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1
FAST MULTI-TIER INDEXING SUPPORTING
DYNAMIC UPDATE

BACKGROUND

Embodiments of the invention relate to data structure
processing, in particular, for multi-tier indexing processing
of data structures supporting dynamic update operations.

There is an increasing trend towards doing business
intelligence (BI) queries on real-time data in databases or
tabled data. Traditionally, there is a strict separation between
BI systems and online transaction processing (OLTP) sys-
tems. There is increasing market pressure for operational Bl,
and for both transactions and analytics to be performed on
the same database.

Trees, such as B+Trees, are the standard data structure
used for indexing persistent data (mapping key to data
records). They have many benefits, such as: supporting
concurrent inserts, deletes, and lookups; are naturally orga-
nized in pages, and can gracefully spread across many layers
of a memory-disk hierarchy, via buffer pools; there are
known techniques to make inserts and deletes recoverable
and atomic, in a transactional sense. However, the perfor-
mance of tree data structures is much worse than that of
in-memory hash tables, even when both data structures fit in
memory.

SUMMARY

Embodiments of the invention relate to multi-tier index-
ing processing of data structures supporting dynamic update
operations. One embodiment includes a method that
includes performing a lookup using a key, by a hashing
processor, into a root node of a multi-tier data structure, to
find a partition for performing an insert operation. A lookup
for the key is performed, by the hashing processor, on a first
level index that is part of a linked data structure holding
entries for the found partition. The hashing processor adds a
payload or reference to the payload to the linked data
structure based on data structure criterion, otherwise adding
the key and the payload to the linked data structure if the key
is not found. A data structure processor, based on data
structure criterion, creates a new first level index and adds
the new first level index to the linked data structure upon the
linked data structure remaining unchanged since starting the
lookup for the key, and adds the key and the payload or the
reference to the payload to the new index. The data structure
processor, based on a merge criterion, creates a new second
level index and merges a portion of content from selected
first level and second level indexes for combining into the
new second level index.

These and other features, aspects and advantages of the
present invention will become understood with reference to
the following description, appended claims and accompa-
nying figures.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts a cloud computing node, according to an
embodiment;

FIG. 2 depicts a cloud computing environment, according
to an embodiment;

FIG. 3 depicts a set of abstraction model layers, according
to an embodiment;

FIG. 4 is a block diagram illustrating a system for
multi-tier indexing processing of data structures supporting
dynamic update operations, according to an embodiment;
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2

FIG. 5 illustrates an extendible hashing example for a
global depth of 1, according to an embodiment;

FIGS. 6A-C illustrate extendible hashing examples for a
global depth of 2, according to an embodiment;

FIG. 7 illustrates a concise hash table (CHT) used in
extendible hashing, according to an embodiment;

FIGS. 8A-C illustrate CHT extendible hashing examples
for where the CHT includes two levels (bitmap pages and
leaf pages), according to an embodiment;

FIG. 9 illustrates a CHT that may be implemented,
according to an embodiment;

FIG. 10 illustrates an example two-tier data structure,
according to an embodiment;

FIG. 11 illustrates a process for an index lookup process,
according to an embodiment;

FIG. 12 illustrates an insert into an index process, accord-
ing to an embodiment;

FIG. 13 illustrates an index hierarchy, according to an
embodiment; and

FIG. 14 is a block diagram of a process for multi-tier
indexing processing of data structures supporting dynamic
update operations, according to an embodiment.

DETAILED DESCRIPTION

The descriptions of the various embodiments of the
present invention have been presented for purposes of
illustration, but are not intended to be exhaustive or limited
to the embodiments disclosed. Many modifications and
variations will be apparent to those of ordinary skill in the
art without departing from the scope and spirit of the
described embodiments. The terminology used herein was
chosen to best explain the principles of the embodiments, the
practical application or technical improvement over tech-
nologies found in the marketplace, or to enable others of
ordinary skill in the art to understand the embodiments
disclosed herein.

It is understood in advance that although this disclosure
includes a detailed description of cloud computing, imple-
mentation of the teachings recited herein are not limited to
a cloud computing environment. Rather, embodiments of the
present invention are capable of being implemented in
conjunction with any other type of computing environment
now known or later developed.

Cloud computing is a model of service delivery for
enabling convenient, on-demand network access to a shared
pool of configurable computing resources (e.g., networks,
network bandwidth, servers, processing, memory, storage,
applications, virtual machines (VMs), and services) that can
be rapidly provisioned and released with minimal manage-
ment effort or interaction with a provider of the service. This
cloud model may include at least five characteristics, at least
three service models, and at least four deployment models.

Characteristics are as follows:

On-demand self-service: a cloud consumer can unilater-
ally provision computing capabilities, such as server time
and network storage, as needed and automatically, without
requiring human interaction with the service’s provider.

Broad network access: capabilities are available over a
network and accessed through standard mechanisms that
promote use by heterogeneous, thin or thick client platforms
(e.g., mobile phones, laptops, and PDAs).

Resource pooling: the provider’s computing resources are
pooled to serve multiple consumers using a multi-tenant
model, with different physical and virtual resources dynami-
cally assigned and reassigned according to demand. There is
a sense of location independence in that the consumer
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generally has no control or knowledge over the exact
location of the provided resources but may be able to specify
location at a higher level of abstraction (e.g., country, state,
or data center).

Rapid elasticity: capabilities can be rapidly and elastically
provisioned and, in some cases, automatically, to quickly
scale out and rapidly released to quickly scale in. To the
consumer, the capabilities available for provisioning often
appear to be unlimited and can be purchased in any quantity
at any time.

Measured service: cloud systems automatically control
and optimize resource use by leveraging a metering capa-
bility at some level of abstraction appropriate to the type of
service (e.g., storage, processing, bandwidth, and active
consumer accounts). Resource usage can be monitored,
controlled, and reported, thereby providing transparency for
both the provider and consumer of the utilized service.

Service Models are as follows:

Software as a Service (SaaS): the capability provided to
the consumer is the ability to use the provider’s applications
running on a cloud infrastructure. The applications are
accessible from various client devices through a thin client
interface, such as a web browser (e.g., web-based email).
The consumer does not manage or control the underlying
cloud infrastructure including network, servers, operating
systems, storage, or even individual application capabilities,
with the possible exception of limited consumer-specific
application configuration settings.

Platform as a Service (PaaS): the capability provided to
the consumer is the ability to deploy onto the cloud infra-
structure consumer-created or acquired applications created
using programming languages and tools supported by the
provider. The consumer does not manage or control the
underlying cloud infrastructure including networks, servers,
operating systems, or storage, but has control over the
deployed applications and possibly application-hosting
environment configurations.

Infrastructure as a Service (laaS): the capability provided
to the consumer is the ability to provision processing,
storage, networks, and other fundamental computing
resources where the consumer is able to deploy and run
arbitrary software, which can include operating systems and
applications. The consumer does not manage or control the
underlying cloud infrastructure but has control over operat-
ing systems, storage, deployed applications, and possibly
limited control of select networking components (e.g., host
firewalls).

Deployment Models are as follows:

Private cloud: the cloud infrastructure is operated solely
for an organization. It may be managed by the organization
or a third party and may exist on-premises or off-premises.

Community cloud: the cloud infrastructure is shared by
several organizations and supports a specific community that
has shared concerns (e.g., mission, security requirements,
policy, and compliance considerations). It may be managed
by the organizations or a third party and may exist on-
premises or off-premises.

Public cloud: the cloud infrastructure is made available to
the general public or a large industry group and is owned by
an organization selling cloud services.

Hybrid cloud: the cloud infrastructure is a composition of
two or more clouds (private, community, or public) that
remain unique entities but are bound together by standard-
ized or proprietary technology that enables data and appli-
cation portability (e.g., cloud bursting for load balancing
between clouds).
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A cloud computing environment is a service oriented with
a focus on statelessness, low coupling, modularity, and
semantic interoperability. At the heart of cloud computing is
an infrastructure comprising a network of interconnected
nodes.

Referring now to FIG. 1, a schematic of an example of a
cloud computing node is shown. Cloud computing node 10
is only one example of a suitable cloud computing node and
is not intended to suggest any limitation as to the scope of
use or functionality of embodiments of the invention
described herein. Regardless, cloud computing node 10 is
capable of being implemented and/or performing any of the
functionality set forth hereinabove.

In cloud computing node 10, there is a computer system/
server 12, which is operational with numerous other general
purpose or special purpose computing system environments
or configurations. Examples of well-known computing sys-
tems, environments, and/or configurations that may be suit-
able for use with computer system/server 12 include, but are
not limited to, personal computer systems, server computer
systems, thin clients, thick clients, handheld or laptop
devices, multiprocessor systems, microprocessor-based sys-
tems, set-top boxes, programmable consumer electronics,
network PCs, minicomputer systems, mainframe computer
systems, and distributed cloud computing environments that
include any of the above systems or devices, and the like.

Computer system/server 12 may be described in the
general context of computer system-executable instructions,
such as program modules, being executed by a computer
system. Generally, program modules may include routines,
programs, objects, components, logic, data structures, and so
on that perform particular tasks or implement particular
abstract data types. Computer system/server 12 may be
practiced in distributed cloud computing environments
where tasks are performed by remote processing devices that
are linked through a communications network. In a distrib-
uted cloud computing environment, program modules may
be located in both local and remote computer system storage
media, including memory storage devices.

As shown in FIG. 1, computer system/server 12 in cloud
computing node 10 is shown in the form of a general
purpose computing device. The components of computer
system/server 12 may include, but are not limited to, one or
more processors or processing units 16, a system memory
28, and a bus 18 that couples various system components
including system memory 28 to processor 16.

Bus 18 represents one or more of any of several types of
bus structures, including a memory bus or memory control-
ler, a peripheral bus, an accelerated graphics port, and a
processor or local bus using any of a variety of bus archi-
tectures. By way of example and not limitation, such archi-
tectures include a(n) Industry Standard Architecture (ISA)
bus, Micro Channel Architecture (MCA) bus, Enhanced ISA
(EISA) bus, Video Electronics Standards Association
(VESA) local bus, and Peripheral Component Interconnects
(PCI) bus.

Computer system/server 12 typically includes a variety of
computer system readable media. Such media may be any
available media that is accessible by computer system/server
12, and it includes both volatile/non-volatile media, and
removable/non-removable media.

System memory 28 can include computer system readable
media in the form of volatile memory, such as random
access memory (RAM) 30 and/or cache memory 32. Com-
puter systeny/server 12 may further include other removable/
non-removable, volatile/non-volatile computer system stor-
age media. By way of example only, a storage system 34 can
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be provided for reading from and writing to a non-remov-
able, non-volatile magnetic media (not shown and typically
called a “hard drive”). Although not shown, a magnetic disk
drive for reading from and writing to a removable, non-
volatile magnetic disk (e.g., a “floppy disk™), and an optical
disk drive for reading from or writing to a removable,
non-volatile optical disk such as a CD-ROM, DVD-ROM,
or other optical media can be provided. In such instances,
each can be connected to bus 18 by one or more data media
interfaces. As will be further depicted and described below,
memory 28 may include at least one program product having
a set (e.g., at least one) of program modules that are
configured to carry out the functions of embodiments of the
invention.

Program/utility 40, having a set (at least one) of program
modules 42, may be stored in a memory 28 by way of
example and not limitation, as well as an operating system,
one or more application programs, other program modules,
and program data. Each of the operating systems, one or
more application programs, other program modules, and
program data or some combination thereof, may include an
implementation of a networking environment. Program
modules 42 generally carry out the functions and/or meth-
odologies of embodiments of the invention as described
herein.

Computer system/server 12 may also communicate with
one or more external devices 14, such as a keyboard, a
pointing device, etc.; a display 24; one or more devices that
enable a consumer to interact with computer system/server
12; and/or any devices (e.g., network card, modem, etc.) that
enable computer system/server 12 to communicate with one
or more other computing devices. Such communication can
occur via /O interfaces 22. Still yet, computer system/server
12 can communicate with one or more networks, such as a
local area network (LAN), a general wide area network
(WAN), and/or a public network (e.g., the Internet) via a
network adapter 20. As depicted, the network adapter 20
communicates with the other components of computer sys-
tem/server 12 via bus 18. It should be understood that
although not shown, other hardware and/or software com-
ponents could be used in conjunction with computer system/
server 12. Examples include, but are not limited to: micro-
code, device drivers, redundant processing units, external
disk drive arrays, RAID systems, tape drives, data archival
storage systems, etc.

Referring now to FIG. 2, an illustrative cloud computing
environment 50 is depicted. As shown, cloud computing
environment 50 comprises one or more cloud computing
nodes 10 with which local computing devices used by cloud
consumers, such as, for example, personal digital assistant
(PDA) or cellular telephone 54A, desktop computer 54B,
laptop computer 54C, and/or automobile computer system
54N may communicate. Nodes 10 may communicate with
one another. They may be grouped (not shown) physically or
virtually, in one or more networks, such as private, commu-
nity, public, or hybrid clouds as described hereinabove, or a
combination thereof. This allows the cloud computing envi-
ronment 50 to offer infrastructure, platforms, and/or soft-
ware as services for which a cloud consumer does not need
to maintain resources on a local computing device. It is
understood that the types of computing devices 54A-N
shown in FIG. 2 are intended to be illustrative only and that
computing nodes 10 and cloud computing environment 50
can communicate with any type of computerized device over
any type of network and/or network addressable connection
(e.g., using a web browser).
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Referring now to FIG. 3, a set of functional abstraction
layers provided by the cloud computing environment 50
(FIG. 2) is shown. It should be understood in advance that
the components, layers, and functions shown in FIG. 3 are
intended to be illustrative only and embodiments of the
invention are not limited thereto. As depicted, the following
layers and corresponding functions are provided:

Hardware and software layer 60 includes hardware and
software components. Examples of hardware components
include: mainframes 61; RISC (Reduced Instruction Set
Computer) architecture based servers 62; servers 63; blade
servers 64; storage devices 65; and networks and networking
components 66. In some embodiments, software compo-
nents include network application server software 67 and
database software 68.

Virtualization layer 70 provides an abstraction layer from
which the following examples of virtual entities may be
provided: virtual servers 71; virtual storage 72; virtual
networks 73, including virtual private networks; virtual
applications and operating systems 74; and virtual clients
75.

In one example, a management layer 80 may provide the
functions described below. Resource provisioning 81 pro-
vides dynamic procurement of computing resources and
other resources that are utilized to perform tasks within the
cloud computing environment. Metering and pricing 82
provide cost tracking as resources are utilized within the
cloud computing environment and billing or invoicing for
consumption of these resources. In one example, these
resources may comprise application software licenses. Secu-
rity provides identity verification for cloud consumers and
tasks as well as protection for data and other resources. User
portal 83 provides access to the cloud computing environ-
ment for consumers and system administrators. Service level
management 84 provides cloud computing resource alloca-
tion and management such that required service levels are
met. Service Level Agreement (SLA) planning and fulfill-
ment 85 provide pre-arrangement for, and procurement of,
cloud computing resources for which a future requirement is
anticipated in accordance with an SLA.

Workloads layer 90 provides examples of functionality
for which the cloud computing environment may be utilized.
Examples of workloads and functions which may be pro-
vided from this layer include: mapping and navigation 91;
software development and lifecycle management 92; virtual
classroom education delivery 93; data analytics processing
94; and transaction processing 95. As mentioned above, all
of the foregoing examples described with respect to FIG. 3
are illustrative only, and the invention is not limited to these
examples.

It is understood all functions of one or more embodiments
as described herein may typically performed by the system
400 (FIG. 4), which can be tangibly embodied as modules of
program code 42 of program/utility 40 (FIG. 1). However,
this need not be the case. Rather, the functionality recited
herein could be carried out/implemented and/or enabled by
any of the layers 60, 70, 80 and 90 shown in FIG. 3.

It is reiterated that although this disclosure includes a
detailed description on cloud computing, implementation of
the teachings recited herein are not limited to a cloud
computing environment. Rather, the embodiments of the
present invention may be implemented with any type of
clustered computing environment now known or later devel-
oped.

A hash table (HT) is made up of two parts: an array (the
actual table where the data to be searched is stored) and a
mapping function, known as a hash function. With a hash
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table, any value may be used as an index, such as a
floating-point value, a string, another array, or even a
structure as the index. This index is called the key, and the
contents of the array element at that index is called the value.
Therefore, an HT is a data structure that stores key/value
pairs and can be quickly searched by the key. The hash
function is a mapping from the input space to the integer
space that defines the indices of the array. The hash function
provides a way for assigning numbers to the input data such
that the data can then be stored at the array index corre-
sponding to the assigned number.

Embodiments of the invention relate to multi-tier index-
ing processing of data structures supporting dynamic update
operations. One embodiment includes a method for doing
inserts that includes performing a lookup, by a hashing
processor, into a root of a multi-tier data structure. The
lookup is performed with a key value derived from the value
or record to be inserted. This lookup yields a partition for
performing an insert operation. Within that partition, there is
a linked data structure containing one or more indexes. A
probe is performed, by the hashing processor, on a first level
index of this linked data structure, to lookup the key. The
hashing processor adds a payload to the first level index
upon finding the key. Otherwise, if the key is not found, it
adds the key and the payload to the first level index. If there
is insufficient space to add the key, a data structure processor
creates a new first level index and adds the new first level
index to the linked data structure as a first entry, and adds the
key and the payload to the new index. However, if the linked
data structure has changed since the probe was started (for
example, due to other concurrent insert operations), the
probe is retried on the changed structure. If the amount of
data in the first level indexes exceeds a threshold, the data
structure processor creates a new second level index and
merges content from selected first level and second level
indexes into the new second level index.

One embodiment provides an index that maps a derived
quantity based on a key value (e.g., a hash value computed
from the key) onto a superset of the set of record locators of
records that hold this key. Due to the mapping and updates,
this payload is a superset, and may include non-matching
entries (i.e., can have collisions) due to the mapping and
updates. In one embodiment, a multi-tier system includes a
top/upper tier and a bottom/lower tier. In one example, at the
top tier there is a memory-efficient data structure (e.g., a
hash table), split internally into two levels. The first (root)
level is an extendible-hashing like dictionary data structure
that maps from a portion (usually a few prefix bits) of each
derived quantity onto second level data structures. In one
example, the size of the root is capped to fit onto a single
page. The dictionary data structure supports lookup and
insert operations, for example, a closed-addressing (chain-
ing) hash table. The second level is a fixed-size dictionary
data structure. In one example, the fixed-size dictionary data
structure is set to be a single page. The top tier has an
efficient in-memory dictionary for fast lookups and inserts,
but may not be space efficient.

In one embodiment, the lower tier dictionaries are used
when the index becomes too large for the top tier. When both
the root level and one dictionary on the second level are full,
the entire full second-level page is migrated to the lower tier.
To do so, it is merged with any existing lower tier dictionary
for that second level child, forming a new lower tier dic-
tionary (or a new lower tier dictionary may be directly
created if this is the first time). The lower tier dictionaries are
immutable and do not support insert or delete operations.
This provides for using very compact and efficient data
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structures. For example, a complete sort by key may be
performed and a perfectly balanced tree data structure may
be built. Or a compact hash table data structure may be built,
such as perfect hashing, cuckoo hashing, or compact hash
tables.

In one embodiment, the index maps hash values to a set
of tuple sequence numbers (TSN, also referred to as a tuple
or row identifier). Neither the key (only its hash value) nor
any other attributes are stored in the index itself. This
approach also reflects main-memory and OLTP optimized
design, where having a clustered index is of little benefit.
Not storing any keys or attributes in the index allows index
pages to have the same layout in memory, independent of
their types. One embodiment supports systems that use
multi-version concurrency control, and both row and col-
umn-wise storage. In one example, the index has the fol-
lowing interface:

uint64 lookup(uint64 hash, uint64*resultBuffer, uint64
resultBufferSize)

insert(uint64 hash, uint64 tsn)

delete(uint64 hash, uint64 tsn).

In one embodiment, the lookup function takes a hash
value, a result buffer, and its maximum size as input param-
eters. The return value is the number of TSNs found for the
desired hash key. If the result buffer is too small, the caller
must allocate a larger buffer and retry the lookup. The
lookup and delete functions both take a hash value and a
TSN. This interface allows the index to be used for unique
and non-unique indexes.

FIG. 4 is a block diagram illustrating a system 400 for
multi-tier indexing processing of data structures supporting
dynamic update operations, according to an embodiment. In
one embodiment, the system 400 includes a server 12
including a storage unit 1 405 through storage unit N 406
(where N is an integer greater than 1), a data structure
processor 410, an update processor 415, and a hashing
processor 420. In one embodiment, the storage units 1-N
405-406 may be external to the server 12. In one embodi-
ment, the storage units 1-N 405-406 may store objects, such
as rows/columns/individual values, tables, etc. In a rela-
tional database, a table (or file) organizes the information
about a single topic into rows and columns. In one embodi-
ment, the storage units 1-N 405-406 may include different
types of memory storage, such as a buffer pool, cloud based
storage, different types of objects pools, etc.

In one embodiment, the data structure processor 410
performs processing on a hierarchical data structure that
includes root nodes and multi-levels of indexes (see, FIG.
13). The update processor 415 provides update processing
that includes updating linked data structures (e.g., linked
lists) by replacing merged indexes with the new indexes. In
one embodiment, the hashing processor performs probes,
lookups, and adds keys and payloads to the indexes in the
linked data structures.

A hash table has very different requirements and perfor-
mance characteristics depending on the number of entries in
it. Some of these requirements are in conflict with each
other. For example, it is more expensive to insert into
compact hash tables than into data structures that are more
generous with space. Hash tables that grow by doubling
have good insert performance at the cost of high worst-case
latency. No single data structure will work well in all cases.
Therefore, in one embodiment, a hash index uses multiple
different structures and dynamically adapts its internal struc-
ture to be able to achieve good overall characteristics. In one
embodiment, for small and medium sized indexes, extend-
ible hashing is used to grow the index smoothly by splitting
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index pages. A chaining hash table stores a fixed number of
(hash, TSN) pairs and allows for in-place inserts and deletes.
For large indexes, a compact hash table is implemented. In
one embodiment, a variant of the concise hash table is
implemented and stores the majority of all entries com-
pactly.

FIG. 5 illustrates an extendible hashing example 500 for
a global depth of one (1), according to an embodiment.
Extendible Hashing is a technique for growing hash tables.
In one embodiment, extendible hashing is used for small and
medium sized indexes with less than 10 million entries. The
root page of the hash index consists of the dictionary
structure of extendible hashing, which is an array of pointers
to hash table pages. In one example, the size of the diction-
ary is always a power of two, the logarithm of which is
known as global depth. Index operations can very efficiently
jump directly to the next level by using global depth bits of
the hash as an index into the dictionary. In the initial state,
shown by the extendible hashing dictionary 510 and hash
table A 530, the extendible hashing dictionary 510 has global
depth of zero (0) (i.e., size 1), and is pointing to one index
page of hash table A 530.

In one example, if the index page of hash table A 530
becomes full, the dictionary needs to grow by doubling its
size by increasing the global depth at 515, and indicated by
extendible hashing dictionary 520 with global depth of one
(1). In this temporary state both pointers are still pointing to
the same (full) page of hash table A 530. In the second step,
the index page is split at 540 into two pages (hash table A’
536 and hash table A" 537) by assigning entries to one of the
two new pages depending on the first bit of the hash key.
Finally, the two new pointers are installed in the extendible
hashing dictionary 520.

Once the page of hash table A' 536 becomes full, again the
extendible hashing dictionary 520 is doubled and the page is
split to arrive at the state with the page of hash table A' 536
and the page of hash table A" 537. At this point, the page of
hash table A" 537 can be split without doubling the extend-
ible hashing dictionary 520, as there are multiple pointers
pointing to it. To find out if an extendible hashing dictionary
needs to grow or not, the local depth (abbreviated as “1d”)
is stored at each page. If the local depth of a page is equal
to the global depth (“gd™), there is only one pointer to this
page, thus the extendible hashing dictionary 510 must grow
first. As shown. Hash table A' 536 has local depth of 2 and
the global depth is 1, so the extendible dictionary 520 does
not need to grow.

One advantage of extendible hashing is that it is
extremely fast; a lookup merely consists of using a number
of hash bits as an index into the dictionary array. Addition-
ally, in one example embodiment, extendible hashing allows
for low overhead synchronization because modifications to
the extendible hashing dictionary are very infrequent. It
should be noted that for very large indexes, doubling the
dictionary eventually becomes an expensive, high-latency
operation. In one example, however, this is not a problem
when only using the extendible hashing up to the point
where the dictionary fills up one page. With 32 KB and 8B
pointers, for example, the maximum extendible hashing
fanout is 4096. After that, for large indexes, the dictionary
keeps this maximum size and, in effect, acts as initial hash
partitioning of large indexes into more manageable chunks.

FIGS. 6A-C illustrate extendible hashing examples for a
global depth of two (2), according to an embodiment. As
shown in FIG. 6 A, the extendible hashing dictionary 610 has
a global depth of one (1) and is pointing to the page of hash
table A 615 and a page of hash table B 616, each with a local
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depth of 1. In FIG. 6B, the extendible hashing dictionary 620
has a global depth of two (2) and has two pointers into a page
of'hash table A 615 and two pointer into a page of hash table
B 616. In FIG. 6C, the extendible hash table 620 has the
array doubled, which results in splitting the hash table A 615
into hash table A' 630 and hash table A" 635, each with a
local depth of two (2). This results with a pointer from the
extendible hashing table 620 to a page of hash table A' 630,
a pointer into a page of hash table A" 635, and the two
pointers remain into a page of hash table B 616.

FIG. 7 illustrates a concise hash table (CHT) used in
extendible hashing, according to an embodiment. In most
databases, the table size distribution is highly skewed, and a
single or a handful of tables and their indexes dominate the
total space consumption. Therefore, for large indexes, space
consumption becomes a critical factor. Most dynamic index-
ing data structures, including extendible hashing, linear
hashing, and B-Trees, grow by splitting pages. As a result,
pages are only about 75% full on average, and additional
space is often wasted to allow for fast lookups and in-place
updates. Therefore, once an index has reached the maximum
extendible hashing fanout (e.g., 4096), splitting of pages is
stopped, and instead a more compact data structure is
introduced.

The Concise Hash Table (CHT) was originally proposed
for space-efficient hash joins and allows for fast bulk con-
struction and efficient lookups. By not allowing for in-place
updates and deletes, it may pre-compute a perfect layout that
wastes no space. The CHT structure is introduced below the
extendible hashing dictionary 710 and one chaining page of
hash table B 716 and includes CHT bitmap page A 725 and
CHT leaf page A 726. For large indexes, the vast majority of
the data will be stored compactly in the CHT. The chaining
hash table B 716 above the CHT structure becomes a staging
area for changes. As shown in FIG. 7, the CHT consist of
two levels, bitmap pages (e.g., CHT bitmap page A 725) and
leaf pages (e.g., CHT leaf page A 726).

The hash partitioning of the extendible hashing dictionary
710 at the root of the index keeps the size of each CHT
manageable. For example, each CHT partition of an index
with 10 billion entries (80 GB in size) is only about 22 MB.
Additionally, the fanout of the extendible hashing dictionary
710 enables parallelism. While the CHT structure has very
good performance in main memory, it also behaves well if
the leaf level is evicted to disk or SSD. The bitmap pages
serve as a bloom filter that allows to avoid unnecessary
accesses. Furthermore, similar to Log-Structured Merge-
Trees, multiple writes are combined in the chaining hash
table. This replaces frequent random /O with much more
efficient sequential 1/O.

In one example, the page of hash table A 715 has a
maximum local depth. An empty page is installed in hash
table B 716. Then the CHT is created with hash table B 716
as the root of the CHT, which includes the CHT bitmap page
A 725 and CHT leaf page A 726. To summarize the growth
process of the index: initially, the index grows horizontally
and the extendible hashing fanout increases at the root page.
The root page only contains pointers to chaining hash tables,
each of which has a fixed size and is stored on a single page.
This approach is similar to a B+Tree with two levels, except
that extendible hashing avoids explicit separator keys and
binary search at the root node. Once the maximum extend-
ible hashing fanout is reached, the index starts growing
vertically by periodically merging index entries into a CHT.

In one embodiment, the chain array stores indexes into the
entry array. Each entry stores another index next for the next
entry in the chain of a special value to indicate the end of the



US 10,831,736 B2

11

list. At the front of the page a number of fields are stored that
are only used during insertion and deletion. In one example,
a lookup uses 12 hash bits to load the start of the chain. Since
the chain array has 4096 entries, storing of 12 bits can be
avoided.

FIGS. 8A-C illustrate CHT extendible hashing examples
where the CHT includes two levels (bitmap pages and leaf
pages), according to an embodiment. In FIG. 8A, the chain
includes the extendible hashing dictionary 810, the hash
table B 815 (the root of the CHT) and the CHT including the
CHT bitmap page A 820 and CHT leaf page A 821. FIG. 8B
shows growing of the chain with a page of hash table C 825.
In one example, the page of hash table B 815 is merged as
shown in FIG. 8C, where hash table C 825 is the root for the
merged CHT. The merged CHT includes the CHT bitmap
page AB 840 and CHT leaf page AB 841.

FIG. 9 illustrates a concise hash table (CHT) 900 that may
be modified by an embodiment. The CHT 900 as a compact
data structure. The CHT 900 achieves space efficiency by
storing entries in a dense, and mostly sorted array. In one
example, the CHT 900 includes a bitmap array 910, an entry
array 920 for the actual values, and an overflow data
structure 930 (e.g., a different kind of hash table). The
bitmap array 910 is sized such that about 1 in 8 bits are set,
and is split into buckets storing 32 bits (e.g., for graphical
reasons 8 bits per bucket are used in the example). By
looking at an appropriate number of hash bits of an entry one
can determine its bit position in the array. Conceptually, its
position in the entry array can then be computed by adding
up the number of bits set (population count) left to its
position. Since it is not practical to actually compute the
population count over many buckets on every lookup, prefix
population counts are interleaved with the bitmap array. In
the example, the prefix population for the bucket 2 is 4,
because the bucket 0 and the bucket 1 both have 2 entries in
the entry array 920. This allows to quickly find the likely
position of an entry. In case of a hash collision (e.g., h4 in
the example), the neighboring bit (and therefore also posi-
tion) is used. However, if more than two entries hash to the
same bit position, these entries must be stored in a separate
data structure, as shown in the example for h4.

The original CHT 900 data structure was designed for
space-efficient in-memory hash joins. Therefore, both the
bitmap array 910 structure and the entry array 920 are
simply large arrays. Since the index is arranged on fixed-
sized pages, in one embodiment the CHT 900 is modified. In
one embodiment, leaf page pointers are interleaved within
the bitmap array 910 in the same way as the prefix counts.
To make space for this additional information, in one
embodiment the size of each bitmap is increased from 32 to
64 bits. As a result there are 64 bits per bucket, of which 48
are used for leaf pointers and 16 are used for prefix counts.
All entries that hash to a bitmap bucket are stored on the
same leaf. Further, the prefix count is now relative to the
beginning of the leaf, which is why 16 bits for it are
sufficient. When building the data structure, as many con-
secutive bitmap buckets as possible are assigned to a leaf. As
a result usually all but the last leaves are almost full.

In one embodiment, another modification to the CHT 900
concerns how over-flows, which occur due to duplicate keys
or hash collisions, are handled. In one embodiment, the
original CHT 900 scheme is optimized for unique keys: once
both possible locations for an item have been taken, this
entry was stored in a totally different data structure. In one
example, an approach is used that keeps overflow entries
close to regular entries. As a result, in one embodiment, the
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hash index works well not only for unique keys, but also
when there are multiple TSNs per key.

In one example, the 39 bits of the hash and a 48 bit TSN
are stored. These values are optimized for 32 KB pages and
8B pointers: Extendible Hashing pre-determines 12 hash bits
(due to a fanout of 4096), and the modified CHT 900 bitmap
page predetermines an additional 11 bits (due to 2048
buckets). As a result, 23 bits of the hash can be “com-
pressed,” so that each leaf page entry only has to store the
remaining 16 bits. If the 48 bit TSN bits are added, each leaf
entry is only 8 bytes in total.

FIG. 10 illustrates an example data structure 1000,
according to an embodiment. In one embodiment, the data
structure 1000 includes a mutable tier 1010 that includes
extendible hashing 1011, and a hash table 1012, and an
immutable tier 1020 that includes a CHT bitmap 1021 (e.g.,
modified bitmap array 910) and a CHT leaf page 1022. In
one embodiment, leaf page pointers are interleaved within
the bitmap array 910 in the same way as the prefix counts.
To make space for this additional information, in one
embodiment the size of each bitmap is increased from 32 to
64 bits. As a result there are 64 bits per bucket, of which 48
are used for leaf pointers and 16 are used for prefix counts.
All entries that hash to a bitmap bucket are stored on the
same leaf. Further, the prefix count is now relative to the
beginning of the leaf, which is why 16 bits for it are
sufficient. When building the data structure, as many con-
secutive bitmap buckets as possible are assigned to a leaf. As
a result usually all but the last leaves are almost full.

In one embodiment, another modification to the CHT 900
concerns how over-flows, which occur due to duplicate keys
or hash collisions, are handled. In one embodiment, the data
structure 1000 scheme is optimized for unique keys: once
both possible locations for an item have been taken, this
entry was stored in a totally different data structure. In one
example, an approach is used that keeps overflow entries
close to regular entries. As a result, in one embodiment, the
hash index works well not only for unique keys, but also
when there are multiple TSNs per key.

In one example, the 39 bits of the hash and a 48 bit TSN
are stored. These values are optimized for 32 KB pages and
8B pointers: Extendible Hashing pre-determines 12 hash bits
(due to a fanout of 4096), and the modified CHT 900 bitmap
page predetermines an additional 11 bits (due to 2048
buckets) in the data structure 1000. As a result, 23 bits of the
hash can be “compressed,” so that each leaf page entry only
has to store the remaining 16 bits. If the 48 bit TSN bits are
added, each leaf entry is only 8 bytes in total.

FIG. 11 illustrates a process 1100 for an index lookup
process, according to an embodiment. In one embodiment,
process 1100 commences at block 1105 and continues to
block 1110. In block 1110 a lookup operation is performed
into a root (e.g., FIG. 13, root 1310) index data structure to
determine a partition to search/insert. In block 1120, a probe
operation is performed for a first level (level 1) index for a
selected key. If the key is found the payload is added to the
result. Process 1100 proceeds to block 1130, where the
process 1100 stops by proceeding to return 1160 if the key
was found (in block 1120) and duplicates are not allowed. A
loop over each first level (level 1) index is made (i.e., return
to block 1120) if there are more first level indexes.

In block 1140, a probe is performed for a second level
(level 2) index for the selected key. If the key is found it is
added to the payload result. Process 1100 continues to block
1150 where the process 1100 stops by proceeding to block
1160 if the key was found and duplicates are not allowed. A
loop over each second level (level 2) index is made (i.e.,
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return to block 1140) if there are more first level indexes,
otherwise the process 1100 exits at block 1160.

FIG. 12 illustrates an insert into an index process 1200,
according to an embodiment. Process 1200 commences at
block 1205 and proceeds to block 1210. In one embodiment,
in block 1210 a lookup is performed into a root (e.g., FIG.
13, root 1310) data structure to determine a partition to
search/insert. In block 1220, a probe operation is performed
on the first level (level 1) index for a selected key. If the key
is found, the payload is added to the first level index.
Otherwise, the key and a payload are added to the first level
index. If there is sufficient space in the first level, the process
stops at block 1270. Otherwise, if there is insufficient space,
a new first level index is started (created) in block 1230.

In block 1230, the additional first level index is created
and added to the linked data structure for the partition, as a
first index, if the linked data structure is unchanged since the
start of the probe operation block 1220 by a concurrent
insert. If the linked data structure has changed since the
probe operation, the process continues back to block 1210
for a retry. Otherwise, the key and payload are added to the
new index. Process 1200 continues to block 1240 which
exits to block 1270 if an on-going merge on the determined
partition on another thread occurs, or if a merge is not
needed (e.g., there is insufficient content to merge, or the
number of indexes to be probed is not excessive). Process
1200 continues to block 1250 where a new second level
(level 2) index is created, and the content from all selected
first and second level indexes are merged into the new
second level index. In block 1260, an update operation is
performed by updating the linked data structure by replacing
merged indexes with the new second level index. Process
1200 then exits via block 1270.

FIG. 13 illustrates an index, according to an embodiment.
In the index 1300, the root 1310 points to the array of active
level 1 indexes 1320, which is linked to filled level 1 indexes
1330 and level 2 indexes 1340.

FIG. 14 is a block diagram of a process 1400 for multi-tier
indexing processing of data structures supporting dynamic
update operations, according to an embodiment. In one
embodiment, in block 1410 the process 1400 performs a
lookup, by a hashing processor (e.g., FIG. 4, hashing pro-
cessor 420), into a root (e.g., FIG. 13, root 1310) of a
multi-tier data structure (e.g., index 1300, FIG. 13) to find a
partition for performing an insert/search operation. In block
1420, process 1400 performs a probe, by the hashing pro-
cessor, on a first level (level 1) index of a linked data
structure (e.g., this first level index could be a chaining hash
table) of the multi-tier data structure for a key. In block 1430
the hashing processor, based on data structure criterion, adds
a payload to the linked data structure upon finding the key,
otherwise if the key is not found, the hashing processor adds
the key and the payload to the linked data structure. In block
1440, based on data structure criterion, creates, by a data
structure processor (e.g., FIG. 4, data structure processor
410) a new first level index and adds the new first level index
to the linked data structure upon the linked data structure
remaining unchanged since starting the probe in block 1420,
and adds the key and the payload or reference to the payload
to the new index. In block 1450 the data structure processor,
based on a merge criterion, creates a new second level index
and merges a portion of content from selected first level and
second level indexes into the new second level index.

In one embodiment, process 1400 may further include
updating, by an update processor (e.g., FIG. 4, update
processor 415), the linked data structure by replacing
indexes whose content has been fully merged with the one
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or more new second level indexes. The selection of first level
and second level indexes for merging into a new second
level index also marks the selected first level and second
level indexes as not accepting further inserts. In one embodi-
ment the data structure criterion may include one or more of
sufficient space in an index of the linked data structure, the
index being able to accept additional inserts, the index
having an imbalanced structure, or lookup efficiency. In one
embodiment, the merge criterion may include one or more
of: no on-going merge operation exists on the partition,
determining that a merge operation is warranted due to
significant content present in the selected first level and
second level indexes, or lookup efficiency (e.g., having a
large number of indexes to be probed).

In one embodiment, an upper tier of the multi-tier data
structure includes a single node containing a mutable dic-
tionary data structure that maps indicator values derived
from keys onto pointers to nodes in a lower tier of the
multi-tier data structure, where the mutable dictionary struc-
ture is efficient for performing individual insert operations.
In one example, each node in the lower tier of the multi-tier
data structure has one immutable dictionary structure that is
efficient for performing lookup operations and bulk loading.
Insert operations into the multi-tier data structure include
performing a lookup operation into the mutable dictionary
structure to select a lower tier node to insert into. Insert
operations into the lower tier nodes are made into a most
recently added mutable dictionary structure at that node.

In one embodiment, the mutable dictionary structures are
periodically merged into the immutable dictionary structure,
producing a new immutable dictionary structure. The immu-
table dictionary structure includes a concise hash table
including a first level of bitmap pages and a second level of
leaf pages. In one embodiment, the lookup uses a hash value,
a result buffer and maximum size as input parameters, and
returns as value a number of record identifiers (e.g., TSN,
etc.) found for a desired hash key, and places as many result
payloads that fit within the maximum size into the result
buffer.

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in
one or more computer readable medium(s) having computer
readable program code embodied thereon.

Any combination of one or more computer readable
medium(s) may be utilized. The computer readable medium
may be a computer readable signal medium or a computer
readable storage medium. A computer readable storage
medium may be, for example, but not limited to, an elec-
tronic, magnetic, optical, electromagnetic, infrared, or semi-
conductor system, apparatus, or device, or any suitable
combination of the foregoing. More specific examples (a
non-exhaustive list) of the computer readable storage
medium would include the following: an electrical connec-
tion having one or more wires, a portable computer diskette,
a hard disk, a random access memory (RAM), a read-only
memory (ROM), an erasable programmable read-only
memory (EPROM or Flash memory), an optical fiber, a
portable compact disc read-only memory (CD-ROM), an
optical storage device, a magnetic storage device, or any
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suitable combination of the foregoing. In the context of this
document, a computer readable storage medium may be any
tangible medium that can contain, or store a program for use
by or in connection with an instruction execution system,
apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-
magnetic, optical, or any suitable combination thereof. A
computer readable signal medium may be any computer
readable medium that is not a computer readable storage
medium and that can communicate, propagate, or transport
a program for use by or in connection with an instruction
execution system, apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, includ-
ing but not limited to wireless, wireline, optical fiber cable,
RF, etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any
combination of one or more programming languages,
including an object oriented programming language such as
Java, Smalltalk, C++ or the like and conventional procedural
programming languages, such as the “C” programming
language or similar programming languages. The program
code may execute entirely on the user’s computer, partly on
the user’s computer, as a stand-alone software package,
partly on the user’s computer and partly on a remote
computer or entirely on the remote computer or server. In the
latter scenario, the remote computer may be connected to the
user’s computer through any type of network, including a
local area network (LAN) or a wide area network (WAN), or
the connection may be made to an external computer (for
example, through the Internet using an Internet Service
Provider).

Aspects of the present invention are described below with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks in the
flowchart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or
other programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data
processing apparatus, create means for implementing the
functions/acts specified in the flowchart and/or block dia-
gram block or blocks.

These computer program instructions may also be stored
in a computer readable medium that can direct a computer,
other programmable data processing apparatus, or other
devices to function in a particular manner, such that the
instructions stored in the computer readable medium pro-
duce an article of manufacture including instructions which
implement the function/act specified in the flowchart and/or
block diagram block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps
to be performed on the computer, other programmable
apparatus or other devices to produce a computer imple-
mented process such that the instructions which execute on
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the computer or other programmable apparatus provide
processes for implementing the functions/acts specified in
the flowchart and/or block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of instructions, which comprises one or more
executable instructions for implementing the specified logi-
cal function(s). In some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block dia-
grams and/or flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions.

References in the claims to an element in the singular is
not intended to mean “one and only” unless explicitly so
stated, but rather “one or more.” All structural and functional
equivalents to the elements of the above-described exem-
plary embodiment that are currently known or later come to
be known to those of ordinary skill in the art are intended to
be encompassed by the present claims. No claim element
herein is to be construed under the provisions of 35 U.S.C.
section 112, sixth paragraph, unless the element is expressly
recited using the phrase “means for” or “step for.”

The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be
limiting of the invention. As used herein, the singular forms
“a”, “an” and “the” are intended to include the plural forms
as well, unless the context clearly indicates otherwise. It will
be further understood that the terms “comprises” and/or
“comprising,” when used in this specification, specify the
presence of stated features, integers, steps, operations, ele-
ments, and/or components, but do not preclude the presence
or addition of one or more other features, integers, steps,
operations, elements, components, and/or groups thereof.

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements in the
claims below are intended to include any structure, material,
or act for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present invention has been presented for purposes of
illustration and description, but is not intended to be exhaus-
tive or limited to the invention in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the invention. The embodiment was chosen and
described in order to best explain the principles of the
invention and the practical application, and to enable others
of ordinary skill in the art to understand the invention for
various embodiments with various modifications as are
suited to the particular use contemplated.

What is claimed is:

1. A method for inserting an entry into a multi-tier data
structure comprising:

creating, by a data structure processor, a multi-tier data

structure that includes an upper tier comprising a first
level that is an extendible hashing dictionary data
structure and a second level that is a fixed-size diction-
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ary data structure, and a lower tier comprising an
immutable dictionary structure including a concise
hash table (CHT) that includes a first level comprising
a bitmap array with bitmap pages and a second level
comprising leaf pages, wherein leaf page pointers are
interleaved within the bitmap array;

performing, by a hashing processor, a first lookup process

using a key of the entry into a root node of the multi-tier
data structure that determines a partition for performing
an insert operation, wherein the extendible hashing
dictionary data structure provides lookups using a
number of hash bits used as an index into the fixed-size
dictionary data structure;

performing a second lookup process for the key, by the

hashing processor, on a first level index that is part of
a linked data structure holding entries for the found
partition;
based on data structure criterion, adding, by the hashing
processor, a payload or reference to the payload to the
linked data structure upon finding the key, otherwise if
the key is not found, adding the key and the payload to
the linked data structure;
based on data structure criterion, creating, by the data
structure processor, a new first level index and adding
the new first level index to the linked data structure
upon the linked data structure remaining unchanged
since starting the second lookup process for the key,
and adding the key and the payload or the reference to
payload to the new first level index;
based on a merge criterion, creating, by the data structure
processor, a new second level index and merging a
portion of content from selected first level and second
level indexes into the new second level index, and

using the lower tier of the multi-tier data structure instead
of the upper tier upon the first level index exceeding a
size for the upper tier.

2. The method of claim 1, further comprising:

updating, by an update processor, the linked data structure

by replacing indexes with content that has been fully
merged with the one or more new second level indexes,
wherein the selection of first level and second level
indexes for merging into a new second level index also
marks the selected first level and second level indexes
as not accepting further inserts.

3. The method of claim 1, wherein the data structure
criterion comprises one or more of sufficient space in an
index of the linked data structure, the index being able to
accept additional inserts, the index having an imbalanced
structure, or lookup efficiency.

4. The method of claim 1, wherein the merge criterion
comprises one or more of:

no on-going merge operation exists on the partition,

determining that a merge operation is warranted due to

significant content present in the selected first level and
second level indexes, or

lookup efficiency.

5. The method of claim 2, wherein:

the upper tier of the multi-tier data structure comprises a

single node containing a mutable dictionary data struc-
ture that maps indicator values derived from keys onto
pointers to nodes in the lower tier of the multi-tier data
structure;

the mutable dictionary structure is efficient for performing

individual insert operations; and

the mutable dictionary data structure comprises a data

structure without storing keys or attributes, and the
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mutable dictionary data structure stores hash values of
keys and maps hash values to a set of tuple sequence
numbers.
6. The method of claim 5, wherein:
each node in the lower tier of the multi-tier data structure
has one immutable index data structure that is efficient
for performing lookup operations and bulk loading;

inserts into the multi-tier data structure comprise perform-
ing a lookup operation into the mutable index data
structure to select a lower tier node to insert into;

inserts into the lower tier nodes are made into a most
recently added mutable dictionary data structure at that
node;
the mutable dictionary data structures are periodically
merged into the immutable index data structure, pro-
ducing a new immutable index data structure; and

the immutable dictionary structure does not support insert
operations or delete operations.

7. The method of claim 1, wherein the first lookup process
uses a hash value, a result buffer and maximum size as input
parameters, and returns as value a number of record iden-
tifiers found for a desired hash key, and places as many result
payloads that fit within the maximum size into the result
buffer.

8. A computer program product for inserting an entry into
a multi-tier data structure, the computer program product
comprising a non-transitory computer readable storage
medium having program code embodied therewith, the
program code executable by a processor to:

create, by a data structure processor, the multi-tier data

structure that includes an upper tier comprising a first
level that is an extendible hashing dictionary data
structure and a second level that is a fixed-size diction-
ary data structure, and a lower tier comprising an
immutable dictionary structure including a concise
hash table (CHT) that includes a first level comprising
a bitmap array with bitmap pages and a second level
comprising leaf pages, wherein leaf page pointers are
interleaved within the bitmap array;

perform, by the processor, a first lookup process using a

key of the entry into a root node of the multi-tier data
structure that determines partition for performing an
insert operation, wherein the extendible hashing dic-
tionary data structure provides lookups using a number
of hash bits used as an index into the fixed-size dic-
tionary data structure;

perform a second lookup process, by the processor, for the

key on a first level index that is part of a linked data
structure holding entries for the found partition;

based on data structure criterion, add, by the processor, a

payload or reference to the payload to the linked data
structure upon finding the key, otherwise upon the key
not being found, adding the key and the payload to the
linked data structure;

based on data structure criterion, create, by the data

structure processor, a new first level index and adding
the new first level index to the linked data structure
upon the linked data structure remaining unchanged
since starting the second lookup process for the key,
and adding the key and the payload or the reference to
the payload to the new first level index;

based on a merge criterion, create, by the data structure

processor, a new second level index and merging a
portion of content from selected first level and second
level indexes into the new second level index, and
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using the lower tier of the multi-tier data structure instead
of the upper tier upon the first level index exceeding a
size for the upper tier.

9. The computer program product of claim 8, further
comprising program code executable by the processor to:

update, by an update processor, the linked data structure

by replacing indexes with content that has been fully
merged with the one or more new second level indexes,
wherein the selection of first level and second level
indexes for merging into a new second level index also
marks the selected first level and second level indexes
as not accepting further inserts.

10. The computer program product of claim 9, wherein
the data structure criterion comprises one or more of suffi-
cient space in an index of the linked data structure, the index
being able to accept additional inserts, the index having an
imbalanced structure, or lookup efficiency.

11. The computer program product of claim 10, wherein
the merge criterion comprises one or more of:

no on-going merge operation exists on the partition,

determining that a merge operation is warranted due to

significant content

present in the selected first level and second level indexes,

or lookup efficiency.

12. The computer program product of claim 8, wherein:

the upper tier of the multi-tier data structure comprises a

single node containing a mutable dictionary data struc-
ture that maps indicator values derived from keys onto
pointers to nodes in the lower tier of the multi-tier data
structure;
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the mutable dictionary data structure is efficient for per-

forming individual insert operations; and
the mutable dictionary data structure comprises a data
structure without storing keys or attributes, and the
mutable dictionary data structure stores hash values of
keys and maps hash values to a set of tuple sequence
numbers.
13. The computer program product of claim 9, wherein:
each node in the lower tier of the multi-tier data structure
has one immutable index data structure that is efficient
for performing lookup operations and bulk loading;

inserts into the multi-tier data structure comprise perform-
ing a lookup operation into the mutable dictionary data
structure to select a lower tier node to insert into;

inserts into the lower tier nodes are made into a most
recently added mutable dictionary data structure at that
node;
the mutable dictionary data structures are periodically
merged into the immutable index data structure, pro-
ducing a new immutable index data structure; and

the immutable dictionary structure does not support insert
operations or delete operations.

14. The computer program product of claim 8, wherein
the first lookup process uses a hash value, a result buffer and
maximum size as input parameters, and returns as value a
number of record identifiers found for a desired hash key,
and places as many result payloads that fit within the
maximum size into the result buffer.
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