Office de la Propriete Canadian CA 2191411 C 2003/05/06

Intellectuelle Intellectual Property

du Canada Office (11)(21) 2 1 91 41 1
Un organisme An agency of

d'Industrie Canada Industry Canada (12) BREVET CANADIEN

CANADIAN PATENT
13) C

(22) Date de depot/Filing Date: 1996/11/27 (51) ClL.Int.%/Int.CI.° GOBF 9/45
(41) Mise a la disp. pub./Open to Public Insp.: 199//06/09 (72) Inventeur/Inventor:
(45) Date de délivrance/lssue Date: 2003/05/06 YELLIN, FRANK, US

e el (73) Propriétaire/Owner:
(30) Priorite/Priority: 1995/12/08 (08/569,7/54) US SUN MICROSYSTEMS. INC. US

(74) Agent: SMART & BIGGAR

54) Titre : SYSTEME ET METHODE POUR OPTIMISER LE TEMPS D'EXECUTION DES APPELS A VARIABLE
PRIVEE DANS UN INTERPRETEUR SUR

54) Title: SYSTEM AND METHOD FOR RUNTIME OPTIMIZATION OF PRIVATE VARIABLE FUNCTION CALLS IN A
SECURE INTERPRETER

114
RN Call for Execution of Method
| {260
rl__oad working copy of method into interpreter
(262 b -
Select next instruction to execute
264
N Method call,
being executed for first
time’?
Y
266
Is called method
a simple method whose sole
N function is (A) to return value of a private
variable, (B) to store a value in a private variable, or |
Y (C) return a constant value?
Y /268
Replace method call instruction with a
corresponding direct access instruction.
A

270

Would
execution of selected instruction violate

security restrictions?

274 Y

— 7272
Flag security violation.
Abort method execution. | | Execute selected instruction

|

(57) Abregée/Abstract:

A secure program Interpreter performs a special check the first time it executes a method call to determine If the sole purpose of
the called method Is to access the value of private variable, modify the value of a private variable, or return a constant value.
VWhen this Is the case, the Interpreter's internal representation of the method being executed is modified so as to directly access

,
L
X
e
e . ViNENEE
L S S \
ity K
.' : - h.l‘s_‘.}:{\: .&. - A L~
.
A

A7 /7]
o~

W .
‘ l an a dH http.:vvopic.ge.ca + Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC
OPIC - CIPO 191

CA 2191411 C 2003/05/06

anen 2 191 411
13) C

(57) Abréege(suite)/Abstract(continued):

the private variable of the called method, or to directly access the stored constant of the called method. The modified methoad
representation uses special "privileged” load and store instructions, not available in normal source code programs, that access
private variables and constants outside the method being executed without causing a security violation to be flagged. When the
modified portion of the method Is executed, the private variable or constant is accessed directly by the executed method using a
privileged load or store instruction, the use of which avoids the flagging of a security violation by the program interpreter. VWWhen
execution of the program is completed, the modified internal representation of the method Is flushed, such that when the
program Is executed again said interpreter generates a new working representation of the aforementioned method.

10

15

2191471

ABSTRACT OF THE DISCLOSURE

A secure program interpreter performs a special check the first time it
executes a method call to determine if the sole purpose of the called method
is to access the value of private variable, modify the value of a private
variable, or return a constant value. When this is the case, the interpreter's
internal representation of the method being executed is modified so as to
directly access the private variable of the called method, or to directly access
the stored constant of the called method. The modified method
representation uses special “privileged” load and store instructions, not
available in normal source code programs, that access private variables and
constants outside the method being executed without causing a security
violation to be flagged. When the modified portion of the method is executed,
the private variable or constant is accessed directly by the executed method
using a privileged load or store instruction, the use of which avoids the
flagging of a security violation by the program interpreter. When execution of
the program is completed, the modified internal representation of the method

is flushed, such that when the program is executed again said interpreter

generates a new working representation of the aforementioned method.

r ¥
[8 &

A-62606/GSW
SUN P1118

10

15

20

SYSTEM AND METHOD FOR RUNTIME OPTIMIZATION OF
PRIVATE VARIABLE FUNCTION CALLS IN A SECURE INTERPRETER

The present invention relates generally to object oriented computer systems
in which an interpreter executes object methods in a secure manner, and

particularly to an improved interpreter for optimizing calls to methods whose
sole purpose is to access the value of private variable, modify the value of a

private variable, or return a constant value.

BACKGROUND OF THE INVENTION

In object-oriented programming languages, every object belongs to a specific
“class,” sometimes called an object class. The class of an object indicates
what variables the object has and what actions (“methods”) may be
performed on an object.

Some variables (i.e., in objects) are marked “private.” This marking indicates
that the variable may only be accessed or modified by methods belongs to
the same class as the object. They may not be modified or accessed from
other classes. It is not uncommon for certain classes of objects to have
methods whose sole purpose is to access the value of a private variable,
modify the value of a private variable, or return a constant value. By creating
such methods, the implementor of the class is better able to hide the details
of the implementation of the class. It also gives the implementor greater

freedom to re-implement the class, without requiring all users of the class to

recompile their code.

10

15

20

25

30

-2 2\9\4\11

However, method calls are often far more expensive (i.e., take much more
CPU time) than variable accesses. Similarly, method calls are more

expensive than accessing a constant value.

Some optimizing compilers will, when appropriate, automatically convert a
method call into a simple variable access or modification, sometimes called
“in-lining”. However, this scheme is unacceptable within a secure

aenvironment for two reasons:

1) within the resulting optimized code, it will appear that the
optimized code is directly using the private variable of an object
of another class. However, a secure runtime system will notice
this and flag a security violation. In particular, a secure runtime
system must not normally allow a method 1o access private

variables inside an object of another class; and

2} the author of the original class loses the ability to modify the
implementation if there is a possibility than anyone has
compiled optimized code against the “old” definition of the
object class (i.e., with old versions of the methods that access
private variables).

It is an object of the present invention to optimize the run time interpretation
of methods that call upon other methods whose sole purpose is {0 access a
private variable or constant value, but without creating a permanently revised

program.

It is another object of the present invention is to a optimize a run time
interpreter for efficient execution of methods whose sole purpose is to access
a private variable or constant value in such a way that a security violation is

avoided, without disabling the interpreter's normal security provisions for

10

15

20

25

30

1191411

-3.

preventing a method of one class from accessing the private variables of an
object of another class.

SUMMARY OF THE INVENTION

In summary, the present invention is a program interpreter for interpreting
object oriented programs in a computer system having a memory that stores
a plurality of objects of multiple classes and a plurality of procedures. Ina
preferred embodiment, a secure program interpreter performs a special check
the first time it executes a method call to determine if the sole purpose of the
called method is to access the value of private variable of an instance of the
called method's class, modify the value of a private variable of an instance of
the called method’s class, or return a constant value. When this is the case,
the interpreter’s internal representation of the method being executed is
modified so as to directly access the private variable of an instance of the

called method’s class, or to directly access the stored constant of the called

method.

The modified method representation, stored internally by the program
interpreter, uses special “privileged” load and store instructions, not available
in normal source code programs, that are allowed to access private variables
in instances of objects of other classes and constants outside the method
being executed. When the modified portion of the method is executed, the
private variable or constant is accessed directly by the executed method
using a privileged load or store instruction, the use of which avoids the

flagging of a security violation by the program interpreter.

Furthermore, when execution of the entire program is completed, the
modified intemal representation of the method is flushed. As a result, the
modification of the executed method is ephemeral. If any of the called

methods are modified between uses of programs that execute the calling

10

15

20

25

30

CA 021921411 2002-07-10

77207-15

method, such as to revise the value assigned to a private
variable or constant, or to have the method no longer simple
access a private variable but instead to calculate a value,
the revised version of the called methods will be used
during such subsequent executions, thereby preserving the

author’s ability to modify the associated object class.

The invention may be summarized according to a
first aspect as a computer system, comprising: memory for
storing a plurality of objects and a plurality of
procedures, each said object comprising an instance of an
associated object class and each said procedure belonging to
a respective object class, said plurality of procedures
including simple procedures wherein the entire functilon
performed by each said simple procedure 1s selected from the
group consisting of: (A) returning a private varilable's
value, where said private variable is stored in and 1s
private to an object of the object class to which said
simple procedure belongs, (B) storing a specified value 1into

said private variable, and (C) returning a constant value;

and a secure program interpreter for executing selected ones
of said procedures, said interpreter providing private
variable security to restrict access to said private
variable, said interpreter including a load subprocedure for
generating a working representation of a first one of said
procedures to be executed, and an optimization subprocedure
for optimizing execution of said simple procedures when
called by other ones of said procedures, said optimization
subprocedure determining, when said interpreter 1s
processing a procedure call in said first procedure to a
second one of said procedures, whether said second procedure
is one of said simple procedures, and if said determination

is positive, replacing said procedure call in said working

10

15

20

25

30

CA 021921411 2002-07-10

77207-15

4 a

representation of said first procedure with a direct access
instruction that does not violate the private variable
security provided by the secure program interpreter, wherein
sald direct access instruction 1s selected from the group
consisting of (A) a first instruction that directly returns
said private variable's value, (B) a second instruction that
directly stores a specified value into said private
variable, and (C) a third instruction that directly returns

said constant wvalue.

According to another aspect the invention provides
a method of operating a computer system, comprising the
steps of: storing a plurality of objects and a plurality of
procedures in a computer memory, each said object comprising
an instance of an associated object class and each said
procedure belonging to a respective object class, said
plurality of procedures including simple procedures whereln
the entire function performed by each said simple procedure
is selected from the group consisting of: (A) returning a
private variable's value, where said private variable 1s
private to an object of the object class to which said
simple procedure belongs, (B) storing a specified value into
said private variable, and (C) returning a constant value;
under the control of a secure program interpreter, said
interpreter providing private variable security to restrict
access to said private variable, executing selected ones of
said procedures, including generating a working
representation of a first one of said procedures to be
executed, and optimizing execution of any of said simple
procedures when called by said first procedure, said
optimizing step including determining, when said interpreter
is processing a procedure call in sald first procedure to a
second one of said procedures, whether said second procedure

is one of said simple procedures, and if said determination

10

15

20

25

30

CA 021921411 2002-07-10

77207-15

4b

is positive, replacing said procedure call in said working
representation of said first procedure with a direct access
instruction that does not violate the private variable
security provided by the secure program interpreter, wherein
said direct access instruction 1is selected from the group
consisting of (A) a first instruction that directly returns
said private variable's value, (B) a second instruction that
directly stores a specified value into said private
variable, and (C) a third instruction that directly returns

said constant value.

According to a further aspect the 1nvention
provides a computer program product for use in conjunction
with a computer system, the computer program product
comprising computer executable program code for: storing a
plurality of objects and a plurality of procedures 1n a
computer memory, each said object comprising an 1instance of
an associated object class and each said procedure belonging
to a respective object class, said plurality of procedures
including simple procedures wherein the entire function
performed by each said simple procedure 1s selected from the
group consisting of: (A) returning a private variable's
value, where said private variable is private to an object
of the object class to which said simple procedure belongs,
(B) storing a specified value into said private variable,
and (C) returning a constant value; providing a secure
program interpreter for providing private variable security
to restrict access to said private variable; and under the
control of the secure program interpreter, executing
selected ones of said procedures, including generating a
working representation of a first one of said procedures to
be executed, and optimizing execution of any of said simple
procedures when called by said first procedure, said

optimizing step including determining, when sald 1lnterpreter

10

15

20

25

CA 021921411 2002-07-10

77207-15

4cC

is processing a procedure call in said first procedure to a
second one of said procedures, whether said second procedure
is one of said simple procedures, and if said determination
is positive, replacing said procedure call 1in said working
representation of said first procedure with a direct access
instruction that does not violate the private variable
security provided by the secure program interpreter, wherein
said direct access instruction 1s selected from the group
consisting of (A) a first instruction that directly returns
said private variable's value, (B) a second instruction that
directly stores a specified value into said private
variable, and (C) a third instruction that directly returns

sald constant value.

BRIEF DESCRIPTION OF THE DRAWINGS

Additional objects and features of the invention
will be more readily apparent from the following detailed
description and appended claims when taken in conjunction

with the drawings, in which:

Fig. 1 1s a block diagram of a computer system

incorporating a preferred embodiment of the present

invention.

Fig. 2 is a block diagram of the data structure

for an object in a preferred embodiment of the present

invention.

Fig. 3 is a block diagram of the data structure

for an object class having a plurality of simple methods.

Fig. 4 is a conceptual representation of the

method loading and optimization process of the present

invention.

Coaldg L Bagmmvaareet e

CA 021921411 2002-07-10

77207-15

4d

Fig. 5 i1s a flow chart of the program interpreter
procedure used in a preferred embodiment of the present

invention.

10

15

20

25

30

2191411

DESCRIPTION OF THE PREFERRED EMBODIMENT

-5.

Referring to Fig. 1, there is shown a distributed computer system 100 having
multiple client computers 102 and multiple server computers 104. In the
preferred embodiment, each client computer 102 is connected to the servers
104 via the Internet 103, although other types of communication connections
could be used. While most client computers are desktop computers, such as
Sun workstations, 1BM compatible computers and Macintosh computers,
virtually any type of computer can be a client computer. In the preferred
embodiment, each client computer includes a CPU 105, a communications
interface 106, a user interface 107, and memory 108. Memory 108 stores:

® an operating system 109;
® an Internet communications manager program 110;
® a bytecode program verifier 112 for verifying whether or not a specified

pbrogram satisfies certain predefined integrity criteria;

® a bytecode program interpreter 114 for executing application
programs;
® a class loader 116, which loads object classes into a user’s address

space and utilizes the bytecode program verifier to verify the integrity
of the methods associated with each loaded object’class;

® at least one class repository 120, for locally storing object classes 122
in use and/or available for use by user’s of the computer 102;

® at least one object repository 124 for storing objects 126, which are
instances of objects of the object classes stored in the object
repository 120.

In the preferred embodiment the operating system 109 is an object oriented

multitasking operating system that supports multiple threads of execution

within each defined address space. However, the present invention could be

used in other types of computer systems, including computer systems that do
not have an operating system.

10

15

20

25

30

2191411

-6 -

The class loader 116 is typically invoked when a user first initiates execution
of a procedure that requires that an object of the appropriate object class be
generated. The class loader 116 loads in the appropriate object class and
calls the bytecode program verifier 112 to verify the integrity of all the
bytecode programs in the loaded object class. If all the methods are
successfully verified, an object instance of the object class is generated, and
the bytecode interpreter 114 is invoked to execute the user requested
procedure, which is typically called a method. If the procedure requested by
the user is not a bytecode program and if execution of the non-bytecode
program is allowed (which is outside the scope of the present document), the

program is executed by a compiled program executer {(not shown).

The class loader Is also invoked whenever an executing bytecode program
encounters a call to an object method for an object class that has not yet
been loaded into the user's address space. Once again the class loader 116
loads in the appropriate object class and calls the bytecode program verifier
112 to verify the integrity of all the bytecode programs in the lcaded object
class. In many situations the object class will be loaded from a remotely
located computer, such as one of the servers 104 shown in Fig. 1. If all the
methods in the loaded object class are successfully verified, an object
instance of the object class is generated, and the bytecode interpreter 114 is
invoked to execute the called object method.

As shown in Fig. 1, the bytecode program interpreter 114 includes a work
array 130 in which a working representation of all currently loaded methods

are temporarily stored. The working representation is stored internally to the
interpreter and may be dynamically modified to optimize execution speed, as

is discussed in more detail below.

In the preferred embodiment, the bytecode program interpreter 114 also
includes security procedures 132 or instructions for preventing a number of

program practices that are contrary to secure program execution

10

15

20

25

30

2191411

-7 -

requirements, including security instructions for preventing standard load and
store instructions in one method from directly accessing a private variable in
an object that is an instance of another class. When execution of any such
instruction is attempted by the program interpreter, it flags the instruction as a
security violation and aborts execution of the method that contains the

instruction.

The bytecode program interpreter 114 furthermore includes a function call
replacement procedure 134 for replacing procedure calls to certain types of
simple methods with special instructions that directly access or modify
associated private variables or that directly load an associated constant

value.

Data Structures for Objects

Fig. 2 shows the data structure 200 for an object in a preferred embodiment
of the present invention. An object of object class A has an object handle 202
that includes a pointer 204 to the methods for the object and a pointer 206 to
a data array 208 for the object.

The pointer 204 to the object's methods is actually an indirect pointer to the
methods of the associated object class. More particularly, the method pointer
204 points to the Virtual Function Table (VFT) 210 for the object’s object
class. Each object class has a VFT 210 that includes pointers 212 to each of
the methods 214 of the object class. The VFT 210 also includes a pointer
216 to a data structure called the class descriptor 218 for the object class.
The class descriptor 218 includes, in addition to items not relevant here, data
array offsets 220 for each of the variables used by the methods of the object
class (indicating where in the data array 208 the variable’s value is stored).
Furthermore, for each data offset item 220 the class descriptor includes an

identification of the variable (e.qg., the variable’s name) plus an indicator of

2191411

-8 -

the data type of the variable {(e.q., integer) and an indicator as to whether or
not the variable is a private variable. In some embodiments the structure of
objects is more complex than shown in Fig. 2, but those additional structural

elements are not relevant to the discussion in this document.

Fig. 3 shows the data structure 122-A for storing the methods 230 of an
object class having several “simple methods”. For the purposes of this
document, the term “simple method” shall be defined to mean a method
whose sole function is (A) retuming a private variable’s value, where the
10 private variable is private to the simple procedure, (B) storing a specified

value into the private variable, or (C) returning a constant value.

The security procedures 132 of the bytecode program interpreter prevent any

method of one class from directly accessing the private variables of an object
15 of another class.

Referring to Fig. 4, the program code associated with a method in an object
class is initially copied into the work array of the interpreter to form a working
internal representation of the loaded method. That initial working

20 representation of the method may then be modified by the interpreter in
various ways to generate an optimized form of the working representation of
the method. In the case of the present invention, the working representation
of the method is modified so as to make procedure calls to simple methods

more computationally efficient.
25

The Optimized Method Interpretation Methodology

Table 1 contains a pseudocode representation of the portion of the program
30 interpreter procedure relevant to the present invention. The pseudocode

used in Table 1 is, essentially, a computer language using universal

computer language conventions. While the pseudocode employed here has

10

15

20

25

30

.. 7191411

been invented solely for the purposes of this description, it is designed to be

easily understandable by any computer programmer skilled in the an.

Referring to Fig. 5 and the pseudocode for the program interpreter procedure
shown in Table 1, when execution of a method is requested, a working copy
of the method is loaded into the interpreter’s work array (260). During
execution of the method by the interpreter, the interpreter selects a next
instruction to execute (262). If the selected instruction is a method call that is
being executed for the first time (264-Y) and the called method is a simple
method whose sole function is (A) returning a private variable’s vaiue, where
the private variable is private to the simple procedure, (B) storing a specified
value into the private variable, or (C) returning a constant value (266-Y), then
the method call is replaced with a corresponding direct access instruction
(268).

In the preferred embodiment, a method call to a simple method whose sole
function is returning a private variable’s value is replaced with a special
purpose load instruction that pushes onto the interpreter’s operand stack the

value of the referenced private variable:
GetVarSPC PrivateVariable

where “GetVarSPC” is a special form of the Get Variable instruction that is
exempted from the normal security restrictions prohibiting one method from

directly accessing another method’s private variables.

In the preferred embodiment, a method call to a simple method whaose sole
function is storing a specified value into a specified private variable is
replaced with a special purpose store instruction that stores a value from the

interpreter’s operand stack into the referenced private variable:

SetVarSPC PrivateVariable

10

15

20

25

30

219141

-10 -

where “SetVarSPC’ is a special form of the stack-to-variable store instruction
that is exempted from the normal security restrictions prohibiting one method

from directly accessing the private variables of an object of another class.

In the preferred embodiment, a method call to a simple method whose sole
function is returning a constant value is replaced with an instruction that gets

the constant value:
Get ConstantValue

where “Get” is the instruction for pushing a specified value onto the

interpreter's operand stack.

After the working representation of the method being executed has been
updated, if at all, by steps 264, 266, 268, the security procedures of the
interpreter determine whether execution of the selected next instruction wouid
violate any security restrictions (270). If not, the selected instruction is
executed (272). If execution of the selected instruction would viclate any
security restrictions, such as the restriction on accessing private variables,

then a security violation is flagged and execution of the method is aborted
(274).

In summary, the present invention optimizes the execution of certain types of
simple method calls by replacing those method calls with equivalent in-line
direct access instructions, but does so in such a way that the in-line
instructions are regenerated each time the calling method is reloaded for
execution, thereby ensuring that any revisions of the called simple methods

made by the owner or publisher of the programs are reflected in subsequent
executions of the calling method.

While the present invention has been described with reference to a few

specific embodiments, the description is illustrative of the invention and is not

2191411

- 11 -

to be construed as limiting the invention. Various modifications may occur to
those skilled in the art without departing from the true spirit and scope of the

invention as defined by the appended claims.

10

15

20

25

30

35

2191411

- 12 -

TABLE 1
PSEUDOCODE REPRESENTATION OF PROGRAM INTERPRETER

Procedure: INTERPRET (Method)

{
Load Method into internal Work Array
Do Forever
{
Case (Next Program Statement to be Executed):
|
Case = Anything other than a GetVarSPC, SetVarSPC or

Method Call

{

Standard handling, unrelated to present invention

}

Case = GetVarSPC or SetVarSPC

{

Execute load to stack or store from stack instruction while
suspending normal security prohibition against accessing
private variables in methods other than the method being
executed.

}

Case = Method Call

{

If this is the first time the method call is being executed since the
calling method was loaded

{

If the only function of the called method is to read a private
variable and it would not be a security violation for the
called method to read that private variable
{

Replace method call in internal representation of the
calling method with a special instruction that directly
accesses the private variable and loads its value
onto the operand stack:

GetVarSPC PrivateVariable

2191411

if the only function of the called method is to store a value
into a private variable and it would not be a security
violation for the called method to store a value into that
private variable
5 {

Replace method call in internal representation of the
calling method with a special instruction that directly
accesses the private variable and stores a value from
the operand stack into that private variable:

-13 -

10 SetVarSPC PrivateVariable
}
If the only function of the called method is to return a constant
value
{
15 Replace method call in internal representation of the calling

method with a special instruction that directly loads the
constant value onto the operand stack:
Load ConstantValue
}
20 Execute resulting instruction, or unchanged instruction, as the
case may be, applying standard security restrictions.
} /* end of Case=Method Call section /*
} /* end of Case Statement */
} /* end of Do Forever loop */
25 /" Execution of Method has completed */

Flush working representation of Method from said interpreter
Return

}

77207-15

.....
EEA

14

CLAIMS:

L. A computer system, comprising:
memory for storing a plurality of objects and a plurality of procedures, each said
object comprising an instance of an associated object class and each said procedure belonging
to a respective object class, said plurality of procedures including simple procedures wherein
the entire function performed by each said simple procedure 1s selected from the group
consisting of: (A) returning a private variable's value, where said private vanable 1s stored in
and is private to an object of the object class to which said simple procedure belongs, (B)
storing a specified value into said private variable, and (C) returning a constant value; and
a secure program interpreter for executing selected ones of said procedures, said

interpreter providing private variable security to restrict access to said private variable, said
interpreter including a load subprocedure for generating a working representation of a first
one of said procedures to be executed, and an optimization subprocedure for optimizing
execution of said simple procedures when called by other ones of said procedures, said ‘
optimization subprocedure determining, when said interpreter 1s processing a procedure call
in said first procedure to a second one of said procedures, whether said second procedure 1s
one of said simple procedures, and if said determination is positive, replacing said procedure
call in said working representation of said first procedure with a direct access instruction that
‘does not violate the private variable security provided by the secure program interpreter,
wherein said direct access instruction is selected from the group consisting of (A) a first
instruction that directly returns said private variable's value, (B) a second instruction that
directly stores a specified value into said private variable, and (C) a third instruction that

directly returns said constant value.

2. The computer system of claim 1, wherein

said interpreter includes security instructions for preventing standard instructions that

load a variable's value into an operand stack and that store a value on the operand stack into a

B N N R 1 S TR I A P R T o A A A T A Dy P I T D A ORI T Sl A AN NIYR TR 78, T s e PO A 100 ool e v A B T SN e 3 NPT LY i T L 5 YN A S L U4 VL, G R A i g o3

o 3R RO NN T ML A DA P T TP L DT YOO A ALY BT KA AT AT o B ALY SN s RN AT AT T A T SNVT Y30 YA A D L T) AN AT Al) | O T T T TN T e IS 8 AT

77207-15

2191411

variable from accessing any private variable that is not stored in an object of the object class

S A
et l 5
\\

for the procedure in which said standard instructions reside; and
said first and second instructions are special purpose instructions that access said

private variable without causing a security violation to be flagged by said security instructions

even if said first procedure and second procedure belong to different respective object classes.

3. The computer system of claim 2, wherein

said interpreter includes instructions for flushing said working representation of said
first procedure from said procedure interpreter when execution of said first procedure
terminates, such that when said first procedure is executed again said interpreter generates a

new working representation of said first procedure.

4. A method of operating a computer system, comprising the steps of:

storing a plurality of objects and a plurality of procedures tn a computer memory, each
said object comprising an instance of an associated obj ect class and each said procedure
belonging to a respective object class, said plurality of procedures including simple
procedures wherein the entire function performed by each said simple procedure is selected
from the group consisting of: (A) returning a private varniable's value, where said private
variable is private to an object of the object class to which said simple procedure belongs, (B)
storing a specified value into said private variable, and (C) returning a constant value;

under the control of a secure program interpreter, said interpreter providing private
variable security to restrict access to said private varable, executing selected ones of said
procedures, including generating a working representation of a first one of said procedures to
be executed, and optimizing execution of any of said simple procedures when called by said
first procedure, said optimizing step including determining, when said interpreter is
processing a procedure call in said first procedure to a second one of said procedures, whether
said second procedure is one of said simple procedures, and if said determination 1s positive,
replacing said procedure call in said working representation of said first procedure with a
direct access instruction that does not violate the private vanable security provided by the
secure program interpreter, wherein said direct access instruction is selected from the group
consisting of (A) a first instruction that directly returns said private variable's value, (B) a
second instruction that directly stores a specified value into said private vanable, and (C) a

third instruction that directly returns said constant value.

pLp-acad g mmm;mxuxmmmm§mwmmgmmr T AR TR TR A m T e SIS Y N Y R ST AT) SO) SNV IR 0 CAR T T LN T YR VT D T A AN A PR Y /T Y YW VT A s i T

10

15

20

23

30

CA 021921411 2002-07-10

77207-15

16

5. The method of claim 4, wherein said first and
second instructions are specilal purpose instructions, said

method including the steps of:

preventing standard instructions for loading a
variable’s value into an operand stack and for storing a
value on the operand stack into a variable from accessing
any private variable outside the procedure in which said
standard instructions reside, and flagging a securilty
violation when execution of any standard instruction would
require accessing any private variable that 1s not stored in
an object of the object class for the procedure in which

sald standard instructions reside; and

enabling said first and second instructions to
access saild private variable without causing a security
violation to be flagged even if said first procedure and

second procedure belong to different respective object

classes.
6. The method of claim 5, including:

flushing said working representation of said first
procedure from said interpreter when execution of said first
procedure terminates, such that when said first procedure 1is
executed again said interpreter generates a new working

representation of said first procedure.

7. A computer program product for use in conjunction
with a computer system, the computer program product

comprising computer executable program code for:

storing a plurality of objects and a plurality of
procedures in a computer memory, each said object comprising
an instance of an associated object class and each said

procedure belonging to a respective object class, said

10

15

20

25

30

CA 021921411 2002-07-10

77207-15

17

plurality of procedures including simple procedures wherein
the entire function performed by each said simple procedure
is selected from the group consisting of: (A) returning a
private variable's value, where said private varilable 1is
private to an object of the object class to which said
simple procedure belongs, (B) storing a specified value into

said private variable, and (C) returning a constant value;

providing a secure program interpreter for
providing private variable security to restrict access to

said private variable; and

under the control of the secure program
interpreter, executing selected ones of said procedures,
including generating a working representation of a first one
of said procedures to be executed, and optimizing execution
of any of said simple procedures when called by said first
procedure, said optimizing step including determining, when
said interpreter is processing a procedure call 1n said
first procedure to a second one of sald procedures, whether
said second procedure is one of said simple procedures, and
if said determination is positive, replacing said procedure
call in said working representation of said first procedure
with a direct access instruction that does not violate the
private variable security provided by the secure program
interpreter, wherein said direct access instruction is
selected from the group consisting of (A) a first
instruction that directly returns said private variable's
value, (B) a second instruction that directly stores a
specified value into said private variable, and (C) a third

instruction that directly returns said constant value.

8. The computer program product of claim 7, wherein

said first and second instructions are special purpose

10

15

20

CA 021921411 2002-07-10

17207-15

18

instructions, the computer program product further including

computer executable program code for:

preventing standard 1instructions for loading a
variable's value into an operand stack and for storing a
value on the operand stack into a variable from accessing
any private variable outside the procedure in which said
standard instructions reside, and flagging a security
violation when execution of any standard instruction would
require accessing any private variable that is not stored in
an object of the object class for the procedure in which

said standard instructions reside; and

enabling said first and second instructions to
access said private variable without causing a security
violation to be flagged even if said first procedure and

second procedure belong to different respective object

classes.

9. The computer program product of claim 8, further

including computer executable program code for:

flushing said working representation of said first
procedure from said interpreter when execution of said first
procedure terminates, such that when said first procedure 1is
executed again said interpreter generates a new working

representation of said first procedure.
SMART & BIGGAR
OTTAWA, CANADA

PATENT AGENTS

2.

“1

%

100

N .

105

102

' User Interface

219147

Operating System

108 —~_] Internet Access Proc.

Bytecode Pgm Verifier 112

sfopnpefajojafafafola
goooopaugas
googfooooarc

Client Object Class 1
102
106 i
Object Repository
Communications Ob
Interface ject 1
103

Bytecode Pgm Interpreter

Interpreter Work Array 130
Security Procedures 132
Function Call Replacer 134 |

Class Loader 116

Class Repository

. Network Interconnectivity
(Switches, etc)

104

Server

FIGURE 1

104

Server

2191411

200

e [Dwa |
Object A-01 202 ‘ Count
Object Handle j : e
Pointer to Pointer to
| 206

Methods Data

204 One Copy for Object Class A
0 1
: Class Descriptor 218
: | Count Private Integer | Data Array Offset '
2 W IR E—
g I
] |
; I
!
210 1 [Virtual Function Table |
| (VFT) :
216 , |Pointer to Class u
Descriptor Code for Method A.1
212 1 . 1
Method A.1 |Pointer Code for Method A 2 [
- [Method A2 ‘ - :
~Method A.3 Code for Method A.3 :
: Method A.4 {Pointer Code for Method A4 :
L e e e o e o e e - - - e e e - . e - —— J
FIGURE 2
s '

~

220

214

2191471

Object Class: Vector

122-A
N Method: Link 230-1
Return Count
Method: Reset (in) 230-2
Count <- In |
| Return |
"Method: Const 03
Return 231
FIGURE 3
Run Time Interpreter Data
Object Class: A Structure, Initial Form

Method: A1
| Instruction 1

Instruction 2

X1 <-Vector.Link

Return

| Method: A2)

Instruction 1
Instruction 2
(GetVar Vector.Link
Store X1

Return

}

Run Time Interpreter Data
Structure, Optimized Form

Instruction 1
Instruction 2

GetVarSPC Vector.Count
Store X1

Return

FIGURE 4

2191411

114
NN Call for Execution of Method

260

Load working copy of method into interpreter

262

Select next instruction to execute

264

Method call,
being executed for first
time?

266

Is called method
a simple method whose sole
function is (A) to return value of a private
variable, (B) to store a value in a private variable, or
(C) return a constant value?

268

Replace method call instruction with a
corresponding direct access instruction.

270

Would
execution of selected instruction violate
security restrictions?

274
N 272

Flag security violation.
Abort method execution. Execute selected instruction

FIGURE 5

Rowe ™

Ko

114
e Call for Execution of Method

| r 260

rl__oad working copy of method into interpreter

262 b -
| Select next instruction to execute

264

Method call,
being executed for first
time?

266

Is called methed
a simple method whose sole
function is (A) to return value of a private
variable, (B) to store a value in a private variable, or
(C) return a constant value?

r 268
L Replace method call instruction with a _|

corresponding direct access instruction.

270

Would
execution of selected instruction violate
security restrictions?

fei4

‘ Flag security violation.
Abort method execution.

7 272
‘ Execute selected instruction

Y |

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - abstract
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - abstract drawing

