(12) STANDARD PATENT (11) Application No. AU 2006261754 B2
(19) AUSTRALIAN PATENT OFFICE

(54)

(51)

(21)
(87)
(30)

(31)

(43)

(44)

(71)

(72)

(74)

(56)

Title
Translating expressions in a computing environment

International Patent Classification(s)
GOG6F 17/28 (2006.01)

Application No: 2006261754 (22) Date of Filing: 2006.06.27
WIPO No: WO07/002652

Priority Data

Number (32) Date (33) Country
11/169,247 2005.06.27 us
Publication Date: 2007.01.04

Accepted Journal Date: 2013.03.28

Applicant(s)
Ab Initio Technology LLC.

Inventor(s)
Stanfill, Craig W.

Agent / Attorney
Pizzeys, PO Box 291, WODEN, ACT, 2606

Related Art
US 6681386

07/002652 A3 |1 OO 0 OO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Orgamzatlon
International Bureau

(43) International Publication Date
4 January 2007 (04.01.2007)

(10) International Publication Number

WO 2007/002652 A3

(51) International Patent Classification:
GOGF 17/28 (2006.01)

(21) International Application Number:
PCT/US2006/024942

(22) International Filing Date: 27 June 2006 (27.06.2006)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

11/169,247 27 June 2005 (27.06.2005) US

(71) Applicant (for all designated States except US): AB
INITIO SOFTWARE CORPORATION [US/USJ; 201
Spring Street, Lexington, MA 02421 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): STANFILL, Craig,
W. [US/US]; 43 Huckleberry Hill Road, Lincoln, MA
01773 (US). ALLIN, Glenn, John [US/US]; 132 Mt.
Vernon Street, Arlington, MA 02476 (US). BEAUDRY,
Donald [US/US]; 60 Orchard Street, Belmont, MA 02478
(US).

(74) Agents: HENNESSEY, Gilbert, H. et al.; Fish & Richard-
son P.C., P.O. Box 1022, Minneapolis, MN 55440-1022
(US).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ,BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HN, HR, HU, ID, IL, IN, IS, JP,
KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT,
LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA,
NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC,
SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ,
UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(8D

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:
as to applicant’s entitlement to apply for and be granted a
patent (Rule 4.17(ii))

[Continued on next page]

(54) Title: TRANSLATING EXPRESSIONS IN A COMPUTING ENVIRONMENT

SOURCE EXPRESSION

102

106

A

101

IDENTIFICATION COMPUTING PARAMETER
OF TARGET ENVIRONMENT ASSIGNMENTS
ENVIRONMENT 0

—

TARGET EXPRESSION

109

TARGET

108

ENVIRONMENT

SHELL
VARIABLES

& (57) Abstract: A method, and corresponding software and system, for translating an expression are described. The method includes
accepting a first expression (102) in a first syntax, the expression including a first character sequence representing a string value using
the first syntax; identifying a second syntax for representing the expression; and generating a second expression (104) in the second
syntax representing the first expression, including generating a second character sequence using the first character sequence such
that the second character sequence represents the string value using the second syntax.

=

WO 2007/002652 A3 I} 0000 00 00 O O A0

— as to the applicant’s entitlement to claim the priority of the (88) Date of publication of the international search report:
earlier application (Rule 4.17(iii)) 31 May 2007

Published:

— with international search report

— before the expiration of the time limit for amending the For two-letter codes and other abbreviations, refer to the "Guid-
claims and to be republished in the event of receipt of ance Notes on Codes and Abbreviations” appearing at the begin-
amendments ning of each regular issue of the PCT Gazette.

10

15

20

25

WO 2007/002652 PCT/US2006/024942

TRANSLATING EXPRESSIONS IN A COMPUTING
ENVIRONMENT

BACKGROUND

The invention relates to translating expressions in a computing environment.

In a shell scripting language (e.g., ksh), parameters in a shell script can be
referenced using a prefix (e.g., $). In ksh, a dynamic environment maintains the
values of previously defined parameters. When a shell script is run or a command
line expression is evaluated, the referenced parameters are bound according to the
parameter values in the dynamic environment. In some cases, when creating a script
in the scripting language, it is useful to use a quoting syntax appropriate to the
scripting language to preserve literal values and suppress binding of parameters
within a quoted expression when the script is run. Other mechanisms can also be used

to bind parameters to predefined values, such as macro expansion.

SUMMARY

In a general aspect, the invention features a method, and corresponding
software and system, for translating an expression. The method includes accepting a
first expression in a first syntax, the expression including a first character sequence
representing a string value using the first syntax; identifying a second syntax for
representing the expression; and generating a second expression in the second syntax
representing the first expression, including generating a second character sequence
using the first character sequence such that the second character sequence represents
the string value using the second syntax.

This aspect can include one or more of the following features:

The first expression includes a plurality of executable statements.

The first expression includes command-line input.

The first character sequence includes a parameter to be bound to a referenced
value.

Generating a second character sequence using the first character sequence

includes: binding the parameter to the referenced value; and generating the second

- 1-

10

15

20

25

30

WO 2007/002652 PCT/US2006/024942

character sequence to include the referenced value according to a quoting syntax of

the second syntax.

The first character sequence includes delimiters surrounding the parameter.

The delimiters include a predefined prefix that includes a dollar symbol
followed by a quote symbol.

The delimiters include a predefined suffix that includes a quote symbol.

The first character sequence includes delimiters surrounding a representation
of the string value.

The string value includes a character that is used in the first syntax to indicate
a parameter reference.

Generating a second character sequence using the first character sequence
includes suppressing binding of parameters within the string value.

The second syntax is selected to be compatible with a computational language
such as ksh, Java, DML, C, or SQL.

The second syntax includes rules for interpreting character sequences.

Identifying the second syntax includes identifying a syntax based on a token
preceding the first character sequence.

In a general aspect, the invention features a method, and corresponding
software and system, for evaluating an expression. The method includes accepting
one or more data structures that store definitions of parameters; identifying one or
more parameters that are referenced in the expression; determining values for each of
the identified parameters based on a stored definition; and storing the determined
parameter values in a binding environment.

This aspect can include one or more of the following features:

The binding environment stores values for the identified parameters and for
parameters whose values are necessary to evaluate the identified parameters, and the
binding environment does not necessarily store values for all of the parameters whose
definitions are stored in the one or more data structures.

The method further includes executing the expression with referenced
parameters bound to values from the binding environment.

The expression is a portion of a program or a script.

The expression includes command-line input.
-9-

10

15

20

25

WO 2007/002652 PCT/US2006/024942

Aspects of the invention can include one or more of the following advantages:

Data processing environments can include metadata such as definitions of data
transformations or record formats (e.g., written in a Data Manipulation Language). It
is useful to have dynamic metadata that can be defined in terms of literal values that
are captured at runtime. Translating a target expression according to an identified

syntax not only enables a literal value to be captured, but also enables the literal value

to be quoted in a way that is appropriate to the identified syntax. Furthermore, by

honoring a quoting convention for an identified syntax, some literal values can be
preserved in the evaluation of a target expression.

A computing system may store values of parameters in a binding environment.
When an expression is evaluated (e.g., an expression in a shell script or a command
line expression), the referenced parameters are bound according to the parameter
values in the binding environment. There is overhead associated with maintaining
parameter values in the binding environment. To avoid having to maintain a binding
environment with values for every parameter that has been defined (e.g., in a list of
parameters and their definitions), the computing system can scan an expression to
determine values only for the parameters that are actually referenced in that
expression and the parameters whose values are necessary to evaluate the referenced
parameters. Other features and advantages of the invention will become apparent

from the following description, and from the claims.

DESCRIPTION OF DRAWINGS

FIG. 1 is a block diagram representing interaction between a computing
environment and a target environment.

FIG. 2 is a block diagram of a computing environment for translating
expressions.

FIG. 3 is a block diagram showing contents of a storage area for parameter
assignments in a data repository.

FIG. 4 is a block diagram showing contents of a binding environment in a

local memory.

10

15

20

25

30

WO 2007/002652 PCT/US2006/024942

DESCRIPTION

1 Overview

Referring to FIG. 1, a computing environment 100 supports the specification
of a source computing expression 102 (e.g., a script, program, pathname, etc.) using a
source syntax, and then translating that source expression 102 to a target expression
104 that uses a target syntax suitable for evaluation (e.g., execution, expansion, etc.)
in one of a number of possible target environments. The computing environment 100
includes a process 106 for identifying a particular target environment 108, such as
shell environment or computer programming language environment, in which to
evaluate the target expression 104. The process 106 may identify a target
environment based on information in the target expression 104, based on other user
input, or based on a default environment.

As part of this translation, selective parameter substitution is performed such
that some parameter references may be resolved at the time of translation based on
parameter assignments 101, while other parameter references may be resolved when
the translated expression is later evaluated (e.g., based on shell variables 109). The
translation process depends on characteristics of the target syntax, in particular, those
characteristics related to quoting strings and to parameter references.

It can be desirable to have literal values preserved in the evaluation of a target
expression. In general, each of the target syntaxes includes some type of provision for
quoting a literal value so that it is not evaluated according to other aspects of the
syntax, such as aspects of the syntax relating to operators, parameter substitution, or
delimiters.

Some of the literal values in the target expression may be introduced during
the translation based on symbolic values in the source expression, for example, based
on parameter substitution. That is, the value of a desired literal expression in the
target expression may not be known when the source expression is specified.

A source expression can be defined in a language, e.g., a Parameter Definition
Language (PDL), that can produce the desired target expression by capturing some of
the values to be quoted at the time the source expression is evaluated. Such a PDL

includes a mechanism for generating a quoted literal in the appropriate syntax of one
-4-

10

15

20

25

30

WO 2007/002652 PCT/US2006/024942

of a variety of possible target languages. An “expression” can include, for example, a
portion of a script or program (including the entire script or program), or command-
line input.

FIG. 2 shows an exemplary computing environment 100 for evaluating PDL
expressions and executing resulting target expressions in the syntax of one or more
target languages (e.g., shell languages or other scripting languages). The computing
environment 100 includes a computing system 110 that includes a local memory 120
(e.g., arandom access memory) and a data repository 130 (e.g., resident on one or
more non-volatile storage media). The data repository 130 stores functional data such
as scripts 132, programs 134, and parameters assignments 136 (e.g., including
parameter names, parameter values, and optionally, parameter attributes) that can be
arranged in sets of parameters that can be used in any of a variety of scripts 132
and/or programs 134. A user can interact with the computing system through a
graphical user interface (GUI) 140 and/or through a command-line interface (CLI)
150.

The parameter assignments 136 can include parameters defined using source
PDL expression that provides a consistent syntax in which a user can define
parameter values to be translated into any of a variety of target syntaxes. Parameter
definitions can refer to values of other parameters. Any of a variety of rules can be
used to determine which parameters can refer to which other parameters (e.g., an
ordered list — a parameter definition can refer to a previously defined parameter; or
sets — a parameter in one set can refer to a parameter in another set).

An approach for evaluating source PDL expressions, described in more detail
below, includes accepting a PDL expression, identifying a target syntax for
representing the PDL expression, and generating a representation of the PDL
expression according to the target syntax. For example, a script including PDL
expressions can include a series of inline tokens each followed by a PDL expression.
The computing system 110 identifies the target syntax by reading each token in the
script that indicates a target language to be used to interpret the PDL expression that
follows. Thus, the target syntax can change within a script by including different
tokens in the script indicating different target languages to be used to interpret

different portions of the script.
-5

10

15

20

25

30

WO 2007/002652 PCT/US2006/024942

The accepted PDL expression can include a character sequence representing a
string value. The character sequence can represent a string value (a) through a
parameter reference (e.g., a prefix for a parameter indicating the value of the
parameter is to be bound to the string value). Alternatively, the character sequence
can represent a string value () through a quoted literal expression (e.g., delimiters
surrounding a representation of the string value).

If the character sequence in the PDL expression represents a string value (a)
through a parameter reference, the computing system 110 identifies the type of
parameter reference, for example, according to the syntax of the reference. The
reference can be a “direct substitution” parameter reference, in which case the
computing system 110 binds the parameter reference to a parameter value.
Alternatively, the reference can be a “‘substitution plus quoting” parameter reference,
in which case the computing system 110 binds the parameter reference to a parameter
value using the mechanism for generating quoted literals in a target syntax, as
described in more detail below (e.g., in section 2.2.3).

If the character sequence in the PDL expression represents a string value (b)
through a quoted literal expression, the computing system 110 preserves the string
value in the literal expression without performing substitution. The computing system
110 determines what is to be interpreted as a quoted literal expression based on the
target syntax. If a character sequence that would otherwise represent a parameter
reference (e.g., a direct substitution parameter reference) is embedded within a quoted
literal expression, then that character sequence is not treated as a parameter reference
(e.g., is not bound to a parameter value).

When the computing system110 binds parameter references to values, to avoid
having to spend the time to set up a dynamic environment with values for every
parameter that has been defined (e.g., in a list of parameters and their definitions), the
computing system 110 can scan an expression to determine values only for the
parameters that are actually referenced in that expression. Since parameters can be
defined in terms of other parameters, some parameters that are not directly referenced
in the expression may also be evaluated in the process of evaluating the directly
referenced parameters. The values of the directly or indirectly referenced parameters

are stored in a binding environment in the local memory 120. After the computing
-6-

10

15

20

25

30

WO 2007/002652 PCT/US2006/024942

system 110 evaluates a PDL expression, the computing system generates a target
expression in a corresponding target syntax. The computing system 110 may then
execute the target expression and/or store the target expression in the data repository

130.

2 Expression Translation

The translation of expressions from the source syntax to the target syntax can
involve parameter substitution using a value of a parameter known at translation time.
The source PDL syntax uses a number of “$-substitution” syntaxes to replace a
parameter with a value.

The source PDL syntax uses a first type of “$-substitution” syntax that uses a
“direct substitution” parameter reference. This syntax uses $<name>, such as $foo,
with the value of the parameter foo directly substituting for the string $foo. Note
that such substitution is not performed when the $ is used in a string literal such as

'the price is $12.00°.

An example of direct substitution, with the parameter foo having the value
1.00, would take a source expression

if ($foo == 3.14)
and yield a target expression

if (1.00 == 3.14)
in which the $ character is used as a prefix to indicate that the value éssigned to the
parameter £oo should be substituted for the direct substitution parameter reference
sfoo.

In some cases, however, the value substituted for a parameter reference may
not be guaranteed to be legal in the target syntax (e.g., according to a target language
such as a Data Manipulation Language (DML)). For example, if foo is assigned a
value “(” (i.e., a character string of length one representing the left-paren character) in
the source parameter binding environment, then the source expression above yields
the target expression

if ((== 3.14)
which is an illegal expression in the target syntax if the target language is DML.

-7-

10

15

20

25

30

WO 2007/002652 PCT/US2006/024942

If instead the source expression is

if ("Sfoo" == 3.14)
then the same parameter substitution in this source expression yields the legal target
expression

if (" (" == 3.14)
(assuming the computing system 110 is not in a processing mode in which double-
quotes are protecting delimiters, as described below).

[{3TRL)

However, if foo is assigned a value (i.e., a character string of length one
representing the double-quote character), then the parameter substitution for this value
of £oo in the source expression above yields the target expression

if ("en == 3.14)
which is an illegal syntax if the target language is DML.

The source PDL syntax uses a second type of “$-substitution” syntax that uses
a “substitution plus quoting” parameter reference. The computing system 110 binds
the parameter reference to a parameter value and generates a quoted literal in the
designated target syntax. This type of parameter reference can be indicated by a pre-
defined set of delimiters. In PDL, the delimited “substitution plus quoting” parameter
reference is given by $"foo" (or equivalently by $'foo"').

Using this “substitution plus quoting” parameter reference, if £oo is assigned
a value “(” (i.e., a character string of length one representing the left-paren character),
then the source expression

if ($"foo" == 3.14)
yields the target expression

if (" (" == 3.14)
which is a legal syntax if the target language is DML.

Again, using this “substitution plus quoting” parameter reference, if foo is
assigned a value “"” (i.e., a character string of length one representing the double-
quote character), then the source expression

if ($"foo" == 3.14)
yields the target expression

if ("\"" == 3.14)

10

15

20

25

30

WO 2007/002652 PCT/US2006/024942

if, for example, the target language is DML, since DML requires a quoted quote mark
to be preceded by the escape character \. If a different target language is used then the
target expression may use a different syntax. For example, the source expression

if ($vfoo" == 3.14)
yields the target expression

if (' == 3.14)
if the target language is ksh.

The target syntax may be indicated by a token embedded within a source
expression, such as “$-ksh” to indicate ksh as the target language, or “$-dml” to
indicate DML as the target language. Some tokens may indicate a target syntax that
does not have a corresponding target language (e.g., $-literal), but still have a well
defined syntax defined by a set of rules. After the computing system 110 recognizes a
token for a target syntax, the expression evaluation is placed into a “processing mode”
that corresponds to that target syntax.

The “substitution plus quoting” parameter reference mechanism provides a
way for target syntax values to be captured after a source PDL expression is written
and quoted in a manner determined by the processing mode appropriate to the target
syntax. A target syntax value that is known when the source PDL expression is being
written can be preserved as a literal value consistent with the target syntax by
enclosing it inside predetermined “protecting delimiters” (such as double or single
quotes without a leading “$” character). That is, the source syntax does not require
substitution within delimited strings.

For example, if the string $PT is a special character string that represents the
value of pi in the DML target language, then this string can be enclosed in double
quotes when included in a DML character sequence (as " $PI") and it will remain
unchanged, without having to “escape” the direct substitution, for example, by using
"\$PI". A different target language may use different protecting delimiters to
protect the character sequence, such as ' $PI' for the ksh target language. When
evaluating a PDL expression, the computing system 110 honors the protecting
delimiters by turning off both “direct substitution” parameter references and

“substitution plus quoting” parameter references inside the protecting delimiters. The

-9

10

15

20

25

30

WO 2007/002652 PCT/US2006/024942

computing system 110 determines what the protecting delimiters are (if any)

according to the processing mode.

2.1 Target Syntax Processing Modes

Different target syntax processing modes result in different behavior for
evaluating PDL expressions. The computing system 110 may recognize a processing
mode by reading an embeded token; however, a default processing mode can be
assumed if no token is present. The expression evaluation behavior for four

exemplary processing modes are summarized as follows:

Target syntax: ksh :

Token: $-ksh

Processing mode behavior: The computing system 110 uses a quoting syntax
consistent with the ksh target language for “substitution plus quoting” and recognizes

protected delimiters used by the ksh target language.

Target syntax: DML

Token: $-dml

Processing mode behavior: The computing system 110 uses a quoting syntax
consistent with the DML target language for “substitution plus quoting” and
recognizes protected delimiters used by the DML target language.

Target syntax: text

Token: $-text

Processing mode behavior: The computing system 110 uses a quoting syntax
consistent with the DML target language for “substitution plus quoting” but does not

recognize any delimiters as protectedv delimiters.

Target syntax: literal

Token: $-literal

Processing mode behavior: The computing system 110 does not perform
“substitution plus quoting” or “direct substitution” parameter binding and outputs

-10-

10

15

20

25

WO 2007/002652 PCT/US2006/024942

everything between the $-literal token and a following token, if any, verbatim (except

for any spaces immediately following the token).

These inline tokens are not translated into the corresponding target

expressions.

2.2 PDL evaluation rules

A PDL expression can be used to provide a value that is included in a set of
parameter assignments. Some portions of a PDL expression can include statements
that manipulate values local to the translation of the PDL expression, and are not
reflected directly in a resulting target expression. The computing system 110 uses the

following exemplary set of rules for interpreting characters in a PDL expression.

2.2.1 Parameter assignment

The values of parameters referenced in a source PDL expression can be
assigned separately from the PDL expression (e.g., in a file including a set of
parameter assignments), or inline with the PDL expression (e.g., in a script including
one or more PDL expressions). Such inline parameter assignments are not translated
into the corresponding target expression. Determining values for parameters
referenced in a PDL expression may involve translating other PDL expressions and

evaluating the resulting target expressions.

2.2.2 Direct substitution parameter reference

The “$” character directly preceding a token without quotation marks indicates
a “direct substitution” parameter reference. The parameter reference is bound to a
value that is substituted for the parameter reference. For example, the character
sequence $BAR in an expression may be evaluated to generate the character sequence
xxx. Then, the character sequence FOO$BAR in an expression would be evaluated to
generate the character sequence FOOxxX.

Delimiters can be used to delimit characters that represent a parameter to be

referenced. For example, braces can be used so that the character sequence

- 11-

10

15

20

25

30

WO 2007/002652 PCT/US2006/024942

FOOS$ { BAR}BAZ is evaluated to generate the character sequence FOOxxXBAZ,
rather than be interpreted as FOO$SBARBAZ .

2.2.3 Substitution plus quoting parameter reference
The “$” character used in combination with single or double quotes to delimit

a token indicates a “substitution plus quoting” parameter reference. The parameter is
bound to a value that is substituted for the referenced parameter and the resulting
character sequence is quoted according to the target syntax. For example, the
character sequence $"BAR" or the character sequence $'BAR' in an expression is
evaluated to generate the character sequence 'xxx' (for target syntax that uses
single quotes, where BAR is assigned the value xxx as in the examples above).
Likewise, if the parameter assignment TERMINATOR = | is made, the character
sequence string ($"TERMINATOR") in an expression is evaluated to generate
the character sequence string('|').

In another example, a target syntax requires a single literal backslash character
“\” to be designated by two backslash characters “\\” in a quoted literal string. In this
case, when the parameter assignment TERMINATOR = \ is made, the character
sequence string ($"TERMINATOR") in an expression is evaluated to generate

the character sequence string ('\\').

224 Escaping special characters
A literal “$” character can be specified in the source PDL syntax using a

character as a prefix to “escape” the parameter substitution behavior. For example, if
the escape character is the backslash symbol, the character sequence FOO\ $BAR in an
expression is evaluated to generate the character sequence FOO$BAR.

To generate a literal “\” character before a “$” character, two backslash
characters “\\” may be used. For example, the character sequence \ \ $BAR in an
expression is evaluated to generate the character sequence \ xxx in which the direct
parameter substitution is made. In general, if there are an even number of “\”
characters before a “$” character, then the “\” characters are paired and the “$”
character is interpreted as a parameter reference. If there are an odd number of “\”

characters before a “$” character, then the adjacent “\’ character causes the “$”
-12-

10

15

20

25

WO 2007/002652 PCT/US2006/024942

character to be interpreted literally and any remaining “\” characters are paired. So,
the character sequence \ \ \ $BAR in an expression is evaluated to generate the
character sequence \ $BAR, and the character sequence \ \ \ \ $BAR in an expression

is evaluated to generate the character sequence \ \ xxx.

2.2.5 Protecting delimiters
The computing system 110 preferably honors protecting delimiters by turning

off both “direct substitution™ parameter references and “substitution plus quoting”
parameter references inside the protecting delimiters. For example, to interpret the
sequence of characters $BAR as a literal string, protecting delimiters such as double or
single quotes can be used to yield the protected literal string: "$BAR". Furthermore,

no escaping of special characters is necessary inside a protected literal string.

2.2.6 Inline execution

An “inline” executable computation or script can be executed while evaluating
a PDL expression. This inline execution is indicated using another type of delimiter.
The name of the executable computation or script, for example exec, is delimited as
$ (exec) in an expression and is replaced by the results of executing exec (e.g., a
captured output of the computation or script).

An inline script can include parameter references that are “transparent.” A
transparent reference of the parameter PARM takes one of the following two forms:
$PARM or $ { PARM}. So, the character sequence $ (echo $BAR) in an expression
is evaluated to generate the character sequence xxx. However, other types of
“opaque” parameter references such as: $ (eval echo '$'FO0O) or
$ (printenv FOO) do not result in parameters being bound to their assigned
values.

A particular type of delimiter can be used to indicate that an executable
computation or script is to be executed in a particular language. For example,
$ (exec) can indicate execution of exec according to ksh, and $ [exec] can
indicate execution of exec according to DML. Alternatively, an inline token can be

used to indicate execution in a particular language. For example, $ (ksh exec) can

-13-

10

15

20

25

30

WO 2007/002652 PCT/US2006/024942

indicate execution of exec according to ksh, and $ (dml exec) can indicate

execution of exec according to DML.

3 Parameter Binding Approach

FIG. 3 shows exemplary parameter assignments 136 stored in the data
repository 130. The parameters assignments 136 include parameter names 200,
parameter values 202, and optionally, parameter attributes 204. A parameter attribute
can include any information associated with a parameter or its value, such as a data
type or a description. In this example, a value assigned to a parameter may include a
reference to any preceding parameter, such as the parameter DATE that has a value of
SFOO.

Referring to FIG. 4, in an exemplary parameter binding approach, the
computing system 110 maintains a binding environment 300 in the local memory 120
for parameters associated with a source script 302 that is being evaluated. As the
computing system 110 evaluates the source script 302, the computing system 110
maintains in the binding environment 300 a copy of each parameter that is referenced
in the source script 302. The information stored in the binding environment 300
includes a parameter name 304 and a current value 306 of that parameter. Each
parameter is bound to a value according to the appropriate scoping rules. In some
cases, the computing system 110 maintains multiple contexts in the binding
environment 300 to store parameters having different scopes.

In this example, the source script 302 includes a first source expression 310
that includes the character sequence "$BASE/file.dml". This character sequence
represents a string value as a quoted literal expression (e.g., in the DML processing
mode). The computing system 110 suppresses binding of what would otherwise be a
parameter reference $BASE in the source syntax. The parameter reference SBASE is
then preserved to be bound later (e.g., bound to the value ~\dir when the
corresponding target expression is evaluated).

The source script 302 includes a second source expression 312 that includes
the character sequence $ "DATE", which represents a string value through a

“substitution plus quoting” parameter reference. Since the referenced parameter

-14-

10

15

20

25

30

WO 2007/002652 PCT/US2006/024942

DATE is defined (in FIG. 3) in terms of another parameter FOO, the computing system
110 first binds parameter FOO to its assigned value $TODAY, which resolves to

May 1, 2000
and stores the results in the binding environment 300. The computing system 110
then binds the parameter DATE to the value

May 1, 2000
and stores the results in the binding environment 300.

The source script 302 includes a third source expression 314 that includes the
character sequence $"BAR", which represents a string value through a “substitution
plus quoting” parameter reference. The computing system 110 binds parameter BAR
to the value

test 1
and stores the results in the binding environment 300.

The computing system 110 generates a target script 308 that includes a first
target expression 320 that represents the first source expression 310 in the target
syntax. Since the character sequence "$BASE/file.dml" in the source expression
310 includes protecting delimiters (according to the DML processing mode), the
target expression 320 includes the same character sequence.

The target script 308 includes a second target expression 322 in which the
quoted value "May 1, 2000" has been substituted for the parameter reference
S"DATE", and a third target expression 324 in which the quoted value "test 1"
has been substituted for the parameter reference $ "BAR".

The computing system 110 generates the target expressions after the source
script 302 has been scanned for parameter references and the referenced values have
been stored in the binding environment 300. Alternatively, the computing system can
generate the target expressions as the source script 302 is being scanned. The
computing system 110 is then able to execute the generated target script 308 and/or
store the target script 308 for later execution.

The expression"evalhation techniques described above can be implemented
using software for execution on a computer. For instance, the software forms

procedures in one or more computer programs that execute on one or more

-15-

2006261754 08 Nov 2010

10

15

20

25

30

programmed or programmable computer systems (which may be of various
architectures such as distributed, client/server, or grid) each including at least one
processor, at least one data storage system (including volatile and non-volatile memory
and/or storage clements), at least one input device or port, and at least one output
device or port. The software may form one or more modules of a larger program, for
example, that provides other services related to the design and configuration of
computation graphs. The nodes and elements of the graph can be implemented as data
structures stored in a computer readable medium or other organized data conforming to
a data model stored in a data repository.

The software may be provided on a medium, such as a CD-ROM, readable by a
general or special purpose programmable computer or delivered (encoded in a
propagated signal) over a network to the computer where it is executed. All of the
functions may be performed on a special purpose computer, or using special-purpose
hardware, such as coprocessors. The software may be implemented in a distributed
manner in which different parts of the computation specified by the software are
performed by different computers. Each such computer program is preferably stored
on or downloaded to a storage media or device (e.g., solid state memory or media, or
magnetic or optical media) readable by a general or special purpose programmable
computer, for configuring and operating the computer when the storage media or
device is read by the computer system to perform the procedures described herein.

The inventive system may also be considered to be implemented as a computer-
readable storage medium, configured with a computer program, where the storage
medium so configured causes a computer system to operate in a specific and
predefined manner to perform the functions described herein.

- It 1s to be understood that the foregoing description is intended to illustrate and
not to limit the scope of the invention, which is defined by the scope of the appended
claims. For example, a number of the function steps described above may be
performed in a different order without substantially affecting overall processing.

Other embodiments are within the scope of the following claims.

-16 -

2006261754 08 Nov 2010

10

15

20

25

30

Claims:

1. A computer implemented method for translating an expression, including:

accepting, using a computer, a first expression in a first syntax, the expression
including a first character sequence representing a quoted string value using the first
quoting syntax;

identifying a second syntax for representing the expression; and

generating, using a computer, a second expression in the second syntax
representing the first expression, including generating a second character sequence
using the first character sequence such that the second character sequence represents

the qudted string value using the second syntax.

2. The method of claim 1, wherein the first expression includes a plurality of

executable statements.

3. The method of claim 1, wherein the first expression includes command-line
input.
4. The method of claim 1, wherein the first character sequence includes a first

parameter to be bound to a first referenced value.

5. The method of claim 4, wherein generating a second character sequence using
the first character sequence includes:

binding the first parameter to the first referenced value; and

generating the second character sequence to include the referenced value

according to a quoting syntax of the second syntax.

6. The method of claim 4, wherein the first character sequence includes delimiters

surrounding the first parameter.

7. The method of claim 6, wherein the delimiters include a predefined prefix that

includes a dollar symbol followed by a quote symbol.

-17 -

2006261754 08 Nov 2010

10

15

20

25

30

8. The method of claim 6, wherein the delimiters include a predefined suffix that

includes a quote symbol.

9. The method of claim 4, wherein the first referenced value includes a second

parameter to be bound to a second referenced value.

10. The method of claim 9, wherein binding the first parameter to the first
referenced value includes:

accepting a list of parameter references and corresponding values including the
first parameter and the first referenced value, the first referenced value including the
second parameter; '

cvaluating the Iﬁarémeter references including parsiﬁg the first referenced value
to identify the second parameter; and

binding the second parameter to the second referenced value.

11. The method of claim 4, wherein binding the first parameter to the first
teferenced value includes generating a quoted literal from the first referenced value

according to the second syntax.

12. The method of claim 1, wherein the first character sequence includes delimiters

surrounding a representation of the quoted string value.

13. The method of claim 12, wherein the quoted string value includes a character

that is used in the first syntax to indicate a parameter reference.

14. The method of claim 13, wherein generating a second character sequence using
the first character sequence includes suppressing binding of parameters within the

quoted string value.

15. The method of claim 1, wherein the second syntax is selected to be compatible

with a computational language.

16. The method of claim 15, wherein the computational language is a member of

the group consisting of ksh, Java, DMI., C, and SQL.

-18-

2006261754 08 Nov 2010

10

15

20

25

30

17. The method of claim 1, wherein the second syntax includes rules for

interpreting character sequences.

18. The method of claim 1, wherein identifying the second syntax includes

identifying a syntax based on a token preceding the first character sequence.

19. Software stored on a computer-readable medium, for translating an expression,
the software including instructions for causing a computer systemn to:

accept a first expression in a first syntax, the expression including a first
character sequence representing a quoted string value using the first syntax;

identify a second syntax for representing the expression; and

generate a second expression in the second syntax representing the first
expression, including generating a second character sequence using the first character
sequence such that the second character sequence represents the quoted string value

using the second syntax.

20. A system for translating an expression, including:
means for accepting a first expression in a first syntax, the expression including
a first character sequence representing a quoted string value using the first syntax;
means for identifying a second syntax for representing the expression; and
means for generating a second expression in the second syntax representing the
first expression, including generating a second character sequence using the first
character sequence such that the second character sequence represents the quoted

string value using the second syntax.

21. A method for evaluating an expression, including:
accepting one or more data structures that store definitions of parameters;
identifying one or more parameters that are referenced in the expression;
determining values for each of the identified parameters based on a stored
definition, including detenmining a value for at least one parameter where the stored
definition of the parameter references a second parameter; and

storing the determined parameter values in a binding environment.

-19-

2006261754 08 Nov 2010

10

15

20

25

30

22. The method of claim 21, wherein the binding environment stores values for the
identificd parameters and the binding environment stores values for parameters whose
values are necessary to ecvaluate the identified parameters, and the binding
environment does not store values for all of the parameters whose definitions are

stored in the one or more data structures.

23. The method of claim 21, further including executing the expression with

referenced parameters bound to values from the binding environment.

24. The method of claim 21, wherein the expression is a portion of a program or a
script.

25. The method of claim 21, wherein the expression includes command-line input.
26. The method of claim 21, wherein identifying one or more parameters that are

referenced in the expression includes identifying one or more parameters that are

referenced in the stored definition.

27. Software stored on a computer-readable medium, for evaluating an expresston,
the software including instructions for causing a computer system to:

accept one or more data structures that store definitions of parameters;

identify one or more parameters that are referenced in the expression;

determine values for each of the identified parameters based on a stored
definition; and

store the determined parameter values in a binding environment.

28. A system for evaluating an expression, including:

means for accepting one or more data structures that store definitions of
parameters;

means for identifying one or more parameters that are referenced in the
expression;

means for determining values for each of the identified parameters based on a
stored definition; and

means for storing the determined parameter values in a binding environment.

-20-

WO 2007/002652

106
/_

IDENTIFICATION
OF TARGET
ENVIRONMENT

1/4

SOURCE EXPRESSION

102

l

COMPUTING
ENVIRONMENT

100

1

TARGET EXPRESSION

104

\

'

TARGET
ENVIRONMENT

108

PCT/US2006/024942

101

PARAMETER
ASSIGNMENTS

[—109

4)

SHELL
VARIABLES

FIG. 1

WO 2007/002652 PCT/US2006/024942
2/4

130
100 LOCAL e
= 132— REPOSITORY
v SCRIPTS
COMMAND-LINE
INTERFACE COMPUTING SYSTEM | N
- 110 PROGRAMS
134 —
136 —_| [PARAMETER J
GRAPHICAL USER ASSIGNMENTS
INTERFACE .)
140

FIG. 2

WO 2007/002652

3/4

PCT/US2006/024942

DATA REPOSITORY
/— 136
PARAMETER ASSIGNMENTS
200 ™ = 202 - (— 204

NAME VALUE | ATTRIBUTES
BAR test 1

BAZ test 2

FOO $TODAY

DATE $FOO

BASE ~\dir

/—130

FIG. 3

WO 2007/002652

4/4

PCT/US2006/024942

LOCAL MEMORY 200 fmo
BINDING ENVIRONMENT
304ﬂ /—306
NAME VALUE
FOO May 1, 2000 [
DATE May 1, 2000
BAR test 1
l
|
+ /—302
SOURGE SCRIPT /31 0
include "$BASE/file.dml" <&
out.date :: S"DATE" 312
if ($”BAR" —_—— "test 2") 4_\
TARGET SCRIPT 320
include "S$BASE/foo.dml" 4—/
out.date :: "May 1, 2000" - 322
if ("test 1" == "test 2")<\
324

FIG. 4

