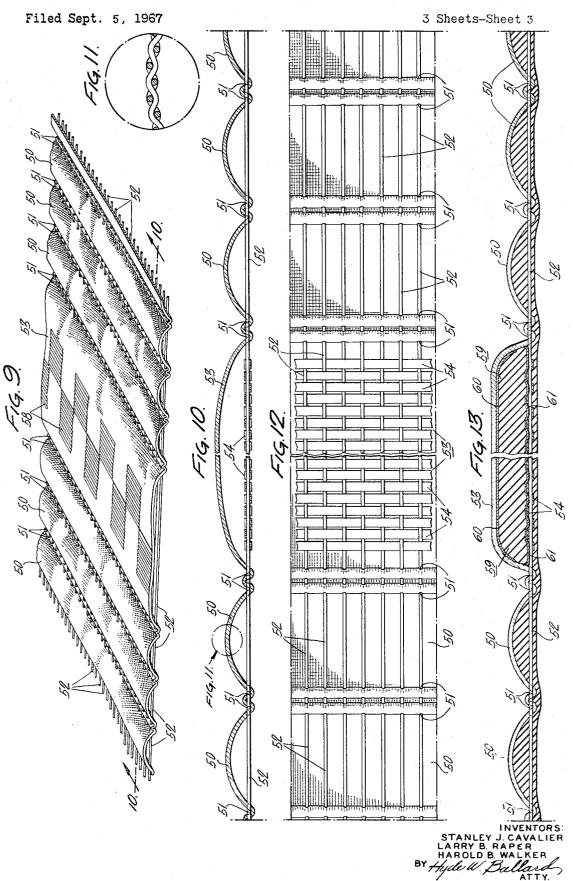

FILLED CUSHION MATELASSE FABRIC AND METHOD


Filed Sept. 5, 1967

3 Sheets-Sheet 1

FILLED CUSHION MATELASSE FABRIC AND METHOD

1

3,553,066

FILLED CUSHION MATELASSÉ FABRIC AND METHOD

Stanley J. Cavalier, Larry B. Raper, and Harold B. Walker, Rocky Mount, N.C.; said Raper and Walker assignors to Burlington Industries, Inc., a corporation of Delaware

Filed Sept. 5, 1967, Ser. No. 665,598 Int. Cl. D03d 3/08, 11/02

U.S. Cl. 161-73

10 Claims 10

ABSTRACT OF THE DISCLOSURE

This invention relates to a matelassé, upholstery fabric and to the methods of producing an improved fabric of this type having superior design appearance and physical characteristics. A preferred form of the fabric is characterized by a ground of heat shrinkable yarns into which the face fabric is tied at selected points to form irregular pockets. The non-uniform and randomly spaced pockets as well as uniform parallel pleats between the face fabric and the ground fabric are filled with an elastomeric material, which is injected into the pockets or pleats through a foraminous backing.

BACKGROUND OF THE INVENTION

Matelassé fabrics woven on jacquard looms are well known in the art, but are characterized as relatively flat 30 fabrics in which the floats or face threads did not form puffed or raised pockets. With the advent of heat shrinkable yarns, it is now possible to produce relatively deep pockets or voids between the face fabric and the backing yarns. This may be done in at least three ways: (1) The 35 use of heat shrinkable yarns in both the filling and the warp of the ground fabric. (2) The use of heat shrinkable warp yarns only. (3) The use of heat shrinkable filling yarns only. The heat shrinkable yarns may be either multifilament or mono-filament and can be any one of the well- 40 known thermoplastic materials including, for example, nylon, polyester, polyvinyl chloride, vinylidene chloride, acetate, saran, acrylic, modacrylic, etc. The terms yarn or threads used herein are intended to include the foregoing as well as staple, spun, or continuous filament. The face 45 fabric is ordinarily woven of both warp and filling treads of a vegetable, animal or synthetic material, but preferably of substantially less heat shrinkable properties than the ground fabric and desirably with no shrinkage occurring on the application of the degree of heat required to 50 shrink the ground fabric.

The desirable characteristics of such a fabric may be considerably enhanced if the voids formed between the face fabric and the ground fabric when subjected to the shrinking treatments are filled with a spongy elastomeric 55 material such as a foam latex of natural or synthetic rubber.

DESCRIPTION OF THE INVENTION

Referring now to the drawings,

FIG. 1 is a view of a matelassé fabric constructed in accordance with the present invention,

FIG. 2 is an enlarged detail of the area shown at 2 of FIG. 1, in which both shrinkable warp and filling threads are utilized in the ground fabric,

FIG. 3 is an enlarged sectional detail as seen at 3—3 of FIG. 2,

FIG. 4 is a view of the fabric of FIG. 3 as originally woven,

FIG. 5 is a view of the fabric of FIG. 4 after weaving 70 and the application of heat which may occur in the dye bath or otherwise,

2

FIGS. 6a and 6b are schematic showing the various steps in the method of preparing the fabric of FIGS. 1, 7, and 8,

FIG. 7 is a view similar to FIG. 2 of a fabric having heat shrinkable warp threads only,

FIG. 8 is a view similar to FIGS. 2 and 7 having heat shrinkable weft threads only, and

FIG. 9 is a perspective of a puffed upholstery fabric having linear pockets with generally parallel edges but before being filled with an elastomeric material,

FIG. 10 is a section as seen at 10—10 of FIG. 9, FIG. 11 is an enlarged detail of the face fabric of FIGS. 9 and 10,

FIG. 12 is a bottom view of the fabric of FIG. 10, and FIG. 13 is a view of the fabric of FIG. 10 after shrinking and filling with an elastomeric material.

The fabric produced in accordance with the present invention comprises a ground or base layer 12 which is preferably woven of threads or yarn having substantial shrinkage characteristics upon the application of elevated temperature. The ground fabric 12 may, if desired, be knitted but I prefer to use a 1 and 1 weave as shown in FIG. 2 to obtain maximum shrinkage in both the warp and filling directions of the fabric.

The face fabric 13 is preferably woven of yarn or thread, which is substantially less affected by heat than the ground fabric 12. In order to achieve the matelassé design, selected warp and filling threads are carried or tied in under certain ground fabric threads as shown in FIG. 4 by means of a jacquard in accordance with well known weaving techniques. The completed initial weaving of the fabric is shown in FIG. 4, in which the threads 13a, 13a of the face fabric 13 are interwoven with filling threads 13b of the face fabric. The face fabric is carried over substantial areas of the ground fabric to form floats and is tied in or woven under one or two selected threads of the ground fabric as may be clearly seen at the center portion of FIG. 4. The ground fabric 12 likewise has filling threads 12a, 12a as well as warp threads 12b, 12b as shown in FIGS. 1–5.

After weaving, the fabric is subjected to a dyeing treatment in the dye kettle 14 (FIGS. 6a and 6b) from whence it is conveyed to a dryer 15 by means of a truck 16, overhead rolls 17, 17 and driven feed rolls 18, 18. From the dryer 15, the fabric is gathered on a table or truck 20 by means of a folder 21, which oscillates back and forth in a well known manner. The fabric is then fed into the heat treating zone or shrinking chamber 22 from table 20 by means of a feed roller or cylinder 23 and guide rollers 24, 24.

After passing through the chamber 22, the fabric will have the appearance shown in FIG. 5 in which the ground fabric has contracted both warpwise and weftwise to form a series of pockets 30, 31 and 32, all on one side of the ground fabric 12. The tension in the fabric while being fed to and through the shrinking chamber 22 as well as the pressure of the guide and feed rollers insure that the pockets 31 and 32 appear on the same side of the backing fabric 12. The contracted fabric then feeds over guide rollers 35 and 36 to a folder 37 and thence to a table 38. Whether from the same location or from a different location, the folded fabric is conveyed from table 38 over a series of rollers 39, 39 to a coating zone 40, which comprises a reservoir 41 of an elastomeric material 42. An applicator roll 43 picks up the material 42 and applies it to the back of the fabric on the side opposite the pockets 30, 31 and 32. A doctor blade 44 over which the fabric passes forces the elastomeric material through the foraminous ground fabric and into all of the pockets 30, 31 and 32 regardless of their shape and size. In addition, the doctor blade 44

scrapes away any excess elastomeric material which is returned to the reservoir 41.

After application of the elastomeric material, the fabric passes through a suitable curing chamber 45 from whence it is carried by rollers 46, 46 to be further inspected, trimmed and shipped for final installation.

The elastomeric material 42, which is used to fill the pockets 30, 31 and 32 must have sufficient heat to maintain the puffed pockets in the fabric in a maximum raised condition, but at the same time, it should not be so hard as to render the fabric too rough or of such a poor hand that it would be undesirable from the standpoint of an upholstered material. The elastomeric material, therefore, that is preferably used in the invention may be natural rubber latex or a conjugated diene synthetic rubber latex or mixtures thereof. Suitable conjugated diene latices are those prepared by emulsion polymerization of dienes such as butadiene-1,3,isoprene, chloroprene or mixtures thereof with one or more ethylenically-unsaturated compounds copolymerizable therewith. Examples of suitable copolymerizable substances are vinyl aromatic compounds, such as styrene, divinyl benzene and d-methyl styrene, acrylic, acids such as acrylic and methacrylic acids, lower alkyl esters of acrylic acids, such as methyl methacrylate and butyl acrylate, nitriles and amides of acrylic acids such as acrylonitrile, methacrylonitrile, acrylamide N-alkylol acrylamides and halogenated monomers such as vinyl chloride and vinylidene chloride and the like. Dicarboxylic acids such as itaconic, maleic and fumaric acids are particularly suit- 30 able comonomers.

The latex is converted into a froth or foam by whipping in a beater to incorporate air, or by the evoluation of gas in the latex, such as by the decomposition of hydrogen peroxide or the reaction of a carbonate and an 35 acid in the latex in the presence of a stabilizer. Such methods are, of course, well known in the art.

In addition to the usual latex compounding ingredients, such as emulsifiers, curing agents, fillers and antioxidants, the latex may also contain various foam-stabilizing materials such as conventional gelling agents (e.g. alkali metal silicofluoride or ammonium acetate) or watersoluble network resins (e.g. phenol-or melamine-formaldehyde resins). In general, these may be added either before or after the latex has been foamed. Freezing has also been used as a method for foam stabilization.

Gelling of the foam is usually facilitated by the application of heat such as from steam or hot air and the foam is permanently stabilized by curing which is likewise most frequently accomplished by the application of heat to 50 effect crosslinking of the rubber.

In order to achieve various effects in the design on the face of the fabric, it may be indicated to use only heat shrinkable yarns in one direction rather than in both. FIG. 7 shows the use of heat shrinkable warp 55 yarns only which will give maximum shrinkage in a warpwise direction with little or no shrinkage weftwise. Similarly, the heat shrinkable yarns may be used only in the filling directions as shown in FIG. 8 to accomplish maximum weftwise contraction with little or no con- 60 traction warpwise. It will be understood that the contraction of the ground fabric is such that sufficient interstices are present to permit passage of the elastomeric material when the fabric passes over the doctor blade. Also, it will be understood that the shrinking step may be provided independently as shown in FIG. 6 or concurrently with the dyeing step, depending upon the type of material in the fabric and the type of dye employed.

Referring now to FIGS. 9-13, the present invention is also useful in a raised or puffed fabric having sub- 70 ground fabric is comprised of heat shrunk weft threads. stantially regular pleats or pockets which are formed between a face fabric and a shrinkable ground fabric. In FIG. 9 we show a fabric of this type having a series of parallel pockets or empty pleats 50 which are tied down at 51, 51 to ground threads 52 which are thermo- 75 weft threads.

4

plastic or heat shrinkable. In the showing of FIG. 9 the filling threads are omitted, but as in the case of previously described embodiments, filling threads of a heat shrinkable nature may be supplied, and in the case of the wide pleat 53 the filling threads may take the form of relatively flat ribbons or yarns 54, 54. The face fabric may be of a relatively less shrinkable variety and preferably is of a woven textile material as shown in the enlarged sectional view of FIG. 11.

A particular feature of the fabric shown in FIG. 9 resides in the fact that a jacquard design indicated generally at 58 can be produced in any selected pleat and accurately centered in the pleat. The wide center pleat 53 may desirably be filled with a foam strip of elastomeric material 59 having retaining tapes 60, 61 adhesively secured to each side of the strip. Apparatus for inserting such presently formed foam strips is described in Fahringer Pat. 3,229,443 but where the width of the pleats 50 is so narrow that the insertion of the strips 59 becomes impractical due to the ratio between the width, thickness and length of the pleats the present invention is admirably adapted to fill the narrow pleats with the elastomeric material described in connection with FIG. 3. This is applied in the same manner as shown in FIG. 6b so that the elastomer is injected through the open threads 52 of the ground fabric thus filling all of the narrow pleats 50 as shown clearly in FIG. 13.

It will thus be understood that the present invention supplies an extremely simple and efficient method for filling pockets in upholstery fabric where the shape and dimensions of the pockets are such that it is impossible or impractical to stuff them laterally as in the Fahringer patent above. The pockets may be completely irregular in shape to provide a matelassé effect or they may be regular but of such dimension that other means for filling the pockets cannot be utilized. The present invention can be employed if all of the pockets in the fabric are to be filled through the ground material and it is equally suitable to fabrics in which some of the pleats or pockets are filled with a pre-formed strip of foamed material and certain other of the pockets are filled by injecting the liquefied elastomeric material through the ground fabric into the pockets.

More specifically we have provided an improved upholstery fabric of the matelassé type having greatly enhanced characteristics and which provides an extremely wide latitude in the design ability. The fabric can be manufactured in large quantities at minimum expense and gives a very satisfactory product from a standpoint of upholstery fabrics for furniture, all types of vehicles, and interior decoration for walls and floors.

Having thus described our invention, we claim:

1. A double woven fabric comprising a face fabric having its surface free from elastomeric material, a ground fabric of heat shrunk threads, the face fabric being tied into the ground fabric in selected areas to provide face floats on one side of said ground fabric forming pockets between the face fabric and the shrunk ground fabric on one side thereof, and an elastomeric composition filling the interior of said formed pockets.

2. A double woven fabric in accordance with claim 1 wherein the elastomeric material in addition to filling the interior of said formed pockets also coats the shrunk ground fabric and fills the interstices thereof.

3. A fabric in accordance with claim 1 in which the elastomeric composition is selected from the group comprising a natural rubber latex, a conjugated diene synthetic rubber latex, and mixtures thereof.

4. A fabric in accordance with claim 1 in which the

5. A fabric in accordance with claim 1 in which the ground fabric is comprised of heat shrunk warp threads.

6. A fabric in accordance with claim 1 in which the ground fabric is comprised of both heat shrunk warp and

7. A fabric in accordance with claim 2 in which the face fabric is tied into the ground fabric in irregular areas to form a matelassé design.

8. The method of producing a puffed fabric which comprises the steps of weaving a double fabric having a face of relatively non-shrinkable threads and a ground of relatively heat shrinkable threads, tying in selected face threads under selected ground threads, subjecting the double fabric to elevated temperature to shrink the heat shrinkable ground threads thereby forming pockets between the face fabric and the shrunk ground fabric, and injecting an elastomeric material through the ground fabric to coat the ground fabric, fill the interstices thereof, and to fill the interior of the formed pockets.

9. The method of claim 8 in which the double fabric is 15 dyed prior to subjecting the fabric to elevated temperature.

10. The method of claim 8 in which the double fabric is

6

dyed simultaneously with the elevated temperature treat-

References Cited

UNITED STATES PATENTS

2,607,104	0 /1053	Easten 161 7537
,,		Foster 161—75X
2,703,774	3/1955	Morrison 28—72
2,757,437	8/1955	Faris et al 161—75X
2,977,664	4/1961	Grajeck et al 161—75X
3,178,498	3/1965	Brannock 28—72X

ROBERT F. BURNETT, Primary Examiner R. H. CRISS, Assistant Examiner

U.S. Cl. X.R.

28-72, 74; 117-47; 161-75, 89, 91, 92, 94, 97

•