

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number

WO 2013/061034 A1

(43) International Publication Date

2 May 2013 (02.05.2013)

WIPO | PCT

(51) International Patent Classification:

B63B 9/00 (2006.01) B63H 23/34 (2006.01)
B63G 3/00 (2006.01)

(74) Agent: BAE SYSTEMS PLC, GROUP IP DEPT, PO Box 87, Farnborough Aerospace Centre, Farnborough, Hampshire GU14 6YU (GB).

(21) International Application Number:

PCT/GB2012/052590

(22) International Filing Date:

19 October 2012 (19.10.2012)

(25) Filing Language:

English

(26) Publication Language:

English

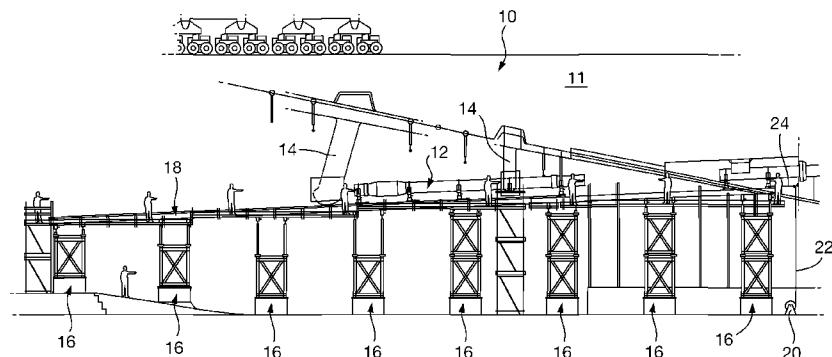
(30) Priority Data:

1118378.7 25 October 2011 (25.10.2011) GB

(71) Applicant: BAE SYSTEMS PLC [GB/GB]; 6 Carlton Gardens, London SW1Y 5AD (GB).

(72) Inventors: WATSON, Tobias, Jonathan; Surface Ships, PDC 4th Floor, South Street, Scotstoun, Glasgow Lanarkshire G14 0XN (GB). HEATON, Leigh, Francis; Surface Ships, 2nd Floor, COC East, Scotstoun, Glasgow Lanarkshire G14 0XN (GB). BAIN, Fraser, Angus; Wet Basin Office, 1048 Govan Road, Govan, Glasgow Lanarkshire G51 4XP (GB). FRASER, Steven, Martin; Surface Ships, PDC 4th Floor, South Street, Scotstoun, Glasgow Lanarkshire G14 0XN (GB). BLAIR, Graham, David; Surface Ships, Berth Office, 1048 Govan Road, Glasgow Lanarkshire GU51 4XP (GB). HALLEY, Boyd; Surface Ships, 1048 Govan Road, Govan, Glasgow Lanarkshire G51 4XP (GB).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.


(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report (Art. 21(3))
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))

(54) Title: INTRODUCTION OR WITHDRAWAL OF AN ELONGATE MEMBER TO OR FROM A BODY

Fig. 1

(57) Abstract: A method of moving an elongate member(12) along a predetermined axis (A-A) for the introduction or withdrawal thereof to or from a free body (11). The method includes providing an elongate guide surface (18) extending parallel to the predetermined axis, and also providing a plurality of support elements (26) which are slidable on the support surface in a direction parallel to the predetermined axis. The elongate member is supported on the support elements so that at least a major portion of the mass is supported. The elongate member and the support elements are moved along the predetermined axis. Apparatus for moving an elongate member in this manner is also provided.

WO 2013/061034 A1

INTRODUCTION OR WITHDRAWAL OF AN ELONGATE MEMBER TO OR FROM A BODY

This invention relates to the introduction or withdrawal of an elongate member to or from a free body. In particular, but not exclusively, the invention is concerned with moving a shaft into/out of an enclosed space, where the shaft 5 has to be inserted along its longitudinal axis and traversed across bearings along the route, such as the introduction or withdrawal of a propeller shaft to or from a naval vessel.

Conventionally, when building large naval vessels such as the Queen Elizabeth, the propeller shaft is manoeuvred into position towards and through 10 one or more bracket barrels by “chaining in”, whereby the shaft is manoeuvred inch by inch whilst it is supported by cables slung from eyepads on the nearby surface of the ship’s hull. To give an idea of scale, a typical ship’s propeller shaft section will be 1 metre in diameter, 20 metres in length, and weigh 15 approximately 40 tonnes. To chain in such a shaft is extremely labour-intensive and relies on chain blocking and manual weight transfer. Unlike most shore applications, where the shafting would be simply be craned into place from above, this approach is not possible with the ship because the installation of the shaft involves a complicated alignment process that is principally dependent on the completeness of the surrounding structure for its “foundation”. In fact, the 20 alignment process begins with the locating of the outboard bearings and before the shaft is installed, but it requires the hull form to be substantially complete.

In addition to requiring large amounts of manpower and taking a long time, there is also a risk of damage to the shaft as it is chained in, due to

damage caused by the chain and/or misalignment of the shaft with associated bearing or support surfaces. Further, there are also health and safety risks associated with this conventional approach because the operatives are working close up to the shafting. If the shafting should suddenly lurch or drop then there
5 is a significant risk of an operative getting trapped or injured.

It will be appreciated that there are other situations where space/location restrictions mean that no overhead lift for installing an elongate shaft, pipe or the like is possible; for example, when working in a cavern in the side of a hill, or specialist applications in the oil/gas, power generation and water industries.

10 We have therefore designed a method and apparatus which allows controlled sliding movement of the shaft along the installation axis and which can reduce the amount of chain blocking, manual weight transfer and the number of people required to be involved.

15 In one aspect, this invention provides a method of moving an elongate member along a predetermined axis for the introduction or withdrawal thereof to or from a free body, which method comprises the steps of:

providing an elongate guide surface extending parallel to said predetermined axis;

20 providing a plurality of support elements which are slideable on said support surface in a direction parallel to said predetermined axis;

supporting said elongate member on said support elements so that at least a major portion of the mass is supported thereby, and

causing said elongate member and said support elements to move along

said predetermined axis.

In this way the majority of the mass of the elongate member is supported on the support elements which may be slid along the guide surface so as to give continuous linear movement of the elongate member.

5 Said elongate guide surface preferably comprises a straight load-supporting surface, and said support elements each comprise one or more load-supporting pads that engage and are slideable along said load-supporting surface.

10 Each load-supporting pad is conveniently made of low friction material, such as e.g. polytetrafluoroethylene (PTFE). The support elements are preferably constrained against transverse movement with respect to said load-supporting surface by suitable means, for example by spaced generally parallel side elements upstanding from opposite edges of said load-supporting surface, although other constraints may be used.

15 Preferably the effective height of the support elements is adjustable. Preferably said support elements are interconnected by tie elements to transmit a drive load there between. The tie elements are conveniently flexible.

20 Each support element preferably comprises a cradle portion upwardly open to receive and engage a portion of the elongate member when lowered in use. It is preferred for the support elements to be dismantleable into parts whereby, when the elongate member is supported by a series of three or more support elements, one of said support elements of the series may be dismantled and removed to leave the elongate member still supported in alignment with said

predetermined axis by the remaining support elements.

Although the method may be used to introduce or withdraw the elongate member to or from a bore which supports and encloses the adjacent portion of the elongate member, it is particularly useful for situations where a elongate member needs to be passed through and beyond a structural member, such as a propeller shaft bracket boss (or an "A bracket barrel"). Thus, where an end of the elongate member is caused to move towards and beyond an associated structural member in use the method may conveniently comprise:

causing said elongate member and said at least three support elements to move in the direction of said associated structural member until said one end of the elongate member is adjacent said associated structural member,

dismantling said leading support element leaving the elongate member supported at least partially by the remaining elements, and

causing further movement of said elongate member beyond said associated structural member. In some such cases part of the load may be supported by the associated structural member after dismantling of said leading support element.

Where the elongate member needs to be supported to the other side of the support bracket, the said elongate guide surface provided may extend beyond said associated structural member, and the method may further include the steps of:

reassembling said leading support element at a location beyond said associated structural member,

continuing movement of said elongate member until the next support element in the series approaches said associated structural member,

dismantling said next support element, and

further moving said elongate member, and

5 optionally repeating said moving, dismantling, moving and reassembling steps until the required support elements have been reassembled beyond said associated structural member.

The elongate member may comprise a propeller shaft and the free member may comprise a waterborne vessel, or at least the stern portion of a 10 waterborne vessel. The waterborne vessel may in particular be a naval vessel, and the invention extends to a method of constructing a naval vessel comprising applying the above method.

The invention extends to apparatus for use in the method. Thus, in another aspect, the invention provides apparatus for moving an elongate 15 member along a predetermined axis for the introduction or withdrawal thereof to or from a free body, which comprises:

an elongate guide surface extending parallel to said predetermined axis;

a plurality of support elements which are slidable on said guide surface in a direction parallel to said predetermined axis;

20 said support elements being adapted to receive and support at least a major portion of the mass of said elongate member, and

 a drive for causing said elongate member and said support elements to move along said predetermined axis.

Whilst the invention has been described above, it extends to any inventive combination of features set out above in the following description, claims or drawings.

By way of example only, one specific embodiment of the invention will 5 now be described by reference to the accompanying drawings, in which:

Figure 1 is a side view of the aft end of a naval vessel into which a propeller shaft is to be installed;

Figure 2 is a view of a system for slideably supporting a propeller shaft for movement along an installation axis;

10 Figure 3(a) is a detailed view of a cradle when assembled, and

Figure 3(b) is a detailed view on the underside of the foot of a cradle.

Referring initially to Figure 1, there is shown the stern portion 10 of a naval vessel 11 in which an elongate (i.e. the length of the shaft is greater than the span of the bearings (described below) provided for it) propeller shaft 12 is 15 required to be aligned with an axis A-A, a few degrees below horizontal, and inserted along this axis. The shaft will normally be a single component, but in some cases can be formed of several components fixed together. The shaft passes through two "A" bracket barrels 14 aft of its emergence from the hull. An "A" bracket is a bracket that is attached to the side of the vessel and is so called 20 because it is shaped like the letter "A", with the shaft running through a bearing that is placed inside a bearing boss (commonly known as a "barrel" in ship building because of its similarity in shape) located at the apex of the "A". In order to install the shaft, a platform structure is built comprising a number of

support towers 16 which support a straight guide surface 18 parallel to, but spaced by a set distance from, the shaft centre line or installation axis A-A. The guide surface 18 and associated structure will be described in further detail in relation to the following figures. A cable winch 20 is disposed on the ground at 5 the forward end of the platform structure with the cable 22 passing over a pulley 24 to then pass to the structure as to be described below.

Referring now to Figures 2, 3(a) and 3(b), the installation system comprises the guide surface 18 on which can slide a number of cradles 26, of which four are illustrated. The cradles 26 are interconnected by tie cables 28 with the forwardmost cradle being connected to the winch cable 22. As best seen in Figures 3(a) and (b), each cradle 26 has a lower portion 30 of rectangular form connected to a foot 32, on the underside of which are provided one or more (three in the example) load supporting, low-friction pads 34 (e.g. of PTFE). The guide surface 18 is provided with upstanding lateral constraint edges 19 which ensure that the cradle is constrained to move in the direction parallel to the installation axis. The upper part of the cradle 26 is provided with a dismantlable, rigid height adjustable wedge jack 33 which connects the box section 30 to a semi-circular cradle portion 40 designed to receive the shaft when lowered into it. The cradle portion has slots 42 or other suitable attachment means to allow a strap 44 to be applied in order to strap the shaft into the cradle. The wedge jacks may be eg Titan™ wedge jacks.

In addition to the cradles, the shaft may be supported by top steadies 46 (see Figure 2), e.g. of webbing. The top steadies function as a safety harness

and are intended to receive the load quickly and safely if there is a failure in the mechanism. In this arrangement, the majority of the mass of the shaft is supported by the cradles. In use, the shaft may be drawn along the installation direction by operating the winch 20 which moves cradles (four in the example)

5 26 and the supported shaft 12, via the winch cable 22 and the tie cables 28.

The shaft 12 may be passed through the "A" bracket barrels 14 by moving the shaft and the cradle assemblies 26 towards the first "A" bracket barrel 14. As the first cradle assembly 26 approaches the first "A" bracket barrel 14, the associated wedge jacks 33 can be adjusted upwards or downwards to ensure

10 alignment between the shaft and the bracket barrel. The jack and the box section 30 must then be removed to allow the shaft to pass through the bracket barrel. When a cradle assembly approaches, and is close to contact, the Titan™

jack is lowered to take that cradle assembly off load. The jack and the box section can then be unbolted and removed. This will allow the shaft - with semi

15 circular cradle 40 still attached - to pass through the bracket barrel unhindered when the winch 20 is used. When the shaft emerges from the bracket barrel, the procedure is reversed and the jack and the box section are reassembled to support the shaft and the winch 20 is applied again and the process repeated for each of the successive cradles.

20 It will be appreciated that the apparatus and method described above can be adapted to install and/or remove other types of elongate members, such as pipes in height-restricted locations.

CLAIMS

1. A method of moving an elongate member (12) along a predetermined axis (A-A) for the introduction or withdrawal thereof to or from a free body (11), the method including:

5 providing an elongate guide surface (18) extending parallel to said predetermined axis;

providing a plurality of support elements (26) which are slidable on said support surface in a direction parallel to said predetermined axis;

10 supporting said elongate member on said support elements so that at least a major portion of the mass is supported thereby, and

causing said elongate member and said support elements to move along said predetermined axis.

2. A method of according to Claim 1, wherein said elongate guide surface comprises a flat planar load-supporting surface (18), and said support elements (26) each comprise at least one load-supporting pad (34) that, in use, engage and are slidable along said load-supporting surface.

3. A method according to Claim 2, wherein each said support element (26) comprises a plurality of said load-supporting pads (34).

4. A method according to Claim 2 or Claim 3, wherein said load-supporting pad(s) (34) is/are of low friction material.

20 5. A method according to Claim 4, wherein said low friction material is polytetrafluoroethylene (PTFE).

6. A method according to any preceding Claim, wherein said support

elements (26) are constrained against transverse movement with respect to said load-supporting surface (18) by spaced generally parallel side elements (19) upstanding from opposite edges of said load-supporting surface.

7. A method according to any of the preceding Claims, wherein said support elements (26) are interconnected by tie elements (28).

8. A method according to Claim 7, wherein said tie elements (28) are flexible.

9. A method according to any of the preceding Claims, wherein each said support element (26) comprises a cradle portion (40) upwardly open to receive and engage a portion of the elongate member (12) when lowered in use.

10. A method according to any of the preceding Claims, wherein the support elements (26) are dismantleable whereby, when the elongate member (12) is supported by a series of three or more said supporting elements, and one of said supporting elements of the series may be dismantled to leave the elongate member supported in alignment with said predetermined axis by the remaining support elements.

11. A method according to Claim 10, wherein an end of the elongate member (12) is caused to move towards and beyond an associated structural member (10), and wherein the method further comprises:

20 causing said elongate member to move in the direction of said associated structural member until said one end is adjacent to said associated structural member,

dismantling a leading said support element (26), leaving the elongate

member supported by remaining said support elements, and
causing further movement of said elongate member beyond said
associated structural member.

12. A method according to Claim 11, wherein said elongate guide
surface (18) extends beyond said associated structural member (10) and the
method further includes steps of:

reassembling said leading support element (26) at a location beyond said
associated structural member,

continuing movement of said elongate member (12) until a next said
support element approaches said associated structural member,

dismantling said next support element, and

further moving said elongate member, and

optionally, repeating said moving, dismantling, moving and reassembling
steps until a preset number of said supporting elements have been reassembled
beyond said associated structural member.

13. A method as claimed in any of the preceding claims, wherein said
elongate member comprises a propeller shaft for a naval vessel, and wherein
said free body comprises a naval vessel, or at least the stern portion of a naval
vessel.

20 14. A method of constructing a naval vessel comprising applying the
method of claim 13.

15. Apparatus for moving an elongate member (12) along a
predetermined axis (A-A) for the introduction or withdrawal thereof to or from a

free body (11), the apparatus including:

an elongate guide surface (18) extending parallel to said predetermined axis;

a plurality of support elements (26) which are slidable on said guide surface in a direction parallel to said predetermined axis;

said support elements being adapted to receive and support at least a major portion of the mass of said elongate member, and

a drive (20) for causing said elongate member and said support elements to move along said predetermined axis.

10 16. Apparatus according to Claim 15, wherein said elongate guide surface (18) comprises a straight load-supporting surface, and said support elements (26) each include a load-supporting pad (34) that engages, and is slidable along, said load-supporting surface.

15 17. Apparatus according to Claim 16, wherein each said support element (26) comprises a plurality of said load-supporting pads (34).

18. Apparatus according to Claim 16 or Claim 17, wherein the or each said load-supporting pad (34) is of low friction material.

19. Apparatus according to Claim 18, wherein said low friction material is polytetrafluoroethylene (PTFE).

20 20. Apparatus according to any of Claims 15 to 19, wherein said support elements (26) are constrained against transverse movement with respect to said load-supporting surface by spaced generally parallel side elements (19) upstanding from opposite edges of said load-supporting surface.

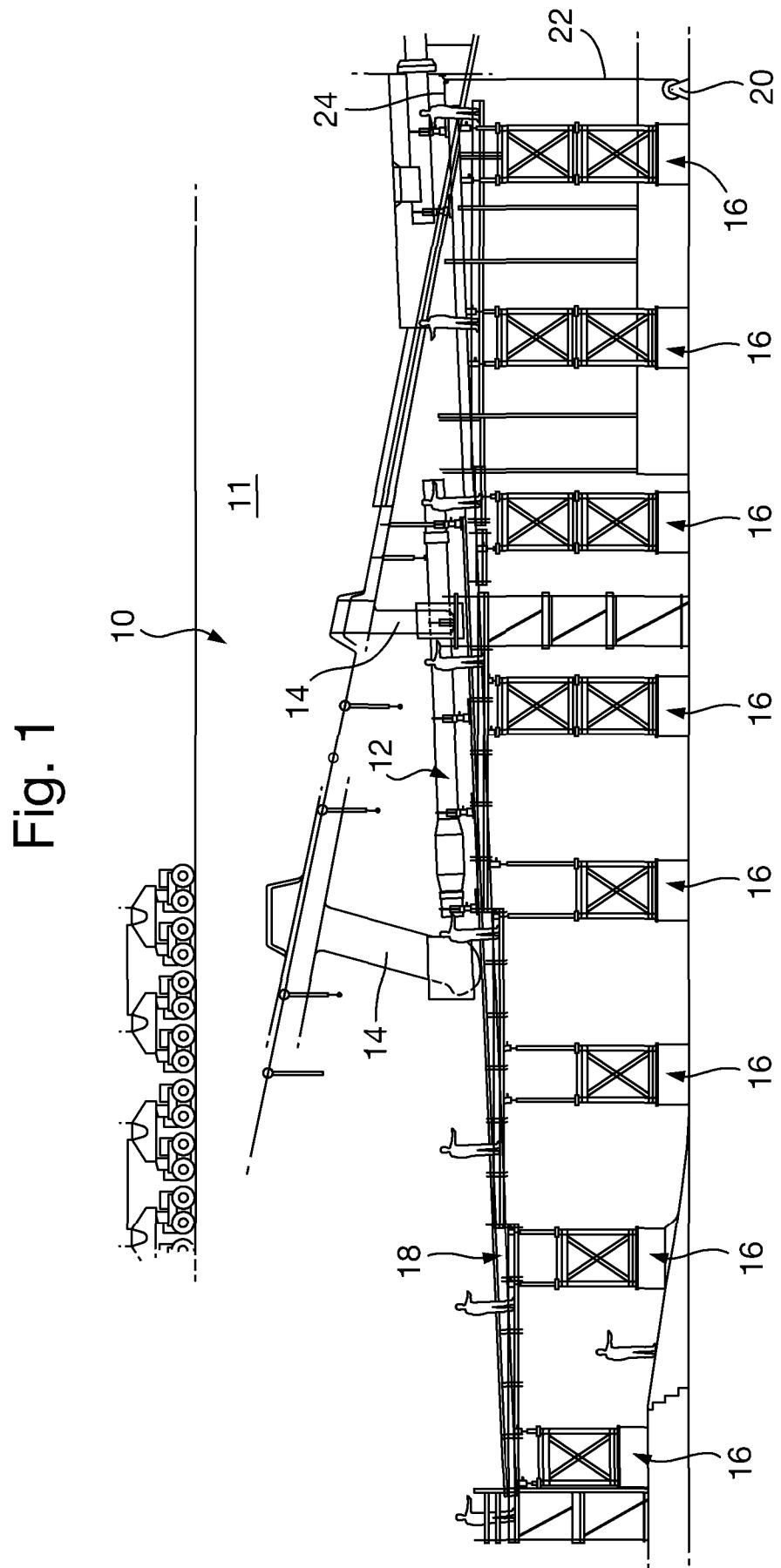
21. Apparatus according to any of Claims 15 to 20, wherein said support elements (26) are interconnected by tie elements (28).

22. Apparatus according to Claim 21, wherein said tie elements (28) are flexible and adjustable.

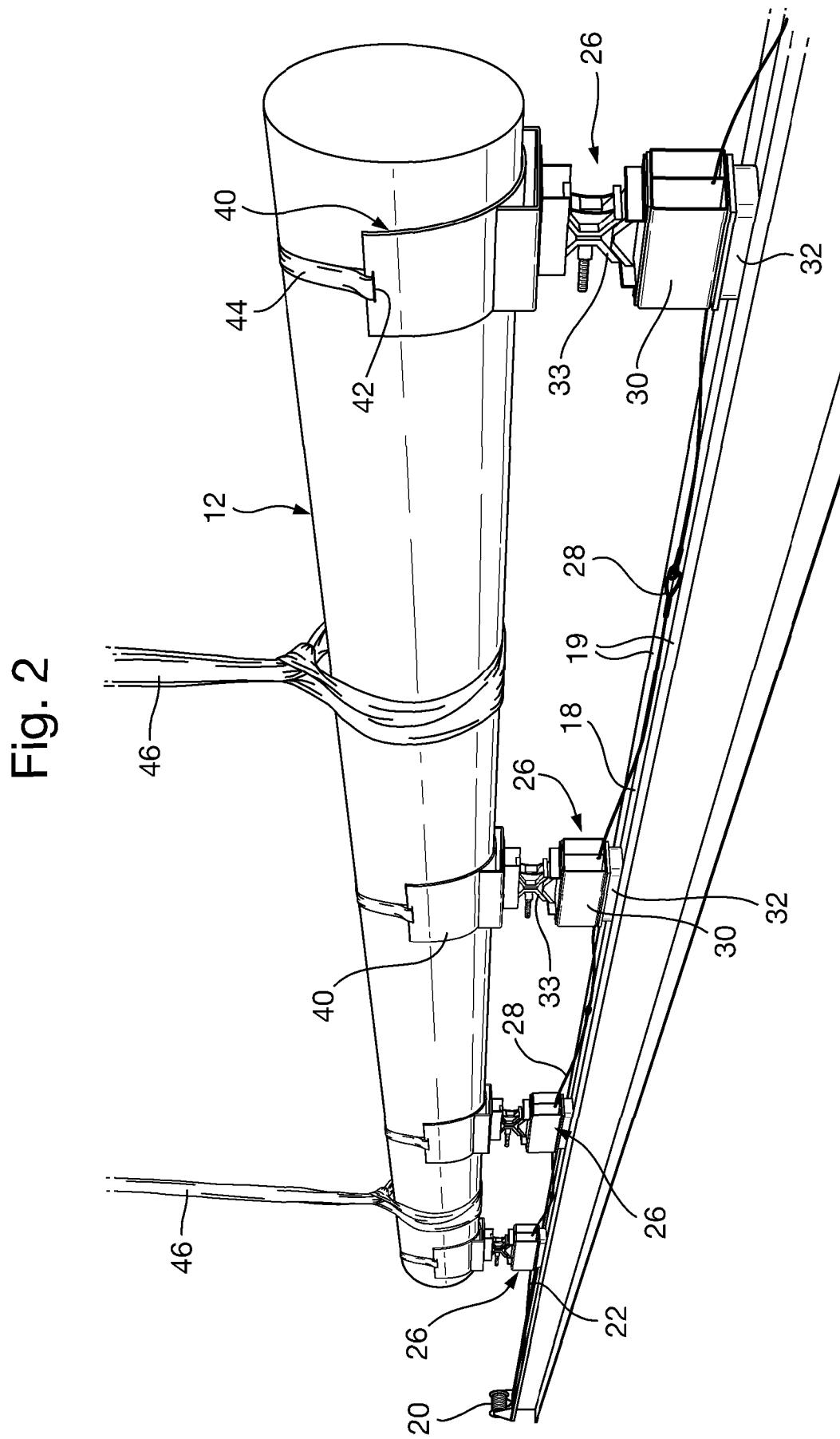
5 23. Apparatus according to any of the Claims 15 to 22, wherein each support element (26) comprises a cradle portion (40) upwardly open to receive and engage a portion of the elongate member (12) when lowered in use.

10 24. Apparatus according to any of Claims 15 to 23, wherein the support elements (26) are dismantlable whereby, when the elongate member (12) is supported by a series of three or more said support elements, one of said support elements of the series being dismantlable to leave the elongate member supported in alignment with said predetermined axis (A-A) by remaining said support elements.

15 25. Apparatus according to any of Claims 15 to 24, wherein the support elements (26, 33) are height adjustable.


26. Apparatus according to any one of claims 15 to 25, wherein the elongate member (12) comprises a propeller shaft and the free member comprises a waterborne vessel (11).

20 27. A method of moving an elongate member along a predetermined axis for the introduction or withdrawal thereof to or from a free body substantially as described herein and/or with reference to the accompanying drawings.


28. Apparatus adapted to move an elongate member along a predetermined axis for the introduction or withdrawal thereof to or from a free

body substantially as described herein and/or with reference to the accompanying drawings.

1/3

2/3

3/3

Fig. 3(a)

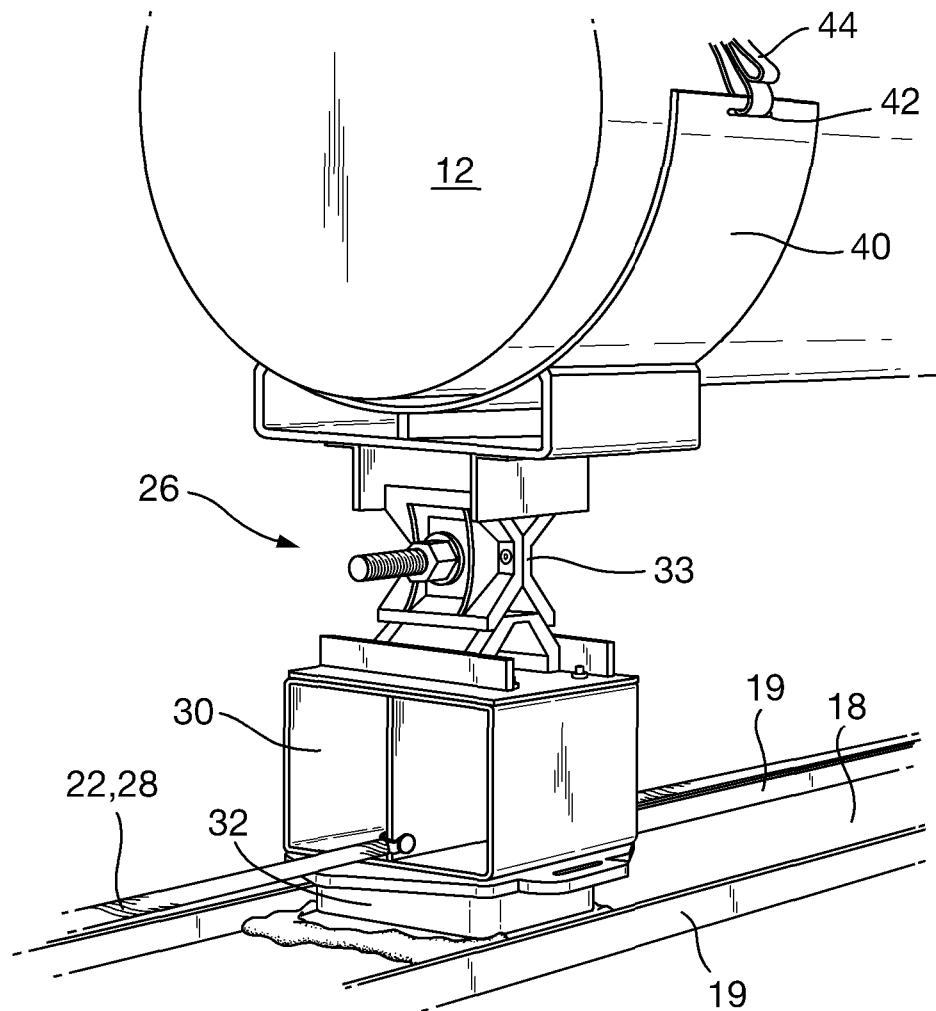
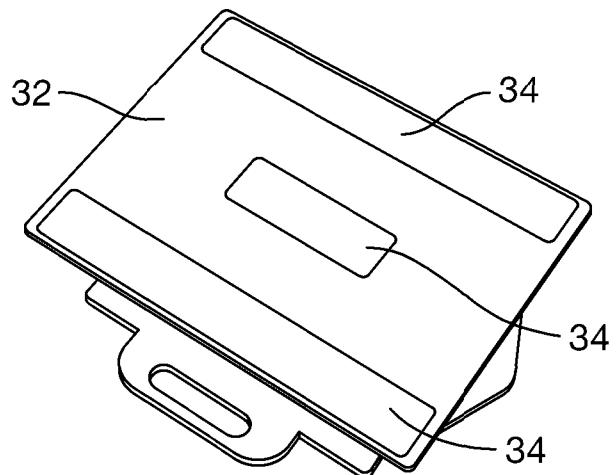



Fig. 3(b)

INTERNATIONAL SEARCH REPORT

International application No
PCT/GB2012/052590

A. CLASSIFICATION OF SUBJECT MATTER
INV. B63B9/00 B63G3/00 B63H23/34
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
B63B B63G B63H

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 4 544 322 A (BOOKER ARTHUR J [US]) 1 October 1985 (1985-10-01) column 2, line 60 - column 5, line 3; figures 1-9 -----	1-28
X	US 2 896 909 A (TAYLOR ALLAN J) 28 July 1959 (1959-07-28) column 2, line 9 - column 3, line 27; figures 1-4 -----	1-10
X	US 4 692 087 A (OLSEN RALPH A [US]) 8 September 1987 (1987-09-08) column 8, line 22 - column 9, line 36; figure 3 -----	1-10
X	US 2 940 769 A (TAYLOR ALLAN J) 14 June 1960 (1960-06-14) the whole document -----	1 -----
		-/-

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier application or patent but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search	Date of mailing of the international search report
6 February 2013	18/02/2013
Name and mailing address of the ISA/ European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016	Authorized officer De Sena Hernandorena

INTERNATIONAL SEARCH REPORT

International application No
PCT/GB2012/052590

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	DE 37 04 343 A1 (HOWALDTSWERKE DEUTSCHE WERFT [DE]) 25 August 1988 (1988-08-25) the whole document -----	1
X	GB 2 151 190 A (MAK MASCHINENBAU KRUPP) 17 July 1985 (1985-07-17) the whole document -----	1
X	WO 91/04905 A1 (KOCKUMS AB [SE]) 18 April 1991 (1991-04-18) the whole document -----	1

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No
PCT/GB2012/052590

Patent document cited in search report		Publication date	Patent family member(s)		Publication date
US 4544322	A	01-10-1985	NONE		
US 2896909	A	28-07-1959	NONE		
US 4692087	A	08-09-1987	NONE		
US 2940769	A	14-06-1960	NONE		
DE 3704343	A1	25-08-1988	NONE		
GB 2151190	A	17-07-1985	DE 3345334 A1 GB 2151190 A		27-06-1985 17-07-1985
WO 9104905	A1	18-04-1991	AU 6506590 A CA 2066668 A1 DE 69005455 D1 DE 69005455 T2 EP 0494241 A1 SE 465364 B SE 8903170 A WO 9104905 A1		28-04-1991 27-03-1991 03-02-1994 16-06-1994 15-07-1992 02-09-1991 27-03-1991 18-04-1991