INFANT CALMING/SLEEP-AID, SIDS PREVENTION DEVICE, AND METHOD OF USE

Applicant: Unacuna, LLC, Los Angeles, CA (US)

Inventors: Harvey Neil Karp, Los Angeles, CA (US); Matthew R. Berlin, Somerville, MA (US); Jesse V. Gray, Somerville, MA (US); Bill Walter Washabaugh, Brooklyn, NY (US); Deb Kumar Roy, Belmont, MA (US)

Filed: Jul. 31, 2014

ABSTRACT

An infant calming/sleep-aid/SIDS detection device is provided that includes a main moving platform that moves in a variable manner with accompanying variable sound generation, the sound and motion adapted to calm a fussy baby, induce sleep, and maintain sleep under normal conditions. The device may also have a sensor for detection of pauses in breathing and/or detection of resultant biological changes related to breathing pauses and respond with appropriate stimuli to arouse the baby and allow breathing to recommence.
Crying Detection Module 124

Audio data → digital band-pass filter → filtered audio data → energy-based threshold

Energy over threshold/under threshold → time-based filter

Infant is crying/is not crying

FIG. 11
Motion Analysis Module 132

- Accelerometer data
- Digital filter bank
 - Filtered motion amplitude estimate
- Range checks for soothing motion amplitude/frequency
 - Motion in soothing range/not in soothing range
- Time-based filter
 - Motion is soothing/is not soothing
- Motion frequency
- Motion safety threshold
 - Motion in nominal range/not nominal range
- Time-based filter
 - Motion nominal/not nominal

FIG. 12
Behavior State Machine Module 126

library of states

state N:
- desired motion state
- desired audio track
- desired volume/equalizer settings

state transition rules 156

infant is crying/is not crying

desired motion state, desired audio track, desired volume/equalizer settings

FIG. 13
Behavior State Machine Module 126

Library of States 154
- desired motion state
- desired alarm state
- desired audio track
- desired volume/equalizer settings
- desired call state

State Transition Rules 156

FIG. 13a

biometric measure normal/biometric measure not normal

desired motion state, parent alarm, white noise sound, Wi-Fi phone call to emergency services
Motion Generation Module — 128

1. Lookup reference motor commands based on desired motion state.
2. Are current motor commands close to reference motor commands?
 - Yes: Set desired motor commands within allowable envelope via gradient ascent based on observed motion frequency/amplitude.
 - No: Set desired motor commands via path planning in motor command space.
3. Is desired system speed less than "Full"?
 - Yes: Adjust desired motor commands in proportion to desired system speed.
 - No: Continue with next step.
4. Is observed motion nominal?
 - Yes: Output desired motor commands.
 - No: Disable all motor output.

FIG. 15
![Diagram](image-url)
FIG. 20

- Cloth covering
- Foam padding
- Tension roller
- Drive belt pulley
- Motor
- Rod end
- Push rod
- Balancing compression spring
- Head balancing extension spring
- Damper
- Rotational thrust bearing
- Disk motor rotate driven
- Rigid base board
- Speaker
- Forming base spring brkt
HISTORY:
Shows duration of sleep
and fuss as a line chart.

END OF SESSION:
Color represents an
average of the levels of
wriggle/sound used
during the session.

DURING SESSION:
Each 'ring' represents
levels of wriggle/sound.
The center's baseline.
Color moves out as
intensity increases.

BEFORE SESSION:
Center dot represents
the child; purple =
pause; yellow = fuss,
cyan = sleeping.
FIG. 26b

HISTORY
Shows duration of sleep and fuss as a line chart

END OF SESSION
A heatmap represents an average of the intervention levels used during the session

DURING SESSION
Color and position of marker show intervention levels. The color of the notch to the right indicates the baby, yellow = fuss, cyan = sleeping

SESSION START
Marker represents the smart sleeper; purple = pause, green = high intervention, cyan = baseline

2:59
2606

2612

42:53
2610

0:00
2608
FIG. 26c

SESSION START
Center dot represents the child; purple = pause, yellow = fuss, cyan = sleeping.

DURING SESSION
Each petal represents levels of wiggle and sound. The bottom is the baseline; the top is the highest level of intensity.

END OF SESSION
A heatmap represents an average of the wiggle/sound used during the session.

HISTORY
Shows duration of sleep and fuss as a line chart.

2606
2.59

2620
2.05

2618
0.03

2616
0.00
optical interrupt switch, no moving parts
emitter/detector pair located at base of clip finger
may be an upper limit to this gap
need holes or lenses here

torsion spring
contact
to control board
INFANT CALMING/SLEEP-AID, SIDS PREVENTION DEVICE, AND METHOD OF USE

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims the benefit of the following provisional applications, each of which is incorporated herein by reference in its entirety: U.S. patent application 61/860,752, filed Jul. 31, 2013 and U.S. patent application 61/975,541, filed Apr. 4, 2014.

FIELD

[0002] This disclosure relates to an infant calming, sleep promoting and SIDS preventing device.

DESCRIPTION OF THE RELATED ART

[0003] Persistent crying and poor infant sleep are perennial and ubiquitous causes of parent frustration. During the first months of life, babies fuss/cry an average of about 2 hours/day and wake two to three times a night. One in six infants is brought to a medical professional for evaluation for sleep/cry issues.

[0004] Infant crying and parental exhaustion are often demoralizing and directly link to marital conflict, anger towards the baby and impaired job performance. In addition, they are primary triggers for a cascade of serious/fatal health sequelae, including postpartum depression (which affects about 15% of all mothers and about 25 to about 50% of their partners), breastfeeding failure, child abuse and neglect, infanticide, suicide, unsafe sleeping practices, SIDS/suffocation, cigarette smoking, excessive doctor visits, overtreatment of infants with medication, automobile accidents, dysfunctional bonding, and perhaps maternal and infant obesity.

[0005] Traditional parenting practices have utilized swaddling, rhythmic motion and certain sounds to soothe fussing infants and promote sleep (by reducing sleep latency and increasing sleep efficiency). “Sleep latency” may be defined as the length of time between going to bed and falling asleep. “Sleep efficiency” may be defined as the ratio of time spent asleep (total sleep time) to the amount of time spent in bed.

[0006] Swaddling, rhythmic motion and certain sounds imitate elements of a baby’s in utero sensory milieu and activate a suite of subcortical reflexes, called the “calming reflex,” during the first 4-6 months of a baby’s life. After that time, these stimuli can still promote infant sleep, but they do so by activating a conditioned response.

[0007] Swaddling is a method of snug wrapping with the arms restrained at the baby’s sides. This imitates the confinement babies experience in the womb and the continual touch they experience from the soft lining of the uterine wall. Swaddling also inhibits startling and flinching, which often interrupts sleep and starts/exacerbates crying.

[0008] Rhythmic, jiggling motion replicates the movement fetuses experience when the mother is walking. It stimulates the vestibular apparatus in the semicircular canals of the inner ear. A specific, rumbling noise imitates the sound created by the turbulence of the blood flowing through the uterine and umbilical arteries. In utero, the sound level babies hear has been measured at between 75 and 92 dB. Each baby has a specific and distinctive unique mix of motion and sound that most efficiently activates his/her calming reflex. This preferred mix stays consistent through the first months of life (i.e. babies who respond best to swaddling plus jiggling continue to respond to those modalities over time and don’t abruptly switch their preference to swaddling plus sound).

[0009] The calming reflex has several constant characteristics. It is triggered by a stereotypical sensory input; produces a stereotypical behavioral output; demonstrates a threshold phenomenon (i.e. stimuli that are too mild may not be sufficient to activate a response); has a threshold that varies between individuals (i.e. is higher or lower for any given child); the threshold varies by state (e.g. fussing and crying raise the level of stimulation required to exceed threshold and bring about reflex activation); the reflex is almost irresistible at first, but wanes after 3-4 months of age.

[0010] Since the nominal level of a stimulus needed to reach the triggering threshold of the calming reflex differs from one child to the next, failure to exceed a particular child’s threshold level often results in a total absence of a calming response. For example, slow smooth motion may calm one upset infant, yet be too subdued to calm another. Likewise, moderately loud sound (e.g., at a level of about 78 dB) sound may reach the calming threshold for one child, but be insufficient to calm another. Once triggered, the stereotypical output of the calming reflex is a reduction of motor output and a more tranquil state (quiet alert state or sleep).

In this context, the word “state” describes an infant’s level of attention to and interaction with the environment. Infants experience at least six identifiable states in this context: quiet sleep, active sleep, drowsiness, quiet alert, fussing and crying.

The intensity of sound and motion needed to trigger any particular baby’s calming reflex is substantially greater than the levels needed to keep the calming reflex activated.

[0011] However, despite the convenience, efficacy and availability of swaddling, rhythmic motion and sound, these methods fail to calm and promote sleep in a large portion of the infant population because they are not being applied correctly. When parents fail to reduce infant crying and promote sleep, they often bring the baby into their own bed. However, this is problematic because sharing a bed with a parent has been proven to raise an infant’s risk of Sudden Infant Death Syndrome (SIDS) and accidental suffocation (which the US Centers for Disease Control reports has been increasing by 14% per year for approximately twenty years). The hazard of bed sharing is further elevated if the parent is extremely fatigued. Like inebriation, exhaustion reduces adult judgment and responsiveness. As many as 50% of new parents report sleeping fewer than 6 hours/night, the level demonstrated in adults to cause a level of impairment of attention and cognition comparable to inebriation. For this reason, bed sharing with an exhausted parent increases the SIDS risk and the suffocation risk (from accidental overlaying of the parents body over the infant’s head, pulling bedding over the baby, etc.);

[0012] Other behaviors that stressed, exhausted parents engage in also directly raise the risk of SIDS and suffocation (e.g. cigarette smoking, cessation of breast feeding, falling asleep with the baby on a couch, placing the baby on the stomach to sleep). Medical authorities recommend parents avoid bed sharing. However, the rules can too be problematic. Babies sleeping supine in cribs have a higher risk of plagiocephaly (flattening of the skull), which may require expensive and inconvenient medical treatment, and may result in permanent deformity. A crib’s flat, quiet, nonmoving surface is devoid of the swaddling, rhythmic motion and sound that can
activate the calming reflex or conditioned response and reduce crying and sleep latency and increase sleep efficiency. [0013] In an attempt to improve infant sleep in cribs, parents have employed several methods (prone sleeping, swaddling, rocking motion, sound), however each is problematic. For example, the prone position is associated with a 3-4 fold increased risk of SIDS. Unswaddled babies can roll to the stomach position (prone), which is associated with an 8-19 fold increased risk of SIDS. Swaddled babies can roll prone, which is associated with a 12-fold increased risk of SIDS. Rocking motion delivery systems (e.g. swings, cradles and hammocks) may all present problems. The motion of infant swings is often insufficient to calm a fussy baby and induce sleep. When sitting in a swing, a baby's head can roll forward and create an airway obstruction, leading to death. Cradles and hammocks require parents to be the motion-producing energy source, and thus can be done for only a limited part of the sleep period. Also, they can accidentally cause a supine baby to roll to the side or stomach or become wedged into the side wall of the sleeper. Sound delivery devices (e.g. fans, air filters, hair dryers, sound machines and white noise CDs) may be cumbersome and expensive and the volume, quality or frequency profile of the sound they produce may be excessive or too different from in utero sound to be effective.

[0014] Over the past twenty years, attempts have been made to engineer technological methods to create infant calming/sleep devices to deliver sound and motion more conveniently. These current infant calming/sleep devices typically deliver fixed and unchangeable motion and sound. This is a problem because each baby has a different mix of sound and motion that most efficiently calms the child's crying. For example, some babies respond best to swaddling plus motion, while others are not calmed unless they have swaddling, motion plus white noise sound. Another problem with fixed motion and sound infant calming/sleep devices is that each baby has a unique level of motion and sound that induces calming and sleep most efficiently. For example, slow rocking may reduce sleep latency for one infant, yet be too subdued to do so in another infant. And, quiet sound may be sufficient to increase sleep efficiency for one baby, but not another. Devices that deliver constant sound may also expose a baby to unhealthy levels of sound, if they are set at too high a volume.

[0015] Still another problem with fixed motion and sound infant calming/sleep devices is that the intensity of the stimuli needed to activate the calming reflex and induce calm and sleep varies substantially as a child's state changes. For example, most fussy babies require more vigorous, jiggling motion (with rapid acceleration-deceleration) and more vigorous sound inputs (as loud as a vacuum cleaner or hair dryer—75 to 95 dB). On the other hand, calm, sleepy babies need less vigorous inputs. Further, current infant calming/sleep devices do not continue all night long; do not deliver optimal sound and motion for triggering the calming reflex; do not increase and decrease their sensory input in a step-wise fashion to vary the sensory input intensity to give the baby the most effective level of stimulation with the minimum exposure to high levels of sound; lack the ability to gradually increased the sensory input over the first weeks of life and to gradually wean a baby off the stimuli as he or she ages.

[0016] In addition, crib death or SIDS (Sudden Infant Death Syndrome) is a leading cause of infant mortality. Approximately 2500 US babies die each year from SIDS during the first year of life. The peak occurrence is from 2-4 months of age, with 80% of the victims being under 4 months and 90% being under 6 months of age. [0017] In the 1990's a program to reduce SIDS deaths called “Back to Sleep” was introduced. At that time, it was discovered that sleeping on the stomach was a key triggering factor in SIDS, so caregivers were instructed to place babies on their backs for sleeping. Within less than a decade, the rate of SIDS dropped in half, however, since that time, the SIDS incidence has not diminished. Furthermore, while the exact cause of SIDS is unknown, the primary cause is believed to be immaturity of the respiratory regulatory system in the brain. In essence, it seems that babies “forget” to breath and their internal alarm system does not reliably arouse them to recommence breathing. Once breathing stops, the body becomes more and more hypoxic and acidic, leading to a downward spiral of reduced heart rate, dropping blood pressure, cardiovascular collapse and death. Studies have indicated that the risk of stomach sleeping may indeed predispose babies to SIDS by reducing infant arousability.

[0018] In the hospital setting, the use of an infant monitor immediately alerts the healthcare workers if an infant stops breathing. The health care workers can often resuscitate the infant with simple stimulation (e.g. vigorous jiggling), without the need of oxygen or formal CPR.

[0019] In the home setting, however, studies have not shown that using a cardiorespiratory monitor reduces the incidence of SIDS. This lack of effect may be because, 1) the parent responding to the alarm may not know how to resuscitate the baby; 2) the parent may be panicked and incapable of resuscitating the baby; 3) the baby may be so hypoxic and acidic, that, by time the parent arrives at the scene, an irreversible cardiorespiratory collapse has already been precipitated.

[0020] However, a device that can begin vigorous stimulation of the baby within seconds of the baby stopping breathing (apnea) may be able to arouse the minimally depressed baby and reinitiate the breathing sequence before a downward cardiovascular spiral has occurred. The “Back to Sleep” program has proven that simple interventions can lead to a profound reduction in mortality by virtue of helping babies be slightly more aroused, as they are in the supine position. In other words, it may not take a great amount of sensory input maintain the baby in a mode of regular breathing or to return the baby to normal breathing after a brief, transient cessation. Also, two studies have shown that supine swaddling is associated with a reduction in SIDS. Swaddling has been shown to increase arousability, especially during active sleep.

[0021] Therefore, a need exists for an infant calming/sleep system that overcomes or minimizes the above-mentioned problems.

SUMMARY

[0022] This disclosure is generally directed to devices and methods for aiding calming and safe sleep of an infant. In embodiments, an infant calming/sleep-aid device is provided that includes a main moving platform that moves in a variable manner with accompanying variable sound generation, each adapted to calm a baby, induce sleep, and maintain sleep. This device can be independently controlled, from the device itself, or via communication with a mobile device application that also delivers users various forms of information about sleep, their baby, etc. Also, a secure sleep sack design may be provided which prevents accidental rolling to the potentially risky prone position. Furthermore, this device may contain a
sensor to monitor one or more of the baby’s biometrics to detect when the baby has temporarily stopped breathing. In that case, the device will sound an alarm to summons the caregiver and commence vigorous motion and sound—similar to the intervention used by medical personnel to arouse apneic infants in the hospital—before the baby becomes acidoic and bradycardic. The device can also be programmed by the parent to call 911 or local emergency services in case of cessation of breathing of the infant.

[0023] In one embodiment, an infant calming/sleep-aid device is provided that includes a main moving platform that moves in a reciprocating manner. An actuator drives the reciprocating movement of the main moving platform. An optional moving head platform may be linked to the main moving platform to reciprocate in response to reciprocating movement of the main moving platform. In some embodiments, at least one of a motion sensing device and a sound sensing device are, respectively, at or proximate to main moving platform or the moving head platform. A logic system links at least one of the motion sensing device and the sound sensing device to the main moving platform, whereby signals detected by at least one of the motion sensing device and the sound sensing device cause the logic circuit to modulate the movement of the main moving platform and the intensity of the sound produced by the sound generation system.

[0024] In some embodiments, the infant calming/sleep-aid device includes a rigid base and a main movement linkage or bearing extending from the base. A moving infant support is mounted on the main movement linkage or bearing, whereby the platform is movable on the main movement linkage or bearing relative to the base. An actuation assembly that controls movement of the moving platform about the main movement linkage or bearing relative to the rigid base includes an actuator mounted to the rigid base.

[0025] In some embodiments, a method for aiding the calming of a fussy infant or the sleep of an infant, includes the step of moving the infant on the platform in a reciprocating or rotating manner about an axis that intersects the infant at a 90° angle to a major plane of the surface supporting the infant, repetitively moving the supporting surface up and down, a combination of such movements, or others. For example, motion of the platform in other planes in addition to a horizontal plane, such as a swinging motion, or rotating motion around a horizontal axis, is also possible.

[0026] The movements may be made in an adaptive manner. In some embodiments, at least one of a sound generated by a sound generating device and a reciprocating or repetitive or rotating movement may be modulated in an updating and adaptive matter by a logic circuit-controlled actuation in response to at least one of the sound of the infant and the motion of the platform. In embodiments, sound may delivered to an infant in the device but not motion if the infant is not securely attached to the platform. In embodiments, motion may delivered to an infant in the device but not sound, at the parents choice.

[0027] The device and method have many advantages. For example, the device and method provide for modulation of the movement of an infant in an updating and adaptive manner. The rapidly accelerating and decelerating motion of the device, which includes the infant’s head to accelerate and decelerate over a short distance in a safe and specifically controlled manner, imitates the sensations that babies experience before birth in the womb. During the first 6 months of an infant’s life these sensations induce the infant’s natural calming reflex. In addition, after just days to weeks of time, these cues begin to trigger a conditioned response. The device’s specifically designed motion and sound, along with its adaptive control system reduce irritability during awake time and improve infant sleep (specifically reducing irritability during periods of sleep, reducing sleep latency and increasing sleep efficiency) for babies up to at least twelve months of age.

[0028] As further steps to reduce SIDS, the infant calming/sleep system described herein may provide babies with a secure swaddle or sleep sack, as two studies have shown that a supine swaddle may reduce SIDS. The secure sleep sack described herein is intended to 1) prevent overheating; 2) promote greater air flow; 3) prevent accidental rolling to the stomach when the baby is unsupervised. A sensor to detect when the baby stops breathing to cue/trigger a vigorous response and the sending of an alarm to parent may also be included in the infant calming/sleep system. This sensor can cue or trigger a rapid response of vigorous motion/sound and generate an alarm to summons the caregiver or send an automatic message to call for emergency medical services, such as via a WIFI connection.

[0029] In embodiments, a method for preventing SIDS includes the steps of providing a sleep device comprising a platform for supporting an infant; monitoring the infant with a sensor that generates a signal indicative of at least one of a motor status or a physiologic status of the infant; receiving and analyzing, by a control system of the sleep device, the generated signal indicative of the motor status or the physiologic status of the infant; generating, by the control system of the sleep device, at least one output that controls at least one of a motion of the platform and a sound directed to the infant if a distressed status of the infant is detected based on the analyzed signal; and generating at least one of reciprocating motion of the platform and a sound directed to the infant in response to the at least one output.

BRIEF DESCRIPTION OF FIGURES

[0030] FIG. 1 is a perspective view of an exemplary embodiment of an infant calming/sleep-aid device, with a depiction of an infant asleep inside the device.

[0031] FIG. 2 is a perspective view of the infant calming/sleep-aid device of FIG. 1 with swaddle fastening straps and without an enclosure.

[0032] FIG. 2a is a perspective view of the infant calming/sleep-aid device of FIG. 1 with swaddle fastening clips integral to the swaddle and without an enclosure.

[0033] FIG. 3 is a perspective view of the infant calming/sleep-aid device of FIG. 2, showing apparatus beneath the main moving platform in broken lines.

[0034] FIG. 4 is a plan view illustrating components supporting the main moving platform of the infant calming/sleep-aid device of FIG. 3, with the rigid base and main moving platform shown in outline.

[0035] FIG. 5 is a side view of the infant calming/sleep-aid device shown in FIG. 4, taken along line 5-5.

[0036] FIG. 6 is a side view of the infant calming/sleep-aid device shown in FIG. 4.

[0037] FIG. 6a illustrates a drive motor of the infant calming/sleep-aid device shown in FIG. 4 or of other embodiments of the infant calming/sleep-aid device.

[0038] FIG. 6b illustrates an exemplary location of a drive motor on another exemplary embodiment of an infant calming/sleep-aid device.
FIG. 6c illustrates a cross sectional view of an embodiment of the infant calming device/sleep-aid device showing the drive motor.

FIG. 7 is a perspective view of yet another exemplary embodiment of the calming/sleep-aid device of the invention, showing components of the device beneath the main moving platform in broken lines.

FIG. 8 is a plan view of components supporting the main moving platform of the calming/sleep-aid device of FIG. 7, with the rigid base and main moving platform shown in outline.

FIG. 9 is a side view of the embodiment of the device shown in FIG. 7.

FIG. 10 is a schematic representation of one embodiment of a software control system of the calming/sleep-aid device, along with inputs and outputs of the software control system.

FIG. 11 is a schematic representation of one embodiment of a crying detection module of the calming/sleep-aid device.

FIG. 12 is a schematic representation of one embodiment of a motion analysis module of the calming/sleep-aid device.

FIG. 13 is a schematic representation of one embodiment of a behavior state machine module.

FIG. 13a is a schematic representation of one embodiment of a biometric sensor module.

FIG. 14 is a schematic representation of one embodiment of an audio generation module.

FIG. 15 is a schematic representation of a motion generation module.

FIG. 16 is a schematic representation of a motion generation module.

FIGS. 17-21 illustrate another exemplary embodiment of an infant calming device having a moving main platform with an integral head platform portion.

FIG. 22 is schematic diagram of control system related components of an exemplary infant calming/sleep-aid device.

FIG. 23a illustrates another exemplary embodiment in a perspective partially cut-away view of an infant calming/sleep-aid device viewed from one end of the device, and which can incorporate the control system of FIG. 22.

FIG. 23b is an exploded perspective view of the infant calming/sleep-aid device of FIG. 23a, showing individual components of the infant calming/sleep-aid device.

FIGS. 23c and 23d are perspective views of the infant calming/sleep-aid device of FIG. 23b.

FIGS. 23e-23h illustrate exemplary embodiment of leg connectors of the infant calming/sleep aid device of FIG. 23b, which are used to attach legs.

FIG. 24a is a view of the attachment mechanism to attach a secure sleep sack to the infant calming/sleep aid device of FIG. 23b.

FIG. 24b is a top perspective view of the infant calming/sleep aid device showing the part of the attachment mechanism that allows a secure sleep sack to be attached to the infant calming/sleep-aid device of FIG. 23b.

FIGS. 25a-25 are views of exemplary secure sleep sacks.

FIG. 26a illustrates views of layers displayed by a user interface for use with the infant calming/sleep-aid device of FIG. 22.

FIG. 26b illustrates views of sliders displayed by a user interface for use with the infant calming/sleep-aid device of FIG. 22.

FIG. 26c illustrates views of blossoms displayed by a user interface for use with the infant calming/sleep-aid device of FIG. 22.

FIG. 26d illustrates additional views displayed by a mobile application user interface for use with the infant calming/sleep-aid device of FIG. 22.

FIG. 27 illustrates additional views displayed by an exemplary mobile device application user interface for use with the infant calming device.

FIGS. 28 and 29 illustrates exemplary embodiments of a clip or switch for control purposes of the device.

DETAILED DESCRIPTION

In an exemplary embodiment, shown in FIGS. 1 through 6, infant calming/sleep-aid device 10 includes an enclosure 12 about an infant 14. Enclosure 12 surrounds main moving platform 16. Main moving platform 16 may be made from wood-based particleboard with an injection molded support tray or the entire platform may be injection molded. The injection molded support tray may provide stiffening ribs, attaching features, and the like. As can be seen in FIG. 2, main moving platform 16 includes base 18, moving head platform 19, padding 20 and cloth covering 22. Secure sleep sack fastening straps 24 extend from main moving platform 16 for securing infant 14 in suitable secure sleep sack 26. As can be seen in FIG. 2a, sleep sack fastening straps may take other forms such as attachment clips and may be integral to the sleep sack 26. This embodiment includes a head pad insert 28 that supports the head of infant 14. Preferably, head pad insert 28 includes a gel in order to reduce the risk of plagiocephaly. Handles 30 extend laterally from main moving platform 16. Main moving platform 16 is supported and rotatable about a main support shaft (not shown) that is fixed to rigid base 32. Rigid base 32 may be made from molded plastic, stamped metal, and the like. Control panel 34, which includes speed control knobs 35, status lights 37 and controls 39 for microphone 38. Rigid base control electronics 36 may include drive electronics of the infant calming/sleep-aid device 10, as well as other sensors, such as an accelerometer or biometric sensor (not shown).

In another representative view of infant calming/sleep-aid device 10 of FIG. 2, shown in FIG. 3, main moving platform 16 is supported by main support shaft 40 at main rotation bearing 42. Moving head platform 19 supports head pad insert 28 and is rotatable about head rotation bearing 46 through arm 48 extending between head rotation bearing 46 and moving head platform 19. Motion sensing device 50, such as an accelerometer, at moving head platform 44 detects motion of moving head platform 19. Microphones 58 at moving head platform 19 detect sound emitted by the infant (not shown) when supported by infant aid sleep device 10. Speakers 52, supported by brackets 54 mounted on rigid base 18, are located directly beneath moving head platform 19. Springs 56 linking either side of moving head platform 19 to main moving platform 16 dampen motion of moving head platform 19 relative to main moving platform 16 during reciprocal motion of moving head platform 19 induced by reciprocating motion of main moving platform 16.

Reciprocating motion of main moving platform 16 about main support shaft 36 is about an axis that is orthogonal
to a major plane of main moving platform 16. Reciprocating motion of main moving platform 16 is driven by actuator assembly 58.

[0069] In some embodiments, the body and the head of the infant can be out of phase. For example, at relatively slow speeds, the motion of the head of the infant can be in the same direction as that of the motion of the upper body of the infant. At relatively high speeds, the reciprocal motion of the head of the infant can be in the opposite direction as that of the upper body of the infant. In another embodiment of the invention (not shown), reciprocal motion of the head of the infant can be in some other direction, such as orthogonally relative to the plane of the main support platform.

[0070] Actuator assembly 58 includes drive motor 60 mounted to rigid base 32 and gear assembly 62 linked to drive motor 60 and also mounted to rigid base 32. Drive motor 60 may be an electric motor with a reciprocating drive disk and push/pull rod.

[0071] Actuation of drive motor 60 causes rotation gear assembly 62 to drive eccentric drive plate 64 about an axis normal to a major plane of rigid base 32. Eccentric drive plate 64 is linked to swing arm plate 66 of actuator assembly 58 that extends from eccentric drive plate 64 to rod end 68 of screw 70 and is pivotally mounted to rod end 68 of screw 70. Screw 70 is mounted to amplitude modulation assembly 72. Amplitude modulation assembly 72 includes amplitude modulation motor 74, nut 76, mounted on nut frame 78, which swivels on rotation bearing 80 mounted to rigid base 32. The axis of rotation of nut frame 78 on rotation bearing 80 is, like that of eccentric drive plate 64, normal to a major plane of rigid base 32. Actuation of amplitude modulation assembly 72 causes movement of screw 70 along its major longitudinal axis to thereby cause rod end 68 to become more proximate or less proximate to amplitude modulation assembly 72. Arm 82 extends from an end of screw 70 opposite to rod end 68 to elastic actuator catch bracket 84, which is mounted on base 18 of main moving platform 16. Arm 82 extends through an opening defined by elastic actuator catch bracket 84 and is linked to main moving platform 16 by springs 86, 88 held in place on either side of elastic actuator catch bracket 84 by nuts 90, 92, respectively.

[0072] Actuation of actuation assembly drive motor 60 causes rotation of eccentric drive plate 64 about an axis normal to a major plane of rigid base 32 which, in turn, causes reciprocal motion of swing arm plate 66 roughly along a major longitudinal axis of swing arm plate 66. Such reciprocal motion of swing arm plate 66 causes rod end 68 to move in a reciprocal motion from side-to-side of a major longitudinal axis of screw 70 which causes reciprocal rotation of nut frame 80 about an axis normal to major plane rigid base 18 and side-to-side motion of the opposite end of screw 70 opposite that of rod end 68 of screw 70. Such side-to-side movements of the opposite end of screw 70 causes reciprocal longitudinal movement of arm 82 extending through the opening defined by elastic actuator catch bracket 84.

[0073] Resistance to such reciprocal motion of arm 82 causes alternating reciprocal compression and relaxation of springs 86, 88, which thereby causes reciprocal motion of main moving platform 16 about main support shaft 40 linking main moving platform 16 to rigid base 32.

[0074] The amplitude of reciprocal motion of main moving platform 16 about main support shaft 40 is controlled by the location of screw 70 relative to amplitude modulation assembly 72. For example, if actuation of amplitude modulation assembly 70 causes rod end 68 to become more proximate to amplitude modulation assembly 70, the side-to-side motion of the opposite end of screw 70 will become greater, thereby causing the amplification of reciprocal motion of main moving platform 16 about main support shaft 40 to increase. Conversely, actuation of amplitude modulation assembly 72 to cause rod end 68 of screw 70 to become more remote from amplitude modulation assembly 72 will diminish the side-to-side motion of opposite end of screw 70, thereby reducing the amplitude of reciprocal motion of main moving platform 16 about main support shaft 40.

[0075] Reciprocal motion of main moving platform 16 may cause a delayed reciprocal motion of moving head platform 44 about head rotation bearing 46. The reciprocal motion of moving head platform 44, although delayed, may have greater amplitude about main support shaft 40 because of the rotation of moving head platform 44 about head rotation bearing 46. However, the amplitude of reciprocal motion of moving head platform 44 about head rotation bearing 46 may be dampened by springs 56.

[0076] Nevertheless, the reciprocal motion of main moving platform 16 and moving head platform 44 about main support shaft 40 is measured by motion sensing device 50 at moving head platform 44. Measurements by motion sensing device 50 are relayed back to control panel 34 and rigid base control electronics 36 which, alone, or optionally, in combination with external computer software programming, modulate actuator assembly drive motor 60 and amplitude modulation motor 74. Motion detection by motion sensing device 50 can also, optionally, modulate computer programming to affect selection and volume of sounds emitted by speakers 52. Microphones 38, in addition, or optionally, receive acoustical signals that can be fed back through rigid base control electronics 36 or/and control panel 34 to software, either on-board or remote from infant calming/sleep-aid device 10, that further modulates actuator assembly drive motor 60, amplitude modulation motor 74 and/or sounds emitted from speakers 52. Various control algorithms associated with modulation of actuator assembly drive motor 60, amplitude modulation motor 74 and/or sounds emitted from speakers 52 will be more fully discussed below.

[0077] In one embodiment, the device allows for a reciprocating motion at 0.5-1.5 cycles per second (cps) of ~2° excursions, but if the baby is fussy the device responds by delivering a smaller excursion (e.g. <1.3°) at a faster rate (~2-4.5 cps). This fast and small motion delivers the specific degree of rapid acceleration-deceleration force to the semicircular canals in the vestibular mechanism of the inner ear that is required to activate the calming reflex.

[0078] Also, the reciprocating motion typically has a maximum amplitude of less than 1.3 inches during the rapid phase of motion (~2-4.5 cps), further ensuring safety of the infant.

[0079] In one embodiment, the biometric sensor monitors the infant and generates a signal indicative of a respiration status or cardiovascular status of the infant, such as to detect when the baby has paused breathing for a predetermined period or time, or has a cardiovascular collapse, such as indicated by a heart rate below a predetermined threshold, or the like. The sensor signal can be fed back through rigid base control electronics 36 or/and control panel 34 to a control system such as software, either on-board or remote from infant calming/sleep-aid device 10. The control system may receive and analyze the signal to determine whether a distressed status of the infant exists, and further may act, such as to generate an output to control modulation of the actuator
assembly drive motor 60, amplitude modulation motor 74, or generate a telephone call to emergency services via Wi-Fi connection, and/or generate alerting and stimulating sounds that may be emitted from speakers 52. An alarm can be directed to the infant’s caretakers as well.

[0080] In some embodiments, in response to detection of infant distress, both vigorous motion of the platform and a loud sound can be provided. For example, providing motion of the platform at a frequency greater than 0.5 Hz and an amplitude that is greater than 1 inch, along with sound having an intensity of at least 65 dB, may provide appropriate stimulation of the infant. Of course, other amounts of stimulation are also envisioned.

[0081] FIG. 6A illustrates an exemplary and non-limiting embodiment of a drive motor 60. Drive motor 60 may include motor case 600, motor 602, motor gear 604, motor case bottom 604, release button 606, button springs 616, screw 608, contact pin 610, metal plate 612, and the like. Motor case 600 may be made from an acrylonitrile butadiene styrene (ABS) plastic and the like. Motor 602 may be a 12V 300RPM motor and the like. Motor gear may be made from polylactide-polyethylene (POM) plastic and the like. Motor case bottom 604 may be made from ABS plastic and the like. Release button 606 may be made from ABS plastic and the like. Button spring 616 may be made from stainless steel and the like. Screw 608 may be M3 IXN flat head 15 mm long screw, made from stainless steel, and the like. Contact pin 610 may be made from stainless steel and the like. Metal plate 612 may be made from stainless steel and the like.

[0082] FIG. 6B illustrates the drive motor location 614 of the drive motor 60 in an embodiment of the infant calming/sleep-aid device 2258. FIG. 6C illustrates a cross sectional view of an embodiment of the infant calming device/sleep-aid device showing the drive motor.

[0083] In another embodiment, shown in FIGS. 7 through 9, a calmer/sleep-aid device 100 includes actuator assembly 102, which substitutes for actuator assembly 58 of the embodiment shown in FIGS. 2 through 6. Specifically, as shown in FIGS. 7 through 9, drive motor 104 of calmer/sleep-aid device 100 is linked to bearing 106, which is in turn, leads to the eccentric drive plate 108. Eccentric drive plate 108 is connected to push/pull rod 110 that extends through an opening defined by elastic actuator catch bracket 112. Springs 114 about push/pull rod 110 link push/pull rod 110 to main moving platform 16 through elastic actuator catch bracket 112. Springs 114 are series elastic actuator push-springs; they transfer force from actuator assembly 102 to catch bracket 112. Balancing dampers 115 beneath push/pull rod 110 dampen the motion of moving platform 16. Springs 117 are pull-balancing springs; they pull on bracket 112 in parallel with balancing dampers 115 to create the desired smooth sinusoidal motion of moving platform 16 at low frequencies and the more square wave, rapid accelerating/decelerating motion at high frequencies. Injection-molded plastic features that are parts of the main moving platform 16 may be used to create the desired smooth sinusoidal motion of main moving platform 16 at low frequencies and the rapid accelerating/decelerating motion at high frequencies.

[0084] Actuation of drive motor 104 causes reciprocal longitudinal movement of push/pull rod 110 through the opening defined by elastic actuator catch bracket 112 and translates that reciprocal movement into reciprocal motion of main moving platform 16 about main rotation bearing 42, as does reciprocal motion of arm 82 through elastic actuator catch bracket 84 of the embodiment shown in FIGS. 2 through 6. Other components of the embodiments shown in FIGS. 7 through 9 operate in the same manner as those of infant calming/sleep-aid device 10 represented in FIGS. 2 through 6.

[0085] As shown FIG. 10, software control system 120 receives various inputs from a variety of sensors or control input devices representing desired settings or the like, and, based on one or more of these inputs, acts to control one or more of various devices, such as to control sound, motion, and/or lights of the sleep aid device, or to initiate an emergency call or alarm. As shown, the control system 120 processes inputs from microphones 125 (also represented as microphones 19 in FIG. 2), from speed control knob 121 (also shown as element 35 in FIG. 2), and from a three-axis USB accelerometer 123 (represented as motion sensing device 50 in FIG. 3), and from a biometric sensor 1002, such as a wireless sensor for detecting one or more of cardiac and respiratory status. Control system 120 generates one or more output signals, such as to control speakers 131 (speakers 52 as shown in FIG. 3), and to multichannel USB motor controller 122, which controls actuator assembly drive motor (such as drive motor 60 shown in FIG. 3) and amplitude modulation motor (motor 73 of FIG. 3 or drive motor 104 of FIG. 7-9). Status lights, such as tricolor USB DE’s 121 (or lights 37 such as shown in FIG. 3) can also be controlled. Logic or control modules of software control system 120 can be located onboard or remotely from the embodiments of infant calming/sleep-aid devices 10, 100 shown in FIGS. 2 through 9. The modules may include a crying detection module 124 that receives data from microphones 125, and relays to a behavior state machine module 126 whether or not an infant on infant calming/sleep-aid device is crying or not crying. Microphones 125 may be mounted on the infant calming/sleep-aid device, integrated into the infant calming/sleep-aid device, included in a sensor that is placed on or attached to the infant, and the like. Biometric sensor module 1002 may relay one or more of an infant’s physiologic parameters (e.g., breathing status, temperature, motion status, etc.) to the behavior state module 126, or depending on the signal provided by the sensor, directly to a Wi-Fi control Module 1004. Depending upon the input received by behavior state machine module 126, output signals will control motion generation module 128 or audio generation module 130 or a Wi-Fi phone connection module 1004. Alternatively, or in addition, output signals from behavior state machine module 126 will modulate generation of audio data output from audio generation module 130 to speakers 131, represented as speakers 52 in FIGS. 2 through 9.

[0086] Motion generation module 128 receives input from speed control knob 121 and information regarding motion of the device 10, 100 from motion analysis module 132. Actuation of motion generation module 128 will modulate the actuator assemblies of the embodiments shown in FIGS. 2 through 9.

[0087] Data received from accelerometer 123 is processed by motion analysis module 132 to thereby modulate the actuator assembly through motion generation module 128 and/or audio generation module 130 to thereby control the actuators assemblies or speakers, respectively. In addition, motion analysis module 132 controls status light module 134 to alert, through the status lights, whether motions of the main moving platform and the head platform are nominal or not.
nominal, or alternatively, through feedback, soothing or not soothing to the infant. “Nominal”, as that term is defined herein, refers to any and all motion for which the filtered acceleration signal does not exceed a specified, or predetermined maximum motion threshold for a specific length of time. The process by which the motion analysis module classifies motion as nominal or not nominal is detailed in FIG. 12 and in the accompanying text below.

[0088] In one embodiment, the rate of the reciprocating rotation is controlled to be within a range of between about one and about four and one-half cycles per second (cps) and with an amplitude of the reciprocating motion at a center of a head of the infant of between about 0.2 inches and about 1.3 inches. In another embodiment, the rate of reciprocating motion is within a range of between about 0.5 and about 1.5 cycles per second and an amplitude of the reciprocating rotation at a center of the head of the infant is in a range of between about 0.25 inches and about 2.0 inches. In differing embodiments, this motion may be parallel to, or orthogonal to the platform supporting the infant’s body and head.

[0089] In embodiments, the control system 120 may operate in a manner wherein the intensity of maximum stimulation is increased over the course of the first weeks and subsequently weans the infant off the device’s motion by incorporating the infant age as a variable used in the behavior state module 126. For example, modulation of motion and/or sound may be further controlled by at least one of the weight of the infant, the age of the infant, and the duration of the detected sounds made by the infant.

[0090] Referring to FIG. 11, crying detection module 124 receives audio data from the microphones of infant calming/sleep-aids 10, 100, which is processed through a digital band-pass filter 136 to generate filtered audio data. Energy-based threshold 138 receives filtered audio data to determine whether the audio energy is over threshold or under threshold. Time-based filter 140 receives data from energy-based threshold 138 to provide an indication as to whether the infant is crying or not crying. The information, as discussed above with respect to software control system 120 (FIG. 10), is received from crying detection module 124 by behavior state machine module 126 that will then provide signals to control motion generation module 128 or audio generation module 130 or both.

[0091] Motion analysis module 132, shown and represented in more detail in FIG. 12, receives a signal from the motion-sensing device of infant calming/sleep-aids 10, 100, at digital filter bank 142. Digital filter bank 142 filters the signal to generate a filtered motion amplitude estimate that is used as input to motion generation module 128 (FIG. 10). In addition, the filtered motion amplitude estimate passes through a range check 144 to determine whether the motion is within a soothing or known soothing range, which is provided to time-based filter 146 and provides an indication as to whether a motion is soothing or not soothing to motion generation module 128 (FIG. 10).

[0092] Filtered motion sensor, or accelerometer, data from digital filter bank 142 also passes through threshold crossing-based motion frequency estimator 148 to provide an estimate of motion frequency, which is provided to motion generation module 128.

[0093] Output data from threshold-crossing-based motion frequency estimator 148 also passes through range check 144 for indicating whether the motion is or is not soothing.

[0094] Filtered accelerometer data from digital filter bank 142 also is processed to determine whether or not the acceleration exceeds a specific maximum motion threshold 150 and, depending on the result, processes that data through time-based filter 152 to provide an indication as to whether the motion is nominal or not nominal. This indication as to whether the motion is nominal or not nominal is used as input to motion generation module 128 (FIG. 10), and is additionally used to control status lights 37 (FIG. 2) via status light module 134 (FIG. 10).

[0095] As can be seen in FIG. 13, behavior state machine module 126 receives information from crying detection module 124 (FIG. 11) as to whether the infant is in a state of crying or not crying. This information is used by the state machine’s state transition rules 156 to select an active state from a library of states 154, thereby outputting a desired motion state, a desired audio track and/or desired volume/equalizer settings to audio generation module 130 of FIG. 10.

[0096] As can be seen in FIG. 13a, behavior state machine module 126 receives information from biometric sensor module 1002 (FIG. 10) as to whether a biometric measure is normal or not normal. One possible biometric measure may be normal if an infant is breathing, not normal if an infant is not breathing, and the like. This information is used by the state machine’s state transition rules 156 to select an active state from a library of states 154, thereby outputting a desired motion state, a desired audio track and/or desired volume/ equalizer settings, a desired phone call state, and the like to audio generation module 130 (FIG. 10). Desired alarm state may be a parent alarm state and the like. Desired audio track may be a special vigorous white noise track and the like. Desired phone call state may be to initiate Wi-Fi phone call to emergency services and the like.

[0097] Audio generation module 130, represented in FIG. 14, receives signals of a desired audio track and desired volume/equalizer settings from behavior state machine module 126 (FIG. 10) and signals of motion analysis, specifically, whether the motion is nominal or not nominal, from motion analysis module 132 (FIG. 10). Desired audio track may be a sound audio track, music audio track, special vigorous white sound audio track, and the like. Audio generation module 130 includes a special vigorous white noise audio track 161, a library of “soothing” audio tracks 160, a digital equalizer volume control 162 and alarm sound 164. Upon receipt of a new command from motion analysis module 132 (FIG. 10), audio generation module 130 will cross-fade to a desired audio track and volume, and crossfade to desired equalizer settings. If the motion is not nominal, then an alarm signal may be output to override the audio signal with an alarm. The audio signal from the audio generation module 130 (FIG. 10) is output to the USB speakers 131 (FIG. 10) of infant calming/sleep-aids 10, 100.

[0098] At baseline, the audio generator will produce an output of a low-pitch, rumbling sound at about 65 dB to 74 dB. Upon receipt of a new command from crying detection module 124 (FIG. 11), audio generation module 130 will cross-fade to a more high pitched audio track and louder volume, at about 75 dB to 95 dB.

[0099] Upon receipt of a new command from behavior state module 126 (FIG. 10), audio generation module 130 will cross-fade to a desired audio track and volume, and crossfade to desired equalizer settings. If the signal received from the behavior state module 126 is indicative of an abnormal biometric signal that has been detected by the biometric sensor
Audio generation module 130 (FIG. 14) receives signals from the biometric sensor module 1002 (FIG. 10). An abnormal reading, such as a reading indicating that an infant is not breathing, will activate a desired audio track, such as a special vigorous white sound audio track, parent alarm and desired volume/equalizer settings. Upon receipt of a new command from biometric sensor module 1002 (FIG. 10), audio generation module 130 will cross-fade to a desired audio track and volume, and crossfade to desired equalizer settings.

Audio generation module 130 (FIG. 14) may receive mild signals that indicate an infant is awakening. Mild signals may detect that an infant is mildly awakened. Mild signals may be mild motion signals, mild sound signals, and the like. Mild signals may be sent from a sensor attached to or worn by an infant. Mild signals may be detected from an infant before the infant begins to cry. Audio generation module 130 (FIG. 14) may begin to increase sound levels when mild signals are received.

Two variations of motion generation module are represented in FIGS. 15 and 16. In the first embodiment of motion generation module 128, shown in FIG. 10, motion generation module 128 receives a desired motion state input from behavior state machine module 126 (FIG. 10), a motion frequency/amplitude signal from motion analysis module 132 (FIG. 10), a desired system speed signal from speed control knob 121 (FIG. 10), and a signal as to whether a motion is nominal or not nominal. The “desired system speed” is the setting of speed control knob 121, whereby the operator can select or limit the motions allowed by infant calming/sleep aid device 10, 100. The desired motion state signal goes to lookup within motion generation module 128, which outputs a reference motor command based on a desired motion state. If the currently active motor commands are close to the reference motor commands, then the motor commands are actively adjusted within an allowable envelope via a gradient ascent based on observed motion frequency and amplitude. If the current motor commands are not close to the reference motor commands, then the motion generation module will set desired motor commands via path planning in a motor command space. “Path planning” transitions motor settings to desired motor settings by inserting intermediate motor settings as necessitated by nest dynamics to ensure that motion stays in a desirable range during transition. If the desired system speed is less than “full,” then a signal is sent to adjust the desired motor commands in proportion to the desired system speed. “Full” is the fully-on position of the knob, and means that infant calming/sleep aid device 10, 100 is not being limited by this knob and is allowed to perform all of the motions it determines to be relevant. If speed control knob 121 is turned down from “full,” motions of infant calming/sleep aid device 10, 100 start to become constrained, so speed control knob 121 acts as an operator to override the normal motion behavior of infant calming/sleep aid device 10, 100. If not, then a comparison is made as to whether the observed motion is nominal. If it is not, then motor output is disabled. If it is nominal, then an output signal of desired motor commands is given to target motor positions and speeds of the actuator of the multichannel USB motor controller. In some embodiments, sound is delivered to an infant but not motion if an infant is in the device but not securely attached. The level of motion and or sound output may also be modified by the parents’ choice of a special boost function.

In an alternative embodiment of motion generation module 128, shown in FIG. 16, there is no receipt by the module of signals related to motion frequency and amplitude. Therefore, it is only necessary to set desired motor commands by interpolating from a current command based on a look up table of motor commands based on a desired motion state in response to receiving a signal with respect to the desired motion state. All of the other components of motion generation are the same as represented in FIG. 15.

In one embodiment, the motion generation module 128 receives a motion state input of an abnormal signal, for example that an infant is not breathing, from the biometric sensor module 1002 (FIG. 10). The resultant programmed vigorous motion may continue until the abnormal biometric signal is discontinued, for example when an infant begins breathing again, or the device is shut off.

Another exemplary embodiment of an infant calming device is shown in FIGS. 17-21. In this example, the infant calming device includes a main moving platform with an integral head support portion, that is, the head support portion is contiguous with and rigidly fixed to the main moving platform, in essence creating a single platform supporting the head and body of the infant.

An enclosure 1702 for an infant calming device using a single main moving platform is shown in FIG. 17. Single main moving platform 2102 and rigid base 2114 of this device are shown in FIGS. 18 and 19, where FIG. 19 also shows the other components of the device, as seen looking through main moving platform 2102. FIG. 20 shows cross sectional views of the embodiment of an infant calming device using a single main moving platform.

As shown in FIG. 21, main moving platform 2102 is supported by main support shaft at main rotation bearing 2106. The main rotation bearing 2106 may be comprised of several vertical pieces of plastic or spring steel that do the job of supporting the outer surface, while also flexing to replace the springs and dampers described above.

Motion sensing device 2108, such as an accelerometer, underneath main platform 2102 detects motion of main platform 2102. Microphones (not shown) detect sound emitted by the infant (not shown) when supported by infant aid sleep device. Speakers 2110, supported by brackets 2112 mounted on rigid base 2114, may be located directly beneath head position of infant on main moving platform 2102. Secure sleep sack fastening clips may be attached to main moving platform 2102 for securing an infant in suitable swaddling clothes.

The exemplary embodiment shown in FIGS. 17-21 operates similarly to the embodiment shown in FIGS. 1-16, described above. The embodiment in FIGS. 17-21 differs from that shown in FIGS. 1-16 in that the separate head and body boards are replaced by a single moving board. Along with the replacement of the separate head and body boards by a single moving board, the secure sleep sack fastening straps are replaced by clips integral to the baby swaddle wrap. The head rotation bearing, rotating head platform, head board support U bracket, head balancing extension spring, and weight sensors are also absent.
In embodiments, the main moving platform 16, 2102 may hang from the framing that is above the main moving platform via fabric and/or cables. The main moving platform 16, 2102 would then be free to rotate or swing as needed. A motor and offset wheel would deliver the needed input to create the desired motion, such as a smooth sinusoidal motion of the main moving platform at low frequencies and the rapid accelerating motion at high frequencies.

As discussed above, two versions of the infant calming/sleep aid device are shown in FIGS. 2 through 9, with microphones to detect infant crying, motion and sound actuators, a swaddling system to keep the baby in optimal position and a gel pad to reduce the pressure on the back of the skull (thereby avoiding possible plagiocephaly). The device also may contain a logic board to accomplish two tasks: delivering staged interventions of specially engineered sound and delivering motion created by two linked platforms attached to a motor and rod actuator (as well as a series of springs and dampeners to modulate the activity.) These platforms may act in a reciprocating manner about an axis that intersects the infant and is orthogonal to a major plane of the surface supporting the infant to provide a motion that varies from slow smooth rocking (0.5-1.5 cps) to keep babies calm and promote sleep, and ramping up to a faster, smaller, jiggling motion (2.4-5.5 cps) with a more spiked waveform to deliver a sufficiently abrupt acceleration-deceleration action to stimulate the vestibular mechanism of the inner ear, trigger a calming reflex and soothe the baby, such as when the baby cries (e.g., head rocking back and forth in excursions of less than 15 degrees). The sound in the device may be adapted to respond to the baby’s upset by starting a specially engineered high pitched sound, then stepping down to quieter, lower pitched white noise over several minutes. A wide variety of sound patterns may be enabled. The device may be adapted to gradually increase the intensity of the sound and/or motion during the early weeks of life and to gradually reduce (i.e., wean) the intensity of the sound and/or motion over a suitable time period, such as several weeks or several months later in infancy.

Another exemplary embodiment of an infant calming/sleep aid device is shown in FIGS. 22 through 27.

As shown in FIG. 22, infant calming/sleep aid device 2258 may include various control system related components including a software control system 2216 for receiving and processing inputs 2200 and generating outputs 2240, a user interface 2204, and a communication facility 2214. Components of the software control system and the user interface can be located on-board or remotely from the enclosure/platform portion of infant calming/sleep aid device 2258. Inputs 2200 may include data or control signals from various types of sensors or devices such as microphone, sound sensors 2202, motion control sensor 2206, accelerometer or motion sensor 2208, user interface 2204, biometric sensor, and the like. Outputs from the control system 2216 are directed to devices such as speakers 2248 for controlling the generation of sound, motion controller 2250 for controlling the motion of a platform or structure on which the infant is placed, Wi-Fi phone call to emergency services, and status light facility 2252 for controlling illumination of various status lights.

Other inputs may also be provided by other sensors such as visual sensors, including cameras, pressure sensors, sensors located in a swaddle or sleep sack, third party sensors, including monitors, sensors embedded in fabrics, and the like. Sensors embedded in fabrics may be flexible sensors. Sensors may be used for detecting child physiological parameters. Sensors may be used to provide inputs and feedback for mode selection for a mechanism that activates the calming reflex of an infant or, in certain circumstances, increases a baby’s arousal. Microphone or sound sensor 2202 may be in communication with user interface 2204. Motion control sensor 2206 may be controlled by user interface 2204. Motion control sensor 2206 may be in communication with motion generation module 2232. Motion control sensor 2206 may send desired system speed input 2220 to motion generation module 2232.

User interface 2204 may be in communication with inputs such as microphone or sound sensors 2202, crying detection module 2218, motion analysis module 2222, accelerometer or motion sensor 2208, and the like. User interface 2204 may allow a user to input data such as the date of birth of an infant, the due date of an infant, the name of the infant, the weight of the infant, and the like. The weight of the infant may be input manually or automatically. The weight of the infant may be input automatically from a scale that is integrated with the infant calming/sleep aid device 2258. The user interface 2204 may be used to provide a diary. The diary may be a sleep diary, cry diary, and the like. The user interface 2204 may be used to boost baseline stimulation by providing more motion and sound. For example, an extra fast and/or strong sound could be provided for infants that are difficult to calm. This extra fast and/or strong sound could be called Intervention 4. Intervention 4 may only be able to be activated two consecutive times, until the device is reset. Intervention 4 may be limited to about two minutes of operation. The infant calming/sleep aid device may turn off after Intervention 4 has been operating for about two minutes.

User interface 2204 may be an integral part of the infant calming/sleep aid device 2258, or a separate piece, such as on a mobile peripheral device, which may be connected by a wired connection, a wireless connection, and the like to the infant calming/sleep aid device 2258. The wireless connection may be a Wi-Fi connection, Bluetooth connection, and the like.

The user interface 2204 may have controls, set-up information input, and other input data that can be sent to the software control system of the device. Controls may include an on/off control, sound control, motion control, light control, and the like. Controls may be enabled or disabled. Motion control may have an extension option that automatically extends the sound, extends the basic motion of the device, and the like. The option that extends the basic motion of the device may be used after an infant is older than four months. Light control may have a dim option, be used to turn off and LED alarm light on or off, and the like.

The user interface 2204 may allow a user to input set-up information, other information, and the like. Set-up information may include due date, birthdate, name, nickname, date/time setup, and the like. Other input information may include information related to shots the infant has had, feedings, travel, dirty diapers, and the like.

The user interface 2204 may provide various functions, such as Session, Session “Super”, History, Profile, Settings, Customization, Journaling and the like. Session may include start/stop session, track session duration, track cry and sleep duration, track mood position, session summary, period summary, track epic position, contextual and expert tips messaging, alert messaging, AM/PM model, night light,
and the like. Period summary may be for a 12-hour clock or 24-hour clock setup. Session “Super” may include track mode position, track mode duration, volume control, editable mode position, and the like. History may include compare periods, display AM vs. PM sessions, share data and epic position via email and social, add sleep note to session, add weight note to session, and the like. Compare periods may compare periods over a 12-hour period, a 24-hour period, and the like. Profile may include name/nickname, due date, birth date, and the like. Settings may include overview, getting started, sleep library, level 4 on/off, notifications, push start, milestones, sleep facts, social network setup, sync on/off, and the like. Customization may include editable session data, manual entry, sound on/off, customize sound, customize mode, show weight in profile, allow weight input via external API, light control, and the like. Overview may include content from Epic Education, and the like. Getting Started may include content from First Use Coaching, and the like. Sleep library may include content from eBooks, and the like.

FIGS. 26a-26d illustrate a user interface 2204 in exemplary and non-limiting embodiments. FIG. 26a illustrates layers of the user interface 2204. Layers include the shape which represents the top view of the infant calming/sleep-aid device 2258. Layers may also include icons. Icons may include a baby icon, a baseline indicator icon, and the like. Icons may be placed at the center of the display. Layers may include views. Views may include before session 2600, during session 2602, end of session 2604, history 2606, and the like. Before session 2600 may include a center dot that represents the child. The center dot may be color coded with color codes. Color codes may include purple for pause, yellow for fuss, cyan for sleeping, and the like. During session 2602 may include a ring. A ring may represent levels of wiggle/sound. Center may be baseline. Color may move out as intensity increases. End of session 2604 may include color. Color may represent an average of the levels of wiggle/sound used during the session. History may show duration of sleep and fuss as a line chart.

FIG. 26b illustrates sliders of the user interface. Sliders may include a focus on the current state of the infant calming/sleep-aid device 2258. Sliders may include a marker. The marker may indicate the current level of motion and sound of the infant calming/sleep-aid device 2258. Sliders may include views. Views may include session start 2608, during session 2610, end of session 2612, history 2606, and the like. Session start 2608 may include a marker that represents the infant calming/sleep-aid device 2258. The marker may be color coded with color codes. Color codes may include purple for pause, green for high intervention, cyan for baseline, and the like. During session 2610 may include a marker. The color and position of the marker may show intervention levels. During session 2610 may include a notch. The notch may indicate the baby. The notch may be color coded with color codes. Color codes may be yellow to indicate fuss, cyan to indicate sleeping, and the like. End of session 2612 may be a heat map that represents an average of the intervention levels used during the session.

FIG. 26c illustrates blossoms of the user interface. Blossoms may include an icon for the infant at the center of the experience while different intervention levels of the infant calming/sleep-aid device 2258 are shown in a trajectory around it. Blossoms may include views. Views may include session start 2616, during session 2618, end of session 2620, history 2606, and the like. Session start 2608 may include a center dot that represents the infant. The dot may be color coded with color codes. Color codes may include purple for pause, yellow for fuss, cyan for sleeping, and the like. During session 2618 may include petals. Each petal may represent levels of motion and sound. The bottom petal may be baseline, the top petal may be the highest level of intensity, and the like. End of session 2620 may include a heat map. The heat map may represent an average of the levels of motion and sound used during the session.

FIG. 26d illustrates additional views of the user interface. Additional views may include menu/profile 2624, session 2626, end of session 2628, session control 2630, session tip 2632, setup 2634, overview 2636, history 2638, history zoom 2640, history compare 2644, history filter, 2646, history tag 2648, and the like. A user may move from one screen to the next, such as by swiping, such that a user may swipe to see a day view, swipe again to see a week view, etc.

FIG. 27 illustrates additional views of a user interface of a mobile device for use with the infant calming/sleep aid device.

User interface 2204 may be provided as a mobile application. The mobile application may provide data inputs to the control mechanism of the infant calming/sleep aid device 2258. Data may include monitoring data, feedback data, control data, reporting data, analytics data, and the like. The mobile application may be installed on a mobile device. The device may be a smartphone, tablet computer, and the like. The mobile device may have an operating system that may be iOS, Android, and the like. The mobile application may enable interactions with the device. Interactions may be enabled through a communication interface. The communication interface may be a universal serial bus (USB) interface, Wi-Fi interface, Bluetooth interface, and the like. Interactions may be control interactions. Control interactions may be similar to the interactions that may be enabled directly from the infant calming/sleep aid device 2258, only available on the mobile application, and the like. Examples of control interactions may include the ability to turn on Intervention4 using four fast taps of the on/off button within two seconds, turn on/off the infant calming/sleep aid device 2258 by pressing and holding the on/off button for three seconds, and the like.

Other mobile device interactions may include reports and statistics, sharing and group interactions, benchmarking and comparison interactions, graphic interactions, acoustic signature of a cry interactions, data upload to a third party interactions, feedback from a subject matter expert interactions, warning alert interactions, overtime customization of white noise interactions, other input interactions, journal sharing/printout interactions, weight interactions, breastfeeding interactions, camera interactions, and the like. Other input interactions may include photo input interactions, video input interactions, audio input interactions, and the like.

Additional inputs may include information inputs. Information inputs may include baby weights, baby lengths, baby circumferences, frequencies, travel, immunizations, ill-
ness, heart rate, respiratory rate, blood oxygenation, and the like. Baby weights may include weight at birth, baby weights at different weightings, and the like. Baby length may include baby length at birth, baby length at different measurements, and the like. Baby circumference may include baby circumference of the head at birth, baby circumference of the head at different measurements, and the like. Frequencies may include frequency of feeding, frequency of diaper changes/pee or poop, and the like. Information inputs may be added to a mobile device journal.

Microphone or sound sensor 2202 may send audio data 2210 to crying detection module 2218. Accelerometer or motion sensor 2208 may send motion data 2212 to motion analysis module 2222. Communication facility 2214 may be used to establish communication between inputs 2200 and software control system 2216. Communication may be established via direct control, remote control, and the like. Direct control may include providing control inputs to the communication facility from input devices directly integrated with the infant calming/sleep aid device 2258. Remote control may include providing control inputs to the communication facility from input devices remotely connected to the infant calming/sleep aid device 2258. Remote connectivity may include wired and wireless connectivity. Wireless connectivity may include Wi-Fi connectivity, Bluetooth connectivity, and the like. Journaling may include track feedings, track diapers, and the like.

Software control system 2216 may include modules. Modules may include crying detection module 2218, behavior state module 2230, biometric detection module, audio generation module 2238, motion generation module 2232, motion analysis module 2222, status light module 2234, and the like. Audio generation module 2238 may send audio generation module input to speaker 2248. Status light module 2234 may be in communication with motion analysis module 2222 and status lights color display facility 2252 and the like. Status light module 2234 may send target status light colors input 2244 to status lights color display facility 2252 and the like.

Software control system 2216 may also be in communication with data storage facility 2254, rules engine 2256, and the like. Data storage facility 2254 may store information that may be accessed by other modules of the software control system, and the like. Rules engine 2256 may provide rules for inputs and triggers to a mechanism to activate the “calming reflex” of an infant.

Figs. 23a and 23b illustrate the infant calming/sleep aid device 2258 in exemplary and non-limiting embodiments. Fig. 23a is a partially cut-away perspective view of the infant calming/sleep aid device 2258. Fig. 23b is an exploded perspective view that illustrates components of the infant calming/sleep aid device 2258. Components of the infant calming/sleep aid device 2258 may include outer fabric 2300, structure 2302, inner fabric/mattress cover 2304, mattress 2306, lower wall 2308, veneer/felt cosmetic layer 2310, stand 2312, and foot pad/wheel 2314. The height of the infant calming/sleep aid device 2258 may be adjustable. Figs. 23c and 23d are perspective views of the infant calming/sleep aid device 2258 in a low position 2316 and in a high position 2318. Fig. 23e illustrates a bottom view of the infant calming/sleep aid device 2258 with legs attached to the bottom of the infant calming/sleep aid device 2258. Figs. 23f and 23g illustrate leg connectors 2322 used to attach the legs 2258 to the infant calming/sleep aid device 2258. The legs may be unsnapped and reversed to allow a high or low position of the platform/structure on which the infant is secured.

Infant calming/sleep aid device 2258 may provide a mechanism to activate the calming reflex of an infant, such as via the control system described with respect to FIG. 22. The mechanism may use stereotypical sensory input, stereotypical behavioral output, and the like to trigger the calming reflex. The activation mechanism may be programmed to wane after 3-5 months or the like. The mechanism may exhibit threshold variations that vary between higher and lower thresholds based on the infant. The mechanism may vary by biometric evaluation or state of the infant and may call for higher or lower levels of stimulation based on the state of the infant. The state may be a quiet sleeping state, active sleep state, drowsiness state, quiet alert state, fussing state, crying state, and the like. The state may be matched to the optimal stimulus level of an individual infant. Levels may also be adjusted to match the age of the infant, for example during the first month of the life of the infant. Failure to exceed the optimal stimulus level may result in an absence of response by the infant to the mechanism. The mechanism may be activated by sound generated by the infant, movement generated by the infant, abnormal biometric signals, and the like. The output of the mechanism may cause reductions in motor output levels. The infant calming/sleep aid device 2258 may automatically shut down if an infant is not calmed by higher levels of sound and motion. Higher levels of sound and motion may be called Intervention 3 and Intervention 4. The infant calming/sleep aid device may teach infants to sleep better by training the sleep pattern of the infant using sleep cues. Sleep cues may be swaddling, effective motion, optimal
sound, and the like. Motion may take on characteristics of a more square-shaped wave as the platform moves more quickly.

[0134] The mechanism to activate the calming reflex or the conditioned response of an infant may be activated by a feedback based control mechanism. The feedback based control mechanism may select modes, parameters, parameter ranges, and the like. Modes may be motion modes, sound modes, and the like. Parameters may be motion parameters, sound parameters and the like. Parameter ranges may be motion parameter ranges, sound parameter ranges, and the like. The feedback based control mechanism may provide motion feedback to control the motion of the swing of the infant calming/sleep aid device 2258. The motion feedback may activate a calming reflex of the infant to provide vestibular stimulation in the inner ear of the infant. The feedback based control mechanism may operate as a feedback loop. The feedback loop may result in a reduction in the motion of the infant calming/sleep aid device 2258 starting when the infant is of the age 3-4 months. The feedback based control mechanism may be activated by a remote control, a camera mounted on the infant calming/sleep aid device 2258, and the like. The remote control may be operated by a parent. The parent may be in the same room as the infant calming/sleep aid device 2258, or in a different room than the infant calming/sleep aid device 2258.

[0135] The infant calming/sleep aid device 2258 may provide analytics and algorithms. The analytics and algorithms may be based on readings from microphone, sensors and the like. The analytics and algorithms may provide feedback input to the mechanism to activate the calming reflex of an infant. The algorithms may analyze combinations, store combinations, replicate combinations and the like. Sensors may provide sensor readings. Sensor readings may have ranges. A range may be a sound range, a motion range, and the like. A sound range may be based on the blood flow/heart rate of the baby. The heart rate may be 160 bpm, 240 bpm, and the like. The motion range may be between 0.5-2.5 Hz.

[0136] The analytics and algorithms may be used to detect if an infant is upset or has apnea. The detection may be based on visual inspection, continuous detection, and the like. Visual inspection may be used to initiate a calming mechanism involving a relatively step wise and high frequency motion. Continuous detection may shift into a remain calm protocol, may use a sensor, and the like. A sensor may detect if the infant is in the infant calming/sleep aid device 2258. If so, the sleep sack is properly attached to the infant calming/sleep aid device 2258 and the like. The mechanism may only turn on if the sensor detects that the sleep sack is properly installed in the infant calming/sleep aid device 2258.

[0137] The infant calming/sleep aid device 2258 may provide an application programming interface (API). The API may allow integration of the infant calming/sleep aid device 2258 with external devices and system. External devices and systems may provide additional control inputs to activate the mechanism to activate the calming reflex or conditioned response of an infant. The mechanism to activate these infant responses may provide inputs to the external devices and systems. Control inputs may include sound control inputs. Sound control inputs may be used to turn on/off sound sources, turn on/off sound sources internal to the infant calming/sleep aid device mechanism, and the like. The sound control inputs may provide the user the ability to choose which sound sources to activate and even to introduce their own novel sounds, such as a recording of a parent's voice. Integration may be by wired or wireless connectivity. Wired connectivity may include the use of a hard-wired splitter. Wireless connectivity may include Wi-Fi connectivity, blue-tooth connectivity, and the like. External devices and systems may be home automation network external devices and systems and allow integration of the infant calming/sleep aid device 2258 with a home automation network. Integration with the home automation network may enable the infant calming/sleep aid device 2258 to report to a user or allow the user to remotely control the infant calming/sleep aid device 2258. Integration may include integration with monitors. Monitors may include carbon monoxide monitors, oxygen level monitors, breathing monitor, oxygen saturation monitors, motion monitors, temperature monitors, smoke monitors, heart rate detector monitors, respiratory rate monitors, and the like. Monitors may provide an input to activate the infant calming/sleep aid device 2258 that may activate the infant calming/sleep aid device 2258. The infant calming/sleep aid device 2258 may be activated to attempt to wake an infant, such as by stimulation with vigorous motion or loud sound or both. An infant may be stimulated to prevent sudden infant death syndrome (SIDS). Integration may also include integration with safety systems. Safety systems may include home safety systems, infant safety systems, child safety systems, and the like.

[0138] The infant calming/sleep aid device 2258 may also include collapsible walls and legs, handles, cord, wheels, and the like. Collapsible walls may enable portability and adjustability. Portability may include ease of moving the infant calming/sleep aid device 2258 around a room, facilitate shipping, travel, aging of the baby, a standing position, user or stroller height, and the like. Cord may be a retractable cord, a breakaway cord, and the like. Wheels may be implemented when collapsed, and the like. Legs may be extendable, telescoping, collapsible or removable and reinserted to be a different height, and the like. The infant calming/sleep aid device 2258 may be made available in a lightweight embodiment, include a stand trolley, and the like. Stand trolley may include wheels for inside transport, make the infant calming/sleep aid device 2258 reconfigurable into a stroller, provide stability, motor removal, enable transportability, and the like. Stability may include stability during motion, stability during strolling, and the like. The infant calming/sleep aid device 2258 may be made available in a variety of colors and color combinations. Color and color combinations may be user selected and may be changeable via alternative vials, alternate ornamental fabric decoration strips, mesh color/design, sleep sack color/design, and the like. The infant calming/sleep aid device 2258 may be made available in organic materials, appealing designs, and the like. The infant calming/sleep aid device 2258 may be certified for safety, certified for safety in many categories, and the like. The infant calming/sleep aid device 2258 may have removable mesh that allows for creating individually selected designs printed on the outside mesh. The accelerometer 2223 of the infant calming/sleep aid device may measure head excursions to prevent excessive motion, and the like. The infant calming/sleep aid device 2258 may be made include flexible mesh. Flexible mesh may provide better airflow and allow broader excursions of the main moving platform 16. The flexible mesh must be made stiff enough to prevent a pocket forming to potentially suffo-
cate an infant who rolls into it, however flexible enough to allow for give so the top platform may sway back and forth. [0139] A mattress may include a gel pad on which the head of the infant may rest. A weight sensor may be underneath the gel pad. The infant calming/sleep-aid device 2258 may not activate or may shut off if the weight sensor under the gel pad does not indicate that the head of the infant is resting on the gel pad.

[0140] The infant calming/sleep-aid device 2258 may include a sleep sack that may have an attachment. The attachment may attach the sleep sack to a main moving platform. FIG. 24a illustrates an exemplary and non-limiting embodiment of the attachment. FIG. 24b illustrates an exemplary and non-limiting embodiment of the infant calming/sleep-aid device 2258 with an attachment mechanism 2402. Attachment mechanism 2402 may secure the sleep sack to the infant calming/sleep-aid device 2258. Attachment may be via a one-handed attachment mechanism, and the like. Infant calming/sleep-aid device 2258 may not switch on if the sleep sack is not properly secured to the infant calming/sleep-aid device 2258. In this regard, FIG. 28 illustrates an exemplary embodiment of a clip for detecting if an infant is properly secured, in order to control operation of the device. In embodiments, two clips may act to sense when attachment pieces of a sleeping sack are in place to indicate that an infant is securely fastened on a support surface of the infant calming/sleep aid device. Various control modes can follow. For example, motion of the device may be prohibited/disabled if an infant is not properly secured while allowing sound to still be generated. Other sensors are also envisioned for detecting if an infant is properly secured, such as a contact switch, or optical switch, or the like, such as shown in FIG. 29. For example, safety clips that secure the sleep sack attaches to may contain a switch that enables the motion mechanism. Failure to properly attach the secure sleep sack will result in the device delivering sound, but no motion when it is turned on. Motion will only be delivered if the secure sleep sack is properly attached on each clip.

[0141] The location of the sleep sack attachment may be adjustable. For example, the location of the sleep sack attachment may be adjustable by two to three inches or so.

[0142] The sleep sack may allow enough room in the sack for the hips of the infant to flex and open. The sleep sack may keep the arms of the infant at the sides of the infant. An internal band may be used to keep the arms of the infant at the sides of the infant. The secure sleep sack may have arm openings. Arm openings may be opened or closed. The sleep sack may have a zipper closure. The zipper may open in an upwards direction, a downwards direction, and the like. The sleep sack may have an adjustable area on the back. The sleep sack may have a narrow sleeve or light elastic at the end of the sleep sack wing, on the clip attached to the infant calming/sleep-aid device 2258, and the like.

[0143] The sleep sack may be available in different designs. Designs may be printed designs. Printed designs may non-threatening designs. Non-threatening designs may be animal designs, angel designs, wings, and the like. Designs may be available with options, changeable, engaging, and the like. The sleep sack may be available in various materials. Materials may include a mesh component, be adapted for the seasons, and the like. A mesh component may be a cooling component, a breathable component, and the like. Mesh may prevent overheating and reduces the risk of suffocation. The breathable component may include active airflow to increase breathability. Adaptability for the seasons may include adaptability for warm temperatures, cold temperatures, and the like. The sleep sack may include interior sleeves.

[0144] FIGS. 25a-25j illustrate a sleep sack according to illustrative and non-limiting embodiments. FIG. 25a illustrates a front view of the sleep sack in a closed position with an infant inside of the sleep sack. FIG. 25b illustrates a front view of the sleep sack in an open position with an infant inside the sleep sack. FIG. 25c illustrates a back view of the sleep sack with an infant inside the sleep sack. FIGS. 25d-25e illustrate front views of the sleep sack in a closed position. FIG. 25f illustrates an infant in the sleep sack and the sleep sack attached to the main moving platform 16. FIG. 25g illustrates a front view of the sleep sack. FIG. 25h illustrates a rear view of the sleep sack.

[0145] The infant calming/sleep-aid device 158 may have selectable modes. Selectable modes may be selected with an algorithm. The algorithm set point may be based on the age of the infant. The infant calming/sleep-aid device 158 may ask for dates of the infant from a user. Dates of the infant may be date of birth, birth date, and the like. The infant calming/sleep-aid device may ask the user if the infant was born early, late, and the like. Age of the infant may be based on the age inputs. Age inputs may be dates of the infant, if the infant was born, early, late, and the like. Algorithm set point may be calculated by asking the age of the infant, then subtracting the age of the infant from the birth date of the infant. Algorithm set point may also be calculated by setting the birth date of the infant to the birth date of the infant. Age of the infant may be provided in months, weeks, days, and the like.

[0146] The infant calming/sleep-aid device 158 may have a start mode. Start mode may be initiated when the infant calming/sleep-aid device 158 is turned on to operate and may be based on the age of the infant. Start mode for an infant less than 0 months old may be Baseline and may not go higher than Intervention1. Start mode for an infant that is between 0 and 0.5 months may be Baseline and may not go higher than Intervention2. Start mode for an infant that is between 0.5 and 3 months may be Baseline. Start mode for an infant that is older than 4 months may be initial 1 with 1.0 Hz motion and may then use no motion and normal sound in Baseline. Normal sound may be 68 dB Rain on the Roof.

[0147] Selectable modes may be modified by a Baseline Boost setting. Baseline Boost setting may be based on the age of the infant. Baseline Boost setting may be for an infant that is younger than 0 months may not be activated. Baseline Boost setting for an infant that is between 0 and 1 month may cause the infant calming/sleep-aid device 158 to start in Initial0 when switched on and may use Initial0 settings in Baseline. Baseline Boost setting for an infant that is between 1 and 3 months may cause the infant calming/sleep-aid device 158 to start with a more robust level of sound, or motion, or both. This level may be equivalent to Initial1 when the device is switched on and may use 1.0-2.0 Hz motion and 70 dB sound settings in Baseline. Baseline Boost setting for an infant that is between 3 and 4 months may cause the infant calming/sleep-aid device 158 to start in Initial2 with 1.0-2.0 Hz motion setting when switched on and may then use normal settings in Baseline. Baseline Boost setting for an infant that is older than 4 months may cause the infant calming/sleep-aid device 158 to start in Initial0 with 0.5-1.5 Hz motion when switched on and may use no motion
and normal sound settings in Baseline. Normal sound may be 68-74 dB Rain on the Roof sound.

[0148] When Baseline Boost is set for an extended setting, it may automatically revert to default after 14 days of activation, immediately, and the like. Revert to default immediately may occur when the infant calming/sleep-aid device 158 is reset for a new infant.

[0149] Selectable modes may include Baseline, Intervention1, Intervention2, Intervention3, Intervention4, and the like. Baseline mode settings may be based on the age of the infant. Baseline mode settings for an infant between 0 and 1 month may be 1.0 Hz motion and Rain on the Roof at 70 dB sound, for an infant between 1 and 4 months 1.0 Hz motion and Rain on the Roof at 68 dB sound, for an infant older than 4 months 0.0 Hz motion and Rain on the Roof at 68 dB sound, and the like. Baseline mode settings for an infant between 0 and 1 month may be 2.0 Hz motion and Rain on the Roof at 72 dB sound, for an infant between 1 and 3 months 2.0 Hz motion and 70 dB Rain on the Roof sound, and the like. Baseline may step up to Intervention1 if Crying_D1 is detected. Crying*D1 may trigger at 0.6 accumulated seconds of Crying Audio Classification time during a period of 6 seconds, and the like.

[0150] Intervention1 may be 2.5 Hz motion and Rain on the Roof at 72 dB sound. Intervention1 may step up to Intervention2 if Crying_D1 is detected, otherwise go to CoolDown3 after 8 minutes.

[0151] Intervention2 settings may be based on the age of the infant. Intervention2 settings for an infant younger than 0.5 months may be 2.8 Hz motion and Strong Hair Drier sound at 75 dB, may switch to Timeout if Crying_D2 is detected in the last 10 seconds (3:50 to 4:00), otherwise step to CoolDown2 after 4 minutes, and the like. Crying_D2 may trigger at 1.2 accumulated seconds of Crying Audio Classification time in a period of 6 seconds, and the like.

[0152] Intervention2 settings for an infant between 0.5 and 1 month may be 2.8 Hz motion and Strong Hair Drier sound at 75 dB, may step up to Intervention3 if Crying_D2 is detected, otherwise go to CoolDown2 after 4 minutes, and the like. Intervention2 settings for an infant older than 1 month may be 3.0 Hz motion and Strong Hair Drier sound at 75 dB, may step up to Intervention3 if Crying_D2 is detected, otherwise go to CoolDown2 after 4 minutes, and the like.

[0153] Intervention3 settings may be based on the age of the infant. Intervention3 settings for an infant between 0.5 and 1 month may be 2.8 Hz motion and Fast and Vigorous sound at 79 dB, and the like. Intervention3 settings for an infant older than 1 month may be 3.25 Hz motion and Fast and Vigorous sound at 79 dB, may switch to Timeout if Crying_D2 is detected in the last 10 seconds (2:20 to 2:30), present user option to use Intervention4, otherwise Step to CoolDown1 after 2.5 minutes, and the like. CoolDown1 settings may be based on the age of the infant. CoolDown1 settings for an infant between 0.5 and 1 month may be 2.8 Hz motion, Strong Hair Drier 75 dB sound, for an infant older than 1 month 3.0 Hz motion and Strong Hair Drier 75 dB sound, and the like. CoolDown1 may step up to Intervention3 if Crying_D2 is detected, otherwise go to CoolDown2 after 4 minutes, and the like. CoolDown2 may be 2.5 Hz motion and Strong Hair Drier sound at 72 dB and the like. CoolDown2 may step up to Intervention2 if Crying_D2 is detected, otherwise go to CoolDown3 after 8 minutes, and the like. CoolDown3 settings may be 1.8 Hz, Rain on the Roof sound at 70 dB, and the like. CoolDown3 may step up to Intervention1 if Crying_D2 is detected, otherwise go to Baseline after 12 minutes, and the like.

[0154] Intervention4 may be only manually activated. Intervention4 settings may be based on the age of an infant. Intervention4 settings for an infant between 0.5 and 1 month of age may be 2.8 Hz Fast and Vigorous at 81 dB sound, for an infant older than 1 month 3.25 Hz Fast and Vigorous sound at 85 dB, and the like. Intervention4 may switch to Timeout if Crying_D2 in last 10 seconds (1:50 to 2:00) is detected, otherwise return to regular operation by auto-stepping to Intervention3 after 2 minutes, and the like.

[0155] Timeout may be no alarm, alarm noise then silence, and the like. Alarm noise may be 6 beeps with 1 second timing between beeps. 4 second pause, 3 beeps with 1 second timing between the beeps, and the like. Timeout may also include an LED, LED may be a red LED, flashing until the infant calming/sleep-aid device 158 is reset by the user, and the like.

[0156] The infant calming/sleep-aid device 2258 may include other safety mechanisms that may impact the selection and activation of the operational modes. Other safety mechanisms that may impact the selection and activation of the operational modes may include shutting off if Intervention3 has ended and the infant is still crying, shutting off if Intervention4 has ended and the infant is still crying, not starting if the sleep sack is not properly engaged, not starting if the infant’s head is not sensed to be in the proper location, stopping if the infant’s head is sensed to no longer be in the proper location, not starting if the infant calming/sleep-aid device 2258 has been activated for longer than 6 hours in the day for the first two months, may not start if a sensor detects that the baby is not aligned properly in the infant calming/sleep-aid device 2258, and the like. If the infant calming/sleep-aid device 2258 has shut off because either Intervention3 or Intervention4 has ended and the infant is still crying, the infant calming/sleep-aid device 2258 may be reset, in order to allow the infant calming/sleep-aid device 2258 to be activated again.

[0157] The infant calming/sleep-aid device 2258 may include protocols, profiles, components, and add-on’s. Protocols may be based on the age of the infant and how upset the infant is. Protocols may be based on functions. Functions may be motion functions, sound functions, light indicator functions, ambient light sensor functions, light generation functions, or combinations of functions. Light indicator functions may be a night light, an indicator to provide a warning to a user when the user is shaking the infant calming/sleep-aid device 2258, an indicator to signal which intervention levels are being delivered, and the like. The indicator to provide a warning to a user when the user is shaking the infant calming/sleep-aid device 2258 may indicate that the level of shaking may be unsafe. Light indicator functions may be integrated with the infant calming/sleep-aid device 2258, displayed on a connected device, and the like. A connected device may be a smartphone, tablet computer, and the like. Ambient light sensor functions may be integrated with the infant calming/sleep-aid device 2258, located on a connected device, and the like. Light generation functions may be functional, aesthetic, and the like. Functional light generation functions may illuminate the user interface of the infant calming/sleep-aid device 2258, provide an orange melatonin inducing night light, and the like. Profiles may be based on knowledge of an infant profile, user override using preferences, and the like. User override may provide the user with several choices to override and
raise the baseline intervention. Components may be cords, batteries, motors, and the like. Cords may be breakaway cords, retractable cords, and the like. Batteries may be rechargeable as an option for sound, and the like. Add-on’s may be cameras, scales, measuring devices, a kit for turning the infant calming/sleep aid device 2258 into a crib, playpen, or the like, extra blankets, sheets, skins, parts, a travel bag, and the like.

[0158] The infant calming/sleep-aid device 2258 may facilitate interface integration. Interface integration may facilitate integration with interfaces such as Bluetooth interfaces, hard-wired interfaces, home automation network interfaces, monitors, and the like. Hard-wired interfaces may include hard-wired splitter interfaces. Monitors may include carbon monoxide monitors, safety monitors, and the like. Safety monitors may include home safety monitors, baby safety monitors, child safety monitors, and the like.

[0159] The infant calming/sleep-aid device 2258 may comprise a user interface. The user interface may comprise a control panel. The control panel may control options such as motor speed, modulation, speaker output, and the like. The control panel may comprise knobs, switches, lights, motion activation, sound activation, interfaces to drive electronics and other I/O methods.

[0160] The infant calming/sleep-aid device 2258 may comprise sub-assembly components. Such components may comprise amplitude modulation components, screws, gears, nut frames, springs, and the like.

[0161] The infant calming/sleep-aid device 2258 may comprise a head platform. The head platform may passively rotate. The head platform may comprise a spring system using injection molded plastic as the spring/damper to reduce noise and parts required. The head platform may comprise a plurality of dampers. The head platform may comprise a covering. The cover may be flexible, cloth, foam, or the like. The head platform may comprise joint connectors, such as, but not limited to, hinge and rod connectors. The head platform may comprise bearings such as, but not limited to rotation and head rotation bearings. The head platform may comprise wraps. The wraps may comprise swaddling wraps, fastening wraps, and the like.

[0162] The infant calming/sleep-aid device 2258 may comprise an enclosure around a sleep surface. One embodiment may have a light mesh veil/mosquito netting over the top of the device. One embodiment may have an ornamental animal head and tail that may be attached onto the device. The sleep surface may comprise a position stabilizer. The surface may secure a baby in supine position to prevent unrolling or rolling and to maintain optimal stimulation positioning. The infant calming/sleep-aid device 2258 may comprise a single head platform which may passively rotate and which may be constrained by springs or dampers. The sleep surface body platform made from flexible cloth covering or flexible foam padding. In embodiment, the sleep surface may comprise a movable joint connector using hinges, rods, or the like. In embodiments, the sleep surface may comprise a support platform. In embodiments the sleep surface may comprise bearings. In embodiments, the sleep surface may comprise a special head insert to reduce pressure on back of skull. In embodiments, the infant calming/sleep-aid device may comprise adjustable legs allowing variable height configurations.

In embodiments, the sleep surface may comprise a secure sleep sack. In embodiments, the sleep surface may interact with an electronically programmable interface system. The interface system may comprise a control panel. The control panel may comprise switches, lights, and other I/O interface capabilities. The interface system may comprise automated programming selections or may allow a user to select device settings, such as duration. In embodiments, the sleep surface may comprise drive electronics to control drive motor speed, an amplitude modulation motor, and speaker audio output. Speaker outputs may comprise specified equalizer settings i.e. the use of special sound profiles to promote sleep and reduce crying. In embodiments, the sleep surface may comprise plates such as drive plates or swing arm plates, among others. In embodiments, the sleep surface may comprise a push or pull rod. In embodiments, the sleep surface may comprise drive motor connections to different drive types such as clamps, bearings, pins, among others. In embodiments, the sleep surface may comprise an elastic actuator catch bracket. In embodiments, the sleep surface may comprise a sub-assembly to directly control the amplitude output of the main rotating platform. The sub-assembly may comprise components such as, but not limited to, amplitude modulation rotational bearings, acme screws, acme nuts, acme nut frames, and gears. In embodiments, the sleep surface may comprise an amplitude modulation motor.

[0163] The infant calming/sleep-aid device 2258 may comprise a motion generation and drive mechanism for a crib. The mechanism may comprise an electronic motor. The motor may be isolated from proximity to the baby for EMR shielding. The mechanism’s movement may take into account wear and tear. The mechanism may comprise elastic walls that move with the mattress. The mechanism may comprise a swing arm crank shaft either directly or indirectly attached to the motor. The mechanism may comprise a plurality of springs such as injected plastic springs. The mechanism may have stability components in order to compensate for interactions with the stand and the environment. The mechanism may move in a sinusoidal motion when the infant is asleep and a non-sinusoidal motion when the infant is awake or crying, to attempt to calm the child down. The mechanism may operate with a direct amplitude adjustment or may operate without such direct adjustments. Direct amplitude adjustment settings may comprise a slow and large amplitude setting (e.g. 30 cycles per minute and 6 cm/cycle at the head), a fast and short amplitude setting (e.g. 150 cycles per minute and 3 cm/cycle at the head), a rapid and short amplitude setting (e.g. 180 cycles per minute and 2 cm/cycle at the head), among other combinations (e.g. 4.5 Hz, 270 cpm, range 150-270 cpm). The mechanism may comprise an accelerometer in order to measure head movement. In embodiments, the mechanism may work in conjunction with sensors placed under a mattress to detect when or if an infant is in the crib without being secured in the sleep sack. The mechanism may stop movement if the sensors detect that the infant is in a compromised position or if the infant is no longer in the sleep sack. Movement may also stop when a calming movement mode has been completed and the infant is still crying. In embodiments, users may not be able to manually select movements and may warn users if safety parameters are not met, such as excessive acceleration or unsafe frequency. In embodiments, a manual override may be provided to uncouple the motion generator if a motion is undesirable.

[0164] The infant calming/sleep-aid device 2258 may comprise a crib sound system. In embodiments, equalizer settings may be provided for optimal pitch profiles (e.g. sound levels are mixed with increasing high pitch profiles as a baby cries
The sound system may comprise speakers and may generate sounds similar to those hard by the babies in utero. For example, sounds may be generated to replicate the turbulence of blood flowing through uterine and umbilical arteries. In embodiments, the high frequency component may be diminished (e.g., 65 to 70 dB with a profile predominantly about <500 Hz). In other embodiments, the system may be capable of a harsher sound (e.g., 70 to 75 dB with a profile predominantly about <1000 Hz) or a multi-frequency sound (e.g., 75 to 80 dB with a profile from 0 to 16000 Hz). In embodiments, the system may be calibrated not to exceed 85 dB at the infant’s head, not to exceed more than 18 hours a day to prevent overuse and not to exceed 85 dB for longer than 20 minutes of an hour. If such levels are exceeded, a notification may be provided to a user in order to stop usage. In embodiments, the speaker may make an alarm sound when the device times out. In embodiments, the sound system may comprise variable volume controls. In embodiments, the sound system may be able to detect sounds. Such detections may be conducted by microphones to sense warnings, to hear a child, or to indicate the duration a child has been crying, among other uses. The sound system may be used to conduct analysis on such detections. In embodiments, the sound system may be battery operated. Sounds may be imported into sound interface applications, such as Dolby Advanced Audio v2, to provide music, voices, singing as an overtone, or interactively talk to the infant via the application API. In embodiments, the sound system may be removed or dampened.

In embodiments, the infant calming/sleep-aid device 2258 may comprise microprocessors for use in the crib. Microprocessors may be used to differentiate sounds, such as infant sounds, system sounds, or ambient noise. Microprocessors may be used to record and analyze sounds. Such sounds may include sounds which reflect a baby’s state (e.g., sleeping, crying) or to provide feedback. Microprocessors may be used to generate responses and deliver the optimal mix of sound and motion for a specific. For example, a user may implement an initial combination of sound and motion for the first few uses, then switch to a different program based on a child’s reaction to the uses. Microprocessors may be used to respond to changing states, such as to calm crying, reduce sleep latency, increase sleep efficiency, among others. Microprocessors may also be used to weak infants off of motion and sound as they age. For example, the device may increase sound and motion as child gets older and then automatically wean the baby off motion as he or she gets over 4 months. The device may also react to incidents of waking and reduced crying. Microprocessors may take in inputs such as the weight of an infant, age of infant, whether the infant was delivered on time, the duration of detected sound made by infant, the duration of detected motion of infant, the desired motion state, the sensed motion frequency, the amplitude of main platform, the desired system speed, whether motion of main rotating platform exceeds safety threshold, and the like. The microprocessor may generate outputs such as motor control, audio responses and visual signals.

The infant calming/sleep-aid device 2258 may comprise a mechanism for the more square waveform generation for a crib. Such a mechanism may be enabled by flexible joint connecting head and body platform. The main rotating platform may use a variety of variables to determine the waveform generation, such as weight of infant, drive motor frequency, balancing compression spring force constant, as well as other variables.

The infant calming/sleep-aid device 2258 may rely on several algorithms in order to generate outputs to calm an infant. The device may analyze certain output combinations that have succeeded, store such combinations, and then replicate these combinations. The device may create profiles based on knowledge of a child’s physiological or behavioral parameters or based on a parent or user’s overrides and preferences, among a variety of other parameters.

The infant calming/sleep-aid device 2258 may comprise a motion analysis module. The module may comprise a motion amplitude estimator, a threshold-crossing based motion frequency estimator, a time-based filter, a digital filter bank, a filtered accelerometer data signal, and a motion frequency estimate signal among others. The infant calming/sleep-aid device 2258 may comprise a behavior state machine module, an audio generation module, a crying detection module, and the like. The crying detection module may comprise a digital band-pass filter and a time-based filter.

The infant calming/sleep-aid device 2258 may comprise a mattress for a crib. The mattress may be made from organic materials such as organic latex, coconut fiber, or polyethylene, and may comprise a gel pad for the head. The mattress may be created for firmness or softness preferences, and may also be waterproof. Compatible sheets may be used for the mattress and the mattress may contain circuitry so that it may maintain connectivity with walls, the mattress, and the platform.

The infant calming/sleep-aid device 2258 may be controlled remotely by smartphone or other mobile device using communication standards such as Bluetooth. The infant calming/sleep-aid device 2258 may comprise variable motion and sound capabilities as well as a feedback loop and mechanisms to reduce functionality over time. The infant calming/sleep-aid device 2258 may comprise a moving platform and may have a dual range of motion. The infant calming/sleep-aid device 2258 may comprise a plurality of collapsible walls and legs. Such functionality may aid in shipping, travelling, aiding a child to stand, among other uses. The functionality may change depending on the age of the infant or the stroller height of the baby’s mother. The infant calming/sleep-aid device 2258 may comprise handles, wheels, and legs that may be extendable, adjustable, or collapsible. The infant calming/sleep-aid device 2258 may comprise trolley functionality to transform the device into a stroller or it may comprise a crib functionality to transform the device into a crib. The infant calming/sleep-aid device 2258 may comprise wheels for transport. The infant calming/sleep-aid device 2258 may comprise a removable motor. The infant calming/sleep-aid device 2258 may comprise flexible and removable mesh components. One embodiment envisions the ability to re-obtain back units and refurbish them to resell on a secondary market.

In embodiments, the infant calming/sleep-aid device 2258 may generate a plurality of outputs. Such outputs may be user modes such as movement modes. Movement modes may comprise short and large amplitude modes, fast and short amplitude modes and rapid and short amplitude modes, among others. Outputs may also comprise sound modes such as modes where the high frequency component is diminished, modes that produce a harsher sound and modes that produce a multi-frequency sound.

The infant calming/sleep-aid device 2258 may comprise sensors such as, but not limited to, audio sensors, motion sensors, biometric, a camera, other third party sensors, flex-
ible sensors, accelerometers, a warning system, and a manual override. The infant calming/sleep-aid device 2258 may comprise certain product add on components such as a camera, a scale, an ambient temperature thermometer, a heart rate monitor, a respiratory rate monitor, an oxygen monitor, a measuring device, a kit for turning the device into a crib, a kit for turning the device into a playpen, extra accessories, a microphone, and sound importing capabilities, such as music, voices, singing, and interactive talking via an API. In embodiments, device components may be removable. The infant calming/sleep-aid device 2258 may comprise an electrical cord that may be able to break away or may be retractable. The infant calming/sleep-aid device 2258 may comprise batteries, and in embodiments, batteries which may be rechargeable. The infant calming/sleep-aid device 2258 may comprise light indicators such as a night light, or a shaking detection light, ambient light sensors, functional lights (e.g. to light up the user interface, to induce melatonin, to assess manual jiggling, to function as a stroller light), and lights to signal that an intervention level is being delivered. The infant calming/sleep-aid device 2258 may comprise several different aesthetic features, such as changing designs.

[0173] The infant calming/sleep-aid device 2258 may employ a plurality of different parameters. In embodiments, sound and motion ranges may be restricted. In embodiments, the device may use different thresholds or triggers to deliver output. Such triggers may include sensory inputs, behavioral inputs, variational inputs, head movement, acceleration, frequency, amplitude, rotation, safety, number of waking incidents, number of crying incidents, abnormal biometric readings and an infant’s measurements, among others. Variational inputs may include individual variations, optimal stimulus level data, and state data such as type of sleep, drowsiness, quietness, fussing, or crying. The infant calming/sleep-aid device 2258 may rely on duration inputs for sound and motion. The infant calming/sleep-aid device 2258 may rely on target inputs such as desired motion state or desired system speed. The infant calming/sleep-aid device 2258 may rely on noise detection from the system, infant, ambient noise and also rely on biometric sensors. The device may differentiate between multiple types of noise. The infant calming/sleep-aid device 2258 may rely on filters such as band-pass, digital band-pass, time-based, a filter bank, or a digital filter bank, among others.

[0174] The infant calming/sleep-aid device 2258 may comprise materials such as flexible mesh and seasonal materials. Such materials may be warm, light, or breathable depending on the environment in which the device is deployed.

[0175] The infant calming/sleep-aid device 2258 may be deployed for several uses such as, but not limited to monitoring, reporting, control, analytics, reports/statistics, sharing/groups, benchmarking/comparison, graphics, acoustic signature of the cry, organizational data, expert feedback, communications (e.g. walkie-talkie), providing alerts (e.g. warning alerts, health concern alerts), overtone customization of the white noise, photo/video/audio input, journal sharing/printout, automate diaper/formula ordering online, weight determination, breastfeeding determination, and image capturing uses, among others.

[0176] The infant calming/sleep-aid device 2258 may be integrated to work with a smartphone or other similar mobile device. The device may communicate with the mobile device using methods such as USB, Bluetooth, and Wi-Fi, among others. The mobile phone may be used to input information such as weight (at birth and longitudinal weight), length (at birth and longitudinal), head size (at birth and longitudinal), the frequency of feeding, frequency of diaper changes and sleep behavior, among others. User may be able to use their mobile device to instantly create and share graphic displays of their baby’s sleep pattern over different periods of time, among many other uses.

[0177] Devices of the type depicted in this disclosure were tested in the following way: A baby was placed in a swaddling sack, (with arms in or out) attached to the mattress of the device and securely laid on his/her back. The device produced a baseline level of low pitched, rumbling noise at approximately 65 dB and baseline motion of a smooth, side-to-side rocking (2 inch excursions to either side). When the baby cried for more than ~10 seconds, the device responded by playing a specially engineered sound that was harsher, higher pitched, more-multi-frequency (75-80 dB) to mimic the intensity of the sound that the baby heard inside the mother’s uterus prenatally. (This sound can be measured in situ at up to 92 dB.) If the crying continued another ~10 seconds (despite the sound), the motion accelerated to a faster, more jiggling action of the head (2-3.5 eps, but no more than 1 inch head excursions to either side). The combination of fast movements delivered with sufficient vigor, the harsh, loud sound, and the secure swaddle sack all worked together to activate the calming reflexes, in the majority of irritable babies and inducing either calmness or sleep. The device responded to the baby’s cry in a step-wise fashion—gradually increasing sound and then motion to a maximal level. Once the baby was calmed the motion and sound of the device was gradually reduced in a specific, step-wise fashion back to the baseline activity.

[0178] Subjects

The device was tested on over twenty babies (12 girls, 10 boys) were in the device. The babies ranged from 5 weeks to 6 months of age. Their weights ranged from 8 pounds to 18 pounds.

[0179] Methods and Procedures

The subjects were tested to record their resting and sleeping in the device. The tests usually began when the baby was hungry and tired (immediately before their usual naptime). The time when the baby was last fed and napped was recorded and then the baby was put in the swaddling sack and placed in the device. Data from three accelerometers and a device-mounted camera was recorded to detect the vigor of activity and measure the exact excursions of the baby’s head. Each test started with the device set at its lowest level for sound and motion, and the device responded to the baby’s cries. The device was allowed to quickly advance through each of its stages as the cries escalated. Once the baby was calmed, the device’s motion would slow, in a stepwise fashion, and the loudness and pitch of the sound would decrease, in a stepwise fashion. This format was repeated 2-4 times during sessions with each of the subjects. The first set of studies was done using a prototype with a dual motion actuator and the second set of studies was done with a prototype with a single motion actuator.

[0180] Results

During twenty-one tests, 19 babies were either significantly calmed or put to sleep by the device (absence of calming was due to hunger). Most calming and sleep occurred within 2 minutes of placing the baby in the device.

[0181] This device is responsive to a baby’s needs, such that an infant’s upsets are typically soothed by vigorous stimulation to activate the calming reflex, followed by a dimi-
nution of those stimuli to help keep the calming reflex turned on and sustain the baby in a calm state and/or promote sleep (i.e. reducing sleep latency and increasing sleep efficiency. [0182] “Sleep latency” may be defined as the length of time between going to bed and falling asleep. “Sleep efficiency” may be defined as the ratio of time spent to the amount of time spent in bed.

[0183] It is possible to promote infant calming and sleep through the use of swaddling plus very specific sound and motion stimuli to activate the calming reflex.

[0184] While this invention has been particularly shown and described with references to example embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims.

[0185] While the disclosure has been disclosed in connection with the preferred embodiments shown and described in detail, various modifications and improvements thereon will become readily apparent to those skilled in the art. Accordingly, the spirit and scope of the present disclosure is not to be limited by the foregoing examples, but is to be understood in the broadest sense allowable by law.

[0186] The use of the terms “a” and “an” and “the” and similar referents in the context of describing the disclosure (especially in the context of the following claims) is to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. The terms “comprising,” “having,” “including,” “and”, “containing” are to be construed as open-ended terms (i.e., meaning “including, but not limited to,”) unless otherwise noted. Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein, is intended merely to better illuminate the disclosure and does not pose a limitation on the scope of the disclosure unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the disclosure.

[0187] While the foregoing written description enables one of ordinary skill to make and use what is considered presently to be the best mode thereof, those of ordinary skill will understand and appreciate the existence of variations, combinations, and equivalents of the specific embodiment, method, and examples herein. The disclosure should therefore not be limited by the above described embodiment, method, and examples, but by all embodiments and methods within the scope and spirit of the disclosure.

[0188] All documents referenced herein are hereby incorporated by reference.

What is claimed is:

1. A method comprising:

1. Providing an infant calming/sleep-aid device comprising a platform for supporting an infant, a control system for receiving at least one input relating to the infant from a user and for generating at least one output that controls at least one of a motion of the platform and a sound directed to the infant, and a communication facility for linking the at least one input with the control system;

2. Providing a plurality of selectable operational modes for the infant calming/sleep-aid device, each operational mode comprising at least one of a defined motion range of the platform and a sound range;

3. Selecting an operational mode based at least in part on the user provided input; and

4. Activating the operational mode based on the selection.

2. The method of claim 1, wherein each at least one selectable operational mode comprises a mode for activating an infant calming reflex.

3. The method of claim 1, further providing a user interface for providing user input to the control system.

4. The method of claim 3, wherein the user interface is remote from the infant calming/sleep aid device.

5. The method of claim 3, wherein the user interface is on one of a mobile device, a tablet device, and a smart phone device.

6. The method of claim 1, wherein selection of an operational mode is automatic and further based on signals provided by at least one of a sound sensor and a motion detection sensor monitoring the infant.

7. The method of claim 1, wherein each operational mode controls an extent, direction, and frequency of motion of the platform.

8. The method of claim 1, wherein each operational mode controls a type and loudness of generated sound directed to the infant.

9. A method comprising:

1. Providing an infant calming/sleep-aid device comprising a platform for supporting an infant, a control system for receiving at least one input and for generating at least one output that controls at least one of a motion of the platform and a sound directed to the infant, and at least one of an audio sensor and a motion sensor, and wherein each sensor provides a respective data signal input to the control system;

2. Using the infant calming/sleep-aid device to continuously collect data from each sensor with respect to an infant within the infant calming/sleep aid device;

3. Providing a plurality of selectable operational modes for the infant calming/sleep-aid device, each operational mode comprising at least one of a motion range and a sound range;

4. Automatically selecting an operational mode based on a defined response to the continuously collected infant data; and

5. Activating the operational mode based on the selection.

10. The method of claim 9, wherein at least one additional sensor, selected from the group including a physiological sensor associated with the infant, a camera, a pressure sensor, a distortion sensor, a breathing sensor, a diaper sensor, a temperature sensor, and a sleep sack attachment sensor, provides an additional respective data signal input to the control system and an operation mode is automatically selected based on a defined response to the continuously collected infant data, including data from the additional sensor.

11. The method of claim 9, wherein each operational mode comprises a plurality of parameters relating to control of at least one of motion and sound.

12. The method of claim 11, wherein each operational mode comprises a plurality of parameters relating to control of both motion and sound.
13. The method of claim 11, wherein each operational mode further comprises a plurality of parameter ranges.

14. The method of claim 11, wherein at least one operational mode comprises activating an infant calming reflex.

15. The method of claim 11, further wherein a user is enabled to select a desired operational mode.

16. The method of claim 11, further wherein the state of an infant is determined based on an infant data feedback algorithm; and the device is controlled based on the determination to activate an infant calming reflex of the infant using at least one of motion of the platform and sound directed to the infant.

17. The method of claim 11, further comprising:
 communicating with an external communication facility; allowing a selection of a selectable operational mode based on the external communication facility’s communications; and activating the operational mode based on the selection.

18. A method comprising:
 providing an infant calming/sleep-aid device comprising a platform for supporting an infant, a control system for receiving at least one input and generating at least one output in response to the at least one input which controls at least one of a motion of the platform and a sound directed to the infant, a communication facility for linking the at least one input with the control system, and an application programming interface wherein the application programming interface allows integration of the infant calming/sleep-aid device with at least one external device and system; providing a plurality of selectable operational modes for the infant calming/sleep-aid device, the operational modes comprising a motion range and a sound range; enabling a selection of an operational mode based on a defined response to the at least one input wherein the at least one input comprises an input from the at least one external device and system; and activating the operational mode based on the selection.

19. An infant calming/sleep-aid device comprising:
 a platform for supporting an infant;
 a control system for receiving at least one input from at least one external device or system and generating at least one output in response to the at least one input which controls at least one of a motion of the platform and a sound directed to the infant;
 a communication facility for linking the at least one input with the control system;
 a motor in communication with the output of the control system; and
 a user interface for providing at least one of control commands to the control system and information regarding the infant.

20. The device of claim 19, wherein the user interface is a component of the external device or system.

21. The device of claim 20, wherein the external device is a mobile device with a mobile application and infant information is displayed on the mobile device.

22. The device of claim 20, further comprising an application programming interface for integration with the at least one external device or system.

23. The infant calming/sleep-aid device of claim 19 further comprising:
 an enclosure at least partially surrounding the platform, the enclosure having an inner fabric and an outer fabric.

24. The device of claim 23, further including permanent or changeable ornamental features of the enclosure or platform.

25. The device of claim 23, further including a mattress on the platform within the enclosure.

26. The device of claim 25, further including a pad positioned to support the head of the infant.

27. The infant calming/sleep-aid device of claim 19, further wherein the platform is a single support piece for supporting both the body of the infant and the head of the infant.

28. The infant calming/sleep-aid device of claim 19, further wherein the platform comprises a main moving platform that is controlled to move in a reciprocating manner and a separate moving head platform that moves when the main moving platform moves.

29. The infant calming/sleep-aid device of claim 19, further comprising a main support shaft for supporting the platform and which is affixed to a rigid base.

30. The device of claim 19, further comprising a plurality of removable support legs.

31. The device of claim 19, wherein each of the plurality of removable support legs has rotational and height adjustment capabilities.

32. A sleep system comprising:
 an infant calming/sleep-aid device comprising a crib device with a movable platform for supporting an infant and a control system that controls at least one of a motion of the platform and a sound directed to the infant; and a sleep sack for the infant which is removably attachable to the crib device; the crib device comprises a crib attachment mechanism in data communication with the control system to detect when the sleep sack is not securely fastened to the crib device, and wherein motion of the platform is discontinued if the sleep sack is not securely fastened to the crib device.

33. The system of claim 32, wherein the sleep sack comprises at least one feature from the group including a hip flexion mechanism, an internal band, adjustable hand openings, a zipper, an adjustable back snuggling mechanism, and sleep sack wings removably attachable to the crib device.

34. A method comprising:
 providing an infant calming/sleep-aid device comprising a platform for supporting an infant, a control system for receiving at least one input and generating at least one output that controls at least one of a motion of the platform and a sound directed to the infant, wherein the at least one input comprises at least one of an infant state detection, an infant body part movement, an infant body part acceleration, duration of certain activity detected by a sensor, an infant’s weight, an infant’s age, a number of detected waking or crying incidents, detected noise from the device, infant, or ambient environment, and wherein the at least one output comprises a command to change at least one of a frequency of motion of the platform, an amplitude of motion of the platform, and a sound output, and a communication facility for linking the at least one input with the control system;
 providing a plurality of selectable operational modes for the infant calming/sleep-aid device, each operational mode comprising at least one output; enabling selection of an operational mode based on a defined response to the at least one input; and activating the operational mode based on the selection.
35. A method comprising:
providing an infant calming/sleep-aid device comprising a
platform for supporting an infant, a control system for
receiving at least one input and generating at least one
output that controls at least one of a motion of the plat-
form and a sound directed to the infant, and a commun-
ication facility for linking the at one input with the
control system;
providing a mobile device in data communication with the
infant calming/sleep-aid device comprising a mobile
application and a user interface;
providing a plurality of selectable operational modes for
the infant calming/sleep-aid device, each operational
mode comprising a motion range and a sound range;
allowing the mobile application to monitor the status of the
infant calming/sleep-aid device;
allowing the mobile application to select an operational
mode based on a defined response to at least one input;
and
activating the operational mode based on the selection.

36. A method comprising:
providing an infant calming/sleep-aid device comprising a
platform for supporting an infant, a control system for
receiving at least one input and generating at least one
output that controls at least one of a motion of the plat-
form and a sound directed to the infant, wherein the at
least one input comprises data from at least one physi-
ological sensor, a communication facility for linking the
at one input with the control system, and a device data
monitoring system;
providing a plurality of selectable operational modes for
the infant calming/sleep-aid device, the operational
modes each comprising at least one output derived from
the at least one input;
providing the monitored device data to a data storage fac-
cility;
enabling selection of an operational mode based on data
stored in the data storage facility; and
activating the operational mode based on the selection.

37. A method comprising:
providing an infant calming/sleep-aid device comprising a
platform for supporting an infant, a control system for
receiving at least one input and generating at least one
output in response to the at least one input which con-
trols at least one of a motion of the platform and a sound
directed to the infant, wherein the at least one input
comprises data from at least one physiological sensor, a
communication facility for linking the at one input with
the control system; and a rules engine to determine an
activation method for an infant calming reflex;
providing a plurality of selectable operational modes for
the infant calming/sleep-aid device, the operational
modes each comprising at least one output derived from
the at least one input;
enabling selection of an operational mode based on the
rules engine; and
activating the operational mode based on the selection.

38. A method comprising:
providing a sleep device comprising a platform for sup-
porting an infant;
monitoring the infant with a sensor that generates a signal
indicative of at least one of a motor status or a physi-
ologic status of the infant;
receiving and analyzing, by a control system of the sleep
device, the generated signal indicative of the motor sta-
tus or the physiologic status of the infant;
generating, by the control system of the sleep device, at
least one output that controls at least one of a motion of
the platform and a sound directed to the infant if a
distressed status of the infant is detected based on the
analyzed signal; and
generating at least one of reciprocating motion of the plat-
form and a sound directed to the infant in response to the
at least one output.

39. The method of claim 38, wherein a distressed status
is detected if a motor or physiologic perturbation greater
than an acceptable baseline is detected.

40. The method of claim 38, wherein a distressed status
is detected if a pause in breathing greater than a predeter-
dined duration is detected.

41. The method of claim 38, wherein a distressed status
is detected if a heart rate of the infant is detected if
a heart rate of the infant falls below a predetermined
threshold.

42. The method of claim 38, further comprising generating,
by the control system of the sleep device, an output to
call the control system to caregivers of the infant.

43. The method of claim 38, further comprising initiating
an emergency call in response to the at least one output.

44. The method of claim 38, wherein both vigorous recip-
crating motion of the platform and a loud sound are
generated in response to the at least one output.

45. The method of claim 44, wherein the motion of the
platform has a frequency that is greater than 0.5 Hz and
an amplitude that is greater than 1 inch.

46. The method of claim 44, wherein the sound has an
intensity of at least 65 dB.

47. A method comprising:
providing a sleep device comprising a platform for sup-
porting an infant;
monitoring the infant with a sensor that generates a signal
indicative of at least one of a respiration status or a
cardiovascular status of the infant;
receiving and analyzing, by a control system of the sleep
device, the generated signal indicative of the respiration
or cardiovascular status of the infant;
generating, by the control system of the sleep device, at
least one output that controls at least one of a motion of
the platform and a sound directed to the infant if a
distressed status of the infant is detected based on the
analyzed signal; and
generating at least one of reciprocating motion of the plat-
form and a sound directed to the infant in response to the
at least one output.