发明名称
制备芳纶纸的方法及由此方法获得的芳纶纸

摘要
本发明提供了一种制备芳纶绝缘纸的方法，包括以下步骤：
(i) 分别配制所需浓度的芳纶浆料和芳纶短切纤维浆料；
(ii) 将制备好的浆料按照设计的配比混合，打浆并制得所需的浆料；
(iii) 将制备好的浆料送入包括抄纸机的抄纸机上网成型并抄纸，获得湿纸页；
(iv) 将制备好的湿纸页压榨脱水和干燥；
(v) 将制备好的干燥后的干纸页高温压光，获得芳纶纸。
其中在步骤 (iii) 中，在所述浆料箱间安装超声波发生器，向流经所述浆料箱内的
浆料施加定向超声波。根据本发明方法制备的芳纶绝缘纸强度增加，纸面平整、均匀。
1. 一种制备芳纶绝缘纸的方法，所述方法包括以下步骤：
 i) 分别配制所需浓度的芳纶浆状浆料和芳纶短切纤维浆料；
 ii) 将所述芳纶浆状浆料和芳纶短切纤维浆料按照给定的比例混合和打浆疏解，制成
 所需要的浓度的造纸浆料；
 iii) 将所述造纸浆料送入包括流浆箱的抄纸机上成型并抄纸，获得湿纸页；
 iv) 将所述湿纸页压榨脱水和干燥；以及
 v) 将所述干燥后的纸页高温压光，获得芳纶绝缘纸。

其特征在于：在步骤 iii) 中，在所述流浆箱上安装超声波发生器，向流经所述流浆箱
内的造纸浆料施加定向超声波；所述的定向超声波的传播方向与所述造纸浆料的流动方向
是平行的。

2. 如权利要求 1 所述的方法，其特征在于：所述超声波发生器安装在所述流浆箱上游，
 使产生的超声波的传播方向与所述造纸浆料的流动方向相同。

3. 如权利要求 1 所述的方法，其特征在于：在步骤 i) 中，所述芳纶浆状浆料的质量百分
 浓度为 3-7wt%，所述芳纶短切纤维浆料的质量百分浓度为 2-7wt%。

4. 如权利要求 3 所述的方法，其特征在于：所述芳纶浆状浆料的质量百分浓度为
 4.5-5.5wt%，所述芳纶短切纤维浆料的质量百分浓度为 3-4wt%。

5. 如权利要求 1 所述的方法，其特征在于：在步骤 ii) 中，所述芳纶浆状浆料的质量百分
 浓度为 20-70wt%，所述芳纶短切纤维浆料的质量百分浓度为 30-80wt%。

6. 如权利要求 1 所述的方法，其特征在于：在步骤 ii) 中制得的造纸浆料的质量百分
 浓度为 0.5-3wt%。

7. 如权利要求 1 中所述的方法，其特征在于：在步骤 iii) 中采用斜网成型抄纸机。

8. 如权利要求 1 或 2 中任一项所述的方法，其特征在于：所述超声波的频率在
 10-100kHz 之间。

9. 如权利要求 8 所述的方法，其特征在于：所述超声波的频率在 20-45kHz 之间。

10. 如权利要求 1 或 2 所述的方法，其特征在于：所述超声波发生器设有功率调节功
 能，能够实现无级平滑功率。

11. 如权利要求 1 所述的方法，其特征在于：在步骤 iv) 中，干燥步骤采用两段干燥，其
 中第一段干燥的温度在 105-115℃之间，第二段干燥的温度在 145-155℃之间。

12. 如权利要求 11 所述的方法，其特征在于：所述第一段干燥的温度为 110℃，所述第
 二段干燥的温度为 150℃。

13. 由权利要求 1 至 7、9、11、12 中任一项所述的方法制作的芳纶绝缘纸，其特征在于：
 所述芳纶绝缘纸为间位芳纶绝缘纸，且短的纤维取向度提高，使纸张的强度提高。
制备芳纶纸的方法及由该方法获得的芳纶纸

技术领域
[0001] 本发明属于合成纤维纸制造领域，具体地说，本发明涉及一种制备芳纶纸的方法及由该方法获得的芳纶纸，该方法使芳纶短切纤维的取向性和分散性增大，获得的成品芳纶纸强度增加。

技术背景
[0002] 芳纶绝缘纸也称芳纶纸，主要有两大类，包括间位芳纶绝缘纸和对位芳纶绝缘纸。其中间位芳纶纸以持久的热稳定性、极好的阻燃性、出色的耐高温绝缘性、极佳的化学稳定性和机械特性，作为结构材料、绝缘材料以及过滤材料广泛应用在航空航天、交通、电子等行业。
[0003] 芳纶绝缘纸大多是用芳纶短切纤维和芳纶浆粕按照一定比例抄造而成，压榨、干燥、高温压光成型制得的。短切纤维主要提供材料的机械性能，芳纶浆粕为毛细纤维丰富的纸浆性纤维，起到黏结的作用，在纸张成型后，通过加热加压等作用，使得熔点较低芳纶短切纤维低的芳纶浆粕熔化，将短切纤维粘贴在一起。
[0004] 目前，大部分芳纶绝缘纸是间位芳纶短纤、间位芳纶浆粕和第三种纤维或者粘合剂组成，例如专利 ZL93106746.4 公开了一种由对位芳纶短切纤维和间位芳纶浆粕合成的纸；中国专利 ZL99125156.3 揭露的纸是由芳香族聚酰胺纤维和粘合剂组成；中国专利 ZL200410026569.1 采用芳香族聚酰胺纤维、聚对苯撑苯并二噁唑纤维和原纸化纤维等作为原料合成纸。上述专利着重在芳纶纸的配比及热压工艺上，而且为多种材料的混合纸。
[0005] 中国专利申请 200610043659.0 提出了用纯的间位芳纶短切纤维制成间位芳纶纸的方法，所述的方法包括如下步骤：在水中加入质量百分比为 5-95wt% 的间位芳纶短切纤维制成浆料，将水中加入质量百分比为 5-95wt% 的间位芳纶短切纤维制成浆料，将两种浆料混合；使混合后的浆料上网成型；压榨、干燥以及高温压光成型，得到芳纶纸。该专利申请在间位芳纶纤维原料阶段解决纤维的分散问题，但是对造纸的抄纸工艺并没有详细说明。
[0006] 超声波是频率高于 20000 赫兹的声波，它方向性好，穿透能力强，易于获得较高的声能，在水中传播距离远，在医学、军事、工业、农业上有很多的应用。众所周知，超声波因为频率高、波长短，所以具有定向直线传播、空化作用和机械作用，促进固体分散。
[0007] 造纸浆料的分散和絮凝将严重影响芳纶绝缘纸的机械强度，厚度等，短切纤维取向度对芳纶绝缘纸的机械强度等方面有很大影响。本发明拟提供一种采用超声波技术解决上述问题的手段，获得了具有优异机械强度、平整度和厚度的芳纶绝缘纸，从而引导出本发明的构思。

发明内容
[0008] 本发明的目的之一是提供一种制备芳纶绝缘纸的方法，所述的方法以超声波作用于造纸浆料，使造纸浆料内芳纶短切纤维的分散性增加。短切纤维在垂直方向的取向度大量减少，短切纤维在水平方向取向度增加，藉此获得的芳纶绝缘纸强度有显著的提高。
为实现上述目的，本发明提供了一种制备芳纶绝缘纸的方法，所述方法包括以下步骤：

1）分别配制所需浓度的芳纶浆料和芳纶短切纤维浆料；
2）将所述浆料按照规定比例混合并打浆，制成所需要的浓度的浆料；
3）将所述浆料送入包括浆板的抄纸机上网成型并抄纸，获得湿纸页；
4）将所述湿纸页压榨脱水和干燥；以及
5）将所述干燥后的纸页高温压光，获得芳纶绝缘纸；

其中，在步骤 iii）中，在所述浆板上安装超声波发生器，向流经所述浆板内的浆料施加定向超声波。

较佳地，所述超声波的传播方向与所述浆料的流动方向是平行的。最好地，所述浆板上安装在所述浆板上顺流的两端，使产生的超声波的传播方向与所述浆料的流动方向相同。

在本发明的一个实施例中，在步骤 i）中所述浆料的质量百分浓度为 3-7wt%。在步骤 ii）中，所述浆料质量百分浓度为 2-7wt%。较佳地，所述浆料质量百分浓度为 4.5-5.5wt%。在步骤 iii）中，所述浆料质量百分浓度为 3-4wt%。

按照所要制备的浆料型号，在步骤 ii）中将芳纶浆料和芳纶短切纤维浆料按照一定的比例混合。一般地，所述浆料质量百分浓度为 20-70wt%。在步骤 ii）中制得的浆料的质量百分浓度为 0.5-3 重量%。

在本发明一优选实施例中，步骤 iii）采用斜网成型抄纸机进行上网成型抄纸。

根据本发明，所述定向超声波的频率在 10-100kHz 之间，较佳地在 20-45kHz 之间。常用的频率为 20kHz、30kHz、35kHz 和 42kHz。

所述超声波发生器设有功率调节功能，超声波功率能够实现无级平滑功率，以防止超声波发生跳动，从而保持稳定性。

与现有技术的干燥工序采用一个干燥温度的做法不同，本发明方法的另一个特点在于：在步骤 iv）中，干燥步骤采用两段干燥，其中第一段干燥的温度在 105-115°C 之间，第二段干燥的温度在 145-155°C 之间。较佳地，所述第一段干燥的温度为 110°C，第二段干燥的温度为 150°C。

本发明的另一目的还涉及根据本发明的方法制备的芳纶纸。

本发明制备方法所制备的芳纶绝缘纸，由于在抄纸机的浆板上安装了超声波发生器，向流经所述浆板内的浆料施加定向超声波，当超声波在浆料中传播时，可以产生机械效果和热化效应，而且超声波波传递很强的能量。当超声波在流体介质中形成驻波时，悬浮在流体中的浆料颗粒和短切纤维在波节形成周期性运动，避免凝聚和堆积。超声波对浆料中的空化效应，导致产生大量的小气泡，小气泡会随着周围介质的振动而不断运动，延长或突然破灭，小气泡的运动促使浆料颗粒和短切纤维分散均匀，避免凝聚。超声波还可以在固体介质中传播，芳纶短切纤维受到超声波能量的影响，运动方向趋近超声波传播方向，因此短切纤维水平取向增加，成品芳纶纸强度增加。

在对实施例中抄造出的纸张性能进行检测时，使用下列检测方法：定量 GB/

附图说明
[0026] 图 1 是本发明一个实施例制备芳纶绝缘纸的方法的流程图。

具体实施方式
[0027] 以下将结合附图对本发明的构思、具体结构及产生的技术效果作进一步说明，以充分地了解本发明的目的、特征和效果。
[0028] 如图 1 所示，本实施例以纯的间位芳纶浆粕和纯的间位芳纶短切纤维制备间位芳纶绝缘纸。当然，采用类似的方法也可以制备对位芳纶绝缘纸。以下详细说明本实施例的具体工艺过程。
[0029] 首先，准备间位芳纶浆粕浆料和间位芳纶短切纤维浆料。具体地，把间位芳纶浆粕浆料和水加入到水力碎浆机中进行碎浆，得到的碎浆质量百分浓度为 3-7wt%，较佳为 4.5-5.5wt%；把间位芳纶短切纤维和水加入到水力碎浆机中进行碎浆，得到的碎浆质量百分浓度为 2-7wt%，较佳为 3-4wt%。
[0030] 通过高频振动筛对上述间位芳纶浆粕浆料和间位芳纶短切纤维浆料进行筛选，选择性能优良的浆料，再分别送入各自的卸料浆池中。然后，将这两种浆料按照一定比例泵入调配浆池混合。芳纶浆粕浆料和间位芳纶简切纤维浆料的混合比例是根据成品芳纶绝缘纸的型号而进行调节的。不同型号的成品纸有不同的用途，所需的性能参数不同，因此要求间位芳纶浆粕和间位芳纶短切纤维的比例也不同。一般地，芳纶绝缘纸中间位芳纶浆粕的质量百分含量为 20-70wt%，间位芳纶短切纤维的质量百分含量为 30-80wt%。
[0031] 本实施例采用两个调配浆池，其中第一调配浆池用于将按比例泵入的芳纶浆粕浆料和间位芳纶短切纤维浆料打浆疏解，使两种浆料混合均匀以及纤维达到良好的疏解、分丝帚化和适度切断效果，以适应抄纸机生产的要求。从第一调配浆池出来的浆液会进入第二调配浆池，向第二调配浆池中加入去离子水，将所述浆液调配至所需要的质量百分浓度为 0.5-3wt%，得到造纸浆料。
[0032] 从第二调配浆池出来的造纸浆料经过除沙泵去除杂质，进入斜网成型抄纸机进行上网成型抄纸。如本领域技术人员所知，斜网纸机包括浆箱，对造纸浆料进行整流。与现有技术不同，本发明在浆箱上安装超声波发生器，向流经所述浆箱内的造纸浆料施加定向超声波。本实施例采用透射超声波，超声波发生器安装在浆箱前侧的两端，使产生的超声波的传播方向与造纸浆料的流动方向相同。当然，超声波的传播方向也可以与造纸浆料的流动方向相反，这对本领域技术人员而言是显而易见的。但本发明强调的是超声波发生器安装在所述浆箱的上游，使产生的超声波的传播方向与所述的造纸浆料的流动方向相同。
[0033] 在超声波作用下，流浆箱内的水振动方向水平固定，在水流的作用下间位芳纶短切纤维在水平方向上的取向度增加，间位芳纶短切纤维在垂直方向上分布减少，间位绝缘芳纶纸机械强度增加。同时超声波的空化作用和分散作用使造纸浆料悬浊液分散均匀，减少间位芳纶纤维和浆粕的絮凝，使得间位芳纶绝缘纸纸面平整、均匀。
超声波发生器的频率在 10-100kHz 之间，较佳地在 20-45kHz 之间，常用频率为 20kHz、30kHz、35kHz 和 42kHz。

超声波发生器设有功率调节功能，超声功率可实现无级平滑功率，以防止超声波发生跳动，从而保持稳定性。造纸浆料在超声波作用下形成湿纸页。湿纸页被抄造后通过压榨辊进行压榨脱水。

本发明的干燥工序与现有技术不同。现有的干燥工序是一段干燥法，即将干燥温度设在比较高的温度，通常为 150℃，这容易导致含有大量水的湿纸页收缩得厉害，容易起皱。本发明对干燥工序作了改进，改为接触式烘缸干燥，分为两段干燥。第一段干燥的温度设在 105-115℃之间，较佳地为 110℃。由于斜网造纸机抄造的湿纸页水含量较高，使用相对较低的温度有利于均匀地除去大量的水，不会因局部过热而使纤维绝缘纸收缩。当湿纸页的水含量小于 2%时，将温度升高到 145-155℃之间，较佳地为 150℃，这时能够将纸页里的水彻底地去除干净。本发明采用两段干燥的做法使得纸张在干燥时不容易起皱，能够获得很好的平整度。

烘干后的间位芳纶绝缘纸经压光处理，再经过复卷、分切、包装，得到成品芳纶绝缘纸。高温压光步骤的工作温度为 200-350℃，以 110-300kg/cm² 的线压条件热压成型，制得芳纶纸。

作为具体实施例

按照上述配方制成间位芳纶绝缘纸，间位芳纶浆粕 5%在水力碎浆机破解，筛选后进入卸料池。间位芳纶短切纤维 3%在水力碎浆机破解，筛选后进入卸料浆池。间位芳纶浆粕浆料和间位芳纶短切纤维浆料按照 2：5 的比例进入调配浆池，打浆疏解，调配浆料浓度至 1.10%，开启频率 30kHz 和功率 15kw 超声波上网抄纸，压榨干燥后，压光，得到成品纸。成品纸中浆粕与短切纤维的比值为 40：60。对得到的成品纸进行测试，结果见表 1。

<table>
<thead>
<tr>
<th>检测指标</th>
<th>单位</th>
<th>平均值</th>
</tr>
</thead>
<tbody>
<tr>
<td>定量</td>
<td>g/m²</td>
<td>62.4</td>
</tr>
<tr>
<td>厚度</td>
<td>mm</td>
<td>0.084</td>
</tr>
<tr>
<td>抗张强度</td>
<td>横向 MD</td>
<td>N/cm</td>
</tr>
<tr>
<td></td>
<td>纵向 CD</td>
<td>N/cm</td>
</tr>
<tr>
<td>伸长率</td>
<td>横向 MD</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>纵向 CD</td>
<td></td>
</tr>
<tr>
<td>介电强度</td>
<td>kV/mm</td>
<td>23.2</td>
</tr>
</tbody>
</table>

比较实施例

按照上述配方制成间位芳纶绝缘纸，间位芳纶浆粕 5%在水力碎浆机破解，筛选后进入卸料池。间位芳纶短切纤维 3%在水力碎浆机破解，筛选后进入卸料浆池。间位芳纶浆粕浆料和间位芳纶短切纤维浆料按照 2：5 进入调配浆池，打浆疏解，调配浆料浓度至 1.10%，不开启超声波上网抄纸，压榨干燥后，压光，得到成品纸。成品纸中浆粕与短切纤维
的比值为 40 : 60。对得到的成品纸进行测试，结果见表 2。

表 2

<table>
<thead>
<tr>
<th>检测指标</th>
<th>单位</th>
<th>平均值</th>
</tr>
</thead>
<tbody>
<tr>
<td>定量</td>
<td>g/m²</td>
<td>62.4</td>
</tr>
<tr>
<td>厚度</td>
<td>mm</td>
<td>0.084</td>
</tr>
<tr>
<td>抗张强度</td>
<td>N/cm</td>
<td></td>
</tr>
<tr>
<td>横向 MD</td>
<td></td>
<td>54.7</td>
</tr>
<tr>
<td>纵向 CD</td>
<td></td>
<td>31.2</td>
</tr>
<tr>
<td>伸长率</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>横向 MD</td>
<td></td>
<td>9.5</td>
</tr>
<tr>
<td>纵向 CD</td>
<td></td>
<td>6.3</td>
</tr>
<tr>
<td>介电强度</td>
<td>kV/mm</td>
<td>15.6</td>
</tr>
</tbody>
</table>

由以上实施例可见，根据本发明的方法制备的芳纶绝缘纸在抗张强度、伸长率和介电强度等参数均明显高于按照常规方法制备的芳纶绝缘纸。显然，采用超声波对造纸浆料进行处理，不但促使芳纶浆粕和短切纤维分散均匀，避免凝聚，而且提高了短切纤维取向度，使获得的纸张强度提高，纸面平整、均匀。
综合以上所述，本说明书所描述的是本发明的较佳具体实施例。凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案，皆应在本发明的权利要求保护范围内。