

ΚΥΠΡΙΑΚΟ ΓΡΑΦΕΙΟ ΔΙΠΛΩΜΑΤΩΝ ΕΥΡΕΣΙΤΕΧΝΙΑΣ THE PATENT OFFICE OF CYPRUS

APIΘΜΟΣ ΔΗΜΟΣΙΕΥΣΗΣ PUBLICATION NUMBER

CY1465

ΑΡΙΘΜΟΣ ΔΗΜΟΣΙΕΥΣΗΣ ΓΡΑΦΕΙΟΥ ΔΙΠΛΩΜΑΤΩΝ ΕΥΡΕΣΙΤΕΧΝΙΑΣ ΗΝΩΜΕΝΟΥ ΒΑΣΙΛΕΙΟΥ UK PATENT OFFICE

PUBLICATION NUMBER GB2141425

Το έγγραφο που παρουσιάζεται πιο κάτω καταχωρήθηκε στο «Γραφείο Διπλωμάτων Ευρεσιτεχνίας» στην Αγγλία σύμφωνα με το Νόμο Κεφ. 266 πριν την 1^η Απριλίου 1998. Δημοσίευση έγινε μετέπειτα από το Γραφείο Διπλωμάτων Ευρεσιτεχνίας του Ηνωμένου Βασιλείου μόνο στην Αγγλική γλώσσα.

The document provided hereafter was filed at "The Patent Office" in England under the law CAP.266 before the 1st of April 1998. It was published afterwards by the UK patent office only in English.

UK Patent Application (19) GB (11) 2 141 425 A

(43) Application published 19 Dec 1984

- (21) Application No 8412368
- (22) Date of filing 15 May 1984
- (30) Priority data
 - (31) 495231
- (32) 16 May 1983
- (33) US
- (71) Applicant
 Bristol-Myers Company (USA-New York),
 345 Park Avenue, New York, New York 10154, United
 States of America
- (72) Inventors
 Masataka Konishi,
 Kyoichiro Saitoh,
 Hiroaki Ohkuma,
 Hiroshi Kawaguchi
- (74) Agent and/or Address for Service Carpmaels & Ransford, 43 Bloomsbury Square, London WC1A 2RA

- (51) INT CL³
 C07G 11/00 A61K 35/74 C12N 1/00
- (52) Domestic classification C2A 1B 1C1A 1C1B 2B 3A1 C6Y 103 501 502 U1S 1313 C2A
- (56) Documents cited None
- (58) Field of search C2A

(54) BBM-1675, A new antitumor antibiotic complex

(57) An antibiotic complex designated herein as BBM-1675 complex is produced by fermentation of certain novel strains of *Actinomadura verrucosospora*. The complex may be separated into two major components, BBM-1675 A_1 and A_2 , and four minor components, BBM-1675 A_3 , A_4 , B_1 and B_2 , and such components exhibit both antimicrobial activity and antitumor activity.

The drawing(s) originally filed was (were) informal and the print here reproduced is taken from a later filed formal copy. Formulae in the printed specification were reproduced from drawings submitted after the date of filing, in accordance with Rule 20(14) of the Patents Rules 1982.

.:

SPECIFICATION

BBM-1675, a new antitumor antibiotic complex

5 Background of the invention 5 1. Field of the invention This invention relates to new antitumor antibiotic substances and to their production and recovery. 2. Description of the prior art The antitumor antibiotic compounds of the present invention have not yet been identified in terms of 10 structure. In view of their unique physical, chemical and biological properties, however, applicants believe that the BBM-1675 antibiotics are novel substances. European Patent Publication No. 95154A1 discloses fermentation of Actinomadura pulveraceus sp. nov. No. 6049 (ATCC 39100) to produce antitumor antibiotics designated WS 6049-A and WS 6049-B. The structures of the WS 6049 antibiotics have not yet been elucidated, but the characterizing properties given 15 for the antibiotics indicate that WS 6049-A and WS 6049-B may be related in structure to the BBM-1675 antibiotics of the present invention. Spectral data show, however, that neither WS 6049A nor WS 6049B is identical to any of applicants' BBM-1675 components. Moreover, the producing organism described in European Patent Application Publication No. 95154A1 may be clearly differentiated from Actinomadura verrucosospora employed in the present invention in the color of its aerial mycelium on ISP Medium Nos. 2, 20 3 and 4, in its positive milk peptonization and in its positive utilization of D-fructose, D-mannitol, trehalose and cellulose. Summary of the invention 25 There is provided by the present invention a new antitumor antibiotic complex designated herein as 25 BBM-1675, said complex being produced by cultivating a BBM-1675-producing strain of Actinomadura verrucosospora most preferably Actinomadura verrucosospora strain H964-92 (ATCC 39334) or Actinomadura verrucosospora strain A1327Y (ATCC 39638), or a mutant thereof, in an aqueous nutrient medium containing assimilable sources of carbon and nitrogen under submerged aerobic conditions until a 30 substantial amount of said BBM-1675 complex is produced by said organism in said culture medium, and 30 optionally recovering the complex from the culture medium. Also provided by the present invention are two major bioactive components of BBM-1675 complex designated as BBM 1675 A_1 and A_2 and four minor bioactive components of said complex designated BBM-1675A₃, A₄, B₁ and B₂. The components may be separated and purified by conventional chromatographic procedures. The BBM-1675 complex and its 35 bioactive components exhibit both antimicrobial and antitumor activity. 35 Description of the drawings Figure 1 shows the infrared absorption spectrum of partially purified BBM-1675 A₁ (KBr pellet). Figure 2 shows the infrared absorption spectrum of partially purified BBM-1675 A₂ (KBr pellet). Figure 3 shows the infrared absorption spectrum of BBM-1675 A_3 (KBr pellet). 40 Figure 4 shows the infrared absorption spectrum of BBM-1675 A₄ (KBr pellet). Figure 5 shows the proton magnetic resonance spectrum of partially purified BBM-1675 A₁ in CDCI₃ (60 MHz). Figure 6 shows the proton magnetic resonance spectrum of partially purified BBM-1675 A₂ in CDCI₃ (60 45 MHz). 45 Figure 7 shows the proton magnetic resonance spectrum of BBM-1675 A₃ in CDCl₃ (60 MHz). Figure 8 shows the proton magnetic resonance spectrum of BBM-1675 A₄ in CDCl₃ (60 MHz). Figure 9 shows the infrared absorption spectrum of purified BBM-1675 A₁ (KBr pellet). Figure 10 shows the proton magnetic resonance spectrum of purified BBM-1675 A₁ in CDCl₃ (360 MHz). Figure 11 shows the 13 C magnetic resonance spectrum of purified BBM-1675 A₁ in CDCl₃ (90.3 MHz). 50 50 Figure 12 shows the infrared absorption spectrum of purified BBM-1675 A_2 (KBr pellet). Figure 13 shows the proton magnetic resonance spectrum of purified BBM-1675 A_2 in CDCl₃ (360 MHz). Figure 14 shows the 13 C magnetic resonance spectrum of purified BBM-1675 A₂ in CDCl₃ (90.3 MHz). 55 Detailed description 55 This invention relates to a novel antitumor antibiotic complex designated herein as BBM-1675 and to its preparation by fermentation of certain strains of Actinomadura verrucosospora, most particularly Actinomadura verrucosopora strain H964-92 and a mutant thereof designated Actinomadura verrucosospora strain A1327Y. The above-mentioned parent strain was isolated from a soil sample collected at Pto 60 Esperanza, Misiones, Argentina. A biologically pure culture of the organism has been deposited (28th March, 1983) with the American Type Culture Collection, Washington, D.C. and added to its permanent collection of microorganisms as ATCC 39334. Subsequently, the mutant strain A1327Y was obtained by conventional nitrosoguanidine (NTG) treatment of strain H964-92 and was deposited with the American Type Culture Collection as ATCC 39638 on 21st March, 1984.

As in the case of many antibiotic-producing cultures, fermentation of Actinomadura verrucosospora strain

H964-92 or strain A1327Y results in the production of a mixture or complex of component substances. Two major bioactive components, BBM-1675 A_1 and A_2 , and four minor bioactive components, BBM-1675 A_3 , A_4 , B_1 and B_2 , have been separated from the BBM-1675 complex produced during the fermentation process.

BBM-1675 and its components BBM-1675 A₁, A₂, A₃, A₄, B₁ and B₂ exhibit antimicrobial activity against a
broad spectrum of microorganisms including especially gram-positive bacteria. The BBM-1675 complex and separated bioactive components thereof also exhibit phage inducing properties in lysogenic bacteria. Two of the components, BBM-1675 A₁ and A₂, have been submitted to *in vivo* screening against various mouse tumor systems and demonstrate inhibitory activity against L-1210 leukemia, P-388 leukemia, B16 melanoma and Lewis lung carcinoma. BBM-1675 A₃ and A₄ have been shown to exhibit activity against mouse P-388
leukemia. The complex and its bioactive components, therefore, may be used as antimicrobial agents or as antitumor agents for inhibiting mammalian tumors.

10

The microorganism

The actinomycete Strain No. H964-92 was isolated from a soil sample and prepared by conventional procedures as a biologically pure culture for characterization. Strain H964-92 forms on the aerial mycelium short spore-chains which show straight, flexuous or hooked shapes. The spores are spherical or oval-shaped and have a warty surface. Aerial mycelium is poorly formed on most media. The aerial mass color is white which later turns to a pinkish shade, or further changes to a bluish color in some agar media. The color of substrate mycelium is colorless or pale pink. The growth temperature ranges from 15°C to 43°C. The cell-wall amino acid composition and whole cell hydrolyzate sugar components show that strain H964-92 belongs to cell wall Type Ill_B. The menaquinone was identified as MK-9(H₆) MK-9(H₈).

15

Based on the major morphological, cultural and physiological characteristics along with the chemical cell-wall composition characteristics, strain H964-92 can be classified as belonging to the genus

20

Actinomadura.
Although the original strain H964-92 gave only moderate growth and bore scant aerial mycelia, a variant showing good growth and improved aerial mycelium formation was obtained by NTC (nitrosoguanidine) treatment of H964-92. The variant, designated strain A1327Y, facilitated further taxonomical investigation and was subsequently identified as Actinomadura verrucosospora.

25

30 Methods

30

The media and procedures used for examining cultural characteristics and carbohydrate utilization were those recommended by the International *Streptomyces* Project (*Intl. J. Syst. Bacteriol. 16*: 313-340, 1966). Additional media described by S. A. Waksman (*The Actinomycetes*, Vol. 2) and G. M. Lvedemann (*Int. J. Syst. Bacteriol. 21*: 240-247, 1971) were also used. The cell wall-amino acid composition and whole cell hydrolyzate sugar components were analyzed according to the methods described by Becker, et al. in *Appl. Microbiol. 13*: 236-243, 1965 and by Lechevalier and Lechevalier in *The Actinomycetes*, Ed. H. Prauser, Jena, Gustav Fischer Verlag, pp. 393-405, 1970, respectively. The menaquinone was identified by mass spectral analysis according to the procedure of Collins et al. in *J. Gen. Microbiol. 100*: 221-230, 1977, and the menaquinone composition was represented based on the system described by Yamada et al. in *J. Gen. Appl.*

35

40

Morphology

40 Microbiol. 23: 331-335, 1977.

Strain H964-2 forms both substrate and aerial mycelia. The substrate mycelium is long, branched and not fragmented into short filaments. In the aerial mycelium, short spore-chains are formed monopodially or at the hyphal tip. Whorl-like branches of spore-chain are also observed nearby the hyphal tip. These spore-chains contain 2 to 10 spores in a chain and are straight, flexuous or hooked in shape. The spores have a warty surface and are spherical to elliptical (0.5-0.6 × 0.6-1.4 µm) in shape with rounded or pointed ends. After maturation each spore is often separated with empty sheath. Motile spores, sporangia or sclerotic granules are not seen in any media examined.

50

45

Cultural and physiological characteristics

Growth of strain H964-92 is poor to moderate in both chemically defined media and natural organic media. Formation of aerial mycelium is generally poor but is moderate in oat meal agar (ISP No. 3 medium), inorganic salts-starch agar (ISP No. 4 medium) and Bennett's agar. Spontaneous variants which lack aerial mycelium occur at high frequency. The color of aerial mycelium is white which later turns to pale pink in oat meal agar, inorganic salts-starch agar and glycerol-asparagine agar (ISP No. 5 medium). The aerial mass color further changes to a bluish color after long incubation (5 months) in oat meal agar, glycerol-asparagine agar and tyrosine agar. The color of substrate mycelium is colorless to yellowish in Czapek's agar, tyrosine agar, yeast extract-malt extract agar (ISP No. 2 medium), peptone-yeast extract-iron agar (ISP No. 6 medium) and Bennett's agar, and is a pinkish color in glucose-asparagine agar and glycerol-asparagine agar. Melanoid and other diffusible pigments are not produced. A variant No. A1327Y, which was obtained from

60

55

the original strain, forms predominantly pale blue aerial mycelium and bears abundant aerial spore mass. Strain H964-92 grows at 15°C, 28°C, 37°C and 43°C, but not at 10°C or at 47°C. It is sensitive to NaCl at 7%, and resistant to lysozyme at 0.01%.

The cultural and physiological characteristics of the producing strain are shown in Tables 1 and 2, respectively. The utilization of carbon sources is shown in Table 3.

5			TABLE 1				
J	Cultural Characteristics of Strain H964-92 (original strain ATCC 39334 and variant A1327Y)						
		Strain I	No. H964-92				
10		Original Strain (ATCC 39334)	Variant No. A1327Y	Actinomadura verrucosospora KCC A-0147	10		
15	Tryptone-yeast extract agar (ISP No. 1)	G: abundant, floccose, sedimented and not pigmented	moderate, floccose, sedimented and not pigmented	moderate, floccose, sedimented and not pigmented	15		
20	Sucrose-nitrate agar (Czapek's agar)	G: moderate R: colorless A: scant; light gray (264), to pale pink (7)	poor colorless no or scant; pinkish white (9)	poor colorless no or scant; pale blue (185)	20		
		D: none	none	none			
25	Glucose-asparagine agai	R: white (263) to deep yellowish pink (277)	poor coloriess	poor colorless	25		
		A: no or very scant; pale pink (7)	no or very scant; white	no or very scant; white			
30		D: none	none	none	30		
35	Glycerol-asparagine agai (ISP No. 5)	G: poor to moderate R: colorless to light yellowish pink (28) A: poor; light yellowish pink (28), after 5 months light	moderate light yellowish pink (28) moderate; white to light pink (4)	moderate light yellowish pink (28 to deep yellow- ish pink (27) moderate; white to strong pink (2)	35		
40		bluish gray (190) D: none	none				
40	Inorganic salts-starch agar (ISP No. 4)	G: abundant R: yellowish white (92)	moderate light yellowish pink (28)	none moderate light yellowish pink (28)	40		
45		A: abundant; light pink (4) to pinkish gray (10) D: none	moderate; light bluish gray (190) none	abundant; pale blue (185) none	45		
50	Tyrosine agar (ISP No. 7)	G: moderate R: yellowish white (92)	moderate strong yellowish pink (26)	moderate strong yellowish pink (26)	50		
55		A: poor; light yellow- ish pink (28), very later (5 months) partially light bluish gray (190)	moderate; white to light pink (4)	moderate; white to light pink (4)	55		
		D: none	none	none			
60		G: poor to moderate R: pale yellow (89) A: none	poor colorless to pale pink (7)	poor colorless to pale pink (7)	60		
		D: none	none none	none none			

TABLE 1 - cont'd

Strain No. H964-92

5		Original Strain (ATCC 39334)	Variant No. A1327Y	Actinomadura verrucosospora KCC A-0147	5
10	Yeast extract-malt extract agar (ISP No. 2)	G: abundant R: pale yellow (89)	abundant strong yellowish pink (26)	abundant strong yellowish pink (26)	10
		A: poor; white (263)	poor; white to pale pink (7)	poor; white to pale pink (7)	
		D: none	none	none	
15	Oat meal agar (ISP No. 3)	G: moderate R: colorless to pale pink (7)	poor pale yellowish pink (31)	poor pale yellowish pink (31)	15
20		A: poor; pinkish white (9) to light bluish gray (190)	very scant; vivid pale blue (184)	very scant; vivid pale blue (184)	20
20		D: none	none	none	
	Bennett's agar	G: abundant R: grayish yellow (90)	abundant strong yellowish	abundant strong yellowish pink (26)	25
25		A: moderate; white (263) to yellowish white (92)	pink (26) moderate; pale yellow- ish pink (31) and bluish white (189)	none	20
		D: none	none	none	30
30	Peptone-yeast extract-	G: moderate	abundant	abundant	00
	iron agar (ISP No. 6)	R: colorless	colorless	colorless	
		A: none D: none	none none	none none	
35	** Observed after incul ** Abbreviation: G = G *** Color and number in	bation at 37°C for 3 weeks. Frowth; R = Reverse color; The parenthesis follow the color	A = Aerial mycelium; D = lor standard in "Kelly, K. I	= Diffusible pigment & D. B. Judd; ISCC-NBS	35
	color-name charts il	lustrated with Centroid Col	ors, U.S. Dept. of Comm.	Cir. 553, Washington, D.C., Nov.,	40°
40	1975".				

^{1975&}quot;.

KCC = Kaken Culture Collection of Kaken Chemical Company

TABLE 2

Physiological	Characteristics	of	Strain	H964-92
---------------	-----------------	----	--------	---------

5	Test	Response	Method and Medium	5
10	Range of temperature for growth	Maximal growth at 28°C to 37°C. Moderate at 20°C and 43°C. No growth at 10°C and 47°C.	Bennett's agar	10
	Gelatin liquefaction	Liquefied	Glucose-peptone-gelatin medium	
15	Starch hydrolysis	Hydrolyzed	Starch agar plate	15
20	Reactions in skimmed milk	Not coagulated and completely peptonized	Difco skimmed milk	
20	Formation of melanoid pigment	Not produced	Tyrosin agar, peptone-yeast- iron agar and tryptone-yeast extract broth.	20
25	Nitrate reduction	Not reduced	Czapek's glucose-nitrate broth and glucose-yeast extract-nitrate broth	25
30	Resistance to NaCl	Growth at 5% or less. No growth at 7%.	Tryptone-yeast extract agar	30
35	Lysozyme	Resistant. Growth at 0.01% or less. No growth at 0.1%.	Tryptone-yeast extract agar	35
	На	Growth in 5.0 to 9.5. No growth at 4.5 and 10.0.	Tryptone-yeast extract agar	

TABLE 3 Utilization of Carbon Sources

Strain No. H964-92

Actinomadura

5			Maniant		•
		Original	Variant	verrucosospora KCC A-0147	
		strain	No. A1327Y	ACC A-0747	
	a		<u>.</u>	+	
	Glycerol	+	+ 		10
10	D(-)-Arabinose	_ +	+	+	10
	L(+)-Arabinose	+ +	+	+	
	D-Xylose	+ +	-	<u>. </u>	
	D-Ribose		+	+	
	L-Rhamnose	+ . +	+ .	+	15
15	D-Glucose	т		· <u>-</u>	13
	D-Galactose	+	+	+	
	D-Fructose	т	- -	'	
	D-Mannose	_	_	_	
	L(-)-Sorbose	+	+	+	20
20	Sucrose	7	-	<u>.</u>	20
	Lactose		+	+	
	Cellobiose	+	т _	'	
	Melibiose	_	+	+	
	Trehalose	+	_	'	25
25	Raffinose		_	_	25
	D(+)-Melezitose	-	+	+	
	Soluble starch	+	+ +	+	
	Cellulose	+	T	<u>.</u>	
	Dulcitol	- +			30
30	Inositol	+ +	+	+	00
	D-Mannitol	7	_	.	
	D-Sorbitol	_		_	
	Salicin				
	Ot and the mineral patient at 2000 for 3	. wooke			35
35	Observed after incubation at 28°C for 3	vveeks ronic medium			-
	Basal medium: Pridham-Gottlieb inorg	game medicin			
	Cell-wall composition and whole cell s	ugarcomnone	ents		
	Purified cell-wall of strain H964-92 ce	ontains mesod	iaminonimelic acid	but lacks giveine. The whole cell	
	hydrolyzate shows the presence of ma	durose (3-0-m	ethyl-D-galactose),	glucose and ribose. The cell-wall	40
40	amino acid and whole cell sugar comp	onents indicat	e that strain H964-9	2 is placed in cell-wall Type III _B . Two	
	major components of menaquinone w	ere identified	s MK-9(H ₆) and MK	(-9(H _g).	
	major components of menadumone w	Cic idonanio	20 1111 0 (118) 011 011	10 - 101 -	
	Taxonomic position of strain H964-92				
45	Strain H964-92 has the following ma	ior characteris	tics: (1) Aerial spore	e-chains: short, straight, flexuous or	45
45	hooked in shape. (2) Spores: warty sur	rface. (3) Aerial	l mycelium: pinkish	or bluish color. (4) Substrate	
	mycelium: pinkish in some media. (5)	Diffusible pign	nent: none. (6) Mes	ophile. (7) Cell-wall Type III _B . (8)	
	Menaguinone system: MK-9(H _c) and N	ЛК-9(He).			
	These major characteristics indicate	that strain H96	64-92 is placed in th	e genus Actinomadura. Early species	
50	of the genus Actinomadura were isola	ted from mam	mals. Some strains	were also obtained from plant	50
υ¢	materials. However, many of the new	species propos	sed recently were is	olated from soil. According to the	
	numerical taxonomy and review of the	e Actinomadur	a and related actino	mycetes by Goodlellow et al. 1112.	
	Gen Microbial 112: 96-111 (1979) mg	nst <i>Actinomadi</i>	ura species of soil o	rigin are classified into Cluster No. /	
	among the 14 clusters described. Stra	in No. H964-92	is most related to the	he species of Cluster 7. Nonomura	
55	and Ohara in J. Ferment, Technol, 49:	904-912 (1971)	reported five sapro	ophytic species of the genus	55
ວວ	Actinomadura and Nonomura J. Fern	nent. Technol.	<i>52</i> : 71-77 (1974)] an	id Preobrazhenskaya et al.	
	[Actinomycetes and Related Organism	า <i>ร 12</i> : 30-38 (19	977)] published the !	keys for identification and	
	classification of the Actinomadura spe	cies. As a resu	It of comparison wi	th the descriptions of 30 species	
	including organisms disclosed in pate	nts, strain H96	4-92 appears most s	similar to <i>Actinomadura coerulea</i>	
60	described in the Preobrazhenskaya et	al. reference al	bove and to Actinor	madura verrucosospora described in	60
QU	the Nonomura references cited above				
	Strain No. H964-92 was directly con	npared with A.	verrucosospora stra	ain KCC A-0147 and was found to be	
	closely related to A. verrucosospora in	n the morpholo	ogical, cultural and p	physiological characteristics. Thus,	
	etrain H964-92 is classified as a new st	rain of <i>Actinor</i>	nadura verrucososi	oora.	
e c	It is to be understood that for the pro	oduction of BB	M-1675, the present	t invention, though described in	65
65	10.12 de m. o. 10.12.12.12.12.12.12.12.12.12.12.12.12.12.				

10

20

25

30

35

40

45

50

55

detail with reference to the particular strain Actinomadura verrucosospora strain H964-92 (ATCC 39334) and the mutant strain thereof designated strain A1327Y (ATCC 39638), is not limited to these microorganisms or to microorganisms fully described by the cultural characteristics disclosed herein. It is specifically intended that the invention embrace strain H964-92 and all natural and artificial BBM-1675-producting variants and 5 mutants thereof.

Antibiotic production

The BBM-1675 antibiotics of the present invention may be prepared by cultivating a BBM-1675-producing strain of Actinomadura verrucosospora, preferably a strain of Actinomadura verrucosospora having the 10 identifying characteristics of ATCC 39334 or ATCC 39638, or a mutant thereof, in a conventional aqueous nutrient medium. The organism is grown in a nutrient medium containing known nutritional sources for actinomycetes, i.e. assimilable sources of carbon and nitrogen plus optional inorganic salts and other known growth factors. Submerged aerobic conditions are preferably employed for the production of large quantities of antibiotics, although for production of limited amounts, surface cultures and bottles may also 15 be used. The general procedures used for the cultivation of other actinomycetes are applicable to the present 15

The nutrient medium should contain an appropriate assimilable carbon source such as glycerol, L(+)-arabinose, D-xylose, D-ribose, L-rhamnose, D-glucose, D-fructose, sucrose, cellobiose, soluble starch, D-mannitol or inositol. As nitrogen sources, ammonium chloride, ammonium sulfate, urea, ammonium 20 nitrate, sodium nitrate, etc. may be used either alone or in combination with organic nitrogen sources such as peptone, meat extract, yeast extract, corn steep liquor, soybean powder, cotton seed flour, etc. There may also be added, if necessary, nutrient inorganic salts to provide sources of sodium, potassium, calcium, ammonium, phosphate, sulfate, chloride, bromide, carbonate, zinc, magnesium, manganese, cobalt, iron, and the like.

Production of the BBM-1675 antibiotics can be effected at any temperature conducive to satisfactory 25 growth of the producing organism, e.g. 15-45°C, and is conveniently carried out at a temperature of around 27-32°C. Ordinarily, optimum production is obtained after incubation periods of from about 68-180 hours, depending on whether shake-flask, stir-jar or tank fermentation is employed. When tank fermentation is to be carried out, it is desirable to produce a vegetative inoculum in a nutrient broth by inoculating the broth 30 culture with a slant or soil culture or a lyophilized culture of the producing organism. After obtaining an active inoculum in this manner, it is transferred aseptically to the fermentation tank medium. Antibiotic production may be monitored by the paper disc-agar diffusion assay using Staphylococcus aureus 209P as the test organism.

35 Isolation and purification

When fermentation is complete, the BBM-1675 complex may be obtained from the broth by conventional isolation procedures, e.g. solvent extraction. Thus, for example, the whole broth may be separated by filtration or centrifugation into mycelial cake and broth supernatant. Antiobiotic in the mycelial cake may be recovered by suspending the cake in methanol, filtering off insoluble materials and concentrating the 40 methanolic extract. Activity in the broth supernatant may be recovered by extraction with n-butanol. The above-mentioned n-butanol and methanol extracts may then be combined and evaporated azeotropically to an aqueous solution which deposits most of the antibiotic activity as an oily solid. The solid may then be dissolved in methanol and the solution filtered. Filtrate is concentrated and added to a mixture of ethyl acetate and water. The resulting organic extract contains the crude BBM-1675 complex which may be 45 precipitated from solution by addition of an antisolvent such as n-hexane.

The crude BBM-1675 complex is a mixture of several components including two major bioactive components, BBM-1675 A₁ and A₂, and four minor bioactive components, BBM-1675 A₃, A₄, B₁ and B₂. These bioactive components may be separated and purified by conventional chromatographic procedures. In one procedure the crude BBM-1675 complex is first dissolved in methanol and purified by Sephadex LH-20 50 column chromatography using methanol as the eluting solvent. This partially purified complex may then be chromatographed on a silica gel column and eluted in a stepwise manner using chloroform plus an increasing concentration of methanol to provide BBM-1675 A_1 , a mixture of BBM-1675 A_2 , A_3 and A_4 and a mixture of BBM-1675 B₁ and B₂. The A₁ component may be further purified by Sephadex LH-20 column chromatography using methanol as the eluting solvent. The mixture of A2, A3 and A4 may be separated by 55 chromatography on a column of Bondapak C18 (Waters Associates, Inc.) using increasing concentrations of aqueous acetonitrile as the eluant. The mixture of B_1 and B_2 components may be separated by silica gel column chromatography using a mixture of chloroform and methanol as the eluting solvent. Further details of the preferred chromatographic separation procedures are provided in the examples which follow.

Physico-chemical properties of BBM-1675 components

The six bioactive components of BBM-1675 complex are distinguishable from each other by two TLC systems as shown in the following Table.

				TABLE	4				5
			. TLC d	of BBM-1675	5 Component	ts			
				Rf Val	ues				
10	Componen	t	CH	SiO ₂ Cl ₃ -CH ₃ OH(5	:1 v/v) (* Silan CH ₃ CN-H ₂ O(2			10
	·						_	.•	
	BBM-1675 . BBM-1675 .			0.74 0.71		0.18 0.21		· .	
15	BBM-1675	_		0.72		0.28			15
15	BBM-1675	-		0.71		0.78	В		
	BBM-1675			0.63		0.23	3	-	
	BBM-1675			0.60		0.16	6		
20	* C ₁₈ reverse phase silica	gel							20
	Separation of BBM-167	'5 Δ <u>.</u>	Δ. and Δ. wa	s difficult by	ordinary pha	se TLC syste	ms but could	be achieved	
	by a reverse phase TLC.	J 72,	A3 0110 A4 W	3 difficult by	O, a.i.a. , p.i.a.				
	The individual BBM-16	75 co	mponents sh	ow solubility	and color rea	actions simil	ar to each oth	er. For	
25	example, they are soluble	in c	hloroform, eth	ivi acetate, a	cetone, ethar	nol and meth	anol, slightly	soluble in	25
	benzene and water, and it	nsolu	ıble in n-hexa	ne and carbo	on tetrachlori	de. They give	e positive read	ctions with	
	ferric chloride, Ehrlich an	d Tol	len's reagents	s but negativ	e responses i	n Sakaguchi	, ninhydrin ar	nd anthrone	
	tests.		_					-1	
	Characteristic physico-	chem	nical propertie	es of BBIVI-16	i/b componer	nts are snow	n in Table 5 b	elow.	20
30									30
				TARI	F 5				
				TABL		:			
		Phys	sico-Chemical			Componen	ots		
35		Phys	ico-Chemical BBM-1675A	Properties		5 Componen	ots B ₁	B ₂	35
35		Phys	BBM-1675A	Properties	of BBM-1675	A_4	B ₁		35
35	Melting point (dec)	Phys :	<i>BBM-1675A</i> 156 ~ 158°C	Properties A ₂ 147 ~ 149°	of BBM-1675	A_4	B ₁	<i>B₂</i> C 156 ~ 159°C −122°	35
35	Melting point (dec) $(\alpha)_D^{27}$ (c 0.5, CHCl ₃)	:	<i>BBM-1675A</i> 156 ~ 158°C -191°	Properties	of BBM-1675 A₃ C 125∼127°C	<i>A</i> ₄ C 123 ~ 126℃	<i>Β</i> ₁ C 159 ~ 161°0	C 156 ~ 159°C	35
	Melting point (dec)	Phys	<i>BBM-1675A</i> 156 ~ 158°C	Properties A ₂ 147 ~ 149°(-179.4°	of BBM-1675 A₃ C 125 ~ 127°C −161°	A₄ C 123 ~ 126°0 −176° 53.67 6.35	<i>Β</i> ₁ C 159 ~ 161°0	C 156 ~ 159°C	35
35	Melting point (dec) $(\alpha)_D^{27}$ (c 0.5, CHCl ₃)	: : C:	BBM-1675A 156 ~ 158°C -191° 51.52	Properties 1 A ₂ 147 ~ 149°(-179.4° 53.81	of BBM-1675 A₃ C 125 ~ 127°C −161° 55.00	A₄ C 123 ~ 126°0 −176° 53.67	<i>Β</i> ₁ C 159 ~ 161°0	C 156 ~ 159°C	
	Melting point (dec) $(\alpha)_D^{27}$ (c 0.5, CHCl ₃) Anal. Found (%), (by difference)	: : C: H:	BBM-1675A 156 ~ 158°C -191° 51.52 5.81	Properties 1 A ₂ 147 ~ 149°(-179.4° 53.81 6.31	of BBM-1675 A ₃ C 125 ~ 127°C -161° 55.00 6.52	A₄ C 123 ~ 126°0 −176° 53.67 6.35	<i>Β</i> ₁ C 159 ~ 161°0	C 156 ~ 159°C	
	Melting point (dec) $(\alpha)_D^{27}$ (c 0.5, CHCl ₃) Anal. Found (%), (by difference) $(UV \lambda_{max} nm(E_{1.6m}^{1\%}))$: : C: H: N:	BBM-1675A 156 ~ 158°C - 191° 51.52 5.81 4.02 38.65	Properties 1 A ₂ 147 ~ 149°(-179.4° 53.81 6.31 3.82 36.06	of BBM-1675 A ₃ C 125 ~ 127°C -161° 55.00 6.52 3.57 34.91	A ₄ 2 123 ~ 126°0 -176° 53.67 6.35 3.45 36.53	<i>B</i> ₁ C 159 ~ 161℃ −171°	C 156 ~ 159°C -122°	
40	Melting point (dec) $(\alpha)_D^{27}$ (c 0.5, CHCl ₃) Anal. Found (%), (by difference)	: : C: H: N:	BBM-1675A 156 ~ 158°C - 191° 51.52 5.81 4.02 38.65 253 (325)	Properties 1 A ₂ 147 ~ 149°(-179.4° 53.81 6.31 3.82 36.06 253 (281)	of BBM-1675 A ₃ C 125 ~ 127°C	A_4 $ \begin{array}{c} $	B ₁ C 159 ~ 161°0 −171° 253 (225)	C 156 ~ 159°C -122° 248 (212)	40
	Melting point (dec) $(\alpha)_D^{27}$ (c 0.5, CHCl ₃) Anal. Found (%), (by difference) $(UV \lambda_{max} nm(E_{1.6m}^{1\%}))$: : C: H: N:	BBM-1675A 156 ~ 158°C - 191° 51.52 5.81 4.02 38.65	Properties 1 A ₂ 147 ~ 149°(-179.4° 53.81 6.31 3.82 36.06	of BBM-1675 A ₃ C 125 ~ 127°C -161° 55.00 6.52 3.57 34.91	A ₄ 2 123 ~ 126°0 -176° 53.67 6.35 3.45 36.53	<i>B</i> ₁ C 159 ~ 161℃ −171°	C 156 ~ 159°C -122°	
40	Melting point (dec) $(\alpha)_D^{27}$ (c 0.5, CHCl ₃) Anal. Found (%), (by difference) $(UV \lambda_{max} nm(E_{1cm}^{96}))$ in CH ₃ OH	: : : : : :	BBM-1675A 156 ~ 158°C -191° 51.52 5.81 4.02 38.65 253 (325) 282 (195) 320 (143)	Properties 1 A ₂ 147 ~ 149°(-179.4° 53.81 6.31 3.82 36.06 253 (281) 282 (172) 320 (128)	of BBM-1678 A ₃ C 125 ~ 127°C	A ₄ 2 123 ~ 126°0	B ₁ C 159 ~ 161°(-171° 253 (225) 282 (140) 320 (104)	248 (212) 279 (141) 318 (103)	40
40	Melting point (dec) $(\alpha)_D^{27}$ (c 0.5, CHCl ₃) Anal. Found (%), (by difference) $(UV \lambda_{max} nm(E_{1.6m}^{1\%}))$: : C: H: N:	BBM-1675A 156 ~ 158°C -191° 51.52 5.81 4.02 38.65 253 (325) 282 (195) 320 (143) 253 (323)	Properties 1 A ₂ 147 ~ 149°(-179.4° 53.81 6.31 3.82 36.06 253 (281) 282 (172) 320 (128) 253 (276)	of BBM-1678 A ₃ C 125 ~ 127°C	A ₄ 2 123 ~ 126°0	B ₁ C 159 ~ 161°(-171° 253 (225) 282 (140) 320 (104) 253 (225)	248 (212) 279 (141) 318 (103) 248 (210)	40
40 45	Melting point (dec) $(\alpha)_D^{27}$ (c 0.5, CHCl ₃) Anal. Found (%), (by difference) $(UV \lambda_{max} nm(E_{1cm}^{96}))$ in CH ₃ OH	: : : : : :	BBM-1675A 156 ~ 158°C -191° 51.52 5.81 4.02 38.65 253 (325) 282 (195) 320 (143) 253 (323) 282 (192)	Properties 1 A ₂ 147 ~ 149°(-179.4° 53.81 6.31 3.82 36.06 253 (281) 282 (172) 320 (128) 253 (276) 282 (167)	of BBM-1678 A ₃ C 125 ~ 127°C	A ₄ 2 123 ~ 126°0	B ₁ C 159 ~ 161°(-171° 253 (225) 282 (140) 320 (104) 253 (225) 282 (140)	248 (212) 279 (141) 318 (103) 248 (210) 279 (140)	40
40	Melting point (dec) $(\alpha)_D^{27}$ (c 0.5, CHCl ₃) Anal. Found (%), (by difference) $(UV \lambda_{max} nm(E_{1cm}^{96}))$ in CH ₃ OH	: : : : : :	BBM-1675A 156 ~ 158°C -191° 51.52 5.81 4.02 38.65 253 (325) 282 (195) 320 (143) 253 (323)	Properties 1 A ₂ 147 ~ 149°(-179.4° 53.81 6.31 3.82 36.06 253 (281) 282 (172) 320 (128) 253 (276)	of BBM-1678 A ₃ C 125 ~ 127°C	A ₄ 2 123 ~ 126°0	B ₁ C 159 ~ 161°(-171° 253 (225) 282 (140) 320 (104) 253 (225)	248 (212) 279 (141) 318 (103) 248 (210)	40
40 45	Melting point (dec) $(\alpha)_D^{27}$ (c 0.5, CHCl ₃) Anal. Found (%), (by difference) $(UV \lambda_{max} nm(E_{1 cm}^{1\%}) in CH_3OH$: :: C: H: N: O: :	BBM-1675A 156 ~ 158°C -191° 51.52 5.81 4.02 38.65 253 (325) 282 (195) 320 (143) 253 (323) 282 (192) 320 (144)	Properties 1 A ₂ 147 ~ 149°(-179.4° 53.81 6.31 3.82 36.06 253 (281) 282 (172) 320 (128) 253 (276) 282 (167) 320 (128)	of BBM-1678 A ₃ C 125 ~ 127°C	A ₄ 2 123 ~ 126°0	B ₁ C 159 ~ 161°(-171° 253 (225) 282 (140) 320 (104) 253 (225) 282 (140)	248 (212) 279 (141) 318 (103) 248 (210) 279 (140)	40
40 45	Melting point (dec) $(\alpha)_D^{27}$ (c 0.5, CHCl ₃) Anal. Found (%), (by difference) $(UV \lambda_{max} nm(E_{1cm}^{96}))$ in CH ₃ OH	: :: C: H: N: O: :	BBM-1675A 156 ~ 158°C -191° 51.52 5.81 4.02 38.65 253 (325) 282 (195) 320 (143) 253 (323) 282 (192) 320 (144) 252 (325)	Properties 1 A ₂ 147 ~ 149°(of BBM-1678 A ₃ C 125 ~ 127°C	A ₄ 2 123 ~ 126°0	B ₁ C 159 ~ 161°(-171° 253 (225) 282 (140) 320 (104) 253 (225) 282 (140) 320 (105)	248 (212) 279 (141) 318 (103) 248 (210) 279 (140) 318 (103)	40
40 45	Melting point (dec) $(\alpha)_D^{27}$ (c 0.5, CHCl ₃) Anal. Found (%), (by difference) $(UV \lambda_{max} nm(E_{1 cm}^{1\%}) in CH_3OH$: :: C: H: N: O: :	BBM-1675A 156 ~ 158°C -191° 51.52 5.81 4.02 38.65 253 (325) 282 (195) 320 (143) 253 (323) 282 (192) 320 (144)	Properties 1 A ₂ 147 ~ 149°(-179.4° 53.81 6.31 3.82 36.06 253 (281) 282 (172) 320 (128) 253 (276) 282 (167) 320 (128)	of BBM-1678 A ₃ C 125 ~ 127°C	A ₄ 2 123 ~ 126°0	B ₁ C 159 ~ 161°(-171° 253 (225) 282 (140) 320 (104) 253 (225) 282 (140) 320 (105) 252 (236)	248 (212) 279 (141) 318 (103) 248 (210) 279 (140) 318 (103) 248 (233)	40
40 45 50	Melting point (dec) $(\alpha)_D^{27}$ (c 0.5, CHCl ₃) Anal. Found (%), (by difference) $(UV \lambda_{max} nm(E_{1 cm}^{1\%}) in CH_3OH$: :: C: H: N: O: :	BBM-1675A 156 ~ 158°C -191° 51.52 5.81 4.02 38.65 253 (325) 282 (195) 320 (143) 253 (323) 282 (192) 320 (144) 252 (325) 283 (172)	Properties 1 A ₂ 147 ~ 149°(of BBM-1678 A ₃ C 125 ~ 127°C	A ₄ 2 123 ~ 126°0	B ₁ C 159 ~ 161°(-171° 253 (225) 282 (140) 320 (104) 253 (225) 282 (140) 320 (105) 252 (236) 282 (141)	248 (212) 279 (141) 318 (103) 248 (210) 279 (140) 318 (103) 248 (233) 278 (150) 318 (110)	40
40 45	Melting point (dec) $(\alpha)_D^{27}$ (c 0.5, CHCl ₃) Anal. Found (%), (by difference) $(UV \lambda_{max} nm(E_{1 cm}^{1\%}) in CH_3OH$: :: C: H: N: O: :	BBM-1675A 156 ~ 158°C -191° 51.52 5.81 4.02 38.65 253 (325) 282 (195) 320 (143) 253 (323) 282 (192) 320 (144) 252 (325) 283 (172)	Properties 1 A ₂ 147 ~ 149°(of BBM-1678 A ₃ C 125 ~ 127°C	A₄ 2 123 ~ 126°0	B ₁ C 159 ~ 161°(-171° 253 (225) 282 (140) 320 (104) 253 (225) 282 (140) 320 (105) 252 (236) 282 (141)	248 (212) 279 (141) 318 (103) 248 (210) 279 (140) 318 (103) 248 (233) 278 (150) 318 (110)	40 45 50
40 45 50	Melting point (dec) (α) _D ²⁷ (c 0.5, CHCl ₃) Anal. Found (%), (by difference) (UV λ _{max} nm(E ₁ ² m) in CH ₃ OH in 0.01N HCl-CH ₃ OH	: :: C: H: N: O: :	BBM-1675A 156 ~ 158°C -191° 51.52 5.81 4.02 38.65 253 (325) 282 (195) 320 (143) 253 (323) 282 (192) 320 (144) 252 (325) 283 (172)	Properties 1 A ₂ 147 ~ 149°(of BBM-1678 A ₃ C 125 ~ 127°C	A ₄ 2 123 ~ 126°0	B ₁ C 159 ~ 161°(-171° 253 (225) 282 (140) 320 (104) 253 (225) 282 (140) 320 (105) 252 (236) 282 (141)	248 (212) 279 (141) 318 (103) 248 (210) 279 (140) 318 (103) 248 (233) 278 (150) 318 (110)	40 45 50
40 45 50	Melting point (dec) (α) _D ²⁷ (c 0.5, CHCl ₃) Anal. Found (%), (by difference) (UV λ _{max} nm(E ₁ ¹ cm) in CH ₃ OH in 0.01N HCi-CH ₃ OH Mo. wt.	: :: C: H: N: O: :	BBM-1675A 156 ~ 158°C -191° 51.52 5.81 4.02 38.65 253 (325) 282 (195) 320 (143) 253 (323) 282 (192) 320 (144) 252 (325) 283 (172) 318 (136)	Properties 1 A ₂ 147 ~ 149°(of BBM-1678 A ₃ C 125 ~ 127°C	A₄ 2 123 ~ 126°0	B ₁ C 159 ~ 161°(-171° 253 (225) 282 (140) 320 (104) 253 (225) 282 (140) 320 (105) 252 (236) 282 (141)	248 (212) 279 (141) 318 (103) 248 (210) 279 (140) 318 (103) 248 (233) 278 (150) 318 (110)	45

The UV absorption maxima of BBM-1675 components were observed at 253, 282 and 320 nm, which did not shift in acidic or alkaline solution. The IR and PMR spectra of BBM-1675 A₁, A₂, A₃ and A₄ are shown in Figures 1-4 and Figures 5-8 respectively. The 360 MHz PMR of BBM-1675 A₁ indicated one acetyl (8:2.11 ppm), one N-CH₃(2.52 ppm), four OCH₃(3.42, 3.80, 3.88 and 3.98 ppm) and one exomethylene (4.57 and 5.48 ppm) groups, along with two aromatic (7.50 and 8.59 ppm) and one NH (11.79 ppm) protons. The CMR

5

10

spectrum of BBM-1675A₁ exhibited 55 carbon signals including a triple intensity signal (δ :56.0 ppm, OCH₃). The molecular formula of BBM-1675A₁ is deduced to be C₅₇H₇₂N₄O₃₂ based on proton and ¹³C NMR spectra, micronalysis and molecular weight determination by HPLC and SIMS (secondary ion mass spectrometry).

5 Structural study of BBM-1675 A1

Upon treatment with 0.5N HCI-CH₃OH at room temperature, BBM-1675A₁ loses its bioactivity and affords a lipophilic chromophore substance (compound I) along with several unidentified fragments. Compound I shows UV absorption similar to that of parent antibiotic suggesting that compound I retains the chromophoric structure of BBM-1675A₁. Two other chromophoric fragments related to compound I are obtained by alkaline hydrolysis of BBM-1675A₁: hydrolysis with 0.05N KOH-CH₃OH at 55°C for one hour yields compound II having UV absorption maxima at 252, 284, 297 (shoulder) and 322 nm, while the reaction in 1N KOH-CH₃OH affords an acidic chromophore substance designated compound III. Physico-chemical

properties of compounds I, II and III are summarized in Table 6 below.

TABLE 6

Properties of Compounds I, II and III

			Compound I	Compound II	Compound III	
20	M.p.	:	82 ~ 83°C	133°	253 ~ 255°C	20
	$[\alpha]_D^{29}$ (c 0.2 CHCl ₃)	:	-100°	0	0	
25	Molecular formula	:	C ₂₁ H ₃₁ NO ₁₀	C ₁₄ H ₁₇ NO ₆	C ₁₃ H ₁₅ NO ₆	25
	UV λ CH ₃ OH nm (ε)	:	244 (21,850) 276 (9,400) 318 (6,300)	252 (26,600) 283 (11,200) 297 (sh8,800)	248 (26,900) 295 (14,400) 310 (13,500)	
30			318 (6,300)	322 (11,700)		30
35	MS m/z	:	457 (M ⁺) 425 341 281 264	295 (M ⁺) 280 263 251 248	281 (M ⁺) 263 236 222 218	35
40	TLC (Xylene-*MEK-CH ₃ OH=5:5:1 v/v) * MEK = methyl ethyl ketone	:	Rf 0.58	0.66	0.13	40

Structural information about compounds II and III was provided from the following spectral data and chemical transformation. The ¹³C and proton NMR indicated the presence of four OCH₃, one = CH₂, seven -C=, two > C=O and one > NH groups in compound II. The NMR spectra of compound III was similar to those of II, differing only in the absence of one of the four OCH₃ groups observed for compound III. This difference, together with the acidic nature of compound III, suggested that compound II is a methyl ester of compound III. When heated under reflux with 1N methanolic KOH, compound II was quantitatively converted to compound III, while compound III was converted to compound II by treatment with diazomethane.

Treatment of compound II with NaBH₄ in C₂H₅OH gave a reduction product (compound IV, M⁺:m/z 267) which showed a -CH₂OH group in the NMR in place of the -COOCH₃ group of compound II. Upon hydrogenation over palladium on charcoal, compound II afforded a dihydroderivative (compound V, M⁺:m/z 297). The proton NMR spectrum of compound V exhibited a new doublet methyl signal and the absence of

25

30

the exomethylene group present in compound II. Furthermore, one of the OCH $_3$ groups appeared at higher field (δ : 3.50 ppm) in compound V. These results indicated the presence of a

5

group in compound II which was reduced by hydrogenation to

10

group in compound V. Compound II was heated with 1.5N methanolic hydrogen chloride at 80°C for 3 hours and the hydrolyzate chromatographed on a silica gel column to afford a weakly basic compound (compound VI, M*: m/z 211). The IR spectrum and physico-chemical properties indicated that compound VI contained an NH₂ group. Compound VI was identified as methyl 4,5-dimethoxy-anthranilate by comparative IR and NMR studies with an authentic sample. Consequently, the structures of compounds II-VI were determined as shown below.

20

15

Structures of compounds II, III, IV, V and VI

Compound II

Compound III

CH₃O

NH-CO-C

OCH₃

CH₃O

CH₃

CH₃O CH

Compound V

Upon treatment with 0.05N KOH-CH₃OH at 55°C, compound I was split into a new chromophoric fragment (compound VII, C₁₅H₂₁NO₇, M⁺: m/z 327) and a sugar (compound VIII). The NMR spectrum of VII exhibited one singlet C-CH₃ and two high-field OCH₃ groups in addition to three low-field OCH₃ and two aromatic protons commonly observed for compounds II, V and VI. Further hydrolysis of VII with 1.5N methanolic hydrogen chloride gave compound VI which was identical with that previously obtained from II. After
 removal of VI, the hydrolyzate was treated with 2,4-dinitrophenylhydrazine to precipitate yellow solid which was identified as 2,4-dinitrophenylhydrazone of pyruvic acid. Thus compound VII is methyl, 4,5-dimethoxy-N-(2',2'-dimethoxypropionyl)-anthranilate. Compound VIII did not show the molecular ion peak but did show the M-OCH₃ peak at m/z 131 in the mass spectrum in agreement with the molecular formula of C₇H₁₄O₄. The NMR spectrum indicated 2,6-dideoxyhexopyranose structure for compound VIII. The assignment was supported by the ¹³C-NMR of compound I which gave rise to one C-CH³, one -CH₂, three O-CH< and one

55

50

40

65

20

anomeric carbon in addition to 15 carbon signals assignable to compound VII. The C_3 proton of the sugar appeared at low-field (δ : 5.39 ppm, octet) revealing the C_3 -OH of the sugar was esterified by the carboxyl group of VIII. The above results are summarized below:

5 Structures of compound I, VII and VIII

Compound VI

CE 3 OH CH 3 OH COCH 3 OH CH 3 OH

The molecular weight of compound! (457) accounts for about one-third of the entire molecule of BBM-1675A₁ (proposed formula C₅₇H₇₂N₄O₃₂; calc'd MW = 1324). The partial structure of BBM-1675 A₁ is considered to be as follows:

Subsequent to the U.S. filing date of parent application Serial No. 495,231, it was discovered that components BBM-1675 A_1 and A_2 described above and produced according to Example 2 below were in fact not completely pure and that certain of the characterizing properties used to define such components were inaccurate. Following additional chromatographic purification procedures as described more fully in Examples 3 and 6 below, BBM-1675 A_1 and A_2 were isolated in more purified form and fully characterized as described below. Also, the elemental analysis data for components A_3 and A_4 was revised to show the presence of sulfur in these compounds and HPLC retention times were calculated for these two components.

Sumi	marized below are the revise	d physico-chemical properties	of the BBM-1675 components.	
	-1675 A ₁			
5 Desc		e to pale yellow crystals; 56-158° (dec.)		5
Elem	nental analysis:			
0	Analysis 1	Analysis 2	Average	. 10
	•	·	C: 52.17	
	C: 51.60%	C: 52.74%	H: 6.15	
	H: 6.31%	H: 5.99	N: 4.63%	
	N: 5.31%	N: 3.94%		46
5	S: 8.47%	S: 9.71%	S: 9.09%	15
	O (by difference):2	8.31% O (by difference): 27	7.62% O (by difference):27.96%	
Ultra	aviolet absorption spectrum:	Instrument-Varian UV, Cary 2	19	
0	, ,	Solvent - methanol		20
		Concentration = 0.01356 g/l		
		$\lambda_{max}(nm)$	absorptivities	•
		320	12.4	25
5	•	280	sh (shoulder)	
		253	25.1	
			25.5	
		210		3
0	No	significant change with acid or	Dase	30
Opti		vent - CHCl ₃ 4° = -207° (C=0.0351)		
			i anticol votation:	35
5	A s	econd analysis showed the foll	owing optical rotation.	3
	$[\alpha]_{\tilde{c}}$	$7^{\circ} = -191^{\circ} (C=0.5, CHCl_3).$		
Infra	ared absorption spectrum: S	ee Figure 9		4
10	B.4	in the custion bands (KRr):		•
	IVIa	jor absorption bands (KBr):	1250, 1308, 1380, 1405, 1446, 1520, 1	592, 1608,
	985 166	; 1015, 1070, 1110, 1130, 1210, 8, 1715, 2920, 2960, 3360, 3440), cm ⁻¹	,
es Mai	as anostro. Inc	trument - VG-ZAB-2F		4
15 IVIA	ΕΔ	R-MS-thioglycerol		CNL OI
	Mo	lecular mass range ions (m/z):	1249, 1357, 1463; with the addition o	of NaCl
	(m.	z): 1271, 1379, 1485, 1597.	4); Molecular mass range ions (m/z):	1249,
	FA 129	3-NO 1555 with the addition	n of NaCl (m/z): 1249, 1271, 1303, 142	25, 1483, 5
50			110111401111111111111111111111111111111	
	157	7. B. MS. alveeral-DMSO: Malecu	lar mass range ions (m/z): 1215, 1247	, 1279,
	129	3, 1325, 1353; with addition of	NaCl (m/z): 1215, 1237, 1247, 1269, 1	325,
	13-	17, 1375.		
55	Ins FA	trument: Kratos MS-50 R-MS-thioglycerol; Molecular	mass range ions (m/z): 1357, 1463.	Ę
			**	
	Molecular weigh		arent MW = 1248	
	(based on above- mass spectral da		MONETHIA INCIO	(
60				

	Nuclear Magnetic Resonance Spectra: Instrument - WM360 Brucker						
Ę	Solven: CDCl ₃ ¹ NMR: 360 MHz 86 brs); 5.93 (1H, d, J brs); 4.95 (1H, d, J 4.02 (1H, brs); 3.98 (3H, s), 2.47 (1H, n (3H, d, J=6.3); 1.2	=9.3); 5.82 (1H, c =10.2}; 4.64 (2H, 5 (3H, s); 3.85 (3H n); 2.38-2.22 (5H);	d, J=9.3); 5.7 (1 m); 4.54 (1H, c , s), 3.79 (3H, s) ; 2.12 (1H, m); ;	IH, brs); 5.49 (1 I, J=2.3); 4.2 (1); 3.46 (1H, m);	H, m); 5.45 (1); H, s); 4.15-3.39 3.40 (3H, s)]; 2	H, d, J=2.3); 5.38 (5 (26-28H) [4.10 (1 2.82-2.70 (3H, brm	1H, 5 H, m);): 2.50
10	See Figure 10	0 (0.11, 0, 0					10
	¹³ C NMR: 90.3 MH	z					
15	See Figure 11						15
	In a separate test the ¹³ CDCI ₃ (80 MHz). Major pe	C NMR spectrum aks are indicated	of purified BB below.	M-1675 A ₁ was	determined fo	or a sample dissol	
20		CMR of	BBM-1675A ₁ ((80 MHz in CL	OCL₃)		20
		Chemi	cal shift in pp	m (Multiplicity	/*)		
25	BBM-1675A ₁ 13.7(q) 23.4(q) 52.5(q) 67.7(d) 71.9(d)	29.0(t) 55.6(u) 68.2(d)	17.5(q) 34.0(t) 56.0(q) 68.8(t) 76.6(d)	19.8(q) 35.1(t) 57.1(d) 69.2(d) 77.1(u)	22.2(q) 39.5(t) 62.4(t) 69.6(t) 77.3(d)	22.6(q) 47.2(d) 64.5(d) 70.2(d)	25
30	86.6(d) 99.6(d) 130.1(d) 153.8(s)	88.4(s) 103.8(d) 131.5(s)	89.5(t) 107.6(s) 134.9(s) 155.0(s)	97.2(d) 112.5(d) 136.7(s) 160.7(s)	98.3(s) 123.1(d) 144.0(s) 166.4(s)	83.4(s) 99.0(d) 124.9(d) 147.2(s) 191.8(s)	30
35	*Multiplicity - q = quartet t = triplet;	; d = doublet; u : s = singlet	= uncertain				35
		BB	M-1675A ₂				
40	Description: Elemental analysis:	white crystals C: 52.71%	; mp 147-149°C				40
	·	H: 5.94% N: 3.94% S: 9.39%					
45		O(by difference	•				45
	Ultraviolet absorption spe	ctra: Instrument	- Varian UV. Ca	ary 219			
50		Solvent: meth					50
	λ_m	_{ax} (nm)	absorp	tivities			•
55		320 282 252	12 16.	.3			55
		214	26. 25.				
60	No significant change with	acid or base.					60

	Optical rotation:	$[\alpha]_{D}^{27^{\circ}} = -$	179.4° (c 0.	5, CHCl ₃)					
	Infrared spectra:	See Figu	re 12						
5		Major ab	sorption ba	in IR Model inds (KBr): \$ 20, 1595, 16	950, 1015, 10	070, 1100, 1 735, 2940, 29	155, 1213, 1 980, 3440, ci	1250, 1313, m ⁻¹ .	5
10	Mass spectra:	FAB-MS- Molecula addition	of NaCl (m/	ol ge ions (m/z /z): 990, 127	1, 1379, 148), 1355, 1357 5, 1593			10
15		1403, 141 1441, 149 FAB-MS-	FAB-MS-MB (MB: matrix, m.w. 154); Molecular mass range ions (m/z): 1249 1403, 1419, 1555, 1571, 1587; with the addition of NaCl (m/z): 1249, 1271, 142 1441, 1457, 1483, 1577. FAB-MS-glycercol-DMSO; Molecular mass range ions (m/z): 1215, 1231, 124 1263, 1279, 1293, 1309, 1325, 1326, 1341, 1353, 1369.					, 1271, 1425,	15
20	Molecular weight: (based on above-descri mass spectral data)	ve-described (20	
25	Nuclear Magnetic: Resonance Spectra	See Figu	re 13	•					25
30	25 instrument: WM 360 Bruckner Solvent: CDCl ₃ ¹ H NMR 360 MHz δ(ppm): 11.91 (1H, s); 8.62 (1H, s); 7.58 (1H, s); 6.56 (1H, m); 6.22 (1H, s); 6.15 (1H, brs); 5.91 (1H, d, J=9.6); 5.83 (1H, d, J=9.6); 5.70 (1H, m); 5.45 (1H, d, J=2.2); 5.44 (1H, s), 5.34 (1H, brs); 4.95 (1H, d, J=10.2); 4.75 (1H, m); 4.65 (1H, d, J=6.8); 4.54 (1H, d, J=2.2); 4.47 (1H, m); 4.18 (1H, s); 4.10 (1H, brs), 4.05-3.50 (20-24H); [3.96 (3H, s); 3.87 (3H, s); 3.77 (3H, s)] 3.46 (1H, m); 3.39 (3H, s);					5.70 (1H, m); ; 4.75 (1H, m); l.10 (1H, brs), m); 3.39 (3H,	30		
35		s); 2.79 (m); 2.10 J=6.0);	1H, m); 2.73 (3H, s); 1.93	3 (2H, m); 2.	.50 (3H, s); 2 .65-1.45 (6-8	2.50 (1H, m);	2.38-2.22 (3H); 2.14 (1H, 1.34 (3H, d,	35
40	In a separate test the CDCI ₃ (80 MHz). Major p	See Figu ¹³ C NMR spec peaks are indic	trum of pui	ified BBM-1	I675A₂ was	determined	for a samp	le dissolved in	40
45	57.6 71.9	16.9 35.1 62.4 73.6	17.5 39.3 64.5 75.8	19.8 47.6 64.9 76.1	22.3 52.6 65.9 77.1	22.7 55.7 68.3 77.7	23.4 56.0 69.2 78.1	33.1 56.1 69.7 78.3	45
50	83.3 99.6 144.1	86.2 103.8 154.2	88.4 107.1 154.5	90.4 112.4 160.9	97.2 123.2 167.9	98.3 124.8 192.2	99.1 129.9	99.5 137.3	50

35

55

60

TABLE 7 Physico-chemical Properties of BBM-1675 A_3 , A_4 , B_1 , B_2

5			A_3	A_4	B_{1}	B_2	5
	Melting point (dec):		125 − 127°C	123 - 126°C	159 − 161°C	156 − 159°C	
	$[\alpha]_D^{27}$ (c 0.5, CHCl ₃):		−161°C	−176°C	−171°C	-122°C	
10	Anal. Found (%):	C: H: N: S:	54.55 6.46 3.73 7.49	54.65 6.29 3.51 8.07			10
15	UV λ _{max} nm (E ^{1%} _{1 cm}): in MeOH	G.	253 (286) 282 (158) 320 (122)	253 (257) 282 (153) 320 (117)	253 (225) 282 (140) 320 (104)	248 (212) 279 (141) 318 (103)	15
20	in 0.01N HCI-MeOH:		253 (287) 282 (160) 320 (126)	253 (258) 282 (155) 320 (118)	253 (225) 282 (140) 320 (105)	248 (210) 279 (140) 318 (103)	20
25	in 0.01N NaOH-MeOH	:	252 (280) 283 (162) 318 (120)	252 (266) 283 (160) 318 (118)	252 (236) 283 (141) 318 (105)	248 (233) 278 (150) 318 (110)	25

Thin-layer chromatography (TLC) and high performance liquid chromatography (HPLC) data on BBM-1675 components

A. Study No. 1 - summary

TABLE 8

35

TLC and HPLC of BBM-1675 components

TLC (Rf) HPLC (retention time, in minutes 40 SiO2 *Silanized Lichrosorb RP-18 40 CHCI3-MeOH CH3CN-H2O CH3CN-MeOH-0.1M CH3COONHA (5:1 v/v) 75:25 v/v) $(5:2:3 \ v/v)$ BBM-1675A₁ 0.74 0.18 13.3 BBM-1675A₂ 45 0.71 0.21 17.3 45 BBM-1675A₃ 0.72 0.28 8.0 BBM-1675A4 0.71 0.78 5.1 BBM-1675B₁ 0.63 0.23 BBM-1675B₂ 0.60 0.16 50

* C₁₈ reverse phase silica gel

B. Study No. 2 - TLC and HPLC for purified A_1 and A_2 components TLC Chromatography

Analtech GHLF Silica Gel Uniplates were used for all normal phase chromatography. Plates measuring 2.5 cm × 10 cm were used for one-dimensional TLC. These were developed in glass cylinders measuring 6.4 cm (o.d.) by 12 cm and containing 10 ml of eluant. Plates measuring 7.5 cm × 10 cm were used for two dimensional TLC. The sample was applied to the lower left hand corner 1 cm from the edges. The plate was developed first in a tank (12.7 cm wide, 8.6 cm deep, 13 cm high) containing 50 ml of the first eluant. The

60 plate was then air dried, rotated 90° counterclockwise, and developed in a second tank containing 50 ml of the second eluant.

Whatman analytical precoated C-18 silica gel plates were used for all reverse phase chromatography. Plates measuring 2.5 cm \times 7.6 cm were developed in glass cylinders measuring 10 ml of eluant. Normal phase plates were viewed under 254 nv uv light first. The plates were then inserted into a glass

65 cylinder (6.4 cm o.d. by 12 cm) containing l₂ crystals. The plates were then reexamined after approximately 2

10

15

20

25

30

35

40

50

55

minutes. Reversed phase plates were visualized under 254 nm uv light only. Zones were detected by looking for quenching of the fluorescence of an impregnated dye.

Analytical HPLC

The following components were used to construct an analytical HPLC system: Waters Associates Model 6000A Solvent Delivery System pump; Varian Varichrom Model VUV-10 uv/vis Detector set at 254 nm 0.1 OD; Fisher Recordal Series 5000 Recorder; Waters Associates Model 660 Solvent Programmer; Waters Associates Model U6K injector; Alltech, μ -Bondapak C₁₈ (10 μ) column (4.6 mm i.d. \times 25 cm) with a Whatman Co. Pell ODS (0.03-0.038 mm) guard column (4.6 mm i.d. \times 5 cm). The components were connected with 316 10 stainless steel tubing (1.6 mm o.d. - 0.23 mm i.d.). Eluant was pumped at 2 ml/min for all analysis.

Preparative HPLC

The following components were used to construct a medium pressure liquid chromatography system: Fluid Metering, Inc. Model RP-SY 2CSC FMI Lab Pump; Fluid Metering, Inc. Model PD-60LF FMI Pulse 15 Dampener; a 15 ml sample loop constructed of polypropylene tubing (3.0 mm o.d. × 1.5 mm i.d.) wrapped around a cardboard tube (8.65 cm o.d.); Glenco Series 3500 Universal LC columns; Instrument Specialties Co. Model UA-5 Absorbance/Fluoresence Monitor with a Type 6 optical unit; Instrumentation Specialities Co. Model 590 Flow Interrupter Valve; and an Instrumentation Specialties Co. Model 328 Fraction Collector. The components were connected with polypropylene and Teflon tubing (3.0 mm o.d. imes 1.5 mm i.d.) and Glenco 20 multifit connectors and valves in the order listed.

The Glenco series 3500 Universal LC Columns were slurry packed with the defined adsorbent in the designated solvent using standard techniques. The void between the settled bed and tube top was filled with standard Ottawa sand. Eluant was pumped at a maximum rate which would not exceed 60 psi back pressure (approximately 20 ml/min).

Gradient elution

25

40

A Glenco gradient elution apparatus consisting of two chambers of equal diameter, height and volume connected in tandem with a Teflon valve was used for all gradient elutions. One chamber served as a mixing chamber and one as a static reservoir. The less polar solvent was initially held in the mixing chamber. The 30 more polar solvent was held in the static chamber. Teflon coated magnetic stirring bars (1.0 \times 3.7 cm) were placed in both chambers and driven by Thomas Model 15 Magne-matic stirrers. Eluant was pumped from the mixing chamber to the medium pressure HPLC system through polypropylene tubing (1.5 mm lD imes 3.0 mm OD). As eluant was removed from the mixing chamber, the solvent in the static reservoir was allowed to freely replace it, thus creating a linear gradient of eluant.

TLC analysis of BBM-1675 A_1 and A_2

Summarized in Table 9 below are the observed Rf values for BBM-1675A $_1$ and A $_2$ on normal phase plates. Rf is calculated by dividing the measured distance of the center of a zone from the point of sample application by the measured distance of the solvent from the point of sample application.

TABLE 9

	System/Compound	<i>BBM-1675A</i> ₁	Rf BBM-1675A₂	45
45	4% methanol in chloroform 5% methanol in diethyl ether 50% acetone in Skellysolve B	0.33 0.39 0.38	0.30 - 0.31	45

Summarized in Table 10 below are the observed Rf values of BBM-1675 A_1 and A_2 on normal phase plates developed in two dimensions. The position of the spots are expressed in Cartesian coordinates. The X coordinate is the Rf values of the second listed solvent system. The Y coordinate is the Rf values of the first listed solvent system.

TABLE 10 55

		R	rf	
	System/Compound	BBM-1675A ₁	BBM-1675A ₂	
60	4% methanol in chloroform vs 5% methanol in diethyl ether	(0.34, 0.33)	(0.28, 0.23)	60
	4% methanol in chloroform vs 50% acetone in Skellysolve B	(0.33, 0.29)	-	

Summarized in Table 11 below are the observed Rf values for BBM-1675 A_1 and A_2 on C-18 reversed phase TLC plates developed in binary cluants.

TABLE 11

5							5
	System/Compound				5		
	Systemicompound			BBM-1675A	4, <i>BBM-1</i>	675A ₂	
	25% 0.5 M NaCl in ac	etonitrile		0.18	0.2	01	
10				0.00	0.0		10
	Summarized in Table 101						
	Summarized in Table 12 below at TLC plates developed with ternary of	re the observ eluants.	ed K	t values of BBM-1	1675A ₁ and A ₂ or	n C-18 reversed pha	ase
15			TA	BLE 12			15
					24		.0
	System/Compound				Rf BBM-1675A,B	BM-1675A ₂	
20	Acetonitrile :	Methanol		0 5 N=01	•		
20	80% :	10%	:	0.5 NaCL	4.00		20
	60%		•	10%	1.00	1.00	
	40%	10%	:	30%	0.57	0.50	
	30%	30%	:	30%	0.32	0.22	
25		50%	:	20%	0.44	0.33	
25	50% :	30%	:	20%	0.62	0.54	25
	40% :	40%	:	20%	0.60	0.49	
	50% :	20%	:	20%	0.42	0.34	
	60% :	20%	:	20%	0.74	0.69	•
30	Acetonitrile :	Methanol		water			
	40%	30%	:	30%	0.00	0.00	30
		0070	•	30 /6	0.00	0.00	
	Acetonitrile :	Methanol		0.1M NH₄OAc			
	40%	30%	•		0.00		
35	4070 .	30%	•	30%	0.32	0.22	
03	Acetonitrile :	Mashamai		0.485 N. 11.00	•		35
	****	Methanoi	:	0.1M NaH ₂ PO ₄		_	
	40% :	30%	:	30%	0.00	0.00	
	HPLC analysis of BBM-1675A 1 and A	•					
40	BBM-1675A ₁ and BBM-1675A ₂ wei	z re accaved :::	eina i	einale binant on	d +amaam / al.,	0 40	
	phase silica del columns. Summariza	e assayeu us ad in Tables 1	1111y 3	single, binary, and	a ternary eluant	s on C-18 reversed	40
	phase silica gel columns. Summarize compounds. The K' was calculated u	su III Tables (13, 14	and 15 below ar	e the observed b	('values for these	
	compounds. The R was calculated u	sing the folic	wing	g formula:			
45	$K' = \frac{TR - To}{To}$						
45	n To						45
	where TR is the retension time maga	read from tim		:::			
	where TR is the retension time meas	area irom tim	ie oi	injection to peak	apex and To is t	he void volume tim	ie.
50		•	TABI	LE 13			
							50
					K'		
	System/Compound			BBM-1675A,	BBM-167	'5A ₂	
	A			•		-	
55	Acetonitrile			а	а		55
	Tetrahydrofuran			а	а		50
	Methanol			0.00	0.00		

			TABLE	14				
	System/Compoun	nd'		BBM-1675A	K' 4, B	BM-1675	5A ₂	Ę
5	25% water in acet 25% methanol in v			a 1.25		a 1.25		
	a = compound did not elute from	n column.						1
0			TABLE	15				'
			Ternary I	Eluants				
15		,			BBM-1		K' BBM-1675A ₂	1
	System/Compour	nd			DDIVI	0,0,1,		
	Acetonitrile 40%	: Methan : 30%		vater 30%	ŧ	à	а	2
20	Acetonitrile	: Methan	ol : 0	.1M NH ₄ OAc	;			
	40%	: 30%		30%		.7	3.0	
	50%	: 209		30%		.8	6.5 b	
	43.3%	; 23.3	•-	33.3%		.1 .8	b	:
25	42.5% 41.5%	: 22.5 : 21.5		35.0% 37.0%		.o .7	b	•
30	a = did not eluteb = not determined							;
35	-	BBM-1675 cor id-fast) and fu sitive and gra cone, 0.31% N -fast organisr	nponents v ingi by the m-negativ a ₂ HPO ₄ , 0. ns. Sabour	serial two-101 e bacteria and 1% KH ₂ PO ₄ , 0 aud agar med . A ₂ , A ₄ , B ₁ , B	id agar ditt d No. 1001 0.005% am dium was t a) showed	medium monium used for f a broads	(3% glycerol, 0.3% citrate, 0.001% fungi. As shown in spectrum of	
35	b = not determined Biological properties of BBM-16 Antimicrobial activity of the E positive, gram-negative and ac medium was used for gram-pos sodium L-glutamate, 0.2% pept MgSO ₄ and 1.5% agar) for acid- Table 16, each of the six BBM-1 antimicrobial activity. BBM-167	BBM-1675 cor id-fast) and fu sitive and gra cone, 0.31% N -fast organisr	nponents v ingi by the m-negativ a ₂ HPO ₄ , 0. ns. Sabour	serial two-fole bacteria and 1% KH ₂ PO ₄ , 0 aud agar med , A ₃ , A ₄ , B ₁ , B irticular were	id agar ditt d No. 1001 0.005% am dium was t a) showed	medium monium used for f a broads	(3% glycerol, 0.3% citrate, 0.001% fungi. As shown in spectrum of	
30 35 40	b = not determined Biological properties of BBM-16 Antimicrobial activity of the E positive, gram-negative and aci medium was used for gram-pos sodium L-glutamate, 0.2% pept MgSO ₄ and 1.5% agar) for acid- Table 16, each of the six BBM-1 antimicrobial activity. BBM-167 bacteria.	BBM-1675 cor id-fast) and fu sitive and gra cone, 0.31% N -fast organisr	nponents wing in by the m-negative a_2HPO_4 , 0. as. Sabour ents (A ₁ , A ₂ and A ₄ in pa	serial two-fole bacteria and $1\% \text{KH}_2\text{PO}_4$, 0 aud agar med, A_3 , A_4 , B_1 , B_1 inticular were	id agar dito d No. 1001 0.005% am dium was t 2) showed highly acti	medium monium used for f a broad s ive again	(3% glycerol, 0.3% citrate, 0.001% fungi. As shown in spectrum of	:
35 40	b = not determined Biological properties of BBM-16 Antimicrobial activity of the E positive, gram-negative and aci medium was used for gram-pos sodium L-glutamate, 0.2% pept MgSO ₄ and 1.5% agar) for acid- Table 16, each of the six BBM-1 antimicrobial activity. BBM-167 bacteria.	BBM-1675 cor id-fast) and fu sitive and gra cone, 0.31% N fast organisn 675 compone 75 A ₁ , A ₂ , A ₃ a	nponents wing in by the m-negative a_2HPO_4 , 0. as. Sabour ents (A ₁ , A ₂ and A ₄ in pa	serial two-role bacteria and 1% KH ₂ PO ₄ , 0 aud agar med, A ₃ , A ₄ , B ₁ , B irticular were E 16 **BBM-1675 O MIC in	d agar did d No. 1001).005% am dium was t 2) showed highly act Componen mcg/ml	medium monium used for f a broad s ive again	(3% glycerol, 0.3% citrate, 0.001% ungi. As shown in spectrum of st gram-positive	
35	b = not determined Biological properties of BBM-16 Antimicrobial activity of the E positive, gram-negative and aci medium was used for gram-pos sodium L-glutamate, 0.2% pept MgSO ₄ and 1.5% agar) for acid- Table 16, each of the six BBM-1 antimicrobial activity. BBM-167 bacteria.	BBM-1675 cor id-fast) and fu sitive and gra cone, 0.31% N fast organisn 675 compone 75 A ₁ , A ₂ , A ₃ a	nponents v ingi by the m-negative a ₂ HPO ₄ , 0. ns. Sabour ents (A ₁ , A ₂ nd A ₄ in pa TABL	serial two-fole bacteria and 1% KH ₂ PO ₄ , 0 aud agar med , A ₃ , A ₄ , B ₁ , B orticular were	d agar did d No. 1001).005% am dium was t 2) showed highly act	medium monium used for f a broad s ive again	(3% glycerol, 0.3% citrate, 0.001% fungi. As shown in spectrum of	
35 40	b = not determined Biological properties of BBM-16 Antimicrobial activity of the E positive, gram-negative and act medium was used for gram-pos sodium L-glutamate, 0.2% pept MgSO ₄ and 1.5% agar) for acid- Table 16, each of the six BBM-1 antimicrobial activity. BBM-167 bacteria.	BBM-1675 cor id-fast) and fu sitive and gra one, 0.31% N -fast organisn 675 compone 75 A ₁ , A ₂ , A ₃ a	nponents v ingi by the m-negative a ₂ HPO ₄ , 0. ns. Sabour ents (A ₁ , A ₂ nd A ₄ in pa TABL	serial two-role bacteria and 1% KH ₂ PO ₄ , 0 aud agar med, A ₃ , A ₄ , B ₁ , B riticular were E 16 BBM-1675 0 MIC in A ₃ 0.0063	agar did d No. 1001 0.005% am dium was u 2) showed highly acti Componen mcg/ml A ₄	medium medium used for fa broad sive again	(3% glycerol, 0.3% citrate, 0.001% ungi. As shown in spectrum of st gram-positive B ₂ 0.0063	
35	b = not determined Biological properties of BBM-16 Antimicrobial activity of the E positive, gram-negative and act medium was used for gram-possodium L-glutamate, 0.2% pept MgSO ₄ and 1.5% agar) for acid- Table 16, each of the six BBM-1 antimicrobial activity. BBM-167 bacteria. All Strain S. aureus 209P	BBM-1675 corid-fast) and fusitive and grace one, 0.31% N-fast organism 675 compone of A ₁ , A ₂ , A ₃ and the component of A ₁ , A ₂ , A ₃ and the component of A ₁ , A ₂ , A ₃ and the component of A ₁ , A ₂ , A ₃ and the component of A ₁ , A ₂ , A ₃ and the component of A ₁ , A ₂ , A ₃ and the component of A ₁ , A ₂ , A ₃ and the component of A ₁ , A ₂ , A ₃ and the component of A ₂ , A ₃ and the component of A ₂ , A ₃ and the component of A ₂ , A ₃ and the component of A ₂ , A ₃ and the component of A ₃ , A ₄ , A ₅ , A ₆ , A ₇ , A ₈	nponents vingi by the m-negative a_2HPO_4 , 0. ns. Sabour ents (A_1 , A_2 and A_4 in part TABL Activity of A_2 0.0063 0.0031	serial two-role bacteria and 1% KH ₂ PO ₄ , 0 aud agar med, A ₃ , A ₄ , B ₁ , B inticular were E 16 MIC in A ₃ 0.0063 0.0063	Component A_4 0.0125 0.0125	medium monium used for f a broad s ive again ts 0.012 0.012	(3% glycerol, 0.3% citrate, 0.001% ungi. As shown in spectrum of st gram-positive B ₂ 0.0063 0.012	
35 10	b = not determined Biological properties of BBM-16 Antimicrobial activity of the E positive, gram-negative and act medium was used for gram-pos sodium L-glutamate, 0.2% pept MgSO ₄ and 1.5% agar) for acid- Table 16, each of the six BBM-1 antimicrobial activity. BBM-167 bacteria.	BBM-1675 corid-fast) and fusitive and grace one, 0.31% Nofast organism 675 compone 75 A ₁ , A ₂ , A ₃ and antimicrobial of BBM-1675 A	ingi by the m-negative a_2HPO_4 , 0. ins. Sabour ents (A_1 , A_2 in DA TABL $Activity$ of A_2 0.0063 0.0031 0.05	serial two-role bacteria and 1% KH ₂ PO ₄ , 0 aud agar med, A ₃ , A ₄ , B ₁ , B irticular were E 16 BBM-1675 0 MIC in A ₃ 0.0063 0.0063 0.0125	Component A_4 0.0125 0.0125 0.0125	medium medium used for fa broad sive again of the again o	(3% glycerol, 0.3% citrate, 0.001% ungi. As shown in spectrum of st gram-positive B_2 0.0063 0.012 0.05	
35 40 45	b = not determined Biological properties of BBM-16 Antimicrobial activity of the E positive, gram-negative and act medium was used for gram-possodium L-glutamate, 0.2% pept MgSO ₄ and 1.5% agar) for acid- Table 16, each of the six BBM-1 antimicrobial activity. BBM-167 bacteria. All Strain S. aureus 209P S. aureus Smith	BBM-1675 cor id-fast) and fu sitive and gra one, 0.31% N fast organism 675 compone 75 A ₁ , A ₂ , A ₃ a antimicrobial A <0.0008 <0.0008	nponents vingi by the m-negative a_2HPO_4 , 0. ns. Sabour ents (A_1 , A_2 nd A_4 in part A_2 0.0063 0.0031 0.05 0.0063	serial two-role bacteria and 1% KH ₂ PO ₄ , 0 aud agar med, A ₃ , A ₄ , B ₁ , B reticular were E 16 BBM-1675 0 MIC in A ₃ 0.0063 0.0063 0.0125 0.0125	Component 0.0125 0.0125 0.0125 0.0125	medium medium used for fa broad sive again sts 8.7 0.012 0.012 0.05 0.1	(3% glycerol, 0.3% citrate, 0.001% ungi. As shown in spectrum of st gram-positive B_2 0.0063 0.012 0.05 0.1	
35 40 45	b = not determined Biological properties of BBM-16 Antimicrobial activity of the E positive, gram-negative and aci medium was used for gram-pos sodium L-glutamate, 0.2% pept MgSO ₄ and 1.5% agar) for acid- Table 16, each of the six BBM-1 antimicrobial activity. BBM-167 bacteria. All Strain S. aureus 209P S. aureus Smith B. subtilis PCI 219	BBM-1675 cor id-fast) and fu sitive and gra one, 0.31% N -fast organism 675 compone 75 A ₁ , A ₂ , A ₃ a ntimicrobial <0.0008 <0.0008	ingi by the m-negative a_2HPO_4 , 0. ins. Sabour ents (A_1 , A_2 in DA TABL $Activity$ of A_2 0.0063 0.0031 0.05	serial two-role bacteria and 1% KH ₂ PO ₄ , 0 aud agar med, A ₃ , A ₄ , B ₁ , B reticular were E 16 BBM-1675 0 MIC in A ₃ 0.0063 0.0063 0.0125 0.0125 0.0063	Component A_4 0.0125 0.0125 0.0125 0.0125 0.0125	medium medium used for fa broad sive again of the second sive again of the second seco	(3% glycerol, 0.3% citrate, 0.001% ungi. As shown in spectrum of st gram-positive B_2 0.0063 0.012 0.05 0.1 0.025	
35 40 45	b = not determined Biological properties of BBM-16 Antimicrobial activity of the E positive, gram-negative and aci medium was used for gram-pos sodium L-glutamate, 0.2% pept MgSO ₄ and 1.5% agar) for acid- Table 16, each of the six BBM-1 antimicrobial activity. BBM-167 bacteria. All Strain S. aureus 209P S. aureus Smith B. subtilis PCI 219 M. luteus 1001 M. flavus	BBM-1675 cor id-fast) and fu sitive and gra one, 0.31% N -fast organism 675 compone 75 A ₁ , A ₂ , A ₃ a antimicrobial Co.0008 Co.0008 Co.0008	nponents vingi by the m-negative a_2HPO_4 , 0. ns. Sabour ents (A_1 , A_2 nd A_4 in part A_2 0.0063 0.0031 0.05 0.0063 0.0016 0.1	serial two-role bacteria and 1% KH ₂ PO ₄ , 0 aud agar med, A ₃ , A ₄ , B ₁ , B reticular were E 16 BBM-1675 0 MIC in A ₃ 0.0063 0.0063 0.0125 0.0125 0.0063 NT	20.0125 0.0125 0.0125 0.0125 0.0125 0.0125 0.0125 0.0125	medium medium used for fa broad sive again of the second sive again of the second seco	(3% glycerol, 0.3% citrate, 0.001% ungi. As shown in spectrum of st gram-positive B_2 0.0063 0.012 0.05 0.1 0.025 0.025	
35 40 45	b = not determined Biological properties of BBM-16 Antimicrobial activity of the B positive, gram-negative and act medium was used for gram-possodium L-glutamate, 0.2% pept MgSO ₄ and 1.5% agar) for acid- Table 16, each of the six BBM-1 antimicrobial activity. BBM-167 bacteria. All Strain S. aureus 209P S. aureus Smith B. subtilis PCI 219 M. luteus 1001	BBM-1675 cor id-fast) and fu sitive and gra ione, 0.31% N fast organism 675 compone 75 A ₁ , A ₂ , A ₃ a mtimicrobial <0.0008 <0.0008 <0.0008 <0.0008	nponents vingi by the m-negative a_2HPO_4 , 0. ns. Sabour ents (A_1 , A_2 nd A_4 in part A_2 0.0063 0.0031 0.05 0.0063 0.0016 0.1 0.8	serial two-role bacteria and 1% KH ₂ PO ₄ , 0 aud agar med, A ₃ , A ₄ , B ₁ , B riticular were E 16 BBM-1675 0 MIC in A ₃ 0.0063 0.0063 0.0125 0.0125 0.0063 NT 1.6	Component 0.0125 0.0125 0.0125 0.0125 0.0125 0.0125 0.0125 0.0125 0.0125 0.0125 0.0125 0.0125	medium medium used for fa broad sive again sive again 0.012 0.012 0.05 0.1 0.025 0.8	(3% glycerol, 0.3% citrate, 0.001% ungi. As shown in spectrum of st gram-positive B ₂ 0.0063 0.012 0.05 0.1 0.025 0.025 3.1	
35 40 45	b = not determined Biological properties of BBM-16 Antimicrobial activity of the E positive, gram-negative and aci medium was used for gram-pos sodium L-glutamate, 0.2% pept MgSO ₄ and 1.5% agar) for acid- Table 16, each of the six BBM-1 antimicrobial activity. BBM-167 bacteria. All Strain S. aureus 209P S. aureus Smith B. subtilis PCI 219 M. luteus 1001 M. flavus Mycobacterium 607 E. coli NIHJ	BBM-1675 cor id-fast) and fu sitive and gra cone, 0.31% N fast organism 675 compone 75 A ₁ , A ₂ , A ₃ a antimicrobial and <0.0008 <0.0008 <0.0008 <0.0008 0.0016 <0.0008 0.05 0.1	nponents vingi by the m-negative a_2HPO_4 , 0. ns. Sabour ents $(A_1, A_2 $ nd A_4 in part A_4 in part A_4 in A	serial two-role bacteria and 1% KH ₂ PO ₄ , 0 aud agar med, A ₃ , A ₄ , B ₁ , B articular were E 16 BBM-1675 0 MIC in A ₃ 0.0063 0.0063 0.0125 0.0125 0.0063 NT 1.6 1.6	Component 0.0125 0.0125 0.0125 0.0125 0.0125 0.0125 0.0125 0.0125 0.0125 0.0125 0.0125 0.0125 0.0125 0.0125	medium monium used for fa broads ive again ts ts 0.012 0.012 0.05 0.1 0.025 0.05 0.8 0.8	(3% glycerol, 0.3% citrate, 0.001% ungi. As shown in spectrum of st gram-positive B ₂ 0.0063 0.012 0.05 0.1 0.025 0.025 3.1 0.8	
35 40 45	b = not determined Biological properties of BBM-16 Antimicrobial activity of the E positive, gram-negative and aci medium was used for gram-pos sodium L-glutamate, 0.2% pept MgSO ₄ and 1.5% agar) for acid- Table 16, each of the six BBM-1 antimicrobial activity. BBM-167 bacteria. All Strain S. aureus 209P S. aureus Smith B. subtilis PCI 219 M. luteus 1001 M. flavus Mycobacterium 607 E. coli NIHJ K. pneumoniae D11 P. aeruginosa D15	BBM-1675 cor id-fast) and fu sitive and gra cone, 0.31% N fast organism 675 compone 75 A ₁ , A ₂ , A ₃ a mtimicrobial A <0.0008 <0.0008 <0.0008 <0.0008 0.0016 <0.0008 0.05 0.1 0.4 0.8	nponents vingi by the m-negative a_2HPO_4 , 0. ns. Sabour ents (A_1, A_2) nd A_4 in part A_4 in part A_4 in A	serial two-role bacteria and 1% KH ₂ PO ₄ , 0 aud agar med, A ₃ , A ₄ , B ₁ , B articular were E 16 BBM-1675 0 MIC in A ₃ 0.0063 0.0063 0.0125 0.0125 0.0063 NT 1.6 1.6 1.6	Component 0.0125 0.0125 0.0125 0.0125 0.0125 0.0125 0.0125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125	medium monium used for f a broad sive again sts 87 0.012 0.012 0.05 0.1 0.025 0.8 0.8 3.1	(3% glycerol, 0.3% citrate, 0.001% ungi. As shown in spectrum of st gram-positive B ₂ 0.0063 0.012 0.05 0.1 0.025 0.025 3.1 0.8 3.1	
35 40 45	b = not determined Biological properties of BBM-16 Antimicrobial activity of the E positive, gram-negative and aci medium was used for gram-pos sodium L-glutamate, 0.2% pept MgSO ₄ and 1.5% agar) for acid- Table 16, each of the six BBM-1 antimicrobial activity. BBM-167 bacteria. All Strain S. aureus 209P S. aureus Smith B. subtilis PCI 219 M. luteus 1001 M. flavus Mycobacterium 607 E. coli NIHJ K. pneumoniae D11	BBM-1675 cor id-fast) and fu sitive and gra cone, 0.31% N fast organism 675 compone 75 A ₁ , A ₂ , A ₃ a antimicrobial and <0.0008 <0.0008 <0.0008 <0.0008 0.0016 <0.0008 0.05 0.1	nponents vingi by the m-negative a_2HPO_4 , 0. ns. Sabour ents $(A_1, A_2 $ nd A_4 in part A_4 in part A_4 in A	serial two-role bacteria and 1% KH ₂ PO ₄ , 0 aud agar med, A ₃ , A ₄ , B ₁ , B articular were E 16 BBM-1675 0 MIC in A ₃ 0.0063 0.0063 0.0125 0.0125 0.0063 NT 1.6 1.6	Component 0.0125 0.0125 0.0125 0.0125 0.0125 0.0125 0.0125 0.0125 0.0125 0.0125 0.0125 0.0125 0.0125 0.0125	medium monium used for fa broads ive again ts ts 0.012 0.012 0.05 0.1 0.025 0.05 0.8 0.8	(3% glycerol, 0.3% citrate, 0.001% ungi. As shown in spectrum of st gram-positive B ₂ 0.0063 0.012 0.05 0.1 0.025 0.025 3.1 0.8	

A second antimicrobial test was carried out on purified A_1 and A_2 (as prepared in Ex. 3 below) and on components A_3 and A_4 . Data is summarized below.

			MIC by	ADT (mcg/ml)		
5	Strain	BBM-1675A ₁	A_2	A ₃	A_4	5
	S. aureus 209P	< 0.0008	0.0063	0.0063	0.012	
	S. aureus Smith	<0.0008	0.0031	0.0063	0.012	
	B. subtilis PCI 219	< 0.0008	0.05	0.012	0.025	
10	M. luteus 1001	0.0016	0.0063	0.012	0.05	10
	M. flavus	< 0.0008	0.0016	0.0063	0.012	10
	Mycobacterium 607	0.05	0.1	0.16	0.16	
	<i>E. coli</i> NIHJ	0.1	0.8	1.6	3.1	
	K. pneumoniae D11	0.4	0.8	1.6	3.1	
15	P. aeruginosa D15	0.8	1.6	3.1	3.1	15
	B. fragilis A20928	0.2	1.6	0.2	0.4	15
	C. difficile A21675	0.4	8.0	0.05	0.4	
	C. perfringens A9635	0.05	8.0	0.4	0.4	
	C. albicans IAM 4888	0.4	0.4	1.6	6.3	
20	C. neoformans	1.6	3.1	1.6	6.3	20

The activity of prophage induction in lysogenic bacterium *E. coli* W1709 (λ) was determined for BBM-1675 components according to the method of Lein et al. in *Nature 196*: 783-784 (1962). The plaque count was made on agar plates containing test material (T) and control plate (C). A T/C ratio of the plaque counts of greater than 3.0 was considered significant and the lysogenic induction activity (ILB activity) was expressed as the minimum inducible concentration of the test compound. As shown in Table 17, BBM-1675 components showed strong ILB activity in the lysogenic bacteria, thus suggesting that they may possess antitumor activity.

30 TABLE 17 30

Lysogenic Induction Activity of BBM-1675 Components

	Antibiotic	MIC*(mcg/ml)	
35	BBM-1675 A ₁	0.0063	35
	BBM-1675 A ₂	0.0125	05
	BBM-1675 A ₃	0.05	
	BBM-1675 A ₄	0.10	
	BBM-1675 B ₁	0.10	
40	BBM-1675 B ₂	0.20	40

^{*} minimum inducible concentration

The antitumor activity of BBM-1675 A₁ and A₂ was determined in various mouse tumor systems.

45 Lymphocytic leukemia P-388, lymphoid leukemia L-1210, melanotic melanoma B16 and Lewis lung carcinoma were implanted intraperitoneally into male BDF₁ mice at an inoculum size of 10⁶, 10⁵, 5 × 10⁵ and 10⁶ cells per mouse, respectively. Graded doses of test compounds were administered to the mice intraperitoneally 24 hours after the tumor inoculation. The treatments were given once on the first day only, on day 1, 4 and 7 (q3d × 3), once daily for 9 days (qd 1→9) or 11 days (qd 1→11). Components A₃ and A₄ were tested only against P-388 leukemia by a q3d × 3 schedule due to short supply of material.

BBM-1675 A₁, A₂, A₃ and A₄ were dissolved in 0.9% saline containing 10% dimethyl sulfoxide, and chromomycin A₃ (Toyomycin, Takeda) employed as a reference compound was dissolved in 0.9% saline. Death or survival of the treated and non-treated mice was recorded daily, and the median survival time (MST) was calculated for each of the test (T) and control (C) groups. A T/C value equal to or greater than 125% indicates that a significant antitumor effect was achieved. The results are shown in Tables 18 through 23. BBM-1675 A₁ and A₂ showed extremely potent antitumor activity against P-388 leukemia with a

23. BBM-1675 A₁ and A₂ showed extremely potent antitumor activity against P-388 leukemia with a maximum T/C value of 160%. They are approximately 100 to 3000 times more active than chromomycin A₃ in terms of minimum effective dose. BBM-1675 A₃ and A₄, however, were less active than component A₁ or A₂ against P-388 leukemia (Table 19). BBM-1675 A₁ and A₂ were also active against L-1210 leukemia (Table 21),

60 B16 melanoma (Table 22) and Lewis lung carcinoma (Table 23). The toxicity of BBM-1675 A₁ and A₂ was determined in male ddY mice by intraperitoneal or intravenous administration; BBM-1675 A₁ was about 10 times more toxic than BBM-1675 A₂ (Table 24). The therapeutic indices of BBM-1675 A₁ and A₂ were 4 to 8 and 8 to 20 times better than those of chromomycin A₃, respectively, in the P-388 leukemia system (Table 25). Second experiments were carried out by intravenous administration of BBM-1675 components against

65 P-388 and L-1210 leukemias, which were inoculated intravenously at 5×10^5 and 10^4 cells per mouse,

60

45

50

55

40

5

respectively. In these experiments, adriamycin was used as a reference agent, which was dissolved in 0.9% saline and administered on days 1, 4 and 7. The results are shown in Tables 26 and 27. Both components A_1 and A_2 were superior to adriamycin in terms of maximum T/C value, minimum effective dose and activity range.

TABLE 18

Effect of BBM-1675 Components on P-388 Leukemia (Day 1 treatment)

10		•	·					10
				T/0	Average wt.	Comete	0 KG G D	
		Dose, ip	MST	T/C	change on	Surviv		
		(mg/kg/day*)	(days)	(%)	day 5 (g)	day 5	day 45	
15	BBM-1675 A ₁	0.03	19.0	152	-2.6	5/5	0/5	15
1.5		0.01	19.0	(152)	-1.0	5/5	0/5	
		0.003	18.0	(144)	-1.0	5/5	0/5	
		0.001	20.0	(144) (160)	-1.4	5/5	0/5	
		0.0003	16.0	(128)	0.0	5/5	0/5	
20		0.0001	15.0	120	-0.2	5/5	0/5	20
20		0.00003	14.0	112	-0.2	5/5	0/5	
	BBM-1675 A ₂	0.3	6.0	48	-3.8	3/5	0/5	
	2511. 10.0.12	0.1	20.0	(160)	-1.8	5/5	0/5	
25		0.03	18.0	160 144	-1.4	5/5	0/5	25
20		0.01	17.0	(136)	-0.6	5/5	0/5	
		0.003	17.0	136) 128)	-0.4	5/5	0/5	
		0.001	16.0	(128)	0.0	5/5	0/5	
		0.0003	15.0	120	0.0	5/5	0/5	
30		0.0001	14.0	112	0.0	5/5	0/5	30
	Chromomycin A ₃	1 .	19.0	152	-0.2	4/5	0/5	
	omomon, om is	0.3	17.0	(136)	+0.6	5/5	0/5	
		0.1	16.0	(128)	+0.8	5/5	0/5	
35		0.03	14.0	112	0.0	5/5	0/5	. 3 5
33		0.01	14.0	112	-0.2	5/5	0/5	
•	Vehicle	-	12.5	•	+0.1	10/10	0/10	

40 * day 1, i.p.

Circle indicates a significant antitumor activity.

TABLE 19 Effect of BBM-1675 Components on P-388 Leukemia (Days 1, 4 and 7 treatment)

_		(Days	1, 4 and	/ treatmen	it)			
5					A			5
		Dose, i.p	MST	T/C	Average wt.	C		
		mg/kg/day*)	(days)	(%)	change on day 5 (g)	day 5	ors on day 45	
		mgmgraay /	(uuys)	7/0/	day 5 (g)	uay 5	uay 40	
10	BBM-1675 A ₁	0.03 .	7.0	56	-2.8	5/5	0/5	10
		0.01	19.0	(152)	-1.0	5/5	0/5	
		0.003	19.0	(152)	-0.6	5/5	0/5	
		0.001	16.0	128	-0.6	5/5	0/5	
	•	0.0003	17.0	136	-0.4	5/5	0/5	
15		0.0001	16.0	(128)	-0.2	5/5	0/5	15
		0.00003	14.0	112	+0.4	5/5	0/5	.5
	BBM-1675 A ₂	0.3	tox.	-	-	2.5	0/5	
		0.1	11.0	88	-1.0	5/5	0/5	
20		0.03	18.0	(144)	-1.2	5/5	0/5	20
		0.01	18.0	(144)	-0.4	5/5	0/5	
		0.003	18.0	144)	-0.4	5/5	0/5	
		0.001	17.0	136	-0.4	5/5	0/5	
		0.0003	16.0	128	-0.4	5/5	0/5	
25		0.0001	16.0	(128)	-0.2	5/5	0/5	25
		0.00003	15.0	120	-0.4	5/5	0/5	
	BBM-1675 A ₃	0.01	17.5	140	+0.2	4/4	0/4	
		0.001	15.0	120	+0.6	4/4	0/4	
30		0.0001	13.5	108	+0.6	4/4	0/4	30
	BBM-1675 A ₄	0.01	16.5	132	+0.2	4/4	0/4	
		0.001	14.0	112	+0.4	4/4	0/4	
35		0.0001	12.5	100	+0.6	4/4	0/4	
30	Ch	0.0	10.0	(1)		F (F		35
	Chromomycin A ₃	0.3	18.0	(144)	+0.6	5/5	1/5	
		0.1	18.0	(144)	+0.6	5/5	0/5	
		0.03	17.0	136	-0.2	5/5	0/5	
40		0.01	14.0	112	0.0	5/5	0/5	
40	Vehicle	-	12.5	-	+0.4	10/10	0/10	40

* days 1, 4 and 7, i.p. Circle indicates a significant antitumor activity.

		2	

Effect of BBM-1675 Components on P-388 Leukemia (qd 1→9 treatment)

				A			_
				Average wt.			5
	Dose, ip (mg/kg/day*)	MST (days)	T/C (%)	change on day 5 (g)	Survivo day 5	ors on day 45	
DDM 1675 A		7.0	EG	1 0	E/E	0/5	
BBIVI-10/5 A1							10
			753				10
	0.00001	16.0	(128)	-0.2	5/5	0/5	15
BBM-1675 A ₂	0.1	6.0	48	-2.2	4/5	0/5	
~	0.03	13.0	104	-1.4	5/5	0/5	
	0.01	18.0	(144)	-1.0	5/5	0/5	
	0.003	18.0	(144)	-0.6	5/5	0/5	20
				-0.8	5/5	0/5	
					5/5	0/5	
					5/5		
	0.00001	15.0	120	+0.4	5/5	0/5	25
Charamana sain A	0.2	0.0	70	_2.0	E/E	0/5	
Chromomychi A ₃							
							30
							30
	0.003	13.0	104	-0.2	5/5	0/5	
Vehicle	-	12.5	-	+0.4	10/10	0/10	
indicates a significant	antitumor activity.		21				
Ffi	ect of RRM-1675	Compone	ents on I-1	210 Leukemia			40
Lii	cor or bbin roro	Compone	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
	Dose	MST	T/C		Survive	ors on	
	(mg/kg/day*)	days	(%)	day 5 (g)			
				, -	day 5	day 45	
RRM-1675 A.	0.003	14.5	(153)	-1.7	•		45
BBM-1675 A ₁	0.003 0.001	14.5 12.0	(153) (126)	-1.7 -0.5	6/6	0/6	45
BBM-1675 A ₁	0.001	12.0	126	-0.5	6/6 6/6	0/6 1/6	45
BBM-1675 A ₁					6/6	0/6	45
	0.001 0.0003 0.0001	12.0 12.0 11.0	126 126 116	-0.5 +0.3 +1.0	6/6 6/6 6/6 6/6	0/6 1/6 0/6 0/6	
BBM-1675 A₁ BBM-1675 A₂	0.001 0.0003 0.0001	12.0 12.0 11.0 10.5	126) 126) 116 111	-0.5 +0.3 +1.0	6/6 6/6 6/6 6/6	0/6 1/6 0/6 0/6	45
	0.001 0.0003 0.0001 0.03 0.01	12.0 12.0 11.0 10.5 13.5	126 126 116 111 142	-0.5 +0.3 +1.0 -1.5 -1.2	6/6 6/6 6/6 6/6 6/6	0/6 1/6 0/6 0/6 0/6	
	0.001 0.0003 0.0001 0.03 0.01 0.003	12.0 12.0 11.0 10.5 13.5 13.0	126 126 116 111 142 137	-0.5 +0.3 +1.0 -1.5 -1.2 -0.2	6/6 6/6 6/6 6/6 6/6 6/6 6/6	0/6 1/6 0/6 0/6 0/6 0/6 0/6	
	0.001 0.0003 0.0001 0.03 0.01 0.003 0.001	12.0 12.0 11.0 10.5 13.5 13.0 11.0	126 126 116 111 142 137 116	-0.5 +0.3 +1.0 -1.5 -1.2 -0.2 +1.3	6/6 6/6 6/6 6/6 6/6 6/6 6/6 6/6	0/6 1/6 0/6 0/6 0/6 0/6 0/6 0/6	
	0.001 0.0003 0.0001 0.03 0.01 0.003	12.0 12.0 11.0 10.5 13.5 13.0	126 126 116 111 142 137	-0.5 +0.3 +1.0 -1.5 -1.2 -0.2	6/6 6/6 6/6 6/6 6/6 6/6 6/6	0/6 1/6 0/6 0/6 0/6 0/6 0/6	
BBM-1675 A₂	0.001 0.0003 0.0001 0.03 0.01 0.003 0.001 0.0003	12.0 12.0 11.0 10.5 13.5 13.0 11.0 10.5	126 126 116 111 142 137 116 111	-0.5 +0.3 +1.0 -1.5 -1.2 -0.2 +1.3 +1.0	6/6 6/6 6/6 6/6 6/6 6/6 6/6 6/6	0/6 1/6 0/6 0/6 0/6 0/6 0/6 0/6 0/6	50
	0.001 0.0003 0.0001 0.03 0.01 0.003 0.001 0.0003	12.0 12.0 11.0 10.5 13.5 13.0 11.0 10.5	126 126 116 111 142 137 116 111	-0.5 +0.3 +1.0 -1.5 -1.2 -0.2 +1.3 +1.0	6/6 6/6 6/6 6/6 6/6 6/6 6/6 6/6 6/6	0/6 1/6 0/6 0/6 0/6 0/6 0/6 0/6 0/6	50
BBM-1675 A₂	0.001 0.0003 0.0001 0.03 0.01 0.003 0.001 0.0003	12.0 12.0 11.0 10.5 13.5 13.0 11.0 10.5	126 126 116 111 142 137 116 111 89 121	-0.5 +0.3 +1.0 -1.5 -1.2 -0.2 +1.3 +1.0	6/6 6/6 6/6 6/6 6/6 6/6 6/6 6/6 6/6	0/6 1/6 0/6 0/6 0/6 0/6 0/6 0/6 0/6	50
BBM-1675 A₂	0.001 0.0003 0.0001 0.03 0.01 0.003 0.001 0.0003 0.3 0.1	12.0 12.0 11.0 10.5 13.5 13.0 11.0 10.5 8.5 11.5	126 126 116 111 142 133 116 111 89 121 116	-0.5 +0.3 +1.0 -1.5 -1.2 -0.2 +1.3 +1.0 -1.2 +1.2	6/6 6/6 6/6 6/6 6/6 6/6 6/6 6/6 6/6 6/6	0/6 1/6 0/6 0/6 0/6 0/6 0/6 0/6 0/6 0/6 0/6	50 55
BBM-1675 A₂	0.001 0.0003 0.0001 0.03 0.01 0.003 0.001 0.0003	12.0 12.0 11.0 10.5 13.5 13.0 11.0 10.5	126 126 116 111 142 137 116 111 89 121	-0.5 +0.3 +1.0 -1.5 -1.2 -0.2 +1.3 +1.0	6/6 6/6 6/6 6/6 6/6 6/6 6/6 6/6 6/6	0/6 1/6 0/6 0/6 0/6 0/6 0/6 0/6 0/6	50
BBM-1675 A₂	0.001 0.0003 0.0001 0.03 0.01 0.003 0.001 0.0003 0.3 0.1 0.03 0.01	12.0 12.0 11.0 10.5 13.5 13.0 11.0 10.5 8.5 11.5 11.0	126 126 116 111 142 137 116 111 89 121 116 116	-0.5 +0.3 +1.0 -1.5 -1.2 -0.2 +1.3 +1.0 -1.2 +1.2 +1.2 +1.3	6/6 6/6 6/6 6/6 6/6 6/6 6/6 6/6 6/6 6/6	0/6 1/6 0/6 0/6 0/6 0/6 0/6 0/6 0/6 0/6 0/6	50 55
	→9, i.p. indicates a significant a	0.003 0.001 0.0003 0.0001 0.00003 0.00001 0.00001 BBM-1675 A₂ 0.1 0.03 0.01 0.003 0.001 0.0003 0.0001 0.0003 0.0001 0.00003 0.00001 Chromomycin A₃ 0.3 0.1 0.03 0.01 0.003 Vehicle →9, i.p. indicates a significant antitumor activity.	0.003 13.0 0.001 19.0 0.0003 19.0 0.0001 18.0 0.00003 16.0 0.00001 16.0 BBM-1675 A₂ 0.1 6.0 0.03 13.0 0.01 18.0 0.003 18.0 0.001 18.0 0.0003 17.0 0.0001 16.0 0.0003 15.0 0.0001 16.0 0.00003 15.0 0.00001 15.0 Chromomycin A₃ 0.3 9.0 0.1 18.0 0.03 18.0 0.01 15.0 Vehicle 12.5 →9, i.p. indicates a significant antitumor activity. TABLE Effect of BBM-1675 Compone	0.003 13.0 104 0.001 19.0 152 0.0003 19.0 152 0.0001 18.0 144 0.00003 16.0 128 0.00001 16.0 128 0.00001 16.0 128 BBM-1675 A₂ 0.1 6.0 48 0.03 13.0 104 0.01 18.0 144 0.003 18.0 144 0.003 18.0 144 0.0003 17.0 136 0.0001 16.0 128 0.0001 16.0 128 0.00003 15.0 120 0.00001 15.0 120 Chromomycin A₃ 0.3 9.0 72 0.1 18.0 144 0.03 18.0 144 0.03 18.0 144 0.03 18.0 144 0.003 18.0 144 0.003 18.0 144 0.003 18.0 144 0.003 18.0 144 0.01 15.0 120 Vehicle 12.5 →9, i.p. indicates a significant antitumor activity. TABLE 21 Effect of BBM-1675 Components on L-1	0.003 13.0 104 −1.0 0.001 19.0 152 −1.2 0.0003 19.0 152 −0.8 0.0001 18.0 (44) 0.0 0.00003 16.0 128 +0.2 0.00001 16.0 128 −0.2 BBM-1675 A₂ 0.1 6.0 48 −2.2 0.03 13.0 104 −1.4 0.01 18.0 (44) −1.0 0.003 18.0 144 −1.0 0.01 18.0 144 −0.8 0.001 18.0 144 −0.8 0.0003 17.0 136 −0.4 0.0003 17.0 136 −0.4 0.0001 16.0 128 −0.4 0.0003 15.0 120 −0.6 0.0001 15.0 120 +0.4 Chromomycin A₃ 0.3 9.0 72 −2.0 0.1 18.0 144 +0.4 0.03 18.0 144 +0.4 0.03 18.0 144 −0.8 0.0003 13.0 104 −0.2 Vehicle − 12.5 +0.4 TABLE 21 Effect of BBM-1675 Components on L-1210 Leukemia Average wt. change on	0.003 13.0 104 −1.0 5/5 0.001 19.0 152 −1.2 5/5 0.0003 19.0 152 −0.8 5/5 0.0001 18.0 144 0.0 5/5 0.00003 16.0 128 +0.2 5/5 0.00001 16.0 128 −0.2 5/5 0.00001 16.0 128 −0.2 5/5 0.00001 16.0 128 −0.2 5/5 0.0001 18.0 144 −1.4 5/5 0.01 18.0 144 −1.0 5/5 0.003 18.0 144 −1.0 5/5 0.001 18.0 144 −0.6 5/5 0.001 18.0 144 −0.6 5/5 0.001 18.0 144 −0.6 5/5 0.0001 16.0 128 −0.4 5/5 0.0003 17.0 136 −0.4 5/5 0.0001 16.0 128 −0.4 5/5 0.0001 16.0 120 +0.4 5/5 0.00001 15.0 120 −0.6 5/5 0.00001 15.0 120 −0.6 5/5 0.00001 15.0 120 −0.6 5/5 0.00001 15.0 120 −0.2 5/5 0.003 18.0 144 0.0 5/5 0.0001 15.0 120 −0.2 5/5 0.003 13.0 104 −0.2 5/5 0.01 15.0 120 −0.2 5/5 0.003 13.0 104 −0.2 5/5 0.01 15.0 120 −0.2 5/5 0.003 13.0 104 −0.2 5/5 0.003 13.0 104 −0.2 5/5 Vehicle - 12.5 - +0.4 10/10 →9, i.p. indicates a significant antitumor activity.	0.003 13.0 104 -1.0 5/5 0/5 0/5 0/5 0.001 19.0 (152) -1.2 5/5 0/5 0/5 0/5 0.0003 19.0 (152) -0.8 5/5 0/5 0/5 0.0001 18.0 (144) 0.0 5/5 0/5 0/5 0.00003 16.0 (128) +0.2 5/5 0/5 0/5 0.00001 16.0 (128) -0.2 5/5 0/5 0/5 0.00001 16.0 (128) -0.2 5/5 0/5 0/5 0.00001 16.0 (128) -0.2 5/5 0/5 0/5 0.00001 16.0 (128) -0.2 5/5 0/5 0/5 0.00001 18.0 (144) -1.0 5/5 0/5 0/5 0.003 18.0 (144) -1.0 5/5 0/5 0/5 0.003 18.0 (144) -0.6 5/5 0/5 0/5 0.001 18.0 (144) -0.6 5/5 0/5 0/5 0.001 18.0 (144) -0.8 5/5 0/5 0/5 0.0001 16.0 (128) -0.4 5/5 0/5 0/5 0.0001 16.0 (128) -0.4 5/5 0/5 0/5 0.00001 15.0 120 -0.6 5/5 0/5 0/5 0.00001 15.0 120 -0.4 5/5 0/5 0/5 0.00001 15.0 120 +0.4 5/5 0/5 0/5 0.00001 15.0 120 +0.4 5/5 0/5 0/5 0.00001 15.0 120 +0.4 5/5 0/5 0/5 0.0001 15.0 120 -0.2 5/5 0/5 0/5 0.0001 15.0 120 -0.2 5/5 0/5 0/5 0.0001 15.0 120 -0.2 5/5 0/5 0/5 0.0001 15.0 120 -0.2 5/5 0/5 0/5 0.0001 15.0 120 -0.2 5/5 0/5 0/5 0.0001 15.0 120 -0.2 5/5 0/5 0/5 0.0001 15.0 120 -0.2 5/5 0/5 0/5 0.0001 15.0 120 -0.2 5/5 0/5 0/5 0.0001 15.0 120 -0.2 5/5 0/5 0/5 0.0001 15.0 120 -0.2 5/5 0/5 0/5 0.0001 15.0 120 -0.2 5/5 0/5 0/5 0.0001 15.0 120 -0.2 5/5 0/5 0/5 0.0001 15.0 120 -0.2 5/5 0/5 0/5 0.0001 15.0 120 -0.2 5/5 0/5 0/5 0.0001 15.0 120 -0.2 5/5 0/5 0/5 0.0001 15.0 120 -0.2 5/5 0/5 0/5 0.0001 15.0 120 -0.2 5/5 0/5 0/5 0/5 0.0001 15.0 120 -0.2 5/5 0/5 0/5 0/5 0.0001 15.0 120 -0.2 5/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5

65 Circle indicates a significant antitumor activity.

TABLE 22

Effect of BBM-1675 Components on B16 Melanoma

5		Dose	MST	T/C	Average wt. change on	Survis	ors on	5
		(mg/kg/day*)	(days)	(%)	day 5 (g)	day 5	day 45	
	BBM-1675 A ₁	0.003	10.0	<u>6</u> 1	-0.7	6/6	0/6	
10		0.001	31.5	(191)	0.0	6/6	0/6	10
		0.0003	40.5	(245)	+0.3	6/6	0/6	
		0.0001	27.0	(164)	+0.8	6/6	0/6	
		0.00003	22.0	(133)	+1.8	6/6	0/6	
		0.00001	18.0	109	+2.2	6/6	0/6	
15								15
	BBM-1675 A ₂	0.03	11.0	67	-0.8	6/6	0/6	,,
		0.01	26.5	161)	+0.3	6/6	0/6	
		0.003	29.5	(179)	+0.2	6/6	0/6	
		0.001	26.0	158	+0.8	6/6	0/6	
20		0.0003	22.0	133	+0.2	6/6	0/6	20
		0.0001	18.0	109	+0.2	6/6	0/6	20
		0.00003	17.0	103	+1.7	6/6	0/6	
	Chromomycin A ₃	0.1	25.5	155	+2.3	6/6	0/6	
25	,	0.03	23.0	(139)	+2.2	6/6	0/6	25
		0.01	21.0	(139) (127)	+2.3	6/6	0/6	25
		0.003	18.0	109	+2.2	6/6	0/6	
	Vehicle	-	16.5	•	+2.1	12/12	0/12	
30								30
	d 1→9, i.p.							

Circle indicates a significant antitumour activity.

TABLE 23

Effect of BBM-1675 Components on Lewis Lung Carcinoma

		Dose	MST	T/C	Average wt. change on	Surviv	ors on	
40		(mg/kg/day*)	(days)	(%)	day 5 (g)	day 5	day 45	40
	BBM-1675 A₁	0.003	10.0	91	-1.7	5/6	0/6	
		0.001	31.5	(286)	-0.7	6/6	1/6	
		0.0003	21.5	195	-0.7	6/6	0/6	
45		0.0001	21.0	191	+1.0	6/6	0/6	45
_		0.00003	13.0	118	+1.0	6/6	0/6	-,0
		0.00001	11.5	105	+1.0	6/6	0/6	
	DD11.40mm.4							
	BBM-1675 A ₂	0.03	10.0	91	-1.8	6/6	0/6	
50		0.01	25.5	(232)	-1.7	6/6	0/6	50
		0.003	28.5	259	0.0	6/6	1/6	
		0.001	17.0	155	-0.3	6/6	0/6	
		0.0003	15.0	136	+1.2	6/6	0/6	
		0.0001	10.5	95	+0.5	6/6	0/6	
55		0.00003	11.0	100	+0.8	6/6	0/6	55
	Chromomycin A ₃	0.1	21.5	195	+1.2	6/6	1/6	
	Omomoniyani Ag	0.03	17.0	(195) (155)	+1.7	5/5		
		0.03	17.0	(155)	+1.5		0/5	
60						6/6	0/6	^^
60		0.003	11.5	105	+1.7	6/6	0/6	60
	Vehicle	-	11.0	-	+0.8	12/12	1/12	

* qd 1→11, i.p.
65 Circle indicates a significant antitumor activity.

65

35

BBM-1675 A ₁ BBM-1675 A ₂ Chromomycin A ₃ BBM-1675 A ₁ BBM-1765 A ₂	Single do i.p 0.019 0.18 0.81 <i>Th</i> Single	LD ₅₀	(qd 1- i.p. 0.000- 0.007 0.23	ole dose →9) 46 2			10 15
BBM-1675 A ₂ Chromomycin A ₃ BBM-1675 A ₁ BBM-1765 A ₂	i.p 0.019 0.18 0.81 The Single 63	se i.v. 0.010 0.10 0.41 TABLE 2 perapeutic i	Multij (qd 1- i.p. 0.000 0.007 0.23 25 Indices LD ₅₀ /MED*	ole dose →9) 46 2			10
BBM-1675 A ₂ Chromomycin A ₃ BBM-1675 A ₁ BBM-1765 A ₂	0.18 0.81 <i>TH</i> <i>Single</i> 63	0.10 0.41 TABLE 2 nerapeutic /	0.007 0.23 25 Indices LD ₅₀ /MED*	2			
BBM-1765 A ₂	Single 63	nerapeutic I P∍388	ndices LD ₅₀ /MED*				15
BBM-1765 A ₂	Single 63	P-388	LD ₅₀ /MED*				,,
BBM-1765 A ₂	Single 63						
BBM-1765 A ₂	Single 63		L1210	B16			
BBM-1765 A ₂					LL		20
Chromomycin A₃	180 8	>46 72 8	2 2 inactive	15 24 23	5 24 23		25
mininum effective dose							Z
	•	TABLE :	26				
Effect of B.	BM-1675 Cd	mponents P-388 Leuk	on Intraveno emia	ously Implant	ted		30
		MST (days)	T/C (%)	Average wt. change on day 5 (g)	Surviv day 5	ors on day 45	3!
0).003).001	9.5 14.0 11.5 9.5	106 (156) (128) 100	-1.7 -0.3 +0.3 +0.3	6/6 6/6 6/6 6/6	0/6 0/6 0/6 0/6	4
BBM-1675 A ₂ C).1).03).01	7.0 15.0 12.0	78 167 133 100	-3.7 -1.0 -0.5 +1.0	6/6 6/6 6/6 6/6	0/6 0/6 0/6 0/6	4
Adriamycin 30))	tox. 9.0 12.0	- 100 133	- -1.5 +0.7	0/6 6/6 6/6	0/6 0/6 0/6	
	1		100				5
Vehicle -		9.0	-	+1.7	12/12	0/12	
	### Effect of B. Document	### Dose (mg/kg/day*) BBM-1675 A1	### TABLE 19 ** **Effect of BBM-1675 Components	TABLE 26 Effect of BBM-1675 Components on Intravence P-388 Leukemia Dose MST 7/C (mg/kg/day*) (days) (%) BBM-1675 A ₁ 0.01 9.5 106 0.003 14.0 156 0.001 11.5 128 0.0003 9.5 100 BBM-1675 A ₂ 0.1 7.0 78 0.03 15.0 167 0.01 12.0 133 0.003 9.0 100 Adriamycin 30 tox 10 9.0 100 3 12.0 133 12.0 133 12.0 133 1 9.0 100 Vehicle - 9.0 - days 1, 4 and 7, i.v.	TABLE 26 Effect of BBM-1675 Components on Intravenously Implants P-388 Leukemia Dose	TABLE 26 Effect of BBM-1675 Components on Intravenously Implanted P-388 Leukemia Dose	TABLE 26 Effect of BBM-1675 Components on Intravenously Implanted P-388 Leukemia Dose

35

TABLE 27

Effect on BBM-1675 Components on Intravenously Implanted

L-1210 Leukemia

5					Assamanassa			5
		Dose	MST	T/C	Average wt. change on		ors on	
		(mg/kg/day*)	(days)	(%)	day 5 (g)	day 5	day 45	
10	BBM1675 A ₁	-0.008	9.5	119	-2.0	4/6	0/6	10
		0.004	14.0	(175)	-0.2	6/6	0/6	10
		0.002	13.0	(17 <u>5</u>) (163)	+0.2	6/6	0/6	
		0.001	9.5	119	+0.8	6/6	0/6	
		0.0005	9.0	113	+0.8	6/6	0/6	
15				·			5. 5	15
	BBM-1675 A ₂	0.63	11.0	138 175 131	-1.8	6/6	0/6	15
		0.032	14.0	175	+0.2	6/6	0/6	
		0.16	10.5	$\overline{(131)}$	+0.8	6/6	0/6	
		0.008	8.0	100	+1.2	6/6	0/6	
20		0.004	8.0	100	+0.8	6/6	0/6	20
	Adriamycin	16	tox.		-	2/6	0/6	
		8	12.0	(150)	+0.2	6/6	0/6	
		4	9.0	113	+1.5	6/6	0/6	
25		2	8.0	100	+1.7	6/6	0/6	25
	Vehicle	-	8.0	-	+1.4	12/12	0/12	

^{*} days 1, 4 and 7, i.v.

Antitumor activity of components BBM-1675 A₁ and A₂ was also determined by a second test against P-388 leukemia, L-1210 leukemia and B16 melanoma in mice. Results of these tests are shown below in Tables 28, 29 and 30. Details of the methods used in these tests have been described in *Cancer Chemother. Rep. 3*: 1-87 (Part 3), 1972.

BNSDOCID: <GB___2141425A__I_>

³⁰ Circle indicates a significant antitumor activity.

TABLE 28 Effect of BBM-1675 A_1 and A_2 on P-388 Leukemia

5	Material	Treatment Schedule	Dose, IP μg/kg/day	MST Days	Effect MST % T/C	AWC, gm d.5	Survivors d.5 (30)	5
10	* NSC 38270	qd 1→9	400 200	13.0 11.0	163 138	-0.6 -0.9	6/6 6/6	10
	BBM-1675A ₁ DMSO→saline	d.1	51.2 25.6 12.8 6.4	20.0 18.0 16.5 13.0	250 225 206 163	-2.1 -1.8 -1.1 +0.1	4/6 6/6 6/6 6/6	15
15			3.2 1.6 0.8 0.4	12.0 11.0 10.5 10.0	150 138 131 125	-0.3 -0.3 0 +0.4	6/6 6/6 6/6 6/6	ŧ
20			0.2 0.1	10.0 10.0	125 125	+0.3 0	6/6 6/6	20
25		d.1,5&9	25.6 12.8 6.4 3.2 1.6	8.0 13.5 16.5 16.0 15.5	100 169 206 200 194	-1.8 -1.5 -0.8 -0.8 +0.3	6/6 6/6 6/6 6/6 6/6	25
30			0.8 0.4 0.2 0.1 0.05	12.5 12.0 11.5 12.0 10.0	156 150 144 150 125	+0.3 -0.1 +0.2 +0.8 +0.8	6/6 6/6 6/6 6/6 6/6	30
35		qd1 → 9	12.8 6.4 3.2 1.6	TOX 6.0 13.0 14.5 16.5	TOX 75 163 181 206	TOX -1.5 -1.2 -1.6 -2.3	1/6 4/6 6/6 6/6 6/6	35
40	·		0.8 0.4 0.2 0.1 0.05 0.025	16.0 15.0 13.0 12.0 12.0	200 188 163 150	-0.9 -0.8 -0.4 +0.1 -0.7	6/6 5/5 6/6 6/6 6/6	40
45	BBM-1675 A₂ DMSO→saline	d.1	256 128	TOX 12.5	TOX 156 338	TOX -3.5 -1.9	0/6 4/6 6/6	45
50			64 32 16 8 4 2	27.0 26.0 16.0 15.5 15.0 12.0	325 200 194 188 150	-2.0 -1.8 -1.9 -0.7 -0.5	6/6 6/6 6/6 6/6 6/6 6/6	50
55			0.5	10.0	125	+0.2	6/6	55
60		d.1,5&9	128 64 32 16	TOX TOX TOX 24.5	TOX TOX TOX 306	TOX TOX -1.3 -1.3	0/6 0/6 2/6 5/5 6/6	60
			8 4 2 1	17.5 15.0 15.0 12.5	219 188 188 156	-1.1 0 +0.1 -0.4	6/6 6/6 6/6	_
65			0.5	12.0	150	-0.4	6/6	65

~~ ^	-	_	\sim		cont'd
	+< 1	-	'/×	_	CODIC

5	BBM-1675 A₂ DMSO→saline		0.25	11.0	138	-0.4	6/6	5
10		qd1 → 9	64 32 16 8	TOX 6.0 8.0 15.5	TOX 75 100 194	TOX -2.9 -1.9 -1.3	1/6 4/6 6/6 6/6	10
15			4 2 1 0.5 0.25 0.125	17.0 15.0 14.0 14.0 12.0 12.0	213 188 175 175 150 150	-1.8 -1.1 -0.5 -0.6 -0.1 +0.1	6/6 6/6 6/6 6/6 6/6 6/6	15
20	Control		Saline	8.0	-	+0.5	10/10	20
25	Tumor inoculum Host Tox Evaluation Effect Criteria	: CDF ₁ : <4/6 : MST : % T/C	scites cells imp ♀ mice, mice alive on c = median surv ⋮ = (MST treate ⋮ ≥ 125 conside	d.5 vival time. ed/MST contr		activity.		25

* NSC 38270 = olivomycin A

GB 2 141 425 A 28

TABLE 29 Effect on BBM-1675 A_1 and A_2 on L-1210 Leukemia

5	Material	Treatment Schedule	Dose, IP µg/kg/inj	MST Days	Effect MST % TIC	AWC, gm d.5	Survivors on d.5 (30)	5
10	BBM-1675 A ₁	d.1 ·	51.2 25.6 12.8	12.0 7.0 9.0	171 100 129	-1.1 -2.3 -1.1	5/6 6/6 5/6	10
			6.4 3.2 1.6	9.5 6.0 7.0	136 86 100	−0.5 −1.7 −0.8	6/6 6/6 6/6	
15			0.8 0.4 0.2 0.1	8.0 7.0 7.0 7.0	114 100 100 100	-0.4 +0.3 -0.5 +0.8	6/6 6/6 5/6 5/6	15
20		d.1,5&9	25.6 12.8	TOX 9.0	TOX 129	TOX -1.8	1/6 6/6	20
			6.4 3.2 1.6	9.0 8.0 8.5	129 114 121	-0.8 -1.9 0	6/6 6/6 6/6 6/6	25
25			0.8 0.4 0.2 0.1	8.0 7.5 8.0 8.0	114 107 114 114	-0.4 -1.3 0 +0.4	6/6 6/6 5/6	25
30		qd 1 → 9	0.05 12.8 6.4	7.0 TOX 8.0	100 TOX 114	+0.3 -2.4 -1.6	6/6 3/6 6/6	30
35			3.2 1.6 0.8	8.0 9.0 8.5	114 129 121	1.7 2.1 1.6	6/6 6/6 6/6	35
33			0.4 0.2 0.1 0.5	8.0 8.0 7.0 7.0	114 114 100 100	-1.0 -0.5 +0.3 +0.3	6/6 5/6 6/6 6/6	
40	DD\$\$ 4.07E A	41	0.025 256	6.0 TOX	86 TOX	-0.6 TOX	6/6 0/6	40
A.F	BBM-1675 A	ω2 α. ι	128 64 32	7.0 7.5 8.0	100 107 114	-1.8 -1.3 -2.2	5/6 4/6 5/6	45
45			16 8 4	7.0 9.5 8.5	100 136 121 114	-2.3 -1.4 -1.1 -0.8	6/6 6/6 6/6 6/6	
50			2 1 0.5	8.0 8.0 8.0	114 114 114	0 -0.1	6/6 6/6	50

TABLE 30 Effect of BBM-1675 A1 and A2 on B16 Melanoma

5		Dose, IP	MST	Effect MST	AWC gm	Survivors on	5
	Material	μg (m) or mg/kg/inj	Days	% T/C	d.5	d. 10 (61)	
	BBM-1675 A ₁	3.2M	TOX	TOX	-1.8	2/10	
10		1.6	16.0	168	-1.8	10/10	10
		0.8	34.5	168	-1.8	10/10	10
		0.4	56.5	226	-0.9	10/10(2)b	
		0.2	47.0	188	-0.7	10/10	
		0.1	37.0	148	-0.4	10/10	
15							15
	BBM-1675 A ₂	16M	13.0	52	-2.1	10/10	13
	_	8	29.5	118	-2.0	10/10	
		4	43.5	174	-1.1	10/10	
		2	50.5	202	-2.1	10/10(3)b	
20		1	0.5	140	-1.0	10/10	20
		0.5	38.0	152	-1.1	10/10	20
	Control	Saline	25.0	-	~0.1	10/10	
25		without tumor; MST d.m out tumor; MST d.m.o. =					25
	Tumor inoculum Host	: 0.5 ml of a 10% bre : BDF ₁ \$\times\$ mice.	ei, ip				
30	Treatment	: qd 1-→9					30
	Tox	: ≤7/10 mice alive o	n d.10				
	Evaluation	: MST = median sur	rvival time	+			
	Effect	: % T/C = (MST trea	ted/MST c	ontrol) × 10	0.		
	Criteria	: % T/C ≥ 125 consid	dered sign	ificant antitu	ımor activi	ty.	
35							35

After further purification of BBM-1675A₁ according to Example 6, samples of the purified compound were tested against L-1210 leukemia, P-388 leukemia and B16 melanoma in mice. Results of these tests are shown below.

TABLE 31 Effect of Purified BBM-1675A₁ on P388 Leukemia (Day 1 Treatment)

5								5
5						Average wt.		
		Dose		MST	T/C	change on	Survivors on	
	Compound	(mg/kg/dose)	Route, schedule	Days	(%)	day 5	day 5	
10	BBM-1675A ₁	0.1024	i.p., qd × 1	тох	TOX		0/6	10
10	PDIA1-1010V4	0.0512	upu da	17.5	159	-1.8	4/6	
		0.0312		16.5	150	-2.6	6/6	
		0.0128		17.5	159	-1.4	6/6	
		0.0064		15.5	141	-2.2	6/6	
45		0.0032		15.5	141	-2.5	6/6	15
15		0.0032		16.5	150	-1.0	6/6	
		0.0008		15.0	136	-1.2	6/6	
		0.0004		15.0	136	-2.6	6/6	
		0.000-1					410	
20		0.0256	i.p., $q4d \times 3$;	TOX	TOX	-1.5	1/6	20
		0.0128	, •	10.0	91	-2.5	5/6	
		0.0064		17.5	159	-1.9	6/6	
	•	0.0032		17.0	155	-0.8	6/6	-
		0.0016		17.0	155	-2.0	6/6	
25		0.0008	•	15.0	136	-1.7	6/6	25
20		0.0004	•	15.0	136	-0.4	6/6	
		0.0002		13.0	118	-0.8	6/6	
		0.0001		13.0	118	-1.3	6/6	
		0.00005		13.5	123	-1.0	6/6	
30		•						30
00		0.0128	i.p., $qd \times 5$;	TOX	TOX		0/6	
		0.0064	• • •	TOX	TOX	-3.6 .	3/6	
		0.0032		17.5	155	-2.2	5/6 ·	
		0.0016		14.5	132	-2.0	6/6	
35		0.0008		15.5	141	-2.2	6/6	35
33		0.0004		16.0	145	-2.8	6/6	
		0.0002	•	17.0	155	-1.3	6/6	
		0.0001		14.0	127	-1.6	5/6	
		0.00005		15.0	136	-1.6	6/6	
40		0.000025	•	15.0	136	-1.0	6/6	40
. •	Control (vehicle)	1 × 10 ⁶	i.p., q4d × 3;	11.0	100	-0.7	9/9	

Host: CDF1 female mice

45 Implant level and site: 1 × 10⁶ cells, i.p.

TABLE 32 Effect of Purified BBM-1675A₁ on L-1210 Luekemia (Day 1 Treatment)

			(Day I Irea	tment)				
5								5
		Dose		MST	T/C	Average wt.		
	Compound	(mg/kg/dose)	Route, schedule	Days	(%)	change on	Survivor	rs on
	Compound	(IIIgikgiuose)	noute, scriedule	Days	170)	day 5	day 5	
10	BBM-1675A ₁	0.1024	i.p., $qd \times 1$	TOX	TOX		1/6	10
		0.0512		TOX	TOX	-2.0	0/6	
		0.0256		8.0	114	-2.9	4/6	
		0.0128		11.0	157	-2.0	6/6	
		0.0064		11.0	157	-1.9	6/6	
15		0.0032		10.0	143	-2.0	6/6	15
		0.0016		10.0	143	-2.6	5/6	
		0.0008		8.0	114	-0.4	6/6	
		0.0256	i.p., q4d × 3	TOX	TOX	-2.3	2/6	
20		0.0128		10.5	150	-1.7	6/6	20
		0.0064		11.0	157	-1.8	6/6	20
		0.0032		11.0	157	-1.4	6/6	
		0.0016		10.5	150	-1.9	6/6	
		0.0008		9.0	129	-0.6	6/6	
25		0.0004		8.5	121	-0.7	6/6	25
		0.0002		8.0	114	-0.5	6/6	
		0.0128	i.p., qd × 5	TOX	TOX	-2.8	2/6	
		0.0064		7.0	100	-1.8	5/6	
30		0.0032		11.5	164	1.0	6/6	30
		0.0016		11.0	157	-1.5	6/6	
		0.0008		10.0	143	-1.6	5/6	
		0.0004		8.5	121	-0.4	6/6	
		0.0002		8.5	121	0.1	6/6	
35		0.0001		8.5	121	0.0	6/6	35
	Control							
	(vehicle)	1×10^6	i.p., $qd \times 5$	7.0	100	0.1	10/10	
40 H	ost: CDF1 female mid	ce						40
in.	nniant level and cite.	1×10^6 cells in						-,-

implant level and site: 1×10^6 cells, i.p.

TABLE 33

Effect of	Purified BBM-1675A ₁ on B16 Melanoma
	(Day 1 Treatment)

			Day / Treatment	•				5
5						Average wt.		
		Dose		MST	T/C	change on	Survivors	on
	Compound	(mg/kg/dose)	Route, schedule	Days	(%)	day 5	day 5	
	*BBM-1675A ₁	0.0064	i.p., q4d × 3	16.5	110	-3.8	8/10	10
10	ןאני נטו־ויונפט	0.0032		22.5	150	-3.0	10/10	
		0.0016		25.0	167	-1.8	10/10	
		0.0008		22.0	147	-2.3	10/10	
		0.0004		24.0	160	-1.8	9/10	
		0.0004						15
15	•	0.0016	i.p., $qd \times 9$	27.0	180	-3.7	10/10	
		0.0008	1.p., qu	27.0	180	-2.9	10/10	
		0.0004		26.0	173	-2.3	10/10	
		0.0004		24.5	163	-2.4	10/10	
		0.0002		25.5	170	-2.3	10/10	20
20	•	0.0001						
	0 4 1							
	Control	0.5 ML	i.p., qd × 9	15.0	100	-0.3	10/10	
	(vehicle)	U.S IVIL	"b" da					
	**BM-1675A ₁	0.0064	i.v., q4d \times 3	15.0	86	-4.7	10/10	25
25	" " DIVI- 107 SA1	0.0032	11.11 of 1	32.5	186	-2.1	10/10	
		0.0016	•	26.0	149	-1.4	10/10	
		0.0008		24.0	137	-0.4	10/10	
		0.0004		24.5	140	-0.0	10/10	
		0.0004						30
30		0.0064	i.p., q4d × 3	18.0	103	-2.7	10/10	
		0.0032	11p1/q1a / 0	23.0	131	-1.4	10/10	
		0.0032		24.0	137	-0.7	10/10	
		0.0008		25.5	146	-0.8	10/10	
		0.0008		21.5	123	-1.4	10/10	35
35		0.0004						
	Control							
	(vehicle)	0.2 ML	i.v., $q4d \times 3$	17.5	100	-0.4	10/10	
	(10111010)	•				•		40
	Down DDE4 form	ala maina			•			40.

40 Host: BDF1 female mice

The above screening data indicates that the purified BBM-1675A₁ component has substantially the same
antitumor properties as the less purified sample screened previously. The compound has exceptionally high
potency since activity has been demonstrated at a dose of 25 nanograms/kg on a daily times 5 schedule
against P-388 leukemia in mice. On tests against P-388 and L-1210 leukemias, BBM-1675A₁ is effective
whether given as a single injection, day 1, every fourth day for 3 injections, or daily times 5. Against B16
melanoma the compound was equally effective given intravenously to animals bearing subcutaneous
tumors as when it was given intraperitoneally to animals bearing ip tumor implants. This property of
successful pharmacologic delivery of a drug to a tumor at a distant site is unusual among antitumor
antibiotics.

As shown above the BBM-1675 components possess potent antimicrobial activity and are thus useful in the therapeutic treatment of mammals and other animals for infectious diseases caused by such microorganisms. Additionally the components may be utilized for other conventional applications of antimicrobial agents such as disinfecting medical and dental equipment.

The induction of prophage in lysogenic bacteria and the activity shown against mouse tumor systems indicate that the BBM-1675 components are also therapeutically useful in inhibiting the growth of mammalian tumors.

The present invention, therefore, provides a method for therapeutically treating an animal host affected by a microbial infection or by a malignant tumor which comprises administering to said host an effective antimicrobial or tumor-inhibiting dose of BBM-1675 A_1 , A_2 , A_3 , A_4 , B_1 or B_2 , or a pharmaceutical composition thereof.

In another aspect, the present invention provides a pharmaceutical composition which comprises an effective antimicrobial or tumor-inhibiting amount of BBM-1675 A₁, A₂, A₃, A₄, B₁ or B₂ in combination with

50

^{*}Implant level and site: 0.5ML 10% BREI, i.p.

^{**}Implant level and site: Fragment, s.c.

10

15

20

25

30

35

40

45

65

an inert pharmaceutically acceptable carrier or diluent. These compositions may be made up in any pharmaceutical form appropriate for parenteral administration.

Preparations according to the invention for parenteral administration include sterile aqueous or non-aqueous solutions, suspensions or emulsions. They may also be manufactured in the form of sterile solid compositions which can be dissolved in sterile water, physiological saline or some other sterile injectable medium immediately before use.

It will be appreciated that the actual preferred amounts of the BBM-1675 antibiotics used will vary according to the particular component, the particular composition formulated, the mode of application and the particular situs, host and disease being treated. Many factors that modify the action of the drug will be taken into account by those skilled in the art, for example, age, body weight, sex, diet, time of administration, route of administration, rate of excretion, condition of the host, drug combinations, reaction sensitivities and severity of the disease. Administration can be carried out continuously or periodically within the maximum tolerated dose. Optimal application rates for a given set of conditions can be ascertained by those skilled in the art using conventional dosage determination tests in view of the above guidelines.

The following examples are provided for illustrative purposes only and are not intended to limit the scope of the invention.

Example 1

Fermentation of BBM-1675

Actinomadura strain No. H964-92 was grown and maintained on an agar slant containing 1% malt extract, 0.4% glucose, 0.4% yeast extract, 0.05% CaCO₃ and 1.6% agar. A well-grown agar slant was used to inoculate vegetative medium containing 3% soluble starch, 3% dry yeast, 0.3% K₂HPO₄, 0.1% KH₂PO₄, 0.05% MgSO₄·7H₂O, 0.2% NaCl and 0.1% CaCO₃, the pH being adjusted to pH 7.0 before sterilization. The vegetative culture was incubated at 32°C for 72 hours on a rotary shaker (250 rpm) and 5 ml of the growth was
 transferred into a 500-ml Erlenmeyer flask which contained 100 ml of fermentation medium composed of 3% cane molasses, 1% corn starch, 1% fish meal, 0.1% CaCO₃ and 0.005% CuSO₄·5H₂O (pH 7.0 before sterilization). The fermentation was carried out at 28°C for six days on the rotary shaker. The antibiotic activity in the fermentation broth was determined by the paper-disc agar diffusion using *Staphylococcus aureus* 209P as the test organism. The antibiotic potency reached a maximum of about 1 mcg/ml after five
 days fermentation.

Fermentation of BBM-1675 was also performed in stir-jar fermenters. Five hundred mililiters of inoculum growth as prepared above was transferred into 20-liter jar fermenters containing 10 liters of fermentation medium which consisted of the same ingredients as used in the shake flask fermentation. The fermentation was carried out at 32°C with an aeration rate of 12 liters/minute and agitation at 250 rpm. Under these conditions, the antibiotic production reached a maximum of about 0.9 mcg/ml after 68-76 hours of fermentation.

Fermentation studies were also carried out in fermentation tanks. A seed culture was shaken for four days at 30°C in Erlenmeyer flasks containing vegetative medium consisting of 3% soluble starch, 3% dry yeast, 0.3% K₂HPO₄, 0.1% KH₂PO₄, 0.05% MgSO₄·7H₂O, 0.2% NaCl and 0.1% CaCO₃. The seed culture was

40 inoculated to a 200-liter seed tank containing 130 liters of seed medium having the same composition as above, and the seed tank was stirred at 240 rpm at 30°C for 31 hours. The second seed culture was used to inoculate 3,000 liters of fermentation medium containing 1% corn starch, 3% cane molasses, 1% fish meal, 0.005% CuSO₄·5H₂O and 0.1% CaCO₃. The production tank was operated at 28°C at 164 rpm with an aeration rate of 2,000 liters/minute. The broth pH gradually rose with the progress of fermentation and reached 7.7-7.8

45 after 170-180 hours, when a peak antibiotic activity of 1.7 mcg/ml was produced.

Example 2

Isolation and purification of BBM-1675 components

The harvested fermentation broth (3,000 liters, pH 7.8) was separated to mycelial cake and supernate with 50 the aid of a Sharpless centrifuge. The mycelial cake was suspended in 1,600 liters of methanol and the 50 mixture stirred for one hour. The insoluble materials were filtered off and the methanolic extract was concentrated in vacuo to 43 liters. The activity contained in the broth supernate was recovered therefrom by extraction with two 1,000-liter portions of n-butanol. The n-butanol extracts and concentrated methanol extracts were combined and evaporated azeotropically by occasional additions of water to an aqueous 55 solution (20 liters) which deposited most the antibiotic activity as an oily solid. The solid was digested in 30 55 liters of methanol and the insolubles were removed by filtration. The methanol extract was then concentrated in vacuo to a 10-liter solution, to which was added 40 liters of ethyl acetate and 30 liters of water. After being stirred for 30 minutes, the organic layer was separated, dried over sodium sulfate and evaporated in vacuo to 4 liters. Addition of the concentrate into 20 liters of n-hexane afforded a pale yellow 60 solid of crude BBM-1675 complex (90.14 g, potency: 55 mcg/mg). The complex was shown in TLC to be a 60 mixture of two major components, BBM-1675 A_1 and A_2 , and several minor ones. They were separated and purified by repeated chromatographies which were performed in a cooled room to prevent deterioration. The BBM-1675 complex (20 g) was dissolved in methanol (20 ml) and charged on a column of Sephadex LH-20 (\emptyset 5.5 \times 85 cm). The column was developed with methanol and the elution monitored by bioassay

65 using Staphylococcus aureus 209P. The active eluates were combined, concentrated in vacuo and

10

15

20

25

30

35

40

45

50

55

60

lyophilized to give a semi-pure solid of BBM-1675 complex (4.19 g). The solid was then chromatographed on a column of silica gel (\emptyset 5.0 \times 50 cm) using chloroform plus an interesting amount (1 \rightarrow 5% v/v) of methanol as eluants.

Eluates were pooled on the basis of antibacterial activity (vs. *S. aureus*) and TLC (SiO₂; CHCl₃-CH₃OH = 5:1 v/v and concentrated *in vacuo*. Nearly homogeneous BBM-1675 A₁ (yield after evaporation: 351 mg) was eluted first with 2% methanol in chloroform and then a mixture of BBM-1675 A₂, A₃ and A₄ (507 mg) followed by BBM-1675 B mixture (210 mg) with 3% methanol in chloroform. The solid of BBM-1675 A₁ was applied on a column of Sephadex LH-20 (ø 2:0 × 80 cm) which was developed with methanol. The active fractions were concentrated *in vacuo* to dryness and the residual solid was crystallized from methanol to afford colorless plates of pure BBM-1675 A₁ (124 mg) (this material is starting material for Example 3A.). The compled BBM-1675 A₂, A₃ and A₄ was separated by chromatography on a column of Bondapak C₁₈ (Waters, ø 3.0 × 50 cm). Elution was carried out with aqueous acetonitrile and the bioactive eluates were examined by TLC (Merck, *Silanized: CH₃CN-H₂O = 75:25 v/v). The minor components A₄ (33 mg) and A₃ (18 mg) were eluted successively in that order with 20% acetonitrile followed by another major component A₂ (301 mg) (this material is starting material for Example 3B) with 50% acetonitrile).

The solid containing BBM-1675 B_1 and B_2 was chromatographed on a column of silica gel (ø 3.0 × 40 cm) with chloroform and methanol as the developing solvent. The active fractions eluted with 4% methanol in chloroform were combined and evaporated to afford pure BBM-1675 B_1 (7 mg). Another active fraction was eluted at 5% methanol concentration, which upon evaporation afforded BBM-1675 B_2 (8 mg).

20 *C₁₈ reverse phase silica gel

Example 3

Further purification of BBM-1675 A1 and A2

A. Purification of BBM-1675A1

A 2.67 cm i.d. × 75 cm Glenco column was slurry packed with Baker bonded phase octadecyl (C18) silica gel (40 micron particle size) in methanol. The column was connected into a medium pressure HPLC system and equilibrated with 1.5 l of eluant (41.6% acetonitrile - 21.6% methanol - 36.8% 0.1 M ammonium acetate). Partially purified BBM-1675A₁ (100.5 mg) obtained according to the purification procedure of Example 2 was dissolved in 2 ml of acetonitrile and drawn into the sample loop. The sample was pumped onto the column.

The column was eluted with the above eluant collecting 87 ml fractions. The eluant was monitored at 254 nm and 340 nm. Fractions 55 through 71 were pooled and extracted twice with 1500 ml aliquots of chloroform.

The chloroform was evaporated to dryness to yield 89.8 mg of residue C.

A 1.5 cm i.d. × 20 cm Glenco column was slurry packed with 12 g of Woelm silica gel (60-200 micron particles). Residue C was applied to the column in a chloroform solution. The column was eluted with a 500 ml linear gradient of chloroform to 10% methanol in chloroform collecting 20-25 ml fractions. After analysis by TLC on silica gel, fractions 6-9 were pooled and evaporated to dryness to yield 73 mg of residue D.

A 1.5 cm i.d. \times 20 cm Glenco column was slurry packed with 12 g Woelm silica gel (63-200 micron particles) in Skellysolve B. Residue D was dissolved in approximately 2 ml of CHCl₃ and applied to the column. The chloroform was displaced with 25 ml of Skellysolve B. The column was then eluted with a 500 ml linear gradient of Skellysolve B to 60% acetone in Skellysolve B collecting 28-25 ml fractions. Fractions 19-23 were pooled and evaporated to dryness to yield 65.6 mg of pure BBM-1675A₁.

This residue was homogeneous in three TLC systems (5% methanol in chloroform; 5% methanol in ether; and 50% acetone in Skellysolve B on silica gel) and HPLC (C-18 silica gel -41.5% acetonitrile:21.5% methanol:37.0% 0.1 M ammonium acetate).

Gel permeation chromatography with purified BBM-1675A₁

A 2.5 cm i.d. × 45 cm Pharmacia column was slurry packed with Sephadex LH-20 in methanol and adjusted to a 33.4 cm chromatography bed. Purified BBM-1675A₁ (approximately 120 mg) was dissolved in 2 ml of methanol and transferred to a 2.5 ml sample reservoir. The sample was applied to the column and elution commenced at 1.75 ml/min with methanol collecting 10 ml fractions [Pharmacia Frac-100 fraction collector]. The eluant was monitored at 254 nm with an Isco UA-5 detector. BBM-1675A₁ was observed to elute at Ve/Vt of 0.79 to 0.91 (Ve= elution volume; Vt= bed volume).

B. Purification of BBM-1675A2

A 2.65 cm i.d. × 75 cm Glenco column was slurry packed with Baker bonded phase octadecyl (C18) silica gel (40 micron particle size) in methanol. The column was connected into the medium pressure HPLC system and equilibrated with 1.5 l of eluant (50% acetonitrile - 20% methanol - 30% 0.1 M ammonium acetate). Partially purified BBM-1675A₂ (76.9 mg) as obtained by the procedure of Example 2 was dissolved in 2 ml of acetonitrile and drawn into the sample loop. The sample was pumped onto the column. The column was eluted with the above eluant collecting 87 ml fractions. The eluant was monitored at 254 and 340 nm. Fractions 31 through 38 were pooled and extracted twice with 500 ml aliquots of chloroform. The chloroform was evaporated to dryness to yield 65.8 mg of homogeneous BBM-1675A₂.

BBM-1675A2 was homogeneous in 2 TLC systems, one 2-d TLC analysis and HPLC.

10

15

20

25

30

35

40

45

50

55

60

Example 4

Prefered extraction process for BBM-1675A1

Raw fermentation (6.8 I) obtained according to the general procedure of Example 1 was transferred to a polypropylene bucket (12 cm d, top; 10 cm d, bottom; 37 cm high) equipped with a faucet at the bottom. An equal volume of chloroform was added. The mixture was stirred at a good rate with a CRC-air driven stirrer for 2 hours. Approximately 4 I (1.3 kg) of Dicalite (filter aid) was added and allowed to mix in. The mixture was filtered on a Dicalite pad which was held in a No. 12 Buchner funnel. The filtrate was collected in a 19 I solution bottle equipped with a vacuum take-off (Ace. No. 5396-06). The mat was washed with 2 liters of chloroform. The filtrate was transferred to a 20 I separatory funnel and the phases allowed to separate. The lower phase (chloroform) was removed.

A 2.5 cm i.d. × 40 cm Glenco tube was slurry packed with 91 g of Woelm silica gel (63-200 micron particles). Using an FMI RPY-2CSD pump, the above chloroform phase was pumped through the column. The column was rinsed with 600 ml of fresh chloroform. The chloroform eluant was discarded. The column was then eluted with 600 ml of 10% methanol in chloroform. This eluant was evaporated to dryness to yield 547 mg of residue A.

Residue A was dissolved into 50 ml of chloroform. The chloroform solution was added to 20 g of Dicalite in a 1 l round bottom flask. A slurry was created by adding approximately 200 ml of Skellysolve B. The solvents were moved in a rotary evaporator. The residue was slurried in 300 ml of Skellysolve B. The slurry was packed into an Ace flask chromatography tube (Part No. B5872-14) (41 mm id × 45.7 cm) by the following procedure. A glass wool plug was inserted into the throat of the stop cock between the cock and the column tube. A 1 cm layer of standard Ottawa sand was added above the glass wool. The stopcock, glass wool and sand bed were purged of air by passing a pressurized (5.7 psi) flow of Skellysolve B through them. The slurry was then added to the column and allowed to form a packed bed under pressurized flow. The column was never allowed to go dry. After a stable column bed was obtained, a 2 cm layer of Ottawa sand was added onto the top of the bed. The bed was then eluted with an additional 600-700 ml of Skellysolve B. The bed was eluted with 500 ml of toluene. The toluene eluant was evaporated to dryness to yield 93 mg of residue B. This partially purified BBM-1675A₁ may then be further purified according to the procedure of Example 3.

Example 5

30 Fermentation of BBM-1675 complex using variant H964-92-A1327Y

A variant strain A1327Y, which was obtained by NTG treatment of *Actinomadura verrucosospora* strain No. H964-92, was used to inoculate vegetative medium containing 2% soluble starch, 1% glucose, 0.5% yeast extract, 0.5% NB-amine type A and 0.1% CaCO₃, the pH being adjusted to 7.0 before sterilization. The vegetative culture was incubated at 32°C for four days on a rotary shaker (250 rpm) and 5 ml of the growth was transferred into a 500 ml Erlenmeyer flask which contained 100 ml of fermentation medium composed of 3% cane molasses, 1% corn starch, 1% fish meal, 0.005% CuSO₄·5H₂O, 0.05% MgSO₄·7H₂O and 0.1% CaCO₃, the pH being adjusted to 7.0 before sterilization.

The fermentation was carried out at 28°C for 7 days on the rotary shaker. The antibiotic production reached a maximum of ca. 1.5 mcg/ml.

Example 6

40

Isolation and purification of BBM-1675 components

The harvested fermentation broth from Ex. 5 (3,000 L, pH 7.6) was separated to mycelial cake and supernate by using a Sharpless centrifuge. The mycelial cake was stirred with 2,000 L of methanol for one hour and the insoluble materials were removed by filtration. The activity contained in the broth supernate was extracted therefrom with 1,800 L of n-butanol. The methanol and n-butanol extracts were combined and concentrated azeotropically by occasional additions of water to an aqueous solution (20 L) which deposited most of the antibiotic activity as an oily solid. The mixture was shaken three times with 20 L each of ethyl acetate to extract the activity. The extracts were pooled, filtered to remove the insolubles and evaporated *in vacuo* to 4 L. Addition of the concentrate into 30 L of n-hexane under stirring afforded pale yellow solid of crude BBM-1675 complex (81.7 g, potency: 59 mcg/mg). The complex was shown by TLC and HPLC to be a mixture of two major components, BBM-1675 A₁ and A₂ and several minor ones. They were separated and purified by a series of chromatographies which were carried out in a cold room to prevent deterioration.

The crude BBM-1675 complex (20 g) was dissolved in methanol (20 ml) and charged on a column of Sephadex LH-20 (ø 5.5 × 85 cm). The column was developed with methanol and the elution monitored by bioassay using *Staphylococcus aureus* 209P. The active eluates were pooled, concentrated *in vacuo* and lyophilized to give a semi-pure solid of BBM-1675 complex (4.86 g, potency: 203 mcg/mg). The solid was then chromatographed on a column of silica gel (ø 3.0 × 70 cm) using chloroform and an increasing amount (1-5%) of methanol as developing solvents. The eluates were pooled on the basis of antibacterial activity against *S. aureus* and TLC (SiO₂, CHCl₃-MeOH = 5:1, v/v) and concentrated *in vacuo*. BBM-1675 A₁ (425 mg after evaporation, potency: 960 mcg/mg) was eluted first with 2% methanol in chloroform and then a mixture of BBM-1675 A₂, A₃, and A₄ (732 mg, potency: 340 mcg/mg) followed by BBM-1675 B complex (200 mg, potency: 190 mcg/mg) with 3% methanol in chloroform. The above BBM-1675 A₁ was rechromatographed on silica gel (column: ø 2.2 × 44 cm) with 2% methanol in benzene. The bioactive eluates were examined by

65 HPLC (Lichrosorb RP-18: CH₃CN-MeOH-0.1MCH₃COONH₄ = 5:2:3, v/v) and the fractions containing

potency: 140 mcg/mg).

homogeneous BBM-1675 A_1 evaporated *in vacuo* to dryness. The residual solid was crystallized from methanol (10 ml) to give colorless prisms of BBM-1675 A_1 (197 mg, potency: 1,000 mcg/mg).

The complex of BBM-1675 A₂, A₃ and A₄ (537 mg) was separated by column chromatography on Bondapak C₁₈ (Waters, Ø 2.0 × 42 cm). Elution was carried out with aqueous acetonitrile and the bioactive eluates were examined by TLC (Merck, silanized: CH₃CN-H₂O = 75:25, v/v). The minor components BBM-1675 A₄ (45 mg, potency: 410 mcg/mg) and A₃ (19 mg, potency: 300 mcg/mg) were eluted successively with 20% acetonitrile followed by a major component, BBM-1675 A₂ (203 mg) with 50% acetonitrile. The BBM-1675 A₂ fraction was crystallized from chloroform-n-hexane to deposit colorless rods (70 mg, potency: 290 mcg/mg). The solid containing BBM-1675 B mixture was chromatographed on a column of silica gel (Ø 3.0 × 40 cm) with chloroform and methanol as developing solvent. The active fractions eluted with 4% methanol in chloroform were pooled and evaporated to afford pure BBM-1675 B₁ (7 mg, potency: 180 mcg/mg). Another active fraction was eluted at 5% methanol concentration, which upon evaporation afforded BBM-1675 B₂ (8 mg,

15 CLAIMS

15

20

25

30

35

50

55

60

10

1. The antitumor antibiotic BBM-1675 A₁ which in substantially purified form:

(a) appears as white to pale yellow crystals;

(b) is soluble in chloroform, ethyl acetate, acetone, ethanol and methanol, slightly soluble in benzene and water, and insoluble in n-hexane and carbon tetrachloride;

(c) gives a positive reaction with ferric chloride, Ehrlich and Tollen's reagents and a negative reaction in Sakaguchi, ninhydrin and anthrone tests;

(d) exhibits an infrared absorption spectrum (KBr) substantially as shown in Figure 9;

(e) when dissolved in CDCl₃ exhibits a proton magnetic resonance spectrum substantially as shown in

25 Figure 10;

(f) has a melting point in the range of about 156-158°C;

(g) has an optical rotation of $[\alpha]_D^{27} = -191^\circ$ (c 0.5, CHCl₃); (h) has an apparent molecular weight of 1248 as determined by mass spectroscopy;

(i) has an approximate elemental composition of 52.17% carbon, 6.15% hydrogen, 4.63% nitrogen, 9.09% 30 sulfur and 27.96% (by difference) oxygen;

(j) exhibits in silica gel thin layer chromatography an Rf value of 0.74 with the solvent system CHCl₃-CH₃OH (5:1 v/v) and exhibits in reverse phase silica gel thin layer chromatography an Rf value of 0.18 with the

solvent system CH₃CN-H₂O (75:25 v/v); (k) when dissolved in methanol at a concentration of 0.01356 g/l exhibits the following ultraviolet 35 absorption maxima and absorptivities:

	λ _{max} (nm)	absorptivities	
	320	12.4	
40	280	shoulder	40
	253	25.1	
	210	25.5	

with no significant change upon addition of acid or base;

45 (I) exhibits a high performance liquid chromatography retention time of 13.3 minutes with a C₁₈ reversed phase silica gel column and the solvent system CH₃CN-CH₃OH-0.1M-CH₃COONH₄ (5:2:3 v/v);

(m) is effective in inhibiting the growth of various bacteria and fungi;

(n) induces prophage in lysogenic bacteria; and

(o) is effective in inhibiting the growth of P-388 leukemia, L-1210 leukemia, B16 melanoma and Lewis lung carcinoma in mice.

2. The antitumor antibiotic BBM-1675 A_2 which in substantially purified form:

(a) appears as white crystals;

(b) is soluble in chloroform, ethyl acetate, acetone, ethanol and methanol, slightly soluble in benzene and water, and insoluble in n-hexane and carbon tetrachloride;

(c) gives a positive reaction with ferric chloride, Ehrlich and Tollen's reagents and a negative reaction in Sakaguchi, ninhydrin and anthrone tests;

(d) exhibits an infrared absorption spectrum (KBr) substantially as shown in Figure 12;

(e) when dissolved in $CDCl_3$ exhibits a proton magnetic resonance spectrum substantially as shown in Figure 13;

(f) has a melting point in the range of about 147-149°C;

(g) has an optical rotation of $[\alpha]_D^{27} = -179.4^\circ$ (c 0.5, CHCl₃);

(h) has an apparent molecular weight of 1248 as determined by mass spectroscopy;

(i) has an approximate elemental composition of 52.71% carbon, 5.94% hydrogen, 3.94% nitrogen, 9.39% sulfur and 28.01% (by difference) oxygen;

65 (j) exhibits in silica gel thin layer chromatography an Rf value of 0.71 with the solvent system CHCl₃-CH₃OH

(5:1 v/v) and exhibits in reverse phase silica gel thin layer chromatography an Rf value of 0.21 with the solvent system CH_3CN-H_2O (75:25 v/v);

(k) when dissolved in methanol at a concentration of 0.02052 g/l exhibits the following ultraviolet bsorption maxima and absorptivities:

	absorption maxima and absorptivities:	011 01 0.020	52 g/l exhibits the following ultraviolet	
Ę	5			5
	λ_{max} (nm) absorp	otivities		-
	320 12	2.2		
		3.3		
10				
•	214 25			10
	214 25	.0		
	with no significant change upon addition of acid o	r base;		
	(I) exhibits a high performance liquid chromatog	graphy rete	ention time of 17.3 minutes with a C ₁₈ reversed	
15	i di alla di a	₁ 3CN-CH3O	H-0.1M CH ₃ COONH ₄ (5:2:3 v/v);	15
	(m) is effective in inhibiting the growth of variou	us bacteria a	and fungi;	
	(n) induces prophage in lysogenic bacteria; and	ı		
	(o) is effective in inhibiting the growth of P-388 I	eukemia, L	-1210 leukemia, B16 melanoma and Lewis lung	
	carcinoma in mice.			
20		n:		20
	(a) is soluble in chloroform, ethyl acetate, acetor	ne, ethanol	and methanol, slightly soluble in benzene and	
	water, and insoluble in n-hexane and carbon tetrac	chloride;		
	(b) gives a positive reaction with ferric chloride,	Ehrlich and	Tollen's reagents and a negative reaction in	
^-	Sakaguchi, ninhydrin and anthrone tests;			
25	The second secon	r) substant	ially as shown in Figure 3;	25
	(d) when dissolved in CDCl ₃ exhibits a proton ma	agnetic res	onance spectrum substantially as shown in	
	Figure 7;			
	(e) has a melting point in the range of about 125-	-12/°C;		
30	(f) has an optical rotation of $[\alpha]_0^{27} = -161^{\circ}$ (c 0.5,	CHCl ₃);		
30	11	of 54.55% ca	arbon, 6.46% hydrogen, 3.73% nitrogen, 7.49%	30
	sulfur and 27.77% (by difference) oxygen;	. 5		
	(h) exhibits in silica gel thin layer chromatograph	ny an Ri vai	ue of 0.72 with the solvent system	
	CHCl ₃ -CH ₃ OH (5:1 v/v) and exhibits in reverse phas with the solvent system CH ₃ CN-H ₂ O (75:25 v/v);	se silica gei	thin layer chromatography an Rf value of 0.28	
35		aavima wh	an disabled in modern at 0.04N HOLOU	
-	and 0.01N NaOH-CH ₃ OH	iaxiiiia wiie	en dissolved in methanol, 0.0 NV HCI-CH ₃ OH	35
	UV λ _{max} nm (E ^{1%} _{1 cm})	:	253 (286)	
	in methanol		282 (158)	
40			320 (122)	40
	UV λ_{max} nm ($E_{1cm}^{1\%}$)	:	253 (287)	
	in 0.01N HCI-CH₃OH		282 (160)	
			320 (126)	
45				45
	UV λ_{max} nm (E _{1 cm})	:	252 (280)	
	in 0.01N NaOH-CH₃OH		283 (162)	
			318 (120) ;	
50	(j) exhibits a high performance liquid chromatogi	ranby reten	tion time of 9.0 minutes with a C	
-	phase silica gel column and the solvent system CH ₃	-CNI-CHI-ON	In 1M CL COOM (5.2.2.4.4.	50
	(k) is effective in inhibiting the growth of various	hacteria an	d fundi:	
	(I) induces prophage in lysogenic bacteria; and	Dacter la atti	a langi,	
	(m) is effective in inhibiting the growth of P-388 le	eukemia in	mice	
55		·	mice.	55
-	(a) is soluble in chloroform, ethyl acetate, acetone	, e ethanola	nd methanol slightly soluble in honzone and	99
	water, and insoluble in n-hexane and carbon tetrach	s, calario, a hioride:	and methanor, singing soluble in benzene and	
	(b) gives a positive reaction with ferric chloride, E		Tollen's reagents and a poportive reaction :-	
	Sakaguchi, ninhydrin and anthrone tests;	in non and	ronen a reagents and a negative reaction in	
60	(c) exhibits an infrared absorption spectrum (KBr)) substantis	ally as shown in Figure 4:	60
	(d) when dissolved in CDCl ₃ exhibits a proton mag	anetic reco	nance spectrum substantially as shown in	30
	Figure 8:	J. 10410 16301	nance spectrum substantiany as snown in	

(g) has an approximate elemental composition of 54.65% carbon, 6.29% hydrogen, 3.51% nitrogen, 8.07%

65

Figure 8;

(e) has a melting point in the range of about 123-126°C; (f) has an optical rotation of $[\alpha]_D^{27}$ – 176° (c 0.5, CHCl₃);

5	sulfur and 27.48% (by difference) oxygen; (h) exhibits in silica gel thin layer chromatography an Rf v. CHCl ₃ -CH ₃ OH (5:1 v/v) and exhibits in reverse phase silica go with the solvent system CH ₃ CN-H ₂ O (75:25 v/v); (i) exhibits the following ultraviolet absorption maxima w and 0.01N NaOH-CH ₃ OH	el ti	hin layer chromatography an Rf value of 0.78	5
	UV λnm (Ε ¹ %_)		253 (257)	
	O V Milax ····· (= Cili)		282 (153)	
	in methanol		· · ·	10
10			320 (117)	10
	$UV \lambda_{max} nm (E_{1cm}^{1\%}) \qquad :$		253 (258)	
	in 0.01N HCI-CH ₃ OH		282 (155)	
			320 (118)	
15				15
	$UV \lambda_{max} nm (E_{1 cm}^{1\%}) \qquad :$		252 (266)	
	in 0.01N NaOH-CH₃OH		283 (160)	
	III 0,0 IIV INAOTI-ONSOTI		318 (118) ;	
			010(110);	
20	(j) exhibits a high performance liquid chromatography rel phase silica gel column and the solvent system CH ₃ CN-CH ₃ (k) is effective in inhibiting the growth of various bacteria (l) induces prophage in lysogenic bacteria; and	oH- and	-0.1M CH ₃ COONH ₄ (5:2:3 v/v); d fungi;	20
	(m) is effective in inhibiting the growth of P-388 leukemia	in i	mice.	
25	5. The antitumor antihintic BBM-1675 B ₁ which:			25
20	(a) is soluble in chloroform, ethyl acetate, acetone, ethano	ol a	nd methanol, slightly soluble in benzene and	
	water, and insoluble in n-hexane and carbon tetrachloride;			
	(b) gives a positive reaction with ferric chloride, Ehrlich and	nd -	Tollen's reagents and a negative reaction in	
	(b) gives a positive reaction with lettic children, Emilion of	110	Tonon o rougonic una a meganice reassant	
	Sakaguchi, ninhydrin and anthrone tests;			30
30	(c) has a melting point in the range of about 159-161°C;			50
35	(d) has an optical rotation of $[\alpha]_D^{27} - 171^\circ$ (c 0.5, CHCl ₃); (e) exhibits in silica gel thin layer chromatography an Rf v CHCl ₃ -CH ₃ OH (5:1 v/v) and exhibits in reverse phase silica g with the solvent system CH ₃ CN-H ₂ O (75:25 v/v); (f) exhibits the following ultraviolet absorption maxima w and 0.01N NaOH-CH ₃ OH	gel t	thin layer chromatography an Rt value of 0.23	35
	$UV \lambda_{max} nm (E_{1 cm}^{1\%})$		253 (225)	
	in methanol		282 (140)	
40			320 (104)	40
	$UV \lambda_{max} nm (E_{1cm}^{1\%}) :$		253 (225)	
	in 0.01N HCI-CH₃OH		282 (140)	
	111 0.0 114 1101-0113011		320 (105)	
4=			025 (100)	45
45			252 (236)	
	$UV \lambda_{max} nm (E_{1 cm}^{1\%}) :$			
	in 0.01N NaOH-CH₃OH		283 (141)	
			318 (105) ;	
50	 (g) is effective in inhibiting the growth of various bacteria (h) induces prophage in lysogenic bacteria. 6. The antitumor antibiotic BBM-1675 B₂ which: 	a an	nd fungi; and	50
5 5	(a) is soluble in chloroform, ethyl acetate, acetone, ethan water, and insoluble in n-hexane and carbon tetrachloride;	:		55
60	(e) exhibits in silica gel thin layer chromatography an Rf	valı gel	ue of 0.60 with the solvent system thin layer chromatograpy an Rf value of 0.16	60

20

25

30

35

40

45

(f) exhibits the following ultraviolet absorption maxima when dissolved in methanol, 0.01N HCl-CH $_3$ OH and 0.01N NaOH-CH $_3$ OH

5	UV λ_{max} nm ($E_{1cm}^{1\%}$) in methanol	: 248 (212) 279 (141) 318 (103)	5
10	UV λ_{max} nm (E ¹ % _{cm}) in 0.01N HCI-CH ₃ OH	: 248 (210) 279 (140) 318 (103)	10
15	UV λ_{max} nm ($E_{1cm}^{1\%}$) in 0.01N NaOH-CH ₃ OH	: 248 (233) 278 (150) 318 (110) ;	

(g) is effective in inhibiting the growth of various bacteria and fungi; and

(h) induces prophage in lysogenic bacteria.

7. The process for the production of the antitumor antibiotic BBM-1675 A₁ which comprises cultivating a BBM-1675 A₁-producing strain of *Actinomadura verrucosospora* in an aqueous nutrient medium containing assimilable sources of carbon and nitrogen under submerged aerobic conditions until a substantial amount of BBM-1675 A₁ is produced by said organism in said culture medium and then recovering BBM-1675 A₁ from the culture medium.

from the culture medium.

8. The process according to Claim 7 wherein the BBM-1675 A₁-producing organism has the identifying characteristics of *Actinomadura verrucosospora* strain H964-92 (ATCC 39334), *Actinomadura verrucosos*-

pora strain A1327Y (ATCC 39638), or a mutant thereof.

9. The process for the production of the antitumor antibiotic BBM-1675 A_2 which comprises cultivating a BBM-1675 A_2 -producing strain of *Actinomadura verrucosospora* in an aqeuous nutrient medium containing assimilable sources of carbon and nitrogen under submerged aerobic conditions until a substantial amount of BBM-1675 A_2 is produced by said organism in said culture medium and then recovering BBM-1675 A_2 from the culture medium.

10. The process according to Claim 9 wherein the BBM-1675 A₂-producing organism has the identifying characteristics of *Actinomadura verrucosospora* strain H964-92 (ATCC 39334), *Actinomadura verrucosospora* strain A1327Y (ATCC 39638), or a mutant thereof.

11. The process for the production of the antitumor antibiotic BBM-1675 A₃ which comprises cultivating a BBM-1675 A₃-producing strain of *Actinomadura verrucosospora* in an aqueous nutrient medium containing assimilable sources of carbon and nitrogen under submerged aerobic conditions until a substantial amount of BBM-1675 A₃ is produced by said organism in said culture medium and then recovering BBM-1675 A₃ from the culture medium.

12. The process according to Claim 11 wherein the BBM-1675 A₃-producing organism has the identifying characteristics of *Actinomadura verrucosospora* strain H964-92 (ATCC 39334), *Actinomadura verrucosospora* strain A1327Y (ATCC 39638), or a mutant thereof.

The process for the production of the antitumor antibiotic BBM-1675 A₄ which comprises cultivating a BBM-1675 A₄-producing strain of *Actinomadura verrucosospora* in an aqueous nutrient medium containing assimilable sources of carbon and nitrogen under submerged aerobic conditions until a substantial amount of BBM-1675 A₄ is produced by said organism in said culture medium and then recovering BBM-1675 A₄ from the culture medium.

14. The process according to Claim 13 wherein the BBM-1675 A₄-producing organism has the identifying characteristics of *Actinomadura verrucosospora* strain H964-92 (ATCC 39334), *Actinomadura verrucosospora* strain A1327Y (ATCC 39638), or a mutant thereof.

15. The process for the production of the antitumor antibiotic BBM-1675 B₁ which comprises cultivating a BBM-1675 B₁-producing strain of *Actinomadura verrucosospora* in an aqueous nutrient medium containing assimilable sources of carbon and nitrogen under submerged aerobic conditions until a substantial amount of BBM-1675 B₁ is produced by said organism in said culture medium and then recovering BBM-1675 B₁ from the culture medium.

16. The process according to Claim 15 wherein the BBM-1675 B₁-producing organism has the identifying characteristics of *Actinomadura verrucosospora* strain H964-92 (ATCC 39334), *Actinomadura verrucosospora* strain A1327Y (ATCC 39638), or a mutant thereof.

17. The process for the production of the antitumor antibiotic BBM-1675 B₂ which comprises cultivating a BBM-1675 B₂-producing strain of *Actinomadura verrucosospora* in an aqueous nutrient medium containing assimilable sources of carbon and nitrogen under submerged aerobic conditions until a substantial amount of BBM-1675 B₂ is produced by said organism in said culture medium and then recovering BBM-1675 B₂ from the culture medium.

18. The process according to Claim 17 wherein the BBM-1675 B₂-producing organism has the identifying characteristics of *Actinomadura verrucosospora* strain H964-92 (ATCC 39334), *Actinomadura verrucosospora* strain A1327Y (ATCC 39638), or a mutant thereof.

65

50

5	19. A method for therapeutically treating an animal host affected by a microbial infection which comprises administering to said host an effective antimicrobial dose of BBM-1675 A ₁ , BBM-1675 A ₂ , BBM-1675 A ₃ , BBM-1675 A ₄ , BBM-1675 B ₁ or BBM-1675 B ₂ . 20. A method for therapeutically treating an animal host affected by a malignant tumor, which comprises administering to said host an effective tumor-inhibiting dose of BBM-1675 A ₁ , BBM-1675 A ₂ , BBM-1675 A ₃ , BBM-1675 B ₁ or BBM-1675 B ₂ . 21. A pharmaceutical composition comprising an effective antimicrobial amount of BBM-1675 A ₁ , BBM-1675 A ₂ , BBM-1675 A ₃ , BBM-1675 A ₄ , BBM-1675 B ₁ or BBM-1675 B ₂ in combination with a pharmaceutical	5
10	carrier or diluent. 22. A pharmaceutical composition comprising an effective tumor-inhibiting amount of BBM-1675 A_1 , BBM-1675 A_2 , BBM-1675 A_3 , BBM-1675 A_4 , BBM-1675 B_1 or BBM-1675 B_2 in combination with a	10
15	pharmaceutical carrier or diluent. 23. A biologically pure culture of the microorganism <i>Actinomadura verrucosospora</i> strain H964-92 (ATCC 39334), said culture being capable of producing the antibiotic BBM-1675 in a recoverable quantity upon cultivation in an aqueous nutrient medium containing assimilable sources of carbon and nitrogen. 24. A biologically pure culture of the microorganism <i>Actinomadura verrucosospora</i> strain A1327Y (ATCC 39638), said culture being capable of producing the antibiotic BBM-1675 in a recoverable quantity upon cultivation in an aqueous nutrient medium containing assimilable sources of carbon and nitrogen.	15
20	 25. Chemical compound BBM-1675 A₁ obtained by cultivating <i>Actinomadura verrucosospora</i> strain H964-92 (ATCC 39334) or A1327Y (ATCC 39638). 26. Chemical compound BBM-1675 A₂ obtained by cultivating <i>Actinomadura verrucosospora</i> strain H964-92 (ATCC 39334) or A1327Y (ATCC 39638). 	20
25	 27. Chemical compound BBM-1675 A₃ obtained by cultivating <i>Actinomadura verrucosospora</i> strain H-964-92 (ATCC 39334) or A1327Y (ATCC 39638). 28. Chemical compound BBM-1675 A₄ obtained by cultivating <i>Actinomadura verrucosospora</i> strain H964-92 (ATCC 39334) or A1327Y (ATCC 39638). 29. Chemical compound BBM-1675 B₁ obtained by cultivating <i>Actinomadura verrucosospora</i> strain H964-92 (ATCC 39334) or A1327Y (ATCC 39638). 	25
30	30. Chemical compound BBM-1675 B ₂ obtained by cultivating <i>Actinomadura verrucosospora</i> strain H964-92 (ATCC 39334) or A1327Y (ATCC 39638). 31. Chemical compound BBM-1675 A ₁ .	30
35	 32. Chemical compound BBM-1675 A₂. 33. Chemical compound BBM-1675 A₃. 34. Chemical compound BBM-1675 A₄. 35. Chemical compound BBM-1675 B₁. 36. Chemical compound BBM-1675 B₂. 	35

Printed in the UK for HMSO, D8818935, 10/84, 7102.

Published by The Patent Office, 25 Southampton Buildings, London, WC2A 1AY, from which copies may be obtained.