle, saline/test compound, cocaine/vehicle and cocaine/test compound) and two time points (day 1 and day 5) followed by a simple effects analysis. A second two way ANOVA with repeated measures on one factor was used to compare day 1 and the challenge day followed by a Newman-Keuls post hoc test.

Example 55: Acute bladder irritation by acetic acid in rats

[0306] Experiments were performed using adult anesthetized female Sprague Dawley rats (170-200 g). A catheter (PE-50) was inserted via a midline abdominal incision into the bladder through the bladder dome, and then intravesical pressure was measured to monitor bladder activity during continuous infusion of 0.15% acetic acid. Continuous intravesical infusion of acetic acid irritates the bladder and reduces the intercontraction intervals (ICI) in anesthetized rats. ICIs, maximal contraction pressure, and pressure thresholds inducing reflex bladder contraction were measured before and after intravesical infusion of acetic acid in rats treated with compounds of the invention.

Example 56: Intermediate bladder irritation by cyclophosphamide (CYP) in rats

[0307] Experiments were performed using both adult awake and anesthetized female Sprague Dawley rats (170-200 g). Chemical cystitis was induced by CYP, which is metabolized to acrolein, an irritant eliminated in the urine. CYP (150 mg/kg/i.p.) was administered one day before the experiment. Pre-treatment with CYP causes bladder irritation and very frequent voidings with an ICI of about 150-200 seconds between voids.

[0308] Active compounds increase the ICI in both awake and anesthetized rats used in this experimental model.

Example 57: Migraine test in rats

[0309] Animals and surgery: Male Wistar rats (250-350 g) were anesthetized with sodium pentobarbital (50 mg/kg i.p.) dissolved in saline.

[0310] The trachea and left femoral artery were cannulated for artificial ventilation (55 strokes/min) and for measurement of mean blood pressure (MBP) respectively. The femoral vein was cannulated for the intravenous administration of test agents.

[0311] Body temperature was maintained at 37-38 °C by automatic control of a heating pad. Animals were placed in a stereotaxic frame and a longitudinal incision was made in the scalp. A burr hole was drilled in the skull and a stainless steel bipolar electrode (Plastic One MS 306) was lowered into left ophthalmic branch of the trigeminal ganglion (3.8 mm dorsal to bregma, 2.5 mm lateral from the midline and 9.5 mm below the dural surface) and secured with dental cement. Correct placement of the electrode was confirmed by a brief electrical stimulation, which caused movement of the jaw due to activation of the trigeminal fiber. Following removal of the brain, the correct position of the electrode into the fiber, was visually checked at the end of each experiment.

[0312] A second hole was drilled ipsilateral of the electrode (1.5 mm rostral to bregma, and 1.5 mm lateral from the sagittal suture) and a needle probe (tip diameter 0.8 mm) of a laser doppler flowmeter was fixed pointing with its tip onto a branch of the middle cerebral artery (MCA) and Cerebral Blood Flow (CBF) change recorded on-line by the PeriFlux 4001 Laser Doppler system.

[0313] Artefacts of the laser Doppler reading during electrical stimulation of the trigeminal ganglion due to muscular movements were prevented by a bolus of i.v. injection of the neuromuscular blocker pancuronium bromide (0.6 mg/kg i.v.).

[0314] Anesthesia and neuromuscular blockade were maintained all over the experiment with an infusion of sodium pentobarbital and pancuronium (12.5 mg/kg/h + 2.4 mg/kg/h, respectively). Experimental protocol: At the end of the surgery, a pause of thirty minutes was taken in order to stabilize the measured parameters.

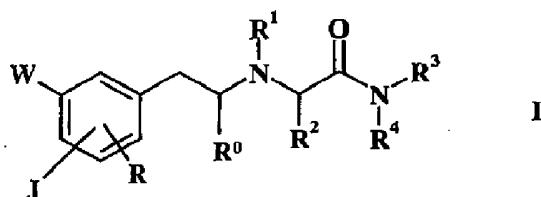
[0315] Rest CBF was increased by electrical stimulation with rectangular pulse of 0.5 ms length, 1-10 Hz, 0.5-1 mA for periods of 30 s. After two averaged pre-drug stimulations, vehicle or drugs were administered.

[0316] Active compounds reduce the increase in blood flow induced by trigeminal stimulation.

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description


- [WO9014334A \[0004\] \[0006\]](#)
- [WO04089353A \[0007\]](#)
- [WO9935125A \[0009\]](#)
- [WO03091219A \[0011\]](#)
- [WO9926614A \[0012\]](#)
- [WO03037865A \[0013\] \[0013\]](#)
- [US5366982A \[0013\] \[0013\]](#)
- [WO9201675A \[0013\]](#)
- [WO9835957A \[0014\] \[0014\]](#)
- [EP1588704A \[0015\]](#)
- [WO2005018627A \[0016\]](#)
- [DE2006978A1 \[0017\]](#)
- [GB586645A \[0018\]](#)
- [US5051403A \[0030\]](#)
- [US5587454A \[0031\]](#)
- [US5863952A \[0032\]](#)
- [US6011035A \[0033\]](#)
- [US6117841A \[0034\]](#)
- [US6362174B \[0035\]](#)
- [US6380198B \[0036\]](#)
- [US6420383B \[0037\]](#)
- [US6472530B \[0037\]](#)
- [US6458781B \[0038\]](#)
- [US6521647B \[0039\]](#)
- [WO9710210A \[0040\]](#)
- [WO03018561A \[0041\]](#)
- [WO03057219A \[0042\]](#)
- [WO9914199A \[0043\]](#)
- [WO0174779A \[0044\]](#)
- [WO04087125A \[0045\]](#)

Non-patent literature cited in the description

- P. PEVARELLO. *J. Med. Chem.*, 1998, vol. 41, 579-590 [0005]
- PEVARELLO P. BONSIGNORI A. DOSTERT P. HEIDEMPERGER F. PINCIROLI V. COLOMBO M. MCARTHUR R. A. SALVATI P. POST C. FARIELLO R. G. *J. Med. Chem.*, 1998, vol. 41, 579-590 [0009]
- CIZKOVA D. MARSALA J. LUKACOVA N. MARSALA M. JERGOVA S. ORENDAKOVA J. YAKSH T. L. *Exp. Brain Res.*, 2002, vol. 147, 456-463 [0021]
- MATTEWS E. A. DICKENSON A. H. *Pain*, 2001, vol. 92, 235-246 [0021]
- DIAZ A. DICKENSON A. H. *Pain*, 1997, vol. 69, 93-100 [0021]
- NEBE J. VANEGAS H. SCHÄIBLE H. G. *Exp. Brain Res.*, 1998, vol. 120, 61-69 [0021]
- KIM C. JUN K. LEE T. KIM S. S. MCENERY M. W. CHIN H. KIM H. LPARK J. M. KIM D. K. JUNG S. *J. Mol. Cell Neurosci.*, 2001, vol. 18, 235-245 [0021]
- HATAKEYAMA S. WAKAMORI MINO M. MIYAMOTO N. TAKAHASHI E. YOSHINAGA T. SAWADA K. IMOTO KTANAKA I. YOSHIZAWA T. *Neuroreport*, 2001, vol. 12, 2423-2427 [0021]
- SAEGUSA H. KURIHARA T. ZONG S. KAZUNO A. MATSUDA Y. NONAKA T. HAN W. TORIYAMA H. TANABE T. *EMBO J.*, 2001, vol. 20, 2349-2356 [0021]
- BOWERSOX S. S. LUTHER R. *Toxicon*, 1998, vol. 36, 1651-1658 [0021]
- *Adv. Exp. Med. Biol.*, 2002, vol. 513, 161-181 [0029]
- VANEGASSCHAIBLE *Pain*, 2000, vol. 85, 9-18 [0029]
- COOPER AJ. Tyramine and irreversible monoamine oxidase inhibitors in clinical practice *Br J Psych Suppl*, 1989, 38-45 [0051]
- VOLZ H. P. GLEITER C. H. Monoamine oxidase inhibitors. A perspective on their use in the elderly *Drugs Aging*, 1998, vol. 13, 341-355 [0053] [0057]
- BAUMANN P. Pharmacokinetic-pharmacodynamic relationship of the selective serotonin reuptake inhibitors *Clin Pharmacokinet*, 1996, vol. 31, 444-469 [0056]
- Pharmacology of antidepressants in the elderly *YAMADA RICHELSON Handbook of pharmacology of aging* CRC Press 19960000 [0058]
- THEODORA W. GREENE PETER G. M. WUTS Protective groups in organic synthesis John Wiley & Sons, Inc. 19910000 [0094]
- W. A. CATTERALL *Trends Pharmacol. Sci.*, 1987, vol. 8, 57-65 [0106]
- HAMILL O. P. MARTY A. NEHER E. SAKMANN B. SIGWORTH F. J. *Pflugers Arch.*, 1981, vol. 391, 85-100 [0242]
- HAMILL O. P. MARTY A. NEHER E. SAKMANN B. SIGWORTH F. J. *Pflugers Arch.*, 1981, vol. 391, 285-100 [0251]
- CHAPLAN S. R. BACH F. W. POGREL J. W. CHUNG J. M. YAKSH T. L. *J. Neurosci Methods*, 1994, vol. 53, 55-63 [0278]
- DIXON W. J. *Am. Stat. Assoc.*, 1965, vol. 60, 967-978 [0278]
- BENNETT G. J. XIE Y. K. A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man *Pain*, 1988, vol. 33, 87-107 [0281]
- WHITE H. S. WOODHEAD J. H. FRANKLIN M. R. SWINYARD E. A. WOLF H. H. *Antiepileptic Drugs* Raven Press, Ltd. 1995000099-110 [0283]
- RUSHTON R. STEINBERG H. Combined effects of chlordiazepoxide and d-amphetamine on activity of rats in an unfamiliar environment *Nature*, 1966, vol. 211, 1312-3 [0286]
- R. ARBANG. MARIAK. BRACKENBOROUGH L. WINYARDA. WILSON P. GERRARD C. LARGE Evaluation of the effects of lamotrigine, valproate and carbamazepine in a rodent model of mania *Behavioural Brain Research*, vol. 158, 123-132 [0286]
- ROBINSON T. E. BERRIDGE K. C. *Brain Res. Brain Res. Rev.*, 1993, vol. 18, 247-91 [0300]
- KOOB G. F. SANNA P. P. BLOOM F. E. *Neuron*, 1998, vol. 21, 467-476 [0304]
- ROBINSON T. E. BERRIDGE K. C. *Brain Res. Brain Res. Rev.*, 1993, vol. 18, 247-291 [0304]

P A T E N T K R A V

1. Forbindelse ifølge den almene formel I

hvor:

5 (a)

J er en gruppe $A-[(CH_2)_n-O]_r-$ i *para*-position med hensyn til ethylaminkæden, hvor:

n er 1; og

r er 1;

A er phenyl substitueret med en fluorgruppe;

10 W er methoxy;

R er hydrogen;

 R^0 er hydrogen; R^1 er hydrogen; (C_1-C_4)alkyl; cyclopropylmethyl; benzyl eller heterocyclymethyl, hvor heterocyclgruppen er valgt blandt furanyl, tetrahydrofuranyl og pyridinyl eventuelt substi-

15 tueret med en methoxygruppe;

 R^2 er hydrogen; (C_1-C_4)alkyl eller phenyl; R^3 er hydrogen eller (C_1-C_4)alkyl; og R^4 er hydrogen; (C_1-C_4)alkyl eventuelt substitueret med en gruppe valgt blandt amin, dimethylamin og pyrrolidinyl, hvor pyrrolidinylet eventuelt er substitueret med en

20 methylgruppe; eller

 R^3 og R^4 sammen med det tilstødende nitrogenatom danner en pyrrolidinyl- eller morpholinylring;

eller

(b)

25 J er hydrogen;

W er en gruppe $A-[(CH_2)_n-O]_r-$ hvor:

n er 1;

r er 1;

A er (C_1-C_4)alkyl eller phenyl substitueret med en fluorgruppe;

30 R er hydrogen;

 R^0 er hydrogen; R^1 er furanylmethyl eller tetrahydrofuranylmethyl; R^2 er hydrogen; R^3 er hydrogen eller (C_1-C_4)alkyl; og35 R^4 er hydrogen eller (C_1-C_4)alkyl eventuelt substitueret med en gruppe valgt blandt amin, og dimethylamin;

hvis det er tilfældet enten som en enkelt enantiomer eller diastereoisomer eller blanding deraf og dens farmaceutisk acceptable salte.

2. Forbindelse ifølge krav 1, gruppe (b) hvor:

J er hydrogen;

5 W er en gruppe A-[(CH₂)_n-O]_r- hvor:

n er 1;

r er 1;

A er (C₁-C₄)alkyl;

R er hydrogen;

10 R⁰ er hydrogen;

R¹ er furanymethyl eller tetrahydrofuranymethyl;

R² er hydrogen;

R³ er hydrogen eller (C₁-C₄)alkyl; og

R⁴ er (C₁-C₄)alkyl;

15 hvis det er tilfældet enten som en enkelt enantiomer eller diastereoisomer eller blanding deraf og dens farmaceutisk acceptable salte.

3. Forbindelse ifølge krav 1, hvilken er valgt blandt

2-[[2-[4-(3-Fluor-benzyloxy)-3-methoxy-phenyl]-ethyl]-isobutylamin]-N-methyl-acetamid;

2-[[2-[4-(3-Fluor-benzyloxy)-3-methoxy-phenyl]-ethyl]-[tetrahydrofuran-3-

20 ylmethyl]amin]-N-methyl-acetamid;

2-[[2-[4-(3-Fluor-benzyloxy)-3-methoxy-phenyl]-ethyl]-benzylamin]-N,N-dimethyl-acetamid;

2-[[2-[4-(3-Fluor-benzyloxy)-3-methoxy-phenyl]-ethylamin]-N,N-dimethyl-2-phenyl-acetamid;

25 2-[[2-[4-(3-Fluor-benzyloxy)-3-methoxy-phenyl]-ethylamin]-1-(morpholin-4-yl)-2-phenyl-ethanon;

2-[[2-[4-(3-Fluor-benzyloxy)-3-methoxy-phenyl]-ethyl]-benzylamin]-1-(pyrrolidin-1-yl)-ethanon;

2-[[2-[4-(3-Fluor-benzyloxy)-3-methoxy-phenyl]-ethyl]-benzylamin]-N-(2-amin-2-methyl-

30 propyl)-acetamid;

2-[[2-[4-(3-Fluor-benzyloxy)-3-methoxy-phenyl]-ethyl]-benzylamin]-N-(2-dimethylamin-ethyl)-acetamid;

2-[[2-[4-(3-Fluor-benzyloxy)-3-methoxy-phenyl]-ethyl]-benzylamin]-N-[2-(1-methyl-pyrrolidin-2-yl)-ethyl]-acetamid;

35 2-[[2-[4-(3-Fluor-benzyloxy)-3-methoxy-phenyl]-ethyl]-[cyclopropylmethyl]amin]-N-ethyl-acetamid;

2-[[2-[3-(3-Fluor-benzyloxy)-phenyl]-ethyl]-[furan-2-ylmethyl]amin]-N-(2-dimethylamin-ethyl)-acetamid;

2-[[2-[3-(3-Fluor-benzyloxy)-phenyl]-ethyl]-[furan-2-ylmethyl]amin]-N-(2-amin-2-

40 methyl-propyl)-acetamid;

2-[[2-[(3-Butoxy-phenyl)]-ethyl]- (tetrahydrofuran-3-ylmethyl)amin]-N,N-dimethyl-acetamid;

2-[[2-[4-(3-Fluor-benzyl)oxy]-3-methoxy-phenyl]-ethyl]- (cyclopropylmethyl)amin]-N-methyl-acetamid;

5 (S)-2-[2-[4-(3-Fluor-benzyl)oxy]-3-methoxy-phenyl]-ethylamin]-N-methyl-4-methyl-valeramid;

2-[[2-[4-(3-Fluor-benzyl)oxy]-3-methoxy-phenyl]-ethyl]- (furan-3-ylmethyl)amin]-N-methyl-acetamid;

2-[[2-[4-(3-Fluor-benzyl)oxy]-3-methoxy-phenyl]-ethyl]-benzylamin]-N-ethyl-acetamid; og

10 2-[[2-[4-(3-Fluor-benzyl)oxy]-3-methoxy-phenyl]-ethyl]- (6-methoxy-pyridin-3-ylmethyl)amin]-N-methyl-acetamid;

hvis det er tilfældet enten som en enkelt enantiomer eller blanding deraf og dens farmaceutisk acceptable salte

4. Forbindelse ifølge krav 3, hvilken er 2-[[2-(3-butoxy-phenyl)-ethyl]- (tetrahydrofuran-3-ylmethyl)amin]-N,N-dimethyl-acetamid og dens farmaceutisk acceptable salte.

15 5. Forbindelse ifølge krav 4, hvilken er den enkelte enantiomer, der har en $[\alpha]_D = -10^\circ$, $c = 0,1$, MeOH (20°C) eller den enkelte enantiomer, der har $[\alpha]_D = +10^\circ$, $c = 0,1$, MeOH (20°C), eller en blanding deraf i et hvilket som helst forhold og dens farmaceutisk acceptable salte.

20 6. Forbindelse ifølge et hvilket som helst af kravene 1 til 5, hvor det farmaceutisk acceptable salt er hydrochloridet.

7. Forbindelse ifølge krav 6, hvilken er 2-[[2-(3-butoxy-phenyl)-ethyl]- (tetrahydrofuran-3-ylmethyl)amin]-N,N-dimethyl-acetamidhydrochlorid.

25 8. Forbindelse ifølge et hvilket som helst af kravene 1 til 7 til anvendelse som et medikament.

9. Forbindelse ifølge et hvilket som helst af kravene af 1 til 7 til anvendelse som et medikament, der er virksomt som calcium- og/eller natriumkanalmodulator, mod forstyrrelser forårsaget af dysfunktioner af spændingsafhængige calcium- og/eller natriumkanaler, såsom neuropatisk smerte, kronisk smerte, akut smerte, hovedpiner, neurologiske betingelser, kognitive og psykiatriske forstyrrelser såsom bipolare forstyrrelser, psykose, angst og afhængighed, inflammatoriske processer, der påvirker et hvilket som helst krops-system, forstyrrelser af mave-tarm-kanalen, forstyrrelser af den urogenitale kanal, ophthalmiske sygdomme, leversygdomme, cardiovaskulære forstyrrelser og neurodegenerative forstyrrelser.

30 10. Forbindelse ifølge et hvilket som helst af kravene 1 til 7 til anvendelse som et medikament til behandling af neuropatisk smerte, kronisk smerte og/eller akut smerte.

11. Forbindelse ifølge et hvilket som helst af kravene 1 til 7 til anvendelse som et medikament til behandling af hovedpiner såsom migræne.

35 12. Forbindelse ifølge et hvilket som helst af kravene 1 til 7 til anvendelse som et

medikament til behandling af neurologiske betingelser såsom epilepsi.

13. Forbindelse ifølge et hvilket som helst af kravene 1 til 7 til anvendelse som et medikament til behandling af kognitive og/eller psykiatriske forstyrrelser.

14. Forbindelse ifølge et hvilket som helst af kravene 1 til 7 til anvendelse som et medikament til behandling af forstyrrelser forårsaget af dysfunktioner af spændingsafhængige calcium- og/eller natriumkanaler såsom inflammatoriske processer, der påvirker et hvilket som helst kropssystem, forstyrrelser af mave-tarm-kanalen, forstyrrelser af den urogenitale kanal, ophalmiske sygdomme, leversygdomme, cardiovaskulære og/eller neurodegenerative forstyrrelser.

15. Forbindelse ifølge et hvilket som helst af kravene 1 til 7 til anvendelse som et medikament, der er virksomt som calcium- og/eller natriumkanalmodulator, mod forstyrrelser forårsaget af dysfunktioner af spændingsafhængige calcium- og/eller natriumkanaler, såsom neuropatisk smerte, kronisk smerte, akut smerte, hovedpiner, neurologiske betingelser, kognitive og psykiatriske forstyrrelser såsom bipolare forstyrrelser, psykose, angst og afhængighed, inflammatoriske processer, der påvirker et hvilket som helst kropssystem, forstyrrelser af mave-tarm-kanalen, forstyrrelser af den urogenitale kanal, ophalmiske sygdomme, leversygdomme, cardiovaskulære forstyrrelser og neurodegenerative forstyrrelser, k e n d e t e g n e t ved, at doseringen af forbindelsen, som er virkningsfuld i behandling af en patient, der lider af lidelser forårsaget af dysfunktioner af spændingsafhængige calcium- og/eller natriumkanaler, ikke udviser nogen som helst MAO-inhibitorisk aktivitet eller udviser en signifikant mindsket MAO-inhibitorisk aktivitet.

16. Farmaceutisk sammensætning indeholdende en forbindelse ifølge et hvilket som helst af kravene 1 til 7 som virksom ingrediens sammen med en farmaceutisk acceptabelt excipiens.

17. Farmaceutisk sammensætning ifølge krav 16 indeholdende et yderligere terapeutisk middel.

18. Forbindelse som i et hvilket som helst af kravene 4 til 7 til anvendelse som analgesisk, antikonvulsivt, antimani- og/eller anti-skizofrenimiddel.

19. Forbindelse ifølge et hvilket som helst af kravene 4 til 7 til anvendelse ifølge krav 18, hvor det farmaceutisk acceptable salt er hydrochloridet.

20. Forbindelse ifølge et hvilket som helst af kravene 1 til 7 til anvendelse ifølge et hvilket som helst af kravene 9 til 15 i behandling af patienter, der lider af lidelser forårsaget af dysfunktioner af spændingsafhængige calcium- og/eller natriumkanaler, hvor inhibition af MAO-enzymers ikke er af nogen gavn, eller MAO-inhibitoriske bivirkninger medfører negative begrænsninger.

21. Forbindelse ifølge et hvilket som helst af kravene 4 til 7, til anvendelse ifølge et hvilket som helst af kravene 9 til 15, 18 og 19 i behandling af patienter, der lider af lidelser forårsaget af dysfunktioner af spændingsafhængige calcium- og/eller natriumkanaler, hvor inhibition af MAO-enzymers ikke er af nogen gavn, eller MAO-inhibitoriske bivirkninger medfører negative begrænsninger.