
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2004/0225.459 A1

Krishnaswamy et al.

US 200402254-59A1

(43) Pub. Date: Nov. 11, 2004

(54)

(75)

(73)

(21)

(22)

METHOD AND STRUCTURE TO DEVELOPA
TEST PROGRAM FOR SEMCONDUCTOR
INTEGRATED CIRCUITS

Inventors: Ramachandran Krishnaswamy, Santa
Clara, CA (US); Harsanjeet Singh,
Santa Clara, CA (US); Ankan
Pramanick, Santa Clara, CA (US);
Mark Elston, Santa Clara, CA (US);
Leon Chen, Santa Clara, CA (US);
Toshiaki Adachi, Santa Clara, CA
(US); Yoshihumi Tahara, Santa Clara,
CA (US)

Correspondence Address:
MORRISON & FOERSTER LLP
425 MARKET STREET
SAN FRANCISCO, CA 94105-2482 (US)

Assignee: Advantest Corporation, Santa Clara,
CA (US)

Appl. No.: 10/772,434

Filed: Feb. 6, 2004

Descrip
tion File

Pin
Description

Object References

s

Pattern
Source File References

Related U.S. Application Data

(60) Provisional application No. 60/447,839, filed on Feb.
14, 2003. Provisional application No. 60/449,622,
filed on Feb. 24, 2003.

Publication Classification

(51) Int. Cl. ... G06F 19/00
(52) U.S. Cl. .. 702/57

(57) ABSTRACT

Test program development for a Semiconductor test System,
Such as automated test equipment (ATE), using object
oriented constructs is described. The invention provides a
method for describing test System resources, test System
configuration, module configuration, test Sequence, test
plan, test condition, test pattern, and timing information in
general-purpose object-oriented constructs, e.g., C++
objects and classes. In particular, the modularity of program
development is Suitable for developing test programs for an
open architecture Semiconductor test System.

Test Plan
ille

- Waveform Tables
- period
- waveforms
- time; event, wfo

includes

includes
Condition
Group File

Includes

Specs
Source File

Timing Map
File

Patent Application Publication Nov. 11, 2004 Sheet 1 of 9 US 2004/0225.459 A1

16

Action

Data - a 1"
Timing

Pattern
Memory
Data

Waveform
Data

14

Data

DUT

Action = Pattern Data "Timing Data (Limited by TimeSet) * Waveset * Drive

FIG.1

Patent Application Publication Nov. 11, 2004 Sheet 2 of 9 US 2004/0225.459 A1

1OO ^
104 1O6

Site n Out f 10 - 108 114

Controller Port 1 Module H Loadboard
1 sout Port in

Module Loadboard

of die
Module Loadboard

c id:

Module LOadboard

of
this

FIG.2

Controller

- 102
Site

Controller

Eela- 2

System
Controller

3

Site
Controller

r

Patent Application Publication Nov. 11, 2004 Sheet 3 of 9

Standard Interfaces
see s val 8. s

Standardi

Backplane
Simulation F 283

iLoadboard

Se: s Libraryi

Loadboard 285
Simulation.

US 2004/0225.459 A1

22O

: 230

242

246

240

248

249

261

262

263

264

26O

265

266

290- Interface 296 Module Development
298 1 External

Patent Application Publication Nov. 11, 2004 Sheet 4 of 9 US 2004/0225.459 A1

400 A^
TPL Compiler

C++
Compiler DLLS
406

Translation
402

FIG.4

--

--

FIG.5

Data for
Instance 1

504

TestTypeX

Data for
instance 2

Data for
Instance 3

US 2004/0225.459 A1

919

UOUuuuOO

Patent Application Publication Nov. 11, 2004 Sheet 5 of 9

Patent Application Publication Nov. 11, 2004 Sheet 6 of 9 US 2004/0225.459 A1

FIG.7

FIG.8

Patent Application Publication Nov. 11, 2004 Sheet 7 of 9 US 2004/0225.459 A1

Descrip
tion File

- Pin
- Waveform Tables
- period
- Waveforms
- time; event, wfc

Includes
Condition
Group File

he so we rose

Includes

Specs
Source File

Timing Map
File Source File References

FIG.9

US 2004/0225.459 A1 Sheet 8 of 9 2004 9. Patent Application Publication Nov. 11

900 || 10|quueJOS SL TOEFEFEFEFEF|| „?, \))'
S_LT

(u?d led) JosseoOld euuel

US 2004/0225.459 A1 Patent Application Publication Nov. 11, 2004 Sheet 9 of 9

3 | | | KuouuaW ulogene M

{ : sugv@z su08@q su01 @n} (1) {{sugvoz suosea suo? eq}(0)

Z!

US 2004/0225.459 A1

METHOD AND STRUCTURE TO DEVELOPA
TEST PROGRAM FOR SEMCONDUCTOR

INTEGRATED CIRCUITS

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001. This application claims the benefit of application
No. 60/447,839, “Method and Structure to Develop a Test
Program for Semiconductor Integrated Circuits, filed Feb.
14, 2003; application No. 60/449,622, “Method and Appa
ratus for Testing Integrated Circuits, filed Feb. 24, 2003;
U.S. application Ser. No. 10/404,002, “Test emulator, test
module emulator, and record medium Storing programs
therein,” filed Mar. 31, 2003; and U.S. application Ser. No.
10/403,817, “Test Apparatus and Test Method,” filed Mar.
31, 2003, all of which are incorporated herein in their
entirety by reference. This application also incorporates by
reference in its entirety U.S. application no. s
“Method and Apparatus for Testing Integrated Circuits,”
filed concurrently herewith, which claims the benefit of
application No. 60/449,622, “Method and Apparatus for
Testing Integrated Circuits, filed Feb. 24, 2003.

BACKGROUND OF THE INVENTION

0002) 1. Field of Invention
0003. The present invention relates to the testing of
integrated circuits (ICs), and more particularly to developing
a test program for automated Semiconductor test equipment

0004 2. Description of Related Art
0005 Today tester manufacturers use their own propri
etary languages to develop test programs for Semiconductor
test Systems (testers). For example, machines produced by
Advantest Corporation utilize the Test Description Lan
guage (TDL), and Credence Systems offers its own Wave
form Generation Language (WGL). To overcome this degree
of Specialization, IC and tester manufacturers tried to find a
common ground by developing IEEE standard 1450, the
Standard Test Interface Language (STIL). STIL, however, is
a highly Specialized language for defining pins, test com
mands, timing, etc. Moreover, a test engineer running STIL
nevertheless still needs to translate STIL into the proprietary
manufacturer-Specific language required by the tester. Thus
STIL merely Serves as an intermediate language that is
nonetheless highly Specialized and not generally known to
programmerS.

0006 Hence, it is desirable to develop a method through
which test program can be written in a general purpose
language. Moreover, this method should allow for easy
development of test programs for an open architecture test
System.

SUMMARY OF THE INVENTION

0007. This application describes test program develop
ment using object-oriented constructs, e.g., C++ objects and
classes. In particular, this method is Suitable for developing
test programs for an open architecture tester, Such as that
described in U.S. application Ser. Nos. 60/449,622, 10/404,
002 and 10/403,817, assigned to the assignee of the present
invention.

Nov. 11, 2004

0008 An embodiment of the present invention provides
a method for developing a test program by describing test
System resources, test System configuration, module con
figuration, test Sequence, test plan, test condition, test pattern
and timing information in general-purpose object-oriented,
e.g., C/C++, constructs to test a device under test, e.g., an IC,
on a Semiconductor test System, Such as automated test
equipment (ATE). The files containing these descriptions are
Stored in memory, i.e., a computer-readable medium, acces
Sible to the test System or related equipment that uses the
files.

0009. Describing test system resources may comprise
Specifying a resource type, where the resource type is
asSociated with at least one test module for applying a test
to the IC, Specifying a parameter type associated with the
resource type, and Specifying a parameter of the parameter
type.

0010 Describing test system configuration may comprise
Specifying a Site controller for controlling at least one test
module, where each test module applies a test to the IC, and
Specifying an input port of a module connection enabler. The
test System couples the Site controller to the module con
nection enabler at the Specified input port, and the module
connection enabler couples the Site controller to a test
module. The module connection enabler may be imple
mented as a Switch matrix.

0.011 Describing module configuration may comprise
Specifying a module identifier for Specifying a module type,
Specifying executable code for controlling a test module of
the module type specified by the module identifer, and
Specifying a resource type associated with the test module.
The executable code may take the form of a dynamic link
library.

0012 Describing module configuration may further
involve the user Specifying a Slot identifier for Specifying an
output port of the module connection enabler, where the test
System couples the test module to the module connection
enabler at the output port, and the module connection
enabler couples the test module to a corresponding site
controller. The user may also specify a vendor identifier for
identifying the provider of the test module, and an identifier
of the maximum number of resource units available in
connection with the resource type. The resource type may
be, for example, digital tester pins and the resource units
tester channels. Alternatively, the tester channel resource
units may also correspond to resource types Such as, for
example, analog tester pins, RF tester pins, power Supply
pins, digitizer pins, and arbitrary waveform generation pins.
An indicator relating to which resource units are disabled
may also be provided. The resource units indicated as
disabled may represent defective resource units of the test
module.

0013 Describing test conditions may comprise specify
ing at least one test condition group, Specifying a specifi
cation Set including at least one variable; and Specifying a
Selector for Selecting an expression to be bound to a variable.
ASSociation of the test condition group with a Selector for the
Specification Set defines a test condition.
0014) Describing a test sequence may comprise specify
ing the order (or flow) in which various tests can be applied.

US 2004/0225.459 A1

0.015 Describing test patterns may comprise specifying
the test patterns, associated Voltage and current levels,
transitions in Signal values, corresponding rise and fall times
and associated timing.

0016. An embodiment of the present invention also
includes the use of preheader files. A preheader file is
compiled to create a header file for a class associated with
a test entity. The preheader includes a parameter block for
Specifying parameters for Setting at least one attribute of the
test entity, and a template block for Specifying Source code
that is inserted by a compiler into the header file for the test
entity class. The header file may be a C++ header file. The
test entity may be a test and the test entity class may be a test
class, for example. The parameters may relate to pattern lists
and test conditions, for example.
0.017. A pattern compiler of an embodiment of the inven
tion includes at least one module-specific pattern compiler,
and an object file manager for directing each module
Specific compiler to compile both a corresponding module
Specific Section of a pattern Source file and a common
Section of the pattern Source file. The common Section
includes information accessible to all of the module-Specific
compilers. An output of the compiler includes at least one
module-Specific pattern data Section. Module-Specific pat
tern loaders load into corresponding test modules module
Specific pattern data from corresponding module-Specific
pattern data Sections for execution.

BRIEF DESCRIPTION OF THE DRAWINGS

0.018 FIG. 1 illustrates a conventional tester architec
ture.

0.019 FIG. 2 illustrates a tester architecture according to
an embodiment of the present invention.

0020 FIG. 3 illustrates a tester software architecture
according to an embodiment of the present invention.
0021 FIG. 4 illustrates a test program compiler accord
ing to an embodiment of the present invention.

0022 FIG. 5 illustrates how different test instances may
be derived from a single test class according to an embodi
ment of the present invention.
0023 FIG. 6 illustrates a pattern compiler according to
an embodiment of the present invention.
0024 FIG. 7 illustrates a ordered pattern tree example
according to an embodiment of the present invention.

0025 FIG. 8 illustrates another ordered pattern tree
example according to an embodiment of the present inven
tion.

0.026 FIG. 9 illustrates the relationships among files that
are required by a test program according to an embodiment
of the present invention.
0.027 FIG. 10 illustrates waveform generation according
to an embodiment of the present invention.
0028 FIG. 11 illustrates a mapping used for timing
according to an embodiment of the present invention.
0029 FIG. 12 illustrates another mapping used for tim
ing according to an embodiment of the present invention.

Nov. 11, 2004

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

0030 The present invention is generally described in
terms of the Open architecture test System as disclosed in
U.S. application Ser. Nos. 60/449,622, 10/404,002 and
10/403,817 by the same assignee. Those skilled in the art
will recognize, however, that embodiments of the test pro
gram development System and method of the present inven
tion are applicable not only to an open tester architecture,
but also to fixed tester architectures, as well.
0031. A description of the open architecture test system
may be found in U.S. application no. , “Method and
Apparatus for Testing Integrated Circuits, filed concur
rently herewith, which claims the benefit of U.S. application
No. 60/449,622 by the same assignee.
0032 FIG. 1 illustrates a generalized architecture of a
conventional tester showing how a Signal is generated and
applied to a device-under-test (DUT). Each DUT input pin
is connected to a driver 2 that applies test data, while each
DUT output pin is connected to a comparator 4. In most
cases, tri-State driver-comparators are used So that each
tester pin (channel) can act either as an input pin or as an
output pin. The tester pins dedicated to a single DUT
collectively form a test Site that works with an associated
timing generator 6, waveform generator 8, pattern memory
10, timing data memory 12, waveform memory data 14, and
block 16 that define the data rate.

0033 FIG. 2 illustrates a system architecture 100 accord
ing to an embodiment of the present invention. A System
controller (SysC) 102 is coupled to multiple site controllers
(SiteCs) 104. The system controller may also be coupled to
a network to access files. Through a module connection
enabler 106, each site controller is coupled to control one or
more test modules 108 located at a test site 110. The module
connection enabler 106 allows reconfiguration of connected
hardware modules 108 and also serves as a bus for data
transfer (for loading pattern data, gathering response data,
providing control, etc.). Possible hardware implementations
include dedicated connections, Switch connections, buS con
nections, ring connections, and Star connections. The mod
ule connection enabler 106 may be implemented by a Switch
matrix, for example. Each test Site 110 is associated with a
DUT 112, which is connected to the modules of the corre
sponding site through a loadboard 114. In one embodiment,
a single site controller may be connected to multiple DUT
Sites.

0034. The system controller 102 serves as the overall
System manager. It coordinates the Site controller activities,
manages System-level parallel test Strategies, and addition
ally provides for handler/probe controls as well as System
level data-logging and error handling Support. Depending on
the operational Setting, the System controller 102 can be
deployed on a CPU that is separate from the operation of site
controllers 104. Alternatively a common CPU may be
shared by the system controller 102 and the site controllers
104. Similarly, each site controller 104 can be deployed on
its own dedicated CPU (central processing unit), or as a
separate process or thread within the same CPU.
0035. The system architecture can be conceptually envi
Sioned as the distributed system shown in FIG. 2 with the
understanding that the individual System components could

US 2004/0225.459 A1

also be regarded as logical components of an integrated,
monolithic System, and not necessarily as physical compo
nents of a distributed System.
0036 FIG. 3 illustrates a software architecture 200
according to an embodiment of the present invention. The
Software architecture 200 represents a distributed operating
System, having elements for the System controller 220, at
least one site controller 240, and at least one module 260 in
correspondence to related hardware System elements 102,
104,108. In addition to the module 260, the architecture 200
includes a corresponding element for module emulation 280
in Software.

0037 As an exemplary choice, the development environ
ment for this platform can be based on Microsoft Windows.
The use of this architecture has side benefits in program and
Support portability (e.g., a field Service engineer could
connect a laptop which runs the tester operating System to
perform advanced diagnostics). However, for large com
pute-intensive operations (such as test pattern compiles), the
relevant Software can be made as an independent entity
capable of running independently to allow job Scheduling
across distributed platforms. Related software tools for
batch jobs are thus capable of running on multiple platform
types.

0.038. As an exemplary choice, ANSI/ISO standard C++
can be taken as the native language for the Software. Of
course, there are a multitude of options available (to provide
a layer over the nominal C++ interfaces) that allows a third
party to integrate into the System with an alternative lan
guage of its own choice.
0.039 FIG. 3 illustrates a shading of elements according
to their organization by nominal Source (or collective devel
opment as a Sub-System) including the tester operating
System, user components 292 (e.g., Supplied by a user for
test purposes), System components 294 (e.g., Supplied as
Software infrastructure for basic connectivity and commu
nication), module development components 296 (e.g., Sup
plied by a module developer), and external components 298
(e.g., Supplied by external Sources other than module devel
opers).
0040. From the perspective of source-based organization,
the tester operating system (TOS) interface 290 include:
System Controller to Site Controller interfaces 222, frame
work classes 224, Site Controller to Module interfaces 245,
framework classes 246, predetermined module-level inter
faces, backplane communications library 249, chassis slot IF
(Interface) 262, loadboard hardware IF 264, backplane
simulation IF 283, loadboard simulation IF 285, DUT simu
lation IF 287, Verilog PLI (programming language interface)
288 for DUT's Verilog model and C/C++ language support
289 for DUT's C/C++ model.
0041) User components 292 include: a user test plan 242,
user test classes 243, hardware loadboard 265, and DUT
266, a DUT Verilog model 293 and a DUT C/C++ model
291.

0.042 System components 294 include: system tools 226,
communications library 230, test classes 244, a backplane
driver 250, HW backplane 261, simulation framework 281,
backplane emulation 282, and loadboard simulation 286.
0.043 Module-development components 296 include:
module commands implementation 248, module hardware
263, and module emulation 284.

Nov. 11, 2004

0044) External components 298 include external tools
225.

004.5 The system controller 220 includes interfaces 222
to site controller, framework classes 224, System tools 226,
external tools 225, and a communications library 230. The
System Controller Software is the primary point of interac
tion for the user. It provides the gateway to the Site Con
trollers of the invention, and synchronization of the Site
Controllers in a multi-site/DUT environment as described in
U.S. application No. 60/449,622 by the same assignee. User
applications and tools, graphical user interface (GUI)-based
or otherwise, run on the System Controller. The System
Controller also may act as the repository for all Test Plan
related information, including Test Plans, test patterns and
test parameter files. The memory Storing these files may be
local to the System controller or offline, e.g., connected to the
System controller through a network. A test parameter file
contains parameterization data for a Test class in the object
oriented environment of an embodiment of the invention.

0046) Third party developers can provide tools in addi
tion to (or as replacements for) the standard System tools
226. The standard interfaces 222 on the System Controller
220 include interfaces that the tools use to access the tester
and test objects. The Tools (applications) 225, 226 allow
interactive and batch control of the test and tester objects.
The tools include applications for providing automation
capabilities (through, for example, the use of SECS/TSEM,
etc.)
0047 The Communications library 230 residing on the
System controller 220 provides the mechanism to commu
nicate with the Site Controllers 240 in a manner that is
transparent to user applications and test programs.

0048. The Interfaces 222 resident in memory associated
with the System Controller 220 provide open interfaces to
the framework objects that execute on the System Control
ler. Included are interfaces allowing the Site Controller
based module Software to acceSS and retrieve pattern data.
Also included are interfaces that applications and tools use
to access the tester and test objects, as well as Scripting
interfaces, which provide the ability to acceSS and manipu
late the tester and test components through a Scripting
engine. This allows a common mechanism for interactive,
batch and remote applications to perform their functions.
0049. The Framework Classes 224 associated with the
System Controller 220 provide a mechanism to interact with
these above-mentioned objects, providing a reference imple
mentation of a Standard interface. For example, the Site
controller 240 of the invention provides a functional test
object. The System controller framework classes may pro
vide a corresponding functional test proxy as a remote
System controller-based Surrogate of the functional test
object. The Standard functional test interface is thus made
available to the tools on the system controller 220. The
framework classes effectively provide an operating System
asSociated with the host System controller. They also con
Stitute the Software elements that provide the gateway to the
Site Controllers, and provide synchronization of the Site
Controllers in a multi-site/DUT environment. This layer thus
provides an object model in an embodiment of the invention
that is Suitable for manipulating and accessing Site Control
lers without needing to deal directly with the Communica
tions layer.

US 2004/0225.459 A1

0050. The site controller 240 hosts a user test plan 242,
user test classes 243, Standard test classes 244, Standard
interfaces 245, site controller framework classes 246, mod
ule high level command interfaces (i.e., predetermined mod
ule-level interfaces 247, module commands implementation
248, backplane communications library 249, and a back
plane driver 250. Preferably most of the testing functionality
is handled by the site controllers 104/240, thus allowing
independent operation of the test sites 110.

0051 ATest Plan 242 is written by the user. The plan may
be written directly in a Standard computer language employ
ing object-oriented constructs, Such as C++, or described in
a higher level test programming language to produce C++
code, which can then be compiled into the executable test
program. For test program development, one embodiment of
the invention employs assignee's inventive Test Program
Language (TPL) compiler. Referring to FIG. 4, the test
program compiler 400 acts in part as a code generator
including a translator Section 402 to translate a test program
developer's Source files 404 describing tests and associated
parameters into object-oriented constructs, Such as C++
code. A compiler Section 406, in turn, compiles and links the
code into executables, e.g., DLLS, to create the test program
that may be executed by the tester System. Although the
application of the TPL code generator/translator to test
Systems is novel, please note that code generators are known
in the art. Also, the compiler Section may be a Standard C++
compiler known in the art.

0.052 The test plan creates test objects by using the
Framework Classes 246 and/or standard or user Supplied
Test Classes 244 associated with the site controllers, con
figures the hardware using the Standard Interfaces 245, and
defines the test plan flow. It also provides any additional
logic required during execution of the test plan. The test plan
Supports Some basic Services and provides an interface to the
Services of underlying objects, Such as debug Services (e.g.,
break-pointing), and access to underlying framework and
Standard classes.

0053. The source code input to the test program compiler
400 includes a Test Plan description file that specifies the
objects used in a test plan and their relationships to one
another. This file is translated to C++ code that is executed
on the Site Controller in the form of an implementation of
a standard interface, which may be denoted ITestPlan. This
code is packaged into a Windows dynamic link library
(DLL), which may be loaded onto the Site Controller. The
Test Program DLL is generated to have standard known
entry points that the Site Controller software can use to
generate and return the TestPlan object it contains. The Site
Controller software loads the Test Program DLL into its
proceSS space and uses one of the entry points to create an
instance of the Test Plan object. Once the Test Plan object
has been created, the Site Controller Software can then
execute the test plan.

0.054 The Framework classes 246 associated with the site
controllers are a set of classes and methods that implement
common test-related operations. The Site controller-level
framework includes, for example, classes for power Supply
and pin electronicS Sequencing, Setting level and timing
conditions, obtaining measurements, and controlling test
flow. The framework also provides methods for runtime
Services and debugging. The framework objects may work

Nov. 11, 2004

through implementing the Standard interfaces. For example,
the implementation of the TesterPin framework class is
Standardized to implement a general tester pin interface that
test classes may use to interact with hardware module pins.
0055 Certain framework objects may be implemented to
work with the help of the module-level interfaces 247 to
communicate with the modules. The site controller frame
work classes effectively act as a local operating System
Supporting each Site controller.
0056. In general more than ninety percent of the program
code is data for the device test, and the remaining ten percent
of the code realizes the test methodology. The device test
data is DUT-dependent (e.g., power Supply conditions, Sig
nal voltage conditions, timing conditions, etc.). The test
code consists of methods to load the Specified device con
ditions on to ATE hardware, and also those needed to realize
user-specified objectives (such as datalogging). The frame
work of an embodiment of the invention provide a hard
ware-independent test and tester object model that allows
the user to perform the task of DUT test programming.

0057 To increase the reusability of test code, such code
may be made independent of any device-specific data (e.g.,
pin name, Stimulus data, etc.), or device-test-specific data
(e.g., conditions for DC units, measurement pins, number of
target pins, name of pattern file, addresses of pattern pro
grams). If code for a test is compiled with data of these
types, the reusability of the test code would decrease.
Therefore, according to an embodiment of the invention, any
device-specific data or device-test-specific data may be
made available to the test code externally, as inputs during
code execution time.

0058. In an embodiment of the invention, a Test Class,
which is an implementation of a Standard test interface,
denoted here as ITeSt, realizes the Separation of test data and
code (and hence, the reusability of code) for a particular type
of test. Such a test class may be regarded as a “template” for
Separate instances of itself, which differ from each other
only on the basis of device-Specific and/or device-test
Specific data. Test classes are specified in the test plan file.
Each Test class typically implements a specific type of
device test or Setup for device test. For example, an embodi
ment of the invention may provide a specific implementation
of the ITest interface, for example, Functional Test, as the
base class for all functional tests for DUTS. It provides the
basic functionality of Setting test conditions, executing pat
terns, and determining the Status of the test based on the
presence of failed Strobes. Other types of implementations
may include AC and DC test classes, denoted here as
ACPararnetricTests and DCParametricTests.

0059 All test types may provide default implementations
of Some virtual methods (e.g., init(), preexec(), and
postexec()). These methods become the test engineers
entry points for overriding default behavior and Setting any
test-specific parameters. However, custom test classes can
also be used in test plans.
0060 Test classes allow the user to configure class
behavior by providing parameters that are used to Specify
the options for a particular instance of that test. For example,
a Functional Test may take parameters PList and TestCon
ditionS, to specify the Pattern List to execute, and the Level
and Timing conditions for the test, respectively. Specifying

US 2004/0225.459 A1

different values for these parameters (through the use of
different “Test' blocks in a test plan description file) allows
the user to create different instances of a Functional Test.
FIG. 5 illustrates how different test instances may be
derived from a Single test class. These classes may be
programmed directly in object-oriented constructs, Such as
C++ code, or designed to allow a test program compiler to
take the description of the tests and their parameters from a
test plan file and generate corresponding C++ code, which
can be compiled and linked to generate the test program. A
Template Library may be employed as the general-purpose
library of generic algorithms and data Structures. This library
may be visible to a user of the tester, So that the user may,
for example, modify the implementation of a test class to
create a user-defined test class.

0061 AS to user-developed test classes, an embodiment
of the System Supports integration of Such test classes into
the framework in that all test classes derive from a Single test
interface, e.g., ITeSt, So that the framework can manipulate
them in the same way as the Standard Set of System test
classes. Users are free to incorporate additional functionality
into their test classes, with the understanding that they have
to use custom code in their test programs to take advantage
of these additional facilities.

0.062 Each test site 110 is dedicated to testing one or
more DUTS 106, and functions through a configurable
collection of test modules 112. Each test module 112 is an
entity that performs a particular test task. For example, a test
module 112 could be a DUT power Supply, a pin card, an
analog card, etc. This modular approach provides a high
degree of flexibility and configurability.
0.063. The Module Commands Implementation classes
248 may be provided by module hardware vendors, and
implement either the module-level interfaces for hardware
modules, or provide module-Specific implementations of
Standard interfaces, depending on the commands implemen
tation method chosen by a vendor. The external interfaces of
these classes are defined by pre-determined module level
interface requirements, and backplane communications
library requirements. This layer also provides for extension
of the Standard Set of test commands, allowing the addition
of methods (functions) and data elements.
0064. The Backplane Communications Library 249 pro
vides the interface for Standard communications acroSS the
backplane, thereby providing the functions necessary to
communicate with the modules connected to the test site.
This allows vendor-specific module software to use a Back
plane Driver 250 to communicate with the corresponding
hardware modules. The backplane communications protocol
may use a packet based format.
0065 Tester Pin objects represent physical tester chan
nels and derive from a tester pin interface, denoted here as
ITesterPin. The software development kit (SDK) of an
embodiment of the invention provides a default implemen
tation of ITesterPin, which may be called TesterPin, which
is implemented in terms of a predetermined module-level
interface, IChannel. Vendors are free to make use of Tester
Pin if they can implement their module’s functionality in
terms of IChannel; otherwise, they must provide an imple
mentation of ITesterPin to work with their module.

0.066 The standard module interface, denoted here as
IModule, provided by the tester system of the invention

Nov. 11, 2004

generically represents a vendor's hardware module. Vendor
Supplied module-Specific Software for the System may be
provided in the form of executables Such as dynamic link
libraries (DLLS). Software for each module-type from a
vendor may be encapsulated in a single DLL. Each Such
Software module is responsible for providing vendor-spe
cific implementations for the module interface commands,
which comprise the API for module software development.

0067. There are two aspects of the module interface
commands: first, they serve as the interface for users to
communicate (indirectly) with a particular hardware module
in the System, and Second, they provide the interfaces that
third-party developerS can take advantage of to integrate
their own modules into the site controller level framework.
Thus, the module interface commands provided by the
framework are divided into two types:

0068 The first, and most obvious, are those “commands”
exposed to the user through the framework interfaces. Thus,
a tester pin interface (ITesterPin) provides methods to get
and Set level and timing values, while a power Supply
interface (IPowerSupply) provides methods for powering up
and powering down, for example.

0069. In addition, the framework provides the special
category of the predetermined module-level interfaces,
which can be used to communicate with the modules. These
are the interfaces used by framework classes (i.e., "standard”
implementations of framework interfaces) to communicate
with vendor modules.

0070 However, the use of the second aspect, the module
level interfaces, is optional. The advantage of doing So is
that vendors may then take advantage of the implementa
tions of classes such as ITesterPin and IPowerSupply, etc.
while focusing on the content of Specific messages Sent to
their hardware by implementing the module-level interfaces.
If these interfaces are inappropriate to the vendor, however,
they may choose to provide their custom implementations of
the framework interfaces (e.g., vendor implementations of
ITesterPin, IPowerSupply, etc.). These would then provide
the custom functionality that is appropriate for their hard
WC.

0071. With this open architecture as background, the test
program development System of the present invention is
further described as follows. Section Abelow describes rules
to describe the test environment in which test program will
be used; section B describes the method and rules for test
program development; Section C Specifies the method and
rules to develop a test plan and how to define the main
Structure of the test program; Section D describes how to run
a test program on an open architecture test System; Section
E describes a method and rules for test patterns, Section F
describes rules to describe the timing of the test patterns, and
Section G describes rules for the overall tester operation.
0072 A. Components

0073. The test environment comprises a set of files that
Specify the necessary conditions for bringing up the tester,
and for preparing it to run a Set of tests. The test environment
preferably includes files for:

0074 1. Tester Resource definition: for the specifi
cation of the types of tester resources-and Sup

US 2004/0225.459 A1

ported parameters for Such resources-that are avail
able in the open architecture test System.

0075 2. Tester configuration: for the specification of
Site Controllers, Sites and corresponding mappings.

0076 3. Module configuration: for specification of
the hardware module in each site

0077. 4. Pin descriptions: for naming of DUT pins,
Such as Signal pins, power Supplies, and to describe
pin groups,

0078) 5. Socket: for the specification of DUT pin
to-tester pin assignments

0079 6. Pin options: for the specification of special
options, or modes, for pins.

0080) 7. Pattern lists: for the specification of test
patterns and their Sequence.

0081 8. Patterns: for the specification of test vec
tOrS.

0082) Of the above, items 1-3 are created by ICF (instal
lation and configuration files) with information from a CMD
(configuration management database), and made available at
a well-known location, while items 4-8 are user-specified.
This section provides descriptions for the items 1-6 above;
items 7-8 are described in more detail in section E. Specific
methods and rules are preferably used to develop each of
these components; these methods and rules will be described
in this Section with examples.
0083) A1. The Resource Definition
0084. Each hardware module provides one or more types
of hardware resources (resources for short) for use by the
test system. The tester Resource Definition is preferably
used to declare a set of resource names for the available
resource types, and a Set of parameter names and types
asSociated with each particular resource type. For instance,
the resource name dpin is used to refer to digital tester pins.
These resources have parameters such as VIL (for the input
low voltage), VIH (for the input high voltage), VOL (for the
output low voltage), VOH (for the output high voltage), etc.

66 ss A resource definition file will have the extension "...rsc'.
Shown below is an example resource definition, containing
SOme teSter reSOurceS:

File Resources.rsc

Version 0.1.2:
ResourceDefs
{

digital pins
dpin
{

Low and High voltages for input pins
Voltage VIL, VIH:
Low and High voltages for Output pins
Voltage VOL, VOH:

power supplies
dps
{

PRE WAIT specifies the time to wait after voltage

Nov. 11, 2004

-continued

reached its final value to start pattern
generation. The actual time that the system
will wait is a small system specified range:
PRE WAIT-delta <= actual &= PRE WAIT-delta

PRE WAIT MIN is a minimum amount to wait after voltage
reached its final value to start pattern generation.
It is a system specified range:
PRE WAIT MIN <= actual <=

PRE WAIT MIN+delta

POST WAIT specifies the time to wait after pattern

generation ends to shut down the power. The actual
time that the system will wait is a small system
defined range:
POST WAIT-delta <= actual <= POST WAIT-delta

POST WAIT MIN specifies the time to wait after pattern
generation ends to shut down the power. The actual
time that the system will wait is a small system
defined range:
POST WAIT MIN <= actual <=

POST WAIT MIN+delta

Time PRE WAIT;
Time PRE WAIT MIN;
Time POST WAIT;
Time POST WAIT MIN;
The voltage.
Voltage VCC:

0085. Note that the type of a resource parameter (such as
Voltage or Time) is preferably a standard engineering unit.
Vendors Supplying Special purpose resources that prefer the
Specification of different parameters should provide their
own resource definition files.

0086) Structure for the Resource Definition
0087 Given below is a structure for the resource defini
tion file in accordance with a preferred embodiment of the
present invention:

resource-file:
version-info resource-defs

version-info:
Version version-identifer :

resource-defs:
ResourceDefs { resource-def-list

resource-def-list:
resource-def
resource-def-list resource-def

resource-def:
resource-name resource-params-decl-list

resource-params-decl-list:
resource-params-decl
resource-params-decl-list resource-params-decl

resource-params-decl:
elementary-type-name resource-param-name-list ;

resource-param-name-list:
resource-param-name
resource-param-name-list, resource-param-name

0088 Undefined non-terminals above are specified
below:

0089. 1. version-identifier: A sequence of one or
more characters from the set 0-9a-ZA-Z.). It repre
Sents a version number.

US 2004/0225.459 A1

0090 2. resource-name: A sequence of one or more
characters from the Seta-ZA-Z 0-9), not starting
with a digit. It represents the name of a resource,
Such as dpin or dps.

0091 3. elementary-type-name: A sequence of one
or more characters from the Seta-ZA-Z 0-9), not
Starting with a digit. It represents the name of an
elementary type, Such as Voltage (cf.).

0092 4. resource-param-name: A sequence of one or
more characters from the Set a-ZA-Z 0-9), not
Starting with a digit. It represents the name of a
resource parameter, Such as VIL.

0093 A2. Tester Configuration

0094. The The Tester Configuration is a set of rules that
is preferably used to list the Site Controllers in a particular
System configuration, and the connection of the Site Con
trollers to the Switch Matrix input ports. In the architecture
of an embodiment of the invention, a single Site Controller
can be connected to a single Switch matrix input port. Thus,
in this context, the Switch matrix connections Serve as
implicit identifiers for the Site Controllers in the system
(other configurations are possible). The following is an
example of a typical tester configuration:

Tester Configuration, Sys.cfg

Version 1.2.5;
SysConfig
{

The first field is the hostname of the Site Controller machine:
it can be specified as either a dotted-decimal IP address or a
domain-qualified hostname.

The second field is the switch matrix input port number, which
implicitly serves as the identifier for the Site Controller
connected to it.

Zeus.olympus.deities.org 2:
127.O.O.2 4;
127.O.O.O 1; # SITEC-1
127.O.O.3 3;

0.095 The system configuration for a particular test-floor
System is part of the System profile, and is made available as
the System configuration file SyS.cfg. Note that in one
embodiment the Site Controller connected to port 1
(“127.0.0.0” in the above example) may enjoy special status,
in which it alone configures the Switch Matrix. This “spe
cial Site Controller will be referred to as SITEC-1. Also
note that the site controller address in this example is an IP
address because the Site controllerS may be connected to the
System controller by an internal network. Conversely, the
System controller may be connected to an external network
to access files, Such as pattern data.

0096 Structure for the Tester Configuration

0097. Given below is a structure for the system configu
ration file in accordance with an embodiment of the present
invention:

Nov. 11, 2004

system-config-file:
version-info system-config

version-info:
Version version-identifer :

system-config:
SysConfig site-controller-connection-list

site-controller-connection-list:
site-controller-connection
site-controller-connection-list site-controller-connection

site-controller-connection:
site-controller-hostname input-port ;

site-controller-hostname:
ip-address
domain-qualified-hostname

ip-address:
Octet. Octet. Octet. Octet

domain-qualified-hostname:
ale

domain-qualified-hostname . name

0098 Undefined non-terminals above are specified
below:

0099) 1. version-identifier: A sequence of one or
more characters from the set 0-9a-ZA-Z.). It repre
Sents a version number.

0100 2. octet: A nonnegative integer from 0 to 255
(in decimal notation).

0101 3. name: A sequence of one or more characters
from the Seta-ZA-Z 0-9), not starting with a digit.
It represents a name Segment in a domain-qualified
hostname.

0102) 4. input-port: A nonnegative integer, in deci
mal notation.

0103) A3. The Module Configuration
0104. The Module Configuration allows the specification
of the physical configuration of the tester, e.g., the physical
location and type of each module in a SYSTEM chassis.
This is necessitated by the dynamic nature of the tester bus
configuration, which allows a mapping of the tester bus
address to the physical slot location. This information allows
a hardware discovery process that occurs at System boot-up
time to validate the SYSTEM configuration. Each output
port of the Switch Matrix defines a physical slot, which is
preferably occupied by a single hardware module. Shown
below is an example of a module configuration Specified in
the file Modules.cfg in accordance with an embodiment of
the invention:

Module Configuration File, Modules.cfg

Version 0.0.1;
ModuleConfig
{

A configuration definition which provides information about
the module type that is attached to slots 1-12 and 32-48.
Note that a module might provide more than
a single type of resource.

Slot 1-12, 32-48 # Switch matrix output ports

US 2004/0225.459 A1

-continued

which use the configuration
defined below.

{
VendorID 1; # defined vendor code.
ModuleID 1: # Vendor-defined id code.
ModuleDriver mod1.dll; # Module software.

Resource named dpin specifies channels
for digital data. The name dpin is not
a keyword. It is simply the name of a hardware
resource, and is obtained from the resource
definition file.

Resource dpin
{

MaxAvailable32: # Resource units 1... 32.

Resource analog
{

MaxAvailable16: # Resource units 1... 16.
Disabled 1-8; # Disabled resources 1.8.

So, enabled ones are 9. 16.

A configuration definition which provides information about
the module type that is attached to slots 16-30, 50, and 61-64.

Slot 16-30, 50, 61-64

units.

Resource dpin
{

MaxAvailable32: # Max available resource

Disabled 3, 30-32:# Disabled resources.

ModuleDriver “module two.dll:
WendorD 2:
ModuleID 2:

A configuration definition, which provides information about
the module type that is attached to slots 65-66.

Slot 65-66
{

ModuleID 4; # DPS module with 8
supplies.

ModuleDriver moda.dll;
WendorD 1;

Resource type dips specifying resource units for a
Device Power Supply

Resource dps
{

MaxAvailable4:
Disabled 1;

0105. As mentioned earlier, in one embodiment a
Slot refers to connector through which a hardware
module can be connected, Such as an output port of
the Switch matrix. Each configuration definition pro
vides information about the module that may be
attached to one or more slots. The VendorD speci
fied in a configuration definition is a unique ID
associated with a vendor. The ModuleID refers to a
type of module provided by this vendor. There may
be several instances of the same ModuleID in a tester
configuration. The ModuleDriver refers to a vendor

Nov. 11, 2004

supplied DLL to service the module. Finally, the
Resource refers to the units serviced by this module,
and provides a name for the resource type; the
resource name is obtained from the resource defini
tion file.

0106 The above example describes three configuration
blocks in a module configuration file. In one implementa
tion, the first configuration block, slots 1-12 and 32-48 are
serviced by a module produced by vendor 1. This vendor
provides the module, the identifier “1” to refer to this
module type, and the module driver library to control the
module. This module can provide two types of resource
units, one designated by the resource name “dpin', with
preferably a total number of 32 resource units (i.e., “chan
nels'), all of which are available, and the other designated by
the resource name “analog, with a total number of 16
resource units, of which only 9 through 16 are available. The
Second and third configuration blocks are Specified in a
manner Similar to the first configuration.
0107 Note that the provision for allowing channels to be
denoted as “disabled' is to allow for the identification of
defective resource units on modules that are still functional
otherwise. Note also that a configuration block may have
one or more slot identifiers. When a block has more than a
Single Slot identifier, then the identified slots are Said to be
cloned.

0108. The module configuration file, Modules.cfg, is
created as part of the system profile by the ICM (installation
configuration management System) (with test-floor-specific
information provided by the user), and made available at a
well-known location. The ICM is a utility that can be local
to the test System, e.g., on the System controller, or reside
elsewhere on the network to which the system controller is
connected. The ICM manages the CMD (configuration man
agement database), and typically updated on hardware
changes to the System configuration. ICM allows the user to
configure the System, e.g., Site controllers and modules. The
CMD is a database that stores the configurations. For actual
tester configuration/operation ICM generates the configura
tion files, e.g., module configuration, and other files, and
copies them and associated files, Such as particular module
DLLS, onto the tester.

0109) Structure for Module Configuration
0110 Below is the module configuration structure in
accordance with the preferred embodiment:

file-contents:
version-info module-config-def

version-info:
Version version-identifier ;

module-config-def:
Module(Config slot-entry-list

slot-entry-list:
slot-entry
slot-entry-list slot-entry

slot-entry:
Slot positive-integer-list slot-info

slot-info:
required-config-list

required-config-list:
required-config
required-config-list required-config

US 2004/0225.459 A1

-continued

required-config:
VendorD id-code :
ModuleID id-code :
ModuleDriver file-name :
Resource resource-name max-spec disabled-spec }

max-spec:
Max Available positive-integer ;

disabled-spec:
Disabled positive-integer-list ;

positive-integer-list:
positive-integer-list-entry
positive-integer-list, positive-integer-list-entry

positive-integer-list-entry:
positive-integer
positive-integer-number-range

positive-integer-number-range:
positive-integer - pos-integer

0111 Undefined non-terminals above are described
below:

0112 1. version-identifier: A sequence of one or
more characters from the set 0-9a-ZA-Z., where the
first character must be from the set 0-9).

0113 2. positive-integer: A sequence of one or more
characters from the set 0-9), not starting with a 0.

0114 3. id-code: A sequence of one or more char
acters from the set a-ZA-Z 0-9).

0115 4. resource-name: A sequence of one or more
characters from the seta-ZA-Z 0-9), where the first
character must be from the Seta-ZA-Z.

0116 Comments are supported; comments start with the
'#' character, and extend to the end of the line.
0117 A4. Pin Descriptions
0118. The DUT pin descriptions are described using a Pin
Descriptions file. The user makes available a description of
the DUT pins in a pin description file, which has the
extension pin. This plain text file contains, at least the
following: a listing of the DUT pin names; and initial
definitions of named pin groups, which make use of the
defined DUT pin names (“initial” since they can be subse
quently modified or added to, etc., programmatically).
0119) The separation of this data specification from the
Test Plan description allows general reuse of the DUT pin
definitions, and allows the pattern compiler to derive pin
names (required for resolving references to pin names used
in vector Specifications) from the pin description file, with
out having the process tied to a specific Test Plan.
0120 Shown below is an example pin description file:

Pin description file, myDUTpin.

Note that this implicitly imports the resource
configuration file.Resources.r.sc.

Version 1.1.3a;
PinDescription

Resource dpin

Nov. 11, 2004

-continued

A3:

This syntax expands to the names “ABUS 1 and
“ABUSI2

ABUS 1:2:

BBUS 1:8:
DIR;

Group Grp1

Group Grp2

DIR, CLK, AO, A1, A2, A3, A4, BBUS1:4

A5,

The following line will expand to
#"DIR, A1, A2, A4, A5, BBUS2:

Grp 1 - CLK - AO - A3 - BBUS 1 - BBUSI3:4) + A5,
BBUSI5:8

Resource dps
{

vcc1:
vcc2:
vcc3:
Group PSG

vcc1, vicc2

0121 resource type blocks, to allow the compiler to
correlate pin and pin group definitions with the allowable
parameter Settings for Levels, etc.
0.122 The following points about pin descriptions should
be noted:

0123 1. Pin groups and pins share the same
namespace and have global (i.e., Test Plan) Scope.
One of the consequences of the global Scoping of
these names is that pins and pin groups cannot use
duplicated names, even when declared in different
resource blockS.

0.124 2. At least one Resource definition is required
in the pin description file.

0.125 3. At least one pin name should be defined in
each resource.

0.126 4. Pin and group names are required to be
unique within resource boundaries.

0127 5. The same pin or group name can be defined
for two or more resources. However, duplicates
within the same resource are ignored.

0128 6. All pin names and group names that appear
in a group definition should have been already
defined within that resource.

0129. 7. Group definitions, if given, should have at
least one pin name or group name (i.e., a group
definition cannot be empty).

0.130) 8. A pin group definition can include a refer
ence to a previously-defined pin group.

US 2004/0225.459 A1

0131 9. A pin group definition can include set
operations Such as addition and Subtraction of pre
viously defined pins and/or pin groups.

0132) Structure for the Pin Descriptions
0133) Given below is the structure for the pin descrip
tions in accordance with the preferred embodiment of the
present invention:

pin-description-file:
version-info pin-description

version-info:
Version version-identifer :

pin-description:
PinDescription { resource-pins-def-list

resource-pins-def-list:
resource-pins-def
resource-pins-def-list resource-pins-def

resource-pins-def:
Resource resource-name pin-or-pin-group-def-list

pin-or-pin-group-def-list:
pin-or-pin-group-def
pin-or-pin-group-def-list pin-or-pin-group-def

pindef-or-pin-groupdef:
pin-def;
pin-group-def

pin-def:
pin-name
pin-name index : index

pin-group-def:
Group pin-group-name pin-group-def-item-list

pin-group-def-item-list:
pin-def
pin-group-def-item-list, pin-def

0134 Undefined non-terminals above are specified
below:

0.135 1. version-identifier: A sequence of one or
more characters from the set 0-9a-ZA-Z.). It repre
Sents a version number.

Nov. 11, 2004

0.136 2. resource-name: A sequence of one or more
characters from the set a-ZA-Z 0-9 not starting
with a digit. It represents the name of a resource,
Such as dpin or dps.

0.137 3. pin-name: A sequence of one or more
characters from the set a-ZA-Z 0-9 not starting
with a digit. It represents the name of a pin A0.

0.138 4. pin-group-name: A sequence of one or more
characters from the set a-ZA-Z 0-9 not starting
with a digit. It represents the name of a pin group
ABUS

0.139 5. index: A nonnegative integer. It represents
the lower bound or an upper bound on a group of
related pins.

0140 A5. The Socket

0.141. The Socket specifies the mapping between DUT
pin names and physical tester pin (channel) assignments (the
physical tester channel numbers are defined in the module
configuration file). Note that different Sockets can be used to
support different DUT packages and different load board
configurations, etc. For a multi-DUT System, the Socket
definitions for DUT/channel assignments can Support "clon
ing of a basic Socket to multiple sites. However, different
Sockets (i.e., different physical mappings for the same
logical pins) should respect site module partitions. Thus, in
addition to providing DUT pin to tester channel assign
ments, the Socket also effectively defines the Site partition
ing. A Socket file could thus contain definitions for Several
individual site Sockets. Shown below is a Sample Socket file
defining three DUT sites:

Version 1.1.3
SocketDef

DUTType Pentium3
{

PinDescription dutP3-pin; # The pin description file for
Pentium3

DUT 2 # Uses the full-specification syntax
{

SiteController 1; # Switch Matrix input port
Resource dpin

The CLK pin is assigned to resource dpin,
slot 2, resource unit (channel) 13.

CLK 2.13;

The DIR pin is assigned to resource dpin,
slot 5, resource unit 15.
DIR 5.15;

The following statement will be expanded to
BBUS75.4
BBUS65.5
BBUSI55.6

So for example, the pin sequence BBUS7).

US 2004/0225.459 A1
11

-continued

BBUS6),
BBUSI5 is assigned to the same slot 5, and to
resource units 4, 5 and 6 respectively.

BBUS7:5 5.4:6):
BBUS 1:4 7.21:18:
BBUS8 9.16;

Resource dps
{

The V1 pin is assigned to resource dps,
slot 1, resource unit (channel) 1.

VCC1 1.1;

The VCC2 pin is assigned to resource dps,
slot 1, resource unit (channel) 2.

VCC2 1.2:

} # End DUT 2
DUT 1 # This is “cloned from DUT 2 above
{

SiteController 1; # Same Site Controller as for DUT 2
Resource dpin
{

SlotOffset 1: # Offset value for slots

Resource dps
{

SlotOffset 10: # Offset value for slots
}

The offset syntax above indicates that the slot/resource
unit assignments are “cloned from the first DUT defined
for this DUTType, i.e., DUT 2, with the slots offset by
the SlotOffset values.

Looking at the definition of dpin resource units for
DUT 2, CLK is bound to slot 2. Hence, for the present
DUT, CLK is bound to slot 2 + 1 = 3.

Some of the new bindings in effect due to the offset
assignments are shown in the table below:

Pin Resource RUnit Slot

13 2 + 1
= 3

DIR dpin 15 5 + 1
= 6

BBUS8 dpin 16 9 - 1 = 10
WCC1 dps 1. 1 + 10 = 11
WCC2 dps 2 1 + 10 = 11

} # End DUT 1
} # End DUTType Pentium3
DUTType 74LS245
{

PinDescription dutLS.pin:
DUT 3 disabled # This DUT site is disabled, and will be

ignored
{

} # End DUTType 74LS245
} # End SocketDef

0142. The following points about a Socket file should be
noted:

0.143 1. The Socket file uses information from both
module configuration file, and the user's pin descrip

Nov. 11, 2004

tion files for the given DUT types (see specification
for PinDescription in the example above). The mod
ule configuration information is made implicitly
available to the Socket file compiler. The socket file

US 2004/0225.459 A1

compiler is a Subpart of the pattern compiler that
reads and analyzes the Socket DUT name to tester
channel mapping, and the module configuration and
pin description files to Set up the mapping of tester
pins to DUT pins used by the pattern compiler.

0144) 2. At least one DUT site definition per DUT
type is required, and it must use the full-specification
Syntax, as opposed to the SlotOffset Syntax. If more
than one DUT site definition is provided for the same
DUT type, the first one must use the full-specifica
tion Syntax.

0145 3. Each subsequent DUT site definition (for
the same DUT type) may use either the full-speci
fication syntax or the SlotOffset syntax, but not both.
This allows individual sites to deviate from a stan
dard pattern (due to, for example, inoperative chan
nels).

0146 4. The bindings derived from the SlotOffset
syntax are defined relative to the first site defined for
that DUT type (which uses the full-specification
Syntax).

0147 5. DUT sites do not need to be declared in the
actual physical order. This allows a case where the
first (physical) site deviates from the pattern.

0.148 6. The DUT site IDs are required to be unique
across the entire Socket (i.e., across all DUT types
defined therein).

0149 7. At least one resource definition is required
per DUT site definition.

0150. 8. The site definitions must be used in con
junction with the module configuration to determine
if the test configuration is Single-site/single-DUT or
single-site/multi-DUT.

0151 9. In all cases, the Socket file should specify
a set of DUT channel mappings which are consistent
with the pin description file and the module configu
ration file.

0152 10. In some cases, it will be desirable to allow
the Socket definition to Specify that one or more
DUT channels are disconnected from the tester (for
example, by designating the assigned physical chan
nel as one with the special ID "0.0”). In this case,
these DUT channels may be used and referenced in
the context of the test program. Operations on Such
channels will result in System warnings (but not
errors.). At load time, pattern data for disconnected
channels will be discarded.

0153 Structure for the Socket
0154 Below is the structure for the module configuration
in accordance with a preferred embodiment of the present
invention:

socket-file:
version-info socket-def

version-info:
Version version-identifer :

socket-def:
SocketDef device-specific-socket-def-list

Nov. 11, 2004

-continued

device-specific-socket-def-list:
device-specific-socket-def
device-specific-socket-def-list device-specific-socket-def

device-specific-socket-def:
DUTType DUT-type-name pin-description-file dut-info-list

pin-description-file:
PinDesc pin-description-file-name;

dut-info-list:
dut-info
dut-info-list dut-info

dut-info:
DUT dut-id site-controller-input-port resource-info-list

site-controller-input-port:
SiteController switch-matrix-input-port-number ;

resource-info-list:
resource-info
resource-info-list resource-info

resource-info:
Resource resource-name resource-item-unit-assignment-list

resource-item-unit-assignment-list:
resource-item-unit-assignment
resource-item-unit-assignment-list resource-item-unit-assignment

resource-item-unit-assignment:
resource-item-name slot-number. resource-unit;
resource-item-name resource-item-index slot-number.

resource-unit-index :
resource-item-name resource-item-index-range \

slot-number. I resource-unit-index-range ;
resource-item-index-range:

resource-item-index : resource-item-index
resource-unit-index-range:

resource-unit-index : resource-unit-index

O155 Undefined non-terminals above are specified
below:

0156 1. version-identifier: A sequence of one or
more characters from the set 0-9a-ZA-Z.). It repre
Sents a version number.

O157 2. DUT-type-name: A sequence of one or
more characters from the set 0-9a-ZA-Z., where the
first character must not be from the set 0-9). It
represents a type of DUT, such as Pentium3.

0158. 3. pin-description-file-name: The simple
name of a file, not including its directory name, but
including all extensions. The filename is of the
Syntax recognized by the host operating System, and
allows blanks and other characters if enclosed in
quotes.

0159 4. Switch-matrix-input-port-number: A nonne
gative integer in decimal notation to represent the
port number of the input port connected to the Site
Controller.

0160 5. dut-id: A nonnegative integer in decimal
notation to identify an instance of a DUT.

0.161 6. resource-name: A sequence of one or more
characters from the set 0-9a-ZA-Z., where the first
character must not be a digit. It represents the name
of a resource defined in a resource file.

0162 7. resource-item-name: A sequence of one or
more characters from the set 0-9a-ZA-Z., where the
first character must not be a digit. It represents the
name of a resource unit, Such as a pin or a pin group.

US 2004/0225.459 A1

0163 8. resource-item-index: A nonnegative integer
in decimal notation that represents a particular mem
ber of a group of resource items. When in the context
of a resource-item-indeX-range it represents the
lower or upper bound of a contiguous Sequence of
resource item group.

0164. 9. resource-unit-index: A nonnegative integer
in decimal notation that represents a particular mem
ber of a group of resource units (channels). When in
the context of a resource-unit-indeX-range it repre
Sents the lower or upper bound of a contiguous
Sequence of resource unit group.

0.165 A6. Pins
0166 Note that in addition to logical pin name to physi
cal channel mappings (as provided by the Socket), Several
attributes can be used for Specifying the tester resources. For
example, options might be used to define particular hard
ware configurations for channels, which may be test-spe
cific, Vendor-specific, and/or test System-specific. These will
be described using the Pin Mode Options, and made avail
able via a Pin Mode Options file.
0167 A Pin Mode Option definition would support the
configuration of Special options or modes for a tester chan
nel. This could, for example, be used to Select and configure
channel multiplexing. It is preferred that the Pin Mode
Option only be used as part of a Test Plan initialization flow,
since it might require significant channel configuration. The
Pin Option Syntax Supports vendor-defined options. An
example is shown below:

PinModeOptions
{

clock IN double:
a0 OUT single;

}:

0168 Test Environment Configuration
0169. As pointed out earlier, the resource definition file
(Resources.rSc), the System configuration file (SyS.cfg) and
the module configuration file (Modules.cfg) are preferably
made available at a “well-known location. This “well
known location is the directory specified by the value of the
system environment variable Tester ACTIVE CONFIGS.
For example, if the value of Tester ACTIVE CONFIGS is
the directory F:\Tester SYS\configs, the system will expect
the following files to be present:

0170 F:\Tester SYS\configs\Resources.rsc
0171 F:\Tester SYS\configs\Sys.cfg
0172 F:\Tester SYS\configs\Modules.cfg

0173 During installation, the Installation and Configu
ration Management System (ICM) residing on the host
computer will preferably set the value of Tester ACTIVE
CONFIGS. Every time the ICM creates a new version of

one of the above files, it will place the new version in the
location pointed to by Tester ACTIVE CONFIGS. Note
that in addition to the above three files, other system

13
Nov. 11, 2004

configuration files Such as the Simulation configuration file
are also placed in the location pointed to by Tester AC
TIVE CONFIGS
0174 B. Rules for Test Program Development
0.175 One of the two principal end-user oriented com
ponents of the tester System is the test environment. The
other component is the programming facility that the tester
makes available for the end user (i.e., test engineer and test
class developers).
0176) The principal component of the programming envi
ronment is the test plan. The test plan uses test classes
(which are different implementations of a test interface
denoted Test), which realize the separation of test data and
code for particular types of tests.
0177. The plan may be written directly as a C++ test
program, or described in a test plan description file, which
is processed by a Test Program Generator (translator 402) to
produce object-oriented code, Such as C++ code. The gen
erated C++ code can then be compiled into the executable
test program. The data required for populating a test class
instance, Such as levels, timings, etc., are Specified by the
user in the test plan description file.
0.178 A test program contains a set of user written files
that Specify details for running a test on a device. An
embodiment of the invention includes sets of rules that
permit a user to write these files using C++ constructs.
0179. One of the requirements according to the embodi
ment of the invention is to follow the modularity of the open
architecture test System. A modular development permits
users to write individual components dealing with different
aspects of the test, and then permits these components to be
mixed and matched in various ways to yield a complete test
program. A test program in accordance with the preferred
embodiment of the present invention comprises a set of files
as follows:

0180)
0181)
0182
0183)
0184
0185
0186 files *.ph for a pre-header, files for custom
functions and test classes.

files *.usrV for user variables and constants,
files *.Spec for Specification Sets;
files *.lvl for levels;
files *...tim for timings;
files *.tcg for test condition groups,
files *.bdefs for bin definitions;

0187 files *.ctyp for custom types;
0188 files *.cvar for custom variables; and
0189 files *...tpl for test plans.

0190. The file extensions above are a recommended
convention facilitating categorization of files. A Single test
program will preferably comprise a single test plan file, and
the files it imports. An “import” refers to other files with data
that is either directly referenced by the importer (the file that
Specifies the import), or is imported by Some other file
directly referenced by the importer. The test plan file could
define globals, flows, and other Such objects within it, or it
could import this information from other files. These rules
allows any of the above components to be either in their own

US 2004/0225.459 A1

individual files, or directly inlined into a test plan file. Note
that the test plan is similar in concept to a C-language main(
) function.
0191 Test Program Features

0.192 User Variables and Constants,
0193 Specification Set,

0194 Levels,
0195 Timings,

0196) Test Conditions
0197) Bin Definition
0198 Pre-Headers
0199 Custom Types

0200 Custom Variables
0201 Test Plan

0202 Test program identifiers preferably start with an
upper or lower case alphabetical character, and can Subse
quently have any number of alphabetical, numerical, or
underScore () characters. It has several keywords which are
provided in the description given below. These keywords are
Visually identified in code in this document using a bold
font, Such as Version. Keywords are reserved, and preferably
not be used as identifiers. There are Several Special Symbols
Such as {, }, (,), ..., and others which are described below.
0203 Elaboration of Test Objects
0204 An import of a test description file enables the
importing file to refer to names of objects made available by
the imported file. This allows the importing file to reference
the objects named by the imported file. Consider a socket file
aaa...Soc that imports a pin description file XXX.pin. There
could be another bbb.soc file that also imports XXX.pin.
However, neither of these imports cause the objects
described by XXX.pin to come into existence. They merely
reference objects that are already assumed to exist.
0205 The question arises: when do such objects come
into existence? This is where the Test Plan file is fundamen
tally different. In an analogy to C, it would be a file with a
main() routine in it. An "Import Statement in test plan file
will elaborate these objects, that is, cause these objects to
come into existence. The test plan mickey.tpl Shown below
causes the objects in XXX.pin and aaa...Soc to be elaborated:

File for Mickey's TestPlan
Version 3.4.5;

These import statements will actually cause the
objects to come into existence:

Import XXX.pin; # Elaborates pin and pin-group objects
Import aaa...soc; # Elaborates site socket map objects
Other imports as necessary

Flow Flow 1

Nov. 11, 2004

0206. An import of XXX.pin in the test plan causes all the
pin and pin group objects declared in XXX.pin to be elabo
rated. This is described as follows: “the file XXX.pin is
elaborated”. It is not necessary for a Test Plan to directly
import all the files that need to be elaborated. A file X is
imported by a file y if either of the two statements below is
true:

0207 1. y has an import statement that names x; or
0208 2. X is imported by Z, and y has an import
Statement naming Z.

0209 When a test program is compiled, it will elaborate
all the objects in the files that are imported by the test plan.
The Set of files imported by a test plan are topologically
sorted to yield an order in which the files are elaborated. The
Set of files imported by a test plan is referred to as the import
closure of the test plan. If the import closure of a test plan
cannot be topologically Sorted, then there must be an imports
cycle. Such a situation is erroneous, and will be rejected by
the compiler.
0210 User Variables and Constants
0211 Global variables and constants will be defined
using the User Variables and Constants. Constants are
objects whose value is bound at compile time, and cannot be
changed. The maximum integer value, for instance, would
be a constant. On the other hand, the expression bound to
variables can change at runtime via an API.

0212 Integer,
0213 UnsignedInteger,
0214) Double,
0215 String,
0216 Voltage in Volts (V),
0217 VoltageSlew in Volts per Second (VPS),
0218 Current in Amps (A),
0219) Power in Watts (W),
0220 Time in Seconds (S),
0221) Length in Meters (M),
0222 Frequency in Hertz (Hz),
0223 Resistance in Ohms (Ohms), and
0224 Capacitance in Farads (F).

0225. The types Integer, Unsigned Integer, Double, and
String are referred to as Basic Types. The Basic Types have
no measurement units. The Elementary Types which are not
basic types are a Double, with an associated measurement
unit and a Scale. The Scaling Symbols are common engi
neering Scaling Symbols:

0226 p (pico) for 10-12, as in pF (pico-farad)
0227 n (nano) for 10-9, as in nS (nano-second)
0228 u (micro) for 10-6, as in uS (micro-second)
0229 m (milli) for 10-3, as in mV (milli-amp)
0230 k (kilo) for 10+3, as in kOhm (kilo-ohm)
0231 M (mega) for 10+6, as in MHz (mega-hertz)
0232 G (giga) for 10+9, as in GHz (giga-hertz)

US 2004/0225.459 A1

0233. A separate file with user variables and constants
will have the extension.usrV. Below is an example of a file
with Some global constants. An example of a file with Some
variables is given later.

--
File limits.usrv
--
Version 1.0.0;

This UserVars collection declaration declares a set of
globally available variables and constants.

UserVars

Some constant Integer globals used in various places.
Const Integer MaxInteger = 2147483.647;
Const Integer MinInteger = -2147483.648;
Smallest value such that 1.0 + Epsilon = 1.0
Const Double Epsilon = 2.220446.04925.03131e–016:
Some important constants related to Double
Const Double MaxDouble = 1.7976931348623158e--308;
Const Double MinDouble = - MaxDouble:
Const Double ZeroPlus = 2.2250738585072014e–308;
Const Double ZeroMinus = - ZeroPlus:

0234. The set of UserVars declared above are considered
definitions of the variable on the left of the '='. As a result,
a single occurrence of the definition of a variable or constant
is preferred, and it should be initialized.
0235. As mentioned earlier, constants should not be
changed once they are defined. The expression bound to a
constant can involve previously defined constants and literal
values. Variables, on the other hand, can be changed via an
API. The expression bound to a variable can involve pre
viously defined variables, constants and literal values.
0236 Each variable is bound to an expression object
which is maintained at runtime. This provides the capability
of changing the expression associated with a variable at
runtime, and then re-evaluating all the variables. The expres
Sion object is a parsed form of the right hand Side of a
variable or constant definition. In one embodiment, no
facility is provided for the changing of constants at runtime.
Their value is preferably fixed at compile time.
0237 Any number of such files with globals can exist in
the import closure of a test plan. While the above globals file
is a Set of numeric limits, here is a set of engineering globals
using engineering measurement units, and Some random
user variables:

File myvars.usrv

Version 0.1;

This declares a UserVars collection of some engineering
globals.

UserVars MyVars
{

Engineering quantities.
Const Voltage VInLow = 0.0;
Const Voltage VIn High = 5.0;

0 Volts
5 Volts

Nov. 11, 2004

-continued

400 milliVolts
5.1 Volts
2 nanoseconds

1 nanosecond
10 kilo Ohms

Const Voltage VOutLow = 400.0 mV;
Const Voltage VOutHigh = 5.1;
Const Time DeltaT = 2.0E-9:
Const Time ClkTick = 1.Ons:
Const Resistance R10 = 10.0 kOhms;
Some variables are declared below.
Current ILow = 1.0 mA:
Current IHigh = 2.0 mA:
Power PLow = ILow * VInLow:
Power PHigh = IHigh * VInHigh;

An array of low values for all A bus pins.
The vil for AO will be in ABusVilO, for A1
in ABusVil1, and so on.

Voltage ABusVil8 = {1.0, 1.2, Others = 1.5}:

1 milliamp
2 milliamp
Low power value
High power value

0238. The compiler preferably checks that units and types
match up. Note that Since a Voltage times a Current yields
a Power, the equations for PLow and PHigh above will
compile. However, a Statement Such as the following will
typically not compile:

Does not compile because a Current and a Voltage cannot be added
to yield a Power.
i
Power Pxxx = IHigh + VIn High;

0239). The compiler will allow certain automatic type
conversions:

Power Pxxx = 2; # Set the power to 2.0 watts
Integer Y = 3.6; # Y gets assigned 3
Power Pyyy = Y; # Pyyy gets assigned 3.0 watts
Doubl Z = Pyyy; # Pyyy gets converted to a unitless Double

0240 Explict type conversion to Double, UnsignedInte
ger and Integer is also permitted:

Power Pxxx = 3.5;
Explicit type conversion is allowed, but not required
X becomes 3.5
Double X = Double(Pxxx);
Integer Y = Integer(PXXX);

X becomes 3.5
Y becomes 3

0241 Conversion between unrelated types is also pos
Sible, by converting to an intermediate basic type:

Power Pxxx = 3.5;
Explicit type conversion is required.
Length L = Double(Pxxx); # L becomes 3.5 meters
Voltage V = Integer(Pxxx); # V becomes 3.0 Volts.

0242. The TestPlan object provides a UserVars class
which is a collection that contains names and their associ

US 2004/0225.459 A1

ated expressions, values, and types. User variables can go
into a Default User Variables Collection, or into a Named
User Variables Collection. The UserVars declarations in the
example above, which have no specified name, go into the
default collection. However, it is possible to explicitly name
a collection as follows:

Declare X and Y in the MyVars UserVars collection.
UserVars MyVars
{

Integer X = 2.0;

Refers to the above X, and to the globally
available MaxInteger from the default
UserVars collection.

Integer Y = MaxInteger - X:

Declare X, Y1 and Y2 in the YourVars UserVars collection.
UserVars YourVars

{
Integer X = 3.0;
Refers to the X from MyVars.
Integer Y1 = MaxInteger - MyVars.X;
Refers to the X declared above.
Integer Y2 = MaxInteger - X:

More variables being added to the MyVars collection
UserVars MyVars
{

Refers to X and Y from the earlier declaration
of MyVars.

Integer Z = X + Y:

0243 Name resolution within a UserVars collection pro
ceeds as follows:

0244 If a name is qualified—i.e., a name comprises
two Segments Separated by a dot-then the variable
comes from a named user variables collection,
named by the Segment that precedes the dot. So,
MyVars.X above refers to the X in the My Vars
collection. The name “ UserVars” can be used to
explicitly denote the default user variables collec
tion.

0245. If the name is not qualified, and there is a constant
or variable of the same name in the present collection, then
the name resolves to that constant or variable.

0246. Otherwise, the name resolves to a constant or
variable in the default user variables collection.

0247 Evaluation of a block of definitions in a UserVars
collection can be thought of happening Sequentially, from
the first definition to the last. This may require each variable
being defined before it is used.
0248. Furthermore, there could be several blocks of defi
nitions for a UserVars collection, each of which are defining
several variables. All of these blocks of definitions can be
thought of as being evaluated in declaration order in the test
plan, and then the variables of each block are also checked
in declaration order.

0249 Finally, there could be several UserVars collec
tions, each of which define variables over several blocks of

Nov. 11, 2004

definitions. All of the variables again can be thought of as
being initialized in declaration order. Thus, in the above
example, the evaluation order would be: My Vars. X,
My Vars.Y, YourVars.X, YourVars. Y1, YourVars.Y2,
My Vars.Z.

0250 When a UserVars collection uses a variable from
another collection, it preferably uses just the raw value of the
variable. No dependency information is maintained between
collections. Thus, dependency based re-evaluation can be
limited to a single collection.

0251 Each user variables collection refers to an instance
of a C++ UserVars class. The default object of the C++
UserVars class is named “ UserVars”. Variables in an User
VarS declaration that is unnamed are from the default user

variables collection, and are added to this default object.
Variables in a named user variables collection are added to
an object of the C++ UserVars class having that name. In the
above example, the “My Vars' C++ object will end up
having the variables X, Y and Z.

0252 C++ for User Variables

0253) User variables are implemented as a collection of
n-tuples having the name String, a const/var boolean, the
type as an enumerated value and the expression as an
expression tree. The expression of a name can be set by a
call:

enum ElemenaryType Unsigned IntegerT, IntegerT,
DoubleT, VoltageT, ...};

Status setExpression (const String& name,
const bool isConst,
const elementaryType,
const Expression& expression);

0254 The type Expression is a type that is a parsed form
of the text corresponding to the right hand Side of an
assignment. There will be a globally available instance of
UserVars. For example, the set of user variables in limit
S.usrV (cf. page) is implemented by the set of calls shown
below:

UserVars.setExpression (“MaxInteger', true, IntegerT.
Expression(2147483.647));

UserVars.setFxpression(“MinInteger', true, IntegerT,
Expression(-2147483.648));

UserVars.setFxpression (“Epsilon, true, DoubleT,
Expression(2.22044604925.03131e–016));

UserVars.setFxpression(“MaxDouble', true, DoubleT,
Expression(1.7976931348623158e+308));

UserVars.setFxpression(“MinDouble, true, DoubleT,
Expression(“- MaxDouble));

UserVars.setFxpression(“ZeroPlus, true, DoubleT,
Expression(2.2250738585072014e–308));

UserVars.setFxpression(“ZeroMinus, true, DoubleT,
Expression(“- ZeroPlus”));

US 2004/0225.459 A1

0255 Below are the C++ statements that would be
executed for the variables declared in my varS.uSrV:

myVars.setFxpression(“VInLow, true, VoltageT,
Expression (0.0));

Expression(“VIn High', true, VoltageT,
Expression (5.0));

Expression(“DeltaT, true, TimeT,
Expression (2.0E-9));

Expression(“CIkTick, true, TimeT,
Expression (1.0E-9));

Expression(“R10, true, ResistanceT,
Expression (10.OE+3));

Expression(“ILow, false, CurrentT,
Expression (1.0E-3));

Expression(“IHigh', false, CurrentT,
Expression (2.0E-3));

Expression(“PLow, false, PowerT,
Expression (“ILow * VInLow));

Expression(“PHigh', false, PowerT,
Expression (“IHigh * VIn High”));

Expression(“ABusVilO, false, VoltageT,
Expression (1.0);

Expression(“ABusVil1, false, VoltageT,
Expression (1.2));

Expression(“ABusVil2, false, VoltageT,
Expression (1.5));

Expression(“ABusVil3, false, VoltageT,
Expression (1.5));

Expression(“ABusVil4, false, VoltageT,
Expression (1.5));

Expression(“ABusVil5, false, VoltageT,
Expression (1.5));

Expression(“ABusVil6, false, VoltageT,
Expression (1.5));

Expression(“ABusVil7, false, VoltageT,
Expression (1.5));

myVars.se

myVars.se

myVars.se

myVars.se

myVars.se

myVars.se

myVars.se

myVars.se

myVars.se

myVars.se

myVars.se

myVars.se

myVars.se

myVars.se

my Vars.se

myVars.se

0256 In the code above, the Expression class preferably
has constructors that represent the parsed form of the
expression. Expression has Several constructors, including
one that takes a String literal and parses it, and another that
takes a String literal to use just as a String literal. These are
distinguished by additional parameters which are not speci
fied above for the sake of readability.
0257 User variables in the default user variables collec
tion will be managed by the UserVars object of class
UserVars. User variables in a named user variables collec
tion XXX will be managed by a UserVars object named XXX.
0258 Runtime API for UserVars
0259. The C++ UserVars class that contains these names
and expressions exports an application programming inter
face (API) to evaluate and modify these values at runtime.
Modification of the expressions associated with UserVars
also addresses the issue of when the UserVars will be
reevaluated, and what the impact of the evaluation will be.
0260 Consider first the issue of when the re-evaluation of
UserVars as a result of a change should be triggered. If it is
triggered immediately upon making a change to the expres
Sion, then the user would not be able to make a Series of
related changes prior to triggering the reevaluation. Conse
quently, re-evalutation is triggered by an explicit call by the
USC.

0261) The impact of reevaluation can be considered next.
There are three kinds of re-evaluation that are available in
accordance with the preferred embodiment:

17
Nov. 11, 2004

0262 UserVars Collection Re-evaluation is reevaluation
limited to a single UserVars collection. The semantics of this
operation is to re-evaluate all the variables of this collection
Once again.

0263. UserVars Targeted Re-evaluation is reevaluation
limited to a change to the expression bound to a Single name.
This would enable the user to change the expression of a
Single name, and cause the re-evaluation of the collection to
take place, taking into consideration only this particular
change.

0264. User Vars Global Re-evaluation is re-evaluation of
all UserVars collections. This basically triggers a re-evalu
ation of all the UserVars collections in declaration order and
is quite costly.

0265 All of the above re-evaluations will re-evaluate
dependent objects Such as Levels, Timings, etc. after
reevaluating the UserVars. Dependent objects will have a
dirty bit that represents that it needs re-evaluation. Any time
a USerVars collection is programmatically changed, it will
also set the dirty bit on all dependent objects. This will
trigger re-evaluation of the dependent objects.

0266. In summary, named UserVars collections help con
tain the re-evaluation impact problem. Re-evaluation is
normally limited to a single collection. A simple way of
using UserVars would be to only use the default UserVars
collection. That way, the ripple effect of making a change
can happen to all UserVars. This ripple effect can be limited
by having Several named USerVars collections.

0267 Multiple collections can refer to variables from one
another, but the values bound to the variables are bound at
time of use. No dependency is maintained between UserVars
collections.

0268 For each elementary type XXX (UnsignedInteger,
Current, Voltage, etc.), a method to get the value:

0269 Status getXXXValue(const String& name,
XXX& value) const;

0270. Note that there is no method to directly set a value,
it is done through the call to Set the expression, followed by
a call to reevaluate Collection().
0271 Methods to get and set the expression. The setEx
pression() call can also be used to define a new variable
which was not hitherto defined.

enum elementaryType

Status getExpression (const String& name,
Expression& expression) const;

Status setExpression (const String& name,
const bool isConst,
const elementaryType,
const Expression& expression);

UnsignedIntegerT, IntegerT, DoubleT, VoltageT, ...

0272. The setExpression() call can fail if the expression
results in a circular dependency. For instance if the follow
ing two calls were made, the Second call would fail with a
circular dependency failure

US 2004/0225.459 A1

0273 setExpression(“X”, true, IntegerT, Expres
sion(“Y+1”));

0274 setExpression(“Y”, true, IntegerT, Expres
sion(“X+1”));

0275. This is because the values bound to names are
equations and are not assignments. When the value of a
variable is changed, a method is provided to reevaluate all
the directly and indirectly dependent names. Equations Such
as the above pair result in a circular dependency which is not
permitted.

0276 Note that this API does not typically support unso
licited re-evaluation. A call to Setexpression() may not
automatically cause the variable, and all other variables that
depend on it, to be re-evaluated. The values bound to all
variables will Stay unchanged until a call to reevaluate Col
lection() (below) occurs.
0277. A method to determine if a particular name is a
COnStant:

0278 Status getIsConst(const String& name, bool&
isConst);

0279 A method to get the type:

enum ElementaryType

Status getType(const String& name,
ElementaryType& elementaryType) const;

UnsignedIntegerT, IntegerT, DoubleT, VoltageT, ...

UserVars Collection Re-evaluation 0280. The
method.

0281 Status reevaluateCollection();
0282. The class will maintain equations related to all the
variables, and their dependencies. When this method is
called, all of the variables will get re-evaluated.
0283 The UserVars Targeted Re-evaluation method. 9.

0284 Status reevaluateTargeted(const String& var);
0285) The class will maintain equations related to all the
variables, and their dependencies. When this method is
called, the named variable, and all of its dependents will get
re-evaluated.

0286 The UserVars Global Re-Evaluation Method.
0287)

0288 The class will maintain equations related to all the
variables, and their dependencies. When this method is
called, reevaluateCollection() is called on all UserVars
collections in an unspecified order.

static Status reevaluate AllCollections();

0289. A method to determine if a particular name is
defined:

0290 Status getIsDefined(const String& name,
bool& isDefined)const;

0291. A method to determine all the user variables cur
rently defined:

0292 Status getNames(StringList& names)const;

Nov. 11, 2004

0293. A method to delete a presently defined variable:
0294 Status deleteName(const String& name);

0295) This operation will fail if the name is used in
expressions involving other variables.
0296. A method to get the list of variables and constants
that depend on a given variable or constant:

0297 Status getDependents(const String& name,
String List& dependents);

0298 Specification Sets
0299 The Specification Set is used to supply a collection
of variables which can take on values based on a Selector.
For example, consider the following Specification Set that
uses selectors Minnie, Mickey, Goofy and Daisy:

File Aaa.spec

Version 1.0:
Import Limits.usrv;
SpecificationSet Aaa(Minnie, Mickey, Goofy, Daisy)
{

Double XXX = 1.0, 2.0, 3.0, 4.0;
Integer yyy = 10, 20, 30, 40;
Integer ZZZ = MaxInteger - XXX,

MaxInteger - XXX - 1,
MaxInteger - XXX - 2,
MaxInteger - XXX:

The following declaration associates a single
value, which will be chosen regardless of the
selector. It is equivalent to:
Integer www = yyy + ZZZ, yyy + ZZZ, yyy + ZZZ, yyy + ZZZ
Integer www = yyy + ZZZ;

0300. The above Specification Set with the selector
Goofy will make the following associations:

0301 xxx=3.0;
0302 yyy=30;
0303 ZZZ=MaxInteger-XXX-2;
0304) www-yyy+ZZZ;

0305 The operation of setting the selector on a specifi
cation Set will be discussed later, when Tests are described.
0306 Syntactically, a specification set a is list of selectors
(Minnie, Mickey, Goofy and Daisy in the example above),
along with a list of variable definitions (XXX, yyy, ZZZ and
www in the example above). The definition of a variable
involves a list of expressions that is either as long as the list
of Selectors, or comprises a single expression.
0307 Conceptually a specification set can be thought of
as a matrix of expressions, whose columns are the Selectors,
whose rows are the variables and whose entries are expres
Sions. A particular Selector (column) binds each variable
(row) to a specific expression (entry). If the list has a single
expression, it represents a row with the expression replicated
as many times as there are Selectors.
0308 Specification sets can appear in two separate con
texts. They could be separately declared in a Spec file, in
which case they appear as shown above. These are named

US 2004/0225.459 A1

Specification Sets. Otherwise, local Specification Sets can be
declared within a Test Condition Group. In such a declara
tion, the Specification Set will not be provided with a name.
It will be a local Specification Set, of Significance only to the
enclosing test condition group.
0309 Named specification sets can be modeled after the
named user variables collection. The above Specification Set
can be modeled as a USerVars collection named Aaa, which
will have expressions for XXX Minnie), XXX Mickey, XXX
Goofy, XXXDaisy, yyyMinnie, and so on. When a
particular selector (Say Mickey) is chosen in the context of
a test, the values of XXX, yyy and ZZZ are obtained from the
variable name and the Specification Set name.
0310. A test condition group can have at most one
Specification Set, which is either a local Specification Set, or
a reference to a named Specification Set. Local Specification
Sets appear only in the context of a test condition group, and
have no explicitly Specified name. Such a specification Set
has an implicit name that is defined by the name of the
enclosing test condition group. To resolve a name in a test
condition group at a point where Several Specification Sets
and several UserVars collections are visible, the following
rules are applied:

0311 1. If the name is qualified, it must be resolved
in a named user variables collection.

0312 2. If the name is not qualified, the name is
resolved in either a local specification Set, if it is
declared in the test condition group, or in the named
Specification Set, if one is referenced in the test
condition group.

0313 3. If the name is not resolved by the earlier
rules, it is resolved in the default user variables
collection.

0314. To illustrate these rules, consider the following
example using Test Conditions Groups (to be described
later)

Version 1.2.3:
Import limits.usrv; # Picks up the limits UserVars file above.
Import aaa.spec; # Picks up the Specification Set AAA above.
TestConditionGroup TCG1
{

SpecificationSet(Min, Max, Typ)

Rule 1: Resolution in a named user variables collection.
A reference to MyVars. VInLow refers to VInLow from MyVars.
Rule 2: Resolution in a local specification set.
A reference to “vcc here will resolve in the context
of the local specification set above.
Rule 3: Resolution in default user variables collection.
A reference to “MaxInteger here will resolve to limits.usrv.
Error: Resolution of xxx
A reference to xxx does not resolve because it is neither in
the local specification set, nor in limits.usrV.
Error: Resolution of Aaa.xxx
Looks for a named UserVars collection named Aaa. The named
specification set does not qualify.

vcc = 4.9, 5.1, 5.0;

TestConditionGroup TCG2

SpecificationSet Aaa; # References the imported specification set
Rule 1: Resolution in a named user variables collection.

Nov. 11, 2004

-continued

A reference to MyVars. VInLow refers to VInLow from MyVars.
Rule 2: Resolution in a named specification set.
A reference to "xxx here will resolve in the context
of the local specification set Aaa above.
Rule 3: Resolution in default user variables collection.
A reference to “MaxInteger here will resolve to limits.usrv.
Error: Resolution of vicc
A reference to vicc does not resolve because it is neither in
the named specification set Aaa, nor in limits.usrv.
Error: Resolution of Aaa.xxx
Looks for a named UserVars collection named Aaa. The named
specification set does not qualify.

0315 Resolution of a name in a specification set (rule
above) requires that a selector of the set be enabled at the
time the name resolution is required. This will be enforced
by the fact that the test condition group will be referenced in
a Test by Specifying a Selector.
0316 C++ for Specification Sets
0317 Using the above rules, Specification sets can be
implemented by the C++ SpecificationSet class. The Speci
ficationSet class has essentially the same API as the User
VarS class, except for an extra String parameter for the
selector. Consequently, this API is not described in detail.
0318 All named specification sets are preferably associ
ated with a C++ object of that name. A local Specification Set
in the context of a test condition group will have a name that
is unique to that test condition group. It is illegal to refer to
a variable of a local Specification Set outside the context of
the test condition group that it is defined in.

03.19 Levels
0320 The Levels are used to specify parameters of pins
and pin groups. It is a collection of declarations of the form:

<pin-or-pin-group-name>
{

<pin-param-12 = XXX:
<pin-param-2> = yyy;

0321) Such a declaration specifies the setting of the
various parameters of the named pin or pin-group.
For example, Such a Statement could be used to Set
the VIL values for all pins in the InputPins group, as
shown in the example below:

File pentium levels.1vl

Version 1.0:
Import pentium3resources.rsc;
Import pentium3pins.pin;
Levels Pentium3Levels
{

Specifies pin-parameters for various pins and

US 2004/0225.459 A1

-continued

pin groups using globals and values from
he specification set.

The order of specification is significant.
Pin parameters will be set in order from
first to last in this Levels section, and
rom first to last for each pin or pin-group
Subsection.

From the imported pin description file pentium3pins.pin,
he InPins group is in the “dpin’ resource. From the

imported resource definition file pentium3resources.rsc,
the “dps' resource has parameters named VIL and VIH.

InPins { VIL = v il; VIH = v ih + 1.0; }
The following statement requires a delay of 10 uS after
the call to set the InPins levels. Actual delay will be
a small system defined range around 10.0E-6.
10.0E-6 - delta <= actual <= 10.OE-6 + delta
Delay 10.OE-6;

For the OutPins, the levels for the parameters
VOL and VOH are specified.

OutPins {VOL = v_ol / 2.0; VOH = v_oh; }
The clock pin will have special values.
Clock VOL = 0.0; VOH = v ih (2.0; }
A Delay of 10 uS after the call to set Clock levels.
This is a minimum delay, that is guaranteed to be for
at least 10.0 uS, though it may be a little more:
10.0E-6 <= actual <= 10.OE-6 + delta
MinDelay 10.0 uS:

The PowerPins group is in the “dps' resource. Pins of this
pin group have special parameters:

PRE WAIT specifies the time to wait after voltage
reached its final value to start pattern
generation. Actual wait time will be a small
system defined range around PRE WAIT (see)

POST WAIT specifies the time to wait after pattern
generation ends to shut down the power. Actual
wait time will be a small system defined range
around PRE WAIT (see).

owerPins

PRE WAIT = 10.0 ms:
POST WAIT = 10.0 ms:
VCC reaches its final value of 2.0 V from its
present value in a ramp with a Voltage Slew Rate
of +.01 Volts per Second.
VCC = Slew(0.01, 2.0 V):

Levels Pentium4Levels
{

...

0322. As seen above, each Levels block is preferably
made up of a number of levels items, each of which specifies
parameters for a pin or pin group. Each levels item can
Specify a number of resource parameters. The runtime
Semantics for the Setting of these levels values is as follows:

0323 The levels items of the Levels block are processed
in declaration order. Any pin that occurs in more than one
levels item will get processed multiple numbers of times.
Multiple specification of values for a single parameter
should be maintained and applied in Specification order.

0324. The resource parameters in a levels item are pro
cessed in the order they are specified.

Nov. 11, 2004

0325 The Delay statements cause the process of setting
levels to pause for approximately the indicated duration,
prior to Setting the next group of levels. The actual wait time
may be in a Small System defined range around the Specified
delay. So if the delay was t Seconds, the actual delay would
Satisfy:

0326
0327. The Delay statements divide up the Levels speci
fication into a number of Subsequences, each of which will
require Separate Test Condition Memory Settings for pro
cessing.

t-At-actual-Waitz=t--At

0328. The MinDelay statements cause the process of
Setting levels to pause for at least the Specified duration prior
to Setting the next group of levels. The actual wait time may
be in a Small System defined range with a minimum value of
the Specified minimum delay. So if the minimum delay was
t Seconds, the actual delay would Satisfy:

0329
0330. The MinDelay statements divide up the Levels
Specification into a number of Subsequences, each of which
will require Separate Test Condition Memory Settings for
processing.

tz=actual-Waitz=t--At

0331 Each pin or pin-group name is specified in exactly
one resource in a pin description file (Suffix pin), and
therefore has a certain Set of viable resource parameters
Specified in the resource file (Suffix rSc). All the parameters
named must be from among this set of viable resource
parameters, and must be of the same elementary type as the
expression used to Set their value. Information about the
names and types of resource parameters comes from the
resource file.

0332 The resource file Resources.rsc is implicitly
imported, providing tester with the names and types for
parameters of Standard resources Such as dpin, and dips.
0333 Resource parameters are assigned expressions that
can use UserVars, and values from named Specification Sets
or a currently visible local Specification Set.
0334 Dps pin resources have special parameters PRE
WAIT and POST WAIT. The PRE WAIT parameter speci

fies the time that needs to elapse from the time the power pin
has reached its destination Voltage to the time pattern
generation can start. The POST WAIT parameter specifies
the time that needs to elapse from the time pattern generation
has stopped to the time the power pin shuts off.
0335 Dps pins also specify how the voltage parameter
reaches its final value. They could specify it simply by an
equation, as all other pin parameters. In that case the value
will be reached as the hardware allows it. They could also
Specify it using a Slew Statement. A Slew Statement specifies
that the power Supply Voltage reaches its final value from the
initial value in a ramp with a specified absolute Voltage Slew
Rate.

0336 C++ for Levels
0337 With above rules, a C++ Levels object can be
written that Supports the following operations:
0338. There is an operation

0339 Status setParameter(const String& pinOrPin
GroupName, const String& parameterName,
ElementaryType elementaryType, const Expres
Sion& Expression);

US 2004/0225.459 A1

0340 This operation binds an expression to a parameter
of a pin or a pin group. For instance, the dpin. In Pins VIH
value is set by:

0341) setParameter(“InPins”,
Expression(“v ih+1.0);

“VIH”, VoltageT,

0342. This operation will be called several times for all
the declarations in the Levels object.
0343. There is an operation

0344 Status assignlevels(const String& selector);
0345 which will go through and issue all the pre
determined module level interfaces to assign all the
levels of parameters in Specification order, as
described earlier. The Selector parameter is used to
resolve names in the expressions according to the
rules Specified earlier.

0346 Test Condition Groups
0347 The Test Condition Group Sub-language packages
together the description of Specifications, timings and levels.
Timing objects are often Specified using parameters. Param
eters can be used in timings to Specify leading and trailing
edges of various pulses. Likewise, Levels can be parameter
ized by Specifying maximum, minimum and typical values
of various voltage levels. A Test Condition Group (TCG)
object lumps together the Specifications and the instantiation
of Timings and Levels based on these specifications.
0348 A TestConditionGroup declaration contains an
optional SpecificationSet. The SpecificationSet declaration
may be an inlined (and unnamed) local SpecificationSet, or
it may be a reference to a named SpecificationSet declared
elsewhere. The optional SpecificationSet declaration in a
TCG declaration is followed by at least one Levels or
Timings declaration. It can have both Levels and a Timings,
in any order. However, it is disallowed from having more
than one Levels and Timings declaration. These restrictions
are Syntactically enforced.
0349 Aspecification set declaration in a TCG is identical
to the Specification Set declared Separately, except that it
does not have a name. Its name is implicitly the name of the
enclosing TCG. The Timings declaration comprises a single
declaration of a Timings object from a specified timings file.
Here is an example of a file with a test condition group:

File myTestConditionGroups.tc.g

Version 0.1;
Import pentium levels. lvl;
Import edges.spec;
Import timing1.tim;
Import timing2.tim;
TestConditionGroup TCG1

This Local SpecificationSet uses user-defined selectors
“min', “max” and “typ'. Any number of selectors with any
user defined names is allowed.

The specification set specifies a table giving values for
variables that can be used in expressions to initialize
timings and levels. The specification set below defines
values for variables as per the following table:
min aX typ

Nov. 11, 2004

-continued

W CC 2.9 3.1 3.0

v ih vIn High + 0.0 vIn High + 0.2 vIn High + 0.1
w il vinLow + 0.0 vinLow + 0.2 winLow + 0.1 :

A reference such as “vIn High must be previously defined
in a block of UserVars.

#Thus, if the “max selector was selected in a functional
test, then the “max column of values would be bound to
the variables, setting v cc to 3.1, v ih to vIn High--2.0
and so on.

Note that this is a local specification set, and has no
name.
SpecificationSet (min, max, typ)
{

Minimum, Maximum and Typical specifications
for
voltages.
Vltage V cc =
Voltage V ih =

2.9, 3.1, 3.0;
vIn High + 0.0,
vIn High + 0.2,
vIn High + 0.1;
wnLow + 0.0,
wnLow + 0.2,
wnLow + 0.1;

Minimum, Maximum and Typical specifications
for
leading and trailing timing edges. The base
value of 1.OE-6 uS corresponds to 1 picosecond,
and is given as an example of using scientific
notation for numbers along with units.
Time t le = 1.0 E-6 uS,

1.OE-6 uS + 4.0 * DeltaT,
1.OE-6 uS + 2.0 * DeltaT;

Time t te = 3Ons,
3Ons + 4.0 * DeltaT,
3Ons + 2.0 * DeltaT;

Voltage V il =

Refers to the Pentium3Levels imported earlier. It
is one of possibly many levels objects that have been
imported from the above file.
Levels Pentium3Levels:
Refers to file timing1.tim containing the single
timing Timing1. The filename should be quoted if
it has whitespace characters in it.
Timings Timing1;

Another test condition group
TestConditionGroup TCG2
{

ClockAndDataEdges.Specs is a specification set which
is available in the edges.specs file. Assume it has
the following declaration:
SpecificationSet ClockAndDataEdges.Specs(min,

max, typ)

Time clock le = 10.00 uS, 10.02 uS,
10.01 uS:

Time clock te = 20.00 uS, 20.02 uS,
20.01 uS:

Time data le = 10.0 uS, 10.2 uS, 10.1 uS:
Time data te = 30.0 uS, 30.2 uS, 30.1 uS:

A SpecificationSet reference to this named set is below:
SpecificationSet ClockAndDataEdges.Specs;
An inlined levels declaration. Since the associated
specification set (above) does not have variables such
as VInLow, VIn High, VOutLow and VOutHigh, they must
resolve in the default UserVars collection.
Levels
{

InPins { VIL = VIn Low; VIH = VIn High + 1.0; }
Outpins { VOL = VOutLow f 2.0; VOH =
VOutHigh; }

US 2004/0225.459 A1

-continued

This Timing is from the file “timing2.tim'. The timings
will need the leading and trailing edge timings for clock
and data as specified in the above specification set.
Timings Timing2;

0350. In the above example, the test condition group
TCG1 describes a specification set with three selec
tors named “min', “typ” and “max”. There can be
any number of distinct selectors. Within the body of
the specification Set, variables V il, Vih, t le and
tte are initialized with triples of values, correspond
ing to the Selectors. So in the above example, an
instance of TCG 1 with the selector “min' will bind
the variable v il with the first numeric value, (VIn
putLow--0.0). It bears repetition that the selectors for
a specification Set are user defined, and any number
of them is allowed. The only requirement is that:

0351. The selectors of a specification set be unique
identifiers.

0352 Each value specified in the specification set is
asSociated with an array of values that exactly the same
number of elements as the set of selectors. Picking the i"
selector will cause each value to be bound to the i value of
its associated vector of values.

0353 Subsequent to the specification set in the TCG,
there could be a Levels declaration or a Timings declaration
or both. The Levels declaration is used to set levels for
various pin parameters. The variables identified in the Speci
fication Set will be used to Set these levels, permitting a
dynamic binding of different actual values for pin param
eters based on the selector used to initialize the TCG.

0354) To exemplify this, consider a Test that enables the
Selector “min'. Referring to the Specification Set
Pentium3Levels given on page, the pin parameter “VIH' for
pins in the InPins group will be initialized to the expression
(v_ih--1.0) by the declaration:

0356. This resolves to (VInHigh--0.0+1.0) when the
Selector “min' is enabled. Likewise, the Timings object can
be initialized based on the Selected values of the Specifica
tion Set variables. It is not necessary to have both a Timings
and a Levels declaration. Either can be present by itself, or
both in any order, as illustrated by the following example:

File LevelsOnlyAndTimingsOnly.tc.g

Version 0.1;
A Levels-only Test Condition Group.
TestConditionGroup LevelsOnlyTCG
{

SpecificationSet(Min, Max, Typ)
{

Voltage v il = 0.0, 0.2, 0.1;
Voltage v ih = 3.9, 4.1, 4.0;

An inlined levels declaration. Since the associated
specification set (above) does not have variables such
as VInLow, VIn High, VOutLow and VOutHigh, they must
resolve in the default UserVars collection.

22
Nov. 11, 2004

-continued

Levels

InPins { VIL = v il; VIH = v ih + 1.0; }
OutPins { VOL = v il f 2.0; VOH = v ih; }

A Timings-only Test Condition Group
TestConditionGroup TimingsOnlyTCG
{

SpecificationSet(Min, Max, Typ)
{

Time t le = 0.9E-3, 1.1 E-3, 1.OE-3;

Timings Timing2;

0357 Note, however, there should not be more than one
Timings and more than one Levels in a TCG. Thus, in
Summary, there should be at least one of Timings or Levels,
and at most one of each.

0358 Test Conditions
0359 A Test Condition object ties a TCG to a specific
Selector. Once a TCG has been declared as shown above, it
is possible to declare TestCondition objects as shown below:

TestCondition TCMin

TestConditionGroup = TCG1;
Selector = min:

TestCondition TCTyp
{

TestConditionGroup = TCG1;
Selector = typ:

TestCondition TCMax
{

TestConditionGroup = TCG1;
Selector = max:

0360 These Test Conditions would be instantiated in a
Test Plan as follows:

Declare a FunctionalTest “MyFunctionalTest that refers
to three
Test Condition Group instances.

Test Functional Test MyFunctionalTest
{

Specify the Pattern List
PList = pat1Alist;
Any number of TestConditions can be specified:
TestCondition =TCMin:
TestCondition = TCMax:
TestCondition = TCTyp:

0361 Name Resolution in TCGs (Test Condition Groups)
0362 Resolution of names in a test condition group was
discussed earlier. However, these rules bear repetition, and
are given below again:

US 2004/0225.459 A1

0363 1. If the name is qualified (cf. page), it must be
resolved in a named user variables collection.

0364 2. If the name is not qualified, the name is
resolved in either a local Specification Set, if it is
declared in the test condition group, or in the named
Specification Set, if one is referenced in the test
condition group.

0365 3. If the name is not resolved by the earlier
rules, it is resolved in the default user variables
collection.

0366 TCG Runtime
0367 Test condition groups have the following runtime
Semantics:

0368 A Test (such as a Functional Test) will reference a
TCG with a particular selector from its SpecificationSet,
using an instantiated TestCondition. This selector will bind
each variable in the SpecificationSet to its value associated
with the chosen selector. This binding of variables to their
values will then be used to determine Levels and Timings.
0369 Parameter Levels in a TestConditionGroup are
preferably Set Sequentially, in the order of presentation in the
Levels block. So in the Pentium3Levels block, the order in
which parameter levels would be set is as follows (notation:
<resource-name>.<resource-parameters):

0370 Input Pins.VIL,
0371 Input Pins.VIH,
0372) OutputPins.VIL,
0373) OutputPins.VIH,
0374) Clock.VOL,
0375) Clock.VOH.

0376. This sequencing order enables the test writer to
control the explicit power Sequencing of power Supplies.
Furthermore, if a levels item occurs twice, naming the same
pin-parameters for a pin, then that pin-parameter gets Set
twice. This can happen programmatically also.
0377 If a parameter is set by a Slew statement such as

0378 VCC=Slew(0.01, 2.0 V);
0379 it means that VCC will reach its final value of 2.0
volts from its present value in a ramp with a Voltage Slew
Rate of +0.01 volts per second.
0380 Specification set variables can also be passed into
a Timings object in the TCG. The Timings object will then
be initialized based on the selected variables. Such a mecha
nism could be used to customize a Timings object, as, for
instance, by Specifying leading and trailing edges of wave
forms.

0381 C++ for TCGs
0382. With the above rules, the Test Condition Group can
be declared in a C++ TestConditionGroup class, and initial
izing it as follows:
0383. A call is made to the TestConditionGroup member
function

0384 Status setSpecificationSet(SpecificationSet
pSpecificationSet);

23
Nov. 11, 2004

0385) which will set the specification set for the TestCon
ditionGroup. This may either be a local Specification Set, or
a named specification Set, or null (if there is none).
0386 A call is made to the Test ConditionGroup member
function

0387 Status setLevels(Levels *plevels); p

0388 which will set the Levels object for the TestCon
ditionGroup. This may either be a locally declared levels
object, or an externally declared levels object, or null (if
there is none).
0389. A call is made to the Test ConditionGroup member
function

0390 Status setTimings.(Timings *pTimings);

0391) which will set the Timings object for the TestCon
ditionGroup. This will be either an externally declared
Timings object, or null (if there is none).
0392 Bin Definitions
0393. The Bin Definitions class defines bins, a collection
of counters that Summarize the results of testing many
DUTs. During the course of testing a DUT, the DUT can be
Set to any bin, e.g., to indicate the result of a particular test.
As testing proceeds, the DUT may be set to another bin. The
bin that the DUT is finally set to is the last such setting at the
end of the test. The counter for this final bin is incremented
at the end of the test of this DUT. A separate file with bin
definitions should have the Suffix .bdefs.

0394 Bin definitions are preferably hierarchical. For
example, at an outermost level, there may be the PassFail
Bins with two bins named Pass and Fail. Then there could
be several Hard Bins, some of which map to the Passbin, and
others which map to the Fail bin. The Hard Bins are said to
be a refinement of the PassFailBins. Finally, there could be
a large number of SoftBins, a refinement of Hard Bins, many
of which map to the same Hard bin. Below is an example
illustrating the hierarchy of bins:

File pentiumbins.bdefs

Version 1.2.3:
Bin Defs

The HardBins are an outermost level of
bins. They are not a refinement of any other
bins.
BinGroup Hard Bins
{

“3GHZPass: “DUTs passing 3GHz:
“2.8GHZPass: “DUTs passing 2.8GHz:
“3GHZFall: “DUTs failing 3GHz:
“2.8GHZFall: “DUTs failing 2.8GHz";
LeakageFail: “DUTs failing leakage';

The SoftBins are a next level of refinement.
SoftBins are a refinement of HardBins.
BinGroup SoftBins : Hard Bins

“3GHZAPass:
“Good DUTs at 3GHz,

“3GHZCachetail:
“Cache Fails at 3GHz, “3GHzFail':

US 2004/0225.459 A1

-continued

“3GHZSBFTFall:
“SBFT Fails at 3GHz, “3GHzFail:

“3GHzLeakage':
“Leakages at 3GHz, LeakageFail;

“2.8GHZAPass:
“Good DUTs at 2.8GHz,"2.8GHzPass';

“2.8GHZCacherall
“Cache Fails at 2.8GHz,"2.8GHzFail':

“2.8GHZSBFTFa:
“SBFT Fails at 2.8GHz, “2.8GHzFail:

“2.8GHzLeakage':
“Leakages at 2.8GHz, LeakageFail;

0395. In the above example, the most base bins are
the BinGroup Hard Bins. A BinGroup X is said to be
a group of base bins if Some other BinGroup is a
refinement of X. Thus, the BinCroup Hard Bins is a
group of base bins since the BinGroup SoftBins is a
refinement of Hard Bins. The bins of SoftBins are
referred to as leaf bins. A BinCroup Y is said to be
a group of leaf bins if no other BinGroup is a
refinement of Y.

0396 The degenerate case of a Bin Defs block with a
single BinGroup Z in it will have Z to be a group of most
base bins, as well as a group of leaf bins. BinGroup names
are global in Scope. There can be any number of Bin Defs
blocks, but the declared BinGroups must be distinct. A
BinGroup from one Bin Defs block is allowed to be a
refinement of a BinGroup from another Bin Defs block. So
in the above example, SoftBins could be in a Separate
Bin Defs block from Hard Bins. However, it is strongly
recommended to have a single BinDefs block with all the
BinGroups defined for the sake of readability.
0397) The above hierarchy can now be extended to count
how many DUTS passed and failed, by adding another
BinGroup.

--
File pentiumbins.bdefs
--
Version 1.2.3:
Bin Defs
{

The PassFailBins are an outermost level of
bins. They are not a refinement of any other
bins.
BinGroup PassFailBins
{

Pass: “Count of passing DUTS.;
Fail: “Count of failing DUTS.”:

The HardBins are a next level of refinement.
Hard Bins are a refinement of the PassFailBins,
as indicated by “Hard Bins: PassFailBins.
BinGroup Hard Bins: PassFailBins
{

“3GHZPass: “DUTS passing 3GHz, Pass;
“2.8GHZPass: “DUTS passing 2.8GHz, Pass;
“3GHZFall: “DUTs failing 3GHz”, Fail;
“2.8GHZFall: “DUTs failing 2.8GHz”, Fail;
LeakageFail: “DUTs failing leakage, Fail;

The SoftBins are a next level of refinement.

Nov. 11, 2004
24

-continued

SoftBins are a refinement of HardBins.
BinGrup SoftBins : Hard Bins
{

“3GHZAPass:
“Good DUTs at 3GHz, “3GHzPass;

“3GHZCachetail:
“Cache Fails at 3GHz, “3GHzFail':

“3GHZSBFTFall:
“SBFT Fails at 3GHz, “3GHzFail:

“3GHzLeakage':
“Leakages at 3GHz, LeakageFail;

“2.8GHZAPass:
“Good DUTs at 2.8GHz,"2.8GHzPass';

“2.8GHZCachetail:
“Cache Fails at 2.8GHz,"2.8GHzFail':

“2.8GHZSBFTFall:
“SBFT Fails at 2.8GHz, “2.8GHzFail:

“2.8GHzLeakage':
“Leakages at 2.8GHz, LeakageFail;

0398. This time, the most base bins are the Bin
Group PassFailBins. They are typically not a refine
ment of any bins. The BinGroup Hard Bins are a
refinement of the PassFailBins and are also base
bins. SoftBins are a refinement of the Hard Bins, and
are a group of leafbins. The above example had only
three BinGroups in the hierarchy.

0399 Below is a more complicated hierarchy:

Bin Defs

A group of most base bins
BinGroup A {...}

A group of base bins that is a refinement of A
BinGroup Ax : A {...}

A group of leaf bins that is a refinement of Ax
BinGroup AXX : Ax {...}

A group of base bins that is a refinement of A
BinGroup Ay: A {...}

A group of leaf bins that is a refinement of Ay
BinGroup Ayy : Ay {...}

A group of most base bins
BinGroup B {...}

A group of leaf bins that is a refinement of B
BinGroup Bx : B {...}

0400. In this example, Ax and Ay are refinements of A,
AXX is a refinement of AX and Ayy is a refinement of Ay. This
example also provides BinGroups B and Bx where Bx is a
refinement of B. The Bin Defs declaration above with the
BinGroups named PassFailBins, Hard Bins and SoftBins will
be used as a continuing example in this Section.
04.01 Each bin in a BinCroup has:

04.02 1. a name which is either an identifier or a
String literal

0403 2. a description which describes what this bin
Summarizes

04.04 3. and if this bin is in a refinement BinGroup,
the name of the bin it is a refinement of, also known
as the base bin.

US 2004/0225.459 A1

04.05) The two bins in PassFailBins are named “Pass” and
“Fail'. The five bins in Hard Bins are named “3 GHZPass',
“2.8 GHZPass”, “3 GHzFail”, “2.8 GHzFail”, “Leakage
Fail'. Bin names may be a literal string, or an identifier. Bin
names must be unique in a BinGroup, but may be duplicated
acroSS BinGroupS. BinGroup names, however, are global in
Scope, and must be unique acroSS a test plan.
0406) Of the five Hard Bins, the bins “3 GHZPass” and
“2.8 GHZPass” both map to the “Pass” bin of the PassFail
Bins. The rest of the Hard Bins map to the “Fail' bins of the
PassFailBins.

0407 Finally, there are eight SoftBins. The two failures
at 3 GHz for SBFT (soft bin functional test) and Cache map
to the “3 GHZFail Hard Bin. Likewise the two failures at 2.8
GHz for SBFT and Cache map to the “2.8 GHZFail”
Hard Bin. Both the failures due to Leakage map to the same
“LeakageFail' Hard Bin, regardless of the speed at which
they occurred. For example, the coarsest test (at the Outer
most level) is whether a DUT passes or fails a test. A
refinement is, for example, whether the DUT passes or fails
a test at a particular frequency, e.g., 3 GHZ, etc.
0408 Bins are assigned to DUTs in a Test Plan FlowItem,
described below. A TestPlan FlowItem has a Result Clause
in which the test plan describes the actions and transition to
take place as the result of getting a particular result back
from executing a test. It is at this point that a SetBin
Statement can Occur:

A FlowItem Result clause. It is described later.
Result O

Action to be taken on getting a 0 back from
executing a test.
Set the bin to SoftBin."3GHZPass expressing that the
DUT was excellent.
SetBin SoftBins."3GHzPass';

04.09 Many SetBin statements could execute during the
course of running a test on a DUT. When the test is finally
completed, the runtime will increment counters for the final
bin that is set for that DUT, and for all its refinements.
Consider a DUT which had the following SetBin statements
executed during the course of its test:

0410 SetBin SoftBins.“3 GHzSBFTFail";

0411 SetBin SoftBins.“2.8 GHZAllPass”;
0412. This DUT passed the 3 GHz Cache and Leakage
tests, but failed the SBFT test, and so was assigned to the “3
GHZSBFTFail' bin. It was then tested at 2.8 GHZ, and all the
tests passed. So the final bin assignment is to the "2.8
GHZAll Pass' bin, which is in the set of SoftBins. This final
assignment will increment the counters of the following
bins:

0413 1. SoftBins."2.5 GHZAllPass”

0414 2. which is a refinement of Hard Bins."2.8
GhzPass'

0415 3. which is a refinement of PassFailBins
“PaSS

25
Nov. 11, 2004

0416) When the test completes, runtime will increment
the counter of the final bin assignment of the DUT, and for
all other bins it is a refinement of.

0417 A SetBin statement is allowed only on a leafbin. It
is illegal to Set a base bin. The counter incrementing
Semantics above assures that:

0418 1. If the bin is a leaf bin, it is the number of
times a SetBin statement was executed for this bin at
the end of testing a DUT.

0419 2. If the bin is a base bin, it is the sum of the
counters of the bins that it is a refinement of.

0420 Thus, in the above example, only SoftBins are
allowed in a SetBin Statement. The counter for Hard Bins
." Leakage Fail' is the sum of the counters for SoftBins."3
GHZLeakageFail” and SoftBins."2.8 GHZLeakageFail'.
Below are Some rules regarding bin definitions:

0421 1. A Bin Definitions declaration is comprised
of several BinCroup declarations.

0422 2. Each BinCroup declaration has a name, an
optional BinGroup name that it is a refinement of,
followed by a block of bin declarations.

0423. 3. Bin declarations comprise a name, followed
by a description, optionally followed by the name of
a base bin that this bin is a refinement of.

0424. 4. Bin names can be a String literal, or an Id.
The empty string should not be a valid bin name. Bin
names should be unique among names in the Bin
Group declaration, but the same name could be used
in other BinGroup declarations.

0425 5. If a BinGroup declaration XXX is a refine
ment of another BinGroup declaration Yyy, then all
of the bin declarations in XXX must declare the name
of a base bin from Yyy. Thus, each of the bin
declarations in SoftBins is a refinement of a bin of
Hard Bins, since the SoftBins are declared to be a
refinement of Hard Bins.

0426 6. A BinGroup declaration that is not a refine
ment of another BinGroup declaration, Such as Pass
FailBins will preferably have Bin declarations that
do not declare base bins.

0427 Abin Bbb has a set of bases which is the entire set
of bins that Bbb is a refinement of. It is formally defined as
follows:

0428 1. If Aaa is the base bin of Bbb, then Aaa is in
the set of bases of Bbb.

0429 2. Any base of Aaa is also in the set of bases
of Bbb.

0430)
0431
0432)
0433)
0434. With above rules, an object type BinCroup can be
constructed for each of the BinGroup declarations in the
Bin Defs declaration. The class BinGroup will have a sub
class LeafBinGroup. The operations of these two classes are

BinGroup names are global in a TestPlan.
Bin names are local to a BinGroup.
A SetBin statement is only allowed for a leaf bin.
C++ for Bin Definitions

US 2004/0225.459 A1

the same, except that BinGroup::incrementBin is a C++
protected operation, whereas LeafBinGroup::incrementBin
is a C++ public operation.
0435 The following is a default constructor which builds
a BinGroup or a LeafBinGroup which is not a refinement of
any other BinGroup.
0436 Constructors:

0437 BinGroup(BinGroup& baseBinGroup);
0438 LeafBinGroup(BinCroup& baseBinGroup);

0439 that builds a BinGroup that is a refinement of the
given baseBinGroup.

0440 A method
0441 Status add Binconst String& binName,
0442
0443)

0444 to define a bin and its description. If it is a most
base bin, the baseBinName parameter must be the empty
String.

const String& description,
const String& baseBinName);

0445 Methods to increment bin counters:
0446 Status incrementbin(const String& binName);

0447 This operation will increment the counter for this
bin, and for all bins that are bases of this bin. The operation
is protected in the class BinCroup, and is public in the class
LeafBinGroup.

0448 Methods to reset bin counters
0449 Status resetbin(const String& binName);

0450. This operation will reset the counter for this bin,
and for all bins that are the bases of this bin.

0451 Methods to get information about a bin:
0452 Status getBinDescription(const String& bin
Name, String& description);

0453 Status getBaseBin(const String& binName,
BinGroup pBaseBinGroup, String& base Bin
Name);

0454 Status getBinValue(const String& binName,
unsigned int& value);

0455 Iterators will be provided to get at all the currently
defined bin names.

0456 TestPlan state will be include number of BinCroup
members, one for each BinCroup declaration. The C++ for
the above Bin Definitions would be as follows:

If TestPlan constructor
TestPlan:TestPlan()
: m PassFailBinsOff Default Constructor
m Hard Bins(&m PassFailBins),
m SoftBins(&m Hard Bins)

{ }
If Bin initializations
m PassFailBins.addBin (“Pass',"Count of passing DUTS..");
m PassFailBins.addBin?"Fail”, “Count of failing DUTS.",");
m Hard Bins.addBin (“3GHZPass”, “Duts passing 3GHz, "Pass');

26
Nov. 11, 2004

0457 State for a TestPlan includes a m pCurrent
BinGroup which is initialized to the undefined Bin
Group (NULL) and the m currentBin undefined bin
name (the empty string). Each time a SetBin State
ment is executed, the m pCurrentBinGroup is
changed to the indicated the named BinGroup and
the m currentBin to the named bin in the group by
a call:

// Translation of: SetBin SoftBins."3GHZAll Pass';
pTestPlan->setBin(“SoftBins”,"3GHzAll Pass”);
When the test plan completes execution, it will call
m pCurrentBinGroup->incrementBin (m currentBin);

04.58 causing this bin and all its base bins to have their
counters incremented.

0459. The BinGroup counters are reset when the test plan
is elaborated, but are not reinitialized each time a test is run.
The counters can be reset by an explicit call to BinGrou
p::resetBin.

0460 C. The Test Plan
0461 The test plan can be thought of as a main structure
of the test program. The Test Plan can import files, as well
as define Similar constructs inline. Thus, it is possible to
import a file given definitions of Some globals, as well as
declaring additional globals inline.
0462 C1. Test Plan Flows and FlowItems
0463) One of the critical elements of the Test Plan is the
Flow. A Flow encapsulates a finite State machine. It com
prises several FlowItems which run an IFlowable object and
then transition to another flow item. Running an IFlowable
involves running an object that implements the IFlowable
interface. Typical objects that implement the IFlowable
interface are Tests and Flows themselves.

0464 Thus, a Flow has FlowItems which runs Tests and
other Flows, and then transition to another FlowItem. It also
provides for the opportunity to call user customized routines
on various return results from running an IFlowable. Typi
cally, a Flow thus has the following form:

FlowTest1 implements a finite state machine for the
Min, Typ and Max flavors of MyFunctionalTest1. On
success it tests Test1 Min, Test1Typ, Test1Max
and then returns to its caller with 0 as a successful
status. On failure, it returns 1 as a failing status.

Assume that the tests MyFunctionalTest1 Min, ... all
return a Result of 0 (Pass), 1 and 2 (for a couple
of levels of failure).

Result O Result 1 Result 2
Test1Min Test1Typ return 1 return 1
Test1Typ Test1Max return 1 return 1
Test1Max return O return 1 return 1

low FlowTest1

FlowItem FlowTest1 Min MyFunctionalTest1Min

Result O

US 2004/0225.459 A1

-continued

Property PassFail = “Pass”:
IncrementCounters PassCount:
GoTo FlowTest1 Typ:

Result 1
{

Property PassFail = “Fail":
IncrementCounters FailCount:
Return 1:

This result block will be executed if
MyFunctionalTest1 Min returns any of
2, 5, 6, 7, -6, -5 or -4
Result 2, 5:7, -6:-4
{

Property PassFail = “Fail":
IncrementCounters FailCount:
Return 1:

FlowItem FlowTest1 Typ {...}
FI wItem FlowTest1 Max {...}

0465. The operation of the Flow FlowTest1 is as follows:
0466 1. Starts up with executing FlowItem
FlowTest1 Min.

0467 2. FlowTest1 Min runs a functional test,
MyFunctional Test1Min. Details of this test are pro
vided when the complete test plan is presented
below.

0468. 3. Nine results are expected from running this
test, 0, 1, 2, 5, 6, 7, -6, -5 or -4. The first two Result
clauses handle 0 and 1 respectively, and the third
handles all the rest of the result values.

0469 4. If result “0” (pass) occurs, then
FlowTest1 Min will increment the counter Pass
Counter. It will then transition to a new FlowItem
FlowTest1 Typ.

0470) 5. If result “1” or result “2” occurs, then
FlowTest1 Min will increment the counter Fail
Counter, and return from the flow.

0471) 6. FlowTest1 Typ will operate in the same
way, and on Success call Flow Test1 Max.

0472 7. FlowTest1 Max will operate in the same
way, and on success return from Flow Test1 with a
successful result (“0”).

0473. Thus, Flow Test1 will, on a successful run, run a
device through the minimum, typical and maximum ver
sions of Test1, and then return. FlowTest2 will operate in a
like manner.

0474. A Flow as described above basically describes a
Finite State Machine with states and transitions. The Flow
Items are basically states, which will do the following:

0475 1. Execute an IFlowable (it could be a previ
ously defined Flow, or a Test, or a user defined Flow
that can be implemented in C++ with the above
rules).

0476) 2. Execution of the IFlowable return a
numeric result. Based on the result, certain actions
occur (updating Some counters), and then one of two
things happen:

Nov. 11, 2004
27

0477 a. The Flow returns to the caller with a
numeric result.

0478 b. The Flow continues by transitioning to
another state (FlowItem).

0479. Thus, a FlowItem has the following components:
0480 A FlowItem has a name.
0481) A FlowItem has an IFlowable to be executed.
0482. A FlowItem has a number or Result clauses.
0483 Each Result clause of a FlowItem provides
actions and ends with a transition and is associated with
one or more result values.

0484. These items are syntactically as follows in a Flow
Item.

FlowItem <name> <IFIowable to be executed

Result <one or more result values.>

<actions for these result values:
<transition for these result values.>

Result <one or more other result values.>

0485 The IFlowable to be executed could be either a
Test, or a User-defined IFlowable, or a Flow. The actions for
a result could be any of the following:

0486 A Property Action to set string valued entities
that are used by GUI tools to attribute results. This
can be seen in the above FlowTest1 example with:

0487. Property PassFail=“Pass”;
0488 Properties are basically named string or integer
valued entities that are associated with a Result clause.
There can be any number of them, and they are preferably
used by tools such as GUIs which a user would use to
display information associated with this result. They have no
effect on the actual result of the test, or the flow of the test.

0489 A Counters Action to increment some number of
counters. This can be seen in the above example with:

0490 Increment Counters PassCount;
0491. A Routine Call Action to call an arbitrary or user
routine. This is discussed later.

0492 Finally, a FlowItem has a Transition which could
either be a GoTo statement to transfer control to another
FlowItem, or a Return statement to transfer control back to
the caller (either a calling flow, or the System routine which
initiated the test plan).
0493 Predefined Flows
0494. The typical use of Flow objects is to define a
Sequence of Tests. This Sequence is then executed as a result
of an event occurring in a Test Plan Server (TPS), i.e. the
Execute Test Plan event. A test plan server on each site

US 2004/0225.459 A1

controller executes the user's test plan. However, Flow
objects are also executed in response to other events. The
name in parentheses is the name used in assigning Flows to
these events.

0495) 1. System Load Flow (SysLoadFlow). This
Flow is executed on the System Controller when a
Test Plan is loaded onto one or more Site Controllers.
It is executed prior to the actual loading of the Test
Plan on any Site Controller. This flow allows the Test
Plan developer to define actions that should originate
from the System Controller. Such actions include
broadcast load of Pattern files, Calibration actions,
etc.

0496 2. Site Load Flow (SiteLoad Flow). This Flow
is executed on the Site Controller after a Test Plan
has been loaded onto the Site and initialized. This
allows any Site-specific initialization to occur.

0497 3. Lot Start/End Flows (LotStartFlow/Lo
tEndFlow). These Flows execute on the Site Con
trollers when the Test Plan Server is notified of a start
of a new lot. This is typically used in production
environments to annotate datalog streams with lot
Specific information.

0498 4. DUT Change Flow (DutchangeFlow). This
Flow executes on the Site Controller when its DUT
information changes. Again, this is typically used in
production environments to update datalog Streams.

0499) 5. TestPlan Start/End Flows (TestPlanStart
Flow/TestPlan End Flow). These Flows execute on
the Site Controller when the Test Plan Server is
instructed to Start executing the current Test Flow
and when that flow finishes its execution.

0500) 6. Test Start/End Flows (TestStartFlow/Tes
tEndFlow). These Flows execute on the Site Con
troller when the Test Flow is starting to run a new
Test and when that Test finishes its execution.

0501 7. Test Flow (TestFlow). This Flow is the
main Flow object executed when the Test Plan
Server receives an “Execute Test Plan” message.

0502. Note that if a user defines a Flow in the user's Test
Plan that is not the TestFlow or one of the other pre-defined
flows, the preferred way to have it executed is to include it
in the transition States of one of these pre-defined flows.
0503 A Test Plan Example
0504. In the example below, Flows are given along with
comments that describe the finite State machine imple
mented by the flow. The finite State machine is given as a
transition matrix. Rows of the matrix correspond to Flow
Items, and columns to the result. The entries of a row of the
matrix indicate the FlowItem that is transitioned to from the
FlowItem of the row when the returned Result is the value
Specified in the column.
0505 ATest Plan with three flows, FlowTest1, FlowTest2
and FlowMain, is shown below. Flow Test1 will operate as
described above. It will run a test named MyFunctional Test1
in each of the “min', “typ” and “max’ configurations.
Likewise, FlowTest2 will run My Functional Test2 in each of
these configurations. Finally, FlowMain will run Flow Test1

28
Nov. 11, 2004

and Flow Test2. The finite state machine transition matrix is
provided in comments at the Start of each of these flows.

File mySimpleTestPlan.tpl

Version 0.1;
Import XXX.pin; # Pins
Constants and variables giving limiting values.
Import limits.usrv;
Import test condition groups
Import myTestConditionGroups. tcg,
Import some bin definitions.
Import bins.bdefs;

Start of the test plan

TestPlan Sample;
This block defines Pattern Lists file-qualified names and
Pattern List variables that are used in Test declarations.
Pattern list variables are deferred till customization is
examined.
PListDefs
{

File qualified pattern list names
pl1A.plist.pat1Alist,
pl2A.plist.pat2AList

The socket for the tests in this test plan (this is not imported,
but resolved at activation time):
SocketDef = mytest.soc;
Declare some user variables inline
UserVars

{
String name for current test
String CurrentTest = “MyTest:

Test Condition TC1Min
{

TestConditionGroup = TCG1;
Selector = min:

TestCondition TC1Typ
{

TestConditionGroup = TCG1;
Selector = typ:

TestCondition TC1Max
{

TestConditionGroup = TCG1;
Selector = max:

Likewise for TC2Min, TC2Typ, TC2Max.

Declare a FunctionalTest. "Functional Test refers to a C++
test class that runs the test, and returns a 0, 1 or 2 as
a Result. The Test Condition Group TCG1 is selected with
the “min' selector by referring to the TC1 Min TestCondition.

Test Functional Test MyFunctionalTest1 Min

PListParam = pat1AList;
TestCondition Param = TC1 Min:

Another Functional Test selecting TCG1 with “typ'
Test Functional Test MyFunctionalTest1Typ

PListParam = pat1AList;
TestCondition Param = TC1Typ:

Another Functional Test selecting TCG1 with “max
Test Functional Test MyFunctionalTest1 Max

PListParam = pat1AList;
TestCondition Param = TC1Max:

US 2004/0225.459 A1

-continued

Now select TCG2 with “min'
Test Functional Test MyFunctionalTest2Min
{

PListParam = pat2AList;
TestCondition Param = TC2Min:

Likewise for TCG2 with “typ” and TCG2 with “max”
Test Functional Test MyFunctionalTest2Typ
{

PListParam = pat1AList;
TestCondition Param = TC2Typ:

Test Functional Test MyFunctionalTest2Max
{

PListParam = pat1AList;
TestCondition Param = TC2Max:

At this time the following Test objects have been defined
MyFunctionalTest1Min
MyFunctionalTest1Typ
MyFunctionalTest1Max
MyFunctionalTest2Min
MyFunctionalTest2Typ
MyFunctionalTest2Max

Counters are variables that are incremented during the
execution of a test. They are UnsignedIntegers that are
initialized to zero.

Counters {PassCount, FailCount

Flows can now be presented. A Flow is an object that
essentially represents a finite state machine which
can execute “Flowables, and transition to other flowables
based
on the Result returned from executing a Flowable. A Flow can also
call another flow.

A Flow consists of a number of Flow Items and transitions
between them. FlowItems have names which are unique in
the enclosing Flow, execute a “Flowable' object, and then
transition to another FlowItem in the same enclosing Flow.

Flowable objects include Tests and other Flows. When
a Flowable object executes, it returns a numeric Result
which is used by the FlowItem to transition to another
FlowItem. As a result of this, both Tests and Flows
terminate by returning a numeric Result value.

FlowTest1 implements a finite state machine for the
Min, Typ and Max flavors of MyFunctionalTest1. On
success it tests Test1 Min, Test1Typ, Test1Max
and then returns to its caller with 0 as a successful
Result. On failure, it returns 1 as a failing Result.

Assume that the tests MyFunctionalTest1 Min, ... all
return a Result of 0 (Pass), 1 and 2 (for a couple
of levels of failure). The Transition Matrix of the
finite state machine implemented by FlowTest1 is:

Result O Result 1 Result 2

FlowTest1 Min FlowTest1 Typ return 1 return
1.
FlowTest1 Typ FlowTest1 Max return 1 return
1.
FlowTest1 Max return O return 1 return 1

where the IFlowables run by each FlowItem are:
FlowItem IFIowable that is run
FlowTest1 Min MyFunctionalTest1Min
FlowTest1 Typ MyFunctionalTest1Typ
FlowTest1 Max MyFunctionalTest1Max

29
Nov. 11, 2004

-continued

Flow FlowTest1

FlowItem FlowTest1 Min MyFunctionalTest1Min

Result O
{

Property PassFail = “Pass”:
IncrementCounters PassCount:
GoTo FlowTest1 Typ:

Result 12
{

Property PassFail = “Fail":
IncrementCounters FailCount:
Return 1:

FlowItem FlowTest1 Typ MyFunctionalTest1Typ

Result O
{

Property PassFail = “Pass”:
IncrementCounters PassCount:
GoTo FlowTest1 Max:

Result 12
{

Property PassFail = “Fail":
IncrementCounters FailCount:
Return 1:

Likewise for FlowTest1 Max
FlowItem FlowTest1 Max MyFunctionalTest1 Max

Result O
{

Property PassFail = “Pass”:
IncrementCounters PassCount:
Return 0;

Result 12
{

Property PassFail = “Fail":
IncrementCounters FailCount:
Return 1:

FlowTest2 is similar to FlowTest1. It implements a
finite state machine for the Min, Typ and Max flavors
of MyFunctionalTest2. On success it tests Test2Min,
Test2Typ, Test2Max and then returns to its caller with
0 as a successful Result. On failure, it returns 1 as
a failing Result.

Assume that the tests MyFunctionalTest2Min, ... all
return a Result of 0 (Pass), 1 and 2 (for a couple
of levels of failure). The Transition Matrix of the
finite state machine implemented by FlowTest2 is:

Result O Result 1 Result 2

FlowTest2 Min FlowTest2 Typ return 1 return
1.
FlowTest2 Typ FlowTest2 Max return 1 return
1.
FlowTest2 Max return O return 1 return 1

Where the IFlowables run by each FlowItem are:
FlowItem IFIowable that is run
FlowTest2 Min MyFunctional Test2Min
FlowTest2 Typ MyFunctional Test2Typ
FlowTest2 Max MyFunctional Test2Max

US 2004/0225.459 A1

-continued

Flow FlowTest2

Now the FlowMain, the main test flow, can be presented. It
implements a finite state machine that calls FlowTest1
and FlowTest2 as below:

#...

Result O Result 1

FlowMain 1 FlowMain 2 return 1
FlowMain 2 return O return 1

Where the IFlowables run by each FlowItem are:
FlowItem IFIowable that is run
FlowMain 1 FlowTest1
FlowMain 2 FlowTest2
Flow FlowMain
{

The first declared flow is the initial flow to be
executed. It goes to FlowMain 2 on success, and
returns 1 on failure.
FlowItem FlowMain 1 FlowTest1
{

Result O
{

Property PassFail = “Pass”:
IncrementCounters PassCount:
GoToFlowMain 2:

Result 1
{

Sorry ... FlowTest1 failed
Property PassFail = “Fail":
IncrementCounters FailCount:
Add to the right soft bin
SetBin SoftBins."3GHZSBFTFail':
Return 1:

FlowItem FlowMain 2 FlowTest2
{

Result O
{

All passed
Pr perty PassFail = “Pass”:
IncrementC unters PassCount:
Add to the right soft bin
SetBin SoftBins."3GHZAll Pass'':
Return 0;

Result 1
{

#FlowTest1 passed, but FlowTest2 failed
Property PassFail = “Fail":
IncrementCounters FailCount:
Add to the right soft bin
SetBin SoftBins."3GHzCacheFail':
Return 1:

TestFlow = FlowMain;

0506 The above test plan is structured as follows in
a preferred order:

0507 1. First, a version number is provided. This
number is used to ensure compatibility with the
compiler version.

0508 2. Then, a number of imports are declared.
These are various files with declarations needed in
order to resolve names used in the test plan.

30
Nov. 11, 2004

0509) 3. Next, the Test Plan name is declared, after
which come the inline declarations of the test plan.

0510) 4. Next a set of PList Defs are declared. These
include file-qualified names naming GlobalPLists
from the named files. They also include Pattern List
variables. Pattern List variables are variables that can
be initialized in custom flowables at execution time.
They provide a means of delaying binding tests to
actual pattern lists until runtime.

0511 5. Next, a set of UserVars is declared. These
include a String.

0512 6. Some Counters are then declared, to deter
mine the number of tests passed and failed. Counters
are simply variables that are initialized to Zero, and
incremented at IncrementCounter Statements. They
are different from Bins described earlier which have
the Semantics that only the currently Set bin is
incremented at the end of the test of a DUT.

0513 7. Next, a series of Test Conditions is
declared. Each of these specifies a Test Condition
Group and a Selector. In this example, the Test
Condition Groups come from mytestconditions
groupS. tcg. However, they could have been inline in
the test plan.

0514 8. Next, a series of Flowables or Tests is
declared. Each of this is known Test Functional Test
which selects a Pattern List and a test condition.
Thus for instance, MyFunctionalTest1Max selects
the test condition TC1Max and a pattern list.

0515 9. Following this, three flows are declared,
FlowTest1, FlowTest2 and FlowMain. Flows run
Flowables. Flowables include Tests (such as
MyFunctional Test1Max) and other flows (such as
FlowTest1 and FlowTest2). Each of FlowTest1 and
Flow Test2 run through the minimum, typical and
maximum versions of Test1 and Test2 respectively.
The flow FlowMain calls the earlier declared flows,
Flow Test1 and then Flow Test2.

0516 10. Finally, the TestFlow event is assigned to
the FlowMain Flow. Thus the flow FlowMain is the
one that will be executed by this test plan when a
user chooses to Execute this plan.

0517 C++ for Flows
0518. With the above rules, a C++ implementation can be
done for most of the elements, with the exception of the
Flows themselves.

0519 C++ for FlowItems
0520. The C++ class to represent a FlowItem may have
the following interface:

0521. An operation
0522) Status
setFlowable(IFlowable pIFlowable);

0523) which will set the IFlowable that will be executed
for this FlowItem.

0524. Once the FlowItem returns from the set of calls
needed to execute this IFlowable, it will need to increment
a list of counterS depending on the Result value. To this end,

US 2004/0225.459 A1

the FlowItem needs to have a vector of counters that is to be
incremented. This is initialized by a call:

0525) Status setCounterRefs(unsigned int result,
CounterRefList counterRefs);

0526 Calling this sets up a vector of references to
counters into the FlowItem, So that it can increment them
once the IFlowable completes execution. For example, the
Statement

0527 Increment Counters A, B, C:

would preferably use the above call as follows:
If Somewhere earlier
CounterRefList counters:

If Code for Result clause
// Result 2, 3 {...}
// of flowObject.
counters.reset();
counters.add(&A);
counters.add(&B);
counters.add(&C);
flowObject.setCounterRefs(2, counters);
flowObject.setCounterRefs(3, counters);

0528. A temporary CounterRefList object named
counters is used. Initially counters.reset() is called, followed
by a number of counters.add() calls to set up the counters
list. This is then used to setup the vector of counter addresses
to be updated for result values 2 and 3.
0529) The FlowItem may then need to transition to
another FlowItem on a particular result:

0530 Status setTransition(unsigned int
FlowItempFlowItem);

result,

0531. Several such calls will naturally need to be made in
the case that a certain Result clause deals with many result
values.

0532. The FlowItem may need to return a result. This is
done by:

0533 Status setReturnResult(unsigned int result,
unsigned int return Result);

0534) For example, for the FlowItem FirstFlowItem in
the previous example, the above would be called with the
value “2 for “result and “1” for “return Result.

0535 Finally, the FlowItem needs an operation to
eXecute:

0536 Status execute(unsigned int&
FlowItempNextFlowItem);

result,

0537) This operation will execute the IFlowable, then
update the indicated counters, and then either return a
Result, or a pointer to the next FlowItem. If this pointer is
NULL, then the result is the returned value.
0538. The code that would be generated for FlowItem
FlowMain 1 is as follows:

FlowItem FlowMain 1:
FlowItem FlowMain 2:
CounterRefList counters:

Nov. 11, 2004

-continued

FlowMain 1.setFlowable(FlowTest1);
If Result O
counters.reset();
counters.add(&PassCount);
FlowMain 1.setCounterRefs(0, counters);
FlowMain 1.setTransition(0,&FlowMain 2);
If Result 1
counters.reset();
counters.add(&FailCount);
FlowMain 1.setCounterRefs(1, counters);
// The following call from ITestPlan will set the
If current bin group and bin name.
pTestPlan->setBin(“SoftBins”,"3GHzSBFTFail');
FlowMain 1.setReturn Result(1, 1);

0539. The code generated above sets up FlowMain 1 to
run the IFlowable “FlowTest 1”, and then sets it up to
increment the appropriate list of counters for each result, and
finally to take the necessary actions. The necessary action in
the case of result “0” is a transition to FlowMain 1, and in
the case of result “1” is a return.

0540 C2. Counter Support in a TestPlan
0541 Counters are variables that are initialized to zero,
and can be incremented by an IncrementCounter Statement
at various points during a test run. They are different from
Bins, which are incremented only at the end of the test.
Furthermore, bins are hierarchical while counters are simple
variables. Thus, counters are a much simpler and more
limited facility than bins.
0542 Counters can be supported in a TestPlan via a
member of a Counters class that maintains a set of named
counters which are unsigned integers. Objects will be
defined in this class via a Counters declaration. Counters
will not be automatically reset when a test Starts, thus
allowing a TestPlan to gather counts over testing many
DUTS. Methods will be provided to reset, increment and
query the value of a counter. This enables an alternative to
binning in order to determine counts as a result of running
a teSt.

0543. The TestPlan preferably contains a member vari
able, m modifiedCounters, which is the Set of counters
modified by running the test on a DUT. This set is initialized
to the empty Set at the Start of the test. At each place an
Increment Counters call is made, code will be generated to
add the named counters to the m modifiedCounters mem
ber. Thus, this member gathers together all the counters that
were modified during the execution of a test on a DUT.
0544 C++ for the Flow Object
0545 Once all the FlowItems have been created, the
Flow object can be created as a C++ object as shown below:

0546. An operation to add a FlowItem
0547 Status add FlowItem(FlowItempflowItem,
bool is InitalFlowItem);

0548 which will add the indicated FlowItem to the
Flow. The boolean is set to True if this is the initial
FlowItem of the Flow.

0549. An operation to execute the Flow
0550 Status executeFlow(unsigned int& result);

US 2004/0225.459 A1

0551) This will preferably return when the Flow returns,
with the result of executing the flow. The action of this is to
start executing the flow with the initial FlowItem. It will
keep executing FlowItems as long as the current FlowItem
returns a next FlowItem to execute. When the current
FlowItem returns a Result, then this operation completes
with that Result.

0552 Hence, the C++ code generated for a Flow has
several repeated calls to addFlowItem() in order to add
FlowItems to the Flow. The executeFlow() operation will
occur when this Flow in the Test Plan is selected for
execution.

0553) C3. Test Classes
0554. In general majority of the program code is data for
device test, and the rest is the code of test program, which
realizes the test methodology. This data is DUT-dependent
(e.g., power Supply conditions, signal voltage conditions,
timing conditions, etc.). The test code consists of methods to
load the specified device conditions on to ATE hardware,
and also those needed to realize the user Specified objectives
(Such datalogging, etc).
0555 As explained above, to increase the reusability of
test code, Such code should be independent of any device
Specific data (e.g., pin name, Stimulus data, etc.), or device
test-specific data (e.g., conditions for DC units, measure
ment pins, number of target pins, name of pattern file,
addresses of pattern programs, etc.). If code for a test is
compiled with data of these types, the reusability of the test
code would decrease. Therefore, any device-Specific data or
device-test-specific data should be made available to the test
code externally, as inputs during code execution time.
0556. In the open architecture test system, a Test Class,
which is an implementation of the ITest interface, realizes
the separation of test data and code (and hence, the reus
ability of code) for a particular type of test. Such a test class
could be regarded as a “template” for Separate instances of
it, which differ from each other only on the basis of
device-specific and/or device-test-specific data. Test classes
are specified in the test plan file. Each Test class typically
implements a Specific type of device test or Setup for device
test. For example, Functional, AC and DC Parametric tests
are preferably implemented by Separate Test classes. How
ever, custom test classes can also be used in test plans.
0557 Test classes allow the user to configure class
behavior by providing parameters that are used to Specify
the options for a particular instance of that test. For example,
a Functional Test will take parameters PList and TestCon
ditions, to Specify the Pattern List to execute, and the Level
and Timing conditions for the test, respectively. Specifying
different values for these parameters (through the use of
different “Test” blocks in the test plan description file)
allows the user to create different instances of a Functional
Test. FIG. 5 shows how different test instances 502 would
be derived from a single test class 504.
0558. These classes should be designed to allow the
compiler 400 to take the description of the tests and their
parameters from the test plan file and generate correct C++
code, which can be compiled and linked to generate the test
program. Test class instances may be added to objects
describing test flow to create a complex execution Sequence
of device tests.

32
Nov. 11, 2004

0559) C4. Derivation from ITest and IFlowable

0560. As mentioned above, Test classes derive from
ITest. With the above rules, these can be implemented in
C++ classes that implement the ITest interface. In addition
to the methods Specified for the ITest interface, these classes
provide the Test-specific intelligence and logic required to
perform Specific classes of device test. Test classes also
implement the IFlowable interface. As a consequence of
this, instances of Test classes can be used in FlowItems to
run teStS.

0561 Customization
0562 Customization mechanisms are provided to allow
users to call C functions, and develop their own classes
implementing the ITest and IFlowable interfaces.

0563)
0564) If an object of a Test class could be interrogated
regarding its methods and Signatures, then it could be
Verified that the appropriate parameters are available for
inclusion in the generated Source code. Such a feature would
be very useful for error checking and validation during the
translation phase. If the test engineer made a mistake in the
names of parameters, or the number (or possibly the types)
of arguments to these parameters, the translation phase could
catch it and provide a meaningful error message at transla
tion time instead of waiting for a compile-time error mes
sage from the C++ compiler. This would be more useful to
the test engineer.

0565 Introspection refers to the ability to ask an object to
look within itself and return information regarding its
attributes and methods. Some languages, Such as Java,
provide this ability as a part of the language. Other lan
guages, Such as Visual Basic, impose Such a requirement on
objects intended to be used with it. C++ makes no provisions
for this feature.

Introspection Capability

0566. This method also lends well to providing for
default parameter values, as well as indications of optional
parameters. In addition, if this capability is provided as a
part of the implementation of all Test classes, then GUI
applications could also use this information to dynamically
build up dialogs and other user interface elements to help
engineers make effective use of these classes.

0567 These complexities are offset in an embodiment of
the invention through a mechanism that provides, in lieu of
full introspection, a method that allows the Test class
developer to fully Specify, in a Single text-based Source file
(per Test class), the public methods/attributes of the Test
class that the developer has designated as the ones required
to parameterize the class.

0568 A single source is preferred: one would not want to
have the description of the parameterization interface of a
Test class in one file, and the C++ interface description in
another independent (header) file, and then be burdened with
the need to keep both Sources Synchronized. Towards this
end, the "text-based” description is embedded in a pre
header file for the Test class, which is used by the compiler
for limited introspection, as well for generating the C++
header for the Test class. The generated C++ header file is
the one used to finally compile the Test class C++ code.

US 2004/0225.459 A1

0569. The Pre-Headers
0570. The use of headers in C++ is well known. Because
C++ is difficult to parse and read, however, an embodiment
of the invention defines a Syntax allowing the compiler to
create a C++ output which can be used as a header by a test
class developer. According to this embodiment, the test class
developer writes a pre-header, which is output by the com
piler 400 as a header file, allowing visibility into the
corresponding test classes or other test entities.
0571. The following example illustrates the concept of
the pre-header file for a Test class in accordance with the
preferred embodiment of the present invention. Consider the
following excerpt from a source file, with a test Functest1:

TestConditionTC1

TestConditionGroup = TCG1; # Previously defined TCG for
Levels

Selector = min:

TestCondition TC2

TestConditionGroup = TCG2; # Previously defined TCG for
Timing

Selector = min:

Test Functional Test Functest1
{

PListParam = patList1; # Previously defined pattern list
TestCondition Param = TC1;
TestCondition Param = TC2:

0572 The compiler needs to know what a Functional Test
entails in order to determine whether the declaration of
Functest1 above is legal. Rather than building in the knowl
edge of a Functional Test into the compiler, the definition of
what a Functional Test entails can be specified in the Pre
Header.

0573 Assume that Functional Test is a C++ class having
base classes Test1 and Test2, and having members which are
a PList, and an array of Test Conditions. The compiler needs
to know about the types of the members of Functional Test
in order to recognize that the above declaration of FuncTest1
is legal.

0574. Furthermore, in order to generate a C++ object
declaration for FuncTest1, a C++ header for the class
Functional Test needs to be constructed. This requires com
piler to also know about the base classes of the Function
alTest class, the names of its members and other Such
information.

0575. The pre-header sub-language of an embodiment of
the invention provides the compiler with the information it
needs to both recognize the legality of declarations, and to
generate C++ headers and object declarations that corre
spond to declaration.

0576 Note that a Functional Test is a simple type (as far
as parameterization is concerned), and thus, would use quite
a simple description for parameterization. One could thus
write a pre-header, Functional Test.ph, that Supports the

33
Nov. 11, 2004

above parameterization as follows (assume that pre-headers
are available for the base test classes Test1 and Test2):

Version 1.0:

Parameterization specification pre-header for FunctionalTest

Import Test1-ph; # For base class Test1
Import Test2.ph; # For base class Test2
TestClass = Functional Test; # The name of this test class
PublicBases = Test1,Test2; # List of public base classes

9 # The parameters list or “parameter block:
10 Parameters

11 {
12 # The following declaration specifies that a FunctionalTest has
13 # - a parameter of typePList
14 # - represented by C++ type Tester::PatternTree
15 # - stored in a member named m pPatList
16 # - a function to set it named setPatternTree.
17 # - a parameter description for the GUI to use as a tool tip
18 PList PListParam
19 {
2O Cardinality = 1 ;
21 Attribute = m pPatList;
22 SetFunction = setPatternTree:
23 Description = “The PList parameter for a Functional

Test:
24
25 #
26 # The following declaration specifies that a FunctionalTest has
27 # - 1 or more parameters of type TestCondition
28 # - represented by C++ type Tester::TestCondition
29 # - stored in a member named m testCondnsArray
3O # - a function to set it named addTestCondition.
31 # - a parameter description for the GUI to use as a tool tip
32 # The implement clause causes the translation phase of

tO

33 # generate a default implementation of this function.
34 #
35 TestCondition TestCondition Param
36 {
37 Cardinality = 1-n;
38 Attribute = m testCondnsArray;
39 SetFunction = addTestCondition Implement:
40 Description = “The TestCondition parameter for a

Functional Test:
41

42
43 if
44 # The section below is part of the Pre-Header which is an escape
45 # into C++ code. This will be referred to as a “template

block.
46 #

47 # Everything in this section will be reproduced verbatim in the
48 # generated header file, except for “SClass”, “SInc',
49 # “SParamAryTypes”, “SParamAttrs”, “SParamFns” and

“SParam Impls”.
50 #

51 # Note that no comments beginning with the '#' character
ae

supported
52 # within the following section.
53 #
54 CPlusPlusBegin
55 SInc
56 namespace
57
58 class SClass

60 II Array types for parameters storage:
61 SParamAryTypes
62 public:
63 virtual void preExec();
64 virtual void exec();
65 virtual void postExec();

US 2004/0225.459 A1

-continued

66 SParam Ens
67
68 private:
69 double m someVar;
70 SParam Attrs
71

72 };
73
74 SParamImpls
75 - || End namespace
76 CPlusPlusBnd

0577 As the compiler processes a pre-header file, it
builds up the values of the compiler variables such as SInc,
SClass, SParamAryTypes and others. This enables it to then
create the following C++ header by generating the C++ code
above verbatim, and expanding in the values of the compiler
variables SInc, SClass, etc. at the indicated places. For
Functional Test.ph, it creates the following C++ header file
Functional Test.h for the Functional Test class.

1. #line 7 “...functional Test.ph
2 #include <ITest.h>
3 #line 5 “...functional Test.ph
4 #include <Test1.h>
5 #line 6 "./Functional Test.ph
6 #include <Test2.h>
7 #line 55 “f FunctionalTest.ph
8 #include <vectors
9 #line 55 “functional Test.ph
1O #include <Levels.h>
11 #line 55 “functional Test.ph
12 #include <TestCondngrp.h>
13
14 #line 56 “fEunctional Test.ph
15 namespace
16 {
17 #line 7 “...functional Test.ph
18 class FunctionalTest: public ITest,
19 #line 8 "./Functional Test.ph
2O public Test 1,
21 #line 8 “...functional Test.ph
22 public Test2
23 #line 59 “functional Test.ph
24 {
25 If Array types for parameters storage:
26 #line 61 "./FunctionalTest.ph
27 public:
28 #line 37 “fEunctional Test.ph
29 typedef std::vector-Tester::TestCondition * >

TestConditionPtrsAry t;
3O #line 62 “./FunctionalTest.ph
31 public:
32 virtual void preExec();
33 virtual void exec();
34 virtual void postExec();
35 public:
36 #line 7 “./FunctionalTest.ph”
37 void setName(OFCString &name); # Automatic for all tests
38 #line 22 “./FunctionalTestph'
39 void setPatternTree(PatternTree *):
40 #line 23 “./FunctionalTestph'
41 String getPListParam Description() const;
42 #line 39 “./FunctionalTestph”
43 void addTestCondition(TestCondition *);
44 #line 40 “./FunctionalTestph'
45 void getTestCondition Param DescriptionO const;
46 #line 67 “./FunctionalTestph”
47
48 private:
49 double m someVar;

34
Nov. 11, 2004

-continued

50 #line 70 “./FunctionalTestph”
51 private:
52 #line 7 “...functional Test.ph
53 OFCString m name; # Automatic for all tests
54 #line 21 “./FunctionalTestph'
55 Tester::PatternTree *m pPatList;
56 #line 38 “./FunctionalTestph”
57 TestConditionPtrsAry t m testCondnsArray;
58 #line 71 “./FunctionalTestph”
59
60 };
61
62 #line 7 “...functional Test.ph
63 inline void
64 #line 7 “...functional Test.ph
65 FunctionalTest::setName(OFCString &name)
66 #line 74 “fEunctional Testh
67 {
68 m name = name;
69 return;
70
71 #line 39 “./FunctionalTestph”
72 inline void
73 #line 39 “./FunctionalTestph”
74 FunctionalTest::addTestCondition(TestCondition *arg)
75 #line 74 “./FunctionalTestph'

77 m testCondnsArray-push back(arg);
78 return;
79
8O #line 23 “./FunctionalTestph'
81 inline void
82 Tester:String FunctionalTest::getPListParam Description()
83 {
84 return “The PList parameter for a FunctionalTest:
85
86 #line 40 “./FunctionalTestph'
87 inline void
88 Tester::String

FunctionalTest::getTestCondition Param Description()
89 {
90 return “The TestCondition parameter for a Functional Test:
91
92 #line 75 “./FunctionalTestph”
93 } // End namespace

0578. As described earlier, this pre-header enables the
compiler to check the validity of a Functional Test declara
tion, to generate code for it, and to generate a C++ header
that would be needed by it.
0579. As an example, consider the Functional Test decla
ration given earlier, reproduced below for convenience:

Test FunctionalTest Functest1
{

PListParam = patList1; # Previously defined pattern list
TestCondition Param = TC1;
TestCondition Param = TC2:

0580. The C++ header that would be generated for this by
the compiler is given above. The compiler would generate
the following code for the above Functional Test construct:

0581 Functional Test FuncTest1;
0582 Functest1.setName(“Functest1”);
0583. Functest1.setPatternTree(&patList1);

US 2004/0225.459 A1

0584) Functest1.addTest Condition(&TC1);
0585) Functest1.addTest Condition(&TC2);

0586 Notice also the name that is generated for the
Description function. Each parameter named XXX is asso
ciated with a member function:

0587 Status getXXXDescription() const;
0588 that returns the string with a description for the tool
tip that the GUI can use.
0589) Other Pre-Header Features
0590 The pre-header Supports some other user defined
enumerations as an additional type. This allows the GUI to
provide a drop down list of possible choices that could be
used for Setting the value of a particular parameter. Further
more, the pre-header provides a feature to associate a
number of parameters that can be thought of as a table. For
example, it may be convenient to implement an array of
“properties as an associated Set of an array of Strings for the
names, and an array of integers for the values. One easy way
of implementing this feature is to use an array of custom
types (discussed later). However, that requires the user to
write a custom type pre-header to use. Both of these features
are illustrated in the following example:

File FooBarTestph

Parameterization specification pre-header for
custom test class FoobarTest

Version 1.0:
Import Test1-ph; # For base class Test 1
TestClass = FoobarTest; # The name of this test class
PublicBases = Test1; # List of public base classes
The parameters list:
Parameters

{
An enumerated type
Enum WishyWashy = Yes, Perhaps, Possibly, Maybe, MaybeNot,

No:
Define a WishyWashy parameter.
WishyWashy WW
{

Cardinality = 1;
Attribute = m ww:
SetFunction = setWw:
Description = “The WW parameter for a Foobar Test";

This class has an array of name-number pairs that is
interpreted in the class.
ParamCroup
{

Cardinality = 0-n;
The Name field in this array is:

- of type String
- represented by C++ type Tester::String
- stored in a member named m NameArray
- a function to set it named addName.
- a parameter description for the GUI to use as a tool tip

tring Name

Attribute = m NameArray;
SetFuncti n = addName:
Description = “A Name with a Value':

The Number field in this array is:
- of type Integer
- represented by C++ type int

35
Nov. 11, 2004

-continued

- stored in a member named m NumberArray
- a function to set it named addNumber.
- a parameter description for the GUI to use as a tool tip
Integer Number
{

Attribute = m. Number Array;
SetFunction = addNumber,
Description = “The value of the Name:

The following declaration specifies that a FunctionalTest has
- a parameter of type PList
- represented by C++ type Tester::PatternTree
- stored in a member named m pPatList
- a function to set it named setPatternTree.
- a parameter description for the GUI to use as a tool tip

List PListParam

Cardinality = 1;
Attribute = m pPatList;
SetFunction = setPatternTree;
Description = “The PList parameter for a FunctionalTest:

The following declaration specifies that a FunctionalTest has
- 1 or more parameters of type TestCondition
- represented by C++ type Tester::TestCondition
- stored in a member named m testCondnsArray
- a function to set it named addTestCondition.
The implement clause causes the translation phase of to
generate a default implementation of this function.

TestCondition TestCondition Param
{

Cardinality = 1-n;
Attribute = m testCondnsArray;
SetFunction = addTestCondition Implement:
Description = “The TestCondition parameter for a

Functional Test:

CPlusPlusBegin
SInc
namespace
{
class SClass
{
If Array types for parameters storage:
SParamAryTypes
public:

virtual void preExecO:
virtual void exec();
virtual void postExec();
SParamEns
ff ...

private:
double m someVar;
SParam Attrs
ff ...

}:
ff ...
SParam Impls
} // End namespace
CPlusPlusBnd

0591. It must be noted that a custom type name-number
pairs could have been declared, and a single array parameter
of that custom type could have been used to have the same
effect as the above ParamCroup of parameters. The tech
nique presented above is a convenience that avoids the
necessity of declaring a custom type.

US 2004/0225.459 A1

0592 C5. Custom Function Declarations
0593. This allows the user to call custom functions when
a flow transition takes place. Custom functions are declared
through pre-header as follows:

File MyFunctions.ph

Parameterization specification pre-header for MyFunctions

Version 1.0:
Functions = MyFunctions; # The name of this group of functions
Declare the following C++ function in the
MyFunctions namespace to determine the minimum
of two values.
// Return the minimum of x, y
double MyRoutines::Min
(ITestPlan pITestPlan,int& x, int& y);
Integer Min (Integer X, Integery);
Declare the following C++ function in the
UserRoutines namespace to return the average of
an array.
If Return the average of the array
double MyRoutines::Avg
(ITestPlan pITestPlan, double* a, constint a size);
The C++ function will be called with a and a Length
Double Avg(Double a);
Declare the following C++ function in the
UserRoutines namespace to print the dut id
and a message
If Return the average of the array
double MyRoutines::Print
(ITestPlant pITestPlan, String msg, unsigned int&
dutId);
The C++ function will be called with a and a Length
Void Print(String msg, UnsignedInteger dutd);

0594 Typically a C++ section needs to be provided
for the above declarations, as the compiler will
expand these declarations in a Standard way. The
user is of course responsible for the C++ implemen
tation of these functions. Note that all of the above
functions will presumably take an ITestPlan pointer
as an implicit first parameter. This pointer provides
the function writer access to stateS in the TestPlan.
For instance, the function writer could use the ITest
Plan interface to access the current Flow, the current
FlowItem in the flow, the current Result clause,
values of UserVars, and other Such information.
Certain tester defined functions are available for use
in the file Functions.ph:

Version 1.2.3:

File Functions.ph

Functions = Functions: # The name of this group of functions
Declare the following C++ function in the
Functions namespace
Returns the ID of the current DUT being tested by the
caller.
Unsigned Integer GetDUTID();

0595 C++ for Custom Function Declarations
0596) The C++ code that would be generated by compiler
for My Functions above is to simply declare some functions
in the My Functions namespace:

36
Nov. 11, 2004

namespace MyFunctions
{

double Min(ITestPlan pITestPlan, int& x, int& y);
double Avg(ITestPlan pITestPlan, double: a, constint a size);
void Print(ITestPlan pITestPlan, char Msg, unsigned int dutID);

0597. These functions will be callable from a flow.
0598 C6. Custom Flowables
0599. It is also possible to create a pre-header implement
ing the C++ IFlowable interface using the pre-header. This
enables a user to define custom flowables that can be run in
a FlowItem. Shown below is a pre-header for the user
defined Flowable MyFlowable:

File MyFlowable.ph

Parameterization specification pre-header for MyFlowable

Version 1.2.4:
FlowableClass = MyFlowable;
The parameters list:
Parameters

The name of this custom class

The following declaration specifies that a MyFlowable has
- 1 optional parameter Int1 of type Integer
- represented by C++ type int.
- stored in a member named m int1 Val
- a function to set it named setInt1Val.
Integer Int1
{

Cardinality = 0-1;
Attribute = m int1 Val;
SetFunction = setInt1Val;

The following declaration specifies that a MyFlowable has
- 1 mandatory parameter Int2 of type Integer
- represented by C++ type int.
- stored in a member named m int2Val
- a function to set it named setInt2Val.
Integer Int2
{

Cardinality = 1;
Attribute = m int2Val;
SetFunction = setInt2Val;

The following declaration specifies that a MyFlowable has
- one or more parameters of type String
- represented by C++ type Tester::String
- stored in a member named m stringArrVal
- a function to set it named addString Val.
String StringItem
{

Cardinality = 1-n;
Attribute = m stringArrVal;
SetFunction = addString Val;

The following declaration specifies that a MyFlowable has
- A single PList parameter
- represented by the C++ type Tester::PList
- stored in a member named m plist
- a function to set it named setPListParam
PList PListParam
{

Cardinality = 1;
Attribute = m plist;
SetFunction = setPListParam:

US 2004/0225.459 A1

-continued

The section below is part of the Pre-Header which is an escape
into C++ code.

Everything in this section will be reproduced verbatim in the
generated header file, except for “SClass”, “SInc',
“SParamAryTypes”, “SParamAttrs”, “SParamFns” and
“SParam Impls”.

Note that no comments beginning with the '#' character are
supported
within the following section.

CPlusPlusBegin
SInc
namespace

class SClass
{
If Array types for parameters storage:
SParamAryTypes
public:

virtual void preExec();
virtual void exec();
virtual void postExec();
SParamEns
ff ...

private:
double m someVar;
SParam Attrs
ff ...

}:
ff ...
SParam Impls
} // End namespace
CPlusPlusBnd

0600 There are several classes implementing the IFlow
able interface. These include:

0601 1. Flows for program loading which will
check whether a test plan can be executed within the
current tester configuration.

0602. 2. Flows for pattern loading which will load
Specific patterns and pattern lists.

0603 3. Flows for initialization which will put hard
ware and Software in a known State, load global
variables, and do other initialization and validation
functions.

0604 4. Other generally useful test flows.
0605 C7. Custom Types yp

0606. The discussion on Test class parameterization ear
lier only allowed for test class parameters to be of known
types, viz., elementary types and tester-defined types Such as
PLists, and TestConditions. For user flexibility, it is impor
tant to provide type extensibility, whereby types (that are
unknown a-priori to the compiler) can be created and used.
Custom types (CTs) will be defined in the Custom Types.
These can be used to define types corresponding to C-lan
guage structs (also referred to as Plain Old Data types, or
PODS, which are quite different from their namesakes in
C++) as well as for types corresponding to C-language
typedefs for function signatures. A separate file with user
types will have the extension.ctyp. Here is an example of a

37
Nov. 11, 2004

user types declaration in accordance with the preferred
embodiment of the present invention:

#---
File MyCustomTypes.ctyp
#---
Version 1.0.0;
CustomTypes
{

A structured Plain-Old-Data type
Pod Foo
{

String S1;
Integer I1;
String S2:

String is a standard type
... and so is Integer

Another structured type using Foo
Pod Bar
{

Foo Foo1;
String S1;
Foo Foo2:

A pointer to a function.
Return type:
Parameters:

Routine BinaryOp(Integer, Integer) Returns Integer,

Another pointer to a function.
Return type: Void
Parameter: Integer

Routine UnaryOp(Integer) Returns Void;

A pointer to a function that takes
no parameters and does not return a value.

Routine NullaryOp() Returns Void;

Integer
Integer, Integer

0607 C++ for Custom Types
0608. The CustomTypes declaration presented above will
be translated by the compiler into the following C++ code:

namespace CustomTypes

struct Foo

{
Tester::String S1;
int I1;
Tester::String S2

struct Bar

Foo Foo
Tester::String S1;
Foo Foo2:

}:
typedef int (BinaryOp) (int&, int&);
typedef void (UnaryOp)(int);
typedef void (NullaryOp)();

0609 Objects of these types can be passed to Test classes
as parameters, as shown next.
0610. Using Custom Types as Test Class Parameters
0611 Consider the case where the user has an extension
to a test, which needs to be initialized with-in addition to

US 2004/0225.459 A1 Nov. 11, 2004
38

pattern lists and test conditions-other class objects, as well
as arbitrary (i.e., user-defined) objects that are defined within -continued
a file containing Custom Types (i.e., a .ctyp file). For
example, Suppose the user wants to use the CTS defined in
the file MyTestCTs.ctyp:

BinaryOpParam = bop1;

File MyTesetCTs.ctyp
Version 1.0:
CustomTypes

Pod Foo

String name;
PList pattern List;

Pod Bar

Foo someFoo:
Double dVal;

Routine BinaryOp(Integer, Integer) return Integer;

0612 All that the user needs to do to use the above
types is import the above file in his test class pre
header. Since the compiler interprets CTS that are So
defined, the definitions for Foo and Bar are therefore
available to it when it is processing the test class
pre-header. Moreover, the compiler defines two
C-language Structs, struct Foo and Struct Bar, cor
responding respectively to the types Foo and Bar
above, the definitions for which are placed in the file
myTestCTS.h. The Import statement for
myTestCTs.ctt causes the file myTestCTS.h to be
#include-d in the generated test class C++ header.
The following example illustrates this process. First,
consider the declaration for the test in the test plan
(the declarations for pattern lists and test conditions
have been omitted for clarity):

Import MyFunctions.ph;
Import MyCustomTypes.ctyp:

The CustomWars block defines variables of the Custom
types defined earlier.
CustomWars

{

Barbar1 =
{

{ "This is a Foo', somePatList , # someFoo
3.14159 # dVal

A function object that is a binary operator.
The name on the right hand side of the assignment
is a routine declared in MyFunctions, for which,
of course, the user has to provide an implementation.

BinaryOp bop1 = MyFunctions.Min;

Test MyFancyTest MyTest1

BarParam = bar1;

0613. In the above example, a CustomVars block is
included in a test plan. A separate file with customization
variables will have the extension.cvar. The user would write
a pre-header for MyFancyTest that supports the above
parameterization as follows (the parameterization declara
tions for pattern lists and test conditions have been omitted
for clarity):

File MyFancyTestph

Parameterization specification pre-header for MyFancyTest

Version 1.0.2:
Import MyCustomTypes.ctyp: # For CTs used in MyFancyTest
Import FunctionalTest.ph; # For base class FunctionalTest
TestClass = MyFancyTest; # The name of this test class
PublicBases = Functional Test; # List of public base classes
The parameters list:
Parameters

The following declaration specifies that a MyFancyTest has
- an optional array of parameters of custom type Bar
- represented by C++ type CustomTypes::Bar
- stored in a member named m barsArray
- a function to set it named addBarParam.
An implementation will be generated for addBarParam.
Bar BarParam

{
Cardinality = 0-n;
Attribute = m bars Array;
SetFunction = addBarParam Implement:

The following declaration specifies that a MyFancyTest has
- an optional parameter of custom type BinaryOp
- represented by C++ type CustomTypes::BinaryOp.
- stored in a member named m binaryOp
- a function to set it named setBinaryOpParam.

An implementation will be generated for setBinaryOpParam.
BinaryOp BinaryOpParam
{

Cardinality = 0-1;
Attribute = m binaryOp;
SetFuncti n = setBinaryOpParam Implement;

CPlusPlusBegin
SInc
namespace
{
class SClass
{
SParamAryTypes
public:

virtual void preExec();
virtual void exec();
virtual void postExec();
SParam Fns
ff ...

private:
double m someVar;
SParam Attrs
ff ...

}:
ff ...
SParam Impls

US 2004/0225.459 A1

-continued

} // End namespace
CPlusPlusBnd

0614 C++ for Custom Test Classes using Custom Types
0615. Finally, once the compiler has processed this pre
header file, it will create the following C++ header file for
the MyFancyTest class, MyFancyTest.h:

#include <MyCustomTypes.h>
#include <ITest.h>
#include <Functional Test.h>

namespace

class MyFancyTest : public ITest,
public FunctionalTest

public:
typedef std::vector&CustomTypes::Bar * > Bar Ary t;

public:
virtual void preExec();
virtual void exec();
virtual void postExec();

public:
void setName(OFCString &name); # Automatic for all tests
void setPatternTree(PatternTree *):
void addTestCondition(TestCondition *);
void addBarParam(CustomTypes::Bar);
void setBinaryOpParam(CustomTypes::BinaryOp *);

private:
double m someVar;

private:
OFCString m name; # Automatic for all tests
PatternTree *m pPatList;
TestConditionPtrsAry t m testCondnsArray;
Bar Ary t m barsArray;
BinaryOp *m binaryOp;

: I? End class MyFancyTest

inline void
MyFancyTest::addBarParam (CustomTypes::Bar arg)
{

m barsArray-push back(arg);
return;

inline void
MyFancyTest::setBinaryOpParam (CustomTypes::BinaryOp

{
m binaryOp = arg;
return;

} // End namespace

0616) C8. Parameterization
0617. As seen above, a pre-header for a Test class,
custom Flowable class, or custom function definitions offers
limited introspection into the class/functions through a
parameterization specification Section. The compiler uses
this Section to generate the parameterization interface for the
class/function (and generate the class/function header itself).
For Test classes and Flowable classes, it also uses this
Section to Subsequently generate the calls in the Test Plan
code to initialize an instance of that class. The following
points concerning pre-headers and corresponding declara
tion should be noted:

39
Nov. 11, 2004

0618 1. Every Test or custom Flowable class defi
nition is preferably Specified in a pre-header. The
Parameters block in the pre-header is preferably the
only place where the parameters list for Such a class
can be specified. (Thus, as a corollary, the “standard”
parameters for a Test, Such as pattern list and test
condition specifications, also need to be included in
the pre-header's Parameters block; this allows all
parameters, Standard and CTS, to be treated uni
formly.)

0619 2. All parameters defined as non-optional (i.e.,
with a non-zero cardinality) in the pre-header for a
Test or Flowable class should be initialized in the
Test block or Flowable block declaration for an
instance of that class.

0620 3. The objects used for initialization of param
eters in the Test/Flowable block should have been
defined previously.

0621 4. The replacement indicators SClass, SInc,
SParamAryTypes, SParam Fns, SParam Attrs and
SParam Impls must appear at the exact locations
within the user code Section of the pre-header that
the user intends the corresponding generated code to
be inserted at in the generated class header file.
These should appear exactly once, Since Specific
code is generated for each.

0622 5. The name of a parameter specification in
the Parameters block of the pre-header (such as
PListParam, TestCondition Param or BarParam in the
examples above) is the name of the parameter to be
used in the declaration of an instance of that class.

0623 6. The following are the semantics of the
descriptors used in a parameter Specification:
0624 a. Cardinality: This indicates the number of
parameters of this type that will be supported. The
following are the possible values in one embodi
ment:

0625 i. 1: This parameter is mandatory, and
should be specified exactly once. This param
eter will be maintained as a pointer to an object
of the type of the parameter.

0626 ii 0-1: This parameter is optional; if
Specified, it must be specified only once. This
parameter will be maintained as a pointer to an
object of the type of the parameter.

0627 iii 1-n: This parameter is mandatory.
Moreover, multiple values can be specified for
this. The values will be stored in the order of
Specification.

0628 iv 0-n: This parameter is optional. Mul
tiple values can be specified for this. The values
will be stored in the order of specification.

0629) Note that for () and () above, all
specified values will be stored in an STL vec
tor- >, templated on a pointer to the type of the
parameter. The type of this vector will be
defined and inserted at the point indicated by
SParamAryTypes. The access level for these
type definitions is always public.

US 2004/0225.459 A1

0630 b. Attribute: The name of the C++ variable
to use as the store for parameter value(s) of this
type. The name will be reproduced verbatim, as a
private data member of the C++ class, and must
conform to the requirements for a C++ identifier.
Note that the type of this attribute is:
0631 i. A pointer to the type of the parameter,
if only Single values are permitted;

0632 ii. An STL vector- >, templated on a
pointer to the type of the parameter, if multiple
values are permitted (see () above).

0633. Note that the attributes hold references to
objects created and populated by the Test Plan,
and do not own these objects. The lifetime of
the objects are always managed by the Test Plan
itself.

0634 c. SetFunction: The name of the function to
use for Setting a value for this parameter. The
following points should be noted:
0635 i. The name will be reproduced verbatim,
and hence, must conform to C++ language
requirements.

0636) ii. The access level of the function is
always public.

0637)
0638 iv. The function always takes only a
Single argument, of type pointer-to-parameter
type.

0639. Note that a value is always set singly; i.e., for
parameters that allow Specification of multiple values, the
generated code in the Test Plan will call this function
repeatedly, once for every value Specified, each of which
will be added to an STL vector (as described above).

iii. The return type is alwayS Void.

0640 The optional keyword “implement” following the
function name indicates that a trivial implementation for this
function will be made available as an inline method in the
class header (inserted at the point indicated by SParamIm
pls). Otherwise, the user is responsible for providing an
implementation of the function.

0641 d. Description: A string literal that is a tooltip
which will be used by a GUI tool to provide help
during runtime modification of this parameter. The
C++ member function generated in the custom class
for a parameter named XXX will be
0642 String getXXXDescription () const;

0.643. The function will return the specified string.
0644 Test Plan Example with Customization
0645 Shown below is the test plan example embellished
with Some customization:

File MyCustomizedTestPlan.tpl

Version 0.1;

40
Nov. 11, 2004

-continued

Imports as before ...
The following import is implicit, but can be explicitly
provided.
Import FunctionalTest.ph;
Import for MyFlowables, MyFunctions and Functions
Import MyFlowables.ph;
Import MyFunctions.ph:
Import Functions.ph;
#---
Start of the test plan
#---
TestPlan Sample;
This block defines Pattern Lists file-qualified names and
Pattern List variables that are used in Test declarations.
The file-qualified names refer to pattern lists in the named
files. The variables refer to String variables which will
hold the pattern list names at run time. User defined Flowable
objects could set the values of these variables through an
API.
PListDefs
{

File qualified pattern list names
pl1A.plist.pat1Alist,
pl2A.plist.pat2AList,
Pattern list variables
plistXXX,
plistYyy,
plist ZZZ

SocketDef, UserVars declaration as before ...
Declarations of TestConditions TC1Min, TC1Typ, TC1 Max,
TC2Min, TC2Typ, TC2Max as before...

Declare a FunctionalTest. "Functional Test refers to a C++
test class that runs the test, and returns a 0, 1 or 2 as
a Result. The Test Condition Group TCG1 is selected with
the “min' selector by referring to the TC1 Min TestCondition.

Note that compiler can compile this because of the imported
FunctionalTest.ph file.

Test Functional Test MyFunctionalTest1 Min
{

PListParam = pat1AList;
TestCondition Param = TC1 Min:

Additional FunctionalTest declarations for the following, as before
MyFunctionalTest1Typ
MyFunctionalTest1 Max
MyFunctionalTest2Min
MyFunctionalTest2Typ
MyFunctionalTest2Max

Here is a declaration of MyFlowable. It uses a Pattern List variable
plistXXX which is initialized by the flowable prior to use here.

Compiler can compile this because of the imported MyFlowables.ph
file:
Flowable MyFlowable MyFlowable1
{

Int1 = 10;
Int2 = 20;
StringItem = “Hello World”:
PListParam = plistXxx;

Counters for PassCount and FailCount as before ...
Flows as before. Flows FlowTest1 and FlowTest2 are
unchanged from the previous example.
Flow FlowTest1

...

Flow FlowTest2
{

...

US 2004/0225.459 A1

-continued

Now FlowMain, a main flow, can be presented. It
implements a finite state machine that calls FlowTest1
and FlowTest2 as below:

Result O Result 1

FlowMain 1 FlowMain 2 return 1
FlowMain 2 FlowMain 3 return 1
FlowMain 3 FlowMain 4 return 1
FlowMain 4 FlowMain 5 return 1
FlowMain 5 return O return 1

Where the IFlowables run by each FlowItem are:
--

FlowItem IFIowable that is run

FlowMain 1 MyFlowable1
FlowMain 2 DatalogStartFlow
FlowMain 3 FlowTest1
FlowMain 4 FlowTest2
FlowMain 5 DatalogStopFlow

low FlowMain

The first declared flow is the initial flow to be
executed. It goes to FlowMain Initialization Flow
on success, and returns 1 on failure.

FlowItem Flow Main 1 MyFlowable1

Result O
{

Property PassFail = “Pass”:
IncrementCounters PassCount:
A user function call
MyFunctions.Print (“Passed MyFlowable1”,

Functions.GetDUTID());
GoToFlowMain 2:

Result 1
{

Property PassFail = “Fail":
IncrementCounters FailCount:
A user function call
MyFunctions.Print(“Failed MyFlowable1”,

Functions.GetDUTID());
SetBin SoftBins."3GHzLeakage';
Return 1:

Goes to FlowMain 3 on success
and returns 1 on failure.

FlowItem FlowMain 2 DatalogStartFlow

Result O
{

Property PassFail = “Pass”:
IncrementCounters PassCount:
A user function call
MyFunctions.Print("Passed DatalogStartFlow,

Functions.GetDUTID());
GoToFlowMain 3:

Result 1
{

Property PassFail = “Fail":
IncrementCounters FailCount:
MyFunctions.Print(“FailedDatalogStartFlow,

Functions.GetDUTID());
Return 1:

41
Nov. 11, 2004

-continued

This FlowItem calls the previously defined FlowTest1
FlowItem FlowMain 3 FlowTest1

Result O

Property PassFail = “Pass”:
IncrementCounters PassCount:
A user function call
MyFunctions.Print("Passed FlowTest1”,

Functions.GetDUTID());
GoTo FlowMain 4;

Result 1

Property PassFail = “Fail":
IncrementCounters FailCount:
A user function call
MyFunctions.Print(“Failed FlowTest1”,

Functions.GetDUTID());
SetBin SoftBins."3GHzCacheFail':
Return 1:

This FlowItem calls the previously defined FlowTest2
FlowItem FlowMain 4 FlowTest2

Result O

Property PassFail = “Pass”:
IncrementCounters PassCount:
A user function call
MyFunctions.Print("Passed FlowTest2”,

Functions.GetDUTID());
GoTo FlowMain 5:

Result 1

FlowTest1 passed, but FlowTest2 failed
Property PassFail = “Fail":
IncrementCounters FailCount:
A user function call
MyFunctions.Print(“Failed FlowTest2”,

Functions.GetDUTID());
SetBin SoftBins."3GHZSBFTFail':
Return 1:

FlowItem FlowMain 5 DatalogStopFlow

Result O

All Passed
Property PassFail = “Pass”:
IncrementCounters PassCount:
A user function call
MyFunctions.Print("Passed all,

Functions.GetDUTID());
SetBin SoftBins."3GHZAll Pass'':
Return 0;

Result 1

FlowTest1 and FlowTest2 passed,
but DatalogStopFlow failed
Property PassFail = “Fail":
IncrementCounters FailCount:
A user function call
MyFunctions.Print(“Failed DatalogStopFlow,

Functions.GetDUTID());
Return 1:

US 2004/0225.459 A1

0646 The following points need to be noted about the
above code:

0647. 1. The PList Defs section here has some PList
names and also some PList variables. The PList
names are names that can directly be used in tests.
The PList variables are variables which can be used
in tests, and whose value is bound at runtime to
actual PLists by code in a customized Flowable.

0648 2. The PList Defs section is optional. If not
present, its contents will be inferred by compiler
from the various Test declarations. If present, it must
declare all of the used PList parameters of Tests,
though it may declare more.

0649. 3. A runtime API will be available to assign
values to PList variables. The TestPlan class will
have a function:

0650 Status SetPListVariable(const Tester
::String& varName, const Tester::String&
fileOualifiedPListName);

0651) The Flowable will be able to use the above
function to bind a PListVariable to a particular
PList.

0652) 4. User functions and functions can be called
in FlowItems just prior to a transition, which is either
a transfer of control to another FlowItem, or a return.

0653 C++ for User Function Calls
0654. With the exception of invoking custom function
calls in flows, C++ code that would be generated by the
compiler has been shown for the various customization
techniques presented earlier. User function calls in a Flow
Item are preferably handled by an IUserCalls member of
each Flow. Each Flow preferably has a member of the
interface IUserCalls which exports a single virtual member
function, as shown below:

class IUserCalls
{
public:

virtual void exec(const String& flowItemName,
unsigned int result) = 0;

}:

0655 When a Flow with user function calls is
encountered, the Flow gets populated with an
instance of a class that implements the above inter
face. For example, in FlowMain in the example in
the flow will be populated with an instance of the
following class:

class FlowMain UserCalls: public IUserCalls
{
public:

virtual void exec(const String& flowItemName,
unsigned int result)

{
if (flowItemName = = “Flow Main 1”)
{

ff ...

42
Nov. 11, 2004

-continued

} else if (flowItemName = = “Flow Main 2")
{

ff ...
} else if (flowItemName = = “Flow Main 3)
{

switch (result)
{
case 0:

MyFunctions::Print("Passed FlowTest1”,
Functions::GetDUTID());

return;
case 1:

MyFunctions::Print(“Failed FlowTest1”,
Functions::GetDUTID());

return;
default:

return;

else if (flowItemName = = “Flow Main 4)
{

ff ...

else if (flowItemName = = “Flow Main 5")
{

ff ...

}:

0656. The Flowltem::execute() operation knows the
name of the flow item. Before it returns with the pointer to
the next flow, it will call IUserCalls:exec() for the enclos
ing flow, passing its own flow item name, and the value of
the current result. This will cause the above code to be
executed, invoking the needed user defined functions.
0657 C9. Test Program Compilation
0658 AS explained above, the Test Plan description file
Specifies the objects used in a test plan and their relation
ships to one another. In one embodiment, this file is trans
lated to the C++ code that will be executed on the Site
Controller in the form of an implementation of a standard
interface ITestPlan. This code can be packaged into a
Windows dynamic link library (DLL) which can be loaded
onto the Site Controller. The Test Program DLL is generated
to have standard known entry points that the Site Controller
Software can use to generate and return the TestPlan object
it contains.

0659 Construction from a Test Plan Description
0660 The process of conversion from a test plan descrip
tion to an implementation of ITestPlan is accomplished by
the test program compiler 400. This process occurs in two
phases: translation and compilation.
0661. In the translation phase 402, the compiler 400
processes a test plan file (and the various other files it
imports), as well as the pre-headers for all the test types used
in the test plan. In this phase, it creates the C++ code for the
Test Plan object and the C++ headers for the test types
encountered, along with all other Supporting files, Such as
MSVC++(Microsoft Visual C++) workspace and project
files, DLL “boilerplate” code, etc. The compiler 400 inserts
file and line directives into the generated code to ensure that
compile-time error messages refer back to the appropriate
location in the description file instead of pointing into the
generated code.

US 2004/0225.459 A1

0662. In the compilation phase, which occurs after the
compiler has created the necessary files, a Standard compiler
404, such as an MSVC++ compiler, is invoked to compile
the files and link them into a DLL.

0663 The compiler takes, as input, a valid test plan file
(and all related files), and generates, as necessary, a TestPlan
file and all other files represented by “Import” directives in
the test plan file. In addition, it generates a MSVC++
“Solution” to build the Test Plan DLL. For example, if the
main file (MyTestPlan.tpl) included Timing1.tim to incor
porate timing information, then the compiler would create
(among others) the following files:

0664 MyTestPlan.h
0665) MyTestPlan.cpp
0.666 Timing 1.cpp

0667)
0668

0669. After all files are created (or updated), the compiler
invokes the MSVC++ application, specifying the “Solution”
it created, and builds the DLL. Any errors and/or warnings
would be shown to the user.

0670) If, after building the Test Plan, the user made a
change to Timing1.tim, the user would then invoke the
compiler, passing it MyTestPlan.tpl. The compiler would
recognize (by timestamp information) that the main test plan
file is unchanged, so that MyTestPlan.h/.cpp would not be
recreated. However, while processing the main test plan file,
it would see that the Timing..tim file has changed. Therefore,
it would recreate the Timing 1.cpp file, and invoke the
MSVC++ application to rebuild the DLL. This avoids
recompiling MyTestPlan.cpp., and only compiles
Timing 1.cpp and re-links the DLL. This approach will be
especially useful in cutting down re-compile and re-link
times for large test plans that take a significant amount of
time to compile.
0671) D. Running the Test Program
0672. The Site Controller software loads the Test Pro
gram DLL into its process Space and calls a “factory'
function within the DLL to create an instance of the Test
Plan object. Once the Test Plan object has been created, the
Site Controller software can then execute the test plan or
interact with it in any other way necessary.
0673) Non-Interactive Builds

MyTestPlansln (MSVC++“Solution” file)
MyTestPlan.vcproj (MSVC++“Project” file)

0674) To most C++ Software developers in the Windows
environment building an application (or a DLL, or Library,
etc) means bringing up a development environment (MS
Visual C++, Borland C++, or similar), editing code, and
(often) pressing a button to build the product.
0675. The test environment of an embodiment of the
invention will have a similar set of activities. Test Plan
developers will need to edit code and build their Test Plans.
However, tester will not require the Test Plan developer to
bring up a C++ development environment in order to pro
duce the resulting Test Plan DLL.
0676 In order to accomplish this the present invention
employs the concept of a non-interactive build. A non
interactive build is defined as a build that uses MS Visual

43
Nov. 11, 2004

C++ in a non-interactive mode. Note that this still allows
other tools to be used interactively to manage Such a build.
The only implication is that Visual C++ is used non
interactively.

0677 Assumed Environment
0678 Certain assumptions are made about the user's
environment. The assumptions are:

0679) 1. The Test Plan developer will be developing
his Test Plan according to above methods and rules.

0680 2. The Test Plan developer may not have a
expert level knowledge of C++.

0681) 3. The Test Plan developer will have access to
command-line tools or GUI tools to convert file(s) to
a Test Plan DLL.

0682 Building Applications Without Buttons
0683 Working with MS Visual Studio non-interactively
requires one of two approaches. The first (and Simplest) is to
use the command-line interface. The Second (and more
flexible) is to use the Automation interface. This section
describes both approaches.
0684) Creating the Project
0685. In order to use Visual Studio non-interactively one
should start with a working Solution which contains one or
more valid Projects. Unfortunately, this is the one task that
cannot be accomplished from either a command-line or
Automation approach. Neither method provides a mecha
nism for project creation. However, projects and Solutions
for Visual Studio can be created from a template. Therefore,
given a project name and a template to Start from we can
create a Solution/project for Visual Studio.
0686 Populating the Project
0687 Adding new files to the produced project uses the
Visual Studio Automation model since the command-line
does not support this. We provides two Visual Studio macros
to add new and existing files to a project. Similar code could
be used by an external Script using an ActiveScript Engine
(such as VBScript, JScript, ActivePerl, ActivePython, etc) to
perform the same tasks. Therefore, our code generation tools
could create new files and, using the Automation Model, add
them to the existing Visual Studio project. After the files are
created they can be updated as necessary by the tools.
0688 Building the Project
0689. Once we have a solution and project in place there
are Several options to using Visual Studio non-interactively
to build the Test Plan. The simplest option is to invoke it
from the command-line. Such a command-line would look
like:

0690 devenv solutionFile/build solutionCfg
0691 where solutionFile is a Visual Studio solution file
and SolutionCfg is a specific configuration applicable to the
projects within the Solution. Another Solution is to use the
Visual Studio Object Model for Automation. This allows a
finer grain of control over the build and configuration
process. AS mentioned above, it contains a listing of a Perl
Script to build a project from the command line. This
program reads a configuration file which specifies projects
and configurations to build (as well as other information

US 2004/0225.459 A1

about the projects) and builds them all using the Automation
Model. Look at the uses of the Smsdev object in this script
for examples of how to use Automation objects in a Script.
0692 Debugger Support
0693. In order for developers of Test classes to verify and
debug their work, they need access to a debugger that allows
them to break into the Site Controller and step through their
code. Since the code generated by the compiler is C++ which
is compiled by MSVC++, we use the MSVC++ debugger to
debug Test class implementations. Note that this feature is
meant only for Test class developers or others who work
directly in C++. Other mechanisms will be provided to test
engineers who wish to debug or Step through the operation
of a Test Program without referring directly to the generated
C++ code.

0694 System Software Environment
0695) This section describes the general software envi
ronment for the Tester: the locations for the files required by
user test plans, mechanisms for Specifying alternate loca
tions for Such files, and the methods for Specifying the
locations of the test plans and module control Software.
0696) Environment Required by Test Plans
0697) System standard locations, as well as the runtime
configuration of the Search paths for

0698 1. pattern lists,
0699 2. patterns,
0700 3. timing data, and
0701

0702 required by a test plan, may be configured by
“environment variables, as Specified by environment con
figuration files. These are text files, with a simple Syntax
Such as:

0703 Tester PATOBJ PATH=
“patterns\data; D:\projects\SC23\patterns\data”

4. test class DLLs

0704. The advantage of having such “environments'
defined in text files instead of through native OS-supported
environment variables is that the implementation is then not
limited by the common restrictions that OS-supported envi
ronment variables have, Such as maximum String lengths,
etc. The following “environment” (setup) variables will be
used for the entities listed above:

0705 Pattern lists: Tester PATLIST PATH.
0706 Pattern object files: Tester PATOBJ PATH.
0707 Pattern source files: Tester PATSRC PATH
(this is optional; please See).

0708 Timing data files: Tester TIMING PATH.
0709 Test class DLLs. Tester TEST CLASS LIB
PATH.

0710. In order to support special cases, while maintaining
useful default behavior, we provide three levels of configu
ration. These are described in increasing order of prece
dence:

0711 First, a system environment setup file,
STester INSTALLATION ROOT\cfg\setups\Setup.env,

44
Nov. 11, 2004

will specify the default values of “environment” variables. If
no other configuration mechanism is available, this file will
be required. In general, it will be available for all test plans
run on the system. This file is created by the Installation and
Configuration Management (ICM) system during installa
tion, with input from the installer to assign the default values
for the three variables mentioned above. (Note that besides
the system defaults for the above three variables, this file
will also contain the System defaults for certain other tester
“environment” variables, as described in the following Sub
Section.)
0712 Second, an environment setup file may be specified
by the user as a runtime argument to the test plan. The
variables in this runtime configuration will take precedence
over default definitions.

0713 Finally, a test plan may use a special block to
Specify the environment variables to be used in its execution.
Variables defined in the test plan will take precedence over
those in the default system file or the user-defined file.
0714. In general, all necessary variables should be
defined through one of the mechanisms described above. If
a variable is not defined, a runtime error will occur.
0715) Other Environment Setups
0716 Besides the “environment” variables that are
required by user test plans, the following two “environment'
variables are required by the test environment:

0717) 1. Tester TEST PLAN LIBPATH: This
specifies the search path that the System Controller
will use for finding a user test plan DLL that should
be loaded. Note that the same search path will also
be used for finding user pin description and Socket
files. The default value for this variable, specified
during installation time to the ICM, is stored by the
ICM in the file
STester INSTALLATION ROOT\cfg\setups\Setup.env.

0718 2. Tester MODULE LIBPATH: This speci
fies the Search path that the System will use to load
vendor-provided hardware module control software
DLLs. This information, extracted from the Configu
ration Management Database (CMD), is also stored
in the file
STester INSTALLATION ROOT\cfg\setups\Setup.env
by the ICM.

0719. Note that while a user can override the value given
in the Setup.env file for the Tester TEST PLAN LIBPATH
variable, the value given in the Setup.env file for the
Tester MODULE LIBPATH should not be changed by the
user unless the user wants to explicitly change the Search
path for the vendor-provided hardware module control soft
ware DLLs.

0720 Search Path Specification Semantics
0721 The following points should be noted about the
“environment” variables that specify search paths:

0722) 1. Each should be a semicolon(":")-separated
list of directory names that the System will Search to
find a referenced file of a particular type.

0723 2. After initial system lookup of the value of
Such an “environment variable, any changes made

US 2004/0225.459 A1

by the user to its value (for example, by editing an
environment configuration file) will only be regis
tered by the system when the user explicitly
“informs” the system of the need to do so.

0724) 3. Relative pathnames in the search paths will
be interpreted as being relative to a particular Setting
of a related environment variable (that provides the
functionality of defining a root), as paths relative to
the “current working directory” (CWD) could lead to
ambiguous results, since the notion of a CWD in a
distributed environment-Such as the one in which
the tester works-might not be what the user intu
itively expects it to be. This related environment
variable, which designates the root that all relative
pathnames in the Search paths will be assumed to be
relative to, is the “Tester INSTALLATION ROOT”
variable, which gives the location of the top-level
(i.e., “root') directory of the tester installation on a
user's System.

0725 4. The directory entries cannot contain the
characters in the set IV:*?”<>;); note that except for
the semicolon (":"), all the other characters in this set
are illegal in Windows file names. The semicolon
(“;”) should not be used in Search path entries, since
it is used to demarcate entries in the Search path.
Note that pathnames can have embedded
whitespaces, but all whitespaces occurring immedi
ately before and after a pathname (i.e., before the
first and after the last non-whitespace character in the
pathname) will not be considered to be part of the
pathname, and will be ignored.

0726 5. The search path directories will be searched
in the order they are encountered in the definition.
The first occurrence of a file will be the one chosen.

0727 E. Test Patterns
0728. The efficient management, handling and loading of
a very large Set of test pattern files is an important archi
tectural aspect of the framework of an embodiment of the
invention. The idea of hierarchical pattern lists is regarded as
being an effective tool in providing tractable conceptualiza
tion and ease of use of the System to the end user.
0729) The stimulus to a DUT is made available to the test
System through test vectors. Vectors can generally be cat
egorized as sequential (or linear), Scan or Algorithmic Pat
tern Generator (APG)-derived. In the system of an embodi
ment of the invention, test vectors are organized in terms of
patterns that are applied to the DUT at test time. A pattern
is represented by a Pattern object in the user's test program.
In the System, patterns are organized in pattern lists, repre
Sented programmatically by pattern list objects. A Pattern
List object represents an ordered list of patterns or other
pattern lists. The ordering is implicit in the order of decla
ration of the list components. Note that if only a single
pattern is needed, it is required to be encapsulated in a list
by itself.
0730. A pattern list object in the user's test program is
asSociated with a pattern listfile on disk, which contains the
actual definition of the pattern list. The contents of a pattern
list are thus dynamically determined by the contents of the
associated disk file (more will be said about this later).

45
Nov. 11, 2004

0731. The definition of a pattern list provides an explicit
name for the pattern list, and identifies an ordered list of
patterns and/or other pattern lists through file name asso
ciations. It also provides for the Specification of execution
options, which will be described in detail after the pattern
objects have been described, since the options can be applied
to both pattern lists and patterns. The pattern list should
follow the following rules:

file-contents :
version-info global-pattern-list-definitions

version-info :
Version version-identifier ;

global-pattern-list-definitions :
global-pattern-list-definition
global-pattern-list-definitions global-pattern-list-definition

global-pattern-list-definition :
global-pattern-list-declaration { list-block

global-pattern-list-declaration :
GlobalPList pattern-list-name options

list-block :
list-entry
list-block list-entry

list-entry :
pattern-entry :
pattern-list-entry :
global-pattern-list-definition ;
local-pattern-list-definition ;

pattern-entry :
Pat pattern-name options

pattern-list-entry :
PList pattern-list-reference options

pattern-list-reference :
pattern-list-qualified-name
file-name : pattern-list-qualified-name

pattern-list-qualified-name :
pattern-list-name
pattern-list-qualified-name '.' pattern-list-name

local-pattern-list-definition :
local-pattern-list-declaration { list-block

local-pattern-list-declaration :
LocalPList pattern-list-name options

options :
option
options option

option :
option-definition

option-definition :
option-name option-parameters

option-parameters :
option-parameter
option-parameters , option-parameter

opt

0732. The following are the descriptions of undefined
non-terminals used above:

0733 1. version-identifier: A sequence of one or
more characters from the set 0-9., where the first
character must be a digit.

0734 2. name: A sequence of one or more characters
from the set a-ZA-Z 0-9), where the first character
must be from the Seta-ZA-Z .

0735 3. pattern-list-name: A sequence of one or
more characters from the set a-ZA-Z 0-9), where
the first character must be from the Seta-ZA-Z .

0736 4. file-name: A valid Windows file name (must
be enclosed in double quotes if any white-spaces are
contained in the file name). Note that this should be
a simple file name, i.e., it should not have a directory

US 2004/0225.459 A1

component. A pattern-list-reference can be either
internal referring to a pattern list in the same file, or
external referring to one in another file. External
references need to be qualified by a file-name.

0737) 5. option-name: A sequence of one or more
characters from the seta-ZA-Z 0-9), where the first
character must be from the Seta-ZA-Z .

0738 6. option-parameter: A sequence of one or
more characters from the set a-ZA-Z 0-9).

0739 Pattern list files Support comments, which are
meant to be ignored by a pattern list file parser. Comments
start with the 'if' character, and extend to the end of the line.
0740 E1. Rules for Pattern List
0741. The static or compile-time rules for pattern lists
govern the declaration and resolution of names. Names in
the pattern list language are declared by global-pattern-list
definitions and local-pattern-list-definitions. They are refer
enced by pattern-list-references. Below are Some rules gov
erning these declarations and references.

0742 1. A global-pattern-list-definition or a local
pattern-list-definition declares the name of a pattern
list. A pattern-list-reference references the name of a
declared pattern list. The names of global pattern
lists are globally known. The names of local pattern
lists are known only in the list-block in which they
are declared. They can be referred to without quali
fication directly in that list block. In a more deeply
nested declaration, a local pattern list will need to be
referred to by a qualified name.

0743 2. Local pattern list names are known within
the Scope of an enclosing pattern list, and global
pattern list names known within the Scope of the
System. For example:

GlobalPList G1
{

LocalPList L1
{

LocalPList L2
{

GlobalPList G2
{

PList L2: # OK. Name L2 is known in this scope
PList G2 # OK. Name G2 is global

PList L2: # Error. Name L2 is not known here.
PList L1.L2: # OK. Name L1 is known here. L2 is known by

qualification.
PList G1.L1.L2; # OK. Qualification by G1 is not needed but

is allowed.
PList G2: # OK. Name G2 is global

0744 3. Global pattern lists may be defined at an
outermost level in a pattern list file, or may be
defined as nested within an enclosing pattern list.
The nesting is merely a convenience, however. They
are conceptually defined as global pattern lists at the

46
Nov. 11, 2004

outermost level in the file. A nested global pattern list
is Semantically equivalent to an outermost (non
nested) global pattern list of the same name. So for
example:

GlobalPListG1

is semantically equivalent to:
GlobalPList G1

GlobalPList G2 ...

GlobalPList G2 ...

PList G2; # References G2

0745. 4. All global pattern lists are uniquely named.

GlobalPList G1
{

Note that this is as if declared at the outermost level
with a reference to it right here.
GlobalPList G2
{

This declaration will be an error in this or any other

as the name G2 is already taken.
GlobalPList G2 # Error. Global name G2 is taken.

0746 5. Local pattern lists are always have their
definitions nested within an enclosing pattern list
which also determines the Scope of the name of the
local pattern list. Local pattern lists are uniquely
named within their enclosing pattern list. Local
pattern lists are Syntactically disallowed from occur
ring at the Outermost level in a pattern list file.

GlobalPList G1

LocalPList L1

LocalPList L2

LocalPList L1 # OK. No local name L1 is declared
directly

in the enclosing scope defined by L2.

PList L1 ; # OK. Refers to L1 declared in L2
PList G1.L1; # OK. Refers to L1 declared in G1.

Error. Redeclaring name L1 when the enclosing
scope

defined by G1 already has an L1 declared in it.
LocalPListL1;

US 2004/0225.459 A1

0747 6. Each pattern list file contains the definition
for one or more global pattern lists. This follows
directly from the syntax. The outermost level is a
global-pattern-list-definition, and there must be at
least one of them.

0748 7. The pattern-name is a reference to a pattern,
following the Pat keyword. It references a pattern
that is in a pattern file whose name is obtained by
concatenating a Suffix pat to the pattern name. The
file denotes a file that will be obtained along a Search
path defined for patterns.

0749 8. A pattern-list-reference is a reference to a
pattern list following the PList keyword. The refer
ence consists of an optional filename followed by a
qualified pattern list name which is just a list of
names Separated by dots. So, for instance, the fol
lowing could be a pattern-list-reference:
0750 PList fooplist:G1.L1.L2.L3;

0751 referring to a local pattern list L3 nested in L2
nested in L1 nested in a global pattern list G1 that is
in a file foo.plist. The leftmost name Segment in the
above name is G1.

0752 The leftmost name segment must resolve to either
a global pattern list, or else to a local pattern list that is
visible from the point of reference.
0753 Name resolution of a pattern-list-reference pro
ceeds as follows:

0754) 1. Each name segment resolves to a name
declared in the context of the prefix before it.

0755 2. If there is a file qualification, the leftmost
name Segment resolves to a global pattern list
declared in the named file.

0756) 3. If there is no file qualification, the leftmost
name could resolve to a local pattern list within the
enclosing Scope and if that fails then the next enclos
ing Scope, and So on, up to an enclosing global Scope.

0757. 4. Limiting the searching of scopes to the
closest enclosing global Scope is needed in order to
preserve the Semantics of global Scopes as if they
were declared at the outermost level in the pattern
list file. If the nested global Scope was (equivalently)
textually declared at the outermost level, the name
resolution Search would terminate after examining
its Scope.

0758) 5. If the reference has not been resolved by the
prior Steps, then the leftmost name Segment can be
resolved to a global pattern list within this Same file.

0759. 6. If the reference has not been resolved by the
prior Steps, then the leftmost name Segment can be
resolved to a global pattern list named in the file by
adding the plist Suffix to the leftmost name Segment.

0760 7. If the reference has not been resolved by the
prior Steps, then the reference is in error.

0761. As mentioned earlier, the above rules dictate that
the leftmost name Segment resolves to either a local pattern
list that is visible from the point of reference, or else to a
global pattern list.

47
Nov. 11, 2004

0762. The following example illustrates some of these
ideas.

GlobalPlistG1

file.
PList G3; # OK. Refers to a pattern list later in this

PList G4; # OK. Refers to a pattern list in file
“G4plist”

OK. Refers to G1 in the file “my plists.plist.
PList my plists.plist:G1;
OK. Refers to a pattern list in file “my plists.plist.

The
qualified name refers to a local pattern list named L2

declared
in the scope of a local pattern list named L1 declared

in the
scope of a global pattern list named G1.
PList my plists.plist:G1.L1-L2;
LocalPList L1

LocalPList L2
{

PList L1; # OK. Refers to L1 declared in the
enclosing scope of G1

GlobalPlist G2

LocalPList L2

GlobalPList G3

LocalPList L3

PList L1; # Error. No L1 declared in this or any enclosing
scope;

Error. The name L2 is not declared in this scope. Also
though L2 is declared in the enclosing scope, this scope
is global, and so no further enclosing scope is examined.

Contrast with reference to name L2 in LocalPList L3 below.
PList L2:
PList G1.L1; # OK. Refers to L1 in G1.
Error. G3 is not really nested inside G1. Since G3
is global, it is really declared at an outermost level,
and so G1.G3 is meaningless.
PList G2.G.3.L3;

LocalPList L3

OK. Refers to G2. L2. The enclosing global scope is G2
and the name L2 is declared in G2.
PList L2:

0763 All pattern list file names and pattern file names are
required to be unique across the test plan using them.

0764) A pattern list reference can refer to a pattern list
defined either before or after the reference in the same file.

0765 Recursive and mutually recursive pattern list defi
nitions are not permitted. While there is nothing in the
pattern list file Syntax to prevent the user from creating Such
definitions, the parser will flag an error when it detects Such
conditions. Note that there is Some cost associated with the
detection of Such conditions. The user will be able to Switch
off the check if s/he can assume the responsibility of

US 2004/0225.459 A1

guaranteeing that the input Space is free from mutually
recursive definitions.

GlobalPList G1
{

LocalPList L2
{
LocalPList L3
{

Error. L2 runs L3 which runs L2.
This is a recursive reference to L2
PList L2:
PList G2:

GlobalPList G2
{

Error. G1.L2 runs L3 which runs G2 which runs
G1.L2.

This is a mutually recursive reference to G1.L2.
PList G1.L2:

0766 The syntactic description of patterns and pat
tern lists allows for options to be specified on them.
In general options are vendor Specific. The Syntax
allows for any pattern or pattern list to have a number
of options Specified, each with a number of param
eters. In we describe Some Supported options that
will be recognized by most vendors.

0767 The dynamic (i.e., execution) semantics of pattern
trees is described in after defining a pattern execution
Sequence.

0768 E2. Patterns
0769 FIG. 6 illustrates a pattern compiler 602 and a
pattern loader 604 according to an embodiment of the
present invention. The user-defined contents of a pattern are
available in a pattern source file 606, which is a plain text
file. A pattern compiler will be responsible for compiling a
Source file into a module-specific format Suitable for loading
on the tester hardware; this latter file will be referred to as
the pattern object file. The following are the general
attributes:

0770) 1. A Pattern object is not creatable by the user;
rather, the user always deals with pattern lists, which
are collections of other pattern lists and/or patterns.
A pattern list object creates, owns and maintains the
pattern objects contained within it, while making
them accessible to the user if necessary.

0771) 2. A pattern is uniquely named within a test
plan, i.e., no two patterns within the test plan. can
have the same name. The name of a pattern is distinct
from the name of the file containing it. The pattern
file name is the one used in the pattern list file to refer
to a pattern, while the actual name of the pattern is
defined in the pattern file.

0772. In an embodiment of the invention, in general, a
Single DUT (device-under-test) might be connected to tester
modules from different vendors. This has implications for
the entire pattern compile-load-execute chain. The main
ones are described in this Section.

48
Nov. 11, 2004

0773) E3. Pattern Compilation
0774. A pattern compiler 602 thus needs to target a
Specific Site configuration (in terms of the vendor-specific
digital modules used). For the rest of this discussion, the
term “module” will be used to refer to a digital module, as
an example. In order to allow the integration of modules 608
from different vendors into the system, the following pro
cedures are preferred:

0775) 1. Each module vendor will be responsible for
providing its own module-Specific pattern compiler
610, in the form of a dynamically loadable library or
Separate executable. This compiler library/execut
able will provide, at the very least, a well-known
compile() function that takes as arguments
0776 a. an array of (one or more) pattern source

file pathnames,
0777 b. the Pin Description file name,
0778)
0779 d. an optional directory pathname specify
ing the destination of the compiled object,

0780 e. an optional array of string name/value
pairs that allow the Specification of any vendor
Specific parameters (that can be ignored by other
vendors).

c. the Socket file name,

0781) 2. The pattern source file will accommodate
two different types of sections:
0782 a. a “common” section that will contain
information accessible to (but not necessarily used
by) all compilers, and

0783 b. one or more optional vendor-specific
Sections, each identified by unique vendor codes,
for information usable by Specific vendors com
pilers.

0784 3. A vendor's compiler will not directly create
a pattern object file. Instead, the tester will provide
for a pattern object “metafile'612, managed by an
Object File Manager (OFM) 614, which is part of the
pattern compiler. The pattern compiler may be
located on the computer acting as the System con
troller, or offline, e.g., on a network to which the
System controller is connected. The “pattern object
file” referred to so far in abstract terms is actually
this object metafile. The object metafile will be
named the same as the pattern Source file, with the
Source file extension replaced by the object file
extension. The OFM will provide an application
programming interface (APIs) to read and write this
file. The object metafile will have provisions for
Storing

0785)
0786 b. module-specific header information,
including information identifying the correspond
ing module and the location of pattern data for the
module,

0787 c. module-specific pattern data, organized
as required by the module Vendor, and capable of
being interpreted by the module Vendor.

a. common header information,

US 2004/0225.459 A1

0788. The OFM APIs will allow a module vendor's
compiler to write module-Specific header information and
data into the object metafile. Note that this layout of the
object metafile allows the pattern data to be organized on a
per-module basis, even in the case where two or more
modules in the targeted Site are identical.
0789. Note that additional vendor-supplied configuration
information might be needed by pattern compilers to facili
tate the generation of module-Specific hardware loading
information that can take advantage of efficient data com
munications Such as direct memory access (DMA).
0790 E4. Pattern Load for a Module
0791) Each module vendor will be responsible for pro
Viding its own pattern loading mechanism 615, following
the general procedure. The pattern object metafile 612 of a
module 608 stores module-specific data in different sections
616. The vendor implementation will use the OFM APIs for
accessing the relevant module-specific Sections from the
pattern object metafile. The tester framework will be respon

file contents

version info

49
Nov. 11, 2004

sible for calling each module’s load method in turn to load
module-Specific data to a module from the appropriate
Section of the metafile.

0792, E5. Pattern Files
0793. It is possible to have each compiler vendor specify
entirely different plain text formats for patterns, which, in
fact, might indeed be necessary in most cases. However, in
general, for a cycle-based testing environment, where coher
ent and identical Semantics acroSS modules are necessary for
every vector, a shared, generalized Syntax for the pattern file
is not only desirable, but may be necessary. This shared
syntax is what will be specified for the “common” section in
the pattern Source file. In fact, for the majority of cases, it is
envisioned that the “common Section is the only Section
(besides header information) that will be required in the
pattern file, and every vendor's compiler will work with only
that Section. This Section presents rules for the pattern file
that all compilers should be able to interpret. The pattern file
will be organized as follows:

version info pattern definitions

Version version-identifier :
pattern definitions

pattern definition

main header

main section

pattern definition
pattern definitions pattern definition

main header { main section
main header main section vendor sections
subr header { subr section
subr header { subr section vendor sections

MainPattern identifier

CommonSection { common contents
main section domains
common contents

timing reference

timing map reference

main section domains

timing reference timing map reference

Timing file-name :

TimingMap file-name :

main section domains main section domain
main section domain

main section domain

domain name
Domain domain name main section contents)

identifier
main section contents

main section contents main section content
main section content

main section content

label spec

label

main pattern spec

vectors and waveforms }
main operation

label spec main pattern spec
main pattern spec

label:

identifier

main operation capture mask flag {
s

f* empty */
common operation
jal op
jsr op
jsrc op

US 2004/0225.459 A1

common operation

-continued

jsc op
exit op

idxi op
idxin op
jec op
jech op
jff op
jffi op
jni op
ldin op
mop op
pause op
Sinde op
Sindt op
stfi op
sti op
stps op
wait op

* Instructions specific to the MAIN Patterns

isR identifier
isRC identifier

isc identifier
AL identifier

EXIT

* Instructions common to both MAIN and SUBR Patterns

f:

*/
jsr op

jsrc op

jsc op

jal op

exit op

f:

*/
idxi op

idxin op

jec op

jech op

jff op

jffi op

jni op

ldin op

mop op

pause op

Sinde op

Sindt op

stfi op

sti op

stps op

wait op

capture mask flag

vectors and waveforms

wector

IDXI 24-bit number

IDXIn index-register

JEC identifier

JECH identifier

JFF identifier

JFFI identifier

JNI identifier

LDIN index-register

NOP

PAUSE

SNDC8-bit number

SNDT 8-bit number

STFI 24-bit number

STI 24-bit number

STPS

WAIT
f* empty */

capture mask flag CTV
capture mask flag MTV
capture mask flag MATCH

f* empty */
vectors and waveforms vector
vectors and waveforms waveform

vector declaration { vector data }

50
Nov. 11, 2004

US 2004/0225.459 A1
51

-continued

vector declaration

vector data

vector datum

waveform

waveform declaration

waveform data

waveform datum

pin name :

vendor sections

vendor section

Subr header

Subr section

Vector
V

vector datum
vector data vector datum

pin name = vector-value ;
pin name = identifier ;

waveform declaration waveform data }

Waveform
W

waveform datum
waveform data waveform datum

waveform-table-pin-group-name '=' identifier :

identifier

vendor sections vendor section { }
vendor section { }

Vendorsection { vendor section contents

SubrPattern

CommonSection { common contents
source selection table subr section domains }

Subr section domains } s
Subr section domains

Subr section domain

source selection table

source selector definitions
source selector definitions:

source selector definition

source selector definition:

source mappings
source selector name

Source mappings

Source mapping

SOCC

INVERT MAIN
SUBR
INVERT SUBR

Subr section contents

Subr section content

subr pattern spec

vectors and waveforms s
subr operation

CommonSection { common contents

Subr section domains subr section domain
Subr section domain

Domain domain name { subr section contents

SourceSelectionTable {

source selector definitions

source selector definition

SourceSelector source selector name {

identifier

Source mappings source mapping
Source mapping

pin name = source :

MAIN

Subr section contents subr section content
Subr section content

label spec subr pattern spec
subr pattern spec

subr operation capture mask flag

f* empty */
common operation
rtin op
stSS op

* Instructions specific to the SUBR Patterns

Nov. 11, 2004

US 2004/0225.459 A1

-continued

rtin op :
RTN

stSS op :
STSS identifier

0794. The following are the descriptions of undefined
non-terminals used above:

0795 1. version-identifier: A sequence of one or
more characters from the set 0-9., where the first
character must be a digit.

0796 2. identifier: A sequence of one or more char
acters from the set a-ZA-Z 0-9), where the first
character must be from the Seta-ZA-Z .

0797 3. vendor-section-contents: Arbitrary text that
is meaningful only to a vendor-specific compiler.

0798) 4 file-name: A valid Windows file name (must
be enclosed in double quotes if any white-spaces are
contained in the file name). Note that this should be
a simple file name, i.e., it should not have a directory
component.

0799 5. waveform-table-pin-group-name: A
Sequence of one or more characters from the Set
a-ZA-Z 0-9), where the first character must be
from the set a-ZA-Z). This variable is declared
elsewhere and holds the name of the waveform-table
that is common to a group of pins.

0800) 6. 24-bit number: A valid decimal number up
to a maximum of 16777215.

0801 7.8-bit number: A valid decimal number up to
a maximum of 256.

0802) 8. index-register: A valid decimal number. In
one embodiment of a module this can have a value
1-8).

0803) 9. vector: This is similar to the Vector state
ment in STIL. Note that this refers to signal names
and Signal groups names, making it necessary for the
compiler to have access to the Pin Description file.

0804 10. waveform-time-reference: A sequence of
one or more characters from the Seta-ZA-Z 0-9,
where the first character must be from the seta-ZA
Z).

0805 Pattern files will support comments, which are
meant to be ignored by a pattern file compiler. Comments
will start with the 'if' character, and extend to the end of the
line.

Filename : good1.pat

Version 1.0 ;

Main Pattern definition:

MainPattern good1

CommonSection

52
Nov. 11, 2004

0806. The following points should be noted with refer
ence to the constructs in the pattern file's header and
“common Sections:

0807 1. The pattern-name item specifies the name
that will be associated with the Pattern object that the
pattern file contains the data for. This gets carried
over to the header in the corresponding pattern object
metafile.

0808 2. The waveform-time-reference is the name
for a particular waveform-and-timing definition that
would be defined externally to the pattern file, in the
Timing file. The specification of a waveform-time
reference in the pattern file would bind that particular
name (for a waveform-and-timing) to all Subsequent
vectors, until another waveform-time-reference were
encountered.

0809) 3. The operand for a subroutine call (e.g., JSR
and JSRC) is a string that should either be a pattern
Spec label previously encountered in the same pat
tern file, or a pattern-Spec label in an externally
defined subroutine pattern. This operand will ulti
mately be resolved for the purposes of loading/
handling subroutines. The labels for subroutine call
operands are required to be unique across the System.

0810) Note that while waveform-time-reference names
could be anything that is Syntactically correct, due to specific
hardware implications the waveform-time-reference names
may need to be restricted to a previously known, well
defined set (which, for added readability, can be optionally
mapped by the user to user-chosen names, the mapping
presented in an optional file).
0811. Also note that the pattern and waveform-time
reference Source files should provide initial configuration
data for all DUT channels which have connections to
physical tester channels. If Subsequent data is omitted for
any DUT channel, the pattern compiler will “pad” the
pattern data to hold output from the initial level.

0812 Pattern File Example
0813. A simple example of a MAIN Pattern source file
will help illustrate the usage.

US 2004/0225.459 A1 Nov. 11, 2004

-continued

{
MacroDef defaultDataVal (XXXXXXXX)
MacroDef nopinstr (NOP)
MacroDef label1 (Label1 :)
MacroDef jninst (JNI)
--
Timing Specifications
--

Timing "productionTiming. tim':
TimingMap “productionTimingOpenSTARMap.tmap';

--
Default Domain Cycles
--
Domain default

{
--

label: instruction Vector/Waveform Data}
--

NOP { V DATA=$defaultDataVal; CLK = 1;}
W DATA = wifsl; CLK = wifsl: }}

JAL my APG { V DATA = 00000000; }}
JSC mySCAN { V DATA = 10101010; }}
JSRC mySubroutine { V DATA = 01010101; }}
JSR my APG { V DATA = 00110011; }}
STI 1OO { }

labZero: NOP { V DATA = 00000011; }}
JNI labZero { V DATA = 11111100; }}
IDX 3OOO { V DATA = 10101010; }}
DXn 3 { V DATA = 01010101; }}

Slabel1 NOP { V DATA=$defaultDataVal; }}
IDX 2OOO { V DATA = 10101010; }}
NOP { }
EXIT { V DATA = LLHHLLHH; }}

0814) Another example illustrating a SUBROUTINE pat
tern Source file is illustrated below.

#--
Subroutine Pattern mySubrPat1 definition:
#--
SubrPattern mySubrPat1
{

CommonSection
{

#--
Timing Specifications
#--
Timing "productionTiming. tim':
TimingMap “productionTimingOpenSTARMap.tmap';
#--
Source Selection Specifications
#--

SourceSelectionTable
{

SourceSelector SrcSelDef
{

DATA=SUBR: CLK=SUBR: DATA=SUBR:

SourceSelector SrcSelOne
{

DATA=MAIN; CLK=MAIN:

#--

Default Domain Cycles
#--
Domain default

US 2004/0225.459 A1 Nov. 11, 2004
54

-continued

#--
#label: instruction { Vector and Waveform Data setups
#--

STI 100 { Vector { DATA = 00000000; }}
IDX3OOO { Vector { DATA = 00001111: }}
IDX 3 { Vector { DATA = 00110011; }}

Slabel1 NOP { Vector { DATA = LLHHLLHH; }}
NOP { Vector { DATA = LLXXXXXX: }}
NOP { Vector { DATA = LLHHXXXX: }}
JNI Label1 { Vector { DATA = LLHHLLHH; }}
STSS SreSelOne { Vector { DATA = LHLHLHLH: }}
RTN { Vector { DATA = LLXXXXXX: }}

0815 Summary information from the main header
and common Section in the pattern Source file is
stored in the main header in the object metafile. The
Summary consists of information that is typically
required for quick extraction to aid pre-load resolu
tion of addresses, etc., or to aid in datalogging. Since
the Semantics of the common Section are exactly the
Same for all compilers, every compiler will be
capable of providing the same Summary information,
and the first compiler writing the metafile will store
this information. The following is the information
that will be stored:

08.16 1. The pattern source file name.
0817 2. The type of the pattern as declared in the
Source file.

0818 3. The version information from the source
file.

0819 4. A list of all the waveform-and-timing
names used in the pattern Source file's common
Section.

0820) 5. A map of all subroutine references to (rela
tive) vector addresses in the pattern Source file's
common Section.

0821) 6. A map of all label references to (relative)
vector addresses in the pattern Source file's common
Section.

0822 7. General bookkeeping information: vector
count, instruction count, etc.

0823. The open architecture test system requires both
pattern and pattern list files to have explicit, and different,
extensions. For pattern files, this applies to both plain text
Source and compiled object files. This is viewed as a
convenience to the user to quickly identify the file type
Visually in a directory listing, etc., as well as allow asso
ciations to be made on the basis of extensions. The pattern
list file parser will expect filenames with these extensions:

Plain text pattern source file: pat
Compiled pattern object metafile: pobi
Pattern list file: plst

0824. The user can override these default values, e.g.,
through tester environment variables or Setup options.
0825) The tester will require the definition of the follow
ing “environment' variables for file Search paths in at least
one of the environment configuration files described in:

Tester PATLIST PATH:
Tester PATSRC PATH:
Tester PATOBJ PATH:

For pattern list files.
For pattern source files (optional).
For pattern object metafiles.

0826 Note that if the optional environment/setup vari
able Tester PATSRC PATH is not defined, it will be
assumed to be the same as Tester PATOBJ PATH. In gen
eral, it would be more efficient to not define Tester
PATSRC PATH rather than define it with the same value as

Tester PATOBJ PATH.
0827 E6. Software Representation
0828 A Pattern object is not created by the user; rather,
the user always deals with Pattern List objects, which are
collections of other pattern lists and/or patterns. A Pattern
List object creates, owns and maintains the pattern objects
contained within it, while making them accessible to the
user. A pattern list object in the user's test program is
asSociated with a pattern list file on disk, which contains the
actual definition of the pattern list. The definition of a pattern
list provides an explicit name for the pattern list, and
identifies an ordered list of patterns and/or other pattern lists
through file name associations. This Section describes the
Software representation of pattern lists and patterns, as a
prelude to understanding how they are manipulated in the
tester framework.

0829. Pattern List Associations
0830) A single test site in the test system (and, by
extension, the test plans in it) can be associated with
multiple top-level pattern lists. However, there is only a
Single execution context for test plans at any given time.
Since a top-level pattern list defines an execution Sequence
for the patterns referred to (hierarchically) by it, the active
execution context is the one corresponding to the currently
selected top-level pattern list. Note that this does not imply
that only the patterns contained in a single pattern list can be
loaded on the hardware at one time; rather, the Set of patterns
that are required to be loaded on the hardware to make an
execution Sequence viable must always be a Subset of all the
currently loaded patterns.

US 2004/0225.459 A1

0831 Pattern Trees
0832 Intuitively, it is felt that a way to represent a
top-level pattern list is by Some Sort of a tree data Structure.
FIG. 7 illustrates an embodiment of an ordered pattern tree
of the invention, assuming that the pattern list A is the
top-level pattern list

0833) Pattern Tree Information Content
0834. The following information will be stored at every
node of the pattern tree:

0835 1. The name of the entity (pattern-list or
pattern) associated with that node.

0836 2. The type of the definition source. For a leaf
(pattern node), this will always be a pattern file; for
an intermediate (pattern list) node, this could be
either “top-level file” (for top-level pattern list defi
nitions) or “embedded in file” (for nested pattern-list
definitions).

0837 3. The last modification timestamp of the file
on disk the node is associated with.

0838. The following additional information will be stored
only in intermediate (pattern list) nodes:

0839) 1. Execution options (if any) set on the pat
tern-list object represented by that node-i.e., its
object options.

0840 2. The execution options (if any), set on each
child reference inside the pattern list definition rep
resented by that node-i.e., the reference options, for
each of its children.

0841. Thus, the collection of nodes encountered on the
unique path from the root to an intermediate node, and the
Sequence in which they are encountered, contain all the
information necessary to determine the combined, effective,
execution options represented by that node. The execution
options of a pattern are determined by the effective eXecu
tion options of its immediate parent, combined with the
reference options its immediate parent might have for it.

0842) It should be noted here that while the pattern list
parser is in the process of creating the pattern tree, certain
execution options might require initial Storage of values
Simply as Strings, since the context of their use might not be
resolved until later. An example of Such an option is a
“mask' option, which Specifies pin mask information: pat
tern lists are not associated with Socket information, and
hence, pin mask options (pin and group names) are stored as
Strings, to be resolved prior to loading.

0843. The following additional information will be stored
only in leaf (pattern) nodes:

0844) 1. All (possibly transitive) references to Sub
routines called by that pattern, both external and
internal, organized as an execution tree.

0845. Of course, all pattern nodes will additionally have
access to-and might choose to cache-all the pattern file
Summary information available in the object metafile com
mon header.

55
Nov. 11, 2004

0846 Handling Pattern List Modifications
0847 Changes made to the contents of a pattern list
conceptually affect all references to that pattern list. The
following rules, which apply as appropriate to pattern
objects as well as pattern list objects, will be used to manage
Such changes:

0848 1. A change made to the contents of a pattern
list file on disk will be propagated through the test
System only on a load() command being executed on
that pattern list (or on any other pattern list that
references that one). In other words, the pattern list
hierarchy in software will always reflect the one
currently loaded on the hardware.

0849 2. The user will be able to set a mode that will
defeat the checks made during load time to Synchro
nize pattern lists with their disk file sources; this will
allow quicker/Safer operation in production mode.

0850 Pattern Tree Navigation
0851. The top-level pattern lists associated with a test site
(and, by extension, with a test plan for that Site) have public
(global) scope. The System provides APIs to navigate the
pattern tree representing a top-level pattern list So that users
can get access to individual nodes and Sub-trees.
0852 E7. Pattern List Dynamics

0853 Earlier the static rules of Pattern Lists were
described. A description of the dynamic (execution) rules of
pattern lists is now presented.

0854. The pattern tree is essential for general pattern
management. For example, the Starting point for a pattern
load Sequence is a call to the load() method on the pattern
tree currently associated with the Site or test plan. However,
a pattern tree does not operate in isolation. A fully initialized
pattern tree will be used to create the following two frame
work objects:

0855 1. A top-level pattern list defines a Pattern
Execution Sequence for the patterns. It describes
how Such an execution Sequence can be derived from
the pattern tree corresponding to that top-level pat
tern list. For example, the pattern execution Sequence
corresponding to the pattern tree Ashown in FIG. 7
is {q, S, t, q, r, q, u, u, v). The Pattern Execution
Sequence is conceptually an ordered list reflecting
the execution Sequence described through the pattern
tree. The framework establishes and maintains any
necessary navigation links between pattern tree
nodes and corresponding entries in the Pattern
Execution Sequence.

0856 2. The Pattern Set, which is simply a list of all
the unique patterns (including Subroutines) in the
pattern tree. This is thus the list that will be used to
determine the individual patterns that should be
loaded on the hardware. The framework establishes
and maintains any necessary navigation links
between pattern tree nodes and corresponding entries
in the Pattern Set. The Pattern Set for the pattern tree
of FIG. 7 is (q, s, t, r, u, v) (it is assumed that none
of the patterns in pattern list A contain any Subrou
tine calls):

US 2004/0225.459 A1

0857. Note that both the Pattern Execution Sequence and
the Pattern Set can always be derived from the pattern tree;
however, it would often make Sense to cache them, after
initial construction, for as long was viable.

0858 Pattern List Execution Options

0859. As shown above, each pattern list declaration (pre
ceding its definition) or pattern list/pattern reference entry
can be followed by a number of execution options. Pattern
list execution options modify the runtime execution of
pattern lists. To allow future extensions, the names (and
optional values) for these options will be treated simply as
Strings by the pattern list file parser of the pattern compiler,
to be interpreted by a particular version as appropriate.
Tester prescribes a set of options and their interpretations,
described below. However, vendors can extend the set of
options. In order to allow a parse-time validation of option
Syntax, the pattern list file parser could read an information
file for a particular version. Such an information file could
also be used to Specify whether a particular version at all
Supports the Specification of execution options.

0860 For versions that support a set of execution options,
the following general rules will govern their use. In order to
understand these rules, it is useful to visualize the hierar
chical collection of pattern lists/patterns as an ordered tree.

0861) 1. Intrinsic options set on pattern list defini
tions (i.e., in the “local-pattern-list-declaration, glo
bal-pattern-list-declaration' productions in the file
are, in effect, direct option Settings on the corre
sponding Pattern List object in the user's test pro
gram. They thus apply to all references to that pattern
list object, and are referred to as object options.

0862 2. Referential options set on references to
pattern lists/patterns (i.e., in the “pattern-entry” and
“pattern-list-entry” productions in the file limits the
Scope of the options to a specific path in the hierar
chy-the path (established by the declaration order
of pattern lists/patterns) that leads from the root of
the tree to the reference under consideration. These
are thus options on specific object references (and
not on the objects themselves), and are referred to as
reference options.

0863. 3. The effective option settings for any list/
pattern in the collection hierarchy (established by the
declaration order of pattern lists/patterns) are a com
bination of the object and reference options encoun
tered along the path from the root of the tree to that
list/pattern. The Specific combination mechanism
(e.g., set union, Set intersection, or any other conflict
resolution algorithm) is a property of the option
itself.

0864. Note that a consequence of the above rules-and
the fact that there is no facility to Set execution options on
a pattern definition in a pattern file-is that there is no direct
rule to Set options which apply to all references to a pattern.
The mechanism for achieving this is to use a single-pattern
pattern list.

0865 The tester specifies a certain set of pattern list
execution options that modify its burst behavior, and that
modify its execution Sequence.

56
Nov. 11, 2004

0866. When an execution sequence for a pattern list is
Submitted to the hardware, the hardware produces a burst. A
Burst is the execution of a Sequence of patterns directly by
the hardware, without any involvement from the software. A
Burst Discontinuity is a position in an execution Sequence
where a prior burst is terminated, and a new burst is Started.
0867 One of the objectives of the pattern management
Software is to provide the hardware with the execution
Sequences that it needs to produce a burst on. By default, a
pattern tree yields an execution Sequence, which if Submit
ted to the hardware will result in a single burst. This
behavior can however be modified by the use of options on
the pattern list. Thus, the use of options result can result in
burst discontinuities.

0868. Furthermore, users will sometimes require a pro
logue or epilogue pattern to be run before or after every
pattern or every burst. This modifies the execution Sequence
to be submitted to the hardware.

0869. During the creation or modification of the Pattern
Execution Sequence object, the framework has all the infor
mation necessary to determine, and report if required, breaks
in pattern bursts resulting from the combination of execution
options Specified and the particular execution Sequence
embodied by the pattern tree. While doing this, it might need
to investigate the hardware capabilities of the modules in the
System. For example, one hardware implementation allows
four stored configurations for pin masks, of which two (0
and 3) are used for default masked (to Support Mask This
Vector, MTV) and unmasked operation. The user is thus
allowed two different global pin-mask configurations with
out breaking burst mode.
0870. Note that if a module vendor does not support
pattern list implementations in hardware, the vendor's pro
cessing of the Pattern Execution Sequence would result in
individual execution of all patterns in the execution
Sequence. In both Site-Compatible and Site-Heterogeneous
systems, the burst capability of sites would be limited by the
“lowest common denominator'. The tester provides for a
certain default Set of options and their parameters is
described below. Each option is specified by Stating:

0871 Whether it is Intrinsic (i.e. associated with a
definition with the Global or Local keyword) or
Referential (i.e. associated with a reference with the
Pat or PList keyword). Intrinsic options apply at the
point of definition and at every reference, but refer
ential options apply only at the reference they are
asSociated with.

0872 Furthermore, an option is said to be Inherited by
Children if the option is assumed to apply recursively to all
Statically (Syntactically) or dynamically (Semantically by
being referenced) nested patterns or pattern lists.
0873. Below is the list of options. Every compliant ven
dor will interpret these options as Specified.

0874) 1. Mask <pin/pin group>

0875 Intrinsic when applied to GlobalPList,
LocalPList

0876 Referential when applied to PList, Pat.

0877. Inherited by children.

US 2004/0225.459 A1

0878 This pattern list will always have the com
pare circuits of the pins referred to by the indi
cated pin or pin group disabled. Sometimes, hard
ware limitations may result in burst
discontinuities.

0879 2. BurstOff
0880 Intrinsic when applied to GlobalPList,
LocalPList

0881 Referential when applied to PList, Pat.
0882) Not inherited by children.
0883. This pattern list will always execute in the
non-burst mode. This option is not inherited by
children, but the BurstOffiDeep option (below) is
inherited by children.

0884) 3. Burst OffDeep
0885 Intrinsic when applied to GlobalPList,
LocalPList

0886) Referential when applied to PList, Pat.
0887. Inherited by children.
0888. This pattern list will always execute in the
non-burst mode. This option is inherited by chil
dren, but the BurstOff option (above) is not inher
ited by children. Note that the Burst OffDeep
option cannot be turned off by a child.

0889 4. PreBurst <patternd
0890 Intrinsic when applied to GlobalPList,
LocalPList

0891 Inherited only by child nodes having no
burst options Specified.

0892. The indicated pattern is to be prefixed to all
bursts within this pattern list.

0893. The PreBurst pattern occurs just before
every burst that is started due to this pattern list
node. The option is not applied when already
within a burst which has a PreBurst option that is
the same pattern.

0894) 5. PostBurst <patternd
0895 Intrinsic when applied to GlobalPList,
LocalPList

0896. Inherited only by child nodes having no
burst options Specified.

0897. The indicated pattern is to be suffixed to all
bursts within this pattern list.

0898. The PostBurst pattern occurs just after
every burst that is started due to this pattern list
node. The option is not applied when already
within a burst which has a PostBurst option that is
the same pattern.

0899) 6. PrePattern <patternd
0900 Intrinsic when applied to GlobalPList,
LocalPList

0901) Not inherited by children.
0902. The indicated pattern is to prefixed to all
patterns within this pattern list.

57
Nov. 11, 2004

0903 7. PostPattern <patternd
0904 Intrinsic when applied to GlobalPList,
LocalPList

0905) Not inherited by children.
0906) The indicated pattern is to be suffixed to all
patterns within this pattern list.

0907 8. Alpg <alpg object name>
0908 Intrinsic when applied to GlobalPList,
LocalPList

0909) Not inherited by children.
0910. The named ALPG object stores relevant
information Such as slow Speed APG register
Settings, read latency, immediate data registers,
address Scramble, data inversion, data generators,
etc.

0911) 9. StartPattern <patternd
0912 Intrinsic when applied to GlobalPList,
LocalPList

0913) Not inherited by children.
0914. The pattern list will start executing at the

first occurrence of the StartPattern in its execution
Sequence.

0915) 10. StopPattern <patternd
0916) Intrinsic when applied to GlobalPList,
LocalPList

0917 Not inherited by children.
0918. The pattern list will stop executing at the

first occurrence of the StopPattern in its execution
Sequence.

0919 11. StartAddr <vector offset or labeld
0920 Intrinsic when applied to GlobalPList,
LocalPList

0921 Not inherited by children.
0922. This must be accompanied by a StartPattern
option. The pattern list will Start executing at the
StartAddr in the first occurrence of the StartPat
tern in its execution Sequence.

0923) 12. Stop Addr <vector offset or labeld
0924 Intrinsic when applied to GlobalPList,
LocalPList

0925 Not inherited by children.
0926 This must be accompanied by a StopPattern
option. The pattern list will Stop executing at the
StopAddr in the first occurrence of the StopPattern
in its execution Sequence.

0927) 13. EnableCompare StartPattern <patternd
0928 Intrinsic when applied to GlobalPList,
LocalPList

0929) Not inherited by children.
0930 Pattern comparison will commence at the

first occurrence of the indicated pattern.

US 2004/0225.459 A1

0931) 14. EnableCompare StartAddr, EnableCom
pare StartCycle

0932) Intrinsic when applied to GlobalPList,
LocalPList

0933) Not inherited by children.
0934) This must be accompanied with Enabel
Compare StartPattern. Indicates the address or
cycle within the pattern where pattern comparison
is to start.

0935) 15. EnableCompare StopPattern <patternd
0936 Intrinsic when applied to GlobalPList,
LocalPList

0937. Not inherited by children.
0938 Pattern comparison will complete at the

first occurrence of the indicated pattern.
0939) 16. EnableCompare Stop Addr, EnableCom
pare StopCycle
0940 Intrinsic when applied to GlobalPList,
LocalPList

0941) Not inherited by children.
0942) This must be accompanied with Enable
Compare StopPattern. Indicates the address or
cycle within the pattern where pattern comparison
is to complete.

0943) 17. Skip.
0944) Referential when applied to PList, Pat.
0945) Not inherited by children.
0946) Causes a pattern or the entire subsequence
dominated by a pattern list to be skipped. This will
also cause skipping of all options at the root of this
pattern list Sub-tree. It is as if this pattern Sub-tree
were not there for execution purposes.

0947 Pattern List Burst Control
0948) As described earlier, when an execution sequence
for a pattern list is submitted to the hardware, the hardware
produces a burst of a sequence of patterns, without any
involvement from the software. A Burst Discontinuity is a
position in an execution sequence where a prior burst is
terminated, and a new burst is started. The PreBurst, Post
Burst, BurstOff and BurstOffDeep options control where the
burst discontinuities occur, as described in the option list
above. PreBurst and PostBurst options determine burst
discontinuities subject to certain additional rules described
below:

0949) 1. When a parent list has PreBurst and Post
Burst options, and the nested list has the same
corresponding options, there is no burst discontinu
ity, and the PreBurst and PostBurst options of the
nested list do not apply. There is only a single burst
applying the PreBurst and the PostBurst of the parent
list.

0950 2. Notice that when the nested list has no burst
options, it is equivalent to having the same PreBurst
and PostBurst options as the parent list by the

58
Nov. 11, 2004

description of these options. Consequently, nested
lists with no burst options do not result in a burst
discontinuity.

0951) 3. If rule 1 above does not apply and there is
a contribution to the pattern execution Sequence from
the start of the parent list to the start of the nested list,
then there is a burst discontinuity at the start of the
nested list. In this case the PreBurst and PostBurst of
the parent list apply to this contribution to the pattern
execution sequence from the parent list. The PreB
urst and the PostBurst of the nested list apply to the
nested list.

0952) 4. If rule 1 above does not apply, and there is
a contribution to the pattern execution Sequence from
the end of the nested list to the end of the parent list,
then there is a burst discontinuity at the end of the
nested list. In this case the PreBurst and PostBurst of
the parent list apply to this contribution to the pattern
execution sequence from the parent list. The PreB
urst and the PostBurst of the nested list apply to the
nested list.

0953) 5. If rule 1 does not apply, and there is no
contribution to the pattern execution Sequence from
the parent list other than from the nested list, then the
PreBurst and the PostBurst of the parent list do not
apply. There is only a single burst applying the
PreBurst and PostBurst of the nested list.

0954) Below are a few examples illustrating the effect of
options on the execution sequence. To simplify, it is assumed
that all the pattern lists are specified in a single file.

EXAMPLE 1.

Use of Burst Off

0955) This example illustrates BurstOff and PreBurst. Of
particular emphasis is that BurstOff causes patterns to run
singly in bursts that are one pattern long. Hence the Pre Burst
option still applies. The input pattern lists are as below:

Global A BurstOff PreBurst pat z
{

Pat C
PList B;
Pat r;
Pat S;
Global C
{

Pat t;
Plist D;

}:
Plist D;
PList E;

}:
Global B
{

Pata;
Pat b:

}:
Global D BurstOff
{

Patc;
Pat d:

}:

US 2004/0225.459 A1

-continued

Global E
{

Pate;
}:

0956 The tree rooted at A may be represented in
FIG 8.

0957) The execution sequence for this pattern is below.
The character indicates a burst break. This pattern list
executes in 10 bursts, the first one having patterns Z and q,
and the last one with pattern e:

0958) Z qab Z r Z stic dc de
0959) Note the following about this execution sequence:

0960) 1. Since the Burst Off option on A is not
inherited by B, the patterns a and b in B operate as
a burst.

0961) 2. Since the PreBurst option on A is not
inherited by B, the a and b in the burst by B is not
prefixed by Z.

0962. 3. The prefix by Z only happens for the pat
terns that are executed due to being direct children of
a, namely patterns q, r and S. These patterns are
executed Singly as if in a burst that is only one
pattern long due to Ahaving the BurstOff option. The
BurstOff requires patterns to be run individually in
one-pattern long bursts. Hence, the PreBurst and
PostBurst options still apply.

0963 4. Pattern list D has an intrinsic burst off
option that causes its children c and d to execute
singly. They do not inherit the PreBurst z from A.

EXAMPLE 2

Use of Burst OffDeep
0964. This example illustrates the BurstOffDeep option.
BurstOffDeep during pattern list definition affects nested
definitions and referenced lists. However, PreBurst and
PostBurst options are not inherited by nested and referenced
lists. The example uses the Same patterns A, B, C, D, E as
in example 1, but the options are different:

0965 5. Options on definition of A: BurstOffDeep),
PreBurst z), PostBurst y

0966 6. No other options on any other node.

0967. The execution sequence is as below. As earlier, the
character indicates a burst break.

0968 Z qy a b Zry Zsy t c dc de
0969) Note the following about this execution
Sequence:

0970) 1. PreBurst and PostBurst are not inherited by
B, C, D, E.

0971) 2. BurstOffDeep is inherited by B, C, D, and
E.

59
Nov. 11, 2004

EXAMPLE 3

PreBurst and PostBurst Inhibition

0.972 Suppose now the pattern list tree of Example 1 is
considered, where the options are:

0973 1. Options on definition of A: PreBurst
XPostBursty

0974) 2. Options on definition of C: PreBurst
XPostBurst z

0975 3. No other options on any other node.
0976 The execution sequence would be:

0977 x qab r s t c dc d e y
0978. The reasons why the “t c d” Subsequence is not “x

t c d z' are as follows:

0979) 1. The first X is inhibited since it is equal to the
pre-burst option X that is associated with the current
burst in effect.

0980 2. The last Z is inhibited since the PostBurst Z.
is not inherited to D, and there is no pattern that is
generated from C to which the Z can be appended.

EXAMPLE 4

Use of Skip
0981) This example illustrates the effect of the Skip
option on nested definitions and referenced lists. The
example uses the same patterns A, B, C, D, E as in example
1, but the options are different:

0982) 1. Options on definition of A: Skip), PreB
urst z, PostBurst y

0983. 2. Options on reference to r: Skip
0984) 3. Options on definition of C: Skip

0985 The execution sequence is a single burst with no
breaks as below:

0986)
0987 Note the following about this execution sequence:

0988 1. The nodes for r and C are skipped.
0989 2. There are no burst breaks at all.

Z qab Sc d e y

EXAMPLE 5

Use of Mask

0990 This example illustrates the effect of the Mask
option and its effects on pattern and pattern list definitions
and references. The example uses the same patterns A, B, C,
D, E as in example 1, but the options are different:

0991) 1. Options on definition of A: mask
pin1 pin2), PreBurst z

0992) 2. Options on reference of B: mask pin3)
0993) 3. Options on definition of B: mask pin4)
0994 4. Options on reference of e: mask pin5
0995) 5. No other options on any nodes.

0.996 The name “pin1-pin2 specifies a group which
masks Pin1 and Pin2. The names “pin3”, “pinA” and “pins.”

US 2004/0225.459 A1

specify masking Pin3, Pin4 and Pins respectively. The
execution sequence is provided below, with indicating the
burst break. The numerals below each pattern indicate the
pins that are masked during that pattern execution.

3 g a b (, r z. S t c d c de

1 1 1 1 111 111 1 1 1 1

2 222 222 222 222 2

33 5

4 4

0997. Note the following about this execution sequence:

0998 1. The vendor's hardware can only accommo
date 2 mask blocks without a burst break. Until e is
executed the two mask blocks are pins {1, 2} and
pins {1, 2, 3, 4}. When pattern e arrives with a
different mask block of pins {1, 2, 5}, the hardware
requires a burst break.

EXAMPLE 6

Use of Inherited Options and References
0999 This example illustrates that an inherited option at
a definition does not apply when the definition is referenced.
Consider the following example:

Global A
{

Global BBurstOffDeep
{

Global C
{

}:

}:

PList C:
}:
Global D
{

PList C:
}:

1000 The BurstOffDeep option is inherited by Cat
its point of definition. However, it is not an intrinsic
option, and So it is not applied to C at both its point
of references.

EXAMPLE 7

PreBurst and PostBurst with Nested Lists

1001 Consider the following example:

GlobalPList A PreBurst x. PostBursty
{

Pat p1;
LocalPList B PreBurst x. PostBursty

60
Nov. 11, 2004

-continued

{
Pat p2;

LocalPList C

{
Pat p3;

LocalPList D PreBurst XPostBurst Z
{

Pat p4;

LocalPList E PreBurst wPostBursty
{

Pat p5;

Pat pó;

1002 The execution sequence is:

1003 X p1 p2p3 y X p4 Zw p5 y X p6 y

1004 1. Pattern p2 is in the same burst as p1 because
the PreBurst and PostBurst options of the nested list
are specified the same as the parent. Pattern p3 is also
in the same burst because these options are inherited
the same as the parent. These options have at least
one different member in the remaining nested lists,
giving rise to burst discontinuities

1005 Timing

1006. The user interacts with the system primarily by
defining the test Setups using pattern files. The Timing File
is used to describe the Timing of these patterns. This file
requires other System files (e.g. Pin, SpecSelector) for under
lying definitions to be resolved. Further the Spec-Selectors
and Global definitions used to resolve various variables used
in the Timing definition are encapsulated in a composite
Test ConditionGroup object. Higher-level files, such as the
Test Plan file, in turn use this TestConditionGroup instance.

1007. The Test Plan File contains references to the
Test ConditionGroup object. The Pattern Source File makes
references to the WaveformSelector components within a
Timing.Map object. The Timing objects itself references the
Pin objects. Optionally the Timing object might also refer
ence a variable modulated by a SpecSelector object. These
relationships are illustrated in FIG. 9.

1008 The Pattern object within the Pattern-List specifies
the name of the WaveformSelector object to use for a set of
pattern characters. Also note that the Timing Map file is
specified in the pattern. Patterns need not be compiled if this
map is not changed.

US 2004/0225.459 A1

Version 1.0:
MainPattern

CommonSection

Timing = myGalxy.tim;
Timing Map = myGalxyMap.tmap:

} } Here we define the
} Waveform Selector

component of the Timing Map
to use for the pattern
characters.

1009) The TestConditionGroup File objects import the
Timing object to use and the TimingMap object to use. Each
Test uses a TimingCondition instance derived from the
TestConditionGroup object for that instance. Thus multiple
Timing objects, which Support the same Set of waveform
tables, can be Stored in the tester framework and can be
swapped as required. Similarly multiple Test Plan Files can
share a common TestConditionGroup object.

1010. An example of a Test Plan description file illus
trates the usage of the Timing object below.

Import patlist1.plist;
Import tim1.tim;
Import tim2.tim;
Import tmap1..tmap:
TestConditionGroup tim1 prod
{

SpecSet = prodTimgSpec(min, max, typ)

Timings

period = 10ns, 15ns, 12ns;

{
Timing
TimingMap = timapl;

}
}
TestConditionGroup tim2 prog

Two Tests withina Test Plan
using different timing objects
defined earlier.

SpecSet = prodTimgSpec(min, max, typ)
{

}
Timings
{
Timings =

period = 10ns, 15rs, 12ns;

TimingMap = timap1;

TestCondition tim1 prod typ
{

TestConditionGroup = tim1 prod;
Selector = typ:

61
Nov. 11, 2004

-continued

TestCondition tim2 prod max

TestConditionGroup = tim2 prod;
Selector = max:

Test Functional Test MyFunctionalTestSlow
{

PListParam = patlist1;
TestCondition Param = tim1 prod type;

Test Functional Test MyFunctionalTestFast
{

PListParam = patList1;
TestCondition Param = tim2 prod max;

1011 The Timing object defines various waveforms on a
per pin basis. The pins used in the Timing file and the Timing
Map file need to be defined appropriately in the Pin defini
tion file.

1012 The Timing object can use SpecificationSet objects
to define values within the waveform objects. Though the
Timing object can include hard-coded values for various
attributes it is usually the case that users have various
attributes be assigned values using variables. These vari
ables in turn can depend on SpecificationSet objects. An
example of this usage is illustrated below.

This variable, which defines the
Version 1.0: edge placement, is defined
Timing basic function elsewhere and is dependent on a
{ SpecificationSet.

Pin SIG
{
WaveformTable wifs

Pin CLK
{

WaveformTable wifs1
{

}:

e SpecSelector is defined as illustrate 1013 The SpecSel is defined ill d
below.

SpecificationSet prodTimgSpec(min, max, typ)
{

t le = 10ns, 14ns, 12ns;
t te = 30ns, 34ns, 32ns:

US 2004/0225.459 A1

1014) The changing of the timing used by changing the
Spec is illustrated in the example below.

This timing uses the
typical specification in the
SpecSelector.

TestCondition prodTmp typ
{

TestConditionGroup = prod-r
SpecSelector

TestConditionGroup prodTmp max

TestConditionGroup = prodTimgSpec;
SpecSelector

This timing uses the
max specification in the
SpecSelector.

1015 F2. Mapping to the Timing Components of a Tester
1016 Two components of a tester module are directly
involved with the generation of wave shapes and their
asSociated timings. The two modules are the Pattern Gen
erator (PG) and the Frame Processor (FP). A simplified
block diagram illustrating the wave shape formatting and the
timing generation by the Frame Processor within the open
architecture test system architecture is illustrated in FIG. 10.
A brief description of the generation of waveforms is given
below.

1017 The Pattern Generator 1002 generates a timing set
which is common for all the pins in the module. This timing
set is called the Global Timing Set (GTS). There are three
modes in which the Pattern Generator can be set up. These
three modes affect the number of bits that can be used to
describe the GTS. In addition these settings also impact the
number of bits used to select a bank and whether the Capture
This Vector (CTV) and Mask. This Vector (MTV) bits are set
or not. To instruct the tester to capture the results of this
vector, the user uses the CTV flag in the Pattern file.
Similarly the user uses the MTV flag in the pattern to
instruct the tester to mask the results of the current vector.
This is illustrated in Table 1 below. The Pattern Generator
1002 is also responsible for the generation of Waveform
Characters (WFC). WFCs are generated on a per pin basis.
The tester module uses a fixed number of bits to describe the
WFCS

TABLE 1.

GTS in a
GTS bits Bank GTS Bank CTV MTV

8 bits 256 4 NO NO
7 bits 128 8 YES NO
6 bits 64 16 YES YES

1018. The tester module provides a Frame processor
1004 per pin. Each Frame Processor contains a Timing Set
Scrambler (TSS) 1006, which has a total depth of up to 1024
in this example. The TSS 1006 can be partitioned into a
number of banks 1008 depending on the mode of the Pattern
Generator as described earlier and illustrated in FIG. 10
where 16 banks of 64 entries per bank are being used. The
TSS is provided so as to allow more flexibility in the ability
to define Waveform Tables for each pin. In the “FP” mode

62
Nov. 11, 2004

the TSS outputs a Timing Set using 2 bits. Thus the TSS will
generate a total of four distinct physical Timing Sets per pin.
These Timing Sets are referred to as the Local Timing Sets
(LTSs).
1019. The Frame Processor 1004 combines LTS and
WFC and creates an index 1010 into the Waveform Memory
1012 and Timing Memory 1014. In the “FP” mode the 5-bit
value is split up with 2 bits being generated by the LTS and
3 bits being generated by the WFC. Thus the depth of the
physical Waveform Memory and Timing Memory is 32 deep
per pin though a maximum of 4 physical Timing Sets may
be used. The Waveform Memory contains the enabled
timing edges that form the wave shapes. The timing values
for the enabled edges are obtained from the Timing Memory,
Thus, the Frame Processor formats wave shapes.
1020 Mapping Methodology
1021. The methodology is to map all the WaveformTable
blocks on a per pin basis to LTSs in the tester. If tester
hardware Supports 4 LTSs, the user can define a maximum
of 4WaveformTable blocks. Each WaveformTable block can
have a maximum of n waveform definitions for the tester
digital module.
1022. The Timing-Map file provides a mapping of Logi
cal Waveform.Selectors defined in the Timing-Map block to
the WaveformTable for the module in open architecture test
System. In this case the tester Supports up to 256 Logical
Waveform.Selectors. In open architecture test System System,
the Logical Waveform.Selectors map directly to the GTSs.
The Pattern compiler depends on both the Timing-Map and
the Timing blocks to be able to compile the pattern files.
However if the waveform characters in the WaveformTables
of the Timing block are unchanged or the Waveform.Selector
mappings in the Timing-Map block are unchanged, there is
no need to re-compile the pattern.
1023 Example Using this Mapping Methodology
1024) To illustrate the mapping into a tester Digital
Module the following assumptions are made: the Frame
Processor is set to the FP mode; and CTV and MTV bits are
set So total number of GTS bits is 6 and the total number of
Timing Bank Selector bits is 4.
1025) Each WaveformTable defined in the Timing block
is mapped to a distinct LTS within the Timing file. This is
done on a per-pin basis. Thus WaveformTable seq1 is
mapped to LTS1. In the case of the “SIG” pin all 8 possible
waveform entries are used up. However the “CLK' pin
requires a Single waveform entry and thus uses up a single
row in the Waveform memory (WFT) and the Waveform
Timing memory (WTM).
1026. The mapping of the first 2 physical waveforms of
the “SIG” pin is illustrated in FIG. 11. As this Wave
formTable maps two waveform characters that need Separate
configurations of the edges, we end up allocating two entries
in the Waveform memory (WFT) 1112 and the Waveform
Timing memory (WTM) 1114. The shape of the waveform
is stored in the WFM and the timing details are stored in the
WTM. One embodiment of the module has a total of 6
timing edges T1, T2, T3, T4, T5 and T6. These map directly
to the Events E1, E2, ... defined in the waveforms within
a Edge ReSource Section of the Timing block. If more than
6 events are defined in the Timing block and this is used with
a the above module, it will result in an error.

US 2004/0225.459 A1

1027. In the example of FIG. 11, the first waveform
character “0” uses Timing Edge T1 to program the “Force
Down” or "D' event, which occurs at time 10 ns into the
cycle. Timing Edge T2 is also used to generate a “Force
Down” or “D” event at time 30 ns. Finally Timing Edge T3
is used to generate a “Force Off” or “Z” event at time 45 ns.
1028. The second waveform character “1” uses Timing
Edge T1 to program the “Force Up” or “U” event, which

Nov. 11, 2004
63

occurs at time 10 ns into the cycle. Timing Edge T2 is also
used to generate a “Force Down” or “D' event at time 30 ns.
Finally Timing Edge T3 is used to generate a “Force Off” or
“Z” event at time 45 ns.

1029. In this fashion, the WFCs are mapped into the
WFM memory and WTM memory of the Frame Processor.
The final setup of Waveform Memory WFM of LTS1 for pin
“SIG' is illustrated in Table 2 below.

TABLE 2

Index (WFC) T1Set T1ReSet T2Set T2ReSet T2Drel T2Dret EXPH EXPHZ

O O 1. 1.
1. 1. 1. 1.
2 d 1. 1.
3 l 1. 1.
4 L
5 H 1.
6
7 1.

Index T3Set T3ReSet T3Dre T3Dret T4Dre T4Dret EXPL EXPEHZ

1.
1.
1.
1.

Index (WFC) T1Set T1ReSet

1.

1030 The final setup of Waveform Timing Memory
WTM of LTS1 for pin “SIG” is illustrated in Table 3 below.

TABLE 3

Index (WFC) T1 T2 EXPH T3 T4 EXPL

O O 10ns 3Ons 45ns
1. 1. 10ns 3Ons 45ns
2 d 12ns 32ns 42ns
3 l 12ns 32ns 42ns
4 L 17ns
5 H 17ns
6 15ns
7 15ns

1031 The “CLK' pin uses up a single waveform and thus
the WFM and WFT for this pin are very simple. The final
setup of Waveform Memory WFM of LTS1 for the “CLK”
pin is illustrated in Table 4 below.

TABLE 4

T2Set T2ReSet T2Dre T2Diret EXPEH EXPEHZ

1. 1.

US 2004/0225.459 A1
64

TABLE 4-continued

Index T3Set T3ReSet T3Dre T3Dret T4Dire T4Dret EXPL

O
1.
2
3
4
5
6
7

1032 The final setup of Waveform Timing Memory
WTM of LTS2 is illustrated in Table 5 below.

TABLE 5

Index (WFC) T1 T2 EXPH T3 T4 EXPL

O 1. 2Ons 40ns
1.
2
3
4
5
6
7

1033. The Timing Map block explicitly maps out the
WaveformSelectors to the Waveform tables of the Timing
block. For a tester System this boils down to Setting up the
Timing Set Scrambler (TSS) memory. The TSS basically
contains a mapping from the GTS to the LTS that holds the
settings. The TSS setup for our example for pin SIG will
look like Table 6 below.

TABLE 6

GTS LTS

0 (wfs1)
1 (wfs2)
2 (wfs3)
3 (wfs4)
4 (wfs5)
5 (wfs6)

N (wfs1) 1.

255

1034 Finally after the TSS and LTS setup mappings are
resolved, the Pattern Compiler can use this information to
program the pattern with the correct waveform table (LTS)
and the correct waveform character to use. Thus our
example pseudo-pattern considering only pin "SIG” is illus
trated in FIG. 11. Note that this compilation has no depen
dency on the Timing block and only depends on the Timing
Map block.
1035 G. Tester Operation
1036) This section describes the basic operation of the

tester operating system (TOS). The activities considered in
this Section are:

Nov. 11, 2004

EXPHZ

1037)

1038)

1039)

1040

1041

System initialization

Test Plan loading

Pattern loading

Running a Test Plan

Running an individual Test

1042 System Initialization
1043. In order to initialize the system in one embodiment,
certain assumptions must be Satisfied, and certain conditions
must be met. The following Sub-section lists these.

1044 Preconditions
1045 Copies of the relevant system Software components
have a central Store, whose location is known to the System
Controller. This may be on the System Controller itself, or
on another System with a network mounted directory (or
known to the SYSC via another mechanism)-whatever the
mechanism, before the System can function, all Software
must be made available to the System Controller for use.
This Software includes:

1046 vendor hardware control (i.e., module soft
ware) DLLs,

1047)
1048 user test plan DLLs.

Standard or user test class DLLS, and

1049. The system module configuration file is available
on the System Controller. Recall that this file allows the user
to Specify the physical configuration of the tester, e.g., the
physical location and type of each module in the System
chassis, as well as the names of the module Software DLLS.

1050. The system configuration file is available on the
System Controller. Recall that this file contains the list of
Site Controllers in the System, as well as a map of

1051 Site Controller hostnames to Switch Matrix input
port addresses. Site controllers have a service called the Site
Configuration Manager (SCM) running. This service is
responsible for determining what hardware is installed in
each slot, by a process termed "hardware discovery'. It is
also responsible for participating in the System initialization
process with the System Controller. Note that the Switch
Matrix operation protocol dictates, in one embodiment, that
the SCM on a single Site Controller, with Switch Matrix
input port connection address 1, should always be used to
configure the Switch Matrix connections to the modules.
Recall that this “special site is denoted as SITEC-1.

US 2004/0225.459 A1

1052 The System Controller is responsible for providing
each Site Controller's SCM with its Switch Matrix connec
tion address.

1053 Each Site controller's SCM is capable of starting a
process called the Test Plan Server (TPS). The Test Plan
Server on each Site Controller is ultimately responsible for
containing and executing the user's test plan (or test plans,
in the case where a single Site Controller is running tests on
multiple DUTs).
1054)
1055. Once the above assumptions and preconditions
have been Satisfied, System initialization first proceeds with
a System validation Step as follows:

Initialization Phase I: System Validation

1056 1. The System Controller reads the system and
module configuration files to initialize the user
Specified view of the System.

1057 2. Using the specified system configuration
information, the System Controller verifies that the
Specified Site Controllers are alive, reachable, and
ready (i.e., have SCMS running). Any error during
this verification Step will cause a System error to be
raised, and initialization to be aborted.

1058. 3. The System Controller then instructs the
SCM service at SITEC-1 to configure the Switch
matrix to have access to all hardware modules, and
requests it to perform hardware discovery.

1059 4. The SCM service at SITEC-1 polls all
available module slots (known hardware locations)
for vendor, hardware tuples and generates a map
of vendor, hardware tuples to slots. At conclusion,
this poll has thus identified the entire set of (vendor,
hardware, Slot) bindings that exist in the complete
system. The results of this poll are sent to the System
Controller.

1060 5. The System Controller verifies that the
results of the above hardware discovery Step match
the user-specified configuration in the module con
figuration file. Any error during this verification Step
will cause a System error to be raised, and initial
ization to be aborted.

1061 6. The System Controller then loads a default
environment (Such as Search paths for module DLLS,
pattern lists, patterns, test plan DLLS, test class
DLLS, etc.) from the environment Setup file(s) at
well-known location(s).

1062 7. The System Controller ensures that all
identified module Software DLLS exist. If one is not
available on the System Controller, it is retrieved
from the central Store, if possible; otherwise, a
System error is raised, and initialization is aborted.

1063) Initialization
(Optional)

Phase II: Site Configuration

1064 Site configuration, or site partitioning, involves the
Software-level assignment of the available System hardware
modules to different sites (i.e., to service multiple DUTs).
Recall that Site-partitioning information is provided in a
Socket file.

Nov. 11, 2004

1065. The tester system allows site (re-)partitioning to be
performed both as part of a test plan load (since each test
plan is associated with a particular Socket), and as an
independent user-callable Step. In the latter case, the user
initiates the Site partitioning by providing a Socket file that
is used Solely to partition the System. This is especially
useful during system initialization in the case of multi-DUT
testing where each site tests a different DUT type. However,
this step is optional during the initialization Stage, and the
user can choose not to have it performed, opting instead to
allow a test plan load to partition the System appropriately.
1066 Whatever the means chosen to effect site partition
ing (by an independent call or implicitly through a test plan
load), the mechanism is the same. This mechanism is
described below.

1067 1. Given the socket, the System Controller
first determines whether the currently existing Sys
tem partition is compatible with the Socket, or
whether a re-partitioning is necessary. The default
partition during initialization is one in which all
available modules are connected to SITEC-1. The
remaining Steps below are performed only if re
partitioning is needed.

1068 2. The System Controller sends a configura
tion message to each Site Controller SCM to re
configure itself with the number and identities of
DUT sites that are enabled for it under the new
Socket. Note that this is a general procedure, and
handles the case where the number of DUT sites
controlled by a Site Controller is one. The new
socket information is also conveyed to the SCMs.

1069) 3. Each SCM stops the running TPS, if any,
and Starts a new one, initializing it with the new
Socket, and the number and identities of DUT sites
that are enabled for it under the new Socket.

1070 4. The System Controller determines which
Sites need what Subsets of the required System mod
ules. While doing this, it also prepares hardware slot
information for the sites. The net result is, for each
Site, a list of slots verSuS module DLLS assigned to
that site. This site-specific list will be denoted as the
Site Module DLL Slot List (SITE-MDSL).

1071 5. The System Controller provides the appro
priate SITE-MDSL, as well as the necessary module
DLLS, to each SCM. Each SCM in turn makes this
information available to the newly-started TPS.

1072 6. The System Controller then requests
SITEC-1 to configure the Switch Matrix for the
proper Site-to-slot connections, that is, for Site-par
titioned operation.

1073 7. The TPSs on sites 1 through in load the
DLLs specified in their SITE-MDSL. Each of these
DLLS has a function named initialize() which takes
an array of slot numbers. The TPS calls initialize()
with the appropriate slot lists for that module type.
On any malfunctions at this point, a System error is
raised, and initialization is aborted. The initialize()
method does the following:
1074) a. Creates concrete classes based on a stan
dard interface IXXXModule. For example, a DLL

US 2004/0225.459 A1

asSociated with a digital module will create a
single IPinModule-based object to service each
slot it is associated with.

1075 b. Creates concrete classes based on inter
face IResource, one for each "resource unit' in the
module. Again, for a digital module, each IPin
Module-based object will create ITesterPin-based
objects for all pins in the collection of slots
occupied by digital modules.

1076 8. The TPSs on sites 1 through in then call
getXXXModule() on each loaded module DLL to
retrieve module contents information.

1077) 9. Each call to getXXXModule() returns a
<VendorHWTypes-Module class object as an IMod
ule pointer (e.g., AdvantestPinModule). Each Such
IModule pointer is cached by the TPS, which makes
these available to framework/user code. Note that the
collection of IModules, IResources, etc. are persis
tent (at least for the lifetime of the TPS).

1078 10. Once the above steps are complete, the
TPS starts to listen() on its assigned (well-known)
port. This signals to the System Controller that the
TPS is “ready” to begin normal (i.e., site-partitioned)
operation.

1079 Test Plan Load
1080. This section describes the steps by which a user
Test Plan DLL is loaded on a Site Controller (for single or
multiple DUT testing).
1081) Once system initialization (and optionally, initial

Site partitioning) has been completed, user test plans can be
loaded. The loading of a user test plan on a Site Controller
proceeds as follows:

1082) 1. The System Controller first loads the test
plan DLL into its own process Space, querying it for
its associated Socket file and its DUT type identifier.
This information is used to identify the site(s) run
ning this test plan, and hence, the Site Controller(s)
that this test plan would be loaded on.

1083 2. The System Controller then uses the socket
information associated with the test plan to initiate
the re-partitioning proceSS as outlined above.

1084) 3. The System Controller extracts the list of
test class DLLs used by the test plan from the test
plan DLL, and once the System Controller has
verified that the TPS is ready to begin normal (i.e.,
Site-partitioned) operation, sends the test class DLLS,
and, finally, the test Plan DLL itself, to the appro
priate TPS.

1085 4. The TPS calls LoadLibrary() to load it into
its process Space. It calls a well-known function on
the DLL to create as many TestPlan objects as the
number of sites (i.e., DUTs) it is servicing.

1086) 5. The TPS initializes the TestPlan object(s)
with the necessary tester framework objects. During
initialization, the TPS loads the appropriate DLLs
for the test classes used by the TestPlan object(s) into
the process Space, and creates the test class instances.

66
Nov. 11, 2004

1087 6. The TPS sets up the communications chan
nel to/from the System Controller to the TestPlan
object(s).

1088 7. The System Controller communicates with
the TPS, and builds its proxies for the TestPlan
object(s).

1089. The concludes the Successful load of the user's Test
Plan on a Site Controller.

1090 Running a Test Plan
1091. The method to execute all tests in a test plan
according to the pre-defined flow logic is as follows:

1092] 1. The user's application transmits a RunTest
Plan message to the TPS. The TPS sends an Execu
tingTestPlan message to all connected applications.
The TPS then calls execute() on the Test Plan.

1093 2. Testing multiple DUTs with a single Site
Controller is performed using multiple threads on
that Site Controller, one per DUT. Each thread runs
a different, independent instance of the same
TestPlan object. Since, in this case, module control
Software DLLs might be shared across DUTS, the
module commands for hardware communication are
required to take a DUT identifier parameter.

1094) 3. The TestPlan object iterates over each test
in its collection (alternatively, tells its Flow object to
process each test according to the flow logic), calling
preexec(), execute(), and postExec().

1095 4. As each test executes, status messages are
Sent back to all connected applications.

1096 Executing a Single Test
1097 A user may wish to execute a single test in a test
plan instead of all tests. For Single test execution, the method
is as follows.

1098 1. User application transmits a RunTest mes
sage to the TPS; the TPS sends an ExecutingTest
message to all connected applications. The TPS then
calls executeTest() on the Test Plan, Specifying the
teSt to run.

1099 2. The Test Plan object executes the specified
test by calling preexec(), execute(), and postExec(
) on that test object.

1100 3. When the test executes, it sends status
messages back to all connected applications.

1101 Although the invention has been described in con
junction with particular embodiments, it will be appreciated
that various modifications and alterations may be made by
those skilled in the art without departing from the Spirit and
scope of the invention. The invention is not to be limited by
the foregoing illustrative details, but rather interpreted
according to the Scope of the claims.

What is claimed is:
1. A method for developing a test program in general

purpose C/C++ constructs, the test program for testing a
Semiconductor integrated circuit (IC) in a Semiconductor test
System, the method comprising:

US 2004/0225.459 A1

describing test System resources, test System configura
tion, and module configuration in general-purpose
C/C++ constructs for the development of a test program
to test the IC on the Semiconductor test System;

describing a test Sequence in general-purpose C/C++
constructs for the development of the test program to
test the IC on the Semiconductor test System;

describing a test plan in general-purpose C/C++ con
Structs for the development of the test program to test
the IC on the Semiconductor test System;

describing test conditions in general-purpose C/C++ con
Structs for the development of the test program to test
the IC on the Semiconductor test System;

describing test patterns in general-purpose C/C++ con
Structs for the development of the test program to test
the IC on the Semiconductor test System; and

describing timing of the test patterns in general-purpose
C/C++ constructs for the development of the test pro
gram to test the IC on the Semiconductor test System.

2. The method of claim 1, wherein describing test System
resources comprises:

Specifying a resource type, wherein the resource type is
asSociated with at least one test module for applying a
test to the IC;

Specifying a parameter type associated with the resource
type, and

Specifying a parameter of the parameter type.
3. The method of claim 1, wherein describing test system

configuration comprises:
Specifying a site controller for controlling at least one test

module, each test module for applying a test to the IC,
and

Specifying an input port of a module connection enabler,
wherein the test System couples the Site controller to the

module connection enabler at the input port, and the
module connection enabler couples the Site controller
to the at least one test module.

4. The method of claim 3, wherein the module connection
enabler is a Switch matrix.

5. The method of claim 1, wherein describing module
configuration comprises:

Specifying a module identifier for Specifying a module
type,

Specifying executable code for controlling a test module
of the module type specified by the module identifer,
the test module for applying a test to the IC; and

Specifying a resource type associated with the test mod
ule.

6. The method of claim 5, the method further comprising
Specifying a slot identifier for Specifying an output port of a
module connection enabler, wherein the test System couples

67
Nov. 11, 2004

the test module to the module connection enabler at the
output port, and the module connection enabler couples the
test module to a corresponding site controller.

7. The method of claim 6, wherein the module connection
enabler is a Switch matrix.

8. The method of claim 5, wherein the executable code is
a dynamic link library.

9. The method of claim 5, further comprising specifying
a vendor identifier for identifying the provider of the test
module.

10. The method of claim 5, further comprising specifying
an identifier of the maximum number of resource units
available in connection with the resource type.

11. The method of claim 5, wherein the resource type is
digital tester pins and the resource units are tester channels.

12. The method of claim 5, wherein the resource type is
analog tester pins and the resource units are tester channels.

13. The method of claim 5, wherein the resource type is
RF tester pins and the resource units are tester channels.

14. The method of claim 5, wherein the resource type is
power Supply pins and the resource units are tester channels.

15. The method of claim 5, wherein the resource type is
digitizer pins and the resource units are tester channels.

16. The method of claim 5, wherein the resource type is
arbitrary waveform generation pins and the resource units
are tester channels.

17. The method of claim 5, wherein the resource type is
asSociated with resource units, the method further compris
ing Specifying an indicator relating to which resource units
are disabled.

18. The method of claim 18, wherein resource units
indicated as disabled represent defective resource units of
the test module.

19. The method of claim 1, wherein describing test
conditions comprises:

Specifying at least one test condition group.
20. The method of claim 19, wherein describing test

conditions further comprises:
Specifying at least one specification Set including at least

one variable; and
Specifying a Selector for Selecting an expression to be
bound to a variable.

21. The method of claim 20, wherein association of the
test condition group with a Selector for the at least one
Specification Set defines a test condition.

22. The method of claim 21, wherein the test condition is
an object.

23. The method of claim 1, wherein describing a test
Sequence comprises Specifying:

a result of executing a flow or test;
an action based upon the result, and
a transition to another flow or test based upon the result.

