

DOMANDA NUMERO	101997900587927	
Data Deposito	08/04/1997	
Data Pubblicazione	08/10/1998	

	Sezione	Classe	Sottoclasse	Gruppo	Sottogruppo
l	С	12	N		

Titolo

VETTORI RICOMBINANTI UTILIZZABILI IN TERAPIA GENICA

RM 97 A000 200

DESCRIZIONE DELL'INVENZIONE INDUSTRIALE dal titolo:
"VETTORI RICOMBINANTI UTILIZZABILI IN TERAPIA
GENICA"

della ditta italiana Istituto di Ricerche di Biologia Molecolare P. Angeletti S.p.A.

con sede in POMEZIA (ROMA)

DESCRIZIONE

Campo dell'invenzione

La presente invenzione si riferisce al settore dei vettori utilizzabili nella terapia genica (somatica) ed alla loro preparazione.

Background dell'invenzione

L'integrazione di geni terapeutici all'interno di specifici siti del DNA di cellule non in divisione accompagnata da espressione prolungata è la strategia ottimale per la terapia genica somatica. Tuttavia, i sistemi vettoriali più comunemente disponibili non sono capaci di realizzare un'efficiente trasduzione di cellule non in divisione unitamente all'espressione a lungo termine, attraverso l'integrazione stabile del vettore all'interno di specifici siti del DNA della cellula ospite. Infatti i vettori retrovirali

basati sul virus della leucemia di Moloney, mentre sono capaci di integrazione e stabile espressione a lungo termine, richiedono la divisione cellulare per un'efficiente trasduzione. Per di più, i virus si integrano casualmente all'interno del genoma ospite, il che potrebbe condurre a mutagenisi casuale inserzionale, 0 a attivazione di dell'espressione un protooncogene dovuta all'attività di promotore associata alle Lunghe Ripetizioni terminali (LTR = Long Terminal Repeats) retrovirali. D'altra parte, i vettori basati su adenovirus e herpes simplex virus, sono capaci di trasdurre le cellule che non sono in divisione, ma non di integrarsi con frequenza apprezzabile all'interno del DNA della cellula ospite.

Il virus associato ad adenovirus (AAV) ha la capacità unica di integrare preferenzialmente il suo DNA virale all'interno di una regione definita del genoma cellulare, riducendo così i rischi di mutagenesi inserzionale associata all'azione di altri virus, come i retrovirus, che si integrano in posizioni casuali. AAV è un parvovirus umano non patogeno il quale usualmente richiede adenovirus (Ad) o herpesvirus come helper per replicarsi efficientemente. In assenza di virus helper il

genoma di AAV si integra all'interno del DNA genomico della cellula ospite ad alta frequenza. Le analisi delle sequenze fiancheggianti, estratte dalle cellule infettate in stato latente, hanno rivelato l'integrazione del genoma di AAV all'interno di specifici locus nel 60-70% dei casi.

locus di integrazione (aavs1) sequenziato e localizzato nel cromosoma 19_a13.3-qter. Sebbene AAV potrebbe replicarsi in misura limitata in assenza di virus helper in certe condizioni non usuali, come indicato sopra risultato più comune è che l'infezione delle cellule con AAV in assenza di funzioni helper risulti nell'integrazione del di genoma AAV all'interno del cromosoma della cellula ospite. Il genoma di AAV integrato può essere liberato e replicato, se le cellule contenenti il provirus integrato sono sovrainfettate con un virus helper come Ad.

Il DNA genomico di AAV è una molecola di DNA lineare a singolo filamento di peso molecolare di 10⁶ 1,5 circa х daltons, oppure approssimativamente 4680 nucleotidi. Il genoma di AAV2 copia delle sequenze ha una terminali inversamente ripetute (ITR) lunghe 145 nucleotidi

collocate a ciascuna estremità. Le ITR di AAV contengono sequenze palindromiche che possono ripiegarsi per formare strutture a forcina che funzionano come primer durante l'inizio della replicazione del DNA.

Inoltre, le ITRs sono necessarie per l'integrazione virale, la liberazione dal genoma ospite, e l'incapsidazione di acidi nucleici virali all'interno di virioni maturi. Inserita in mezzo alle ITR di AAV si trova un'unica regione di circa 4470 nucleotidi che contiene due schemi di lettura aperti (ORF = Open Reading Frame) principali. L'ORF di destra codifica per tre proteine del capside VP1, VP2 e VP3. Queste tre proteine formano la particella virale e sono prodotte da trascritti controllati dal promotore P40 collocato alla posizione di mappa 40. L'ORF di sinistra del genoma di AAV codifica il gene Rep.

Due promotori collocati alle posizioni di mappa 5 e 19 (promotori P_5 e P_{19} rispettivamente) controllano l'espressione dei quattro polipeptidi derivati da questa ORF. Le proteine "Rep" Rep 78 e Rep 68 sono prodotte dai trascritti promossi da P_5 , e le proteine "Rep" Rep 52 e Rep 40 sono sintetizzate da trascritti promossi da P_{19} .

<u>.</u> (

L'individuazione del sito di integrazione potrebbe coinvolgere i prodotti del gene Rep di AAV. In particolare, i polipeptidi più estesi Rep 78 e Rep 69 hanno mostrato di legare in vitro le ITR di AAV e aavsl, e di possedere attività di elicasi ed endonucleasi sito-specifica, le quali potrebbero essere richieste per la replicazione di AAV così come per la sua integrazione.

Il limite principale dell'uso di AAV nella costituito dal terapia genica è limite di impacchettamento del virione AAV, che non può eccedere le 4,5 kb. Lа limitazione nell'impacchettamento esclude molti geni più estesi i quali potrebbero essere considerati come potenziali candidati per programmi di terapia genica. Al fine di superare tale limitazione, la notevole abilità di integrazione sito-specifica di AAV è stata trasferita ai vettori adenovirali con una più grande capacità di impacchettamento, tramite trasferimento il dei geni virali appropriati e dei segnali cis-acting richiesti per l'integrazione sito-specifica. Per esempio, WO96/13598 viene descritto un virus ibrido Ad/AAV al quale è associata una sequenza policationica e il gene Rep di AAV ("virus ibrido coniugato" o

"particella di transinfezione").

Descrizione dell'invenzione

÷ =

, î

La presente invenzione sfrutta il gene Rep di AAV e le ITRs di AAV come parte di un sistema di "somministrazione" (delivery) per raggiungere l'integrazione specifica di DNA estraneo. Tale integrazione specifica fornisce un metodo più efficiente e più sicuro di "somministrazione" del gene.

L'oggetto della presente invenzione è un vettore di DNA ricombinante, caratterizzato dal fatto di comprendere in combinazione le seguenti sequenze nucleotidiche:

- a) sequenze di DNA delle sequenze terminali inversamente ripetute (ITR) dell'estremità 5' del virus adeno-associato (AAV), o sequenze corrispondenti;
- b) sequenze di DNA codificanti per almeno un gene terapeutico di interesse, legate operativamente a un promotore costitutivo o inducibile;
- c) sequenze di DNA delle sequenze ITR dell'estremità 3' dell'AAV, o sequenze corrispondenti;
 - d) sequenza di DNA codificante per una

proteina Rep di AAV, o un suo frammento o un suo derivato, sotto la regolazione di un promotore costitutivo o inducibile;

- e) il gene codificante per una proteina di interesse, legato operativamente a un promotore costitutivo o inducibile di cui sopra al punto b) inserito tra le ITRs all'estremità 5' e quelle all'estremità 3' di AAV;
- f) la sequenza di DNA codificante per almeno una proteina Rep di AAV, o un suo frammento o un suo derivato, sotto la regolazione di un promotore costitutivo o inducibile di cui sopra al punto d) inserita al di fuori del contesto delle ITRs di AAV.

I vettori secondo l'invenzione utilizzano la capacità delle proteine Rep di mediare la escissione del genoma di AAV da una molecola di DNA più estesa, ed in conseguenza, di dirigere l'integrazione sito-specifica del frammento di DNA ITR all'interno del sito aavs1 sul cromosoma 19.

Inoltre, l'integrazione mediata dalla proteina Rep all'interno del sito aavs1, dovrebbe essere limitata al frammento di DNA rinchiuso all'interno delle estremità 5' e 3' delle ITRs di AAV, in virtù del ruolo delle ITR nell'inserimento del genoma

virale all'interno del sito aavsl. Quindi, dovrebbe permettere l'integrazione selettiva del gene di interesse con la concomitante esclusione dal processo di integrazione sito-specifica della rimanente parte del DNA.

La conseguenza di questa esclusione è che il DNA integrato non può in seguito essere liberato nella forma di AAV replicanti, anche a seguito di una sovrainfezione con un virus helper come Ad.

La presente invenzione comprende l'uso di plasmidi contenenti il gene Rep e le ITRs di AAV al posto dei virioni ricombinanti AAV, il che dovrebbe permettere l'integrazione sito-specifica di frammenti di DNA più estesi di quelli che normalmente sono portati da vettori basati sul qenoma di AAV.

Secondo una forma di realizzazione preferita della presente invenzione, il vettore AAV ricombinante è derivato da plasmidi pSub201 in cui il gene Cap è stato deleto e il gene Rep è sotto il controllo trascrizionale dei promotori P_5 e P_{19} . Ad ogni modo, altri promotori, come il promotore α 1 dell'antitripsina, il promotore precoce immediato di CMV (CMV immediate early promoter), il promotore precoce di SV₄₀ oppure il promotore per la timidina

chinasi, possono essere usati per lo stesso scopo.

Vettori virali costruiti secondo la presente invenzione possono essere derivati da adenovirus, herpes virus e baculovirus tramite inserzione del gene Rep e delle ITRs di AAv come sopra esposto in precedenza.

L'invenzione, inoltre, si riferisce a plasmidi ricombinanti come sopra esposto, coniugati con liposomi, peptidi, e proteine leganti il DNA, che sono usati per il trasferimento genico in vivo.

Il gene terapeutico può essere un gene umano scelto dal gruppo comprendente quelli codificanti per il fattore di coaquiazione Fattore VIII umano, il coaqulazione fattore di Fattore IX. il recettore-LDL umano. l'insulina umana, la distrofina umana o il CFTR umano.

L'invenzione si riferisce anche a linee cellulari di mammifero (in particolare le cellule sono cheratinociti) ottenibili tramite trasfezione e/o infezione di vettori di DNA ricombinante o particelle virali ricombinanti secondo l'invenzione, così come a composizioni farmaceutiche che li comprendono con un veicolo farmaceuticamente compatibile.

Breve descrizione dei disegni

La Fig. 1 mostra il diagramma del plasmide pITR(GFP-Neo).

La Fig. 2 mostra il diagramma del plasmide pITR(GFP-Neo)P₅Rep.

Le Fig. 3A e 3B mostrano la riproduzione di Southern blots di DNA ad alto peso molecolare di cloni cellulari HeLa trasfettati, realizzata utilizzando sonde specifiche per aavsl e specifiche per Neo che rivela una integrazione casuale di pITR(GFP-Neo).

Le Fig. 4A e 4B mostrano la riproduzione di Southern blots di DNA ad alto peso molecolare di cloni cellulari HeLa trasfettati, realizzata utilizzando sonde specifiche per aavs1 e specifiche per Neo, che rivela l'integrazione sito-specifica di pITR(GFP-Neo)P₅Rep.

La Fig. 5 mostra la riproduzione di Southern blots di DNA ad alto peso molecolare di cloni cellulari HeLa trasfettati con il plasmide pITR(GFP-Neo) P_5 Rep, utilizzando una sonda specifica per Rep.

Depositi

Il ceppo di Escherichia coli K12 contenente il plasmide pITR(GFP-Neo)P5Rep secondo l'invenzione è

stato depositato il 5 dicembre 1996 presso "The National Collections of Industrial and Marine Bacteria" (NCIMB), Aberdeen, Scozia, UK. Al ceppo di cui sopra è stato dato il numero di accesso NCIMB 40832.

Si è data finora della presente invenzione una descrizione di carattere generale. Con l'aiuto dei seguenti esempi, verrà ora fornita una descrizione più dettagliata di specifiche forme di realizzazione finalizzate a far meglio comprendere scopi, caratteristiche, vantaggi modalità operative dell'invenzione. Tali esempi sono solo illustrativi, e non limitano la portata della presente invenzione, che è definita dalle rivendicazioni annesse.

Esempio 1

Costruzione dei plasmidi pITR(GFP-Neo) e pITR(GFP-Neo) P-Rep

Il plasmide pSub201 (1) è stato tagliato con Xba I, per rimuovere le sequenze codificanti per le regioni Rep e Cap del virus associato ad adenovirus (AAV) e il frammento di DNA di 4,0 kb contenente le sequenze terminali inversamente ripetute (ITR) di AAV, è stato quindi legato a un frammento di DNA di

1,7 kb contenente un sito di restrizione per Nhe I ad entrambe le estremità.

Questo frammento contiene il cDNA della proteina fluorescente Green (GFP) (1) fiancheggiata alla sua estremità 5′ dal promotore immediato precoce (immediate_early promoter) ed enhancer di CMV, ed a quella 3′ dal segnale di poliadenilazione dell'ormone della crescita bovino (BGH). Il frammento GFP è stato ottenuto tramite amplificazione PCR con primer sequenza specifici, utilizzando come stampo un derivato del vettore pCDNA-3 (Invitrogen) nel quale il CDNA GFP è stato clonato [pCD3(GFP)]. Il primer specifico per il segnale di poliadenilazione BGH, è stato disegnato in modo da contenere un sito Sac II posizionato vicino al sito Nhe I all'estremità 3'.

Il costrutto così ottenuto è stato denominato pITR(GFP). Il plasmide pITR(GFP-Neo) è stato prodotto tramite l'inserzione di un frammento piatto EcoRI/BamHI da pRc/RSV (Invitrogen) il quale contiene il promotore precoce di SV40, il gene per la resistenza alla neomicina, ed il segnale di poliadenilazione di SV40 all'interno del sito Sac II piatto di pITR(GFP).

pITR(GFP-Neo)P₅Rep è stato derivato

dall'amplificazione per PCR dei nucleotidi 138-2234 del genoma di AAV, con primer sequenza specifici usando il plasmide pTAV-2 (3) come stampo. Il frammento di DNA amplificato è stato digerito con Cla I e clonato all'interno del sito Cla I del plasmide pITR(GFP-Neo).

Esempio 2

Trasfezione di plasmidi ricombinanti

I plasmidi pITR(GFP-Neo) (Fig. 1) e pITR(GFP-Neo) P_5 Rep (Fig. 2), come già detto, portano il gene per la proteina fluorescente verde (GFP) sotto il controllo trascrizionale del promotore precoce CMV, e il gene per la resistenza della neomicina sotto il controllo del promotore precoce di SV40. Questi due geni sono stati inseriti tra le sequenze terminali inversamente ripetute dell'estremità 5' e 3' di AAV.

Inoltre, il plasmide pITR(GFP-Neo) P_5 Rep porta il gene Rep sotto il controllo trascrizionale dei promotori P_5 e P_{19} clonati dentro il sito Cla I del vettore plasmidico, e risulta in tal modo collocato al di fuori delle due regioni ITRs di AAV.

L'efficienza dell'integrazione sito-specifica di questi due costrutti è stata determinata tramite trasfezione con calcio fosfato delle cellule Hela.

Trasfezione cellulare

Cellule HeLa sono state mantenute in mezzi di coltura di Dulbecco (Dulbeccos's modified Eagle's medium; DMEM) integrato con 10% di siero fetale di vitello (FCS), 2 mM di gilutammina, 100 unità/ml di penicillina, e 100 μg/ml di streptomicina. cellule sono state fatte crescere in piastre di 10 cm (Falcon) a 37°C in 5% CO2. Stock delle cellule HeLa sono state come di routine passate ogni tre giorni tramite trattamento con tripsina (0,05%) ed EDTA (0,53 mM) ripiastrate e а una densità cellulare appropriata per la crescita esponenziale. 16 ore prima della trasfezione, le cellule sono state fatte sedimentare a una densità di 1 x 106 cellule in piastre di 10 cm, e incubate per 12 ore a 37°C in 5% CO2. Il mezzo è stato sostituito e le cellule sono state quindi incubate per ulteriori 4 ore a 37°C.

20 μg di DNA plasmidico (10 μg del plasmide indicato più 10 μg di DNA veicolo) sono stati precipitati in fosfato di calcio, utilizzando il kit calcio fosfato di trasfezione di cellule di mammifero (5 - 3) seguendo le istruzioni del fabbricante. Il DNA precipitato è stato aggiunto direttamente a ciascuna piastra in un volume di 1

ml.

16 ore dopo la trasfezione il mezzo è stato sostituito e le cellule sono state incubate per ulteriori 32 ore. Le cellule trasfettate sono state quindi trattate con tripsina ed EDTA, e la sospensione cellulare derivata da una singola piastra di 10 cm è stata diluita 1 a 3 in un mezzo di selezione (DMEM 10% FCS, 2 mM glutammina, 100 unità/ml pennicillina, 100 μ g/ml di streptomicina, e 800 μ g/ml G418) e piastrato su tre piastre di 15 cm (Falcon).

I cloni resistenti alla neomicina sono stati isolati dopo 10 giorni di selezione, amplificati (expanded), e processati per l'estrazione del DNA genomico e per l'analisi di Southern blot.

Analisi di Southern blot di cloni resistenti alla neomicina

Cloni di cellule HeLa resistenti alla neomicina sono stati fatti crescere in piastre di 10 cm, e il monostrato cellulare è stato staccato tramite raschiamento e lavato due volte con 2 ml di PBS. La sospensione cellulare è stata trasferita in tubi Eppendorf, centrifugata per 10 minuti a 3000 rpm a 4°C in una microcentrifuga Eppendorf, e il centrifugato (pellet) delle cellule è stato risospeso in 0,5 ml TEN (50 mM Tris-Cloro, pH 7.5, 150 mM NaCl, 10 mM EDTA). Sono stati aggiunti ad ogni campione SDS e proteinasi K alla concentrazione finale rispettivamente di 1% e 1 mg/ml.

Il lisato cellulare è stato incubato per 4 ore a 56°C e sottoposto a tre consecutive estrazioni con fenolo (equilibrato con 10 mM Tris-Cl pH 8.0, 1 EDTA), fenolo-cloroformio (rapporto 1:1), e mΜ cloroformio. La fase acquosa è stata precipitata con due volumi di etanolo dopo l'aggiunta di una soluzione di sodio acetato Hq) 6.0) alla concentrazione finale di 0,3 M. Il centrifugato di DNA è stato lavato una volta con 0,5 ml di 70% etanolo, risospeso in 0,5 ml di acqua, e incubato per tutta la notte a 4°C.

10 di DNA cromosomale ad alto peso molecolare sono stati incubati con 40 unità dell'enzima di restrizione BamHI (New England Biolabs) in un volume di 0,1 ml per 12 ore a 37°C. Il DNA digerito è stato sottoposto ad elettroforesi in un gel di agarosio 0,8%, trasferito su una membrana di nylon (Hybond™ -N+; Amersham) raccomandato dal fabbricante e ibridato per tutta la notte a 65°C in un tampone Church (7% SDS, 0,25

M NaPi, pH 7,2, 1 mM EDTA pH 8.0, 0,1 g/ml BSA) con sonde marcate ³²P ottenute mediante "random priming". In ciascuna ibridazione sono stati utilizzati approssimativamente 2 x 10⁶ cpm/ml. I filtri sono stati lavati in 40 mM NaPi, pH 7,2, 1 mM EDTA, pH 8,0, 1% SDS, a 65° tre volte per 20 minuti, e quindi in 0,1 x SSC, 0,1% SDS a 65°C per 20 minuti.

I filtri sono stati esposti a un film a raggi X con uno schermo intensificatore per tutta la notte. Per determinare l'integrazione sitospecifica del frammento di DNA ITR, i filtri sono stati inizialmente ibridati con una sonda specifica per il gene della neomicina, la sonda ibridata è stata quindi rimossa tramite la bollitura dei filtri in 0,2 x SSC, 1% SDS per 10 minuti, gli stessi filtri sono stati quindi ibridati con una sonda specifica per il sito aavs1.

Esempio 3

Analisi dei cloni trasfettati

I riarrangiamenti dei siti aavsl risultanti dall'integrazione dei plasmidi trasfettati sono stati determinati tramite la comparazione dello schema di ibridazione dei blot genomici, fatti utilizzando sonde aavsl specifiche e neo-gene

con quelli di DNA da cellule specifiche, controllo (mock transfected cells). La sonda specifica per il cromosoma 19 è stata ottenuta tramite "random priming reaction" eseguita utilizzando stampo un frammento di come DNA derivato dal plasmide pRVK (K. Berns, Cornell Medical School, New York, N.Y.) che copre i nucleotidi 1-3525 di aavs1.

La sonda neo-specifica è stata derivata da una "random priming reaction" con un frammento di DNA di 630 bp come stampo che include la maggior parte dell'ORF del gene della resistenza alla neomicina. L'integrazione sito-specifica del plasmide trasfettato è stata raggiunta guando: i) lo schema di ibridazione del DNA genomico esequito utilizzando la sonda aavsl è differente da quello cellule del DNA delle dicontrollo (mock transfected cells) per il fatto che contiene un frammento addizionale riconosciuto dalla sonda per aavs1; ii) lo stesso frammento addizionale rivelato con la sonda genomica è anche individuato con la sonda neo-specifica.

L'analisi dei cloni delle cellule HeLa derivata dalla trasfezione del plasmide ITR(GFP-Neo) è rappresentata nella Fig. 3. Il DNA genomico

estratto da 11 cloni indipendenti è stato digerito con l'enzima di restrizione BamHI e il DNA è stato risolto (resolved) su un qel di agarosio. L'ibridazione tramite Southern blot di questo DNA con una sonda marcata con 32P, specifica per il sito aavsl, mostra che la sonda ha ibridato i due frammenti di dimensioni approssimativamente 3,5 e 2,3 kb. Inoltre lo schema di ibridazione del DNA dei cloni trasfettati è identico a quello del DNA delle cellule di controllo (mock transfected cells) (Fig. 3A). Per converso, l'ibridazione con sonde marcate con specifiche per il gene della neomicina mostra chiaramente che tutti questi cloni sono stati trasfettati con plasmidi che portano il marker per la resistenza, dal momento che la sonda neo-specifica ibrida con una singola banda in ogni corsia. in cui sono disposti frammenti di dimensioni tra 8 e 20 kb, ma nessuna ibridazione di questa sonda è individuabile con il DNA delle cellule di controllo (mock transfected cells) (Fig. 3B).

Quindi, in tutti i casi analizzati (39 cloni individuali) l'integrazione del gene neo è avvenuta a siti diversi dal sito aavsl.

La trasfezione di plasmidi pITR(GFP-Neo)PsRep

ha dato luogo ad uno schema di ibridazione chiaramente differente. Come mostrato in Fig. 4, l'ibridazione con sonde specifiche per aavsl mostra che nel 25% dei cloni analizzati (8 cloni su 32) un frammento addizionale di dimensioni comprese tra 5 e 10 kb è ibridata con la sonda genomica. In Fig. 4 sono mostrati la maggior parte dei cloni con questo tipo di schema di ibridazione, e l'indicativo del sito di integrazione specifica è indicato con una punta di freccia.

Questo frammento non è presente nel DNA digerito di altri cloni trasfettati, né nel DNA delle cellule di controllo (mock transfected cells), in cui possono essere individuate solo le due bande di 3,5 e 2,3 kb. La cosa più importante è che lo stesso frammento viene ibridato dalla sonda specifica per il sito aavs1, il che indica che il gene per la neomicina è stato inserito all'interno del sito aavs1 (Fig. 4b).

I dati qui presentati mostrano chiaramente che l'integrazione del DNA plasmidico trasfettato all'interno del sito aavsl avviene con alta efficienza ed è dipendente dall'espressione del gene Rep.

L'integrazione selettiva del frammento di DNA

ITR è stata determinata eseguendo un Southern blot di DNA genomico dei cloni trasfettati con il plasmide pITR(GFP-Neo) P_5 Rep utilizzando una sonda specifica per il gene Rep (comprendente i nucleotidi da 138 a 2234 del genoma AAV). Come mostrato in Fig. 5, la sonda ibrida con molte bande di DNA in ciascuna corsia. Comunque, il frammento di DNA ibridato con la sonda Rep non coincide per dimensioni con il frammento rivelato da entrambe le sonde specifiche per neo e aavs1.

Quindi, è possibile concludere che, sebbene una parte del plasmide pITR(GFP-Neo)PsRep potrebbe essersi integrato casualmente nel cromosoma ospite al di là della trasfezione all'interno delle cellule HeLa, nella maggior parte dei casi non è avvenuta alcuna inserzione della sequenza di DNA collocata al di fuori della regione ITR. all'interno del sito aavs1.

Bibliografia rilevante

- R.J. Samulski et al., J. Virol. 61: 3096-3101,
 1987
- 2) D.C. Prasher et al., Gene 111: 229, 1992
- 3) R. Heilbronn et al., J. Virol. 64: 3012-3018, 1990

Cilberto Toron (lagr. Albo n. 83)

RIVENDICAZIONI

- 1. Vettore di DNA ricombinante, caratterizzato dal fatto di comprendere in combinazione le seguenti sequenze nucleotidiche:
- a) sequenze di DNA delle sequenze terminali inversamente ripetute dell'estremità 5' del virus associato ad adenovirus (AAV), o sequenze corrispondenti;
- b) sequenze di DNA codificante per almeno un gene terapeutico di interesse operativamente collegate a un promotore costitutivo o inducibile;
- c) sequenze di DNA delle sequenze terminali inversamente ripetute dell'estremità 3' di AAV;
- d) sequenza di DNA codificante per una proteina Rep di AAV, o un suo frammento o un suo derivato, sotto la regolazione di un promotore costitutivo o inducibile;
- e) il gene codificante per una proteina selezionata di interesse, operativamente collegata a un promotore costitutivo o inducibile di cui sopra al punto b) inserito tra l'estremità 5' e 3' delle sequenze inversamente ripetute da AAV;
- f) la sequenza di DNA codificante per almeno una proteina Rep di AAV, o un suo frammento o un suo derivato, sotto la regolazione di un promotore

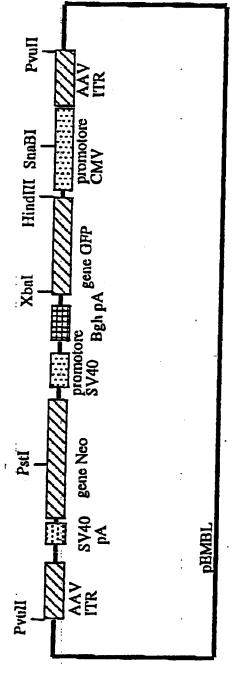
costitutivo o inducibile, di cui sopra al punto d) inserita al di fuori del contesto delle sequenze inversamente ripetute di AAV.

- 2. Particella virale ricombinante, caratterizzata dal fatto di portare le sequenze del vettore DNA ricombinante secondo la rivendicazione 1.
- 3. Particella virale ricombinante come da rivendicazione 2 che porta le sequenze del vettore DNA ricombinante secondo la rivendicazione 1, nella quale il vettore virale è derivato dall'adenovirus.
- 4. Particella virale ricombinante come da rivendicazione 2, che porta le sequenze del vettore DNA ricombinante secondo la rivendicazione 1, in cui il vettore virale è derivato dall'herpes virus.
- 5. Particella virale ricombinante come da rivendicazione 2, che porta le sequenze del vettore DNA ricombinante secondo la rivendicazione 1, in cui il vettore virale è derivato da baculovirus.
- 6. Vettore DNA ricombinante come da rivendicazione 1, in cui il vettore è coniugato con liposomi utilizzati per il trasferimento genico in vivo.
- 7. Vettore DNA ricombinante secondo la rivendicazione 1, in cui il vettore è coniugato con

peptidi utilizzati per il trasferimento genico in vivo.

- 8. Vettore DNA ricombinante secondo la rivendicazione 1, in cui il vettore è coniugato con DNA che lega proteine utilizzate per il trasferimento genico in vivo.
- 9. Particelle ricombinanti secondo le rivendicazioni da 1 a 8, in cui il gene Cap è stato gene Rep è sotto il controllo deleto e iltrascrizionale dei promotori AAVP, e P19 oppure sotto il controllo trascrizionale di altri promotori come il promotore immediato precoce di CMV (CMV immediate early promoter), il promotore SV40, precoce di il promotore della timidina chinasi, e il promotore della $\alpha 1$ antitripsina.
- 10. Particelle ricombinanti secondo le rivendicazioni da 1 a 9, in cui il gene terapeutico è un gene umano da utilizzare per la terapia di malattie genetiche o metaboliche.
- 11. Particelle ricombinanti secondo la rivendicazione 10, in cui il gene terapeutico è scelto tra quelli codificanti per il fattore di coagulazione Fattore VIII umano, il fattore di coagulazione Fattore IX, il recettore-LDL umano, l'insulina umana, la distrofina umana o il CFTR

umano.


- 12. Linee cellulari di mammifero, caratterizzate dal fatto di essere ottenibili dalla trasfezione o infezione con particelle secondo le rivendicazioni da 1 a 9.
- 13. Linee cellulari di mammifero, caratterizzate dal fatto di essere ottenibili tramite trasfezione o infezione con particelle secondo la rivendicazione 10, in cui le cellule sono cheratinociti.
- 14. Linee cellulari di mammifero, caratterizzate dal fatto di essere ottenibili tramite trasfezione o infezione con particelle secondo la rivendicazione 10 in cui le cellule sono cellule staminali ematopoietiche (hematopoietic stem cells).
- 15. Composizione farmaceutica, caratterizzata dal fatto di comprendere le particelle virali ricombinanti di cui alle rivendicazioni da 2 a 5 come principio attivo, e un veicolo farmaceuticamente compatibile.
- 16. Composizione farmaceutica, caratterizzata dal fatto di comprendere il vettore DNA ricombinante secondo le rivendicazioni da 6 a 8, come principio attivo, e un veicolo

farmaceuticamente compatibile.

p.p. ISTITUTO DI RICERCHE DI BIOLOGIA MOLECOLARE P. ANGELETTI S.p.A.

Oliberto Tonon (iser. Albo n. 83)

pITR(GFP-Neo)

Ullberto Tonon

197 A000 200

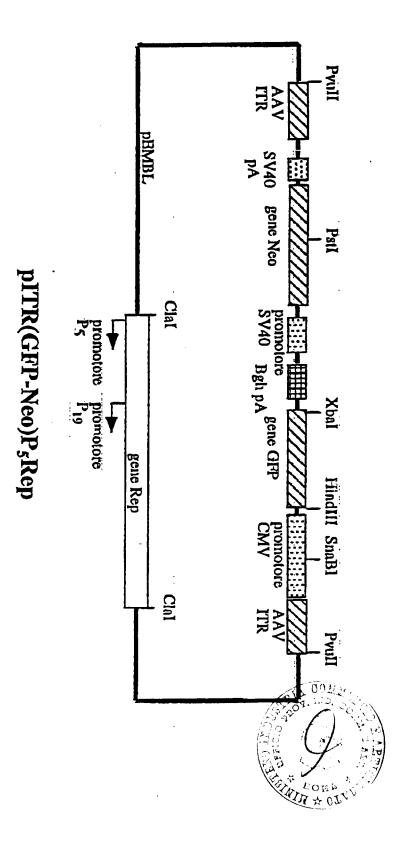
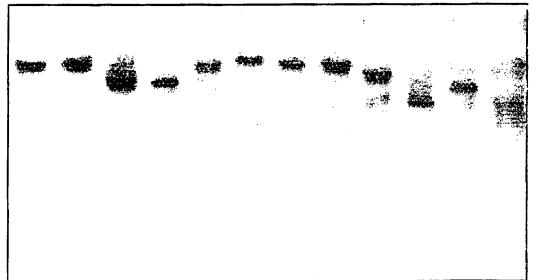



Fig. 2

Gilberto Tonon (lacr. Albo n. 83)

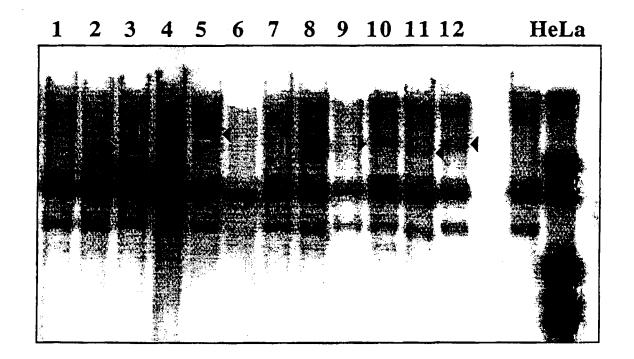
p.p. ISTITUTO DI RICERCHE DI BIOLOGIA MOLECOLARE P.ANGELETTI S.p.A.

1 your


A B C D E F G H I J K HeLa

Sonda aavs1-specifica

FIG. 3A


A B C D E F G H I J K HeLa

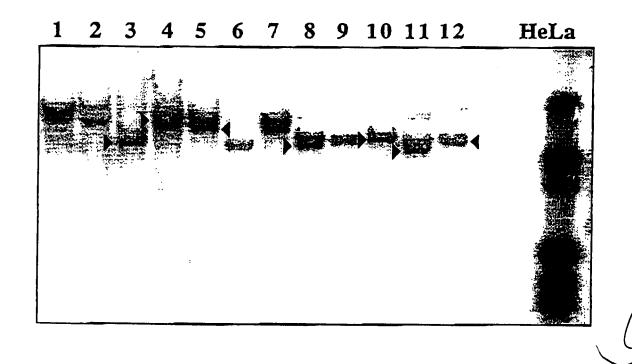
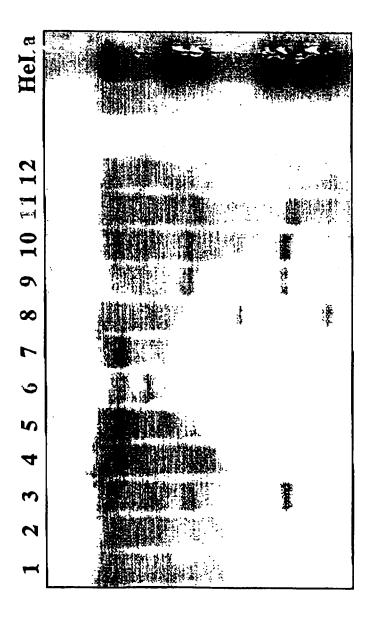

Sonda neo-specifica

FIG. 3B



Sonda aavs1-specifica FIG. 4A

Sonda neo-specifica

FIG. 4B

Sonda Rep-specifica

FIG. 5

4

Gilberto Tonom (leer. Albe n. 83)

lser. Albo n. 831