发明名称
一种水性醇酸树脂及其制备方法

摘要
本发明公开了一种水性醇酸树脂及其制备方法，所述水性醇酸树脂是由以重量份计的甘油
20 ～ 30 份，间苯二甲酸酐 10 ～ 20 份，苯乙烯 1 ～ 5 份，新戊二醇 1 ～ 10 份，聚四氟乙烯
1 ～ 10 份，乙烯 - 甲苯 5 ～ 10 份，丙三醇 5 ～ 15 份，丙二醇单丁醚 1 ～ 10 份，三乙胺
5 ～ 15 份，去离子水 15 ～ 25 份原料制备而成。本发明水性醇酸树脂，能有效提高涂膜硬度和耐侯性；本发明的制备方法通过控制工艺条件，结合对原料的改进，获得干
性和和硬度更好，并具有良好储存稳定性和耐侯性的醇酸树脂；该方法工艺稳定，步骤简单，容易
操作，适应于大规模生产。
1. 一种水性醇酸树脂，其特征在于，其是由以重量份数的以下原料制备而成：

<table>
<thead>
<tr>
<th>成分</th>
<th>份数</th>
</tr>
</thead>
<tbody>
<tr>
<td>甘油</td>
<td>20～30 份</td>
</tr>
<tr>
<td>间苯二甲酸酐</td>
<td>10～20 份</td>
</tr>
<tr>
<td>苯乙烯</td>
<td>1～5 份</td>
</tr>
<tr>
<td>新戊二醇</td>
<td>1～10 份</td>
</tr>
<tr>
<td>聚四氟乙烯</td>
<td>1～10 份</td>
</tr>
<tr>
<td>二甲苯</td>
<td>5～10 份</td>
</tr>
<tr>
<td>偏苯三酸酐</td>
<td>5～15 份</td>
</tr>
<tr>
<td>丙二醇单丁醚</td>
<td>1～10 份</td>
</tr>
<tr>
<td>三乙胺</td>
<td>5～15 份</td>
</tr>
<tr>
<td>去离子水</td>
<td>15～25 份</td>
</tr>
</tbody>
</table>

2. 根据权利要求1所述的水性醇酸树脂，其特征在于，其是由以重量份数的以下原料制备而成：

<table>
<thead>
<tr>
<th>成分</th>
<th>份数</th>
</tr>
</thead>
<tbody>
<tr>
<td>甘油</td>
<td>22～26 份</td>
</tr>
<tr>
<td>间苯二甲酸酐</td>
<td>12～16 份</td>
</tr>
<tr>
<td>苯乙烯</td>
<td>3～4 份</td>
</tr>
<tr>
<td>新戊二醇</td>
<td>6～8 份</td>
</tr>
<tr>
<td>聚四氟乙烯</td>
<td>4～6 份</td>
</tr>
<tr>
<td>二甲苯</td>
<td>7 份</td>
</tr>
<tr>
<td>偏苯三酸酐</td>
<td>8～12 份</td>
</tr>
<tr>
<td>丙二醇单丁醚</td>
<td>3～6 份</td>
</tr>
<tr>
<td>三乙胺</td>
<td>4 份</td>
</tr>
<tr>
<td>去离子水</td>
<td>18～23 份</td>
</tr>
</tbody>
</table>

3. 一种如权利要求1所述的水性醇酸树脂的制备方法，其特征在于，包括如下步骤：
1）按比例将甘油、间苯二甲酸酐、苯乙烯、新戊二醇、聚四氟乙烯、二甲苯、偏苯三酸酐
放入带回流冷凝器和油水分离器的反应釜加热反应；
反应过程控制酸值，反应终止后冷却反应液；

2) 在上述反应回液中加入丙二醇单丁醚、三乙胺，在加入的过程中对反应釜内的物质进行搅拌，使反应釜内的物质充分反应形成均匀溶液；

3) 在上述步骤 2) 的溶液加入去离子水，在加入的过程中对反应釜内的物质进行搅拌，使反应釜内的物质充分反应形成均匀产物，即成。

4. 根据权利要求 3 所述的制备方法，其特征在于，步骤 1) 中在反应釜的反应温度控制在 140 ～ 160℃ 保温 0.5h，反应开始的同时通入氮气，当反应釜内的物质开始融化时开动搅拌，使反应釜内的物质充分反应形成均匀溶液，然后以每小时 10℃ 的速度把温度升到 220 ～ 230℃ 保温。

5. 根据权利要求 3 所述的制备方法，其特征在于，步骤 1) 中，控制酸值是在反应过程中测算值，当酸值小于 15mg KOH/g 时停止加热。
一种水性醇酸树脂及其制备方法

技术领域
[0001] 本发明涉及树脂材料加工技术领域，具体涉及一种水性醇酸树脂及其制备方法。

背景技术
[0002] 生活中很多物体表面都需要用到涂料，有的是为了美观，有的是为了保护物体本身。我们现在的涂料大多还是传统的溶剂型涂料，而传统溶剂型涂料在生产和使用中会挥发大量的有害物（VOC），有机挥发物（VOC）已经成为城市污染的主要污染源，VOC不但对环境造成污染而且对人体的健康造成危害；另外，溶剂型涂料的溶剂大部分来自石油工业而石油是矿物质能源，它是有限的，为了节约资源、保护环境以及人体的健康，各国纷纷制定了涂料的标准对涂料中的VOC含量进行严格的限制。
[0003] 水性涂料作为环保涂料中最具发展潜力的一类，因其无毒、不易燃、对环境友好、成本低、易清洗的优点而备受人们青睐。醇酸树脂作为一种涂料用树脂，由于它价格便宜、品种繁多、配方多变、生产工艺成熟、原材料来源广、用它做出来的涂料附着力好、光泽高、丰满度好等优点而被大量的研究和应用。醇酸树脂的水性化一直是水性涂料的一个方向，80年代以来醇酸树脂的水性化技术有了突破性的进展，合成了一系列不同性能的水性醇酸树脂，有很多已经应用。但是醇酸树脂硬度低耐候性差的性质影响了它的应用，目前，国内外为了提高醇酸树脂的硬度和耐候性的通用方法是对醇酸树脂进行改性，比如丙烯酸改性、苯乙烯改性、环氧改性等等，改性方法有物理混合和化学聚合两种，物理混合得到的产品不稳定，极易相分离做成的涂料容易产生沉降等问题，化学聚合生产出来的产品稳定性能好，但是合成工艺复杂，生产设备投入高推广困难。

发明内容
[0004] 为克服现有技术的缺陷，本发明的目的在于提供一种水性醇酸树脂，以提高涂料硬度和耐候性。
[0005] 本发明的另一目的在于提供一种水性醇酸树脂的制备方法，制该方法工艺简单、操作方便。
[0006] 为实现上述目的本发明所采用的技术方案如下：
[0007] 一种水性醇酸树脂，其是由以重量百分计的以下原料制备而成：
甘油 20～30 份
间苯二甲酸酐 10～20 份
苯乙烯 1～5 份
新戊二醇 1～10 份
聚四氟乙烯 1～10 份
二甲苯 5～10 份
偏苯三酸酐 5～15 份
丙二醇单丁醚 1～10 份
三乙胺 5～15 份
去离子水 15～25 份。

[0009] 优选的，所述水性醇酸树脂是由以下重量份的以下原料制备而成：

甘油 22～26 份
间苯二甲酸酐 12～16 份
苯乙烯 3～4 份
新戊二醇 6～8 份
聚四氟乙烯 4～6 份
二甲苯 7 份
偏苯三酸酐 8～12 份
丙二醇单丁醚 3～6 份
三乙胺 4 份
去离子水 18～23 份。

[0012] 一种水性醇酸树脂的制备方法，包括以下步骤：

[0013] 1）按比例将甘油、间苯二甲酸酐、苯乙烯、新戊二醇、聚四氟乙烯、二甲苯、偏苯三酸酐放入带回流冷却和油水分分离器的反应釜中加热反应；反应过程控制酸值，反应终止后
冷却反应液；
[0014] 2) 在上述反应液中加入丙二醇单丁醚、三乙胺，在加入的过程中对反应釜内的物质进行搅拌，使反应釜内的物质充分反应形成均匀溶液；
[0015] 3) 在上述步骤 2) 的溶液加入去离子水，在加入的过程中对反应釜内的物质进行搅拌，使反应釜内的物质充分反应形成均匀产物，即成。
[0016] 具体地，步骤 1) 中在反应釜的反应温度控制在 140 ～ 160℃保温 0.5h，反应开始的同时通入氨气，当反应釜内的物质开始融化时开动搅拌，使反应釜内的物质充分反应形成均匀溶液，然后以每小时 10℃的速度把温度升到 220 ～ 230℃保温。
[0017] 具体地，步骤 1) 中，控制酸值是在反应过程中测得值，当酸值小于 15mgKOH/g 时停止加热。
[0018] 比较现有技术，本发明的有益效果在于：
[0019] 1. 本发明所述的水性醇酸树脂采用甘油与偏苯三酸酐及间苯二甲酸酐作为主要原料制备醇酸树脂，具有良好的耐热性、低挥发性、耐油性；增强了涂膜的耐候性；其中偏苯三酸酐具有三官能度的特性，能够提高醇酸树脂的网络结构和增大醇酸树脂的分子量，并与原料中的新戊二醇结合，能有效提高涂膜的实干速度和硬度；
[0020] 2. 本发明所述的水性醇酸树脂中通过添加苯乙烯和聚四氟乙烯对醇酸树脂进行改性，苯乙烯直接与其他原料共聚反应，克服了聚合反应中易出现反应体系的温度升高过快和反应不稳定等缺陷，但是单独在反应原料中添加苯乙烯或导致涂膜的耐候性下降，在本发明的原料中添加了聚四氟乙烯和苯乙烯结合，提高醇酸树脂的抗老化能力和耐温性能；
[0021] 3. 本发明所述的水性醇酸树脂采用去离子水作为溶剂，具有绿色环保的优势；
[0022] 4. 本发明所述的水性醇酸树脂的制备方法通过控制工艺条件，结合对原料的改革，获得干性和和硬度更好，并具有良好储存稳定性和耐候性的醇酸树脂；该方法工艺稳定，步骤简单，容易操作，适合于大规模生产。
[0023] 下面结合具体的实施方式对本发明作进一步详细说明。

具体实施方式
[0024] 实施例 1：
[0025] 一种水性醇酸树脂，由以下重量的组分配制而成；
[0026] 将甘油 26Kg、间苯二甲酸酐 15Kg、苯乙烯 4Kg、新戊二醇 7Kg、聚四氟乙烯 4Kg、二甲苯 7Kg，偏苯三酸酐 10Kg，放入带回流冷凝器和液水分离器的反应釜，加热，温度控制在 140 ～ 160℃保温 0.5h，同时通入氨气，当反应釜内的物质开始融化时开动搅拌，使反应釜内的物质充分反应形成均匀溶液，然后以每小时 10℃的速度把温度升到 220 ～ 230℃保温，同时测酸值，当酸值小于 15 时停止加热，加入丙二醇单丁醚 3Kg、三乙胺 4Kg，在加入的过程中对反应釜内的物质进行搅拌，使反应釜内的物质充分反应形成均匀溶液，然后加入 18Kg 去离子水，在加入的过程中对反应釜内的物质进行搅拌，使反应釜内的物质充分反应形成均匀溶液，包装、入库。
[0027] 实施例 22：
[0028] 一种水性醇酸树脂，由以下重量的组分配制而成；
将甘油 24Kg、间苯二甲酸酐 14Kg、苯乙烯 3Kg、新戊二醇 6Kg、聚四氟乙烯 5Kg、二甲苯 7Kg、偏苯三酸酐 12Kg、放入回流冷却液和油水分离器的反应釜，加热，温度控制在 140 ～ 160℃ 保温 0.5h，同时间歇氯气，当反应釜内的物质开始融化时开始搅拌，使反应釜内的物质充分反应形成均匀溶液，然后以每小时 10℃ 的速度把温度升到 220 ～ 230℃ 保温，同时测酸值。当酸值小于 15 时停止加热，加入丙二醇单丁醚 4Kg、三乙胺 4Kg，在加入的过程中对反应釜内的物质进行搅拌，使反应釜内的物质充分反应形成均匀溶液，然后加入 21Kg 去离子水，在加入的过程中对反应釜内的物质进行搅拌，使反应釜内的物质充分反应形成均匀溶液，包装、入库。

实施例 3：

一种水性醇酸树脂，由以下重量的组分配制而成：

将甘油 22Kg、间苯二甲酸酐 13Kg、苯乙烯 3Kg、新戊二醇 9Kg、聚四氟乙烯 6Kg、二甲苯 7Kg、偏苯三酸酐 9Kg、放入回流冷却液和油水分离器的反应釜，加热，温度控制在 140 ～ 160℃ 保温 0.5h，同时间歇氯气，当反应釜内的物质开始融化时开始搅拌，使反应釜内的物质充分反应形成均匀溶液，然后以每小时 10℃ 的速度把温度升到 220 ～ 230℃ 保温，同时测酸值，当酸值小于 15 时停止加热，加入丙二醇单丁醚 5Kg、三乙胺 4Kg，在加入的过程中对反应釜内的物质进行搅拌，使反应釜内的物质充分反应形成均匀溶液，然后加入 22Kg 去离子水，在加入的过程中对反应釜内的物质进行搅拌，使反应釜内的物质充分反应形成均匀溶液，包装、入库。

性能检测

1. 水性醇酸树脂理化指标

对上述实施例 1～3 的水性醇酸树脂的理化指标进行检测，检测结果参见表 1。

<table>
<thead>
<tr>
<th>检测项目</th>
<th>实施例 1</th>
<th>实施例 2</th>
<th>实施例 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>外观</td>
<td>清澈、透明</td>
<td>清澈、透明</td>
<td>清澈、透明</td>
</tr>
<tr>
<td>酸值（mg KOH/g）</td>
<td>12</td>
<td>14</td>
<td>11</td>
</tr>
<tr>
<td>粘度（刻度管），S</td>
<td>29</td>
<td>31</td>
<td>26</td>
</tr>
<tr>
<td>固含量，%</td>
<td>69</td>
<td>74</td>
<td>65</td>
</tr>
</tbody>
</table>

2. 水性醇酸树脂涂膜性能检测

将上述实施例 1～3 的水性醇酸树脂进行涂膜，按照国标 HGT 2453-1993《醇酸清漆》对三者涂膜的外观、表干时间、实干时间、硬度、耐水性、耐油性几项性能进行检测，检测结果参见表 2。

<table>
<thead>
<tr>
<th>检测项目</th>
<th>实施例 1</th>
<th>实施例 2</th>
<th>实施例 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>涂膜外观</td>
<td>透明、无杂质</td>
<td>透明、无杂质</td>
<td>透明、无杂质</td>
</tr>
<tr>
<td>表干时间, h</td>
<td>1.5</td>
<td>1.2</td>
<td>1.8</td>
</tr>
<tr>
<td>------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>实干时间, h</td>
<td>5</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>硬度</td>
<td>0.78</td>
<td>0.84</td>
<td>0.73</td>
</tr>
<tr>
<td>耐水性</td>
<td>无异常</td>
<td>无异常</td>
<td>无异常</td>
</tr>
<tr>
<td>耐溶剂油性</td>
<td>无异常</td>
<td>无异常</td>
<td>无异常</td>
</tr>
<tr>
<td>耐候性</td>
<td>无裂纹</td>
<td>无裂纹</td>
<td>无裂纹</td>
</tr>
</tbody>
</table>

[0041] 上述实施方式仅为本发明的优选实施方式，不能以此来限定本发明保护的范围，本领域的技术人员在本发明的基础上所做的任何非实质性变化及替换均属于本发明所要求保护的范围。