wo 2014/158603 A1 |1 I} NN T OO0 OO0 AR

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2014/158603 A1l

2 October 2014 (02.10.2014) WIPO I PCT
(51) International Patent Classification: (74) Agent: KELLETT, Glen; BARNES & THORNBURG
GOG6F 9/48 (2006.01) GOG6F 9/38 (2006.01) LLP, C/O CPA GLOBAL, P.O. Box 52050, Minneapolis,
. . Minnesota 55402 (US).
(21) International Application Number:
PCT/US2014/018664 (81) Designated States (unless otherwise indicated, for every
. . kind of national protection available). AE, AG, AL, AM,
(22) International Filing Date: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
26 February 2014 (26.02.2014) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
(25) Filing Language: English DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
) HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
(26) Publication Language: English KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
(30) Priority Data: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
13/799,327 13 March 2013 (13.03.2013) Us OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, T™M,
(71) Applicant (for all designated States except). INTEL TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
CORPORATION [US/US]; 2200 Mission College ZW.
Boulevard, Santa Clara, California 95054 (US).
(84) Designated States (uniess otherwise indicated, for every
(72) Inventors; and kind of regional protection available): ARIPO (BW, GH,
(71) Applicants : JAYAKUMAR, Sarathy [IN/US], 5311 GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,

NW Skycrest Pkwy, Portland, Oregon 97229 (US). KU-
MAR, Mohan J. [US/US]; 18680 SW Marko Lane, Aloha,
Oregon 97007 (US). KINNEY, Michael D. [US/US];
3234 Cedrona Dr. NW, Olympia, Washington 98502 (US).

UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SL, SK, SM,

[Continued on next page]

(54) Title: SYSTEM MANAGEMENT INTERRUPT HANDLING FOR MULTI-CORE PROCESSORS

100

COMPUTING DEVICE

102

PROCESSOR
12020] core | [core |-

120e f

140

120 core][core M

N UNCORE

SMi STATUS
REGISTER [~
CACHE L

{ MEM. CONTROLLER]_

[, 120

,120d

142
[144

146

148

.
| 104 |

106

o MEMORY
SUBSYSTEM

(o

—r’
108

DATA 110
STORAGE

FIG. 1

(57) Abstract: Technologies for system management interrupt ("SMI")
handling include a number of processor cores configured to enter a sys-
tem management mode ("SMM") in response to detecting an SMI. The
first processor core to enter SMM and acquire a master thread lock sets
an in-progress flag and executes a master SMI handler without waiting
for other processor cores to enter SMM. Other processor cores execute
a subordinate SMI handler. The master SMI handler may direct the
subordinate SMI handlers to handle core-specific SMIs. The multi-core
processor may set an SMI service pending flag in response to detecting
the SMI, which is cleared by the processor core that acquires the master
thread lock. A processor core entering SMM may immediately resume
normal execution upon determining the in-progress flag is not set and
the service pending flag is not set, to detect and mitigate spurious
SMIs. Other embodiments are described and claimed.

WO 2014/158603 A1 |IIIWAL 00V A0 0 T O

TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, Published:

KM, ML, MR, NE, SN, TD, TG). — with international search report (Art. 21(3))

WO 2014/158603 PCT/US2014/018664

SYSTEM MANAGEMENT INTERRUPT HANDLING FOR
MULTI-CORE PROCESSORS

BACKGROUND

Computer processors typically provide several operating modes. Operating
modes for ordinary code such as operating systems, user applications, and the like typically
include real mode, in which the processor uses physical memory addresses, and protected
mode, in which the processor uses virtualized memory addresses. Processors may provide
additional modes, such as long mode for addressing a large address space.

Certain processors provide a special operating mode called System Management
Mode (“SMM?”) for handling certain interrupts generated by hardware components of the
computer platform, called System Management Interrupts (“SMIs”). Upon detecting an SMI,
such a processor suspends execution by saving its current state and then entering SMM. Inside
SMM, the processor executes SMI handler code. Such SMI handler code may perform tasks
such as error handling, power management, platform flash memory updating, system
management tasks, and the like. Upon completion, the SMI handler code executes a resume
instruction (“RSM”), causing the processor to reload its saved state and resume execution of the
previous operating mode. Receiving the SMI, entering SMM, and the operation of the SMI
handler are thus transparent to other code executing on the processor, including operating
system code.

Certain multi-core processors may handle an SMI by broadcasting the SMI to all
processor cores. Upon receiving the SMI and entering SMM, each processor core may race to
become the master core responsible for handling the SMI. Such master core is often called the
“monarch” or the “boot strap processor.” The master core waits for the other, subordinate cores
(sometimes called “application processors”) to enter SMM before handling the SMI. While the
master core handles the SMI, the subordinate cores idle in a wait loop. Thus, SMI handler code
may be single-threaded even when executed on multi-core processors.

Typical processors also include a machine check architecture. Such machine
check architecture is a low-level mechanism to detect hardware errors in the processor or the
computer platform (“machine check exceptions™) and alert the operating system. Some
machine check exceptions may be corrected in hardware or by the operating system;
uncorrected machine check exceptions are generally fatal errors and may result in an operating

system crash (e.g., a “stop error,” “kernel panic,” “blue screen,” or the like).

WO 2014/158603 PCT/US2014/018664

BRIEF DESCRIPTION OF THE DRAWINGS

The concepts described herein are illustrated by way of example and not by way
of limitation in the accompanying figures. For simplicity and clarity of illustration, elements
illustrated in the figures are not necessarily drawn to scale. Where considered appropriate,
reference labels have been repeated among the figures to indicate corresponding or analogous
elements.

FIG. 1 is a simplified block diagram of at least one embodiment of a computing
device for handling system management interrupts;

FIG. 2 is a simplified block diagram of at least one embodiment of an
environment of the computing device of FIG. 1;

FIG. 3 is a simplified flow diagram of at least one embodiment of a method for
handling system management interrupts that may be executed by the computing device of
FIGS. 1 and 2;

FIG. 4 is a simplified flow diagram of at least one embodiment of a method for a
master SMI handler that may be executed by the computing device of FIGS. 1 and 2;

FIG. 5 is a simplified flow diagram of at least one embodiment of a method for a
subordinate SMI handler that may be executed by the computing device of FIGS. 1 and 2; and

FIG. 6 is a schematic timeline diagram of a hang condition that may occur in

typical processors.

DETAILED DESCRIPTION OF THE DRAWINGS

While the concepts of the present disclosure are susceptible to various
modifications and alternative forms, specific embodiments thereof have been shown by way of
example in the drawings and will be described herein in detail. It should be understood,
however, that there is no intent to limit the concepts of the present disclosure to the particular
forms disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and
alternatives consistent with the present disclosure and the appended claims.

29 C¢

References in the specification to “one embodiment,” “an embodiment,” “an
illustrative embodiment,” etc., indicate that the embodiment described may include a particular
feature, structure, or characteristic, but every embodiment may or may not necessarily include
that particular feature, structure, or characteristic. Moreover, such phrases are not necessarily
referring to the same embodiment. Further, when a particular feature, structure, or

characteristic is described in connection with an embodiment, it is submitted that it is within the

WO 2014/158603 PCT/US2014/018664

knowledge of one skilled in the art to effect such feature, structure, or characteristic in
connection with other embodiments whether or not explicitly described.

The disclosed embodiments may be implemented, in some cases, in hardware,
firmware, software, or any combination thereof. The disclosed embodiments may also be
implemented as instructions carried by or stored on a transitory or non-transitory machine-
readable (e.g., computer-readable) storage medium, which may be read and executed by one or
more processors. A machine-readable storage medium may be embodied as any storage device,
mechanism, or other physical structure for storing or transmitting information in a form
readable by a machine (e.g., a volatile or non-volatile memory, a media disc, or other media
device).

In the drawings, some structural or method features may be shown in specific
arrangements and/or orderings. However, it should be appreciated that such specific
arrangements and/or orderings may not be required. Rather, in some embodiments, such
features may be arranged in a different manner and/or order than shown in the illustrative
figures. Additionally, the inclusion of a structural or method feature in a particular figure is not
meant to imply that such feature is required in all embodiments and, in some embodiments, may
not be included or may be combined with other features.

Referring now to FIG. 6, typical multi-core processors may stall execution or
“hang” when multiple SMIs are generated in close succession due to a phenomenon known as
“SMI merging.” A schematic diagram 600 illustrates the SMI merge issue. Regions 602 and
604 illustrate processor operation modes. In particular, region 602 illustrates protected mode
and region 604 illustrates SMM. Of course, long mode, real mode, or another ordinary
operating mode may be used instead of protected mode. Threads 606 and 608 are illustrated as
initially executing in protected mode 602. During time period 610, an SMI source generates
SMI 612, which is broadcast to both threads 606, 608. An SMI pending flag is set for each
thread. At the boundary between time periods 610 and 614, thread 608 enters SMM 604. As
thread 608 enters SMM, the SMI pending flag for thread 608 is automatically cleared. At this
time, thread 606 is executing a longer instruction and remains in protected mode 602. During
time period 614, an SMI source generates SMI 616, which is also broadcast to both threads 606
and 608. An SMI pending flag is again set for each thread 606, 608. Because the SMI pending
flag was already set for thread 606, both the SMI 612 and the SMI 616 have effectively been
merged together for thread 606. At the boundary between time periods 614 and 618, thread 606
enters SMM 604, automatically clearing the SMI pending flag for thread 606. Because thread
608 was already in SMM, the SMI pending bit for thread 608 remains set. During time period

-3

WO 2014/158603 PCT/US2014/018664

618, thread 608 executes the SMI handler, which handles all pending SMIs, including SMI 612
and SMI 616. At the boundary between time periods 618 and 620, the threads 606, 608 execute
RSM instruction 622 and return to protected mode 602. During time period 620, thread 608
immediately returns to SMM 604 because the SMI pending bit for thread 608 is still set.
However, thread 606 remains in protected mode 602 because no SMI pending bit has been set
for thread 606. Thus, thread 608 enters SMM 604 based on a spurious SMI. During time
period 624, thread 608 waits idly for thread 606 to enter SMM 604, which will not happen
without a timeout, inter-processor interrupt, or the like. Thus, due to the SMI merge, threads
606, 608 are out of sync and execution may be stalled.

Referring now to FIG. 1, an illustrative computing device 100 for handing SMIs
includes a multi-core processor 102 and an I/O subsystem 104, which both may generate SMIs.
Upon receiving an SMI, the processor 102 designates a master processor core which begins
handling the SMI without waiting for other processor cores to enter SMM. The master
processor core may direct each of the other processor cores to handle those SMIs originating
from the other processor cores. The processor 102 may avoid the SMI merge issue by detecting
spurious SMIs and resuming execution quickly as discussed in detail below.

By initiating handling of the SMI without waiting for other processor cores to
enter SMM, the processor 102 reduces latency for handling SMIs and increases scalability of
SMI handling with increased core count. Directing the other processor cores to handle SMIs
allows for handling SMIs originating from particular processor cores, because information
relating to such SMIs is available only in the processor core that originated the SMI. Detecting
spurious SMIs further reduces latency and improves scalability of SMI handling. Such
improved latency and scalability may allow SMI-based handling of machine check exceptions.

The computing device 100 may be embodied as any type of device capable of
performing the functions described herein. For example, the computing device 100 may be
embodied as, without limitation, a computer, a smart phone, a tablet computer, a laptop
computer, a notebook computer, a desktop computer, a workstation, a mobile computing
device, a cellular telephone, a handset, a messaging device, a vehicle telematics device, a
network appliance, a web appliance, a distributed computing system, a multiprocessor system, a
processor-based system, a consumer electronic device, a digital television device, and/or any
other computing device configured to handle system management interrupts. As shown in FIG.
1, the illustrative computing device 100 includes the processor 102, the I/O subsystem 104, a
memory 106, and a data storage device 110. Of course, the computing device 100 may include

other or additional components, such as those commonly found in a desktop computer (e.g.,

-4 -

WO 2014/158603 PCT/US2014/018664

various input/output devices), in other embodiments. Additionally, in some embodiments, one
or more of the illustrative components may be incorporated in, or otherwise from a portion of,
another component. For example, the memory 106, or portions thereof, may be incorporated in
the processor 102 in some embodiments.

The processor 102 may be embodied as any type of multi-core processor capable
of performing the functions described herein. For example, the processor 102 may be
embodied as a microprocessor, digital signal processor, microcontroller, or other processor or
processing/controlling circuit. The processor 102 includes processor cores 120 and uncore 140.
Each of the processor cores 120 is an independent processing unit capable of executing
programmed instructions. The illustrative processor 102 includes four processor cores 120a
through 120d; however any number of processor cores 120 may be included.

The uncore 140 includes any part of the processor 102 not included in the
processor cores 120 such as, for example, a memory controller. The uncore 140 of the
illustrative processor 102 includes an SMI status register 142. The SMI status register 142 is a
memory location addressable by each of the processor cores 120. The SMI status register 142
includes an SMI service pending flag 144. The SMI service pending flag 144 is set by
hardware of the processor 102 when an SMI is detected. The SMI service pending flag 144
also may be cleared by software executing on the processor cores 120. The SMI service
pending flag 144 may contain any logical value when set; for example, when set the SMI
service pending flag 144 may contain a logical high value, a logical low value, a zero value, or
a non-zero value. In some embodiments, the SMI service pending flag 144 may be
implemented as one bit of the SMI status register 142. Alternatively, the SMI service pending
flag 144 may be an independent register. The uncore 140 further includes a cache memory 146,
and some embodiments of the uncore 140 may include a memory controller 148. The cache
memory 146 may be a last-level cache shared by the processor cores 120. During operation,
both the cache memory 146 and the memory controller 148 may generate SMIs to be handled
by the processor 102. Although not illustrated, the uncore 140 may additionally include typical
components of a processor or a system-on-a-chip such as processor graphics, input/output
controllers, or power management circuitry.

The processor 102 is communicatively coupled to the I/O subsystem 104, which
may be embodied as circuitry and/or components to facilitate input/output operations with the
processor 102, the memory 106, and other components of the computing device 100. For
example, the I/O subsystem 104 may be embodied as, or otherwise include, memory controller

hubs, platform controller hubs, input/output control hubs, firmware devices, communication

-5.

WO 2014/158603 PCT/US2014/018664

links (i.e., point-to-point links, bus links, wires, cables, light guides, printed circuit board traces,
etc.) and/or other components and subsystems to facilitate the input/output operations. The I/O
subsystem 104 may generate SMIs or forward SMIs received from other components of the
computing device 100. The I/O subsystem 104 may communicate SMIs to the processor 102
by asserting an electrical signal on a physical input pin of the processor 102. In some
embodiments, the I/O subsystem 104 may form a portion of a system-on-a-chip (SoC) and be
incorporated, along with the processor 102, the memory 106, and other components of the
computing device 100, on a single integrated circuit chip.

The memory 106 may be embodied as any type of volatile or non-volatile
memory or data storage capable of performing the functions described herein. In operation, the
memory 106 may store various data and software used during operation of the computing
device 100 such as operating systems, applications, programs, libraries, and drivers. As
described above, the memory 106 may be communicatively coupled to the processor 102 via
the I/O subsystem 104, or in some embodiments may be directly coupled to the processor 102
through the memory controller 148.

The memory 106 includes a memory region 108 accessible to the processor
cores 120 while executing in SMM. This region, called the system management random access
memory (“SMRAM?”), includes executable code and data for SMI handling. The I/O subsystem
104 may regulate access to the SMRAM 108, preventing code from accessing or modifying the
SMRAM 108 when not executing in SMM.

The data storage 110 may be embodied as any type of device or devices
configured for short-term or long-term storage of data such as, for example, memory devices
and circuits, memory cards, hard disk drives, solid-state drives, or other data storage devices.
The data storage 110 may store software and/or firmware for SMI handling, including code that
is installed into the SMRAM 108 during operation.

Referring now to FIG. 2, in one embodiment, the computing device 100
establishes an environment 200 during operation. The illustrative embodiment 200 includes
threads 202, an in-progress flag 208, a master thread lock 210, and an SMI handler 212. The
various modules of the environment 200 may be embodied as hardware, firmware, software, or
a combination thereof.

Each of the threads 202 is an independent thread of execution corresponding to
the architectural state of one of the process cores 120. That is, each of the threads 202
corresponds to a stream of instructions executed by one of the processor cores 120 as well as

the corresponding register state of the processor core 120. Each of the threads 202 also may

-6-

WO 2014/158603 PCT/US2014/018664

include or reference storage for thread-specific software flags. Such software flags may be
stored in the memory 106 or at other levels of the memory hierarchy. The threads 202 include
one master thread 204 and a number of subordinate threads 206. The assignment of the master
thread 204 and the subordinate threads 206 is described in detail below. Note that the
illustrative embodiment 200 includes four threads—one master thread 204 and three
subordinate threads 206—however, in other embodiments any number of threads 202 may be
included. Also, in the illustrative embodiment, the threads 202 and the processor cores 120 are
in a one-to-one relationship. In other embodiments, different relationships may exist. For
example, in a symmetric multithreading processor, two threads 202 may execute on a single
processor core 120.

The in-progress flag 208 may be embodied as a memory location indicating
whether a master thread 204 has been designated, which indicates that SMI handler code is
currently in progress. The in-progress flag 208 may contain any logical value to indicate SMI
handler code is currently in progress; for example a logical high value, a logical low value, a
non-zero value, or a zero value. The in-progress flag 208 is initially cleared, meaning that SMI
handler code is not currently in progress. As described in detail below, the in-progress flag 208
is managed by software. The in-progress flag 208 may be embodied as a location in the
memory 106 or in the SMRAM 108.

The master thread lock 210 is a synchronization mechanism used to select one of
the threads 202 as the master thread 204. As described in detail below, upon entering SMM,
the threads 202 may race to acquire the master thread lock 210, with the winner of the race
becoming the master thread 204. Upon acquiring the master thread lock 210, the master thread
204 may set the in-progress flag 208. The master thread lock 210 may be embodied as a
hardware register of the computing device 100, or as a software lock stored in the memory 106
or the SMRAM 108.

The SMI handler 212 is configured to handle SMI interrupts. As described in
detail below, the SMI handler 212 manages the in-progress flag 208, selects the master thread
204, and handles SMIs generated by the processor cores 120, the uncore 140, and the I/O
subsystem 104. In some embodiments, those functions may be performed by sub-modules, for
example, by an SMI handler manager 214, a master SMI handler 216, or a subordinate SMI
handler 218.

Referring now to FIG. 3, in use, the computing device 100 may execute a
method 300 for handling SMIs. The method 300 may be executed as part of the SMI handler
manager 214 by each of the threads 202. The method 300 begins with block 302, in which the

-7 -

WO 2014/158603 PCT/US2014/018664

computing device 100 detects an SMI and a processor core 120 enters SMM. As described
above, the SMI may originate from one of the processor cores 120, from the uncore 140, or
from the I/0O subsystem 104. The I/O subsystem, in particular, may raise an SMI based on input
received from other components of the computing device 100. In some embodiments, an SMI
may be raised in response to a machine check exception generated by a machine check
architecture of the processor 102. In some embodiments, a so-called “software SMI” may be
generated by code executing on the processor 102 that writes to a designated address in I/O
address space. In response to detecting such a write from the processor 102, the I/O subsystem
104 may generate an SMI. Regardless of source, the SMI is asynchronous, meaning an SMI
may be raised at any time, including when the processor cores 120 are currently executing
instructions. When an SMI is generated, an SMI pending flag (not illustrated) is set for each of
the processor cores 120. As each processor core 120 completes the current instruction, reaching
an instruction boundary, if the SMI pending flag is set the processor core 120 transitions into
SMM. The current context of the processor core 120 is saved into the SMRAM 108, the SMI
pending flag is cleared, and the SMI service pending flag 144 is set. Once in SMM, the
processor core 120 executes instructions for thread 202, starting with the SMI handler manager
214.

In block 304, the thread 202 reads the in-progress flag 208. In block 306, the
thread 202 determines whether the in-progress flag 208 is set. As described in more detail
below, the in-progress flag 208 is set by a thread 202 upon being designated the master thread
204. Thus, if the in-progress flag 208 is already set in block 304, then another thread 202 has
already become the master thread 204 and the current thread 202 is therefore a subordinate
thread 206. If the in-progress flag 208 is set, then the method 300 branches to block 308. In
block 308, the thread 202 executes the subordinate SMI handler 218, described in detail below
with respect to FIG. 5.

Referring back to block 306, if the in-progress flag 208 is not set, the method
300 advances to block 310 in which, the thread 202 reads the SMI service pending flag 144 of
the SMI status register 142. The SMI service pending flag 144 indicates whether an SMI has
been generated and has not yet been handled. As described above, the SMI service pending
flag 144 is set by hardware of the processor 102 and is cleared by software executing on the
processor cores 120.

In block 312, the thread 202 determines whether the SMI service pending flag
144 is set. If the SMI service pending flag 144 is not set, then the method 300 branches to
block 314. In block 314, the thread 202 executes the RSM instruction. Upon executing the

-8-

WO 2014/158603 PCT/US2014/018664

RSM instruction, the context of the processor core 120 saved in the SMRAM 108 is loaded into
the appropriate registers of the processor core 120, and the processor core 120 resumes
execution in its previous mode of operation. For example, the processor core 120 may resume
execution in protected mode, long mode, or real mode. As described above, the method 300
reaches block 314 in situations where the in-progress flag 208 and the SMI service pending flag
144 are both not set. Such conditions occur as a result of spurious SMIs as described above in
connection with FIG. 6; that is, when an SMI merge condition has caused the threads 202 to
lose synchronization. The SMI service pending flag 144 allows the processor 102 to track such
spurious SMIs and resume execution quickly without excessive idle time.

Referring back to block 312, if the SMI service pending flag 144 is set, the
method 300 advances to block 316. In block 316, the thread 202 attempts to become the master
thread 204. The thread 202 may do so by attempting to acquire the master thread lock 210. As
discussed above, the master thread lock 210 may be embodied as any synchronization
mechanism suitable for selecting a single thread 202. In some embodiments, the master thread
lock 210 may be embodied as a hardware register, for example as a boot flag register
(“BOFL”). The BOFL is accessible to all of the threads 202. When the BOFL is read by one of
the threads, the contents of the BOFL are cleared. Assuming the BOFL initially holds a non-
zero value, the first thread 202 to read the BOFL receives that non-zero value. Any subsequent
thread 202 to read the BOFL receives a zero value. Thus, the BOFL may be used to implement
a hardware semaphore. In some embodiments, the master thread lock 210 may be implemented
as a software lock, for example a semaphore, a mutex, a spinlock, or the like.

In block 318, the thread 202 determines whether it successfully became the
master thread 204. If not, the method 300 branches to block 308 to execute the subordinate
SMI handler 218 as described below with respect to FIG. 5. If the thread 202 successfully
became the master thread 204, the method 300 advances to block 320.

In block 320, the thread 202 sets the in-progress flag 208. As described above,
with respect to block 306, after the in-progress flag 208 is set, subsequent threads 202 may
immediately execute the subordinate SMI handler 218 without attempting to acquire the master
thread lock 210. In block 322, the thread 202 clears the SMI service pending flag 144. The
SMI service pending flag 144 is cleared before handling the SMI to ensure that spurious SMIs
are detected correctly. In block 324, the thread 202 executes the master SMI handler 216, as
described in detail below with respect to FIG. 4. The thread 202 executes the master SMI
handler 216 without waiting for any other of the threads 202 to enter SMM.

WO 2014/158603 PCT/US2014/018664

Referring now to FIG. 4, in use, the computing device 100 may execute a
method 324 for handling SMIs. The method 324 may be embodied as the master SMI handler
216, which is executed by the single master thread 204. As described above, such master thread
204 has already been designated before execution of the method 324. The method 324 begins
in block 402, in which the master thread 204 determines whether the SMI is a software-
generated SMI. The master thread 204 may make such determination by reading registers of
the computing device 100. If the SMI is a software-generated SMI, the method 324 advances to
block 404.

In block 404, the master thread 204 determines whether a thread 202 that
originated the software SMI has checked in to SMM. The originating thread 202 may be the
only thread 202 capable of handling such a software SMI. The originating thread 202 may be
the master thread 204 itself. Each of the threads 202 may check in to SMM using any method
of inter-process communication, for example by using globally accessible software flags. The
master thread 204 may determine the identity of the thread 202 that originated the SMI by
comparing register values associated with the SMI to saved state values stored in the SMRAM
108. For example, the master thread 204 may determine whether a thread 202 with an
I0_MISC value stored in the SMRAM 108 matches the I0_MISC value associated with the
software SML

In block 406, if the master thread 204 has determined that a thread 202 that
generated the software SMI has not checked in, the method 324 loops back to block 404 to
continue waiting for such thread 202 to check in. If the master thread 204 determines that a
thread 202 that generated the software SMI has checked in, the method 324 advances to blocks
408 and 412.

Referring back to block 402, if the master thread 204 determines that the SMI is
not a software-generated SMI, the method 324 advances to blocks 408 and 412. In block 408,
the master thread 204 handles SMIs generated from the computing device 100 and the uncore
140; that is, SMIs generated from components of the computing device 100 other than the
processor cores 120. The master thread 204 may determine what SMIs need to be handled by
querying status registers maintained in the SMRAM 108, the memory 106, or the I/O subsystem
104. The master thread 204 may handle such SMIs by correcting memory errors, logging errors
for reporting to the operating system, performing power management activities, etc. The master
thread 204 may handle such SMIs by calling appropriate sub-handlers (not illustrated).

In some embodiments, in block 410 the master thread 204 may wait for other

threads 202 to check in to SMM. Handling certain SMI sources may require accessing

-10 -

WO 2014/158603 PCT/US2014/018664

resources shared among the processor cores 120; therefore, to prevent conflicts with operating
system code or other code executing on other processor cores 120, the master thread 204 may
wait for other threads 202 to enter SMM. For example, SMI handlers requiring input or output
across a PCI bus may wait for other threads 202 to enter SMM because reads and writes to the
PCI bus are non-atomic. To prevent excessive latency, the master thread 204 should not wait
for other threads 202 when the particular SMI to be handled does not post a potential conflict
with the other threads 202.

In block 412, the master thread 204 handles SMIs generated by the processor
core 120 on which the master thread 204 is executing (“‘core SMIs”). Again, the master thread
204 may determine the core SMIs to be handled by querying status registers maintained in the
SMRAM 108 or in the processor core 120. In the case of core SMIs, such status information
may only be accessible to the master thread 204 executing on the processor core 120. In some
embodiments, in block 414 the master thread 204 may wait for other threads 202 to enter SMM,
as discussed above with respect to block 410. Further, although illustrated in parallel, blocks
408 and 412 may be executed sequentially and in any order. After execution of both blocks 408
and 412, the method 324 advances to block 416.

In block 416, the master thread 204 finds the next subordinate thread 206
assigned to a processor core 120 that generated a core SMI. The master thread 204 may find
such subordinate thread 206 by searching a group of thread-specific software flags. As
described below, such thread-specific software flags may be set by the subordinate SMI handler
218. In block 418, the master thread 204 determines if a subordinate thread 206 has been
found. If so, the method 324 branches to block 420.

In block 420, the master thread 204 sends a command to the subordinate thread
206 to cause the subordinate thread 206 to handle the core SMI. As described above, status
registers for SMIs generated by the processor cores 120 may only be accessible to the particular
thread 202 running on the processor core 120. The master thread 204 may send the command
using any form of inter-process communication, for example, by releasing a lock, signaling a
semaphore, raising an interrupt, initiating a remote procedure call, etc. The master thread 204
waits for the subordinate thread 206 to complete handling the SMI before continuing, which
effectively serializes SMI handling. After handling is completed, the method 324 loops back to
block 416 to find the next subordinate thread 206 to experience a core SMI.

Referring back to block 418, if no subordinate thread 206 experiencing a core
SMI was found, the method 324 advances to block 422. At this point, all SMI sources have

been handled and the processor 102 is ready to resume ordinary operation. In block 422, the

-11 -

WO 2014/158603 PCT/US2014/018664

master thread 204 sends the RSM command to all subordinate threads 206. As described
below, upon receiving this command the processor cores 120 for the subordinate threads 206
resume operation in the previous execution mode.

In block 424, the master thread 204 clears the in-progress flag 208. Clearing the
in-progress flag 208 prepares the processor 102 to handle another SMI. In block 426, the
master thread 204 executes the RSM instruction, which causes the processor core 120 to exit
SMM and resume the previous operating mode.

Referring now to FIG. 5, in use, the computing device 100 may execute a
method 308 for handling SMIs. The method 308 may be embodied as the subordinate SMI
handler 218, which may be executed by one or more of the subordinate threads 206. As
described above, before execution of the method 308, such subordinate threads 206 have
already been designated based on failing to acquire the master thread lock 210 or based on
entering SMM after the master thread 204 has been designated. The method 308 begins with
block 502, in which the subordinate thread 206 determines whether it has experienced a core
SMI. As described above, a thread 202 experiences a core SMI when the SMI is generated by
the particular processor core 120 on which the thread 202 is executing. The subordinate thread
206 may make such determination by querying status registers of the computing device 100
and/or the processor 102.

In block 504, if the subordinate thread 206 experienced a core SMI, the method
308 advances to block 506. In block 506, the subordinate thread 206 sets a thread-specific
software flag indicating that the current thread 202 experienced a core SMI. As described
above, the master thread 204 may read such software flag when determining whether to direct
the subordinate thread 206 to handle the core SMI. Referring back to block 504, if the
subordinate thread 206 did not experience a core SMI, the method 308 skips ahead to block
508.

In block 508, the subordinate thread 206 waits for a command from the master
thread 204. As described above, the master thread 204 may send such command using any
form of interprocess communication. In block 510, the subordinate thread 206 determines
whether a command has been received. If not, the method 308 loops back to block 508 to
continue waiting for more commands from the master thread 204. If a command has been
received, the method 308 advances to block 512.

In block 512, the subordinate thread 206 determines whether the RSM command
has been received from the master thread 204. If so, the method 308 branches to block 514. In

block 514, the subordinate thread 206 executes the RSM instruction, which causes the processor

-12 -

WO 2014/158603 PCT/US2014/018664

core 120 to exit SMM and resume operation in the previous execution mode. Referring back to
block 512, if the command is not the RSM command, the method 308 advances to block 516.

In block 516, the subordinate thread 206 handles the core SMI. As described
above, handling the core SMI may include correcting memory errors for the processor core 120
and reporting corrected errors to the operating system. The subordinate thread 206 may execute
sub-handlers for the particular core SMI being handled. In some embodiments, in block 518 the
subordinate thread 206 may wait for other threads 202 to enter SMM, as discussed above with
respect to blocks 410 and 414. After handling the core SMI, the method 308 loops back to

block 508 to continue waiting for more commands from the master thread 204.

EXAMPLES

Example 1 includes a multi-core processor to handle a system management
interrupt generated in a computing device, the multi-core processor comprising a processor core
to (i) enter a system management mode in response to detection of the system management
interrupt by the multi-core processor and (ii) execute a system management interrupt handler
manager in response to entrance of the system management mode, the system management
interrupt handler manager to determine whether an in-progress flag is set, the in-progress flag to
indicate another processor core of the multi-core processor has acquired a master thread lock of
the computing device; attempt to acquire the master thread lock in response to a determination
that the in-progress flag is not set; set the in-progress flag in response to acquisition of the
master thread lock; and execute a master system management interrupt handler in response to
the acquisition of the master thread lock.

Example 2 includes the subject matter of Example 1, and further including a
subordinate processor core, wherein the system management interrupt handler manager is
further to execute the master system management interrupt handler without a wait for the
subordinate processor core to enter the system management mode.

Example 3 includes the subject matter of any of Examples 1 and 2, and further
including a system management interrupt service pending flag, wherein the multi-core
processor is to set the system management interrupt service pending flag in response to the
detection of the system management interrupt; and the system management interrupt handler
manager is further to determine whether the system management interrupt service pending flag
is set in response to the determination that the in-progress flag is not set, resume an execution
mode of the processor core in response to a determination that the system management interrupt

service pending flag is not set, attempt to acquire the master thread lock in response to a

- 13-

WO 2014/158603 PCT/US2014/018664

determination that the system management interrupt service pending flag is set, and clear the
system management interrupt service pending flag in response to the acquisition of the master
thread lock and prior to execution of the master system management interrupt handler.

Example 4 includes the subject matter of any of Examples 1-3, and further
including a system management interrupt status register, wherein the system management
interrupt service pending flag comprises a system management interrupt service pending bit of
the system management interrupt status register.

Example 5 includes the subject matter of any of Examples 1-4, and wherein the
execution mode of the processor core comprises one of: a protected mode, a long mode, or a
real mode.

Example 6 includes the subject matter of any of Examples 1-5, and wherein the
master thread lock comprises a hardware register of the computing device.

Example 7 includes the subject matter of any of Examples 1-6, and wherein the
master thread lock comprises a software lock of the computing device.

Example 8 includes the subject matter of any of Examples 1-7, and wherein the
processor core comprises a subordinate processor core, and the system management interrupt
handler manager is further to execute a subordinate system management interrupt handler in
response to a determination that the in-progress flag is set; and execute the subordinate system
management interrupt handler in response to failure to acquire the master thread lock.

Example O includes the subject matter of any of Examples 1-8, and further
including a master processor core different from the subordinate processor core, wherein the
subordinate system management interrupt handler is to determine whether the subordinate
processor core is a source of the system management interrupt; receive a command from the
master processor core to handle the system management interrupt in response to a determination
that the subordinate processor core is the source of the system management interrupt; and
handle the system management interrupt in response to receipt of the command from the master
processor core.

Example 10 includes the subject matter of any of Examples 1-9, and wherein the
subordinate system management interrupt handler is further to set a flag to indicate the
subordinate processor core is the source of the system management interrupt in response to the
determination that the subordinate processor core is the source of the system management
interrupt.

Example 11 includes the subject matter of any of Examples 1-10, and further

including a second subordinate processor core, wherein the subordinate system management

-14 -

WO 2014/158603 PCT/US2014/018664

interrupt handler is further to wait for the second subordinate processor core to enter the system
management mode.

Example 12 includes the subject matter of any of Examples 1-11, and wherein
the subordinate system management interrupt handler is further to handle a machine check
exception generated by a machine check architecture of the computing device.

Example 13 includes the subject matter of any of Examples 1-12, and wherein
the subordinate system management interrupt handler is further to correct a memory error of the
subordinate processor core and report the corrected error to an operating system of the
computing device.

Example 14 includes the subject matter of any of Examples 1-13, and wherein
the master system management interrupt handler is to clear the in-progress flag.

Example 15 includes the subject matter of any of Examples 1-14, and wherein
the processor core comprises a master processor core, and the master system management
interrupt handler is further to determine whether the system management interrupt was
generated by a component of the computing device other than a processor core; and handle the
system management interrupt in response to a determination that the system management
interrupt was generated by the component of the computing device other than a processor core.

Example 16 includes the subject matter of any of Examples 1-15, and wherein
the master system management interrupt handler is further to determine whether the system
management interrupt was generated by the master processor core; and handle the system
management interrupt in response to a determination that the system management interrupt was
generated by the master processor core.

Example 17 includes the subject matter of any of Examples 1-16, and wherein
the master system management interrupt handler is further to handle a machine check exception
generated by a machine check architecture of the computing device.

Example 18 includes the subject matter of any of Examples 1-17, and wherein
the master system management interrupt handler is further to correct a memory error of the
computing device and report the corrected error to an operating system of the computing
device.

Example 19 includes the subject matter of any of Examples 1-18, and further
including a subordinate processor core different from the processor core, wherein the processor
core comprises a master processor core and the master system management interrupt handler is
further to determine whether the subordinate processor core is a source of the system

management interrupt; send a command to the subordinate processor core to handle the system

- 15 -

WO 2014/158603 PCT/US2014/018664

management interrupt in response to a determination that the subordinate processor core is the
source of the system management interrupt; and wait for the subordinate processor core to
complete the handle of the system management interrupt.

Example 20 includes the subject matter of any of Examples 1-19, and wherein
the master system management interrupt handler is further to read a flag to indicate the
subordinate processor core is the source of the system management interrupt, the flag to be set
by the subordinate processor core.

Example 21 includes a method for handling a system management interrupt
generated in a computing device, the method comprising entering, by a processor core of the
computing device, a system management mode of the processor core in response to detecting
the system management interrupt; determining, by the processor core, whether an in-progress
flag is set, the in-progress flag to indicate another processor core of the computing device has
acquired a master thread lock of the computing device; attempting, by the processor core, to
acquire the master thread lock in response to determining the in-progress flag is not set; setting,
by the processor core, the in-progress flag in response to acquiring the master thread lock; and
executing, by the processor core, a master system management interrupt handler in response to
acquiring the master thread lock.

Example 22 includes the subject matter of Example 21, and wherein executing
the master system management interrupt handler comprises executing the master system
management interrupt handler without waiting for a subordinate processor core of the
computing device to enter the system management mode.

Example 23 includes the subject matter of any of Examples 21 and 22, and
further including determining, by the processor core, whether a system management interrupt
service pending flag of the computing device is set in response to determining the in-progress
flag is not set, wherein the system management interrupt service pending flag is to be set by a
processor of the computing device in response to detecting the system management interrupt;
resuming, by the processor core, an execution mode of the processor core in response to
determining the system management interrupt service pending flag is not set; and clearing, by
the processor core, the system management interrupt service pending flag in response to
acquiring the master thread lock and prior to executing the master system management interrupt
handler; wherein attempting to acquire the master thread lock further comprises attempting to
acquire the master thread lock in response to determining the system management interrupt

service pending flag is set.

- 16 -

WO 2014/158603 PCT/US2014/018664

Example 24 includes the subject matter of any of Examples 21-23, and wherein
determining whether the system management interrupt service pending flag is set comprises
determining whether a service pending bit of a system management interrupt status register of
the processor is set.

Example 25 includes the subject matter of any of Examples 21-24, and wherein
resuming the execution mode comprises one of: resuming a protected mode, resuming a long
mode, or resuming a real mode.

Example 26 includes the subject matter of any of Examples 21-25, and wherein
attempting to acquire the master thread lock comprises attempting to read a hardware register of
the computing device.

Example 27 includes the subject matter of any of Examples 21-26, and wherein
attempting to acquire the master thread lock comprises attempting to acquire a software lock of
the computing device.

Example 28 includes the subject matter of any of Examples 21-27, and wherein
the processor core comprises a subordinate processor core, the method further comprising
executing, by the subordinate processor core, a subordinate system management interrupt
handler in response to determining the in-progress flag is set; and executing, by the subordinate
processor core, the subordinate system management interrupt handler in response to not
acquiring the master thread lock.

Example 29 includes the subject matter of any of Examples 21-28, and wherein
executing the subordinate system management interrupt handler comprises determining, by the
subordinate processor core, whether the subordinate processor core is a source of the system
management interrupt; receiving, by the subordinate processor core, a command from a master
processor core of the computing device, different from the subordinate processor core, to handle
the system management interrupt in response to determining the subordinate processor core is
the source of the system management interrupt; and handling, by the subordinate processor
core, the system management interrupt in response to receiving the command from the master
processor core.

Example 30 includes the subject matter of any of Examples 21-29, and further
including setting, by the subordinate processor core, a flag indicating the subordinate processor
core is the source of the system management interrupt in response to determining the

subordinate processor core is the source of the system management interrupt.

-17 -

WO 2014/158603 PCT/US2014/018664

Example 31 includes the subject matter of any of Examples 21-30, and wherein
handling the system management interrupt further comprises waiting for a second subordinate
processor core of the computing device to enter the system management mode.

Example 32 includes the subject matter of any of Examples 21-31, and wherein
handling the system management interrupt comprises handling a machine check exception
generated by a machine check architecture of the computing device.

Example 33 includes the subject matter of any of Examples 21-32, and wherein
handling the machine check exception comprises correcting a memory error of the subordinate
processor core and reporting the corrected error to an operating system of the computing device.

Example 34 includes the subject matter of any of Examples 21-33, and wherein
executing the master system management interrupt handler comprises clearing the in-progress
flag.

Example 35 includes the subject matter of any of Examples 21-34, and wherein
the processor core comprises a master processor core and wherein executing the master system
management interrupt handler comprises determining, by the master processor core, whether
the system management interrupt was generated by a component of the computing device other
than a processor core; and handling, by the master processor core, the system management
interrupt in response to determining the system management interrupt was generated by the
component of the computing device other than a processor core.

Example 36 includes the subject matter of any of Examples 21-35, and wherein
executing the master system management interrupt handler further comprises determining, by
the master processor core, whether the system management interrupt was generated by the
master processor core; and handling, by the master processor core, the system management
interrupt in response to determining the system management interrupt was generated by the
master processor core.

Example 37 includes the subject matter of any of Examples 21-36, and wherein
handling the system management interrupt comprises handling a machine check exception
generated by a machine check architecture of the computing device.

Example 38 includes the subject matter of any of Examples 21-37, and wherein
handling the machine check exception comprises correcting a memory error of the computing
device and reporting the corrected error to an operating system of the computing device.

Example 39 includes the subject matter of any of Examples 21-38, and wherein
the processor core comprises a master processor core and wherein executing the master system

management interrupt handler comprises determining, by the master processor core, whether a

- 18 -

WO 2014/158603 PCT/US2014/018664

subordinate processor core of the computing device, different from the master processor core, is
a source of the system management interrupt; sending, by the master processor core, a
command to the subordinate processor core to handle the system management interrupt in
response to determining the subordinate processor core is the source of the system management
interrupt; and waiting, by the master processor core, for the subordinate processor core to
complete handling the system management interrupt.

Example 40 includes the subject matter of any of Examples 21-39, and wherein
determining whether the subordinate processor core of the computing device is the source of the
system management interrupt comprises reading a flag indicating the subordinate processor
core is the source of the system management interrupt, the flag to be set by the subordinate
processor core.

Example 41 includes a computing device comprising a processor; and a memory
having stored therein a plurality of instructions that when executed by the processor cause the
computing device to perform the method of any of Examples 21-40.

Example 42 includes one or more machine readable storage media comprising a
plurality of instructions stored thereon that in response to being executed result in a computing
device performing the method of any of Examples 21-40.

Example 43 includes a computing device to handle a system management
interrupt generated in the computing device, the computing device comprising means for
entering, by a processor core of the computing device, a system management mode of the
processor core in response to detecting the system management interrupt; means for
determining, by the processor core, whether an in-progress flag is set, the in-progress flag to
indicate another processor core of the computing device has acquired a master thread lock of
the computing device; means for attempting, by the processor core, to acquire the master thread
lock in response to determining the in-progress flag is not set; means for setting, by the
processor core, the in-progress flag in response to acquiring the master thread lock; and means
for executing, by the processor core, a master system management interrupt handler in response
to acquiring the master thread lock.

Example 44 includes the subject matter of Example 43, and wherein the
means for executing the master system management interrupt handler comprises means for
executing the master system management interrupt handler without waiting for a subordinate
processor core of the computing device to enter the system management mode.

Example 45 includes the subject matter of any of Examples 43 and 44, and

further including means for determining, by the processor core, whether a system management

-19 -

WO 2014/158603 PCT/US2014/018664

interrupt service pending flag of the computing device is set in response to determining the in-
progress flag is not set, wherein the system management interrupt service pending flag is to be
set by a processor of the computing device in response to detecting the system management
interrupt; means for resuming, by the processor core, an execution mode of the processor core
in response to determining the system management interrupt service pending flag is not set; and
means for clearing, by the processor core, the system management interrupt service pending
flag in response to acquiring the master thread lock and prior to executing the master system
management interrupt handler; wherein the means for attempting to acquire the master thread
lock further comprises means for attempting to acquire the master thread lock in response to
determining the system management interrupt service pending flag is set.

Example 46 includes the subject matter of any of Examples 43-45, and wherein
the means for determining whether the system management interrupt service pending flag is set
comprises means for determining whether a service pending bit of a system management
interrupt status register of the processor is set.

Example 47 includes the subject matter of any of Examples 43-46, and wherein
the means for resuming the execution mode comprises one of: means for resuming a protected
mode, means for resuming a long mode, or means for resuming a real mode.

Example 48 includes the subject matter of any of Examples 43-47, and wherein
the means for attempting to acquire the master thread lock comprises means for attempting to
read a hardware register of the computing device.

Example 49 includes the subject matter of any of Examples 43-48, and wherein
means for attempting to acquire the master thread lock comprises means for attempting to
acquire a software lock of the computing device.

Example 50 includes the subject matter of any of Examples 43-49, and wherein
the processor core comprises a subordinate processor core, the computing device further
comprising means for executing, by the subordinate processor core, a subordinate system
management interrupt handler in response to determining the in-progress flag is set; and means
for executing, by the subordinate processor core, the subordinate system management interrupt
handler in response to not acquiring the master thread lock.

Example 51 includes the subject matter of any of Examples 43-50, and wherein
the means for executing the subordinate system management interrupt handler comprises means
for determining, by the subordinate processor core, whether the subordinate processor core is a
source of the system management interrupt; means for receiving, by the subordinate processor

core, a command from a master processor core of the computing device, different from the

220 -

WO 2014/158603 PCT/US2014/018664

subordinate processor core, to handle the system management interrupt in response to
determining the subordinate processor core is the source of the system management interrupt;
and means for handling, by the subordinate processor core, the system management interrupt in
response to receiving the command from the master processor core.

Example 52 includes the subject matter of any of Examples 43-51, and further
including means for setting, by the subordinate processor core, a flag indicating the subordinate
processor core is the source of the system management interrupt in response to determining the
subordinate processor core is the source of the system management interrupt.

Example 53 includes the subject matter of any of Examples 43-52, and wherein
the means for handling the system management interrupt further comprises means for waiting
for a second subordinate processor core of the computing device to enter the system
management mode.

Example 54 includes the subject matter of any of Examples 43-53, and wherein
the means for handling the system management interrupt comprises means for handling a
machine check exception generated by a machine check architecture of the computing device.

Example 55 includes the subject matter of any of Examples 43-54, and wherein
the means for handling the machine check exception comprises means for correcting a memory
error of the subordinate processor core and reporting the corrected error to an operating system
of the computing device.

Example 56 includes the subject matter of any of Examples 43-55, and wherein
the means for executing the master system management interrupt handler comprises means for
clearing the in-progress flag.

Example 57 includes the subject matter of any of Examples 43-56, and wherein
the processor core comprises a master processor core and wherein the means for executing the
master system management interrupt handler comprises means for determining, by the master
processor core, whether the system management interrupt was generated by a component of the
computing device other than a processor core; and means for handling, by the master processor
core, the system management interrupt in response to determining the system management
interrupt was generated by the component of the computing device other than a processor core.

Example 58 includes the subject matter of any of Examples 43-57, and wherein
the means for executing the master system management interrupt handler further comprises
means for determining, by the master processor core, whether the system management interrupt

was generated by the master processor core; and means for handling, by the master processor

-21 -

WO 2014/158603 PCT/US2014/018664

core, the system management interrupt in response to determining the system management
interrupt was generated by the master processor core.

Example 59 includes the subject matter of any of Examples 43-58, and wherein
the means for handling the system management interrupt comprises means for handling a
machine check exception generated by a machine check architecture of the computing device.

Example 60 includes the subject matter of any of Examples 43-59, and wherein
the means for handling the machine check exception comprises means for correcting a memory
error of the computing device and reporting the corrected error to an operating system of the
computing device.

Example 61 includes the subject matter of any of Examples 43-60, and wherein
the processor core comprises a master processor core and wherein means for executing the
master system management interrupt handler comprises means for determining, by the master
processor core, whether a subordinate processor core of the computing device, different from
the master processor core, is a source of the system management interrupt; means for sending,
by the master processor core, a command to the subordinate processor core to handle the system
management interrupt in response to determining the subordinate processor core is the source of
the system management interrupt; and means for waiting, by the master processor core, for the
subordinate processor core to complete handling the system management interrupt.

Example 62 includes the subject matter of any of Examples 43-61, and wherein
the means for determining whether the subordinate processor core of the computing device is
the source of the system management interrupt comprises means for reading a flag indicating
the subordinate processor core is the source of the system management interrupt, the flag to be

set by the subordinate processor core.

-22 -

WO 2014/158603 PCT/US2014/018664

WHAT IS CLAIMED IS:

1. A multi-core processor to handle a system management interrupt generated in a

computing device, the multi-core processor comprising:

a processor core to (i) enter a system management mode in response to detection of the
system management interrupt by the multi-core processor and (ii) execute a system
management interrupt handler manager in response to entrance of the system management

mode, the system management interrupt handler manager to:

determine whether an in-progress flag is set, the in-progress flag to indicate another
processor core of the multi-core processor has acquired a master thread lock of the computing

device;

attempt to acquire the master thread lock in response to a determination that the in-

progress flag is not set;

set the in-progress flag in response to acquisition of the master thread lock; and

execute a master system management interrupt handler in response to the acquisition of

the master thread lock.

2. The multi-core processor of claim 1, further comprising a subordinate processor
core, wherein the system management interrupt handler manager is further to execute the
master system management interrupt handler without a wait for the subordinate processor core

to enter the system management mode.

3. The multi-core processor of claim 1, further comprising a system management

interrupt service pending flag, wherein:

the multi-core processor is to set the system management interrupt service pending flag

in response to the detection of the system management interrupt; and

the system management interrupt handler manager is further to:

_23 -

WO 2014/158603 PCT/US2014/018664

determine whether the system management interrupt service pending flag is set in

response to the determination that the in-progress flag is not set,

resume an execution mode of the processor core in response to a determination that the

system management interrupt service pending flag is not set,

attempt to acquire the master thread lock in response to a determination that the system

management interrupt service pending flag is set, and

clear the system management interrupt service pending flag in response to the
acquisition of the master thread lock and prior to execution of the master system management

interrupt handler.

4. The multi-core processor of claim 3, further comprising a system management
interrupt status register, wherein the system management interrupt service pending flag
comprises a system management interrupt service pending bit of the system management

interrupt status register.

5. The multi-core processor of claim 1, wherein the master thread lock comprises a

hardware register of the computing device.

6. The multi-core processor of claim 1, wherein the master thread lock comprises a

software lock of the computing device.

7. The multi-core processor of any of claims 1-6, wherein the processor core
comprises a subordinate processor core, and the system management interrupt handler manager

is further to:

execute a subordinate system management interrupt handler in response to a

determination that the in-progress flag is set; and

execute the subordinate system management interrupt handler in response to failure to

acquire the master thread lock.

-24 -

WO 2014/158603 PCT/US2014/018664

8. The multi-core processor of claim 7, further comprising a master processor core
different from the subordinate processor core, wherein the subordinate system management

interrupt handler is to:

determine whether the subordinate processor core is a source of the system management

interrupt;

receive a command from the master processor core to handle the system management
interrupt in response to a determination that the subordinate processor core is the source of the

system management interrupt; and

handle the system management interrupt in response to receipt of the command from the

master Processor core.

0. The multi-core processor of claim 8, wherein the subordinate system
management interrupt handler is further to handle a machine check exception generated by a

machine check architecture of the computing device.

10. The multi-core processor of claim 9, wherein the subordinate system
management interrupt handler is further to correct a memory error of the subordinate processor

core and report the corrected error to an operating system of the computing device.

11. The multi-core processor of any of claims 1-6, wherein the processor core
comprises a master processor core, and the master system management interrupt handler is

further to:

determine whether the system management interrupt was generated by a component of

the computing device other than a processor core; and

handle the system management interrupt in response to a determination that the system
management interrupt was generated by the component of the computing device other than a

processor core.

12. The multi-core processor of claim 11, wherein the master system management

interrupt handler is further to:

-25 -

WO 2014/158603 PCT/US2014/018664

determine whether the system management interrupt was generated by the master

Processor core; and

handle the system management interrupt in response to a determination that the system

management interrupt was generated by the master processor core.

13. The multi-core processor of claim 12, wherein the master system management
interrupt handler is further to handle a machine check exception generated by a machine check

architecture of the computing device.

14. The multi-core processor of claim 13, wherein the master system management
interrupt handler is further to correct a memory error of the computing device and report the

corrected error to an operating system of the computing device.

15. The multi-core processor of any of claims 1-6, further comprising a subordinate
processor core different from the processor core, wherein the processor core comprises a master

processor core and the master system management interrupt handler is further to:

determine whether the subordinate processor core is a source of the system management

interrupt;

send a command to the subordinate processor core to handle the system management
interrupt in response to a determination that the subordinate processor core is the source of the

system management interrupt; and

wait for the subordinate processor core to complete the handle of the system

management interrupt.

16. A method for handling a system management interrupt generated in a computing

device, the method comprising:

entering, by a processor core of the computing device, a system management mode of

the processor core in response to detecting the system management interrupt;

226 -

WO 2014/158603 PCT/US2014/018664

determining, by the processor core, whether an in-progress flag is set, the in-progress
flag to indicate another processor core of the computing device has acquired a master thread

lock of the computing device;

attempting, by the processor core, to acquire the master thread lock in response to

determining the in-progress flag is not set;

setting, by the processor core, the in-progress flag in response to acquiring the master

thread lock; and

executing, by the processor core, a master system management interrupt handler in

response to acquiring the master thread lock.

17. The method of claim 16, wherein executing the master system management
interrupt handler comprises executing the master system management interrupt handler without
waiting for a subordinate processor core of the computing device to enter the system

management mode.

18. The method of claim 16, further comprising:

determining, by the processor core, whether a system management interrupt service
pending flag of the computing device is set in response to determining the in-progress flag is
not set, wherein the system management interrupt service pending flag is to be set by a

processor of the computing device in response to detecting the system management interrupt;

resuming, by the processor core, an execution mode of the processor core in response to

determining the system management interrupt service pending flag is not set; and

clearing, by the processor core, the system management interrupt service pending flag in
response to acquiring the master thread lock and prior to executing the master system

management interrupt handler;

wherein attempting to acquire the master thread lock further comprises attempting to
acquire the master thread lock in response to determining the system management interrupt

service pending flag is set.

-27 -

WO 2014/158603 PCT/US2014/018664

19. The method of claim 16, wherein the processor core comprises a subordinate

processor core, the method further comprising:

executing, by the subordinate processor core, a subordinate system management

interrupt handler in response to determining the in-progress flag is set; and

executing, by the subordinate processor core, the subordinate system management

interrupt handler in response to not acquiring the master thread lock.

20. The method of claim 19, wherein executing the subordinate system management

interrupt handler comprises:

determining, by the subordinate processor core, whether the subordinate processor core

is a source of the system management interrupt;

receiving, by the subordinate processor core, a command from a master processor core
of the computing device, different from the subordinate processor core, to handle the system
management interrupt in response to determining the subordinate processor core is the source of

the system management interrupt; and

handling, by the subordinate processor core, the system management interrupt in

response to receiving the command from the master processor core.

21. The method of claim 20, wherein handling the system management interrupt
comprises handling a machine check exception generated by a machine check architecture of

the computing device.

22. The method of claim 16, wherein the processor core comprises a master
processor core and wherein executing the master system management interrupt handler

comprises:

determining, by the master processor core, whether the system management interrupt

was generated by a component of the computing device other than a processor core;

_28 -

WO 2014/158603 PCT/US2014/018664

determining, by the master processor core, whether the system management interrupt

was generated by the master processor core; and

handling, by the master processor core, the system management interrupt in response to
determining the system management interrupt was generated by the component of the
computing device other than a processor core or determining the system management interrupt
was generated by the master processor core, wherein handling the system management interrupt
comprises handling a machine check exception generated by a machine check architecture of

the computing device.

23. The method of claim 16, wherein the processor core comprises a master
processor core and wherein executing the master system management interrupt handler

comprises:

determining, by the master processor core, whether a subordinate processor core of the
computing device, different from the master processor core, is a source of the system

management interrupt;

sending, by the master processor core, a command to the subordinate processor core to
handle the system management interrupt in response to determining the subordinate processor

core is the source of the system management interrupt; and

waiting, by the master processor core, for the subordinate processor core to complete

handling the system management interrupt.

24. A computing device comprising:

a processor; and

a memory having stored therein a plurality of instructions that when executed by the

processor cause the computing device to perform the method of any of claims 16-23.

25. One or more machine readable storage media comprising a plurality of
instructions stored thereon that in response to being executed result in a computing device

performing the method of any of claims 16-23.

-29 -

PCT/US2014/018664

WO 2014/158603

175

¢ Old

[4014

] Y31aNVH
a7 INS JLVYNIQHOENS
| ¥3TANVH INS ¥3LSYW
91z
~— Y3ovNVIN ¥31aNVH INS
pLZ
HITANVH INS
Z1z 2
3001 avIuHL | ov14
NET SSIUO0UI-NI
01z - g0z -~
avIdHL avIdHL
31YNIQYO8NS 31VNIdY0ans
90z - 90z -
avIdHL [avaunL
31VYNIQY0ans HILSVIN
90z - 0z 2
| JOIA3A ONILNdNOD

\/

v

\

0oL

00¢

JIOVHOLS
o” | viva
~~ IWVHINS W3LSASANS
80L_| “ Sonan o/l
90/ _ ol

ovl
Moozl

Meozl

8yl L 221 1Pa Y A= -
ot T JHOVD
44 W o i ERCETES E N
crl SNLVLS INS
JHOONN N
ooz, T 3MOO JW00 H
qoz, T OO J™W0D M
. H0SS3004d
201

33IA3A ONILNAINOD

00l

0cl

WO 2014/158603

2/5

302

SMI START

CHECK IN-PROGRESS FLAG

306

IN PROGRESS? >—2>

PCT/US2014/018664

300

/

CHECK SMI SERVICE PENDING FLAG OF SMI
STATUS REGISTER

312

SERVICE NO

EXECUTE SUBORDINATE 308
SMI HANDLER
r

314
RSM

PENDING?

ATTEMPT TO BECOME MASTER THREAD

318

MASTER NO

b

316

THREAD?

SET IN-PROGRESS FLAG

l

CLEAR SMI SERVICE PENDING FLAG

EXECUTE MASTER SMI HANDLER

FIG. 3

320
"

322

WO 2014/158603
3/5

322

402
NO

SOFTWARE SMI?

PCT/US2014/018664

324

/

DETERMINE WHETHER THREAD ORIGINATING _j04
SOFTWARE SMI HAS CHECKED IN
406
CHEGKED IN? > 2
l — 408 — 412
HANDLE PLATFORM AND UNCORE HANDLE CORE SMI SOURCES FOR
SMI SOURCES a0 MASTER THREAD “
____________________ 4
"WAIT FOR OTHER THREADS TO , — "WAIT FOR OTHER THREADS TO | —
| CHECK IN ' CHECK IN
L e v e e e —— — — — — Jd e e e e — —— — — — — 4

FIND NEXT SUBORDINATE THREAD THAT
EXPERIENCED CORE SMI BY CHECKING THREAD-
SPECIFIC SOFTWARE FLAGS

416

418
YES

THREAD FOUND?

SEND COMMAND TO
SUBORDINATE THREAD TO

HANDLE CORE SMI AND WAIT
FOR COMPLETION

SEND RSM COMMAND TO ALL
SUBORDINATE THREADS

422
L7

l

CLEAR IN-PROGRESS FLAG

424
e

426
RSM

FIG. 4

420
L/

WO 2014/158603
4/5
FROM 306, 318

|

DETERMINE WHETHER CURRENT THREAD | 502
EXPERIENCED CORE SMI

504
NO

CORE SMI?

SET THREAD-SPECIFIC SOFTWARE FLAG 506
INDICATING CURRENT THREAD EXPERIENCED [~
CORE sMI

i 508

WAIT FOR COMMAND FROM MASTER THREAD |~

510

NO COMMAND

RECEIVED?

512
YES

RSM COMMAND?

516
EXECUTE COMMAND TO HANDLE CORE SMI |~
F— — - 518

I_WAIT FOR OTHER THREADS TO CHECKIN

FIG. 5

PCT/US2014/018664

308

/

514

WO 2014/158603 PCT/US2014/018664

5/5
600
SMI SOURCE | [SMI SOURCE ./
smi| i Sy
612 P oete—] | P
606 : ¢ -—
608 ¢ -
%92 prOTECTED 622 ~
604> MM =
S RSM
: 606 ¢~ — — — — — — *
608 & — — — —¥— —| o o — —— —

610 614 618 620 624

FIG. 6 (PRIOR ART)

International application No.

PCT/US2014/018664

INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
GOGF 9/48(2006.01)i, GOGF 9/38(2006.01)i

According to International Patent Classification (IPC) or to both national classification and [PC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
GOGF 9/48; GOOF 12/00; GO6F 12/14; GO6F 13/24; GOGF 9/38

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
cKOMPASS(KIPO internal) & Keywords: system, management, interrupt, handling, processor

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US 2004-0153593 Al (WATT, S. C. et al.) 5 August 2004 1-25
See abstract, paragraphs [0118]-[0138], and fig. 9.
A US 2003-0046464 Al (MURTY, K. et al.) 6 March 2003 1-25
See abstract, paragraphs [0021]-[0028], and fig. 1.
A US 2003-0229794 Al (SUTTON II, J. A. et al.) 11 December 2003 1-25
See abstract, paragraphs [0023]-[0025], and fig. 2.
A US 2003-0051087 Al (CORRIGAN, M. J. et al.) 13 March 2003 1-25
See abstract, paragraphs [0019]-[0025], and fig. 1.
A US 2007-0088890 Al (WIELAND, P. W. et al.) 19 April 2007 1-25

See abstract, paragraphs [0048]-[0054], and fig. 1.

|:| Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:

"A" document defining the general state of the art which is not considered
to be of particular relevance

carlier application or patent but published on or after the international
filing date

document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

document referring to an oral disclosure, use, exhibition or other
means

document published prior to the international filing date but later
than the priority date claimed

g

o

o

"pr

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents,such combination
being obvious to a person skilled in the art

document member of the same patent family

'

myn

ng"

Date of the actual completion of the international search

29 May 2014 (29.05.2014)

Date of mailing of the international search report

29 May 2014 (29.05.2014)

Name and mailing address of the [ISA/KR
International Application Division
¢ Korean Intellectual Property Office
189 Cheongsa-to, Seo-gu, Dagjeon Metropolitan City, 302-701,
Republic of Korea

Facsimile No. +82-42-472-7140

Authorized officer

YU, Jintac

Telephone No. +82-42-481-8530

Form PCT/ISA/210 (second sheet) (July 2009

INTERNATIONAL SEARCH REPORT

International application No.

Information on patent family members PCT/US2014/018664
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2004-0153593 Al 05/08/2004 AU 2003-274383 Al 15/06/2004

AU 2003-276399 Al 15/06/2004
AU 2003-276399 A8 15/06/2004
AU 2003-278342 Al 15/06/2004
AU 2003-278347 Al 15/06/2004
AU 2003-278347 A8 15/06/2004
CN 100350388 CO 21/11/2007
CN 100354829 CO 12/12/2007
CN 1711525 AO 21/12/2005
CN 1711526 AO 21/12/2005
EP 1563375 Al 17/08/2005
EP 1563375 Bl 06/09/2006
EP 1563376 A2 17/08/2005
EP 1563376 Bl 12/04/2006
EP 1563380 A2 17/08/2005
EP 1563380 Bl 19/07/2006
GB 0325005 DO 26/11/2003
GB 2396712 A 30/06/2004
GB 2396712 B 07/12/2005
GB 2409745 A 06/07/2005
GB 2410348 A 27/07/2005
GB 2411254 A 24/08/2005
JP 2004-171564 A 17/06/2004
JP 2004-171565 A 17/06/2004
JP 2004-171566 A 17/06/2004
JP 2004-171567 A 17/06/2004
JP 2004-171568 A 17/06/2004
JP 2006-506751 A 23/02/2006
JP 2006-506752 A 23/02/2006
JP 2006-506753 A 23/02/2006
JP 4220476 B2 04/02/2009
JP 4299107 B2 22/07/2009
JP 4299108 B2 22/07/2009
JP 4423012 B2 03/03/2010
JP 4423206 B2 03/03/2010
JP 4424973 B2 03/03/2010
JP 4447471 B2 07/04/2010
KR 10-0941104 B1 10/02/2010
KR 10-0955284 Bl 30/04/2010
KR 10-1099463 Bl 28/12/2011
TW 275997 A 11/03/2007
TW 275997 B 11/03/2007
TW 1275997 B 11/03/2007
US 2004-0105298 Al 03/06/2004
US 2004-0139346 Al 15/07/2004
US 2004-0148480 Al 29/07/2004
US 2004-0153672 Al 05/08/2004
US 2004-0153807 Al 05/08/2004
US 2004-0158727 Al 12/08/2004

Form PCT/ISA/210 (patent family annex) (July 2009)

INTERNATIONAL SEARCH REPORT

International application No.

Information on patent family members PCT/US2014/018664
Patent document Publication Patent family Publication
cited in search report date member(s) date

US 2004-0158736 Al 12/08/2004
US 2004-0163013 Al 19/08/2004
US 2004-0181682 Al 16/09/2004
US 2004-0187117 Al 23/09/2004
US 2004-0260910 Al 23/12/2004
US 2005-0160210 Al 21/07/2005
US 2009-0177830 Al 09/07/2009
US 2009-0259846 Al 15/10/2009
US 2009-0320048 Al 24/12/2009
US 2013-0067133 Al 14/03/2013
US 7117284 B2 03/10/2006
US 7124274 B2 17/10/2006
US 7231476 B2 12/06/2007
US 7305712 B2 04/12/2007
US 7325083 B2 29/01/2008
US 7370210 B2 06/05/2008
US 7383587 B2 03/06/2008
US 7448050 B2 04/11/2008
US 7539853 B2 26/05/2009
US 7661104 B2 09/02/2010
US 7661105 B2 09/02/2010
US 7849296 B2 07/12/2010
US 7849310 B2 07/12/2010
US 7949866 B2 24/05/2011
US 8082589 B2 20/12/2011
US 8086829 B2 27/12/2011
WO 2004-046738 A2 03/06/2004
WO 2004-046738 A3 21/10/2004
WO 2004-046916 A2 03/06/2004
WO 2004-046916 A3 21/10/2004
WO 2004-046924 Al 03/06/2004
WO 2004-046925 Al 03/06/2004
US 2003-0046464 Al 06/03/2003 CN 1549968 A 24/11/2004
CN 1549968 CO 02/08/2006
DE 10297166 TH 22/07/2004
GB 0401390 DO 25/02/2004
GB 2394099 A 14/04/2004
GB 2394099 B 09/02/2005
HK 1060784 Al 13/05/2005
JP 2005-502119 A 20/01/2005
JP 2005-502119 T 20/01/2005
KR 10-0578437 Bl 11/05/2006
KR 10-2004-0023692 A 18/03/2004
RU 2004109581 A 20/08/2005
RU 2280272 C2 20/07/2006
TW 223771 B 11/11/2004
TW 1223771B 11/11/2004
US 6779065 B2 17/08/2004
WO 03-021438 Al 13/03/2003

Form PCT/ISA/210 (patent family annex) (July 2009)

INTERNATIONAL SEARCH REPORT

International application No.

Information on patent family members PCT/US2014/018664
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2003-0229794 Al 11/12/2003 AU 2003-231237 Al 22/12/2003
AU 2003-231237 A8 22/12/2003
CN 100377092 CO 26/03/2008
CN 1675623 A 28/09/2005
CN 1675623 CO 26/03/2008
EP 1512074 A2 09/03/2005
JP 2005-529401 A 29/09/2005
JP 2005-529401 T 29/09/2005
JP 2007-265434 A 11/10/2007
JP 2011-227939 A 10/11/2011
JP 4708016 B2 22/06/2011
JP 4846660 B2 28/12/2011
JP 5242747 B2 24/07/2013
MY 146723 A 14/09/2012
RU 2004139086 A 10/07/2005
RU 2313126 C2 20/12/2007
US 2006-0015869 Al 19/01/2006
US 7581219 B2 25/08/2009
WO 03-104981 A2 18/12/2003
WO 2003-104981 A3 13/05/2004
US 2003-0051087 Al 13/03/2003 US 6772259 B2 03/08/2004
US 2007-0088890 Al 19/04/2007 US 2006-0117325 Al 01/06/2006
US 7149832 B2 12/12/2006
US 7249211 B2 24/07/2007

Form PCT/ISA/210 (patent family annex) (July 2009)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - claims
	Page 29 - claims
	Page 30 - claims
	Page 31 - claims
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - wo-search-report
	Page 38 - wo-search-report
	Page 39 - wo-search-report
	Page 40 - wo-search-report

