

US 10,831,736 B2
Page 2

(56) References Cited

U.S. PATENT DOCUMENTS

5,893,086 A 4/1999 Schmuck et al .
5,930,785 A 7/1999 Lohman et al .
6,026,394 A 2/2000 Tsuchida et al .
6,052,697 A 4/2000 Bennett
6,134,601 A 10/2000 Spilo et al .
6,247,014 B1 * 6/2001 Ladwig G06F 17/30949

707/747
6,292,795 B1 9/2001 Peters et al .
6,505,189 B1 1/2003 On Au et al .
6,609,131 B1 8/2003 Zait et al .
6,757,677 B2 6/2004 Pham et al .
6,775,681 B1 8/2004 Ballamkonda et al .
6,941,432 B2 9/2005 Ronstrom
6,954,776 B1 10/2005 Cruanes et al .
7,062,481 B2 6/2006 Pham et al .
7,136,883 B2 11/2006 Flamma et al .
7,177,883 B2 2/2007 Yagawa
7,287,131 B1 10/2007 Martin et al .
7,293,028 B2 11/2007 Cha et al .
7,308,539 B2 12/2007 Fuhs et al .
7,343,363 B1 3/2008 Parker
7,412,439 B2 8/2008 Bossman et al .
7,499,960 B2 3/2009 Dageville et al .
7,653,670 B2 1/2010 Hasan et al .
7,688,758 B2 3/2010 Denby et al .
7,716,180 B2 5/2010 Vermeulen et al .
7,827,182 B1 11/2010 Panigrahy
7,827,218 B1 11/2010 Mittal
7,868,789 B1 1/2011 Binnig et al .
8,078,593 B1 * 12/2011 Ramarao G06F 3/0671

707/692
8,145,642 B2 3/2012 Cruanes et al .
8,195,644 B2 6/2012 Xu
8,271,564 B2 9/2012 Dade
8,321,385 B2 11/2012 Burroughs et al .
8,346,810 B2 1/2013 Beaverson et al .
8,370,316 B2 2/2013 Bensberg et al .
8,438,574 B1 5/2013 Lyle et al .
8,443,155 B2 5/2013 Adams et al .
8,661,005 B2 2/2014 McKenney et al .
8,692,695 B2 4/2014 Fallon et al .
8,768,889 B1 7/2014 Martin
8,768,927 B2 7/2014 Yoon et al .
8,832,025 B2 9/2014 Arai et al .
8,856,103 B2 10/2014 Barber et al .
8,886,614 B2 11/2014 Morris
9,092,141 B2 7/2015 Hayashi et al .
9,098,201 B2 8/2015 Benjamin et al .
9,298,723 B1 * 3/2016 Vincent GO6F 16/1748
9,355,060 B1 5/2016 Barber et al .
9,430,390 B2 8/2016 Mukherjee et al .
9,454,560 B2 9/2016 Cha et al .
9,626,421 B2 4/2017 Plattner et al .
9,684,682 B2 6/2017 Mukherjee et al .
9,792,318 B2 10/2017 Schreter et al .

2001/0039609 A1 11/2001 Houldsworth et al .
2002/0016820 Al 2/2002 DuVal et al .
2003/0198291 A1 * 10/2003 Gold HO4N

375 / 240.01
2004/0260684 A1 12/2004 Agrawal et al .
2005/0018683 Al 1/2005 Zaho et al .
2005/0033741 A1 2/2005 Dombroski et al .
2006/0218176 Al 9/2006 Sun Hsu et al .
2007/0136317 A1 6/2007 Przywara
2007/0208788 A1 9/2007 Chakravarty et al .
2007/0244850 A1 10/2007 Hoppe et al .
2007/0245119 Al 10/2007 Hoppe
2008/0126706 Al 5/2008 Newport et al .
2008/0133583 A1 6/2008 Artan et al .
2008/0162402 A1 7/2008 Holmes et al .
2009/0006399 Al 1/2009 Raman et al .
2009/0024568 Al 1/2009 Al - Omari et al .
2009/0100223 A1 4/2009 Murayama et al .
2009/0187586 Al 7/2009 Olson
2009/0210445 Al 8/2009 Draese et al .

2009/0222659 Al
2010/0088309 Al
2010/0114868 Al
2010/0131540 A1
2010/0199066 A1
2010/0223253 Al
2011/0060876 Al
2011/0066593 Al
2011/0078134 Al
2011/0107021 A1
2011/0283082 A1
2011/0307471 Al
2012/0011133 Al
2012/0011144 Al
2012/0036134 Al
2012/0117055 A1
2012/0136846 Al
2012/0136889 Al
2012/0143877 A1
2012/0158729 A1
2012/0166400 A1
2012/0173517 A1
2012/0260349 A1
2012/0303633 Al
2012/0310917 Al
2012/0331249 Al
2013/0046949 A1
2013/0138628 A1
2013/0218934 Al
2013/0325900 A1
2014/0006379 Al
2014/0025648 A1
2014/0074819 A1
2014/0108489 Al
2014/0129568 A1
2014/0181052 A1
2014/02 14795 Al
2014/0215019 Al
2014/0337375 A1
2014/0372388 A1
2015/0058293 A1
2015/0088813 Al
2015/0301743 Al
2016/0147457 A1
2016/0232169 A1 *

9/2009 Miyabayashi et al .
4/2010 Petculescu et al .
5/2010 Beavin et al .
5/2010 Xu
8/2010 Artan et al .
9/2010 Gopal et al .
3/2011 Liu
3/2011 Ahluwalia et al .
3/2011 Bendel et al .
5/2011 Muthukumarasamy et al .
11/2011 McKenney et al .
12/2011 Sheinin
1/2012 Faerber et al .
1/2012 Transier et al .
2/2012 Malakhov
5/2012 Al - Omari et al .
5/2012 Song et al .
5/2012 Jagannathan et al .
6/2012 Kumar et al .
6/2012 Mital et al .
6/2012 Sinclair et al .
7/2012 Lang et al .
10/2012 Nagai et al .
11/2012 He et al .
12/2012 Sheinin et al .
12/2012 Benjamin et al .
2/2013 Colgrove et al .
5/2013 Bensberg et al .
8/2013 Lin et al .

12/2013 Barber et al .
1/2014 Arndt et al .
1/2014 Corbett et al .
3/2014 Idicula
4/2014 Glines et al .
5/2014 Kim et al .
6/2014 Moore et al .
7/2014 Attaluri et al .
7/2014 Ahrens
11/2014 Yue
12/2014 Attaluri et al .
2/2015 Kobayashi et al .
3/2015 Lahiri et al .
10/2015 Nagao et al .
5/2016 Legler et al .
8/2016 Archak G06F 17/30132

FOREIGN PATENT DOCUMENTS

CN
CN
CN
CN

CN
CN
CN
EP
EP
JP
JP
JP
WO
WO
WO
WO
WO

101013427 A1
101067822 A1

1003672239 C
101231657 A
101388042 A
101573760 A
101828182 A
102893265 A
103635902 A
104021205 A
104317966 A
0457707 A2
2811411 A1

2007234026 A
2010539616 A
2013222457 A
2011148496
2013141308 A
2014010038 A
2014045441 A
2015078136 Al

8/2007
11/2007
2/2008
7/2008
3/2009
11/2009
9/2010
1/2013
3/2014
9/2014
1/2015
11/1991
12/2014
9/2007
12/2012
10/2013
12/2011
9/2013
1/2014
3/2014
6/2015

OTHER PUBLICATIONS

Anonymous , “ High Performance Technique Using Join Collocation
in a Massively Parallel Processing Relational Database Implemen
tation ” , Jun . 14 , 2012 , pp . 1-5 , IP.com , United States .
Anonymous , “ CashMap : Processor Cache - Aware Implementation
of Hash Tables ” , Jul . 5 , 2013 , pp . 1-7 , IP.com , United States .

US 10,831,736 B2
Page 3

(56) References Cited

OTHER PUBLICATIONS

Anonymous , “ Efficient Grouping Over Joins of Compressed Tables ” ,
Apr. 6 , 2010 , pp . 1-6 , IP.com , United States .
Internet Society , et al . , “ The VCDIFF Generic Differencing and
Compression Data Format (RFC3284) ” , Jul . 1 , 2002 , pp . 1-31 ,
Network Working Group , IP.com , United States .
Hu , K. et al . “ Rapid multi - dimension hierarchical algorithm in data
warehouse system ” , Computer Integrated Manufacturing Systems ,
Jan. 2007 , p . 196-201 , vol . 13 , No. 1 , China .
Raman , V. , et al . , “ DB2 with BLU Acceleration : So Much More
than Just a Column Store ” , Proceedings of the VLDB Endowment ,
Aug. 2013 , pp . 1-12 , vol . 6 , No. 11 , ACM , United States .
Spyros , B. , et al . , “ Design and Evaluation of Main Memory Hash
Join Algorithms for Multi - core CPUs ” , SIGMOD Int'l Conference
on Management of Data , Jun . 12 , 2011 , pp . 1-12 , ACM , United
States .
Korn , D. , et al . , “ The VCDIFF Generic Differencing and Compres
sion Data Format (RFC3284) " , Jul . 1 , 2002 , pp . 1-31 , Network
Working Group , IP.com , United States .
Yan , Weipeng P. et al . , “ Performing Group - By before Join [query
processing] , ” Proceedings loth International Conference on Data
Engineering , 1994 , pp . 89-100 , IEEE , 1994 .
List of IBM Patents or Patent Applications Treated as Related Form .
List of IBM Patents or Applications Treated as Related .
Gao , H. et al . , “ Lock - free dynamic hash tables with open address
ing ” , Journal of Distributed Computing , Jul . 2005 , pp . 21-42 , vol .
18 , Issue 1 , United Kingdom .
Sewall , J. et al . , “ PALM : Parallel Architecture - Friendly Latch - Free
Modifications to B + Trees on Many - Core Processors ” , Proceedings
of the 37th International Conference on Very Large Data Bases
(VLDB Endowment) , Aug. 29 , 2011 - Sep . 3 , 2011 , pp . 795-806 , vol .
4 , No. 11 , United States .
Pandis , I. et al . , “ PLP : Page Latch - free Shared - everything OLTP ” ,
Proceedings of the 37th International Conference on Very Large
Data Bases (VLDB Endowment) , Aug. 29 , 2011 - Sep . 3 , 2011 , pp .
610-621 , vol . 4 , No. 10 , United States .
Areias , M. et al . , “ A Simple and Efficient Lock - Free Hash Trie
Design for Concurrent Tabling ” , Theory and Practice of Logic
Programming , May 14 , 2014 , pp . 1-10 , Arxiv.org , Cornell Univer
sity Library , United States .
Prokopec , A. et al . , “ Lock - Free Resizeable Concurrent Tries ” ,
Languages and Compilers for Parallel Computing , 2013 , pp . 156
170 , vol . 7146 , Springer Berlin Heidelberg , Germany .
Levandoski , J. , et al . , “ The Bw - Tree : A B - tree for New Hardware
Platforms ” , IEEE 29th International Conference on Data Engineer
ing (ICDE) , Apr. 8 , 2013 , pp . 1-12 , IEEE , United States .
Leis , V. , et al . , “ The Adaptive Radix Tree : ARTful Indexing for
Main - Memory Databases ” , IEEE 29th International Conference on
Data Engineering (ICDE) , Apr. 8 , 2013 , pp . 38-49 , IEEE , United
States 156 - PA .

Lehman , T.J. “ Design and Performance Evaluation of a Main
Memory Relational Database System . ” 1986 , PhD Dissertation , 334
pages , [Abstract Only] , University of Washington , Madison , WI .
Mell , P. , et al . , “ The NIST Definition of Cloud Computing ” ,
National Institute of Standards and Technology Special Publication
800-145 , Sep. 2011 , pp . 1-7 , U.S. Department of Commerce , United
States .
Marek , R. , et al . , “ TID Hash Joins , " CIKM , 1994 , pp . 42-49 ,
Gaithersburg , MD , United States .
Chang . S. , “ Recent Advances of Compact Hashing for Large - Scale
Visual Search ” , Columbia University , Oct. 2012 , pp . 1-44 , United
States .
Wang , W. , et al . , “ Investigating Memory Optimization of Hash
index for Next Generation Sequencing on Multi - core Architecture ” ,
IPDPSW IEEE 26th Inter . Conf . , May 21-25 , 2012 , pp . 665-674 ,
IEEE Computer Society , United States .
Cutt , B. , et al .; “ Improving Join Performance for Skewed Data
bases ” , IEEE , 2008 , pp . 1-5 , United States .
Li , Q. , et al .; “ Adaptively Reordering Joins during Query Execu
tion ” , IEEE , 2007 , pp . 26-35 , United States .
Cleary , J.G. , " Compact Hash Tables Using Bidirectional Linear
Probing ” , IEEE Transactions on Computers , Sep. 1994 , pp . 828
834 , vol . C - 33 , No. 9 , United States .
Nan Hua , H. , et al . , “ Rank - Indexed Hashing : A Compact Construc
tion of Bloom Filters and Variants ” , IEEE , 2008 , pp . 73-82 , United
States .
Xu , Y. , “ A Multi - Dimesional Progressive Perfect Hashing for High
Speed String Matching ” , Seventh ACM / IEEE Symposium on
Architectures for Networking and Communications Systems , 2011 ,
pp . 167-177 , IEEE Computer Society , United States .
U.S. Appl . No. 14 / 509,336 , “ Embracing and Exploiting Data Skew
During a Join or Groupby ” , filed Oct. 8 , 2014 , 38 pages , United
States .
List of IBM Patents or Patent Applications Treated as Related Form ;
U.S. Appl . No. 14 / 671,664 , filed Mar. 27 , 2015 ; U.S. Appl . No.
13 / 753,769 , filed Jan. 30 , 2013 ; U.S. Appl . No. 14 / 471,272 , filed
Aug. 28 , 2014 ; U.S. Appl . No. 13 / 753,740 , filed Jan. 30 , 2013 ; U.S.
Appl . No. 14 / 471,079 , filed Aug. 28 , 2014 .
Chinese Office Action dated Apr. 3 , 2020 for Chinese Patent
Application No. 201680015687.3 from China Patent Office , pp . 1-9 ,
Beijing , China .
List of IBM Patents or Applications Treated as Related ; Attaluri ,
G.K. , U.S. Appl . No. 16 / 427,190 , filed May 30 , 2019 .
Chinese Office Action dated Feb. 12 , 2019 for Chinese Patent
Application No. 201610177904.0 from Chinese Patent Office , pp .
1-8 , Beijing , China .
List of IBM Patents or Patent Applications Treated as Related .
Japanese Office Action dated Sep. 3 , 2019 for Japanese Patent
Application No. 2017545567 from Japan Patent Office , pp . 1-8 ,
Tokyo , Japan .
Chinese Office Action dated Dec. 5 , 2018 for Chinese Patent
Application No. 201610177904.0 from Chinese Patent Office , pp .
1-15 , Beijing , China .

* cited by examiner

10

Computer System / Server

U.S. Patent

28

12

30

Memory
34

RAM

16

Storage System

Nov. 10 , 2020

Processing Unit
Cache

40

32

18

42

24

22

Sheet 1 of 15

Display

1/0
Interface (s)

Network Adpater
20

14

External Device (s)

US 10,831,736 B2

FIG . 1

U.S. Patent Nov. 10 , 2020 Sheet 2 of 15 US 10,831,736 B2

10

54N

FIG . 2

500000
500000
03000

54A

92

93

U.S. Patent

//
/ 7

Workloads

82

84

85

Nov. 10 , 2020

Management

Sheet 3 of 15

71

72

73

74

75

Virtualization
ULUI 61

62

65

68

Hardware and Software

US 10,831,736 B2

FIG . 3

12

U.S. Patent

Data Structure Processor

Update Processor

Hashing Processor

Nov. 10 , 2020

410

415

420

405

406

Sheet 4 of 15

Storage Unit 1

Storage Unit N

US 10,831,736 B2

FIG . 4

515

1. Increase Global Depth (Double Dictionary)

U.S. Patent

510

520

525

Extendible Hashing Dictionary

Extendible Hashing Dictionary

Extendible Hashing Dictionary

Nov. 10 , 2020

gd = 0

gd = 1

gd = 1

536

537

1

Sheet 5 of 15

Hash Table A

Hash Table A

Hash Table A '

Hash Table A "

Id = 0

530

535

2. Split

540

US 10,831,736 B2

FIG . 5

U.S. Patent

610

620

Extendible Hashing Dictionary

Extendible Hashing Dictionary
gd = 2

01

10

Nov. 10 , 2020

go = 1

615

616

625

626

0

1

00

11

Sheet 6 of 15

Hash Table A

Id = 1

Hash Table B B

Hash Table B

Hash Table A

Id = 1

FIG . 6A

FIG . 6B

US 10,831,736 B2

U.S. Patent

620

Extendible Hashing Dictionary
gd = 2

Nov. 10 , 2020

630

00

01

11

626

Sheet 7 of 15

Hash Table A

Hash Table A "

Hash Table B

Id = 2

Id = 2

Id = 1

535
FIG . 6C

US 10,831,736 B2

720

730

U.S. Patent

Extendible Hashing
go = max

Extendible Hashing

Extendible Hashing

715

716

Hash Table B

Nov. 10 , 2020

Hash Table B

Hash Table A
Id = max

CHT Root

2. Create CHT

Sheet 8 of 15

725

Hash Table A

CHT Bitmap A

1. Install Empty Page

715

726

CHT Leaf Page A

US 10,831,736 B2

FIG . 7

820

830

U.S. Patent

extendible Hashing

Extendible Hashing

Extensible Hashing
Hash Table C

Hash Table B

825

815

Hash Table C

Nov. 10 , 2020

CHT Root

CHT Root

2. Merge

820

815

CHT Bitmap A

CHT Bitmap AB

CHT Root

Sheet 9 of 15

821

820

841

CHT Leaf Page A

CHT Bitmap A

CHT Leaf Page AB

FIG . 8A

FIG . 8C

821

CHT Leaf Page A

US 10,831,736 B2

FIG . 8B

U.S. Patent

900

910

0

1

2

Bitmap Array 0 010000102 00011000 4 00000010

Nov. 10 , 2020

930

920
Entry Array

(h1 , k1) | (h2 , K2) (h4 , k3) (h4 , k4) (h5 , k6) 0 1 2 2 3 5

(h4 , k5) overflow

Sheet 10 of 15

FIG . 9

US 10,831,736 B2

1011

Extendible Hashing (fanout 4096)

U.S. Patent

1012

1000

Mutable

Hash Table

Nov. 10 , 2020

CHT root (fanout 1024)

1021

1010

29-1

0

1

2

0 010000102 000110005 00000010

CHT Bitmap (fanout 8)

1020

Sheet 11 of 15

Immutable (for large indexes)

1022

CHT Leaf Page (-4K entries)

(h1 , k1) 1 (h2 , k2) (h4 , k3) (h4,64) (h4 , K5) (15 , k6) Next Leaf

0 1 2 3

4 5

(overflow)

1020

US 10,831,736 B2

FIG . 10

U.S. Patent Nov. 10 , 2020 Sheet 12 of 15 US 10,831,736 B2

1100

START

1110 Lookup Into Root to Determine Partition to Search
If More L1 Indexes

1120 Probe a Level 1 Index for Selected Key , If Found Add
Payload to Result

If More L1
Indexes

1130 Stop if Found and Duplicates Not Allowed Loop
Over Each Level 1 Index

If More L2 Indexes

Found
& No
Dups

Probe a Level 2 Index for Selected Key , if Found Add
Payload to Result

1150 Stop if Found and Duplicates Not Allowed Loop
Over Each Level 2 Index

1160

RETURN

FIG . 11

U.S. Patent Nov. 10 , 2020 Sheet 13 of 15 US 10,831,736 B2

1205
1200

START

1210 Lookup Into Root to Determine Partition to
Search / Insert

Sufficient
Space Probe First Level 1 Index for Selected Key ,

If Found Add Payload Else Add Key & Payload
if Insufficient Space Start New Level 1

Chain
Changed
Retry

1220

1230
Create Additional Level 1 Index and Add to Chain
as First if Chain Unchanged since Start of Probe

by Concurrent Insert Add Key & Payload to New Index)

1240

Exit if On - Going Merge on this partition on Other
Thread or if Merge Not Needed

(Insufficient Content to Merge and Index Probe Chain
Length Not Excessive)

1250
Create New Level 2 Index and Merge Content from

All Selected Level 1 and Level 2 Indexes to
Combine Into New Level 2 Index

Merge
Skipped

1260 Update Chain Replacing Merged Indexes with
New Level 2 Index

1270

RETURN

FIG . 12

U.S. Patent Nov. 10 , 2020 Sheet 14 of 15 US 10,831,736 B2

1300

1310

Root

Active
Level 1 Index

1320 Active
Level 1 Index

Active
Level 1 Index

-1330
Filled

Level 1 Index Level 1 Index Level 1 Index

- 1340

Level 2 Index Level 2 Index Level 2 Index

FIG . 13

U.S. Patent Nov. 10 , 2020 Sheet 15 of 15 US 10,831,736 B2

1400 Performing a Lookup Into a Multi - Tier
Data Structure for a Partition for

Performing an Operation

Performing a Probe on a First Level
Index of a Linked Data Structure

for a Key
1420

Based on Data Structure Criterion ,
Adding a Payload or payload

Reference to the Linked Data Structure
Upon Finding the Key , Otherwise

Adding the key and the Payload to the
Linked Data Structure

1430

Based on Data Structure Criterion ,
Creating a New First Level Index and

Adding the New First Level Index to the
Linked Data Structure Upon the Linked
Data Structure Remaining Unchanged
Since Starting the Lookup for the Key ,
and Adding the key and the Payload or

Reference to the Payload to the
New Index

Based on a Merge Criterion , Creating , a
New Second Level Index and Merging a
Portion of the Content from Selected
First Level and Second Level Indexes

Into the New Second Level Index

FIG . 14

5

US 10,831,736 B2
1 2

FAST MULTI - TIER INDEXING SUPPORTING FIG . 5 illustrates an extendible hashing example for a
DYNAMIC UPDATE global depth of 1 , according to an embodiment ;

FIGS . 6A - C illustrate extendible hashing examples for a
BACKGROUND global depth of 2 , according to an embodiment ;

FIG . 7 illustrates a concise hash table (CHT) used in
Embodiments of the invention relate to data structure extendible hashing , according to an embodiment ;

processing , in particular , for multi - tier indexing processing FIGS . 8A - C illustrate CHT extendible hashing examples
of data structures supporting dynamic update operations . for where the CHT includes two levels (bitmap pages and

There is an increasing trend towards doing business leaf pages) , according to an embodiment ;
intelligence (BI) queries on real - time data in databases or 10 FIG . 9 illustrates a CHT that may be implemented ,
tabled data . Traditionally , there is a strict separation between according to an embodiment ;
BI systems and online transaction processing (OLTP) sys FIG . 10 illustrates an example two - tier data structure ,
tems . There is increasing market pressure for operational BI , according to an embodiment ;
and for both transactions and analytics to be performed on FIG . 11 illustrates a process for an index lookup process ,
the same database . 15 according to an embodiment ;

Trees , such as B + Trees , are the standard data structure FIG . 12 illustrates an insert into an index process , accord
used for indexing persistent data (mapping key to data ing to an embodiment ;
records) . They have many benefits , such as : supporting FIG . 13 illustrates an index hierarchy , according to an
concurrent inserts , deletes , and lookups ; are naturally orga embodiment ; and
nized in pages , and can gracefully spread across many layers 20 FIG . 14 is a block diagram of a process for multi - tier
of a memory - disk hierarchy , via buffer pools ; there are indexing processing of data structures supporting dynamic
known techniques to make inserts and deletes recoverable update operations , according to an embodiment .
and atomic , in a transactional sense . However , the perfor
mance of tree data structures is much worse than that of DETAILED DESCRIPTION
in - memory hash tables , even when both data structures fit in 25
memory . The descriptions of the various embodiments of the

present invention have been presented for purposes of
SUMMARY illustration , but are not intended to be exhaustive or limited

to the embodiments disclosed . Many modifications and
Embodiments of the invention relate to multi - tier index- 30 variations will be apparent to those of ordinary skill in the

ing processing of data structures supporting dynamic update art without departing from the scope and spirit of the
operations . One embodiment includes a method that described embodiments . The terminology used herein was
includes performing a lookup using a key , by a hashing chosen to best explain the principles of the embodiments , the
processor , into a root node of a multi - tier data structure , to practical application or technical improvement over tech
find a partition for performing an insert operation . A lookup 35 nologies found in the marketplace , or to enable others of
for the key is performed , by the hashing processor , on a first ordinary skill in the art to understand the embodiments
level index that is part of a linked data structure holding disclosed herein .
entries for the found partition . The hashing processor adds a It is understood in advance that although this disclosure
payload or reference to the payload to the linked data includes a detailed description of cloud computing , imple
structure based on data structure criterion , otherwise adding 40 mentation of the teachings recited herein are not limited to
the key and the payload to the linked data structure if the key a cloud computing environment . Rather , embodiments of the
is not found . A data structure processor , based on data present invention are capable of being implemented in
structure criterion , creates a new first level index and adds conjunction with any other type of computing environment
the new first level index to the linked data structure upon the now known or later developed .
linked data structure remaining unchanged since starting the 45 Cloud computing is a model of service delivery for
lookup for the key , and adds the key and the payload or the enabling convenient , on - demand network access to a shared
reference to the payload to the new index . The data structure pool of configurable computing resources (e.g. , networks ,
processor , based on a merge criterion , creates a new second network bandwidth , servers , processing , memory , storage ,
level index and merges a portion of content from selected applications , virtual machines (VMs) , and services) that can
first level and second level indexes for combining into the 50 be rapidly provisioned and released with minimal manage
new second level index . ment effort or interaction with a provider of the service . This

These and other features , aspects and advantages of the cloud model may include at least five characteristics , at least
present invention will become understood with reference to three service models , and at least four deployment models .
the following description , appended claims and accompa Characteristics are as follows :
nying figures . On - demand self - service : a cloud consumer can unilater

ally provision computing capabilities , such as server time
BRIEF DESCRIPTION OF THE DRAWINGS and network storage , as needed and automatically , without

requiring human interaction with the service's provider .
FIG . 1 depicts a cloud computing node , according to an Broad network access : capabilities are available over a

embodiment ; 60 network and accessed through standard mechanisms that
FIG . 2 depicts a cloud computing environment , according promote use by heterogeneous , thin or thick client platforms

to an embodiment ; (e.g. , mobile phones , laptops , and PDAs) .
FIG . 3 depicts a set of abstraction model layers , according Resource pooling : the provider's computing resources are

to an embodiment ; pooled to serve multiple consumers using a multi - tenant
FIG . 4 is a block diagram illustrating a system for 65 model , with different physical and virtual resources dynami

multi - tier indexing processing of data structures supporting cally assigned and reassigned according to demand . There is
dynamic update operations , according to an embodiment ; a sense of location independence in that the consumer

55

at any time .

US 10,831,736 B2
3 4

generally has no control or knowledge over the exact A cloud computing environment is a service oriented with
location of the provided resources but may be able to specify a focus on statelessness , low coupling , modularity , and
location at a higher level of abstraction (e.g. , country , state , semantic interoperability . At the heart of cloud computing is
or data center) . an infrastructure comprising a network of interconnected

Rapid elasticity : capabilities can be rapidly and elastically 5 nodes .
provisioned and , in some cases , automatically , to quickly Referring now to FIG . 1 , a schematic of an example of a
scale out and rapidly released to quickly scale in . To the cloud computing node is shown . Cloud computing node 10
consumer , the capabilities available for provisioning often is only one example of a suitable cloud computing node and
appear to be unlimited and can be purchased in any quantity is not intended to suggest any limitation as to the scope of

10 use or functionality of embodiments of the invention
described herein . Regardless , cloud computing node 10 is Measured service : cloud systems automatically control capable of being implemented and / or performing any of the and optimize resource use by leveraging a metering capa functionality set forth hereinabove . bility at some level of abstraction appropriate to the type of In cloud computing node 10 , there is a computer system / service (e.g. , storage , processing , bandwidth , and active 15 server 12 , which is operational with numerous other general consumer accounts) . Resource usage can be monitored , purpose or special purpose computing system environments controlled , and reported , thereby providing transparency for or configurations . Examples of well - known computing sys

both the provider and consumer of the utilized service . tems , environments , and / or configurations that may be suit
Service Models are as follows : able for use with computer system / server 12 include , but are
Software as a Service (SaaS) : the capability provided to 20 not limited to , personal computer systems , server computer

the consumer is the ability to use the provider's applications systems , thin clients , thick clients , handheld or laptop
running on a cloud infrastructure . The applications are devices , multiprocessor systems , microprocessor - based sys
accessible from various client devices through a thin client tems , set - top boxes , programmable consumer electronics ,
interface , such as a web browser (e.g. , web - based email) . network PCs , minicomputer systems , mainframe computer
The consumer does not manage or control the underlying 25 systems , and distributed cloud computing environments that
cloud infrastructure including network , servers , operating include any of the above systems or devices , and the like .
systems , storage , or even individual application capabilities , Computer system / server 12 may be described in the
with the possible exception of limited consumer - specific general context of computer system - executable instructions ,
application configuration settings . such as program modules , being executed by a computer

Platform as a Service (PaaS) : the capability provided to 30 system . Generally , program modules may include routines ,
the consumer is the ability to deploy onto the cloud infra programs , objects , components , logic , data structures , and so
structure consumer - created or acquired applications created on that perform particular tasks or implement particular
using programming languages and tools supported by the abstract data types . Computer system / server 12 may be
provider . The consumer does not manage or control the practiced in distributed cloud computing environments
underlying cloud infrastructure including networks , servers , 35 where tasks are performed by remote processing devices that
operating systems , or storage , but has control over the are linked through a communications network . In a distrib
deployed applications and possibly application - hosting uted cloud computing environment , program modules may
environment configurations . be located in both local and remote computer system storage

Infrastructure as a Service (IaaS) : the capability provided media , including memory storage devices .
to the consumer is the ability to provision processing , 40 As shown in FIG . 1 , computer system / server 12 in cloud
storage , networks , and other fundamental computing computing node 10 is shown in the form of a general
resources where the consumer is able to deploy and run purpose computing device . The components of computer
arbitrary software , which can include operating systems and system / server 12 may include , but are not limited to , one or
applications . The consumer does not manage or control the more processors or processing units 16 , a system memory
underlying cloud infrastructure but has control over operat- 45 28 , and a bus 18 that couples various system components
ing systems , storage , deployed applications , and possibly including system memory 28 to processor 16 .
limited control of select networking components (e.g. , host Bus 18 represents one or more of any of several types of
firewalls) . bus structures , including a memory bus or memory control

Deployment Models are as follows : ler , a peripheral bus , an accelerated graphics port , and a
Private cloud : the cloud infrastructure is operated solely 50 processor or local bus using any of a variety of bus archi

for an organization . It may be managed by the organization tectures . By way of example and not limitation , such archi
or a third party and may exist on - premises or off - premises . tectures include a (n) Industry Standard Architecture (ISA)
Community cloud : the cloud infrastructure is shared by bus , Micro Channel Architecture (MCA) bus , Enhanced ISA

several organizations and supports a specific community that (EISA) bus , Video Electronics Standards Association
has shared concerns (e.g. , mission , security requirements , 55 (VESA) local bus , and Peripheral Component Interconnects
policy , and compliance considerations) . It may be managed (PCI) bus .
by the organizations or a third party and may exist on Computer system / server 12 typically includes a variety of
premises or off - premises . computer system readable media . Such media may be any

Public cloud : the cloud infrastructure is made available to available media that is accessible by computer system / server
the general public or a large industry group and is owned by 60 12 , and it includes both volatile / non - volatile media , and
an organization selling cloud services . removable / non - removable media .

Hybrid cloud : the cloud infrastructure is a composition of System memory 28 can include computer system readable
two or more clouds (private , community , or public) that media in the form of volatile memory , such as random
remain unique entities but are bound together by standard access memory (RAM) 30 and / or cache memory 32. Com
ized or proprietary technology that enables data and appli- 65 puter system / server 12 may further include other removable /
cation portability (e.g. , cloud bursting for load balancing non - removable , volatile / non - volatile computer system stor
between clouds) . age media . By way of example only , a storage system 34 can

US 10,831,736 B2
5 6

be provided for reading from and writing to a non - remov Referring now to FIG . 3 , a set of functional abstraction
able , non - volatile magnetic media (not shown and typically layers provided by the cloud computing environment 50
called a “ hard drive ”) . Although not shown , a magnetic disk (FIG . 2) is shown . It should be understood in advance that
drive for reading from and writing to a removable , non the components , layers , and functions shown in FIG . 3 are
volatile magnetic disk (e.g. , a “ floppy disk ”) , and an optical 5 intended to be illustrative only and embodiments of the
disk drive for reading from or writing to a removable , invention are not limited thereto . As depicted , the following
non - volatile optical disk such as a CD - ROM , DVD - ROM , layers and corresponding functions are provided :
or other optical media can be provided . In such instances , Hardware and software layer 60 includes hardware and
each can be connected to bus 18 by one or more data media software components . Examples of hardware components
interfaces . As will be further depicted and described below , 10 include : mainframes 61 ; RISC (Reduced Instruction Set

Computer) architecture based servers 62 ; servers 63 ; blade memory 28 may include at least one program product having
a set (e.g. , at least one) of program modules that are servers 64 ; storage devices 65 ; and networks and networking

components 66. In some embodiments , software compo configured to carry out the functions of embodiments of the nents include network application server software 67 and invention . 15 database software 68 .
Program / utility 40 , having a set (at least one) of program Virtualization layer 70 provides an abstraction layer from

modules 42 , may be stored in a memory 28 by way of which the following examples of virtual entities may be
example and not limitation , as well as an operating system , provided : virtual servers 71 ; virtual storage 72 ; virtual
one or more application programs , other program modules , networks 73 , including virtual private networks ; virtual
and program data . Each of the operating systems , one or 20 applications and operating systems 74 ; and virtual clients
more application programs , other program modules , and 75 .
program data or some combination thereof , may include an In one example , a management layer 80 may provide the
implementation of a networking environment . Program functions described below . Resource provisioning 81 pro
modules 42 generally carry out the functions and / or meth vides dynamic procurement of computing resources and
odologies of embodiments of the invention as described 25 other resources that are utilized to perform tasks within the
herein . cloud computing environment . Metering and pricing 82

Computer system / server 12 may also communicate with provide cost tracking as resources are utilized within the
one or more external devices 14 , such as a keyboard , a cloud computing environment and billing or invoicing for
pointing device , etc .; a display 24 ; one or more devices that consumption of these resources . In one example , these
enable a consumer to interact with computer system / server 30 resources may comprise application software licenses . Secu
12 ; and / or any devices (e.g. , network card , modem , etc.) that rity provides identity verification for cloud consumers and
enable computer system / server 12 to communicate with one tasks as well as protection for data and other resources . User
or more other computing devices . Such communication can portal 83 provides access to the cloud computing environ
occur via I / O interfaces 22. Still yet , computer system / server ment for consumers and system administrators . Service level
12 can communicate with one or more networks , such as a 35 management 84 provides cloud computing resource alloca
local area network (LAN) , a general wide area network tion and management such that required service levels are
(WAN) , and / or a public network (e.g. , the Internet) via a met . Service Level Agreement (SLA) planning and fulfill
network adapter 20. As depicted , the network adapter 20 ment 85 provide pre - arrangement for , and procurement of ,
communicates with the other components of computer sys cloud computing resources for which a future requirement is
tem / server 12 via bus 18. It should be understood that 40 anticipated in accordance with an SLA .
although not shown , other hardware and / or software com Workloads layer 90 provides examples of functionality
ponents could be used in conjunction with computer system / for which the cloud computing environment may be utilized .
server 12. Examples include , but are not limited to : micro Examples of workloads and functions which may be pro
code , device drivers , redundant processing units , external vided from this layer include : mapping and navigation 91 ;
disk drive arrays , RAID systems , tape drives , data archival 45 software development and lifecycle management 92 ; virtual
storage systems , etc. classroom education delivery 93 ; data analytics processing

Referring now to FIG . 2 , an illustrative cloud computing 94 ; and transaction processing 95. As mentioned above , all
environment 50 is depicted . As shown , cloud computing of the foregoing examples described with respect to FIG . 3
environment 50 comprises one or more cloud computing are illustrative only , and the invention is not limited to these
nodes 10 with which local computing devices used by cloud 50 examples .
consumers , such as , for example , personal digital assistant It is understood all functions of one or more embodiments
(PDA) or cellular telephone 54A , desktop computer 54B , as described herein may typically performed by the system
laptop computer 54C , and / or automobile computer system 400 (FIG . 4) , which can be tangibly embodied as modules of
54N may communicate . Nodes 10 may communicate with program code 42 of program / utility 40 (FIG . 1) . However ,
one another . They may be grouped (not shown) physically or 55 this need not be the case . Rather , the functionality recited
virtually , in one or more networks , such as private , commu herein could be carried out / implemented and / or enabled by
nity , public , or hybrid clouds as described hereinabove , or a any of the layers 60 , 70 , 80 and 90 shown in FIG . 3 .
combination thereof . This allows the cloud computing envi It is reiterated that although this disclosure includes a
ronment 50 to offer infrastructure , platforms , and / or soft detailed description on cloud computing , implementation of
ware as services for which a cloud consumer does not need 60 the teachings recited herein are not limited to a cloud
to maintain resources on a local computing device . It is computing environment . Rather , the embodiments of the
understood that the types of computing devices 54A - N present invention may be implemented with any type of
shown in FIG . 2 are intended to be illustrative only and that clustered computing environment now known or later devel
computing nodes 10 and cloud computing environment 50 oped .
can communicate with any type of computerized device over 65 A hash table (HT) is made up of two parts : an array (the
any type of network and / or network addressable connection actual table where the data to be searched is stored) and a
(e.g. , using a web browser) . mapping function , known as a hash function . With a hash

US 10,831,736 B2
7 8

table , any value may be used as an index , such as a structures . For example , a complete sort by key may be
floating - point value , a string , another array , or even a performed and a perfectly balanced tree data structure may
structure as the index . This index is called the key , and the be built . Or a compact hash table data structure may be built ,
contents of the array element at that index is called the value . such as perfect hashing , cuckoo hashing , or compact hash
Therefore , an HT is a data structure that stores key / value 5 tables .
pairs and can be quickly searched by the key . The hash In one embodiment , the index maps hash values to a set
function is a mapping from the input space to the integer of tuple sequence numbers (TSNs , also referred to as a tuple
space that defines the indices of the array . The hash function or row identifier) . Neither the key (only its hash value) nor
provides a way for assigning numbers to the input data such any other attributes are stored in the index itself . This
that the data can then be stored at the array index corre- 10 approach also reflects main - memory and OLTP optimized
sponding to the assigned number . design , where having a clustered index is of little benefit .

Embodiments of the invention relate to multi - tier index Not storing any keys or attributes in the index allows index
ing processing of data structures supporting dynamic update pages to have the same layout in memory , independent of
operations . One embodiment includes a method for doing their types . One embodiment supports systems that use
inserts that includes performing a lookup , by a hashing 15 multi - version concurrency control , and both row and col
processor , into a root of a multi - tier data structure . The umn - wise storage . In one example , the index has the fol
lookup is performed with a key value derived from the value lowing interface :
or record to be inserted . This lookup yields a partition for uint64 lookup (uint64 hash , uint64 * resultBuffer , uint64
performing an insert operation . Within that partition , there is resultBufferSize)
a linked data structure containing one or more indexes . A 20 insert (uint64 hash , uint64 tsn)
probe is performed , by the hashing processor , on a first level delete (uint64 hash , uint64 tsn) .
index of this linked data structure , to lookup the key . The In one embodiment , the lookup function takes a hash
hashing processor adds a payload to the first level index value , a result buffer , and its maximum size as input param
upon finding the key . Otherwise , if the key is not found , it eters . The return value is the number of TSNs found for the
adds the key and the payload to the first level index . If there 25 desired hash key . If the result buffer is too small , the caller
is insufficient space to add the key , a data structure processor must allocate a larger buffer and retry the lookup . The
creates a new first level index and adds the new first level lookup and delete functions both take a hash value and a
index to the linked data structure as a first entry , and adds the TSN . This interface allows the index to be used for unique
key and the payload to the new index . However , if the linked and non - unique indexes .
data structure has changed since the probe was started (for 30 FIG . 4 is a block diagram illustrating a system 400 for
example , due to other concurrent insert operations) , the multi - tier indexing processing of data structures supporting
probe is retried on the changed structure . If the amount of dynamic update operations , according to an embodiment . In
data in the first level indexes exceeds a thre old , the data one embodiment , the system 400 includes a server 12
structure processor creates a new second level index and including a storage unit 1 405 through storage unit N 406
merges content from selected first level and second level 35 (where N is an integer greater than 1) , a data structure
indexes into the new second level index . processor 410 , an update processor 415 , and a hashing
One embodiment provides an index that maps a derived processor 420. In one embodiment , the storage units 1 - N

quantity based on a key value (e.g. , a hash value computed 405-406 may be external to the server 12. In one embodi
from the key) onto a superset of the set of record locators of ment , the storage units 1 - N 405-406 may store objects , such
records that hold this key . Due to the mapping and updates , 40 as rows / columns / individual values , tables , etc. In a rela
this payload is a superset , and may include non - matching tional database , a table (or file) organizes the information
entries (i.e. , can have collisions) due to the mapping and about a single topic into rows and columns . In one embodi
updates . In one embodiment , a multi - tier system includes a ment , the storage units 1 - N 405-406 may include different
top / upper tier and a bottom / lower tier . In one example , at the types of memory storage , such as a buffer pool , cloud based
top tier there is a memory - efficient data structure (e.g. , a 45 storage , different types of objects pools , etc.
hash table) , split internally into two levels . The first (root) In one embodiment , the data structure processor 410
level is an extendible - hashing like dictionary data structure performs processing on a hierarchical data structure that
that maps from a portion (usually a few prefix bits) of each includes root nodes and multi - levels of indexes (see , FIG .
derived quantity onto second level data structures . In one 13) . The update processor 415 provides update processing
example , the size of the root is capped to fit onto a single 50 that includes updating linked data structures (e.g. , linked
page . The dictionary data structure supports lookup and lists) by replacing merged indexes with the new indexes . In
insert operations , for example , a closed - addressing (chain one embodiment , the hashing processor performs probes ,
ing) hash table . The second level is a fixed - size dictionary lookups , and adds keys and payloads to the indexes in the
data structure . In one example , the fixed - size dictionary data linked data structures .
structure is set to be a single page . The top tier has an 55 A hash table has very different requirements and perfor
efficient in - memory dictionary for fast lookups and inserts , mance characteristics depending on the number of entries in
but may not be space efficient . it . Some of these requirements are in conflict with each

In one embodiment , the lower tier dictionaries are used other . For example , it is more expensive to insert into
when the index becomes too large for the top tier . When both compact hash tables than into data structures that are more
the root level and one dictionary on the second level are full , 60 generous with space . Hash tables that grow by doubling
the entire full second - level page is migrated to the lower tier . have good insert performance at the cost of high worst - case
To do so , it is merged with any existing lower tier dictionary latency . No single data structure will work well in all cases .
for that second level child , forming a new lower tier dic Therefore , in one embodiment , a hash index uses multiple
tionary (or a new lower tier dictionary may be directly different structures and dynamically adapts its internal struc
created if this is the first time) . The lower tier dictionaries are 65 ture to be able to achieve good overall characteristics . In one
immutable and do not support insert or delete operations . embodiment , for small and medium sized indexes , extend
This provides for using very compact and efficient data ible hashing is used to grow the index smoothly by splitting

US 10,831,736 B2
9 10

index pages . A chaining hash table stores a fixed number of depth of 1. In FIG . 6B , the extendible hashing dictionary 620
(hash , TSN) pairs and allows for in - place inserts and deletes . has a global depth of two (2) and has two pointers into a page
For large indexes , a compact hash table is implemented . In of hash table A 615 and two pointer into a page of hash table
one embodiment , a variant of the concise hash table is B 616. In FIG . 6C , the extendible hash table 620 has the
implemented and stores the majority of all entries com 5 array doubled , which results in splitting the hash table A 615
pactly . into hash table A ' 630 and hash table A " 635 , each with a

FIG . 5 illustrates an extendible hashing example 500 for local depth of two (2) . This results with a pointer from the
a global depth of one (1) , according to an embodiment . extendible hashing table 620 to a page of hash table A ' 630 ,
Extendible Hashing is a technique for growing hash tables . a pointer into a page of hash table A " 635 , and the two
In one embodiment , extendible hashing is used for small and 10 pointers remain into a page of hash table B 616 .
medium sized indexes with less than 10 million entries . The FIG . 7 illustrates a concise hash table (CHT) used in
root page of the hash index consists of the dictionary extendible hashing , according to an embodiment . In most
structure of extendible hashing , which is an array of pointers databases , the table size distribution is highly skewed , and a
to hash table pages . In one example , the size of the diction single or a handful of tables and their indexes dominate the
ary is always a power of two , the logarithm of which is 15 total space consumption . Therefore , for large indexes , space
known as global depth . Index operations can very efficiently consumption becomes a critical factor . Most dynamic index
jump directly to the next level by using global depth bits of ing data structures , including extendible hashing , linear
the hash as an index into the dictionary . In the initial state , hashing , and B - Trees , grow by splitting pages . As a result ,
shown by the extendible hashing dictionary 510 and hash pages are only about 75 % full on average , and additional
table A 530 , the extendible hashing dictionary 510 has global 20 space is often wasted to allow for fast lookups and in - place
depth of zero (0) (i.e. , size 1) , and is pointing to one index updates . Therefore , once an index has reached the maximum
page of hash table A 530 . extendible hashing fanout (e.g. , 4096) , splitting of pages is

In one example , if the index page of hash table A 530 stopped , and instead a more compact data structure is
becomes full , the dictionary needs to grow by doubling its introduced .
size by increasing the global depth at 515 , and indicated by 25 The Concise Hash Table (CHT) was originally proposed
extendible hashing dictionary 520 with global depth of one for space - efficient hash joins and allows for fast bulk con
(1) . In this temporary state both pointers are still pointing to struction and efficient lookups . By not allowing for in - place
the same (full) page of hash table A 530. In the second step , updates and deletes , it may pre - compute a perfect layout that
the index page is split at 540 into two pages (hash table A ' wastes no space . The CHT structure is introduced below the
536 and hash table A " 537) by assigning entries to one of the 30 extendible hashing dictionary 710 and one chaining page of
two new pages depending on the first bit of the hash key . hash table B 716 and includes CHT bitmap page A 725 and
Finally , the two new pointers are installed in the extendible CHT leaf page A 726. For large indexes , the vast majority of
hashing dictionary 520 . the data will be stored compactly in the CHT . The chaining

Once the page of hash table A ' 536 becomes full , again the hash table B 716 above the CHT structure becomes a staging
extendible hashing dictionary 520 is doubled and the page is 35 area for changes . As shown in FIG . 7 , the CHT consist of
split to arrive at the state with the page of hash table A ' 536 two levels , bitmap pages (e.g. , CHT bitmap page A 725) and
and the page of hash table A " 537. At this point , the page of leaf pages (e.g. , CHT leaf page A 726) .
hash table A " 537 can be split without doubling the extend The hash partitioning of the extendible hashing dictionary
ible hashing dictionary 520 , as there are multiple pointers 710 at the root of the index keeps the size of each CHT
pointing to it . To find out if an extendible hashing dictionary 40 manageable . For example , each CHT partition of an index
needs to grow or not , the local depth (abbreviated as “ ld ”) with 10 billion entries (80 GB in size) is only about 22 MB .
is stored at each page . If the local depth of a page is equal Additionally , the fanout of the extendible hashing dictionary
to the global depth (" gd ”) , there is only one pointer to this 710 enables parallelism . While the CHT structure has very
page , thus the extendible hashing dictionary 510 must grow good performance in main memory , it also behaves well if
first . As shown . Hash table A ' 536 has local depth of 2 and 45 the leaf level is evicted to disk or SSD . The bitmap pages
the global depth is 1 , so the extendible dictionary 520 does serve as a bloom filter that allows to avoid unnecessary
not need to grow . accesses . Furthermore , similar to Log - Structured Merge
One advantage of extendible hashing is that it is Trees , multiple writes are combined in the chaining hash

extremely fast ; a lookup merely consists of using a number table . This replaces frequent random I / O with much more
of hash bits as an index into the dictionary array . Addition- 50 efficient sequential I / O .
ally , in one example embodiment , extendible hashing allows In one example , the page of hash table A 715 has a
for low overhead synchronization because modifications to maximum local depth . An empty page is installed in hash
the extendible hashing dictionary are very infrequent . It table B 716. Then the CHT is created with hash table B 716
should be noted that for very large indexes , doubling the as the root of the CHT , which includes the CHT bitmap page
dictionary eventually becomes an expensive , high - latency 55 A 725 and CHT leaf page A 726. To summarize the growth
operation . In one example , however , this is not a problem process of the index : initially , the index grows horizontally
when only using the extendible hashing up to the point and the extendible hashing fanout increases at the root page .
where the dictionary fills up one page . With 32 KB and 8B The root page only contains pointers to chaining hash tables ,
pointers , for example , the maximum extendible hashing each of which has a fixed size and is stored on a single page .
fanout is 4096. After that , for large indexes , the dictionary 60 This approach is similar to a B + Tree with two levels , except
keeps this maximum size and , in effect , acts as initial hash that extendible hashing avoids explicit separator keys and
partitioning of large indexes into more manageable chunks . binary search at the root node . Once the maximum extend
FIGS . 6A - C illustrate extendible hashing examples for a ible hashing fanout is reached , the index starts growing

global depth of two (2) , according to an embodiment . As vertically by periodically merging index entries into a CHT .
shown in FIG . 6A , the extendible hashing dictionary 610 has 65 In one embodiment , the chain array stores indexes into the
a global depth of one (1) and is pointing to the page of hash entry array . Each entry stores another index next for the next
table A 615 and a page of hash table B 616 , each with a local entry in the chain of a special value to indicate the end of the

US 10,831,736 B2
11 12

list . At the front of the page a number of fields are stored that hash index works well not only for unique keys , but also
are only used during insertion and deletion . In one example , when there are multiple TSNs per key .
a lookup uses 12 hash bits to load the start of the chain . Since In one example , the 39 bits of the hash and a 48 bit TSN
the chain array has 4096 entries , storing of 12 bits can be are stored . These values are optimized for 32 KB pages and
avoided . 5 8B pointers : Extendible Hashing pre - determines 12 hash bits
FIGS . 8A - C illustrate CHT extendible hashing examples (due to a fanout of 4096) , and the modified CHT 900 bitmap

where the CHT includes two levels (bitmap pages and leaf page predetermines an additional 11 bits (due to 2048
pages) , according to an embodiment . In FIG . 8A , the chain buckets) . As a result , 23 bits of the hash can be " com
includes the extendible hashing dictionary 810 , the hash pressed , ” so that each leaf page entry only has to store the
table B 815 (the root of the CHT) and the CHT including the 10 remaining 16 bits . If the 48 bit TSN bits are added , each leaf
CHT bitmap page A 820 and CHT leaf page A 821. FIG . 8B entry is only 8 bytes in total .

FIG . 10 illustrates an example data structure 1000 , shows growing of the chain with a page of hash table C 825 . according to an embodiment . In one embodiment , the data In one example , the page of hash table B 815 is merged as structure 1000 includes a mutable tier 1010 that includes
shown in FIG . 8C , where hash table C 825 is the root for the 15 extendible hashing 1011 , and a hash table 1012 , and an merged CHT . The merged CHT includes the CHT bitmap immutable tier 1020 that includes a CHT bitmap 1021 (e.g. , page AB 840 and CHT leaf page AB 841 . modified bitmap array 910) and a CHT leaf page 1022. In
FIG . 9 illustrates a concise hash table (CHT) 900 that may one embodiment , leaf page pointers are interleaved within

be modified by an embodiment . The CHT 900 as a compact the bitmap array 910 in the same way as the prefix counts .
data structure . The CHT 900 achieves space efficiency by 20 To make space for this additional information , in one
storing entries in a dense , and mostly sorted array . In one embodiment the size of each bitmap is increased from 32 to
example , the CHT 900 includes a bitmap array 910 , an entry 64 bits . As a result there are 64 bits per bucket , of which 48
array 920 for the actual values , and an overflow data are used for leaf pointers and 16 are used for prefix counts .
structure 930 (e.g. , a different kind of hash table) . The All entries that hash to a bitmap bucket are stored on the
bitmap array 910 is sized such that about 1 in 8 bits are set , 25 same leaf . Further , the prefix count is now relative to the
and is split into buckets storing 32 bits (e.g. , for graphical beginning of the leaf , which is why 16 bits for it are
reasons 8 bits per bucket are used in the example) . By sufficient . When building the data structure , as many con
looking at an appropriate number of hash bits of an entry one secutive bitmap buckets as possible are assigned to a leaf . As
can determine its bit position in the array . Conceptually , its a result usually all but the last leaves are almost full .
position in the entry array can then be computed by adding 30 In one embodiment , another modification to the CHT 900
up the number of bits set (population count) left to its concerns how over - flows , which occur due to duplicate keys
position . Since it is not practical to actually compute the or hash collisions , are handled . In one embodiment , the data
population cou over many buckets on every lookup , prefix structure 1000 scheme is optimized for unique keys : once
population counts are interleaved with the bitmap array . In both possible locations for an item have been taken , this
the example , the prefix population for the bucket 2 is 4 , 35 entry was stored in a totally different data structure . In one
because the bucket 0 and the bucket 1 both have 2 entries in example , an approach is used that keeps overflow entries
the entry array 920. This allows to quickly find the likely close to regular entries . As a result , in one embodiment , the
position of an entry . In case of a hash collision (e.g. , h4 in hash index works well not only for unique keys , but also
the example) , the neighboring bit (and therefore also posi when there are multiple TSNs per key .
tion) is used . However , if more than two entries hash to the 40 In one example , the 39 bits of the hash and a 48 bit TSN
same bit position , these entries must be stored in a separate are stored . These values are optimized for 32 KB pages and
data structure , as shown in the example for h4 . 8B pointers : Extendible Hashing pre - determines 12 hash bits

The original CHT 900 data structure was designed for (due to a fanout of 4096) , and the modified CHT 900 bitmap
space - efficient in - memory hash joins . Therefore , both the page predetermines an additional 11 bits (due to 2048
bitmap array 910 structure and the entry array 920 are 45 buckets) in the data structure 1000. As a result , 23 bits of the
simply large arrays . Since the index is arranged on fixed hash can be “ compressed , ” so that each leaf page entry only
sized pages , in one embodiment the CHT 900 is modified . In has to store the remaining 16 bits . If the 48 bit TSN bits are
one embodiment , leaf page pointers are interleaved within added , each leaf entry is only 8 bytes in total .
the bitmap array 910 in the same way as the prefix counts . FIG . 11 illustrates a process 1100 for an index lookup
To make space for this additional information , in one 50 process , according to an embodiment . In one embodiment ,
embodiment the size of each bitmap is increased from 32 to process 1100 commences at block 1105 and continues to
64 bits . As a result there are 64 bits per bucket , of which 48 block 1110. In block 1110 a lookup operation is performed
are used for leaf pointers and 16 are used for prefix counts . into a root (e.g. , FIG . 13 , root 1310) index data structure to
All entries that hash to a bitmap bucket are stored on the determine a partition to search / insert . In block 1120 , a probe
same leaf . Further , the prefix count is now relative to the 55 operation is performed for a first level (level 1) index for a
beginning of the leaf , which is why 16 bits for it are selected key . If the key is found the payload is added to the
sufficient . When building the data structure , as many con result . Process 1100 proceeds to block 1130 , where the
secutive bitmap buckets as possible are assigned to a leaf . As process 1100 stops by proceeding to return 1160 if the key
a result usually all but the last leaves are almost full . was found (in block 1120) and duplicates are not allowed . A

In one embodiment , another modification to the CHT 900 60 loop over each first level (level 1) index is made (i.e. , return
concerns how over - flows , which occur due to duplicate keys to block 1120) if there are more first level indexes .
or hash collisions , are handled . In one embodiment , the In block 1140 , a probe is performed for a second level
original CHT 900 scheme is optimized for unique keys : once (level 2) index for the selected key . If the key is found it is
both possible locations for an item have been taken , this added to the payload result . Process 1100 continues to block
entry was stored in a totally different data structure . In one 65 1150 where the process 1100 stops by proceeding to block
example , an approach is used that keeps overflow entries 1160 if the key was found and duplicates are not allowed . A
close to regular entries . As a result , in one embodiment , the loop over each second level (level 2) index is made (i.e. ,

US 10,831,736 B2
13 14

return to block 1140) if there are more first level indexes , or more new second level indexes . The selection of first level
otherwise the process 1100 exits at block 1160 . and second level indexes for merging into a new second
FIG . 12 illustrates an insert into an index process 1200 , level index also marks the selected first level and second

according to an embodiment . Process 1200 commences at level indexes as not accepting further inserts . In one embodi
block 1205 and proceeds to block 1210. In one embodiment , 5 ment the data structure criterion may include one or more of
in block 1210 a lookup is performed into a root (e.g. , FIG . sufficient space in an index of the linked data structure , the
13 , root 1310) data structure to determine a partition to index being able to accept additional inserts , the index
search / insert . In block 1220 , a probe operation is performed having an imbalanced structure , or lookup efficiency . In one
on the first level (level 1) index for a selected key . If the key embodiment , the merge criterion may include one or more
is found , the payload is added to the first level index . 10 of : no on - going merge operation exists on the partition ,
Otherwise , the key and a payload are added to the first level determining that a merge operation is warranted due to
index . If there is sufficient space in the first level , the process significant content present in the selected first level and
stops at block 1270. Otherwise , if there is insufficient space , second level indexes , or lookup efficiency (e.g. , having a
a new first level index is started (created) in block 1230 . large number of indexes to be probed) .

In block 1230 , the additional first level index is created 15 In one embodiment , an upper tier of the multi - tier data
and added to the linked data structure for the partition , as a structure includes a single node containing a mutable dic
first index , if the linked data structure is unchanged since the tionary data structure that maps indicator values derived
start of the probe operation block 1220 by a concurrent from keys onto pointers to nodes in a lower tier of the
insert . If the linked data structure has changed since the multi - tier data structure , where the mutable dictionary struc
probe operation , the process continues back to block 1210 20 ture is efficient for performing individual insert operations .
for a retry . Otherwise , the key and payload are added to the In one example , each node in the lower tier of the multi - tier
new index . Process 1200 continues to block 1240 which data structure has one immutable dictionary structure that is
exits to block 1270 if an on - going merge on the determined efficient for performing lookup operations and bulk loading .
partition on another thread occurs , or if a merge is not Insert operations into the multi - tier data structure include
needed (e.g. , there is insufficient content to merge , or the 25 performing a lookup operation into the mutable dictionary
number of indexes to be probed is not excessive) . Process structure to select a lower tier node to insert into . Insert
1200 continues to block 1250 where a new second level operations into the lower tier nodes are made into a most
(level 2) index is created , and the content from all selected recently added mutable dictionary structure at that node .
first and second level indexes are merged into the new In one embodiment , the mutable dictionary structures are
second level index . In block 1260 , an update operation is 30 periodically merged into the immutable dictionary structure ,
performed by updating the linked data structure by replacing producing a new immutable dictionary structure . The immu
merged indexes with the new second level index . Process table dictionary structure includes a concise hash table
1200 then exits via block 1270 . including a first level of bitmap pages and a second level of
FIG . 13 illustrates an index , according to an embodiment . leaf pages . In one embodiment , the lookup uses a hash value ,

In the index 1300 , the root 1310 points to the array of active 35 a result buffer and maximum size as input parameters , and
level 1 indexes 1320 , which is linked to filled level 1 indexes returns as value a number of record identifiers (e.g. , TSNs ,
1330 and level 2 indexes 1340 . etc.) found for a desired hash key , and places as many result
FIG . 14 is a block diagram of a process 1400 for multi - tier payloads that fit within the maximum size into the result

indexing processing of data structures supporting dynamic buffer .
update operations , according to an embodiment . In one 40 As will be appreciated by one skilled in the art , aspects of
embodiment , in block 1410 the process 1400 performs a the present invention may be embodied as a system , method
lookup , by a hashing processor (e.g. , FIG . 4 , hashing pro or computer program product . Accordingly , aspects of the
cessor 420) , into a root (e.g. , FIG . 13 , root 1310) of a present invention may take the form of an entirely hardware
multi - tier data structure (e.g. , index 1300 , FIG . 13) to find a embodiment , an entirely software embodiment (including
partition for performing an insert / search operation . In block 45 firmware , resident software , micro - code , etc.) or an embodi
1420 , process 1400 performs a probe , by the hashing pro ment combining software and hardware aspects that may all
cessor , on a first level (level 1) index of a linked data generally be referred to herein as a " circuit , " " module ” or
structure (e.g. , this first level index could be a chaining hash " system . ” Furthermore , aspects of the present invention may
table) of the multi - tier data structure for a key . In block 1430 take the form of a computer program product embodied in
the hashing processor , based on data structure criterion , adds 50 one or more computer readable medium (s) having computer
a payload to the linked data structure upon finding the key , readable program code embodied thereon .
otherwise if the key is not found , the hashing processor adds Any combination of one or more computer readable
the key and the payload to the linked data structure . In block medium (s) may be utilized . The computer readable medium
1440 , based on data structure criterion , creates , by a data may be a computer readable signal medium or a computer
structure processor (e.g. , FIG . 4 , data structure processor 55 readable storage medium . A computer readable storage
410) a new first level index and adds the new first level index medium may be , for example , but not limited to , an elec
to the linked data structure upon the linked data structure tronic , magnetic , optical , electromagnetic , infrared , or semi
remaining unchanged since starting the probe in block 1420 , conductor system , apparatus , or device , or any suitable
and adds the key and the payload or reference to the payload combination of the foregoing . More specific examples (a
to the new index . In block 1450 the data structure processor , 60 non - exhaustive list) of the computer readable storage
based on a merge criterion , creates a new second level index medium would include the following : an electrical connec
and merges a portion of content from selected first level and tion having one or more wires , a portable computer diskette ,
second level indexes into the new second level index . a hard disk , a random access memory (RAM) , a read - only

In one embodiment , process 1400 may further include memory (ROM) , an erasable programmable read - only
updating , by an update processor (e.g. , FIG . 4 , update 65 memory (EPROM or Flash memory) , an optical fiber , a
processor 415) , the linked data structure by replacing portable compact disc read - only memory (CD - ROM) , an
indexes whose content has been fully merged with the one optical storage device , a magnetic storage device , or any

US 10,831,736 B2
15 16

suitable combination of the foregoing . In the context of this the computer or other programmable apparatus provide
document , a computer readable storage medium may be any processes for implementing the functions / acts specified in
tangible medium that can contain , or store a program for use the flowchart and / or block diagram block or blocks .
by or in connection with an instruction execution system , The flowchart and block diagrams in the Figures illustrate
apparatus , or device . 5 the architecture , functionality , and operation of possible
A computer readable signal medium may include a propa implementations of systems , methods , and computer pro

gated data signal with computer readable program code gram products according to various embodiments of the
embodied therein , for example , in baseband or as part of a present invention . In this regard , each block in the flowchart
carrier wave . Such a propagated signal may take any of a or block diagrams may represent a module , segment , or
variety of forms , including , but not limited to , electro- 10 portion of instructions , which comprises one or more
magnetic , optical , or any suitable combination thereof . A executable instructions for implementing the specified logi
computer readable signal medium may be any computer cal function (s) . In some alternative implementations , the
readable medium that is not a computer readable storage functions noted in the block may occur out of the order noted
medium and that can communicate , propagate , or transport in the figures . For example , two blocks shown in succession
a program for use by or in connection with an instruction 15 may , in fact , be executed substantially concurrently , or the
execution system , apparatus , or device . blocks may sometimes be executed in the reverse order ,

Program code embodied on a computer readable medium depending upon the functionality involved . It will also be
may be transmitted using any appropriate medium , includ noted that each block of the block diagrams and / or flowchart
ing but not limited to wireless , wireline , optical fiber cable , illustration , and combinations of blocks in the block dia
RF , etc. , or any suitable combination of the foregoing . 20 grams and / or flowchart illustration , can be implemented by

Computer program code for carrying out operations for special purpose hardware - based systems that perform the
aspects of the present invention may be written in any specified functions or acts or carry out combinations of
combination of one or more programming languages , special purpose hardware and computer instructions .
including an object oriented programming language such as References in the claims to an element in the singular is
Java , Smalltalk , C ++ or the like and conventional procedural 25 not intended to mean “ one and only ” unless explicitly so
programming languages , such as the “ C ” programming stated , but rather " one or more . ” All structural and functional
language or similar programming languages . The program equivalents to the elements of the above - described exem
code may execute entirely on the user's computer , partly on plary embodiment that are currently known or later come to
the user's computer , as a stand - alone software package , be known to those of ordinary skill in the art are intended to
partly on the user's computer and partly on a remote 30 be encompassed by the present claims . No claim element
computer or entirely on the remote computer or server . In the herein is to be construed under the provisions of 35 U.S.C.
latter scenario , the remote computer may be connected to the section 112 , sixth paragraph , unless the element is expressly
user's computer through any type of network , including a recited using the phrase “ means for ” or “ step for . ”
local area network (LAN) or a wide area network (WAN) , or The terminology used herein is for the purpose of describ
the connection may be made to an external computer (for 35 ing particular embodiments only and is not intended to be
example , through the Internet using an Internet Service limiting of the invention . As used herein , the singular forms
Provider) " a " , " an ” and “ the ” are intended to include the plural forms

Aspects of the present invention are described below with as well , unless the context clearly indicates otherwise . It will
reference to flowchart illustrations and / or block diagrams of be further understood that the terms " comprises ” and / or
methods , apparatus (systems) and computer program prod- 40 " comprising , " when used in this specification , specify the
ucts according to embodiments of the invention . It will be presence of stated features , integers , steps , operations , ele
understood that each block of the flowchart illustrations ments , and / or components , but do not preclude the presence
and / or block diagrams , and combinations of blocks in the or addition of one or more other features , integers , steps ,
flowchart illustrations and / or block diagrams , can be imple operations , elements , components , and / or groups thereof .
mented by computer program instructions . These computer 45 The corresponding structures , materials , acts , and equiva
program instructions may be provided to a processor of a lents of all means or step plus function elements in the
general purpose computer , special purpose computer , or claims below are intended to include any structure , material ,
other programmable data processing apparatus to produce a or act for performing the function in combination with other
machine , such that the instructions , which execute via the claimed elements as specifically claimed . The description of
processor of the computer or other programmable data 50 the present invention has been presented for purposes of
processing apparatus , create means for implementing the illustration and description , but is not intended to be exhaus
functions / acts specified in the flowchart and / or block dia tive or limited to the invention in the form disclosed . Many
gram block or blocks . modifications and variations will be apparent to those of

These computer program instructions may also be stored ordinary skill in the art without departing from the scope and
in a computer readable medium that can direct a computer , 55 spirit of the invention . The embodiment was chosen and
other programmable data processing apparatus , or other described in order to best explain the principles of the
devices to function in a particular manner , such that the invention and the practical application , and to enable others
instructions stored in the computer readable medium pro of ordinary skill in the art to understand the invention for
duce an article of manufacture including instructions which various embodiments with various modifications as are
implement the function / act specified in the flowchart and / or 60 suited to the particular use contemplated .
block diagram block or blocks . What is claimed is :

The computer program instructions may also be loaded 1. A method for inserting an entry into a multi - tier data
onto a computer , other programmable data processing appa structure comprising :
ratus , or other devices to cause a series of operational steps creating , by a data structure processor , a multi - tier data
to be performed on the computer , other programmable 65 structure that includes an upper tier comprising a first
apparatus or other devices to produce a computer imple level that is an extendible hashing dictionary data
mented process such that the instructions which execute on structure and a second level that is a fixed - size diction

5

10

15

20

30

US 10,831,736 B2
17 18

ary data structure , and a lower tier comprising an mutable dictionary data structure stores hash values of
immutable dictionary structure including a concise keys and maps hash values to a set of tuple sequence
hash table (CHT) that includes a first level comprising numbers .
a bitmap array with bitmap pages and a second level 6. The method of claim 5 , wherein :
comprising leaf pages , wherein leaf page pointers are each node in the lower tier of the multi - tier data structure
interleaved within the bitmap array ; has one immutable index data structure that is efficient

performing , by a hashing processor , a first lookup process for performing lookup operations and bulk loading ;
using a key of the entry into a root node of the multi - tier inserts into the multi - tier data structure comprise perform
data structure that determines a partition for performing ing a lookup operation into the mutable index data
an insert operation , wherein the extendible hashing structure to select a lower tier node to insert into ;
dictionary data structure provides lookups using a inserts into the lower tier nodes are made into a most
number of hash bits used as an index into the fixed - size recently added mutable dictionary data structure at that
dictionary data structure ; node ;

performing a second lookup process for the key , by the the mutable dictionary data structures are periodically
hashing processor , on a first level index that is part of merged into the immutable index data structure , pro
a linked data structure holding entries for the found ducing a new immutable index data structure ; and
partition ; the immutable dictionary structure does not support insert

based on data structure criterion , adding , by the hashing operations or delete operations .
processor , a payload or reference to the payload to the 7. The method of claim wherein the first lookup process
linked data structure upon finding the key , otherwise if uses a hash value , a result buffer and maximum size as input
the key is not found , adding the key and the payload to parameters , and returns as value a number of record iden
the linked data structure ; tifiers found for a desired hash key , and aces as many result

based on data structure criterion , creating , by the data payloads that fit within the maximum size into the result
structure processor , a new first level index and adding 25 buffer .
the new first level index to the linked data structure 8. A computer program product for inserting an entry into
upon the linked data structure remaining unchanged a multi - tier data structure , the computer program product
since starting the second lookup process for the key , comprising a non - transitory computer readable storage and adding the key and the payload or the reference to medium having program code embodied therewith , the payload to the new first level index ; program code executable by a processor to : based on a merge criterion , creating , by the data structure create , by a data structure processor , the multi - tier data processor , a new second level index and merging a structure that includes an upper tier comprising a first portion of co ent from selected first level and second
level indexes into the new second level index , and level that is an extendible hashing dictionary data

structure and a second level that is a fixed - size diction using the lower tier of the multi - tier data structure instead 35
of the upper tier upon the first level index exceeding a ary data structure , and a lower tier comprising an
size for the upper tier . immutable dictionary structure including a concise

2. The method of claim 1 , further comprising : hash table (CHT) that includes a first level comprising
updating , by an update processor , the linked data structure a bitmap array with bitmap pages and a second level

by replacing indexes with content that has been fully 40 comprising leaf pages , wherein leaf page pointers are
merged with the one or more new second level indexes , interleaved within the bitmap array ;
wherein the selection of first level and second level perform , by the processor , a first lookup process using a
indexes for merging into a new second level index also key of the entry into a root node of the multi - tier data
marks the selected first level and second level indexes structure that determines partition for performing an
as not accepting further inserts . insert operation , wherein the extendible hashing dic

3. The method of claim 1 , wherein the data structure tionary data structure provides lookups using a number
criterion comprises one or more of sufficient space in an of hash bits used as an index into the fixed - size dic
index of the linked data structure , the index being able to tionary data structure ;
accept additional inserts , the index having an imbalanced perform a second lookup process , by the processor , for the
structure , or lookup efficiency . key on a first level index that is part of a linked data

4. The method of claim 1 , wherein the merge criterion structure holding entries for the found partition ;
comprises one or more of : based on data structure criterion , add , by the processor , a

no on - going merge operation exists on the partition , payload or reference to the payload to the linked data
determining that a merge operation is warranted due to structure upon finding the key , otherwise upon the key

significant content present in the selected first level and 55 not being found , adding the key and the payload to the
second level indexes , or linked data structure ;

lookup efficiency . based on data structure criterion , create , by the data
5. The method of claim 2 , wherein : structure processor , a new first level index and adding
the upper tier of the multi - tier data structure comprises a the new first level index to the linked data structure

single node containing a mutable dictionary data struc- 60 upon the linked data structure remaining unchanged
ture that maps indicator values derived from keys onto since starting the second lookup process for the key ,
pointers to nodes in the lower tier of the multi - tier data and adding the key and the payload or the reference to
structure ; the payload to the new first level index ;

the mutable dictionary structure is efficient for performing based on a merge criterion , create , by the data structure
individual insert operations ; and processor , a new second level index and merging a

the mutable dictionary data structure comprises a data portion of content from selected first level and second
structure without storing keys or attributes , and the level indexes into the new second level index , and

45

50

65

5

US 10,831,736 B2
19 20

using the lower tier of the multi - tier data structure instead the mutable dictionary data structure is efficient for per
of the upper tier upon the first level index exceeding a forming individual insert operations ; and
size for the upper tier . the mutable dictionary data structure comprises a data 9. The computer program product of claim 8 , further structure without storing keys or attributes , and the comprising program code executable by the processor to : mutable dictionary data structure stores hash values of update , by an update processor , the linked data structure keys and maps hash values to a set of tuple sequence by replacing indexes with content that has been fully numbers . merged with the one or more new second level indexes ,
wherein the selection of first level and second level 13. The computer program product of claim 9 , wherein :

each node in the lower tier of the multi - tier data structure indexes for merging into a new second level index also 10 has one immutable index data structure that is efficient marks the selected first level and second level indexes for performing lookup operations and bulk loading ; as not accepting further inserts . inserts into the multi - tier data structure comprise perform 10. The computer program product of claim 9 , wherein
the data structure criterion comprises one or more of suffi ing a lookup operation into the mutable dictionary data
cient space in an index of the linked data structure , the index 15 structure to select a lower tier node to insert into ;

inserts into the lower tier nodes are made into a most being able to accept additional inserts , the index having an
imbalanced structure , or lookup efficiency . recently added mutable dictionary data structure at that

node ; 11. The computer program product of claim 10 , wherein
the merge criterion comprises one or more of : the mutable dictionary data structures are periodically

no on - going merge operation exists on the partition , merged into the immutable index data structure , pro
determining that a merge operation is warranted due to ducing a new immutable index data structure ; and

significant content the immutable dictionary structure does not support insert
present in the selected first level and second level indexes , operations or delete operations .

or lookup efficiency . 14. The computer program product of claim 8 , wherein
12. The computer program product of claim 8 , wherein : the first lookup process uses a hash value , a result buffer and
the upper tier of the multi - tier data structure comprises a maximum size as input parameters , and returns as value a

single node containing a mutable dictionary data struc number of record identifiers found for a desired hash key ,
ture that maps indicator values derived from keys onto and places as many result payloads that fit within the

maximum size into the result buffer . pointers to nodes in the lower tier of the multi - tier data
structure ;

20

25

