发明名称
一种湿法加工魔芋精粉的方法

摘要
本发明涉及一种湿法加工魔芋精粉的方法，将芋片或芋角送入研磨机内进行研磨，经旋风分离机和振动筛分选获得80目以下，80—120目，120目以上的初精粉，各目初精粉送入酒精浓度为浓度为35—45%的药液槽内充分浸泡，搅拌、洗涤，洗涤后的粉料进行离心脱液、真空干燥，将脱液粉料重新收集，获得纯化魔芋精粉，药液槽内的初精粉与酒精的重量比为1：3.0—1：4.0。本发明将初精粉分段处理，在不同条件下进行浸泡、搅拌、洗涤，使脱液粉料酒精用量减少，降低了成本；不需要复杂的操作过程，操作容易。本发明生产的魔芋精粉，杂质含量低、纯度高、粘度高，透明度好，是一种低耗、高效的魔芋精粉加工方法。
1. 一种湿法加工魔芋精粉的方法，其特征在于将芋片或芋角送入干研磨机内进行研磨，经旋风分离机和振动筛分选获得 80 目以下、80-120 目、120 目以上的初级精粉，各自初级精粉送入酒精浓度为浓度为 35-45% 的抑膨罐内，在 30-50℃ 下充分浸泡、搅拌、洗涤，洗涤后的料液进行离心脱液、真空干燥，将抑膨溶液重新收集，获得纯化魔芋精粉。抑膨罐内的初级精粉与酒精的重量比为 1:3.0-1:4.0。

2. 根据权利要求 1 所述的一种湿法加工魔芋精粉的方法，其特征在于在 60℃ 下真空干燥。
一种湿法加工魔芋精粉的方法

技术领域
[0001] 本发明涉及食品加工技术领域，具体涉及一种湿法加工魔芋精粉的方法。

背景技术
[0002] 魔芋精粉加工的核心是从魔芋块茎中分离和提取葡萄聚糖，实际上是在去除其中的淀粉、蛋白质、纤维等物质而得到较为纯净的葡萄聚糖颗粒。
[0003] 目前，从魔芋中提取葡萄聚糖的方法，概括有两大类：一类是干法，另一类是湿法。传统干法加工方法生产的精粉纯度较低，而且得率也低，致使产品利用价值不高。为解决传统方法所存在的问题，人们研制出用湿法加工魔芋精粉的方法，即利用有机溶剂制作加工介质，防止葡萄聚糖存在于加工介质条件下粉碎研磨，再进行分离、干燥，用此法获得的精粉质量较好，但其消耗有机溶剂量大，致使生产成本高。
[0004] 《一种魔芋葡萄聚糖精粉的加工方法》（CN1314349C），是将魔芋葡萄聚糖粗粉送入低温研磨机内进行研磨，经旋转分离机分选获得初级精粉，把初级精粉送入酒精浓度为30～70的抑膨糖内浸泡、搅拌、洗涤，对洗涤后的粉料进行研磨，离心脱出糖浆和水，真空干燥、烘干，对抑膨溶液酒精进行回收烘干后的初级精粉再送入低温振动磨具研磨，旋风分选，获得魔芋葡萄聚糖纯化精粉或微粉。

发明内容
[0005] 本发明的目的是针对上述现状，旨在提供一种抑膨溶液酒精用量少，成本低，产品杂质含量低、纯度高、粘度高、诱导度高的湿法加工魔芋精粉的方法。
[0006] 本发明目的一种实现方式为：一种湿法加工魔芋精粉的方法，将芋片或芋角送入研磨机内进行研磨，经旋转分离机和振动筛分选获得80目以下、80～120目、120目以上的初级精粉，各初级精粉送入酒精为浓度为35～45%的抑膨糖内充分浸泡、搅拌、洗涤，洗涤后的粉料进行离心脱液、真空干燥，将抑膨溶液重新收集，得到纯化魔芋精粉，抑膨糖内的初级精粉与酒精的重量比为1：3.0～1：4.0。
[0007] 本发明将初级精粉分筛处理，在不同条件下进行浸泡、搅拌、洗涤，使抑膨溶液酒精用量减少，降低了成本，不需要复杂的操作过程，操作容易。
[0008] 本发明生产的魔芋精粉，杂质含量低、纯度高、粘度高、诱导度高，是一种低耗、高效的魔芋精粉加工方法。

具体实施方式
[0009] 经本申请人反复研究发现，精粉颗粒大小与其在加工介质中溶胀状态密切相关，并且控制反应温度将极大的提高葡萄聚糖得率。为减少生产过程中使用食酒精的用量，提高精粉产品质量，本发明将初级精粉分选获得不同饱和类型，于一定温度条件下按照不同条件进行浸泡、搅拌、洗涤，对洗涤后的粉料进行离心脱液和真空干燥，同时将抑膨溶液重新收集、回收利用，获得纯化魔芋精粉（魔芋胶）。抑膨溶液酒精用量少，成本低。
【0010】本发明将芋片或芋角送入于研磨机内进行研磨，经旋风分离机和振动筛分选获得分选获得 80 目以下，80—120 目，120 目以上的初级精粉。

【0011】以下实施例用于说明本发明，但不用来限制本发明的范围。

【0012】将 1000kg 芋片、芋角送入于研磨机内进行研磨，经旋风分离机和振动筛分选获得 80 目以下初级精粉 674kg，80—120 目之间的初级精粉 193kg，120 目以上的初级精粉 78kg。

【0013】将 80 目初级精粉送入酒精浓度为 35% 的自动罐内，在 30℃条件下充分浸泡、搅拌、洗涤。初级精粉与自动溶液料液比为 1:4.0。洗涤后的精粉进行离心脱液，60℃下真空干燥，对真空干燥的芋精粉进行均质，获得纯化芋精粉（芋精胶）553kg。由精液回收装置将真空干燥中尾气内的精液进行回收，实际消耗精液 272kg。

【0014】将 80—120 目之间的初级精粉送入酒精浓度为 40% 的自动罐内，在 40℃条件下充分浸泡、搅拌、洗涤。初级精粉与自动溶液料液比为 1:3.5。洗涤后的精粉进行离心脱液，60℃下真空干燥，对真空干燥的芋精粉进行均质，获得纯化芋精粉（芋精胶）164kg。由精液回收装置将真空干燥中尾气内的精液进行回收，实际消耗精液 67kg。

【0015】将 120 目以上的初级精粉送入酒精浓度为 40% 的自动罐内，在 50℃条件下充分浸泡、搅拌、洗涤。初级精粉与自动溶液料液比为 1:3.0。洗涤后的精粉进行离心脱液，60℃下真空干燥，对真空干燥的芋精粉进行均质，获得纯化芋精粉（芋精胶）68kg。由精液回收装置将真空干燥中尾气内的精液进行回收，实际消耗精液 39kg。

【0016】目前同行业处理 1000kg 芋片、芋角精液平均消耗量为 600—700kg。采用本发明共获得初级精粉 945kg，纯化芋精粉（芋精胶）785kg。由精液回收装置将真空干燥中尾气内的精液进行回收，实际共消耗精液 378kg，远低于同行业生产 600—700kg 的精液消耗量。