
|||||||||||||||III
United States Patent (19)
Bannon et al.

54 SYSTEM AND METHOD FOR DATABASE
MANAGEMENT SUPPORTNG
OBJECT-ORIENTED PROGRAMMING

Inventors: Thomas J. Bannon, Dallas; Stephen J.
Ford; Wappala J. Joseph, both of
Plano; Edward R. Perez, Dallas;
Robert W. Peterson; Diana M.
Sparacin, both of Plano; Satish M.
Thatte, Richardson; Craig W.
Thompson, Plano; Chung C. Wang;
David L. Wells, both of Dallas, all of
Tex.

Texas Instruments incorporated,
Dallas, Tex.

Appl. No.: 531,493
Filed: May 30, 1990

Int, C. G06F 3/00; G06F 15/40
U.S. C. 395/600; 395/500;

364/DIG. 1; 364/282.1; 364/283.1; 364/283.4
Field of Search 364/DIG. 1, DIG. 2;

395/425, 600, 650, 700, 725, 500
References Cited

U.S. PATENT DOCUMENTS

4,525,780 6/1985 Bratt et al. 395/650
4,853,842 8/1989 Thatte et al. 395/425
4,989,132 l/1991 Mellender et al. 395/425
5,075,842 12/1991 Lai 395/425
5,075,845 12/1991 Lai et al. 395/425
5,075,848 12/1991 ... 395/425
5,079,695 l/1992 Dysart et al. 395/700

OTHER PUBLICATIONS

Stephen Ford, et al., "Zeitgeist: Database Support for
Object-Oriented Programming'; Advances in Objec
t-Oriented Database Systems, 27 Sep. 1988, Ebernburg,
Germany, pp. 23-42.
R. Agrawal, et al., “ODE (Object Database and Envi
ronment): The Language and The Data Model'; SIG
MOD RECORD, vol. 18, No. 2, 31 May 1989,
Portland, Oreg., USA, pp. 36-45.
A Straw, et al., "Object Management in a Persistent
Smalltalk System', Software Practice & Experience,

/4

APPLICATION SoFTWARE

(75)

73) Assignee:

21
22)
51)
(52)

58)

(56)

(ZETGEIST NSTANCE)

PERSISTENT OBJECT REFERENCES
44

OBJECT ANAGEMENT SYSTEM

OsCT TRANSATION
SYSTEM

4

SECONDARY MEMORY
STORAGE DEVICES

US005297279A

11 Patent Number: 5,297,279
45 Date of Patent: Mar. 22, 1994

vol. 19, No. 8, Aug. 1989, CHICHESTER GB, pp.
719-737.
Peter Lyngbaek, et al. "A DataModeling Methodology
for the Design and Implementation of Information Sys
tems', Int'l Workshop on Object-Oriented Databases
Systems, 1986.p. 6+.
Kevin Wilkinson, et al. "The IRIS Architecture and
Implementation", IEEE Trans. on Knowledge and
Data Engineering, V2N1 Mar. 1990, pp. 63--.
David Maier, et al. "Development of an Object-Ori
ented DBMS', Object-Oriented Programming: Sys
tems, Languages and Applications (OOPSLA) 1986.
pp. 472--.
Timothy Andrews, et al. "Combining Language and
Database Advances in an Object-Oriented Develop
ment Environment', Object-Oriented Programming:
Systems, Languages and Applications (OOPSLA) 1987.
pp. 430+.
Won Kim, et al. "Integrating an Object-Oriented Pro
gramming System with a Database System', Objec
t-Oriented Programming: Systems, Languages and Ap
plications (OOPSLA) 1988. pp. 142+.

(List continued on next page.)
Primary Examiner-Paul V. Kulik
Assistant Examiner-John C. Loomis
Attorney, Agent, or Firm-Richard A. Stoltz; Richard L.
Donaldson; William E. Hiller
57 ABSTRACT
A system and method for database management for
providing support for long-term storage and retrieval of
objects created by application programs written at least
in part in object-oriented programming languages con
sists of a plurality of software modules. These modules
provide data definition language translation, object
management, object translation, and persistent object
storage service. Such system implements an object fault
capability to reduce the number of interactions between
the application, the database management system, and
the database.

4. Claims, 5 Drawing Sheets

(PTR NSTANCES)

C - 40
TYPE - s.

DESCRIPTIONS

5,297,279
Page 2

OTHER PUBLICATIONS
Won Kim, et al. "Architecture of the ORION Next
Generation Database Sytem', IEEE Trans. on Knowl
edge and Data Engineering, V2N1 Mar. 1990. pp.
109-.
Michael Stonebraker, "Object Management in POST
GRES Using Procedures”, Int'l Workshop on Objec
t-Oriented Database (OODB) Systems 1986. pp. 66+.
Michael Stonebraker, et al. "The Implementation of
POSTGRES", IEEE Trans. on Knowledge and Data
Engineering, V2N1, Mar. 1990. pp. 125+.
Puknraj Kachhwaha, et al. "An Object-Oriented Data
Model for the Research Laboratory", Int'l Workshop
on Object-Oriented Database (ODOB) Systems 1986. p.
28.

Puknraj Kachhwaha, "LCE: An Object-Oriented
Database Application Development Tool', SIGMOD
Int'l Conference on Management of Data 1988. p. 207.
Laura M. Haas, et al. "Starburst Mid-Flight: As the
Dust Clears', IEEE Trans, on Knowledge and Data
Engineering, V2N1 Mar. 1990. IBM's Starburst) pp.
43--.
Ted Kaehler, "Virtual Memory on a Narrow Machine
for an Object-Oriented Language', Object-Oriented
Programming: Systems, Languages and Applications
(OOPSLA) 1986. Xerox PARC's LOOM)pp. 87+.
Karen E. Smith, et al. "Intermedia: A Case Study of the
Differences Between Relational and Object-Oriented
Database Systems', Object-Oriented Programming:
Systems, Languages and Applications (OOPSLA) 1987.
Brown's Intermedia System) pp. 452--.

U.S. Patent Mar. 22, 1994 Sheet 1 of 5 5,297,279

INTERADIVE DEVICES /O

APPLICATION
SOFTWARE /4

/6.
OODB

SYSTEM SOFTWARE /6

6 USER INTERFACE MANAGEMENT SYSTEM /2

OPERATING
A/G / SYSTEM

SOFTWARE RDB 2O
SYSTEM SOFTWARE

24
SECONDARY MEMORY COMPUTER

HARDWARE STORAGE DEVICES

/4

APPLICATION SOFTWARE PERSISTENT OBJECT REFERENCES
/6 44 (PTR INSTANCES)

22 ---
SF-a- Ole to do

42 0BJECMANAGEMENSYSTEM C 40 74. (ZETGEIST INSTANCE) TYPE ---
DESCRIPTIONS

46 46 52
NAME DEMON OBJECT OBJECT TRANSLATION

| MANAGER TABLE MAP SYSTEM

Prsistent object 54 52
STORAGE SERVER

-

RELATIONAL DATABASE/2O
SYSTEM SOFTWARE

A/62
SECONDARY MEMORY 24
STORAGE DEVICES

U.S. Patent Mar. 22, 1994 Sheet 2 of 5 5,297,279

DDL
CLASS

DEFINITION

C++
CLASS

DEFINITIONS
AND HEADER

FILES

A/G 3

36

A

B

O OBJECT D OF TYPE

DEMON OBJECT

e OBJECT D OF TYPE

as wwo the up w to -

C LANGUAGE 26 60

EXPANDED
DDL CLASS
DEFINITIONS

TYPE DESCRIPTION
DATABASE

DESCRIPTION
DECLARATION

FILE

46 74

O DEMON OBJECT 76 44

U.S. Patent Mar. 22, 1994 Sheet 3 of 5 5,297,279

50

o NUMBER OF STORAGE GROUP
HASH TABLE ENTRIES

STORAGE GROUP-HASH TABLE ENTRIES

e STORAGE
GROUP
NUMBER

e STORAGE
GROUP
HASH
TABLE

56 5.

O NUMBER OF ENTRIES
FIRST ENTRY

FROM DDL

40
OBJECT POINTER

DATA
MEMBERS A/6 6.

5,297,279
1.

SYSTEMAND METHOD FOR DATABASE
MANAGEMENT SUPPORTNG

OBJECT-ORENTED PROGRAMMING

BACKGROUND OF THE INVENTION

1. Field of the Invention
This invention relates to database management sys

tems and more particularly to a system and method
providing support for long-term storage and retrieval of
objects created by application programs written in ob
ject-oriented programming languages.

2. Description of Related Art
Many new computer software applications, such as

Computer-Aided Design and Manufacturing, Comput
er-Aided Software Engineering, multimedia and hy
permedia information systems, and Artificial intelli
gence Expert systems, have data models that are much
more complex than previous system, both in content
and interobject relationships. Object-oriented languages
provide the application developer the mechanism to
create and manipulate the data models inherent in these
applications. Database systems provide long term stor
age of the data created by these applications. However,
existing languages and databases are insufficient to de
velop these applications because existing object-ori
ented languages do not provide direct support for long
term storage and sharing of objects, existing commer
cial database systems (hierarchical, network, and rela
tional) do not support the necessary complex object-ori
ented data models, and existing database systems re
quire an application developer to use different lan
guages and modeling paradigms when building applica
tions.
There have been various research and commercial

efforts aimed at developing OODBs. These OODBs
vary in type of data model employed, application pro
gram interaction, object access method, method of per
sistent object store, etc. Examples of these current
OODBs, and their weaknesses, will now be considered.

Iris (Hewlett Packard) and GemStone (Servio Cor
poration) are representative OODBs employing new
proprietary object-oriented data models, while Vbase
(Ontologic), Orion (Microelectronics and Computer
Technology Corporation), and DOME (Dome Soft
ware Corporation) are examples of OODBs incorporat
ing proprietary extensions to existing programming
language data models. In these types of OODBs, appli
cation developers are required to learn a new propri
etary data model in order to effectively use the OODB.
Since their data model is new, using it often results in a
loss of productivity as application developers learn the
new language. In Orion, instances of user-defined
classes cannot be stored in the database unless they have
been derived from Orion-defined classes. In addition,
GemStone and Orion do not allow for an instance of
their classes to be transient; that is, every object created
in a GenStone- or Orion-based application will be
stored in the database unless it is specifically deleted.
Another problem with developing a new data model is
that it requires application developers to rely on a single
source of application development tools, such as lan
guage compilers, object libraries, and program debug
gers, which limits widespread acceptance of these
OODBS.
POSTGRES (University of Berkeley) is an example

of an OODB employing another type of data model,
that of a proprietary extension to an existing relational

10

15

20

25

30

35

45

50

55

65

2
database. POSTGRES is a combination of an extended
relational and object-oriented database. Objects are
created using relational table descriptions, while func
tions to manipulate the objects are created using the
POSTQUEL query language as well as conventional
languages (C and LISP). In addition, if the application
developer wishes to add indices over user-defined
types, they must write and register with POSTGRES
functions to perform the various comparison operations
between two objects of the same user defined type.
Since the latter mode of creating functions requires the
application developers to map between the POST
GRES and C/LISP data models, which can be error
prone and distracting from the task of developing the
application system, this strategy does nothing to allevi
ate the burdensome requirement to use different lan
guages and modeling paradigms when building applica
tions. This problem of mapping between the object-ori
ented and relational data models was discussed in-depth
in the Intermedia OOPSLA '87 conference paper.
Ontos (Ontologic) and Object Store (Object Design)

are representative of OODBs employing the last type of
data model, namely the use of an existing programming
language data model (e.g., using the C++ program
ming language data model for writing software pro
grams and interacting with the database). Both systems,
however, require the use of a proprietary language
compiler to add additional code (Ontos) or translate
new and non-standard C++ language constructs (Ob
ject Store). As with the first two types of OODBs, this
approach requires application developers to rely on a
single source of application development tools, which
also limits widespread acceptance of these OODBs.

In addition to problems inherent with the type of data
models selected, difficulties occur when an application
program interacts with an OODB. In the Iris OODB,
application developers define object types and develop
functions to manipulate the objects using the propri
etary Iris language. Iris provides an interactive interface
where requests can be made to retrieve or manipulate
Iris objects. The requests are evaluated by performing
relational queries (since the objects are stored in rela
tional tables) and the result is returned as an Iris expres
sion, not as object values or references. Iris provides an
embedded object SQL interface, a C language interface
(which is not object-oriented), and allows the applica
tion developer to register foreign functions written in
existing (possibly non-object-oriented) programming
languages. These approaches require the application
developer to map the Iris objects into data structures
accessible by the programming language, reintroducing
the problems discussed above.

Similarly, the developers of the GemStone OODB
also defined a new language, OPAL, which the applica
tion developer uses to define object types and functions
to manipulate the objects. GemStone provides an inter
active development environment for developing OPAL
objects and functions. GemStone also provides a mech
anism for existing programming languages (C and
Smalltalk) to interact with GemStone. However, unless
the applications developer uses only the OPAL lan
guage, two data models and languages must be used to
interact with the database, mapping the OPAL objects
into structures accessible by the programming lan
guage, and thereby resulting in the problems associated
discussed previously.

5,297,279
3

The Vbase OODB requires two separate languages,
TDL to define object types, and COP (an extension to
the C programming language) to develop application
programs. Although application developers do not need
to map objects between the data model and the pro
gramming language, they must still use two languages
during the development of their programs, with the
attendant problems considered above. A further restric
tion of this system includes the failure to provide access
to the database from other programming languages.
Although the Orion OODB developers used an exist

ing programming language, Common Lisp, for their
data model, they developed several proprietary exten
sions to the language. As with Vbase, there is no need to
map between the data model and programming lan
guage with the Orion OODB. However, this approach
requires the use of a proprietary language translator.
The developers of POSTGRES, on the other hand,

expect most application developers to write programs
that interact with the database primarily using the
POSTGRES query language, POSTQUEL. Naviga
tion between objects is possible; however, a query must
be issued to perform the navigation instead of accessing
the referenced object directly. Application developers
can define and implement their own functions including
programming language statements, POSTOUEL query
statements, and/or calls to POSTGRES' internal func
tions. Thus, application developers may have to deal
with two or more data models to build their application
systems. Such requirement fails to alleviate the prob
lems considered above.
The Ontos approach provides an interface from the

C---- language to the database. However, the amount
of interaction between the program and Ontos is much
higher than is reasonable or necessary due to the re
quirement of specialized functions that must be pro
vided by the application developer (e.g., object con
struction, translation, storage/retrieval, etc.). This bur
dens the application developer with more work that
could have been performed by the database system.
Object Store also provides an interface from the C----
language to the database. However, the interface is
accomplished by redefining the semantics of or adding
new C---- language constructs, thereby requiring the
use of Object Design's proprietary C---- language
translator, which limits widespread acceptance of their
system.

Access to an object in an OODB is performed by
manipulating the object using predefined functions,
using an explicit query, or by coding explicit references
in a programming language.

In the Iris OODB, application developers call func
tions to retrieve or change values in the object. A pro
gram cannot receive a reference to an object which
could be passed to other functions. In the GemStone,
Vbase, and Orion OODBs, individual objects can be
accessed and passed to functions to retrieve or assign
values.

In the POSTGRES database, application developers
perform queries to retrieve or change values in the
object (actually, relational tuples). POSTGRES allows
a foreign function to access an object, but as stated
above, it must be mapped from the relational data model
to the data model of the foreign function's program
ming language.
Although most OODBs allow the application devel

oper to explicitly retrieve an object from the database
(Iris and POSTGRES do not), they do not allow the

10

15

20

25

30

35

45

SO

55

65

4.
application developer to specify when objects related to
the original object should be retrieved. For example,
application developers can access objects in Ontos using
one of two modes. In the first mode, an object is explic
itly retrieved and referenced objects are implicitly re
trieved using an object fault capability. In the other
mode, one or more related objects can be explicitly
retrieved, but the application must continually check to
see if a referenced object is already in memory, and then
explicitly retrieve it if is not. This requires the applica
tion developer to employ two completely different
models of accessing persistent objects in the same pro
gram, which can easily cause errors in the program by
the inadvertent and natural use of one mode where the
other mode should have been used.
The approach taken by Object Store is quite different

from the above OODBs with regard to object access.
Object Store's model is more like a persistent memory
(an extension of virtual memory computer operating
system) than an OODB. Object Design chose to con
pletely reimplement the virtual memory management
functions of the C++ programming language and the
UNIX (TM) operating system. Whenever a persistent
object is created or retrieved from the database, it is
installed in a portion of primary memory controlled by
Object Design. Thus, references to the object are, in
essence, monitored by Object Design's software. If the
object is not currently in primary memory, it will be
retrieved from the database and installed in primary
memory. This style of memory management requires
that any class or class library requiring persistence must
be written using this memory management scheme, or
perform no dynamic memory management thereby
resulting in one version of the library for persistent
usage and one version for transient usage. Although this
approach improves the object storage and retrieval
performance, it is inherently dependent on the underly
ing computer operating system and memory architec
ture, and thus not portable to other computer systems.

Therefore, these approaches either limit how an ap
plication program can access an object, or require addi
tional work in order for the program to access an ob
ject.
Most OODBs (except for Iris and DOME) have de

veloped their persistent object storage facility utilizing
an existing file management system. They had to de
velop new implementations of the disk storage struc
tures and management, concurrency control, transac
tion management, communication, and storage manage
ment subsystems. This approach increases the complex
ity of the overall database system software.
The Iris and DOME OODBs, on the other hand, use

existing commercial Relational Database Management
Systems (RDBMS) to store their objects. Although the
Iris OODB uses Hewlett Packard's relational database
HP-SQL, it does not use the SQL interface to that data
base, restricting access to the objects to the available
Iris functions, Iris interactive browser, C language in
terface, and embedded Iris SQL. Although Iris allows
the application developer to define how objects are to
be stored, the use of Hewlett Packard's RDBMS im
poses a limit on the size of an object. The DOME
OODB, which uses Oracle Corporation's Oracle
RDBMS, and the POSTGRES system, which has its
own relational storage system, decomposes objects into
one or more entries in one or more relational tables.
This approach requires a relational join whenever more
than one attribute value from an object is retrieved.

5,297,279
5

Relational join operations are computationally expen
SVe.

In the GemStone and Object Store OODBs, the unit
of concurrency control is not an object but a secondary
memory segment, or page. This approach can improve
the performance of secondary memory reads and
writes, but results in having the storage facility read,
write, and lock more data than may be necessary. In
addition, this restricts the amount of concurrent access
to objects since the OODB system, and not the applica
tion developer, chooses the unit of concurrency con
trol.
Most of the OODBs allow related objects to be clus

tered together in the persistent object storage. Gem
Stone and Orion only allow clustering controls to be
specified when the entire database is defined. Vbase and
Ontos allow runtime specification of clustering controls
to store one persistent object as close as possible to
another persistent object. Object Store also allows run
time specification of clustering controls to store stati
cally allocated objects in a specific database and dynam
ically allocated objects in a specific database or as close
as possible to another persistent object. This requires
the application developer to treat similar objects with
different models of clustering, which can cause errors in
the program by the inadvertent use of one mode where
the other mode should have been used. These systems
indicate that such clustering specifications are purely
hints which the system may ignore. These clustering
hints may require rebuilding of the database if they are
changed, thereby restricting the ability of the applica
tion developers to tune the database's performance by
altering the physical grouping of objects. Furthermore,
the systems based on relational storage, such as Iris,
POSTGRES, and DOME, do not allow user-defined
clustering of objects.

SUMMARY OF THE INVENTION

In view of the above problems associated with the
related art, it is an object of the present invention to
provide a database management system and method
which supports long term storage and retrieval of ob
jects created by application programs, and which uses
existing object-oriented programming languages to
thereby enable such system and method to be ported to
other computer platforms without requiring any modifi
cations to existing language translators or computer
operating systems and thereby not unduly restrict appli
cation developers in their choice of computer platform
or language translator.

It is a further object of the present invention to pro
vide a database management system and method pro
viding a standard object-oriented programming inter
face for its database functionality, thereby eliminating
any requirement for mixing of object-oriented and func
tional, or other, programming styles to confuse the
application developer when coding a program's inter
face to that of the present invention.

It is yet another object of the present invention to
provide a database management system and method for
adding persistence to existing language objects orthogo
nally, thereby allowing application programmers to
treat persistent and nonpersistent objects in nearly the
same manner and eliminating the need to use two or
more data models when building application systems.
Another object of the present invention is to provide

a database management system and method that allows
the application developer to specify at object definition

10

15

20

25

30

35

45

50

55

65

6
time how related objects, whether created dynamically
or statically, should be clustered when stored, to
thereby provide a capability to adjust the size of storage
objects to enhance the overall system performance.

Still another object of the present invention is to
provide a database management system and method
that reduces the number of interactions with the data
base management system that an application developer
must code to access objects stored in the database.

It is a further object of the present invention to pro
vide a database management system and method that
allows the application developer to specify at applica
tion execution time prior to saving a persistent object
whether or not to install in primary memory the persis
tent objects referenced from the given persistent object
at the same time when the given object is later installed
in primary memory, either due to explicit or implicit
retrieval, to enhance the overall system performance.
A further object of the present invention is to provide

maximization of concurrent usage of the objects in the
database by making the unit of locking the individual
persistent object instead of a page of persistent objects.

It is still another object of the present invention to
store objects in a persistent object storage server utiliz
ing a relational database management system by storing
an external representation of the object and external
references from the object without decomposing the
objects into multiple relational tuples, to enhance the
overall system performance.

yet another object of the present invention is to pro
vide a database management system and method which
uses a uniform object translation methodology thereby
eliminating the need for application developers to per
form this complex computer-and language-dependent
task.

In accordance with the above objects of the inven
tion, the preferred embodiment of the present invention
consists of four software modules to provide database
services to application developers. They are referred to
as the Data Definition Language (DDL) translator, the
Object Management System (OMS), the Object Trans
lation System (OTS), and the Persistent Object Storage
Server (POS Server).
The present invention presents an application inter

face for programming languages which does not require
any extensions to the languages, modifications to exist
ing language translators, or development of proprietary
language translators. Furthermore, the present inven
tion implements an object fault capability which re
duces the number of interactions that an application
must perform with the database management system
and database itself. Access of, and navigation between,
objects can be performed using existing language opera
tions in a transparent manner.

Furthermore, instead of requiring the application
developers to use one data model to interact with the
database and another data model to manipulate the
objects in a programming language, the present inven
tion uses the data model of existing standard object-ori
ented languages, such as C- and CLOS, as the data
model for the database. This alleviates problems associ
ated with the art discussed above.
Although the present invention can be implemented

in any object-oriented programming language, and
should therefore not be limited in any way to any spe
cific language, it has been implemented in both C.
and Common Lisp. In the C++ embodiment, applica
tion developers interact solely with the DDL module,

5,297,279
7

in a batch processing mode, and with the OMS module
using standard C++ syntax in their application pro
grams. The DDL module accepts object type descrip
tions on standard C++ programming language state
ments (with a few additional syntactic constructs) and
extracts sufficient information from the descriptions to
enable the OTS module to translate objects between
their primary and secondary memory representations.
This process is required because this type description
information is not available in the C- run-time sys
tem. To achieve architecture-independent translation,
the DDL translator also accepts information describing
a specific computer architecture and software system
environment in which the present invention's applica
tions are to be executed. The POS Server uses a stan
dard SQL interface to a commercial relational database.

In the Common Lisp embodiment, application devel
opers interact solely with the OMS module using stan
dard Common Lisp syntax in their application pro
grams. The DDL module is not implemented since the
OTS module can extract the necessary information
from the CLOS descriptions during program execution
as that information is already available in the Common
Lisp run-time system. This embodiment uses a raw
disk-based implementation of the POS Server devel
oped by the co-inventors.
The OMS module presents an application interface to

perform standard database operations: initializing and
terminating the present invention, beginning and com
mitting or aborting database transactions (saving modi
fied objects or discarding them, respectively), designat
ing objects as persistent (to be saved to the database),
explicitly retrieving objects from the database, designat
ing objects as having been modified, removing objects
from memory, defining the default storage group for
logical clustering of objects, etc. The OMS module also
supports an automatic and implicit retrieval of objects
from the database when an application references a
previously saved object that is currently not in primary
memory. OMS also provides a facility to associate user
defined names with persistent objects to simplify re
trieval of objects. These associations are also stored in
the present invention's database. This name-object man
agement module has a well-defined interface and can be
replaced with a module of the application developer's
choice.
As stated above, the present invention allows the

application program to retrieve persistent objects from
the database and reference the persistent object's data
members or functions. The present invention accom
plishes this by defining a new data type or class, the
ZG-PTR, that functions equivalently to the current
language constructs for referencing persistent objects
(pointers in C; symbols and values in Common
Lisp). In addition, the present invention allows the ap
plication program to implicitly retrieve a persistent
object from the database using an object faulting mech
anism. When an application program references a per
sistent object, if the object is already in primary mem
ory, the application program continues with its opera
tions. If the object is not in primary memory, OMS
automatically retrieves the object from the POS and
calls upon the OTS module to translate and install the
object in primary memory. Finally, the application pro
gram is allowed to proceed, unaware of this object
faulting processing.
The OTS module is responsible for translating ob

jects between their primary and secondary memory

O

5

20

25

30

35

45

50

55

65

8
representations in a computer architecture-independent
manner. When an object is being saved, the OTS mod
ule uses the information extracted by the DDL transla
tor to determine the extent, or boundary, of the object
and then translates all of the objects within the bound
ary to a computer architecture independent representa
tion. When an object is retrieved from the POS, OTS
creates the appropriate primary memory representation,
assigns the object's values from the stored representa
tion, and allocates OMS data structures for every refer
ence contained in the object to other persistent objects.
The POS Server module provides a stable storage

facility for the objects made persistent by the applica
tion program. Objects are stored in the computer's long
term, or secondary, memory. The POS Server also
provides to the OMS module concurrency control
primitives and atomic transactions (all objects are saved
or none are saved). Objects are stored as an untyped
array of bytes which only OTS understands.
The present invention stores objects via the POS

Server in a computer architecture-independent repre
sentation utilizing information about the computer's
computational, or primary, memory architecture. Infor
nation on the content and structure of the objects is
extracted from the object definitions declared in the
supported languages. This allows applications written
in any of the supported languages to store objects in the
same POS. Currently the POS Server is implemented in
a modular and portable fashion using an existing com
mercial Relational Database Management System
(RDBMS). The POS Server interacts with the RDBMS
using an embedded Structured Query Language (SQL)
interface.
These and other features and advantages of the inven

tion will be apparent to those skilled in the art from the
following detailed description of a preferred embodi
ment, taken together with the accompanying drawings
in which:

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a block diagram showing the operating
context of the present invention operates within a com
puter;

FIG. 2 is a block diagram of the architecture of a
preferred embodiment of the present invention;
FIG. 3 is a flow chart depicting the process flow of

the DDL translator during execution according to the
present invention;

FIG. 4 is a block diagram representing an example of
a demon table used within the OMS module of the
present invention;

FIG. 5 is a block diagram representing an example of
an object map used within the OMS module of the
present invention;

FIG. 6 is a block diagram depicting an example of the
relationships between a PTR, an encapsulation, an ob
ject, and the type description of that object according to
the present invention; and
FIGS. 7a and 7b are block diagrams showing the

process of object translation between its primary and
secondary memory representations according to the
present invention.
DETAILED DESCRIPTION OF A PREFERRED

EMBODIMENT

The present invention is applicable in the develop
ment of object-oriented application systems which re
quire the management, persistence and sharing of com

5,297,279
9

plex and interrelated data. Before considering the pres
ent invention in detail, however, it should be noted that
although the C--- implementation will be fully de
scribed, the preferred embodiment of the present inven
tion can be implemented in any object-oriented pro
gramming language. Currently, a C++ implementa
tion of the present invention runs on systems such as the
Sun Microsystems Incorporated Sun4 or the Digital
Equipment Corporation DEC3100 series of computer
workstations. Also, a Common LISP implementation of
the present invention runs on such systems as the Texas
Instruments Incorporated Explorer series of computer
workstations.

FIG. 1 shows a block diagram of the operating con
text of the present invention within a computer. A user
8, which may be human, another computer, or another
application, interacts with the interactive devices 10 to
send information to, and receive information from, user
interface management system 12. Interactive devices 10
are also known as communication hardware. User inter
face management system 12, which is also known as
communication software in turn sends the information
to, and receives information from, an application soft
ware program 14 (hereinafter referred to as "applica
tion 14”). Application 14 interfaces with the computer's
operating system software 16 (hereinafter referred to as
"OS 16") and the present invention (hereinafter referred
to as "OODB 18'). OODB 18 interfaces with OS 16 to
utilize various operating system services. OODB 18 also
interfaces with a Relational Database Management Sys
tem Software 20 (hereinafter referred to as "RDBMS
20') to store and retrieve objects created by application
14. RDBMS 20 interfaces with operating system 16 to
utilize various OS system services and with secondary
memory storage devices 24 to physically store or re
trieve the objects created by application 14 and man
aged by OODB 18. OS 16 also interfaces with addi
tional computer hardware 22 as necessary to provide its
system services to application 14, OODB 18, and
RDBMS 20.
FIG. 2 shows a block diagram of the architecture of

a preferred embodiment of the present invention during
execution of application 14. All of the modules in
OODB 18 are linked together along with a C+ -- type
description 40 (hereinafter referred to as "types 40”),
produced by running the data definition language trans
lator (hereinafter referred to as "DDL 80'; shown in
FIG. 3) on a set of application-defined classes, to form
a library that can be linked with application 14 to form
a program that can be executed in the computer envi
ronment shown in FIG. 1.

Application 14 interfaces directly with the object
management system 42 (hereinafter referred to as
"OMS 42') and creates or deletes Persistent Object
References 44 (hereinafter referred to as "PTR 44') to
create, retrieve, and access persistent objects managed
by OMS 42.
OMS 42 interfaces with name manager 46 to manage

an association of names supplied by application 14 with

10

15

20

25

30

35

40

45

SO

55

O
independent persistent objects created or retrieved by
application 14 using PTRs 44. OMS 42 interfaces with
demon table 48 to execute functions defined by applica
tion 14 and registered with OODB 18 by running DDL
80. OMS 42 also interfaces with object map 50 to man
age the actual persistent objects referenced by PTR 44.
OMS 42 further interfaces with object translation sys
tem 52 (hereinafter referred to as "OTS 52') to translate
persistent objects between their primary and secondary
memory representations. OTS interfaces with types 40
created by DDL 80. Finally, OMS 42 interfaces with
persistent object server 54 (hereinafter referred to as
"POS Server 54') to store and retrieve the persistent
objects managed by OMS 42.
POS Server 54 interfaces with RDBMS 20 using a

standard Structured Query Language (SQL) interface
to physically store and retrieve the persistent objects
managed by OMS 42. RDBMS 20 interfaces with sec
ondary memory storage devices 24 to physically store
and retrieve the objects created by application 14 and
managed by OODB 18.
The various modules of the present (DDL 80, OMS

42, name manager 46, demon table 48, object map 50,
PTR 44, OTS 52, and POS Server 54) will now be
considered in more detail.

Prior to developing an application system that inter
faces with the present invention, the application devel
oper must register the C++ classes to be used in the
application system with the present invention. This is
accomplished by executing the DDL translator de
scribed below.
The DDL Translator 80 (hereinafter referred to as

"DDL 80') is based on three separate application pro
grams that are executed in sequence (see FIG. 3). DDL
80 receives as input one or more data definition lan
guage source files 26 written by the developer of appli
cation 14. These source files 26 contain class definitions
in the C---- language plus additional keywords and
syntactic constructs defined by the present invention
(see Table 1 for an example of such a DDL source file).
DDL 80 then extracts sufficient information from
source files 26 to generate a C---- source file 40 (here
inafter referred to as “types 40”; see Table 2 for an
example of such a C---- source file) containing type
description information for use by OMS 42 and OTS 52,
and a set of C-H -- source files 38 for every class defini
tion in the source file(s). These files are then subse
quently used by the application programmer when writ
ing, compiling, and executing C++ programs that
create and manipulate instances of the classes, as well as
save or retrieve them using the present invention.
The first program in the sequence depicted in FIG. 3

is the commercially available C language preprocessor
cpp. 28. This program receives as input source files 26
and produces a copy of the input file(s) with all cpp
directives evaluated and expanded (expanded file 30).
Use of this program in the present invention does not
require any modification.

TABLE 1.
class ptrs : persistent

private:
int len;

//to indicate independent persistence

//controls length of data member "mpd
M/Pointers to array of data types
char '10 cpd; w/constant length
char Lien mpd; //length controlled by data member "len'
char "sentinel 0) spd; M/length terminated by hexadecimal zero
boundary char *bpd; Areferenced data is ignored when saved

5,297,279
11

TABLE 1-continued

12

classPTR pers ref;
public:
//Definition of Demon functions
demon create int setup();
demon restore int resetup();
demon commit int readyO;
demon abort int cleanup 1);

Macreation time denon
M/fetch time demon
MMcommit time demon
M/abort time demon

//reference To independent persistent object

TABLE 2

char Type-Descriptions = { / DDL RELEASE 0.1.5"/
A 0-2: OCDB Classes
"ió& 0 1 0 12540. & 704-125511& 708 1255|10&”,
"24& 0 1 0 1 2540. & 7016125511 &7320|25511&-,
A 3: User Class AA

A 4: User Class B

A S: User Class C /

Interpretation of Fields
"12 & 738 1..5 &'
| | | | | | | Index into this array of referenced data

| | | | | Number of instances in the array
How to determine number of distances in array

Number of dimensions in array
Offset of this pointer or PTR

Type of pointer
Data type of referenced data

Size of an instance of this class

TABLE 3

A/ The SPTR class
class S;
;as SPTR : public?

public:
A raethods /
S& operator" O;
S operator -> O;
SPTR& operator = (Zg-Eo&);
SPTR& operators (S');
SPTR& operator= (SPTR &);
operator S. O;
void make-absent O;
A constructors & destructors a
inline SPTR 0;
inline SPTR (S);

private:
i
M friends A
friend SPTR& persist (S& object, zg-Uint sg=0);

The 'S' are replaced with the name of the user defined class.
The '2' is replaced with the name(s) of class from which this

class is derived.
The "#" is replaced with a C++ class definition if this class

has defined Demons.

The second program in the sequence is the DDL
processor ddl 32. This program receives as input ex
panded file 30 produced by the first program, scans
expanded file 30 for specific information, and generates
a typeobject database 34 for use by the third program,
ddlpost 36. The ddl 32 program uses a lexical scanner
based on the lexical analysis program generator lex (not
shown) to scan source files 26 and return each token
(syntactic unit not shown) to the main functions of ddl
32. In addition to scanning source files 26 for specific
information, ddl 32 performs full syntactic and limited

35

45

50

55

65

semantic checking on the input file, and generates ap
propriate error and warning messages.

ddl 32 processes each class definition in the input file
as follows. First, it scans the input tokens until it recog
nizes the C---- keyword "class'. If the "class' key
word is found, did 32 continues to scan for and then
extract the class name, the name(s) of any classes from
which this class is to be derived, and a keyword, "per
sistent', that indicates whether or not instances of this
class should become "independent persistent objects'
(IPO) when saved to the database. If this class is derived
from another class and does not have the "persistent'
keyword, did 32 determines if the latter class is also a
persistent class. If so, this class is marked as an persistent
class. If "persistent" is not present and if this class is not
derived from a persistent class, instances of this class
can still be saved to the database, but they will become
“dependent persistent objects” (DPO) physically stored
with an IPO. If the class(es) from which this class is to
be derived has(have) not been previously processed by
ddl32 in this file or in previous executions of DDL 80,
an error message is generated.

Second, did 32 scans the rest of the class definition for
the declarations of data members and extracts the name
of the data member, the name of the data type (funda
mental C---- or user-defined type, including classes),
and then determines the class's memory alignment, size,
padding between it and the next data member, and its
offset from the beginning of the class. ddl 32 also ex
tracts information indicating if the data member is an
array, the number of elements in the array, if the data
member is a C++ pointer, the name of the data type of
the referenced data, the number of data items refer
enced by the pointer (which can be specified by a senti
nel, a decimal or hexadecimal value, or the name of a
integer data member in this class), whether it has the
keyword "boundary" before it (the referenced data will

5,297,279
13

not be saved if an instance of this class is saved to the
database), or if the data member is a PTR 44, the name
of the referenced class. Unless the data types used for
data members or referenced from this class (using
C++ pointers or PTRs 44) have been processed by
DDL 32 during the eighth step discussed below, an
error message is generated.

Third, if ddl32 determines that any of the data mem
bers are in the public portion of the class definition, an
error message will be generated and the class definition
will not be processed during the eighth step discussed
below. Fourth, ddl 32 also scans for the existence of the
C---- keyword "virtual' before any function declara
tion inside the class definition, as this keyword affects
the overall size of an instance of this class. Fifth, ddl 32
also scans for the existence of the keyword "demon'
before any function declaration inside the class defini
tion and notes this for later processing by ddlpost 36.

Sixth, once the entire class definition has been
scanned, ddl 32 computes the size for instances of this
class by adding the size of all classes from which this
class derives (retrieved from the type description data
base) to the size of all data members in this class (if the
data member is an embedded instance of a class, the size
is retrieved from the type description database). If this
class has virtual functions (as detected in the fourth step
discussed above), the size of the class is increased by an
amount equal to the size of a C- + pointer to a C----
virtual table pointer. If the keyword "persistent' is
present (as detected in the first step discussed above),
the size of the class is increased by an amount equal to
the size of an instance of the PTR 44 class. The aligh
ment and padding of this class are then calculated based
on the overall size computed.

Seventh, these scanning and extraction steps continue
until the end of the expanded file 30 is encountered.

Eighth, after all class definitions are scanned and the
end of the input file is encountered, ddl 32 then gener
ates and outputs the following information into type
description database 34: the name of the class, the size,
alignment, and padding information for the entire class,
a string containing information on every C---- pointer
and PTR included in the class, the names of all classes
or structures that this class references (using C----
pointers or PTRs) or contains, the names of functions
defined for the various demons supported by the pres
ent invention, and a copy of the entire class definition
from source file 26.
The third program in the sequence is ddlpost 36

which receives as input type description 34 generated
by ddl 32 and generates C---- source and header files
source files 38 and types 40 as follows.

First, ddlpost 36 reads the contents of type descrip
tion 34 and creates data structures to hold the informa
tion. Second, for every class in type description data
base 34, source files 38 is produced, which may be com
posed of two separate C---- source files.

If the file is a persistent class, a C+ - header file is
produced containing the definition of a new class de
rived from the PTR 44 class. This file is produced by
editing a predefined template file (see Table 3) using a
stream editor to convert certain character strings in the
template file to the name of this class. A second C++
header file is produced that contains cpp. 28 include
directives for every class from which this class is de
rived, is used as the data type for a data member, or is
referenced by a C++ pointer or PTR 44; the class
definition; and C---- statements to allow the PTR 44

O

15

25

35

45

50

55

65

14
class functions to manipulate instances of this class. If
this class has demons, this second C---- header file is
also includes C---- statements to allow the Demon
class functions to manipulate instances of this class.
Similarly, if this class is persistent, this second C++
header file also contains definitions for the PTR 44 class
functions generated in the above-described PTR 44 file.
This second C---- source file is temporary and is

produced by appending the first item to the file based on
the information extracted in the first two steps ofddl32.
The second item is then appended to the file as obtained
from type description database 34 (sixth item in type
description database 34). The third item is appended to
the file by generating a temporary file which resulted
from editing a predefined template file (see Table 4)
using a stream editor to convert certain character
strings in the template file to the name of this class. The
final two items are appended to the file in a similar
ae,

TABLE 4
--inline SPTR:SPTRO

eop->teop = eop->init-teop (1, G, 0);

in s& SPTR:operator" O
{ return ((($) (eop->rop?eop->rop : fault O)):

inline S SPTR::operator-> 0

return (S) (eop- >rop? eop->rop : fault O));

in SPTR& SPTR::operator = (Zg-Eo& rhs)

return (SPTR&) this-> assign-eo (rhs));

in SPTR&SPTR:operator = (SPTR&rhs)
{ return (SPTR&) this-> assign-ptr (rhs));

in SPTR& SPTR:operator= ($ rhs)
{ if (rhs = = NULL) return (SPTR&) this-> assign-null O);

else return (SPTR&) this> assign-star (rhs, rhs->thisptr));

in SPTR:operator S" O
return (S) (eop->rop?eop-> rop:
(eop->oid==NullOid?NULL;fault O)));

inline SPTR::make-absent O

{ if (this-> remove object O) delete (S) this->eop->rop;
this->eop->rop = NULL;

in SPTR:SPTR (S" rhs)

in SPTR& persist (S& object, Zg-Uint sg)

return (SPTR&) object.thisptr.set-persist (&object, sg);

The 'S' are replaced with the name of the user defined class
The "#" is replaced with a C---- statement if this class has

defined Demons.

Third, after all classes in type description database 34
have been processed, C---- source file types 40 is gen
erated containing C++ statements which define an
array of character strings that contains the type descrip
tions of the classes processed, as described above in
connection with the eighth step of ddl32. This file is
compiled by the application developer and linked with
the software modules of application 14 and OODB 18 to

5,297,279
15

allow the array to be used by OMS 42 and OTS 52
during execution of application 14 interfacing with
OODB 18.
Although eight processing steps are discussed with

regard to ddl32, to extract the class and type descrip
tion information, the same effect could be achieved by
combining steps.
The application program interfaces with one instance

of OMS 42 as well as numerous instances of PTR 44 to
create, manipulate, store, and retrieve persistent ob
jects. Each independent persistent object created by the
application is assigned an object ID 78. Each object ID
78 is composed of a storage group number (indicates in
which storage group the object is stored), an object
number (indicates the specific object within the storage
group), and a time stamp (indicates the time that object
was saved to the database). Each of these fields is repre
sented by a 32 bit unsigned integer value. A NULL
object ID 78 is used to indicate the absence of a valid
object ID. In addition, an encapsulation 62 (hereinafter
referred to as "encapsulation 62') is created and associ
ated with each independent persistent object. Encapsu
lations 62 are described later during the description of
PTRS 44.
An instance of OMS 40 contains the following data

members:
Architecture ID is a reference to information describ

ing the architecture of the current computer hardware.
This data member is added to the database when the
database is originally initialized for use with the current
computer hardware. This data member is used by OTS
52 when translating objects between their primary and
secondary memory representations.

Default storage group contains the number of the
storage group where objects will be stored by default. It
can be set using Default-Storage-Group 108.
Name manager is a reference to name manager 46 for

this instance of OMS 40. It can be set using Name
Manager 116.
Demon table is a reference to demon table 48 for this

instance of the OMS 40. It is set during Create 100 and
used during Create 300 (described later), Commit-Tran
saction 112, Abort-Transaction 114, and Fetch 120-124.

Object map is a reference to object map 50 for this
instance of OMS 40. It is set during ZG-Create 100 and
used by OMS 42.

Transaction Id contains the current transaction num
ber. It is used during Begin-Transaction 110, Commit
Transaction 112, and Abort-Transaction 114.
POS Server is a reference to an instance of POS

Server 54. It is set during Create 100 and used by OMS
42 to store or retrieve objects in the database.

Active indicates whether or not this instance of OMS
40 is active; that is, Startup 102 has been called before a
call to Shutdown 106 has been made.
There is also a global variable named Exists that

indicates whether or not an instance of OMS 40 has
been created by application 14. This variable is checked
during Startup 102.
Table 5 lists interface functions 100-130 together

with their function names and arguments, which OMS
42 provides to application 14. A description of each
function is given below. These functions either update
the private state or return some information about the
private state of an instance of OMS 42. Interface func
tions 100-128 update the private state of the instance,
while interface function 130 returns information about
the private state of the instance to application programs.

O

15

20

25

30

35

45

50

55

65

16
In most functions, error checking is performed after
most individual actions. Error checking is not consid
ered fundamental to the understanding of and operation
of the present invention, and will therefore not be fur
ther described.

TABLE 5

OMS Application interface Functions
Name Argument

100 Create ce
102 Startup e
104 Delete ote
06 Shutdown Oe
08 Default-Storage-Group Storage Group
110 Begin-Transaction ce
12 Commit-Transaction OS
14. Abort-Transaction Oe
116 Name-Manager Name Manager
118 Default-Name-Context Name Context
120 Fetch Object Name, Lock, Time

Context
22 Fetch PR, lock, Time Context
24 Fetch Object ED, Lock, Time Context
126 Lock-State Object Name, Time Context
128 Lock-State PTR, Time Context
130 Tine e

Create 100 creates an instance of OMS 42. This func
tion is called whenever an instance of OMS 42 is created
statically, automatically, or dynamically, depending on
the C---- variable declaration used in the application
program. During creation, function Startup 102 is
called.

Startup 102 can also be called at any time after Shut
down 106 is called. Since only one OMS 42 instance is
allowed per application program, the value of the Exists
global variable is checked to see if one already exists. If
one does exist, an error value is returned. If one does
not exist, the default storage group data member is set to
the minimum storage group number if this is the first
time an OMS 42 instance is being created. If the current
OMS 42 instance had previously been created during
this execution of application 14, the previous value in
the default storage group data member will be used.
Demon table 48 and object map 50 are created and
assigned to their associated data members. Next, an
instance of POS Server 54 is created and assigned to the
POS Server data member. The architecture ID object
for the computer hardware within which application 14
and OODB 18 are executing is retrieved from POS
Server 54 and assigned to the architecture ID data
member. An instance of name manager 46 is created and
assigned to the name manager data member. Begin
Transaction 110 is called, followed by a call to Default
Name-Context 116 to create the default name context in
the database. If this is the first time this database has
been used, a call is made to Commit-Transaction 112 to
save the new default name context in the database. If
not, Abort-Transaction 114 is called. Finally, the active
data member is set to indicate that this instance of OMS
42 is active, the exists global variable is set to indicate
that an instance of OMS 42 exists, and control is re
turned to the caller of this function.

Delete 104 deletes an instance of OMS 42. This func
tion is called whenever an OMS 42 instance is deleted
statically, automatically, or dynamically, depending on
the C---- variable declaration used in the application
program. During deletion, function Shutdown 106 is
called.
Shutdown 106 checks the value of the Active data

member to determine whether this instance of OMS 42

5,297,279
17

is active. If it is not, control is returned immediately to
the caller of this function, as no work must be per
formed. If this instance is active, for every encapsula
tion 62 currently in object map 50, its modified data
member is set to "Not Modified” and then encapsula
tion 62 is deleted. Name manager 46, object map 50, and
POS Server 54 are deleted and their associated data
members are set to a null pointer, thereby indicating
that the value is not valid. Finally, the transaction ID
data member is to zero, the active data member is set to
indicate that this instance of OMS 42 is inactive, and
control is returned to the caller of this function.

Default-Storage-Group 108 updates the private state
of this instance of OMS 42 as follows. If the supplied
storage group number is greater than the minimum
storage group number, Is-Sg-Valid 504 is called to in
sure that a storage group with that number exists in the
database. If one does exist, the default storage group
data member is assigned using the supplied storage
group number and the previous value of this data mem
ber is returned. Otherwise, a value of 0 0 (zero) is re
turned.

Begin-Transaction 110 is used to mark the beginning
boundary of a transaction. All interactions between the
application program and OMS 42 must occur within a
transaction. Begin-Transaction 516 is called to insure
that POS Server 54 begins a transaction. If the call
succeeds, the transaction ID data member is incre
mented by one and that value is returned. Otherwise, a
value of -1 is returned.
Commit-Transaction 112 is used to mark the ending

boundary of a transaction. If the transaction ID data
member indicates that there is not a current transaction,
a value of -1 is returned. Otherwise, an instance of
POS Encapsulation 70 (herein referred to as “POS en
capsulation 70'; discussed below) is created if one does
not already exist. Next, every encapsulation 62 in object
map 50 is examined to determine how many do not have
an object ID 78 (those objects which have been created
by the application program since the last call to Com
mit-Transaction). If the number is greater than zero,
Alloc-Symbolic-Name 506 is called. If the requested
number of object IDs 78 could not obtained, an error is
returned. If the call was successful, Begin-Commit 508
is called, which returns a timestamp for this commit
(which will be saved in each POS encapsulation 70
during translation), or a error value. For every encapsu
lation 62 currently in object map 50, the following ac
tions take place. If the modified data member in encap
sulation 62 indicates that the object has not been modi
fied, it is bypassed for processing. Otherwise, if the
concurrent lock data member in the encapsulation 62
indicates that the application program does not have a
WRITE lock on the object, an error is returned since
the application program must have a WRITE lock on
all objects in order to create new versions of them in the
database. Otherwise, if a Commit Demon for the ob
ject's type was registered in demon table 48, that Com
mit Demon is called (see description of demon table 48).
Next, OTS Internal2External is called and passed POS
encapsulation 70, which it updates with an external
representation 402 of the object. If the translation suc
ceeds, Put-Object 514 is called to create a new version
of the object in the database. After every encapsulation
62 in object map 50 has been processed in this manner,
End-Commit 510 is called to commit the changes to the
database, followed by a call to End-Transaction 510 to
end POS Server's 54 transaction. Since the transaction

O

15

20

25

30

35

45

50

55

65

18
has completed, other application programs may retrieve
the objects from the database, update them, and create
new versions of them. Versions accessible through this
instance of OMS 42 are then considered invalid. Thus,
for each encapsulation 62 currently in Object Map 50,
the following actions take place. The concurrent lock
data member is set to "Invalid' and the modified data
member is set to "Not Modified'. If the number of
references to this encapsulation 62 from the application
program is greater than zero, the object is deleted if
OMS 42 created it. Otherwise, the object pointer data
member in encapsulation 62 is set to null. If the number
of references is zero, encapsulation 62 is deleted, which
may delete the object if OMS 42 created it. Finally, the
transaction ID data member is decremented by one and
the number of objects committed to the database is
returned.
Abort-Transaction 114 is also used to mark the end

ing boundary of a transaction but does not commit any
objects to the database. If the transaction ID data mern
ber indicates there is not a current transaction, a value
of -1 is returned. Otherwise, for every encapsulation
62 currently in object map 50, if an Abort Demon for
the object's type was registered in demon table 48, that
Abort Demon is called. Next, the concurrent lock data
member is set to "Invalid' and the modified data mem
ber is set to "Not Modified". Finally, Abort-Transac
tion 520 is called to allow POS Server 54 to terminate
its current transaction, the transaction ID data member
is decremented by one, and control is returned to the
caller of this function.
Name-Manager 116 simply assigns the name manager

data member to the supplied instance of name manager
46 and returns the previous value of this data member.

Default-Name-Context 118 calls Name-Context 204,
to ensure that the supplied name context exists, and
returns.
Fetch 120-124 has three forms. The first takes an

object name, the second takes a PTR 44 associated with
an object, and the third takes an object ID 78 of an
object. The first form calls Return-OID 210 which
returns object ID 78 of the supplied object name, or a
null object ID 78 if the user-defined name had not been
registered, in which case a null address is returned. The
second form retrieves object ID 78 from encapsulation
62 associated with supplied PTR 44. In any case, the
following actions occur once an object ID 78 has been
obtained. Encapsulation 62 associated with object ID 78
is retrieved from object map 50 and the object pointer
data member is checked to determine if the associated
object is or is not in primary memory. If the value indi
cates that it is in primary memory, the address of the
object in primary memory is returned. If the value indi
cates that it is not in primary memory, Get-Object 512
is called with the supplied lock and time context (which
default to READ and MOST-RECENT, respectively)
and returns a POS encapsulation 70 (which contains the
object's external representation 402 and its references to
other persistent objects). Next, OTS External2Internal
is called with POS encapsulation 70 to create a primary
memory representation of the object using the object's
external representation 402 in POS encapsulation 70.
The references to other persistent objects are registered
with OMS if they have not already been registered.
Finally, the modified and deleteable data members of
encapsulation 62 are set to "False' and "True', respec
tively (since OMS 42 just created the object), and the
address of the object in primary memory is returned.

5,297,279
19

Lock-State 126-128 has two forms similar to Fetch
120-124. The first takes an object name, while the sec
ond takes a PTR 44 associated with an object. As in
Fetch 120-124, the first form calls Return-OID 210 to
return object ID 78 of the supplied object name or a null
object ID 78 if the user-defined name had not been
registered, in which case a value indicating that applica
tion 14 does not currently have a valid lock on the
object is returned. The second form retrieves object ID
78 from encapsulation 62 associated with the supplied
PTR. In any case, encapsulation 62 associated with
object ID 78 is retrieved from object map 50 and the
concurrent lock data member is checked to determine if
the application program currently has a valid lock on
the object. If so, the value of the concurrent lock data
member is returned. Otherwise, a value indicating that
the application does not currently have a valid lock on
the object is returned.
Time 130 returns the current time received from OS

16.
OMS 42 interacts with name manager 46 to manage

the association of names supplied by the application
with independent persistent objects created or retrieved
by application 14 using PTRs 44.
An instance of Nanne Manager 46 contains the fol

lowing data members:
First context references the first name context in a list

of all name contexts defined in the database currently
being accessed by application 14 using the present in
vention. It is set during Create 200 and accessed when
searching for name contexts or name entries.

Current context references the current name context
in a list of all name contexts defined in the database
currently being accessed by application 14 using the
present invention. It is set during Create 200 to the first
context and during Name-Context 204 to the new de
fault name context. It is accessed when searching for
name entries.
Table 6 lists interface functions 200-210, with their

function names arguments, which name manager 46
provides to OMS 42. A description of each function is
given below. These functions either update or return
some information about the private state of an instance
of the name manager class. Interface functions 200-208
update the private state of the instance, while interface
function 210 returns information about the private state
of the instance to application programs.

TABLE 6
Name Manager Interface Functions

Name Argument

200 Create ce
202 Delete ce
204 Nanne-Context Context Name
206 Name Object Name, Object Oid
208 Unname Object Nane, Object Id
210 Return-OID Object Name

Create 200 creates an instance of a name manager 46
as follows. Begin-Transaction 110 is called and then
Fetch 124 is called to retrieve the default root context.
If the default root context does not exist, one is created,
assigned to the first context data member, a new object
ID 78 obtained by indirectly calling Alloc-Symbolic
Name 506, and Commit-Transaction 112 is called to
save the default root context in the database. If the
default root context already exists, Abort-Transaction
114 is called. Finally, the current context data member
is set to the new or previously existing default root

10

15

20

25

30

35

45

50

55

65

20
context object and control is returned to the caller of
this function.

Delete 202 simply deletes the supplied instance of
name manager 46.

Nanne-Context 204 searches the list of contexts, ac
cessible from the first context data member, for an con
text entry which has the supplied context name. If the
context name is in an entry, a 0 (zero) is returned. If it is
not in any entry, a new context entry is created using
the supplied context name. It is added to the front of the
list of contexts, the current context data member is
assigned to the new context entry, and a 1 (one) is re
turned.
Name 206 accesses the current context data member's

list of name entries and searches for a name entry which
has the supplied object name. If the object name is in an
entry, a -1 is returned since no duplicate object names
are allowed. If it is not in any entry, a new name entry
is created using the supplied object name and object ID
78 and added to the end of the list. A 0 (zero) is re
turned.
Unname 208 accesses the current Context data mem

ber's list of name entries and searches for a name entry
which has the supplied object name. If the object name
is not in an entry, a -1 is returned. If it is in an entry and
the object ID 78 in the entry matches supplied object
ID 78, the name entry is deleted from the list and a 0
(zero) is returned. If the two object ID 78s did not
match, a -1 is returned.

Return-object ID 210 accesses the current context
data member's list of name entries and searches for a
name entry which has the supplied object Name. If the
object name is not in an entry, a null object ID 78 is
returned. If it is in an entry, object ID 78 in the name
entry is returned.

FIG. 4 is a block diagram of demon table 48 used by
OMS 42 during certain OMS 42 functions, Denon table
48 is an array of entries that contains two data members:
an object ID 78 for a user-defined type or class, and a
reference to demon object 74.

During the DDL translation process, the application
developer can add the keyword "demon' and an event
keyword before a class function name (see Table 1
above, botton portion of the class declaration). Classes
with these demon keywords are referred to as "demon
classes'. The existence of these keywords is recognized
by DDL 32 and the names of the associated functions
are added to type description database 34. During exe
cution of ddlpost 36, additional C---- statements and
functions are added to source files 38 for each class
annotated with the demon keywords. First, an addi
tional data member, PTR Dernon 76, is defined that will
be shared by all instances of this class PTRs 44 during
execution of an application program using this class.
Second, another class, denon object 74, is defined and
includes functions which will call the user-defined func
tions named in the original class definition.

Prior to execution of application 14, the application
developer compiles source files 38 and links them with
the software modules of application 14 and OODB 18.
After execution of application 14 is started, code re
quired to statically create instances of PTRs 76 is exe
cuted (this is the code generated in source files 38).
During execution of application 14, whenever an in
stance of OMS 42, an instance of demon table 48 is
initialized. Whenever an instance of a denon class PTR
44 is created by the application program, the value of its

5,297,279
21

associated PTR Demon 76 is checked to see if an in
stance of demon object 74 exists. If one does exist, pro
cessing continues. If one does not exist, one is created
and PTR Demon 76 is set to reference new demon
object 74. When demon object 74 is created, an entry is
added to demon table 48. Object ID 78 data member is
set to object ID 78 of the type description object (in
Types 40) for this demon class, while the demon object
reference data member is set to the newly created in
stance of demon object 74.
While processing persistent objects during certain

OMS 42 functions, OMS 42 checks demon table 48 to
see if a demon object 74 for the type of the persistent
object has been registered. It accomplishes this by com
paring object ID 78 of the type description for the given
object and object IDs 78 in demon table 48. If there is
not a match, processing of the given object continues.
However, if there is a match, OMS 42 will call one of
the demon functions as specified in the demon object 74
referenced from the appropriate demon table 48 entry.
The demon function can then manipulate the object
prior to OMS 42 continuing with its processing.

FIG. 5 is a block diagram of object map 50 used by
OMS 42. Object map 50 manages encapsulations 62
created when an independent persistent object is cre
ated by application 14 or retrieved from the database.
Object map 50 is constructed as a two-level index based
on storage group and object number. The first level is
array 56 whose elements are records containing a stor
age group number and a pointer to a storage group hash
table 58. The second level is storage group hash table 58
whose entries 60 contain pointers to encapsulations 62
and the next entry 60 in hash table 58. The interface
provided by object map 26 to OMS 42 is as follows:
Add Encapsulation locates the appropriate hash table

56 (creating a new one if necessary), creates new entry
60, associates it with supplied encapsulation 62, and
adds it to storage group hash table 58.
Find Encapsulation locates the appropriate hash table

object map 58 and searches hash table 58's entries 60 for
one that references encapsulation 62 which has the same
object ID 78 as the supplied object ID 78. If an entry 60
is found, the address of the associated encapsulation 62
is returned. If an entry is not found, or there is not a
hash table 58 for the supplied storage group, a null
address is returned.
Remove Encapsulation locates the appropriate hash

table 58 and searches hash table 58's entries 60 for one
that references encapsulation 62 which has the same
object ID 78 as the supplied object ID 78. If an entry 60
is found, entry 60 is removed from storage group hash
table 58 and deleted. No action occurs if an entry 60 is
not found.
As described earlier, application 14 creates instances

of PTR 44 to create, manipulate, store, and retrieve
persistent objects using the present invention. As can
been seen in FIG. 6, an instance of a PTR 44 contains
only one data member, encapsulation, which references
an instance of the encapsulation class (encapsulation
62).
An instance of encapsulation 62 contains the follow

ing data members.
Type (class) description ID references a limited de

scription of the definition of the C---- class of which
the object is an instance. Specifically, it is a C----
pointer to a character string that contains information
on every C---- pointer and PTR 44 in an instance of

O

5

22
the class type of the object referenced via the Object
Pointer data member. It is extracted from types 40.
Number of references to encapsulation 62 is incre

mented by 1 (one) every time a PTR 44 is created that
references encapsulation 62, and decremented by 1
(one) every time a PTR 44 that references encapsulation
62 is deleted.
Concurrent lock indicates the current lock held on

the object associated with the encapsulation. It is set
when encapsulation 62 is created, when an object is
retrieved from the database, or when a lock is up
graded.
Time stamp indicates the time that the associated

object was saved to the database.
Object identifier is object ID 78 of the object associ

ated with this PTR 44.
Object pointer is a C++ pointer that references the

primary memory representation of the associated ob
ject. Unless the value is null (thereby indicating that the

0 value is not valied), the associated object is resident in

25

35

45

50

55

65

primary memory.
Persistent indicates whether this persistent object

should be saved or already has been saved to the data
base. It is set by calling Persist 304.

Modified indicates whether this persistent object has
been modified by application 14. Newly-created persis
tent objects are marked as “Modified', while persistent
objects retrieved from the database are marked as "Not
Modified'. Persistent objects can be marked as "Not
Modified” by calling Set-Modified 310.

Deleteable indicates whether OMS 42 can delete this
persistent object from primary memory. If application
14 created this object, OMS 42 cannot delete it. If OMS
42 created the object (when retrieving it from the data
base), it can delete the persistent object.

Therefore, it can be seen in FIG. 6 that given a PTR
44, one can access its associated encapsulation 62, and
from there, access the associated object 64.
Table 7 lists interface functions 300–326 together

with their function names and arguments, which PTR
44 provides to application 14. A description of each
function is given below. These functions either update
the private state or return some information about the
private state of PTR 44. Interface functions 300-310,
316, and 320-322 update the private state of PTR 44,
while Interface functions, 312314, 318, 324, and 326
return information about the private state of PTR 44 to
application 14.

TABLE 7

PTR Application Interface Functions
Nanne Argument

300 Create One
302 Delete One
304 Persist Object, Storage Group
306 Nane Object Name
308 Unname Object Name
310 Set-Modified ce
32 Is-Modified Oe
34 Lock-State One
316 Upgrade-Lock New Lock
318 In-Memory One
320 Make-Absent ce
322 Make-Present e
324 Tilnecontext O
326 Timestamp O

Create 300 creates an instance of PTR 44 for applica
tion 14 to reference objects. Instances are created stati
cally, automatically, or dynamically, depending on the

5,297,279
23

C++ variable declaration used in application 14. First,
an encapsulation 62 is created and assigned to the en
capsulation data member. Next, encapsulation 62 for the
type description object (in types 40) for this PTR's 44
class definition is obtained from object map 50, assigned
to the associated encapsulation's 62 type description ID
data member, and control is returned to the caller of this
function.

Delete 302 deletes an instance of PTR 44 class. If
there are not any references to encapsulation 62 by any
other PTRs 44, encapsulation 62 is removed from ob
ject map 50. If the deleteable data member of encapsula
tion 62 indicates that associated object 64 was created
by OMS 42, object 64 is deleted. Finally, encapsulation
62 is deleted and control is returned to the caller of this
function.

Persist 304 is used to indicate that supplied object 64
should be saved to the database when the next Commit
Transaction 112 is performed. First, the persistent data
member of encapsulation 62 is set to "True'. Then, POS
Alloc-Symbolic-Name 506 is called to obtain object ID
78 for the object, using the supplied storage group num
ber or the value of the default storage group data mem
ber of OMS 42, if one was not supplied. Finally, if a
Persist Demon for the object's type was registered in
demon table 48, that persist demon is called, and control
is returned to the caller of this function.
Name 306 associates the supplied object name with

object 64 with PTR44. Since names may only be associ
ated with independent persistent objects, if the object
ID data member of associated encapsulation 62 is null
object ID 78, POS Alloc-Symbolic-Name 506 is called
to obtain object ID 78 for object 64. Next, Name 206 is
called to create the new name and control is returned to
the caller of this function.
Unname 308 dissociates the supplied object name

from object 64 associated with PTR 44 by calling Un
name 208, and returns control to the caller of this func
tion.

Set-Modified 310 shows that the application program
has modified object 64 (this is checked during Zeitgeist
Commit-Transaction 112 processing). First, the modi
fied data member of encapsulation 62 is set to "True',
Upgrade-Lock 212 is called requesting a WRITE lock,
and then control is returned to the caller of this func
tion.

Is-Modified 312 retrieves the value of the modified
data member of encapsulation 62 and returns that value.

Lock-State 314 returns either the current value of the
concurrent lock data member of encapsulation 62 or
"Invalid' if the data member indicates that the current
lock is not valid.
Upgrade-Lock 316 attempts to upgrade an existing

lock on object 64 to the requested lock. If the supplied
lock is not a valid lock type, an error is returned. If the
supplied lock is a READ-ONLY lock, the concurrent
lock data member of encapsulation 62 is set to that
value. If the current lock is valid and stronger than or
equal to the supplied lock, control is returned to the
caller of this function. If neither of these conditions
apply, Set-Lock 524 is called requesting the supplied
lock. If the lock was set, the concurrent lock data mem
ber of encapsulation 62 is set to the supplied lock and
control is returned to the caller of this function.
In-Memory 318 checks the value of the object pointer

data member of encapsulation 62 and returns a 1 (one) if
the value indicates associated object 64 is in primary
memory or 0 (zero) otherwise.

O

15

20

25

30

35

45

50

55

65

24
Make-Absent 320 updates encapsulation 62 such that

subsequent references to object 64 using PTR 44 will
cause OMS 42 to retrieve object 64 from POS Server
54. First, if the deleteable data member of encapsulation
62 indicates that OMS 42 allocated object 64, the delete
able data member of encapsulation 62 is set to indicate
that OMS 42 did not allocate object 64 and the modified
data members is set to "Not Modified'. Next, object 64
and any dependent persistent objects it references are
deleted. Regardless whether OMS 42 allocated object
64, the object pointer data member of encapsulation 62
is set to null to indicate that object 64 is not resident in
primary memory, and control is returned to the caller of
this function.

Make-Present 322 makes object 64 accessible through
PTR 44. First, the object pointer data member of encap
sulation 62 is checked to see if object 64 is already in
primary memory. If so, control is returned to the caller
of this function. Otherwise, Fetch 124 is called to re
trieve object 64 object from POS Server 54 and install
it in primary memory. If that is successful, the primary
memory address of object 64 is returned.
Timecontext 324 retrieves and returns the value of

the time context data member of object ID 78 of encap
sulation 62. This value indicates the time context used
when retrieving the object from the database.
Timestamp 326 retrieves and returns the value of the

time stamp data member of encapsulation 62. This value
indicates the time object 64 was saved to the database.
OMS 42 provides an additional capability to allow an

application program to have independent persistent
objects implicitly and automatically retrieved from
POS Server 54 without having to call Fetch 120-124 or
Make-Present 322. This capability is called object fault
ing and PTR 44 processes an occurrence of an object
fault as follows. When an application program derefer
ences an instance of PTR 44, code is executed to check
the value of the object pointer data member of associ
ated encapsulation 62. If the value indicates that associ
ated object 64 is already in primary memory, the appli
cation program continues. If the value indicates that
associated object 64 is not in primary memory, Fetch
124 is called using object ID 78 data member in encap
sulation 62. After object 64 has been installed in primary
memory by Fetch 124, the application program contin
ues. In the C---- embodiment, the code necessary to
perform this processing is automatically generated by
DDL 80 (included in the C---- files of source files 38).
Specifically, a definition is provided to overload the
C++ dereference operators ("a-func()' and "(a)-
func()') for independent persistent object classes.
FIG. 7a shows primary memory representation 400

(hereinafter referred to as "object 400') of a C----
object. Although a C---- object can contain various
data members, the present invention supports the foll
lowing three categories of data types for the data mem
bers. The first category comprises those data types
which can be fully embedded in the object (data mem
bers 410–414). The second category comprises those
data types which are a reference to an independent or
dependent persistent object using a C++ pointer (data
members 416-420). The third category comprises those
data types which are a reference to an independent
persistent object using a PTR 44 (data members 406,
408, and 422). FIG. 7b shows the secondary memory
representation of a C++ object, which is composed of
two items, external representation 402 and external
references 404.

5,297,279
25

OTS 52 provides two interface functions to OMS 42
to translate persistent objects between their primary and
secondary memory representations.

Internal2External is the first function and translates
an object from its primary (or internal) to its secondary
(or external) memory representation. It accomplishes
the translation by first allocating two memory buffers to
hold external representation 402 and external references
404. Next, information about the object (size, type ID)
how and each reference in the object (type of pointer,
type of referenced object, how to determine the number
of objects referenced, etc.) is obtained from types 40, as
generated by DDL 80. Second, the data in object 400 is
copied to external representation 402, starting at the
beginning of external representation 402.

Then, for every reference, the following actions are
performed. If the reference is a C++ pointer and it is
not a null value, information on the referenced object is
obtained from types 40. The referenced object is copied
to external representation 402 after any other copied
data and the offset of the copied referenced object (rela
tive to the beginning of external representation 402) is
stored at the location in external representation 402 of
the original C---- pointer. For example, data member
418 references another object. After copying, data
member 436 contains the offset from the beginning of
external representation 402 of the copy of that object,
namely, object 444. If the data type of the referenced
object is a C---- structure or class, a similar translation
process is performed on the referenced object. If the
C++ pointer is a "boundary' pointer, the value in
external representation 402 is set to 0 (zero). For exam
ple, if data member 416 were a boundary pointer, data
member 434 would contain a 0(zero). If the reference is
a PTR 44, object ID 78 of the referenced object is ob
tained from associated encapsulation 62 and copied to
external references 404 after any other copied object
IDs 78, and the offset of that copy (relative to the begin
ning of external references 404) is stored in the appro
priate location in external representation 402. For exam
ple, data member 422 is a PTR 44. Object ID 78 of the
referenced object is stored in external reference 452; the
location of external reference 452 (in external references
404) is stored in data member 440. Essentially, refer
enced objects or object IDs 78 are copied to a location
and that location is stored where the original reference
was copied. Finally, POS encapsulation 70 is updated
(with this object's object ID 78, the architecture ID
from the current instance of OMS 42, the type descrip
tion ID associated with this object, and newly-created
external representation 402 and external references 404)
and returned to the caller of this function.

External2Internal is the second function and trans
lates an object from its secondary (or external) to its
primary (or internal) memory representation. It accom
plishes the translation by first checking the architecture
ID in supplied POS encapsulation 70 to see that it
matches the architecture Id data member in the current
instance of OMS 42. In the current embodiment, if they
do not match, the object cannot be translated and an
error is returned to the caller of this function. Second,
information about the object is obtained as is done in
Internal2External above. Third, sufficient primary
memory to hold the object is allocated and the object is
copied from external representation 402 to the newly
allocated memory (for example, object 400).

Next, the following actions are performed for every
reference. If the reference is a C++ pointer, informa

10

15

20

25

30

35

45

55

65

26
tion on the referenced object is obtained from types 40.
Sufficient primary memory is allocated to hold the
referenced object and the referenced object is copied
from the location in external representation 402 as indi
cated by the value of the original reference. The corre
sponding reference in object 400 is updated to reference
the newly allocated referenced object. For example,
data member 436 is a C++ pointer whose referenced
object is stored at object 444. After memory is allocated
to hold the referenced object, the referenced object is
copied from object 444 to the newly-allocated memory
and data member 418 is updated to reference the newly
allocated referenced object. If the data type of the refer
enced object is a C---|- structure or class, a similar
translation process is performed on the referenced ob
ject. If the reference is PTR 44, the following actions
are performed. If object ID 78 of the referenced object
is not null, the timestamp in object ID 78 is set to the
timestamp of this object's encapsulation 62. This insures
that the referencing object's timestamp will be used
when the referenced object is retrieved from POS
Server 54. Next, a reference to encapsulation 62 for the
referenced object is obtained from object map 50 (one
will be created if the object is not currently known to
OMS 42). If application 14 does not currently hold a
valid lock on the referenced object (determined by
examining encapsulation 62 just obtained), the value of
the concurrent lock data member of referenced object's
encapsulation 62 is set to the value of the concurrent
lock data member of this object's encapsulation 62. This
insures that the referencing object's lock will be used
when the referenced object is retrieved from POS
Server 54. If application 14 holds a valid lock on the
referenced object, Upgrade-Lock 316 Lock is called
requesting a lock equal to the value of the concurrent
lock data member in this object's encapsulation 62.
Lastly, once all the references in the object have been
processed, control is returned to the caller of this func
tion.
POS Server 54 is used by OMS 42 to store and re

trieve persistent objects in the database. In the C++
embodiment, the present invention uses a commercially
available RDBMS 20 to store external representation
402 and external references 404 of an independent per
sistent object described above. The present invention
interacts with RDBMS 20 using the embedded Stan
dard Query Language (SQL) interface provided by the
vendor. This allows the present invention to replace
one vendor's RDBMS with another vendor's ROBMS
with insignificant modifications to the present inven
tion.

In order to store the persistent objects created by
application 14 and managed by OMS 42, the following
relational tables are defined in RDBMS 20.
The first table is the groups table which contains two

attributes, storage group and object number. The pur
pose of the table is to control the allocation of object
identifiers (object IDs 78) within storage groups. See
the description of Alloc-Symbolic-Name below for
details on how the object numbers are allocated.
The second table is the value table with the attributes

shown below in Table 8. The purpose of this table is to
hold sufficient information about an independent persis
tent object in order to identify it by its object ID 78
(composed of the first three attributes), identify the
architecture of the computer hardware in which appli
cation 14 and OODB were executing when the object
was saved, identify the object's type (class) description,

5,297,279
27

identify the number of independent persistent objects it
references, recreate the object, and install it in primary
memory. If external representation 402 of the object is
longer than the length allowed for attribute values by
RDBMS 20, there are multiple tuples in this table for
the single large object, with all values the same except
for the "sequence number" (which begins with one and
is incremented by one for every additional tuple) and
the "external representation' (which continues where
the previous tuple left off).

TABLE 8
Attributes in Groups Table

Storage Group;
Object Number;
Commit time;
Sequence number;
Object size;
Architecture Object Storage Group;
Architecture Object Number;
Architecture Object Commit time;
Type Descriptor Storage group;
Type Descriptor Object Number;
Type Descriptor Commit time;
Number of user defined attributes associated
with the object;
Number of system defined attributes associated
with the object;
Number of references to other persistent objects,
including this object; and
External representation of object.

The last table is refto table with the attributes shown
below in Table 9. The purpose of this table is to hold the
references from one independent persistent object to
other independent persistent objects. Each tuple set
(one or more tuples with the same object ID) in the
value table is associated with one or more tuples in this
table by virtue of the storage group, object number, and
commit time being the same as the associated value
table tuple. If there are multiple references from an
object, there are multiple tuples in this table with the
values for the storage group, object number, and com
mit time attributes in the associated value tuple set,
except for the "sequence number' (which begins with
one and is incremented by one for every additional
tuple). The number of tuples in this table associated
with a tuple set in the value table equals the value of the
"number of references' attribute in the associated value
table tuple set.

TABLE 8
Attributes in Refto Table

Storage Group;
Object Number;
Commit time;
Sequence number;
Referenced Object Storage Group;
Referenced Object Object Number; and
Referenced Object Commit time.

Tables 10 and 11 show an example of how the object
seen in FIGS. 7a and 7b might appear stored in the
value and refto tables, respectively.

TABLE 10
VALUE Table Tuples

Stor- Object Com- Other. External
age Nunn- mit Sequence Object Attri- Represen

Group ber Time Number Size butes tation

5 1438 654318 83468 - array of
bytes)

5 1438 65438 2 83468 o array of

10

15

20

25

30

35

45

50

55

60

65

28
TABLE 10-continued
VALUE Table Tuples

Stor- Object Com- Other. External
age Num- mit Sequence Object Attri- Represen

Group ber Time Number Size butes tation
bytes)

5 438 65438 3 83468 - array of
bytes

TABLE 11
REFTO Table Tuples

Se- Refer- Refer- Refer
Stor- Object quence enced enced enced
age Num- Commit Num- Storage Object Commit

Group ber Time ber Group Name Time
s 438 65438 1 5 1438 65438
5 1438 654318 2 8 3481 654318
5 438 654318 3 12 3347 654318

OTS 52 and POS Server 54 pass between each other
encapsulations 62 and POS encapsulations 70. An in
stance of POS encapsulation 70 contains the following
data members.

Object ID is object ID 78 of the object being passed
in this POS encapsulation 70.

Architecture ID is object ID 78 of a persistent object
describing the architecture of the computer hardware in
which application 14 and OODB 18 are currently exe
cuting.
Type description ID is object ID 78 of a persistent

object that describes the primary memory representa
tion of the object being passed in this POS encapsula
tion 70.

Size of object external representation is the number of
bytes that object external representation 402 in this POS
encapsulation 70 contains.

Object external representation is the external repre
sentation 402 of the object being passed in this POS
encapsulation 70 contains.
Number of external references is the number of exter

nal references of the object being passed in this POS
encapsulation 70.

External references is the external references 404 of
the object being passed in this POS encapsulation 70
contains.
A instance of POS Server 54 contains the following

data members.
Commit in progress records whether a commit opera

tion is currently in progress. A commit starts when
Begin-Commit 508 is called and ends when End-Com
mit 510 is called.

Transaction is a reference to a transaction machine
(not shown) which monitors transactions being per
formed by multiple programs as they access the data
base.

Table 12 lists interface functions 500-524 together
their function names and arguments, which POS Server
54 provides to OMS 42. A description of each function
is given below. These functions either update the pri
vate state or return some information about the private
state of an instance of POS Server 54. Interface func
tions 500-502, 506-510, and 514-524 update the private
state of the instance, while interface function 504 and
512 returns information about the private state of the
instance to OMS 42.

5,297,279
29

TABLE 12

POS Server Interface Functions
Name Argument

500 Create one 5
S02 Delete One
504 Is-Sg-Valid Storage Group
506 Alloc-Symbolic-Name Storage Group, Number Requested
508 Begin-Commit Ole
50 End-Commit One
512 Get-Object Encapsulation
514 Put-Object POS Encapsulation 10
516 Begin-Transaction Ole
518 End-Transaction One
520 Abort-Transaction One
522 Set-Lock Encapsulation, New Lock, Wait?
524 Set-Lock Encapsulation, New Lock

15

Create 500 creates an instance of POS Server 54 and
connects to RDBMS 20 using the appropriate SQL
statements (this allows further calls from POS Server 54
to RDBMS 20). Next an instance of the transaction
machine is created and assigned to the transaction data
member. Finally, control is returned to the caller of this
function.

Delete 502 deletes an instance of a POS Server 54,
calls Abort-Transaction 520 in case End-Commit 510
had not been called by OMS 42. Next, a disconnect 25
from RDBMS 20 is performed using the appropriate
SQL statements, making certain that any uncommitted
changes previously made by OMS 42 are rolled back or
deleted. In addition, this signals the end of calls from
POS Server 54 to RDBMS 20. Finally, control is re- 30
turned to the caller of this function.

Is-Sg-Valid 504 issues a SQL query to RDBMS20 to
determine if a tuple exists in the groups table with the
supplied storage group. If a tuple exists, a 1 (one) is
returned, otherwise a 0 (zero) is returned. 35
Alloc-Symbolic-Name 506 issues a SQL query to

RDBMS 20 to retrieve the tuple in the groups table
with the supplied storage group and makes a copy of the
value of the object number attribute from the returned
tuple. The object number attribute is incremented by 0
the number requested and an SQL query is issued to
update the modified tuple and commit the update in
RDBMS 20. Finally, the copied value of the object
number attribute is returned.
Begin-Commit 508 is used to record the beginning of

a commit. If the value of the commit in progress data
member indicates that a commit is in progress, an error
is returned since only one commit can be in progress at
any time. Otherwise, the current time from OS 16 is
obtained, the value of the commit in progress data mem-50
ber is set to indicate that a commit is in progress, and the
time obtained from OS 16 is returned.
End-Commit 510 is used to record the end of a com

mit. If the value of the commit in progress data member
indicates that a commit is not in progress, an error is 55
returned. Otherwise, an SQL query is issued to commit
all pending changes previously sent to RDBMS 20 by
POS Server 54. If that query fails, another SQL query is
issued to rollback any pending changes to insure that
none of the pending changes are seen by any other 60
application 14 which may access this database. Finally,
the value of the commit in progress data member is set
to indicate that a commit is not in progress, and control
is returned to the caller of this function.

Get-Object 512 begins by calling Is-Sg-Valid 504 to 65
insure that the storage group in object ID 78 of supplied
encapsulation 62 exists. If it does not exist, an error is
returned. Otherwise, an SQL query is issued to

20

30
RDBMS 20 to retrieve the first tuple in the value table
which matches object ID 78 of supplied encapsulation
62. Next, using the value of the object size attribute in
the retrieved tuple, a memory buffer sufficient to hold
the entire object is allocated. If the object size attribute
indicates that there are additional tuples with the same
object ID (because the retrieved external representation
402 was too large to fit in one tuple), additional SQL
queries are issued to retrieve the remaining value tuples.
The portions of external representation 402 from the
tuples retrieved are copied into the memory buffer.
Next, an SQL query is issued to RDBMS 20 requesting
the first tuple in the reftotable which matches object ID
78 of supplied encapsulation 62. If the "number of refer
ences' attribute in the value tuple indicates that there
are additional tuples with the same objectID, additional
SQL queries are issued to retrieve the remaining refto
tuples. The values of the referenced object storage
group, object number, and commit time from these
tuples are used to create an external references 404.
Next, an SQL query is issued to RDBMS20 to commit
any pending work to insure that any RDBMs locks on
any of the tuples retrieved are not further retained.
Next, a POS encapsulation 70 is created and updated
with a copy of object ID 78 from supplied encapsula
tion 62, the architecture ID, type description ID, size of
external representation 402 and external representation
402 collected from the value tuple(s), and the number of
external references and external references 404 col
lected from the refto tuple(s). Finally, this newly
created POS encapsulation 70 is returned to the caller
of this function.

Put-Object 514 begins by checking the value of the
commit in progress data member to insure that a com
mit is in progress. If one is not in progress, an error is
returned. Otherwise, the length of external representa
tion 402 in supplied POS encapsulation 70 is used to
calculate how many value tuples will be needed to store
external representation 402. An SQL query is issued to
insert sufficient value tuples to store external represen
tation 402, using object ID 78, architecture ID and type
description ID data members in supplied POS encapsu
lation 70 for the other attribute values in the new value
tuples (see Table 10). Next, the number of external ref
erences data member in supplied POS encapsulation 70
is used to determine how many refto tuples will be
needed to store external references 404. An SQL query
is issued to insert sufficient refto tuples to store external
references 404, using object ID 78 in supplied POS
encapsulation 70 for the other attribute values in the
new refto tuples (see Table 11). Finally, control is re
turned to the caller of this function.

Begin-Transaction 516 is used to mark the beginning
of a transaction started by application 14. If the transac
tion data member indicates that a transaction is already
in progress, an error is returned. Otherwise, a new
transaction ID is obtained from the transaction ma
chine, and control is returned to the caller of this func
tion.

End-Transaction 518 is used to mark the end of a
transaction started by application 14. If the transaction
data member indicates that a transaction is not currently
in progress, an error is returned. Otherwise, the transac
tion machine is called to end the current transaction and
control is returned to the caller of this function.

Abort-Transaction 520 is also used to mark the end of
a transaction started by application 14. If the transaction

5,297,279
31

data member indicates that a transaction is not currently
in progress, an erroris returned. Otherwise, the transac
tion machine is called to end the current transaction and
control is returned to the caller of this function.

Set-Lock 522-524 has two forms which attempt to set
a lock on the object associated with supplied encapsula
tion 62. The first form will wait until the lock has been
granted while the second will return if the lock cannot
be granted on the first attempt. If object ID 78 of sup
plied encapsulation 62 is a null object ID, control is
returned to the caller of this function since the object
does not yet exist in the database and is implicitly
WRITE locked by application 14. If the request is for a
READ-ONLY lock, the concurrent lock data member
in supplied encapsulation 62 is set to that value and
control is returned to the caller of this function. If the
request is for a READ or a WRITE Lock, the transac
tion machine is called to obtain the lock. If the lock
could not be granted due to an error, an error is re
turned. If the lock were granted, the concurrent lock
data member in the supplied encapsulation 62 is set to
that value and control is returned to the caller of this
function.

Application 14 interface with OMS20 and PTR 44 by
embedding function calls to OMS 20 and PTR 44 as
well as use instances of PTR 44 in programming lan
guage statements in the application software. In the
preferred embodiment of the present invention, OMS
42 consists of one library of software and one C----
header file corresponding to OMS 42. The application
developer includes the OMS 42 header file along with
source files 38 generated by DDL 80 into the applica
tion software during compilation. Types 40 is also com
piled by the application developer. The library and
object files produced during the compilation of the
C++ source files are then linked to form an application
load module. In the preferred embodiment of the pres
ent invention, OODB 18 and application 14 using
OODB 18 execute in the same address space, while
RDBMS 20 executes in a different address space.

If the function calls to OODB 18 are extracted from
application 14 software, the resulting set of instructions
would have the following basic control flow.

First, an instance of OMS 42 would be created to
begin the interface with OMS

Second, one or more instances of PTR 44 would be
created to allow application 14 to create and manipulate
as well as store and/or retrieve persistent objects using
the present invention.

Third, application 14 would call OMS Begin-Tran
saction 110.

Fourth, OMS Default-Storage-Group 108 would be
called to define a new default storage group, if so de
sired by application 14, in which newly-created objects
would be stored.

Fifth, OMS Default-Name-Context 118 would be
called to define a new default name context, if so de
sired by application 14, in which new object names
would be registered.

Sixth, application 14 would create instances of ob
jects and manipulate them using functions defined for
the instances' classes, including assigning references
from one object to one or more other objects.

Seventh, for those objects to be saved to the database,
application 14 would assign the objects to the appropri
ate PTR 44 instances and call PTR Set-Modified 310
and PTR Persist 304 on those PTRs 44.

10

15

20

25

30

35

45

50

55

65

32
Eighth, for those objects to be explicitly retrieved

after they have been saved to the database, application
14 would call PTR Name 306 to associate an object
name with each object.

Ninth, application 14 would call OMS Commit-Tran
saction 112 to end the transaction and save the objects
to the database.

Tenth, application 14 would either call OMS Shut
down 106 or delete the instance of OMS 42 to terminate
the interface with OMS 42.

Eleventh, if application 14 had called OMS Shut
down 106, it would call OMS Startup 102 to restart the
interface with OMS 42. If application 14 had deleted its
instance of OMS 42, it would create a new instance of
OMS 42 to restart the interface with OMS 42.

Twelfth, application 14 would call OMS Begin-Tran
saction 110 to begin a new transaction.

Thirteenth, OMS Default-Storage-Group 108 would
be called to define a new default storage group, if so
desired by application 14, in which newly-created ob
jects would be stored.

Fourteenth, OMS Default-Name-Context 118 would
be called to define a new default name context, if so
desired by application 14, in which new object names
would be registered.

Fifteenth, application 14 would call OMS Fetch
120-124 to explicitly retrieve one or more persistent
objects from the database.

Sixteenth, application 14 could then manipulate the
retrieved objects using functions defined for the in
stances' classes, including assigning references from one
object to one or more other objects. Manipulation of
these objects would automatically retrieve other persis
tent objects as they are accessed by application 14. New
objects could also be created by application 14.

Seventeenth, for those objects to be saved to the
database, application 14 would call PTR Set-Modified
310 on the appropriate PTRs 44. Application 14 would
also need to call PTR Persist 304 on the newly-created
objects.

Eighteenth, for those newly-created objects to be
explicitly retrieved after they have been saved to the
database, application 14 would call PTR Name 306 to
associate an object name with each object.

Ninteenth, application 14 would call OMS Commit
Transaction 112 to save the modified objects and
newly-created objects to the database. Alternatively,
application 14 would call OMS Abort-Transaction 114
to discard the modified objects and newly-created ob
jects.

Twentieth, application 14 would either call OMS
Shutdown 106 or delete the instance of OMS 42 to
terminate the interface with OMS 42.
While a specific embodiment of the invention has

been shown and described, various modifications and
alternate embodiments will occur to those skilled in the
art. Accordingly, it is intended that the invention be
limited only in terms of the appended claims.
We claim:
1. A system for storing objects in at least one rela

tional database management system for retrieval during
later execution of an application program, comprising:

an object manager;
a persistent object storage server with a SQL inter

face to said at least one relational database manager
and said object manager; and

an object translator accessible by said object manager
to generate a first buffer containing at least one

5,297,279
33 34

object and a second buffer containing at least one said object translator generating said first and second
reference from said at least one object to additional buffers by using at least one object type description
at least one objects; said first buffer and said second of user-specified class definitions generated by a
buffer interpretable by said at least one relational data definition language processor and accessible
database management system, wherein said object 5 from said object manager. 3. The system for storing objects of claim 1, includ manager passes said retrieved objects to said object ing:
translator for use by said application program dur- said persistent object storage server stores in a first
ing execution; table said first buffer contents using a first object

wherein said persistent object storage server stores 10 identifier as a key for the buffer, along with an
said first buffer and said second buffer into said at object type identifier, and an architecture identi
least one relational database management system; fier, wherein said architecture identifier indicates
and the architecture of the computer where said appli

cation program is running; and
15 said persistent object storage server stores in a second

said first buffer and said second buffer from said at table said second buffer contents using a second
least one relational database management system object identifier as a key for the buffer.
for return to said object manager. 4. The system of claim 3, wherein said first object

2. The system for storing objects of claim 1, includ- identifier and said second object 3dentifier are identical.
ing: 20 k

wherein said persistent object storage server retrieves

25

30

35

45

50

55

65

