(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum

(41) Internationales Veröffentlichungsnummer
WO 2004/083972 A1

(51) Internationale Patentklassifikation:
G05B 13/02

(21) Internationales Anmeldedatum:
PCT/EP2004/003012
22. März 2004 (22.03.2004)

(51) Bestimmungsstaaten

(72) Erfinder:

(74) Anwälte:
HILLERINGMANN, Jochen usw.; Bahnhofsvorplatz 1 (Deichmannshaus am Dom), 50667 Köln (DE).

(54) Titel: METHOD FOR INITIATING OCCUPANT-ASSISTED MEASURES INSIDE A VEHICLE

(54) Bezeichnung: VERFAHREN ZUM AUSLÖSSEN INSASSENUNTERSTÜTZTER MASSNAHMEN IN EINEM FAHRZEUG

(57) Abstract: The invention relates to a method for initiating occupant-assisted measures inside a vehicle, particularly a motor vehicle, during which cerebral current signals of at least one vehicle occupant, particularly of the driver, are metrologically detected. The intention of the vehicle occupant is estimated or determined by real-time processing by using the cerebral current signals. Measures for transferring the current state of the vehicle into a state of the vehicle matched to the intention of the vehicle occupant are initiated in advance based on the intention of the vehicle occupant.

Verfahren zum Auslösen insassenunterstützter Maßnahmen in einem Fahrzeug

Die Erfindung betrifft ein Verfahren zum Auslösen insassenunterstützter Maßnahmen in einem Fahrzeug.

Die Zeit bis zur Entstehung einer der zuvor genannten Körperreaktionen auf eine vom Fahrer empfundene Not- bzw. Stresssituation hin führt dabei zu einer verzögerten unterstützenden Einleitung bzw. Unterstützung des Bremsvorganges, was nachteilig sein kann.

Aus DE 197 02 748 A1 ist es ferner bekannt, dass der Zustand des Führers eines Fahrzeuges, z. B. eines Zuges, durch z. B. die Erfassung der Hirnströme des Führers überwacht wird.

Eine Aufgabe der Erfindung ist es, ein Verfahren zum Auslösen insassenunterstützender Maßnahmen in einem Fahrzeug anzugeben, bei dem die Zeit zwischen der Bildung der Intention des z. B. Fahrers des Fahrzeuges und der ein-
zuleitenden Maßnahme verkürzt und diese damit quasi ohne Zeitverzögerung eingeleitet werden kann.

Zur Lösung dieser Aufgabe wird mit der Erfindung ein Verfahren zum Auslösen insassenunterstützter Maßnahmen in einem Fahrzeug vorgeschlagen, bei dem
- Hirnstrom-Signale mindestens eines Fahrzeuginsassen, insbesondere des Fahrers, messtechnisch erfasst werden,
- anhand der Hirnstrom-Signale die Intention des Fahrzeuginsassen durch Echtzeitverarbeitung abgeschätzt bzw. ermittelt wird und

Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben.

Mit der Erfindung wird also ein Verfahren zum Einsatz in Fahrzeugen zur Be- reitstellung einer verbesserten Fahrer-Fahrzeug-Schnittstelle durch Auswer- tung von Hirnströmen wie z. B. EEG, MEG, NIRS, fMRI und/oder um EMG vorgeschlagen.
Das erfindungsgemäße Verfahren hat unter anderem die Eigenschaft, dass Fahrerverhalten ganz allgemein und Fahrer-Reaktionsfehler und Reaktionsverzögerungen im speziellen detektiert und analysiert werden und damit als neuartiges Multipurposefeature für eine verbesserte Fahrzeugsicherheit einem nachfolgenden Sicherheitssystem als Eingabe zur Verfügung stehen. Das Verfahren kann in einem Fahrzeug unter anderem eingesetzt werden für

1. unfallpräventive Sicherheitsmaßnahmen wie
 a) automatische Gurtstraffung
 b) Sitzoptimierung
 c) brems/lenkungsvorbereitende Optimierung der Fahrzeugreagibilität
 d) Voroptimierung der Fahrzeugdynamik bei zeitkritischen Entscheidungen
 e) alle prädictiven Sicherheitsvorkehrungen.

2. Fahrerbasierte Verifikation maschinell erkannter Gefahrensituationen, wie z.B.
 a) Detektion eines kongruenten motorischen Intentionsaufbaus
 b) Situationsmodellierung und Validierung.

Der Erfindung und ihre Grundlagen sowie Grundzüge werden nachfolgend eingehender beschrieben.

Mit der Erfindung wird eine grundsätzlich neue Qualität von Mensch-Maschine-Schnittstellen durch die Kombination hirnphysiologischer Erkenntnisse und algorithmischer Weiterentwicklungen in der Informationstechnik ermöglicht, indem das Konzept einer direkten Umsetzung von Hirnsignalen in maschinenbezogene Steuerbefehle in einen Brain-Computer Interface (BCI) als Echtzeit-Implementation realisiert wird. Als nicht-invasive und prinzipiell alltagstaugliche Messmethode wird dabei z.B. das Multi-Kanal-EEG mit einer Zeitauflösung

Für ein BCI liegen international bislang schon wohldefinierte Anwendungsperspektiven im klinischen Einsatz für gelähmte Patienten vor, insbesondere z.B. bei kompletten Querschnittslähmungen. Mit der Erfindung wird erstmals die Möglichkeit aufgezeigt, bei zeitkritischen Echtzeit-Applikationen, wie sie typischerweise z.B. bei Fahrer-Fahrzeug-Schnittstellen gegeben sind, neuartige Verfahrensansätze zu realisieren:

1. In der psychophysiologischen Forschung zur Aufklärung und Anwendung von Fahrer-Reaktionsfehlern und -Reaktionsverzögerungen können nun erstmals, sowohl in virtuellen Fahrsimulationen wie auch in realen Fahrsituationen, die motorischen Reaktionsintentionen des Fahrers mit hoher Zeitaufklärung im Millisekundenbereich als *ungemittelte Einzelereignisse* erfasst und auf diese Weise in Abhängigkeit vom aktuell variierenden *perzeptuellen Kontext* (multimodale Umgebungsinformationen sowie Instrumentensignale) analysiert werden.
2. Im Einsatz als Fahrerassistenzsystem können Konzepte der "Integrierten Sicherheit" um neuartige Komponenten für eine kontinuierlich ('on-the-fly') fortlaufende Fahrer-Modellierung erweitert werden:

b) Darüber hinaus kann eine schnellstmögliche Fahrer-basierte 'Verifikation' maschineller (z.B. visueller) Gefahrenerkennung durch Detektion eines kongruenten motorischen Intentionsaufbaus des Fahrers erfolgen und eine dementsprechend validierte Situationsmodellierung ermöglichen.

c) Insbesondere können zeitkritische Entscheidungsalternativen, wie z.B. eine situativ zwingende Auswahl zwischen Notfallbremsung und gerichtetem Ausweichmanöver, die rechtlich dem Fahrer vorzubehalten sind, schon Zehntelsekunden vor der eigentlichen Reaktionsbewegung des Fahrers prognostiziert werden, indem die entsprechenden motorischen Intentionen aus dem EEG-Signal des Fahrers extrahiert und für Zwecke einer Voroptimierung der Fahrzeugdynamik genutzt werden.

Als additiver Vorteil dieses EEG-basierte BCI-Ansatzes ist das weitergreifende multi-purpose feature zu nennen, dass aus den EEG-Daten neben den hier definierten neuartigen Applikationen schon früher etablierte Konzepte zum kontinuierlichen Fahrer-Vigilanzmonitoring nahtlos integriert werden können.
ANSPRÜCHE

1. Verfahren zum Auslösen insassenunterstützter Maßnahmen in einem Fahrzeug, insbesondere Kraftfahrzeug, bei dem
 - Hirnstrom-Signale mindestens eines Fahrzeuginsassen, insbesondere des Fahrers, messtechnisch erfasst werden,
 - anhand der Hirnstrom-Signale die Intention des Fahrzeuginsassen durch Echtzeitverarbeitung abgeschätzt bzw. ermittelt wird und

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die physiologischen Signale nichtinvasiv ermittelt werden.

3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass es sich bei den Hirnstrom-Signalen um Hirnsignale wie z. B. EEG, MEG, NIRS, fMRI und/oder um EMG handelt.

4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Echtzeitverarbeitung der Messsignale durch Methoden der Signalverarbeitung und/oder des maschinellen Lernens erfolgt, die es ermöglichen, die Messsignale als Einzelsignale und ohne langwieriges Training des Fahrzeuginsassen auszuwerten.

5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass die Methoden der Signalverarbeitung zur adaptiven Merkmalsextraktion aus den Messsignalen alternativ oder in einer beliebigen Kombination mindestens eines der nachfolgenden Merkmale aufweist:
 a) Filterung (räumlich und im Frequenzbereich) und Downsampling,
 b) Zerlegung bzw. Projektion,
c) Bestimmung von räumlichen, zeitlichen oder raum-zeitlichen Komplexitätsmaßen,
d) Bestimmung von Kohärenzmaßen (bezogen auf Phase oder Band-Energie) zwischen Eingangssignalen.

6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die Filterung alternativ oder in einer beliebigen Kombination mindestens eines der nachfolgenden Merkmale aufweist:
 a) Wavelet und Fourierfilter (short-time),
 b) FIR und IIR Filter,
 c) Laplace und Common Avarage Reference Filter,
 d) Glättungsverfahren.

7. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die Zerlegung bzw. Projektion alternativ oder in einer beliebigen Kombination mindestens eines der nachfolgenden Merkmale aufweist:
 a) Independent Component Analyse und Hauptkomponentenanalyse,
 b) Projection Pursuit Technik,
 c) Sparse Decomposition Techniken,
 d) Common Spatial Patterns Techniken,
 e) Common Substace Decomposition Techniken,
 f) (Bayessche) sub-space regularization Techniken.

8. Verfahren nach Anspruch 4 oder einem der vorhergehenden Ansprüche, soweit auf Anspruch 4 zurückbezogen, dadurch gekennzeichnet, dass die Methode des maschinellen Lernens eine Klassifikation und/oder Regression umfasst, und zwar unter Einsatz von
 a) kernbasierten linearen und nichtlinearen Lernmaschinen (z.B. Support Vector Maschinen, Kern Fisher, Linear Programming Machines),
 b) Diskriminanzanalysen,
 c) neuronalen Netzen,
 d) Entscheidungsbäumen,
e) allgemein allen linearen und nicht linearen Klassifikationsmethoden auf die durch Signalvorverarbeitung gewonnenen Merkmale.

9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass es sich bei den auslösenden Maßnahmen um unfallpräventive Sicherheitsmaßnahmen wie beispielsweise
 a) automatische Gurtstraffung,
 b) Sitzoptimierung,
 c) brems/lenkungsvorbereitende Optimierung der Fahrzeugreagibilität,
 d) Stabilitätssicherungsrechnungen,
 e) Voroptimierung der Fahrzeugdynamik bei zeitskritischen Entscheidungen,
 f) alle prädiktiven Sicherheitsvorkehrungen handelt.

10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die anhand der Hrinstrom-Signale ermittelte bzw. abgeschätzte Intention der Verifikation maschinell erkannter Gefahrensituationen dient, und zwar insbesondere durch Detektion eines kongruenten motorischen Intentionsaufbaus und Situationsmodellierung und Validierung.

11. Verfahren nach einem der Ansprüche 1 bis 10, gekennzeichnet durch den Einsatz und die Integration in ein kontinuierliches Vigilanzmonitoring.

12. Verfahren nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass die auszulösenden Maßnahmen anhand einer Mittlung der Intentionen mehrerer Fahrzeuginsassen ergriffen werden.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 G05B13/02

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 G05B G05D A61B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 6 349 231 B1 (MUSHA TOSHIMITSU) 19 February 2002 (2002-02-19) column 2, line 62 - column 5, line 26; figure 2 column 7, line 12 - line 26</td>
<td>1-5,8,10</td>
</tr>
<tr>
<td>Y</td>
<td>US 5 311 877 A (KISHI ATSUHIDE) 17 May 1994 (1994-05-17) column 6, line 22 - column 7, line 37 column 15, line 26 - column 17, line 56</td>
<td>6</td>
</tr>
<tr>
<td>Y</td>
<td>DE 198 01 009 C (DAIMLER CHRYSLER AG) 22 April 1999 (1999-04-22) cited in the application claim 1</td>
<td>9</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

Date of the actual completion of the international search

17 August 2004

Date of mailing of the international search report

24/08/2004

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, FAX (+31-70) 340-3018

Authorized officer

Kelperis, K
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>DE 197 02 748 A (KIRCHLECHNER SCHWARZ MONIKA) 18 September 1997 (1997-09-18) cited in the application column 1, line 38 - line 50</td>
<td>11</td>
</tr>
<tr>
<td>A</td>
<td>US 5 638 826 A (WOLPAW JONATHAN R ET AL) 17 June 1997 (1997-06-17)</td>
<td></td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 7204168 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 10244480 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5601990 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US RE36450 E</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 5092039 A</td>
</tr>
<tr>
<td>DE 19801009 C</td>
<td>22-04-1999</td>
<td>DE 19801009 C1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2773529 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 2333338 A ,B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IT RM990014 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 11286264 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6293361 B1</td>
</tr>
<tr>
<td>DE 19702748 A</td>
<td>18-09-1997</td>
<td>DE 19702748 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 0250652 A2</td>
</tr>
<tr>
<td>US 5638826 A</td>
<td>17-06-1997</td>
<td>NONE</td>
</tr>
</tbody>
</table>
INTERNATIONALER RECHERCHENBERICHT

A. KLASSEIFZIERUNG DES ANMELDUNGSGEGENSTANDES

IPK 7 G05B13/02

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHEIERTE GEBiete

Recherchierte Mindestpräfikstof (Klassifikationssystem und Klassifikationssymbole)

IPK 7 G05B G05D A61B

Recherchierte aber nicht zum Mindestpräfikstof gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der Internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile</th>
<th>Betr. Anspruch Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>DE 198 01 009 C (DAIMLER CHRYSLER AG) 22. April 1999 (1999-04-22) in der Anmeldung erwähnt Anspruch 1</td>
<td>9</td>
</tr>
</tbody>
</table>

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

Datum des Abschlusses der internationalen Recherche

17. August 2004

Abstiegsdatum des internationalen Recherchenberichtes

24/08/2004

Name und Postanschrift der internationalen Recherchebehörde

Europäisches Patentamt, P.B. 3516 Patentenaa 2 NL-2280 HV Hilrijik
Tel. (431-70) 340-2040, Tx. 31 651 epo.at, Fax. (431-70) 340-3516

Bevollmächtigter Beispielsleiter

Kelperis, K

Formblatt PCT/ISA/216 /Blatt 2/ (Januar 2004)
<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile</th>
<th>Betr. Anspruch Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patentnummer</td>
<td>Anzahl der Patentdokumente</td>
<td>Datum der Veröffentlichung</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE 19801009</td>
<td>C</td>
<td>22-04-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE 19702748</td>
<td>A</td>
<td>18-09-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 5638826</td>
<td>A</td>
<td>17-06-1997</td>
</tr>
</tbody>
</table>