发明名称
一种双金属机械复合耐磨钢管及其生产方法

摘要
本发明公开了一种双金属机械复合耐磨钢管及其生产方法，其特点是该耐磨钢管的外层（1）为基层，内层（2）为复层，基层与复层之间涂高温胶，钎焊料或局部焊接后采用机械复合。复层为化学成分/％：碳含量＞0.70的高碳钢或高碳合金钢，基层为低碳钢或低碳合金钢。复层为无缝钢管或焊接钢管，基层为无缝钢管或焊接钢管。双金属机械复合为冷拔、热拔、冷轧、旋压、热装、冷装和顶压手段使内、外层钢管紧密贴合。复合后的双金属钢管经过整体加热淬火或感应加热淬火处理后得到一种耐磨性能优良，抗冲击载荷能力强，耐腐蚀性能好，使用寿命长，在压力脉动工况下安全性很高的双金属机械复合耐磨钢管。
1. 一种双金属机械复合耐磨钢管，包括外层和内层，其特征在于：该双金属机械复合耐磨钢管的外层 (1) 为基层，内层 (2) 为复层；基层与复层之间涂高温胶、钎焊料或局部焊接后采用机械复合。

2. 按照权利要求 1 所述双金属机械复合耐磨钢管，其特征在于：复层为化学成分均值为 0.70% 的高碳钢或高碳合金钢，基层为低碳钢或低碳合金钢。

3. 按照权利要求 1 所述双金属机械复合耐磨钢管，其特征在于：复层为无缝钢管或焊接钢管，基层为无缝钢管或焊接钢管。

4. 按照权利要求 1 所述双金属机械复合耐磨钢管，其特征在于：基层与复层之间在机械复合前，用高温胶、局部焊接或钎焊的方法将内外层钢管之间牢固接合。

5. 按照权利要求 1 所述双金属机械复合耐磨钢管，其特征在于该双金属机械复合为冷拔、热拔、冷轧、旋压、热装、冷装和顶压中的至少一种。

6. 按照权利要求 1～5 之一所述双金属机械复合耐磨钢管的生产方法，其特征在于该方法包括以下步骤：

(1) 选材
根据使用条件或者用户需求选择复层材料为化学成分均值为 0.70% 的高碳钢或高碳合金钢材料；
根据强度和复层的性能选择相应的基层材料为低碳钢或低碳合金钢材料；

(2) 管坯准备
A. 将外层钢管内壁通过焊接、冷拔、热拔方式加工成设计要求的规格尺寸；
B. 将热处理后的内层钢管内壁通过焊接、冷拔、热拔方式加工成设计要求的规格尺寸，内层钢管的内径略小于、等于外层钢管的内径或略大于外层钢管内径，以便装入外层钢管；

(3) 机械复合
C. 对内层钢管内径大于外层钢管内径的钢管，将内管装入外管后两管间局部焊接或将内管外表面或外表面涂高熔胶、钎焊料后装入外管，然后通过冷拔、热拔、冷装和旋压方式机械加工成紧密贴合的复合钢管；
D. 对内层钢管内径略大于或等于外层钢管内径的钢管，将外层钢管内表面或内层钢管外表面涂高温胶或钎焊料后直接通过加热外层钢管热装、冷冻内层钢管冷装或直接顶压方法，将内层钢管装入外层钢管后机械加工成紧密贴合的复合钢管；

上述工艺步骤 C.D 获得成品管材常规双金属复合表面工艺 + 内孔中频、超音频、高频感应加热淬火或整体加热淬火处理后淬硬层硬度 HRC60～HRC68，从而获得双金属复合耐磨钢管。
一种双金属机械复合耐磨钢管及其生产方法

技术领域
[0001] 本发明涉及一种双金属机械复合耐磨钢管及其生产方法，属于金属机械复合加工领域。

背景技术
[0002] 目前应用的耐磨钢管材料主要分为以下几种：
[0004] 中高碳碳素结构钢主要有45、50、55、60、65、40Mn、45Mn、50Mn等材质。中高碳碳素结构钢管经内孔超音频或高频感应加热淬火，内表面淬硬层硬度可达HRC55-60，具有一定的耐磨性能，主要用于制造普通耐磨钢管，在输送混凝土、泥浆、矿渣等介质时使用，但使用寿命短，安全性较差，以输送混凝土为例使用寿命一般只有0.8-1.2万方，性价比不高。
[0005] 2）中高碳合金结构钢材料（GB/T3077-1999）。
[0006] 中高碳合金结构钢材料主要有45Mn2、50Mn2、55Mn2、65Mn2等材质，此类型材质的耐磨钢管是近几年兴起并逐渐推广的较新型的耐磨钢管材料，该类材料经内表面超音频或高频感应加热淬火，内表面淬硬层硬度可达HRC55-HRC65，具有良好的耐磨性能，使用方向与中高碳碳素结构钢基本相同，使用寿命有较大的提高，以45Mn2材质耐磨钢管为例输送混凝土时的使用寿命为2-3万方，65Mn2材质的耐磨钢管使用寿命可达3-5万方，性价比良好。
[0007] 3）高铬铸铁材料；
[0008] 高铬铸铁材料目前用于耐磨钢管，主要用于铸态管型式使用，铸态高铬铸铁钢管经热处理后硬度较高，表面硬度可达HRC50-HRC60，由于碳化物浓度高此类材质的耐磨钢管具有很好的耐磨性能，但由于材料冲击性能较差，在普遍具有的压力输送工况下安全性较差，限制了其使用范围。
[0009] 4）陶瓷材料
[0010] 陶瓷材料用于耐磨钢管领域一般通过热喷涂或自氧化法获得，通过上述方法使普通钢管内表面覆盖一层坚硬、耐磨的氧化物涂层，涂层硬度极高可达HV1000-HV2000，耐磨性能极好，但该涂层结合力不高，很容易脱落，至使其使用范围造成很大局限。
[0011] 5）双金属复合钢管
[0012] 双金属复合钢管主要型式为机械复合，这种钢管一般外层为普通低碳钢，内层为中高碳碳素结构钢或中高碳合金结构钢，这种结构型式由于外层为普通低碳钢，内孔热处理后不影响其冲击韧性，外层作为支撑层的基本功能仍能很好保持，该型式基本解决了冲击韧性的问题，从根本上解决了耐磨钢管在压力脉动工况下的安全性问题，但是由于复层（耐磨层）的材质原因其耐磨性能及耐腐蚀性能还存在一定的问题，以输送混凝土为例使用寿命最高为3-5万方，仍不理想。而且由于内外层钢管为机械复合，内外层钢管之间的配合是机械配合里的过度配合或过盈配合，两层钢管靠弹性变形力结合，当复合钢管的内层在使用过程中磨损到一定程度后会失去弹性变形，两层钢管之间将失去结合力，这时内层
钢管磨损后变的很薄，在输送混凝土时很容易窜动、压缩造成堵管。

[0013] 耐磨钢管通常都在较高输送压力、较高的脉动冲击压力、严重的磨粒磨损条件及易腐蚀环境工况下运行,因此,要求耐磨钢管材料须具备下述特点:

[0014] 1) 必须可以充分淬硬,具有较高的硬度和耐磨性;
[0015] 2) 必须具有较高的疲劳强度,特别是工作面具有较高的疲劳强度;
[0016] 3) 在承受冲击载荷情况下耐磨钢管具备较大的抗冲击能力;
[0017] 4) 耐磨钢管具备较好的耐腐蚀性能对提高其使用寿命极为有利;

[0018] 但是,对于同一种材料而言,硬度、耐磨性和韧性、抗冲击能力是相互矛盾的,要求足够高的硬度、强度和耐磨性必然以降低材料的韧性和抗冲击性能为代价。虽然用超音频或高频感应加热淬火能控制淬硬层厚度,让未完全淬硬部分保持一定的韧性,能使材料的整体性能有所改善;用普通机械复合的方法让外层普通低碳钢材料作为支撑层,解决了压力、压力脉动工况下的安全性问题;但仍达不到耐磨钢管的理想要求。如何保证在足够的硬度、耐磨性、疲劳强度下不降低材料的冲击韧性,同时又保证工作面具有较高耐腐蚀性能,正是目前迫切解决的技术问题。

发明内容

[0019] 本发明的目的是针对现有技术的不足,提供一种新型双金属机械复合耐磨钢管材
料及其生产工艺。其特点在于:用低碳钢或低碳合金钢管作为外层,用(化学成分/％:碳含量 > 0.70)的高碳钢或高碳合金钢材料钢管作为内层,内外层钢、管之间涂高温胶、钎焊料或局部焊接,通过冷拔、热拔(温拔)、冷压、热压、冷装、热装、顶压等手段使内外层钢管紧贴合,然后整体加热淬火或内孔感应加热淬火,从而得到一种耐磨性能优良、抗冲击载荷能力较高、具有一定耐腐蚀性能、在压力脉动工况下安全性能很高的双金属机械复合耐磨钢管材料。

[0020] 本发明的目的由以下技术措施实现:

[0021] 双金属机械复合耐磨钢管包括外层和内层,外层(1)为基层,内层(2)为复层;基
层与复层之间涂高温胶、钎焊料或局部焊接后采用机械复合。

[0022] 复层为化学成分/％:碳含量 > 0.70 的高碳钢或高碳合金钢,基层为低碳钢或低碳合金钢。

[0023] 复层为无缝钢管或焊接钢管,基层为无缝钢管或焊接钢管。

[0024] 基层与复层之间在机械复合前、后用高温胶、局部焊接或钎焊的方法将内外层钢管之间牢固接合。

[0025] 双金属机械复合为冷拔、热拔、冷轧、旋压、热装、冷装和顶压中的至少一种。

[0026] 双金属机械复合耐磨钢管的生产方法包括以下步骤;

[0027] (1) 选材
[0028] 根据使用条件或者用户需求选择复层材料为化学成分/%:碳含量 > 0.70 的高碳钢或高碳合金钢材料;

[0029] 根据强度和复层的性能选择相应的基层材料为低碳钢或低碳合金钢材料;

[0030] (2) 管坯准备

[0031] A. 将外层钢管管坯通过焊接、冷拔、冷轧方式加工成设计要求的规格尺寸;
B. 将硬化退火后的内层钢带坯料通过焊接、冷拔、冷轧方式加工成设计要求的规格尺寸，内层钢管的外径略小于、等于外层钢管的内径或略大于外层钢管内径，以便装入外层钢管。

C. 对内层钢管外径小于外层钢管内径的钢管，将内管装入外管后两管间局部焊接或将内管外表面或外管内表面涂高锰胶、钎焊料后装入外管，然后通过冷拔、热拔、冷轧和旋压方式机械加工成紧密贴合的复合钢管。

D. 对内层钢管外径略大于或等于外层钢管内径的钢管，将外层钢管内表面或内层钢管外表面涂高锰胶或钎焊料后直接通过加热外层钢管热装、冷冻内层钢管冷装或直接顶压方法，将内层钢管装入外层钢管后机械加工成紧密贴合的复合钢管。

上述工艺步骤 C、D 获得成品管材常规耐磨钢管生产工艺 + 内孔中频、超音频、高频感应加热淬火或整体加热淬火处理后淬硬层硬度 HRC60-HRC68，从而获得双金属复合耐磨钢管。

性能测试：

采用国家标准 GB 228-87，GB/T230-1991，GB/T12444-2006 对上述方法获得的双金属机械复合耐磨钢管进行测试，详见表 1 所示，结果表明：耐磨性能、抗疲劳强度、冲击韧性、耐腐蚀性能均有较大提高。

本发明具有如下优点：

1. 生产工艺简单、制造成本低，市场容量大，节能环保。
2. 耐磨性能好、抗疲劳强度高、冲击韧性好、耐腐蚀性能较好，安全性好，使用寿命长。
3. 在使用过程中内层严重磨损失去弹性变形的情况下，由于内外层之间进行了粘结或焊接所以内管不会窜动、压缩造成堵管事故，同时内管可以磨尽延长了使用寿命。

具体实施方式

下面通过实施例对本发明进行具体的描述，有必要在此指出的是本实施例仅用于对本发明进行进一步说明，不能理解为对本发明保护范围的限制，该领域的技术熟练人员可以根据上述本发明的内容作出一些非本质的改进和调整。

实施例 1

内层选用低碳钢热轧无氧钢，规格：Φ133×4.5 长度 (mm) 4700；内层选用高碳铬轴承钢 GCr15 热轧无氧钢并球化退火，规格：Φ127×4.5 长度 (mm) 5700；

20 钢 成分：C 0.17 ~ 0.24 %，Si 0.17 ~ 0.37 %，Mn 0.35 ~ 0.65 %，P ≤ 0.025 %，S ≤ 0.025 %。
[0050] GCr15 成分：C 0.95～1.05%，Si 0.15～0.35%，Mn 0.25～0.45%，P ≤ 0.025%，S ≤ 0.025%，Cr1.4～1.65%。

[0051] (2) 坩管准备

[0052] A. 上车床将外层钢热轧无缝钢管切削加工夹持工艺头，然后进行表面处理（酸洗－磷化－皂化），经过一道次冷拔至设计尺寸(mm)：Φ131.5×2.5～10000；

[0053] B. 上车床将内层 GCr15 热轧无缝钢管切削加工夹持工艺头，然后进行表面处理（酸洗－磷化－皂化），再经过两道次循环冷拔至设计尺寸(mm)：Φ124×2.5～10000 并软化退火；

[0054] C. 将拔制好的内、外层钢管分别进行较直，将内管装入外管并对齐；

[0055] (3) 机械复合（冷拔）

[0056] D. 对步骤 C 所得的套装好的坩管用 Φ124 内模冷扩拔后得到规格尺寸为 Φ133×4.5～10000 的双金属机械复合耐磨钢管；

[0057] E. 对步骤 D 所得的双金属机械复合耐磨钢管进行较直后用带锯床下料至设计尺寸：3m/m3 件、1m/1 件，然后将钢管两端距端口 150mm 范围内局部点焊各 8 点；

[0058] (4) 焊制接头

[0059] F. 对步骤 E 获得的复合钢管两端分别焊上加工好的标准接头；

[0060] (5) 热处理

[0061] G. 对步骤 F 获得的双金属复合管材经内孔超音频感应加热淬火处理后其性能见表 1；

[0062] 实施例 2

[0063] (1) 选材

[0064] 外层选用低合金碳素结构钢高频焊钢管，钢号：Q235B 规格(mm)：Φ140×6 长度(mm)7700；内层选用高碳铬轴承钢 GCr15 热轧无缝钢管并球化退火，规格(mm)：Φ127×4.5 长度(mm)7000；

[0065] Q235B 成分：C 0.12～0.20%，Si 0.10～0.30%，Mn 0.30～0.70%，P ≤ 0.045%，S ≤ 0.045%；

[0066] GCr15 成分：C 0.95～1.05%，Si 0.15～0.35%，Mn 0.25～0.45%，P ≤ 0.025%，S ≤ 0.025%，Cr1.4～1.65%；

[0067] (2) 坩管准备

[0068] A. 上车床将外层 Q235B 高频焊管切削加工夹持工艺头，然后进行表面处理（酸洗－磷化－皂化），经过一道次冷拔至设计尺寸(mm)：Φ138.5×4.5～10000；

[0069] B. 上车床将内层 GCr15 热轧无缝钢管切削加工夹持工艺头，然后进行表面处理（酸洗－磷化－皂化），再经过两道次循环冷拔至设计尺寸(mm)：Φ127.5×3～10000 并软化退火；

[0070] C. 将拔制好的内、外层钢管分别进行较直，然后将外管外表面均匀涂上水基石墨润滑剂，用中频加热炉将外管加热至 520℃迅速将外表面涂了 0.05mm 厚钎焊料 Cu93P 的内管装入外管并对齐；

[0071] (3) 机械复合（温拔）

[0072] D. 对步骤 C 所得的套装好的坩管在外管温度 > 200℃时用 Φ125 内模扩拔，待外
说明书

管冷却后得到规格尺寸为 φ140×7.5-10000mm 的双金属机械复合耐磨钢管；

[0073] E. 对步骤 D 所得的双金属机械复合耐磨钢管进行较后用带锥床下料至设计尺寸;3m/3 件、1m/1 件；

[0074] (4) 焊制接头

[0075] F. 对步骤 E 获得的复合钢管两端分别焊上加工好的标准接头；

[0076] (5) 热处理

[0077] G. 对步骤 F 获得的双金属复合管材经内孔超音频感应加热淬火处理后其性能见表 1；

[0078] 实施例 3

[0079] (1) 选材

[0080] 外层 1 选用低合金结构钢热轧无缝钢管，钢号：Q345B 规格 (mm)：φ219×12 长度 (mm)8300；内层 2 选用高碳铬轴承钢 GCr15 热轧无缝钢管并球化退火，规格 (mm)：φ194×7 长度 (mm)：6900；

[0081] (1) Q345B 成分: C 0.15 ～ 0.20%, Si 0.35 ～ 0.55%, Mn 1.00 ～ 1.60%, V 0.02 ～ 0.15%, P ≤ 0.025%, S ≤ 0.025%；

[0082] (1) GCr15 成分: C 0.95 ～ 1.05%, Si 0.15 ～ 0.35%, Mn 0.25 ～ 0.45%, P ≤ 0.025%, S ≤ 0.025%, Cr1.4-1.65%；

[0083] (2) 焊管准备

[0084] A. 上车床将外层 Q345B 热轧无缝钢管切割加工夹持工艺头，然后进行表面处理（酸洗 - 磷化 - 皂化），经过一道次冷拔至设计尺寸 (mm)：φ219×9.5-10000，内径 200mm；

[0085] B. 上车床将内层 GCr15 热轧无缝钢管切割加工夹持工艺头，然后进行表面处理（酸洗 - 磷化 - 皂化），再经过两道次循环冷拔至设计尺寸 (mm)：φ200×4.5-10000，外径 200mm 并去应力退火；

[0086] C. 将拔制好的内、外层钢管分别进行矫直，弯曲度按 0.25mm/m 控制，然后将矫直后的钢管用锯床下料至设计长度尺寸：3m/3 件、1m/1 件；

[0087] (3) 机械复合 (热装)

[0088] D. 把步骤 C 获得的锯好的内、外层钢管用砂轮机或车床将锯口两端内、外圆分别加工成 1×45° 倒角；

[0089] E. 对步骤 D 所得的钢管分别选取长度 3m 的内、外层钢管组对或长度 1m 的内、外层钢管组对，将组对好的钢管的外层钢管用中频加热炉加热至 520℃ 后装夹在专用的液压夹管设上，然后迅速将外表面涂了 0.05mm 厚 CPS 氧化钢胶的内层钢管压入外层钢管并对齐，待外层钢管冷却后即得到双金属机械复合耐磨钢管：φ219×14-3000(mm)/3 件，φ219×14-1000(mm)/1 件；

[0090] (4) 焊制接头

[0091] F. 对步骤 E 获得的复合钢管两端分别焊上加工好的标准接头；

[0092] (5) 热处理

[0093] G. 对步骤 F 获得的双金属复合管材经内孔超音频感应加热淬火处理后其性能见表 1；

[0094] 经过上述 A-G 的工艺处理，即可获得内、外层结合紧密，耐磨性能、耐腐蚀性能、抗
冲击性能、安全性能均优良的双金属机械复合耐磨钢管成品。

表1为双金属机械复合耐磨钢管的性能

<table>
<thead>
<tr>
<th>新型双金属机械复合耐磨钢管</th>
<th>热处理工艺</th>
<th>基层</th>
<th>复层</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>抗拉强度MPa</td>
<td>屈服强度MPa</td>
<td>延伸率%</td>
</tr>
<tr>
<td>20/GCr15</td>
<td>内孔860℃超音频喷水淬火</td>
<td>546</td>
<td>395</td>
</tr>
<tr>
<td>Q235B/GCr15</td>
<td>内孔860℃超音频喷水淬火</td>
<td>562</td>
<td>417</td>
</tr>
<tr>
<td>Q345B/GCr15</td>
<td>内孔860℃超音频喷水淬火</td>
<td>661</td>
<td>585</td>
</tr>
</tbody>
</table>

GB 228-87 GB/T 230—1991 GB/T 12444—2006
图 1