Australia

Patents Act 1990

NOTICE OF ENTITLEMENT

I, John Gordon Hinde, of Spruson & Ferguson, St Martins Tower, 31 Market Street, Sydney, New South Wales 2000, Australia, being the patent attorney for the Applicant(s)/Nominated Person(s) in respect of Application No 40910/93 state the following:-

The Applicant(s)/Nominated Person(s) has/have entitlement from the actual inventor(s) as follows:-

The Applicant(s)/Nominated Person(s) is/are the assignee(s) of the actual inventor(s).

The Applicant(s)/Nominated Person(s) is/are the applicant(s) of the application(s) listed in the Declaration under Article 8 of the PCT. The basic application(s) listed on the Declaration under Article 8 of the PCT is/are the first application(s) made in a Convention country in respect of the invention.

DATED this THIRTIETH

day of DECEMBER

19 94

John Gordon Arnae

IRN: 288579

INSTR CODE: 59080

(12) PATENT ABRIDGMENT (11) Document No. AU-B-40910/93

(19) AUSTRALIAN PATENT OFFICE (10) Acceptance No. 677583

(54) Title ALPHA-ALUMINA

International Patent Classification(s)

(51)⁵ C30B 029/20

C01F 007/44

(51)6 C30B 001/00

(21) Application No.: 40910/93

(22) Application Date: 01.06.93

(87) PCT Publication Number: W093/24682

(30) Priority Data

(31) Number (32) Date (33) Country 4-168385 02.06.92 JP JAPAN 4-314052 28,10,92 JP JAPAN

(43) Publication Date: 30.12.93

(44) Publication Date of Accepted Application: 01.05.97

(71) Applicant(s)
SUMITOMO CHEMICAL COMPANY, LIMITED

(72) Inventor(s)
MASAHIDE MOHRI; YOSHIO UCHIDA; YOSHINARI SAV/AĞE; HISASHI WATANABE

(74) Attorney or Agent SPRUSON & FERGUSON, GPO Box 3898, SYDNEY NSW 2001

(56) Prior Art Documents
US 4822592
AU 572467 17896/83
US 3262754

(57) Claim

1. α -Alumina having a number average particle diameter of from 0.1 to 5 μ m, characterized in that it comprises α -alumina single crystal particles which are homogeneous containing no crystal seed inside said particles, have an octa- or higher polyhedral shape, and have a D/H ratio of from 0.5 to 3.0, wherein D represents a maximum particle diameter parallel to a hexagonal lattice plane of a hexagonal close-packed lattice of said particles, and H represents a diameter perpendicular to said hexagonal lattice plane; wherein said α -alumina has such a particle size distribution that the D90/D10 ratio is not more than 10, wherein D10 and D90 represents a cumulative 10% diameter and a cumulative 90% diameter, respectively, of a cumulative distribution depicted from the small diameter side.

OPI DATE 30/12/93 APPLN. ID 40910/93 AOJP DATE 10/03/94 PCT NUMBER PCT/JP93/00739

AU9340910

(51) 国際特許分類 5

C30B 29/20, C01F 7/44.

(11) 国際公開番号

WO 93/24682

Al

(43) 国際公開日

1993年12月9日 (09,12,1993)

(21)国際出願番号

(22) 国際出願日

PCT/JP93/00739 1993年6月1日(01.06.93)

(30) 優先権データ

50/ 変元権アーグ 特願平4/168385 1992年6月2只(02.06.92)

特顯平4/314052

1992年6月2日(02.06.92) JP 1992年10月28日(28.10.92) JP

(71)出願人(米国を除くすべての指定国について)

住友化学工菜株式会社

(SUMITOMO CHEMICAL COMPANY, LIMITED)[JP/JP]

〒541 大阪府大阪市中央区北浜四丁目5番33号 Osaka, (JP)

(72) 発明者;および

(75)発明者/出願人(米国についてのみ)

毛利正英(MOHRI, Masahide)[JP/JP]

〒305 茨城県つくば市下横場277-4 Ibaraki, (JP)

内.日義男(UCHIDA, Yoshio)[JP/JP]

〒305 茨城県つくば市春日二丁目40番1号 かつらぎ寮204

Ibaraki, (JP)

沢辺佳成(SAWABE, Yoshinari)[JP/JP]

〒300-42 茨城県つくば市北太田550 Ibaraki, (JP)

〒305 茨坡県つくは市春日二丁目40番1号 かつらぎ寮410

Ibaraki, (JP)

(74) 代理人

弁理士 萩野 平。外(HAGINO, Taira et al.)

〒100 東京都千代田区霞ノ関3丁目8番1号 虎ノ門三井ビル14階

栄光特許亦務所 Tokyo, (JP)

(81) 指定国

AT(欧州特許),AU,BE(欧州特許),BR、CA、CH(欧州特許),

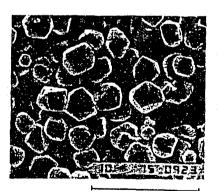
CZ, DE(欧州特許), DK(欧州特許), ES(欧州特許),

FR(欧州特許),GB(欧州特許),GR(欧州特許),HU,

I E(欧州特許),I T(欧州特許),K R ,L U(欧州特許)。

MC(欧州特許),NL(欧州特許),PL,PT(欧州特許),RU,

SE(欧州特許), SK, US.


添付公開書類

国際調査報告書

677583

(54) Title : α-ALUMINA

(54) 発明の名称 ローアルミナ

10 μ m

(57) Abstract

A powdery α -alumina comprising single-crystal α -alumina grains which are homogeneous and free from any crystal seed inside, form an at least eight-sided polyhedron, and have a D to H ratio of 0.5 to 3.0 (wherein D is the maximum grain diameter in parallel with the hexagonal lattice plane of the α -alumina having a hexagonal closest lattice structure and H is the grain diameter perpendicular to the hexagonal lattice plane thereof), a number-average grain diameter of 0.1 to 5 μ m and a narrow grain size distribution. The powdery α -alumina of the invention comprises single-crystal α -alumina grains which are nearly spherical, fine and structurally homogeneous and have a narrow grain size distribution, and is suitable as the raw materials of abrasive, sinter, plasma spraying material, filler, single crystal, catalyst support, phosphor, sealing material and ceramic filter, in particular, as the raw materials of precision abrasive, sinter and ceramic filter, thus being remarkably useful from the industrial viewpoint.

(57) 要約

均質で内部に結晶種を有さず、8面以上の多面体形状を有し、六方最密格子である α -アルミナの六方格子面に平行な最大粒子径をD、六方格子面に垂直な粒子径をHとしたとき、D/H比が0.5以上3.0以下である α -アルミナ単結晶粒子からなり、数平均粒径が0.1 μ m以上5 μ m以下であり、粒度分布が狭いことを特徴とする粉末状の α -アルミナ。

球形に近い形状を有し、微細で構造的に均質な $\alpha-r$ ルミナ単結晶粒子からなる粒度分布の狭い本発明の粉末状の $\alpha-r$ ルミナは、研磨材、焼結体用原料、ブラズマ溶射材、充塡材、単結晶用原料、触媒担体用原料、蛍光体用原料、封止材用原料、セラミックフィルター用原料等、特に精密研磨材、焼結体用原料、セラミックフィルター用原料に適しており、工業的に極めて有用なものである。

ሰ報としての用途のみ

PCTに基づいて公開される国際出願のハンフレット第1頁にPCT加盟国を同定するために使用されるコード

SPECIFICATION

α-ALUMINA

TECHNICAL FIELD

This invention relates to α -alumina. α -Alumina powder has been widely used as an abrasive, a raw material for sintered products, a plasma spraying material, a filler and the like. The α -alumina of the present invention comprises α -alumina single crystal particles which are not agglomerated particles and have high purity, structural homogeneity, and a narrow particle size distribution, and is of high industrial use as an abrasive, a raw material for sintered products, a plasma spraying material, a filler, a starting material for single crystals, a raw material for a carrier for catalysts, a raw material for fluorescent substances, a raw material for encapsulations, a raw material for ceramic filters, etc. It is particularly useful as a precision abrasive, a raw material for sintered products, and a raw material for ceramic filters.

BACKGROUND ART

 α -Alumina powder obtained by conventional processes comprises irregular-shaped polycrystals, contains many agglomerates, and has a broad particle size distribution. For some uses, the purity of these conventional species is insufficient. In order to eliminate these problems,

 α -alumina powder produced by special processes as hereinafter described has been employed for specific uses. However, these special processes still fail to arbitrarily control the shape or particle diameter of α -alumina powder. It has thus been difficult to obtain α -alumina powder having a narrow particle size distribution.

Known special processes for producing α -alumina powder include a process utilizing a hydrothermal reaction of aluminum hydroxide (hereinafter referred to as hydrothermal treatment process); a process comprising adding a flux to aluminum oxide, fusing, and precipitating (hereinafter referred to as flux process); and a process in which aluminum hydroxide is calcined in the presence of a mineralizer.

With respect to a hydrothermal treatment process, JP-B-57-22886 (the term "JP-B" as used herein means an "examined published Japanese patent application") discloses a process in which corundum is added as a seed crystal to control the particle size. The process consists of synthesis in a high temperature under a high pressure, making the resulting α -alumina powder expensive.

(hydrothermal treatment process) contains cracks. On examining the homogeneity of the crystal in an attempt to clarify the cause of the cracks, it was confirmed that a high strain exists in the boundary between the seed crystal and the grown crystal and that the density of etch pit in the grown crystal near the boundary, which seems to correspond to the dislocation density, is high. The report goes that the cracks are expected to relate to such a strain or a defect and that a hydrothermal growth process is apt to involve incorporation of a hydroxyl group or water into crystals, which appears to cause a strain or a defect.

A flux process has been proposed as a means for controlling the shape or particle size of α -alumina powder for use as an abrasive, a filler, etc. For example, JP-A-3-131517 (the term "JP-A" as used herein means an "unexamined published Japanese patent application") discloses a process comprising calcining aluminum hydroxide in the presence of a flux with fluorine having a melting point of not more than 800°C to prepare α -alumina powder having an average particle size of from 2 to 20 μ m and a hexagonal plate shape having a D/H ratio of from 5 to 40, wherein D represents a maximum particle diameter parallel to a hexagonal lattice plane of a hexagonal close-packed lattice of α -alumina, and H represents a diameter perpendicular to the hexagonal lattice plane. However, this process cannot provide fine α -alumina powder having a particle diameter of

not more than 2 μm , and all the particles obtained have a plate shape. Therefore, the resulting $\alpha\text{-alumina}$ powder is not always suitable for use as an abrasive, a filler and a starting material for single crystals.

The Bayer process is a commonly employed and the least expensive process for producing α -alumina powder. In the Bayer process, bauxite is once converted to aluminum hydroxide or transition alumina, which is then calcined in air to prepare α -alumina powder.

The aluminum hydroxide or transition alumina which is obtained as an intermediate product on an industrial scale at low cost comprises large agglomerates having a particle diameter of greater than 10 μm . Conventional α -alumina powder obtained by calcination of such aluminum hydroxide or transition alumina in air comprises particles of irregular shape containing agglomerated coarse particles. The α -alumina powder containing agglomerated coarse particles are ground into final products by means of a ball mill, a vibration mill, etc., but grinding is not always easy and incurs the cost. α -Alumina powder having difficulty in grinding needs an extended period of time for grinding, during which fine powder may be formed or foreign materials may be incorporated only to provide α -alumina powder unsuitable as an abrasive.

Several proposals have been made to date as a solution to these problems. For example, JP-A-59-97528

discloses a process for producing α -alumina powder with an improved shape comprising calcining aluminum hydroxide prepared by the Bayer process in the presence of boron containing ammonium and a boron mineralizer to obtain α -alumina powder having an average particle diameter of from 1 to 10 μ m and a D/H ratio approximate to 1. However, this process involves problems in that the boron-containing or fluorine-containing material added as a mineralizer remains in the resulting α -alumina and agglomerates are formed upon calcining.

In connection to calcination of sodium-containing aluminum hydroxide prepared by the Bayer process, it has been proposed to conduct calcining in the presence of a fluoride, e.g., aluminum fluoride or cryolite, and a chlorine-containing material, e.g., chlorine or hydrogen chloride in British Patent 990,801; or in the presence of boric acid, and ammonium chloride, hydrochloric acid or aluminum chloride in West German Patent 1,767,511 for the purpose of effectively removing sodium while controlling the particle diameter.

However, in the former process, since a mineralizer such as aluminum fluoride is added in a solid form or the calcination is conducted while supplying chlorine gas and fluorine gas without the addition of water, the resulting alumina particles have problems of an irregular shape and a broad particle size distribution. The latter process also involves a problem in that boric acid as a mineralizer

remains in the resulting α -alumina in the form of a boron-containing material. In addition, these processes aim chiefly at removal of sodium, and the sodium salt, such as NaCl or Na₂SO₄, by-produced by the reaction between sodium and a sodium removing agent must be sublimed or decomposed by calcination at a high temperature of at least 1,200°C.

With respect to the reaction between alumina and hydrogen chloride gas, there is a report in Zeit. fur Anorg. und Allg. Chem., Vol 21, p. 209 (1932) of an equilibrium constant of the reaction system comprising sintered α -alumina having a particle diameter of from 2 to 3 mm, hydrogen chloride, and produced aluminum chloride. According to the report, while α -alumina is found produced in a place different from the place where the starting material has been charged, only hexagonal plate-shaped particles are obtained.

JP-B-43-8929 discloses a process comprising calcining alumina hydrate in the presence of ammonium chloride to produce alumina having a low impurity content and an average particle diameter of not more than 10 μm . The resulting alumina powder has a broad particle size distribution.

Therefore, none of the conventional techniques succeeded in providing α -alumina single crystal particles which comprises fine and non-agglomerated α -alumina single crystals particles and is particularly suitable as a precision abrasive, a raw material for sintered products or a raw material for ceramic filters.

An object of the present invention is to solve the above problems and to obtain $\alpha\text{-alumina}$ in a powder form which comprises fine, homogeneous, and non-agglomerated $\alpha\text{-alumina}$ single crystal particles. More specifically, it is to provide $\alpha\text{-alumina}$ in a powder form comprising $\alpha\text{-alumina}$ single crystal particles which have an octa- or higher polyhedral shape, a D/H ratio of from 0.5 to 3.0, a narrow particle size distribution, a high alumina purity, and uniform composition within the particle, with the individual particles being freed of structural strain.

DISCLOSURE OF THE INVENTION

The present invention relates to the following inventions.

- (1) α -Alumina characterized in that it comprises α -alumina single crystal particles which are homogeneous containing no crystal seed inside the particles, have an octa- or higher polyhedral shape, and have a D/H ratio of from 0.5 to 3.0, wherein D represents a maximum particle diameter parallel to a hexagonal lattice plane of a hexagonal close-packed lattice of the particles, and H represents a diameter perpendicular to the hexagonal lattice plane; and the α -alumina has a number average particle diameter of from 0.1 to 5 μm .
- (2) α -Alumina as described in (1) above, wherein the α -alumina has such a particle size distribution that the D90/D10 ratio is not more than 10, wherein D10 and D90

represents a cumulative 10% diameter and a cumulative 90% diameter, respectively, of a cumulative distribution depicted from the small diameter side.

(3) $\alpha\textsc{-Alumina}$ as described in (1) or (2) above, wherein the $\alpha\textsc{-alumina}$ has a number average particle diameter of from 0.5 to 3 μm .

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a scanning electron microscope (SEM) photograph (magnification: 4,900) showing the particulate shape of the α -alumina obtained in Example 8.

Fig. 2 is a particle size distribution of the $\alpha\mbox{-alumina}$ obtained in Example 8.

Fig. 3 is an SEM photograph (magnification: 930) showing the particulate shape of the α -alumina obtained in Example 4.

Fig. 4 is an SEM photograph (magnification: 1,900) showing the particulate shape of the α -alumina obtained in Example 2.

Fig. 5 is an SEM photograph (magnification: 1,900) showing the particulate shape of the α -alumina obtained in Comparative Example 2.

Fig. 6 is an SEM photograph (magnification: 930) showing the particulate shape of the α -alumina obtained in Comparative Example 3.

Fig. 7 shows the crystal habit of an $\alpha\text{-alumina}$ single crystal.

BEST MODE FOR PRACTICING THE INVENTION

The present invention is described in detail below.

The α -alumina according to the present invention can be prepared from transition alumina or a raw material capable of being converted to transition alumina on heating. Transition alumina means all alumina crystal phases included under polymorphic alumina represented by Al₂O₃ except α -alumina, specifically including γ -alumina, δ -alumina, θ -alumina, etc.

The raw material converted to transition alumina on heating includes those which are once converted to transition alumina and then to α -alumina by calcination, such as aluminum hydroxide, aluminum sulfate, alum (e.g., potassium aluminum sulfate, ammonium aluminum sulfate), ammonium aluminum carbonate hydroxide, and alumina gel, e.g., alumina gel obtained by electro-discharge in water.

Synthesis methods of the transition alumina and the raw material converted to transition alumina on heating are not particularly limited. Aluminum hydroxide, for example, can be obtained by the Bayer process, hydrolysis of an organoaluminum compound, or a process using, as a starting material, an aluminum compound recovered from an etching waste used for condensers, etc.

Transition alumina can be obtained by a heat treatment of aluminum hydroxide, decomposition of aluminum sulfate, decomposition of alum, vapor phase decomposition of

aluminum chloride, or decomposition of ammonium aluminum carbonate.

The transition alumina or the raw material converted to transition alumina on heating is calcined in an atmosphere containing at least 1% by volume, preferably at least 5% by volume, and more preferably at least 10% by volume, of hydrogen chloride gas. Gases for dilution of hydrogen chloride gas include inert gases, e.g., nitrogen and argon, hydrogen and air. The pressure of the hydrogen chloride—containing atmosphere is not particularly limited and is selected arbitrarily from an industrially practical range. α —Alumina in a powder form having the excellent properties as desired can thus be obtained by calcination in a relatively low temperature as hereinafter described.

Hydrogen chloride gas may be replaced with a mixed gas of chlorine and steam. In this case, transition alumina or the raw material converted to transition alumina on heating is calcined while at least 1% by volume, preferably at least 5% by volume, and more preferably at least 10% by volume, of chlorine gas and at least 0.1% by volume, preferably at least 1% by volume, and more preferably at least 5% by volume, of steam are introduced to an atmosphere. Gases for diluting the mixed gas of chlorine and steam include inert gases, e.g. nitrogen and argon, hydrogen and air. The pressure of the chlorine- and steam-containing atmosphere is not particularly limited and is selected

arbitrarily from an industrially practical range. α -Alumina in a powder form having the excellent properties as desired can thus be obtained by calcining in a relatively low temperature as hereinafter described.

The calcining temperature is generally 600°C or higher, preferably from 600 to 1,400°C, more preferably from 700 to 1,300°C, and most preferably from 800 to 1,200°C. By calcining at a temperature controlled within this range, α -alumina in a powder form comprising α -alumina single crystal particles which are hardly agglomerated and, even immediately after calcination, show a narrow particle size distribution can be obtained at an industrially advantageous rate of formation.

A proper calcining time depends on the concentration of the gas in the calcining atmosphere and the calcining temperature but is preferably 1 minute or more, and more preferably 10 minutes or more. The calcining time is sufficient if the alumina raw material undergoes crystal growth to form $\alpha\text{-alumina}$. Desired $\alpha\text{-alumina}$ can be obtained in a shorter calcining time than required in the conventional processes.

The source and the mode of supplying the gas of the calcining atmosphere are not particularly restricted as long as the chlorine-containing gas is introduced into the reaction system containing the starting material. For example, the component gases may be supplied from gas

cylinders. Where a chlorine compound, e.g., hydrochloric acid solution, ammonium chloride, or a chlorine-containing high polymer is used as a source for the chlorine gas, it is used at its vapor pressure or as decomposed so as to give a prescribed gas composition. In some cases of using decomposition gas of ammonium chloride, etc., a solid substance deposits in a calcining furnace to cause operational troubles. Further, as the hydrogen chloride gas concentration increases, the calcination can be effected at a lower temperature in a shorter time, and the purity of the resulting α -alumina can be increased. Accordingly, it is preferable to supply hydrogen chloride or chlorine directly from a gas cylinder into a calcining furnace. The gas supply may be either in a continuous manner or in a batch system.

The calcining apparatus is not particularly limited, and a conventional calcining furnace can be employed. The calcining furnace is preferably made of a material resistant to corrosion by hydrogen chloride gas, chlorine gas, etc. The furnace is preferably equipped with a mechanism for controlling the atmosphere. Because an acid gas, e.g., hydrogen chloride or chlorine gas, is used, the furnace is preferably air-tight. For industrial production, calcination is preferably carried out in a continuous manner by means of, for example, a tunnel kiln, a rotary kiln, a pusher kiln, etc.

Since the reaction proceeds in an acidic atmosphere, a crucible, a boat or a like tool used in the process is preferably made of alumina, quartz, acid resistant brick, or graphite.

The α -alumina according to the present invention which is not agglomerated particles can thus be obtained. Depending on the starting material or the conditions of calcination, the resulting α -alumina may be agglomerated particles or may contain agglomerated particles. Even in such cases, the degree of agglomeration is very slight, and simple grinding will provide α -alumina having the abovementioned excellent characteristics according to the present invention.

In order to obtain α -alumina in a powder form of the present invention which has a number average particle diameter of from 0.1 to 5 μ m, it is preferred to use a raw material having a high alumina purity of from 99.5 to 99.9% by weight. Specific examples thereof include aluminum hydroxide powder obtained by the Bayer method, and transition alumina and alum obtained from the aluminum hydroxide powder.

The α -alumina single crystal particles constituting the α -alumina of the present invention have excellent properties, i.e., a number average particle diameter of from 0.1 to 5 μ m, a D/H ratio of from 0.5 to 3.0, and a D90/D10 ratio of not more than 10, preferably not more than 9, and more preferably not more than 7, wherein D10 and D90

represent a cumulative 10% diameter and a cumulative 90% diameter, respectively of cumulative distribution depicted from the small diameter side.

EXAMPLE

The present invention will now be illustrated in greater detail with reference to Examples, but it should be understood that the present invention is not construed as being limited thereto.

Various measurements in Examples and Comparative Examples were made as follows.

- 1. Particle Diameter and Particle Diameter Distribution of α -Alumina:
- (1) A D90/D10 ratio was measured by the laser scattering method with "Master Sizer" manufactured by Malvern Instruments, Ltd.
- (2) A micrograph of α -alumina was taken with an SEM ("T-300" manufactured by Japan Electron Optics Laboratory Co., Ltd., hereinafter the same), and selected 80 to 100 particles of the SEM photograph were subjected to image analysis to obtain an average and a distribution of their circle-equivalent diameters. The term "circle-equivalent diameter" as used herein means a diameter of a true circle having the same area as a particle.

2. Crystal Shape (D/H) of α -Alumina:

The shape of α -alumina particles was represented in terms of a D/H ratio, wherein D and H are as defined above. A D/H ratio of α -alumina was obtained as an average of 5 to 10 particles by image analysis of the above-mentioned SEM photograph.

3. Number of Crystal Faces and Crystal Habit:

- (1) The number of crystal faces of α -alumina was obtained by observation of the above-mentioned SEM photograph.
- (2) The crystal habit of α -alumina particles was observed for evaluating the shape. The crystal habit of the α -alumina particles obtained in the present invention (indicated by A to I) is shown in Fig. 7. α -Alumina has a hexagonal system, and the term "crystal habit" used for α -alumina means the form of its crystal characterized by the appearance of the crystal faces composed of a plane {11.20}, c plane {0001}, n plane {2243}, and r plane {1012}. In Fig. 7 are shown crystal planes a, c, n, and r.

4. Alumina Purity:

The amount of ions of incorporated impurities was measured by emission spectrochemical analysis to obtain the content of the impurities on oxide conversion. The chlorine content was measured by potentiometry. An alumina purity was obtained by subtracting the total impurity content (wt%) thus calculated from 100% by weight.

5. Na₂O Content:

The amount of a sodium ion incorporated was measured by emission spectrochemical analysis to obtain the content of $\mbox{Na}_2\mbox{O}\,.$

Raw materials used in Examples were as follows.

1. Transition Alumina A:

Transition alumina obtained by calcination of aluminum hydroxide prepared by hydrolysis of aluminum isopropoxide ("AKP-G15" produced by Sumitomo Chemical Co., Ltd.; secondary particle diameter: about 4 μ m)

?. Transition Alumina (';

Transition alumina obtained by calcination of aluminum hydroxide C (described hereinafter) in air at 800° C (secondary particle diameter: about $30~\mu m$)

3. Aluminum Hydroxide B:

Aluminum hydroxide powder prepared by the Bayer process ("C 301" produced by Sumitomo Chemical Co., Ltd.; secondary particle diameter: about 2 $\mu m)$

4. Aluminum Hydroxide C:

Aluminum hydroxide powder prepared by the Bayer process ("C 12" produced by Sumitomo Chemical Co., Ltd.; secondary particle diameter: about 47 μ m)

5. Alum (AlNH₄(SO₄)·12H₂O):

Transition alumina precursor which gives transition alumina on heating. The reagent of Wako Pure Chemical Industries, Ltd. was used.

Hydrogen chloride in a cylinder produced by Tsurumi Soda K.K. ("urity: 99.9%) was used as a hydrogen chloride gas source, and chlorine in a cylinder produced by Fujimoto Sangyo K.K. (purity: 99.4%) was used as a chlorine gas source. The volume percent of steam was controlled by adjusting the saturated vapor pressure of water dependent on temperature and introduced into a furnace with nitrogen gas.

An alumina boat was filled with 0.4 g of a raw material, such as transition alumina or aluminum hydroxide, to a depth of 5 mm. Calcination of the raw material was conducted in a tube furnace ("DSPSH-28" manufactured by Motoyama K.K.) using a quartz tube (diameter: 27 mm; length: 1,000 mm). The temperature was increased at a rate of 500°C/hour while introducing nitrogen, and hydrogen chloride gas or a mixed gas of chlorine and steam was introduced into the furnace when a prescribed temperature was reached.

The gas concentration was controlled by adjustment of the gas flow rate by means of a flowmeter. The linear flow rate of the gas was adjusted between 20 and 49 mm/min. This system was hereinafter referred to as a gas flow system. The total pressure of the atmospheric gases was atmospheric pressure.

On reaching a prescribed temperature, the furnace was maintained at that temperature (hereinafter referred to as a calcining temperature) for a prescribed time (hereinafter referred to as a keeping time). After a lapse of a

prescribed keeping time, the furnace was allowed to cool to obtain α -alumina in a powder form.

The steam partial pressure was controlled by adjusting the saturated vapor pressure, and steam was fed to the furnace with nitrogen gas.

EXAMPLES 1 TO 6

Aluminum hydroxide or transition alumina (γ -alumina) was calcined in a hydrogen chloride gas atmosphere at a calcining temperature of 1,100°C or 900°C.

The SEM photographs of the α -alumina obtained in Examples 2 and 4 are shown in Figs. 4 and 3, respectively. The calcining conditions and the results are shown in Tables 1 and 2, respectively.

EXAMPLE 7

Calcination of aluminum hydroxide was carried out under the same conditions as in Example 3, except for using an atmosphere containing chlorine gas and steam and changing the gas flow rate as shown in Table 1. The results obtained are shown in Table 2.

EXAMPLE 8

Calcination was carried out under the same conditions as in Example 3, except for using alum as a raw material. The results obtained are shown in Table 2. The SEM photograph and the particle diameter distribution of the resulting α -alumina in a powder form are shown in Figs. 1 and 2, respectively.

COMPARATIVE EXAMPLES 1 AND 2

Aluminum hydroxide C was calcined in air according to the conventional process. The calcining conditions and the results obtained are shown in Tables 1 and 2. The SEM photograph of the α -alumina in a powder form obtained in Comparative Example 2 is shown in Fig. 5.

COMPARATIVE EXAMPLE 3

Transition alumina A was calcined in an atmosphere having a hydrogen chloride gas concentration as low as 0.5% by volume. The calcining conditions and the results are shown in Tables 1 and 2. The SEM photographs of the resulting alumina in a powder form is shown in Fig. 6.

20 -

TABLE 1

4 ⁸ //									Temp.		
	Alumina <u>Raw Mater</u>			Atmos		(vol%)		Gas Flow	for Gas Intro-	Calcin- ing	Keeping
	Kind	Size (µm)	HCl	Cla	<u>H₂O</u>	<u>N</u> 2_	<u>H</u> 2_	<pre>Rate (mm/min)</pre>	duction (°C)	Temp.	Time (min)
Example 1	transition alumina C	30	100	-		- ,	~	35	700	1,100	30
Example 2	aluminum hydroxide B	2	33	-	-	17	50	20	800	1,100	30
Example 3	aluminum hydroxide C	47	30	-	-	70	_	20	20	1,100	30
Example 4	aluminum hydroxide C	47	100			-	-	35	20	1,100	180
Example 5	aluminum hydroxide C	47	30		- -	70	-	35	500	1,100	30
Example 6	aluminum hydroxide C	47	100	-	-	· -	.	35	20	900	30
Example 7	aluminum hydroxide C	47	-	35	5	60		49	20	1,100	30
Example 8	alum	-	30	-	-	70		20	20	1,100	30
Comparative Example 1	aluminum hydroxide C	47		calcin	ation	in air			-	1,300	180
Comparative Example 2	aluminum hydroxide C	47		calcin	ation	in air		-	-	1,100	180
Comparative Example	transition alumina A	4	0.5	-	-	99.5	• <u>.</u>	0	20	1,100	600

TABLE 2

-	Number Average Particle <u>Diameter</u> (µm)	Crysta D/H	l Shape Crystal Habit	Number of Crystal Faces	Size Dis- tribution D90/D10	Alumina Purity (wt%)	Na ₂ O <u>Content</u> (ppm)	Remark
Example 1	4	1 - 2	C, A	14 or more		-	_	. -
Example 2	2.	1 - 2		14 or more	9	>99.95	54	- · · · · · · · · · · · · · · · · · · ·
Example 3	4	2	· _	20 or more	9		-	,
Example 4	4	1 - 2	F, H	8 or more	· 7	99.95	-	.
Example 5	4	1 - 2	С	14 or more	-	-	-	
Example 6	4	1 - 2	C, I	8 or more	~	_	-	· -
Example 7	5	1 - 2	C, A	8 or more	~	>99.90	-	_
Example 8	2	1	F, H	20 or more	9	-	-	. -
Comparative Example 1	0.3	no form	ation of s	ingle crystal		-	- .	α-crystal
Comparative Example 2	- -	no forma	tion of si	ngle crystal		-	. · ·	<pre>K-crystal, θ-crystal</pre>
Comparative Example 3		no forma	tion of si	ngle crystal		_	-	-

- L

INDUSTRIAL UTILITY

The α -alumina according to the present invention can be obtained from raw materials of various kinds, purities, shapes, sizes, and compositions. The α -alumina of the present invention comprises octahedral or higher polyhedral α -alumina single crystal particles containing no crystal seed therein, having high purity, homogeneity, and a narrow particle size distribution, and containing no agglomerates.

More specifically, the single crystal particles constituting the α -alumina of the present invention have a number average particle diameter of from 0.1 to 5 μ m, and a D/H ratio of from 0.5 to 3.0, a D90/D10 ratio of not more than 10, wherein D10 and D90 represent a cumulative 10% diameter and a cumulative 90% diameter, respectively of cumulative distribution depicted from the small diameter side.

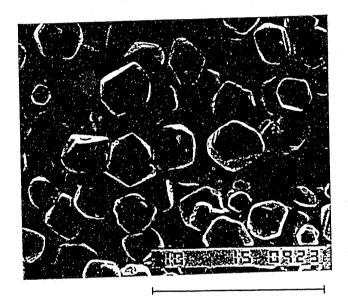
The α -alumina powder comprising α -alumina single crystal particles of high purity, uniform structure and narrow particle size distribution is suitable as an abrasive, a raw material for sintered products, a plasma flame spraying material, a filler, a raw material for single crystals, a raw material for a carrier of catalysts, a raw material for fluorescent substances, a raw material for encapsulations, a raw material for ceramic filters, etc. and is particularly useful as a precise abrasive, a raw material for sintered products, and a raw material for ceramic filters.

The claims defining the invention are as follows:

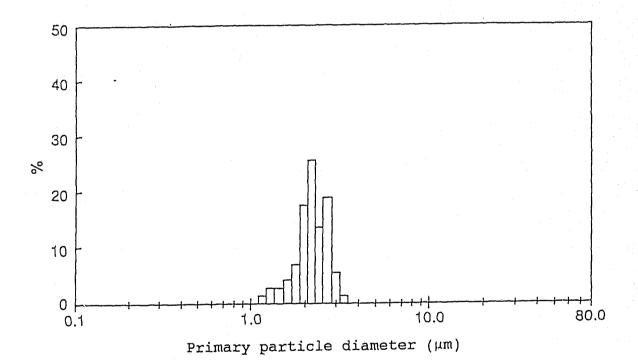
- α-Alumina having a number average particle diameter of from 0.1 to 5µm, characterized in that it comprises α-alumina single crystal particles which are homogeneous containing no crystal seed inside said particles, have an octa- or higher polyhedral shape, and have a D/H ratio of from 0.5 to 3.0, wherein D represents a maximum particle diameter parallel to a hexagonal lattice plane of a hexagonal close-packed lattice of said particles, and H represents a diameter perpendicular to said hexagonal lattice plane; wherein said α-alumina has such a particle size distribution that the D90/D10 ratio is not more than 10, wherein D10 and D90 represents a cumulative 10% diameter and a cumulative 90% diameter, respectively, of a cumulative distribution depicted from the small diameter side.
 - 2. α -Alumina powder according to claim 1, wherein said α -alumina has a number average particle diameter of from 0.5 to 3 μ m.
- 3. α -Alumina powder, substantially as hereinbefore described with reference to any one of the examples but excluding the comparative examples.

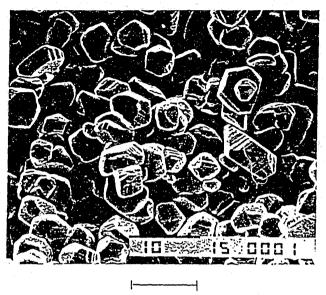
Dated 5 February, 1997 Sumitomo Chemical Company, Limited

Patent Attorneys for the Applicant/Nominated Person SPRUSON & FERGUSON

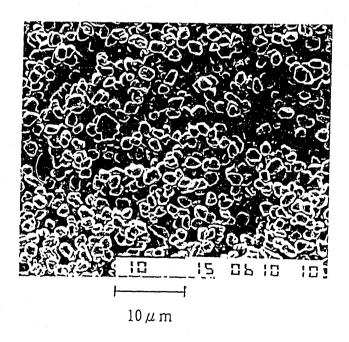

ABSTRACT OF THE DISCLOSURE

 α -Alumina comprising α -alumina single crystal particles which are homogeneous containing no crystal seed inside the particles, have an octa- or higher polyhedral shape, and have a D/H ratio of from 0.5 to 3.0, wherein D represents a maximum particle diameter parallel to a hexagonal lattice plane of a hexagonal close-packed lattice of the particles, and H represents a diameter perpendicular to the hexagonal lattice plane; and the α -alumina has a number average particle diameter of from 0.1 to 5 μ m and a narrow particle size distribution.


The α -alumina of the invention comprises α -alumina single crystal particles having nearly spherical shape and fine and uniform structure and have a narrow particle size distribution. It is of high industrial use as an abrasive, a raw material for sintered products, a plasma spraying material, a filler, a starting material for single crystals, a raw material for a carrier for catalysts, a raw material for fluorescent substances, a raw material for encapsulations, a raw material for ceramic filters, etc. and particularly suitable as a precise abrasive, a raw material for sintered products, and a raw material for ceramic filters.



<u>Fig. 1</u>


10 μ m

10 μ m

Fig. 4

<u>Fig. 5</u>

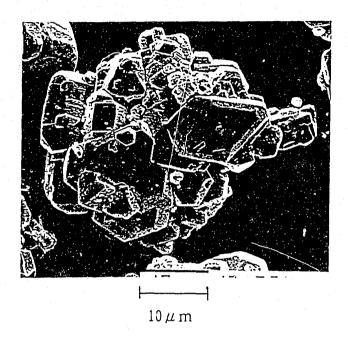
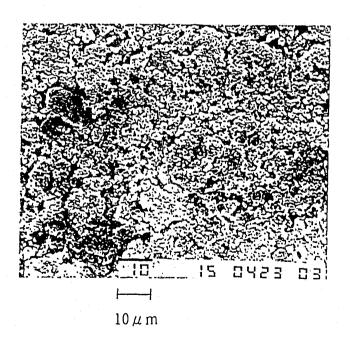
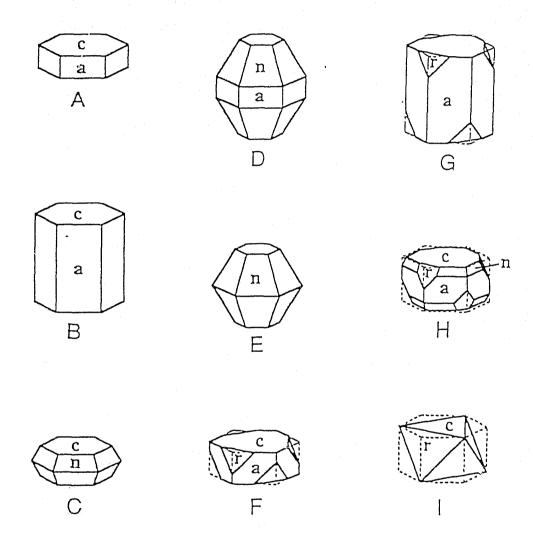




Fig. 6

INTERNATIONAL SEARCH REPORT

International application No. PCT/JP93/00739

	ASSIFICATION OF SUBJECT MATTER								
ľ	Int. Cl ⁵ C30B29/20, C01F7/44								
	excerding to International Patent Classification (IPC) or to both national classification and IPC								
<u> </u>	LDS SEARCHED	hy classification symbols)	 						
1	Minimum documentation searched (classification system followed by classification symbols) Int. C1 ⁵ C30B29/20, C01F7/44, C01F7/30								
1110	Int. Cl ⁵ C30B29/20, C01F7/44, C01F7/30								
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Jitsuyo Shinan Koho 1926 - 1993 Kokai Jitsuyo Shinan Koho 1971 - 1993 Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)									
Electronic d	ala base consulted during the international seem (name	e of data base and, where practicable, search	terms usea)						
C. DOCU	MENTS CONSIDERED TO BE RELEVANT								
Category*	Citation of document, with indication, where	appropriate, of the relevant passages	Relevant to claim No.						
A	JP, A, 59-97528 (Swiss Alt June 5, 1984 (05. 06. 84) & EP, A, 105025	1-3							
A	JP, A, 52-15498 (Showa Der February 5, 1977 (05. 02. & US, A, 4193768	1~3							
A	JP, A, 3-131517 (Atkem), June 5, 1991 (05. 06. 91), & FR, A, 2652078	,	1-3						
Further	documents are listed in the continuation of Box C.	See patent family annex.							
'A" document to be of p	rategories of cited documents: at defining the general state of the art which is not considered particular relevance	"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone							
'L" documen	ocument but published on or after the international sling date it which may throw doubts on priority claim(s) or which is establish the publication date of another citation or other eason (as specified)								
•	t referring to an oral disclosure, use, exhibition or other		step when the document is locuments, such combination						
	t published prior to the international filing date but later than ty date claimed	"&" document member of the same patent family							
Date of the ac	ctual completion of the international search	Date of mailing of the international search report							
Augus	st 10, 1993 (10. 08. 93)	August 31, 1993 (31	. 08. 93)						
Vame and ma	illing address of the ISA/	Authorized officer							
Japan	nese Patent Office								
acsimile No.	,	Telephone No.							