05/013154 A2 IR 0 TR

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
10 February 2005 (10.02.2005)

PCT

(10) International Publication Number

WO 2005/013154 A2

GO6F 17/30

(51) International Patent Classification’:

(21) International Application Number:

PCT/US2004/024425
(22) International Filing Date: 28 July 2004 (28.07.2004)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:
60/492,019
10/831,413

UsS
Us

1 August 2003 (01.08.2003)
23 April 2004 (23.04.2004)

(71) Applicant (for all designated States except US): ORACLE
INTERNATIONAL CORPORATION [US/US]; 500 Or-
acle Parkway, Redwood Shores, CA 94065 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): BAMFORD, Roger
[US/US]; 555 Manzanita Way, Woodside, CA 94062 (US).
CHANDRASEKARAN, Sashikanth [IN/US]; 2545 Carl-
mont Drive #24, Belmont, CA 94002 (US). PRUSCINO,
Angelo [IT/US]; 436 Distel DR, Los Altos, CA 94022
(US).

(74) Agent: HICKMAN, Brian; Hickman Palermo Truong &
Becker LLP, Suite 550, 2055 Gateway Place, San Jose, CA
95110-1089 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,
MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,
ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, 7ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI,
SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: PARALLEL RECOVERY BY NON-FAILED NODES

CLUSTER 100~y
130
" : ' ! o
NODE 102 NODE 104 NODE 106 NODE 108 NODE 110
PARTITION 112 PARTITION 118
PARTITION 114
PARTITION 120

PARTITION 116 /

~_

& (57) Abstract: Various techniques are described for improving the performance of a shared-nothing database system in which at
least two of the nodes that are running the shared-nothing database system have shared access to a disk. Specifically, techniques are
provided for recovering the data owned by a failed node using multiple recovery nodes operating in parallel. The data owned by a
failed node is reassigned to recovery nodes that have access to the shared disk on which the data resides. The recovery logs of the
failed node are read by the recovery nodes, or by a coordinator process that distributes the recovery tasks to the recovery nodes.

WO 2005/013154 A2 I} N0 0800 000 R0 AR

Published: For two-letter codes and other abbreviations, refer to the "Guid-
— without international search report and to be republished — ance Notes on Codes and Abbreviations” appearing at the begin-
upon receipt of that report ning of each regular issue of the PCT Gagzette.

WO 2005/013154 PCT/US2004/024425

PARALLEL RECOVERY BY NON-FAILED NODES

FIELD OF THE INVENTION
[0001] The present invention relates to techniques for managing data in a shared-

nothing database system running on shared disk hardware.

BACKGROUND OF THE INVENTION

[0002] Multi-processing computer systems typically fall into three categories: shared
everything systems, shared disk systems, and shared-nothing systems. In shared
everything systems, processes on all processors have direct access to all volatile memory
devices (hereinafter generally referred to as "memory") and to all non-volatile memory
devices (hereinafter generally referred to as "disks") in the system. Consequently, a high
degree of wiring between the various computer components is required to provide shared
everything functionality. In addition, there are scalability limits to shared everything
architectures.

[0003] In shared disk systems, processors and memories are grouped into nodes.
Each node in a shared disk system may itself constitute a shared everything system that
includes multiple processors and multiple memories. Processes on all processors can
access all disks in the system, but only the processes on processors that belong to a
particular node can directly access the memory within the particular node. Shared disk
systems generally require less wiring than shared everything systems. Shared disk
systems also adapt easily to unbalanced workload conditions because all nodes can access
all data. However, shared disk systems are susceptible to coherence overhead. For
example, if a first node has modified data and a second node wants to read or modify the
same data, then various steps may have to be taken to ensure that the correct version of

the data is provided to the second node.

WO 2005/013154 PCT/US2004/024425

[0004] In shared-nothing systems, all processors, memories and disks are grouped
into nodes. In shared-nothing systems as in shared disk systems, each node may itself
constitute a shared everything system or a shared disk system. Only the processes
running on a particular node can directly access the memories and disks within the
particular node. Of the three general types of multi-processing systems, shared-nothing
systems typically require the least amount of wiring between the various system
components. However, shared-nothing systems are the most susceptible to unbalanced
workload conditions. For example, all of the data to be accessed during a particular task
may reside on the disks of a particular node. Consequently, only processes running
within that node can be used to perform the work granule, even though processes on other
nodes remain idle.

[0005] Databases that run on multi-node systems typically fall into two categories:

shared disk databases and shared-nothing databases.

SHARED DISK DATABASES

[0006] A shared disk database coordinates work based on the assumption that all data
managed by the database system is visible to all processing nodes that are available to the
database system. Consequently, in a shared disk database, the server may assign any
work to a process on any node, regardless of the location of the disk that contains the data
that will be accessed during the work.

[0010] Because all nodes have access to the same data, and each node has its own
private cache, numerous versions of the same data item may reside in the caches of any
number of the many nodes. Unfortunately, this means that when one node requires a
particular version of a particular data item, the node must coordinate with the other nodes
to have the particular version of the data item shipped to the requesting node. Thus,
shared disk databases are said to operate on the concept of "data shipping," where data

must be shipped to the node that has been assigned to work on the data.

2-

WO 2005/013154 PCT/US2004/024425

[0011] Such data shipping requests may result in "pings". Specifically, a ping occurs
when a copy of a data item that is needed by one node resides in the cache of another
node. A ping may require the data item to be written to disk, and then read from disk.
Performance of the disk operations necessitated by pings can significantly reduce the
performance of the database system.

[0012] Shared disk databases may be run on both shared-nothing and shared disk
computer systems. To run a shared disk database on a shared-nothing computer system,
software support may be added to the operating system or additional hardware may be

provided to allow processes to have access to remote disks.

SHARED-NOTHING DATABASES

[0013] A shared-nothing database assumes that a process can only access data if the
data is contained on a disk that belongs to the same node as the process. Consequently, if
a particular node wants an operation to be performed on a data item that is owned by
another node, the particular node must send a request to the other node for the other node
to perform the operation. Thus, instead of shipping the data between nodes, shared-
nothing databases are said to perform "function shipping".

[0014] Because any given piece of data is owned by only one node, only the one node
(the “owner” of the data) will ever have a copy of the data in its cache. Consequently,
there is no need for the type of cache coherency mechanism that is required in shared disk
database systems. Further, shared-nothing systems do not suffer the performance
penalties associated with pings, since a node that owns a data item will not be asked to
save a cached version of the data item to disk so that another node could then load the
data item into its cache.

[0015] Shared-nothing databases may be run on both shared disk and shared-nothing

multi-processing systems. To run a shared-nothing database on a shared disk machine, a

WO 2005/013154 PCT/US2004/024425

mechanism may be provided for partitioning the database, and assigning ownership of
each partition to a particular node.

[0016] The fact that only the owning node may operate on a piece of data means that
the workload in a shared-nothing database may become severely unbalanced. For
example, in a system of ten nodes, 90% of all work requests may involve data that is
owned by one of the nodes. Consequently, the one node is overworked and the
computational resources of the other nodes are underutilized. To "rebalance" the
workload, a shared-nothing database may be taken offline, and the data (and ownership
thereof) may be redistributed among the nodes. However, this process involves moving
potentially huge amounts of data, and may only temporarily solve the workload skew.
FAILURES IN A DATABASE SYSTEM

[0017] A database server failure can occur when a problem arises that prevents a
database server from continuing work. Database server failures may result from
hardware problems such as a power outage, or software problems such as an operating
system or database system crash. Database server failures can also occur expectedly, for
example, when a SHUTDOWN ABORT or a STARTUP FORCE statement is issued to
an Oracle database server.

[0018] Due to the way in which database updates are performed to data files in
some database systems, at any given point in time, a data file may contain some data
blocks that (1) have been tentatively modified by uncommitted transactions and/or (2) do
not yet reflect updates performed by committed transactions. Thus, a database recovery
operation must be performed after a database server failure to restore the database to the
transaction consistent state it possessed just prior to the database server failure. In a
transaction consistent state, a database reflects all the changes made by transactions
which are committed and nc;ne of the changes made by transactions which are not

committed.

WO 2005/013154 PCT/US2004/024425

[0019] A typical database system performs several steps during a database server
recovery. First, the database system “rolls forward”, or reapplies to the data files all of
the changes recorded in the redo log. Rolling forward proceeds through as many redo log
files as necessary to bring the database forward in time to reflect all of the changes made
prior to the time of the crash. Rolling forward usually includes applying the changes in
online redo log files, and may also include applying changes recorded in archived redo
log files (online redo files which are archived before being reused). After rolling forward,
the data blocks contain all committed changes, as well as any uncommitted changes that
were recorded in the redo log prior to the crash.

[0020] Rollback segments include records for undoing uncommitted changes that
remain after the roll-forward operation. In database recovery, the information contained
in the rollback segments is used to undo the changes made by transactions that were
uncommitted at the time of the crash. The process of undoing changes made by the
uncommitted transactions is referred to as "rolling back" the transactions.

[0021] The techniques described herein are not limited to environments in which
rollback segments are used for undoing transactions. For example, in some database
environments, the undo and redo are written in a single sequential log. In such
environments, recovery may be performed based on the contents of the single log, rather
than distinct redo and undo logs.

FAILURE IN A SHARED-NOTHING DATABASE SYSTEM

[0022] In any multiple-node computer system, it is possible for one or more nodes to
fail while one or more other nodes remain functional. In a shared-nothing database
system, failure of a node typically makes the data items owned by the failed node
unavailable. Before those data items can be accessed again, a recovery operation must be
performed on those data items. The faster the recovery operation is performed, the more

quickly the data items will become available.

WO 2005/013154 PCT/US2004/024425

[0023] In a shared nothing database system, recovery operations may be performed
using either no partitioning or pre-failure partitioning. When no partitioning is used, a
single non-failed node assumes ownership of all data items previously owned by the
failed node. The non-failed node then proceeds to perform the entire recovery operation
itself. Because the no partitioning approach only makes use of the processing power of
one active node, the recovery takes much longer than it would if the recovery operation
was shared across many active nodes. This is how recovery is typically done in shared
nothing databases as the recovering node needs to have access to the data of the failed
node. For simplicity of the hardware configuration, a “buddy” system is typically used,
where the nodes are divided into pairs of nodes, each with access to each other’s data, and
each responsible for recovering each other in the event of a failure.

[0024] According to the pre-failure partitioning approach, the data owned by the
failed node is partitioned into distinct shared-nothing database fragments prior to the
failure. After failure, each of the distinct fragments is assigned to a different non-failed
node for recovery. Because the recovery operation is spread among many nodes, the
recovery can be completed faster than if performed by only one node. However, it is
rarely known exactly when a node will fail. Thus, for a node to be recovered using pre-
failure partitioning approach, the partitioning, which typically involves dividing the main
memory and CPUs of the node among the database fragments, is typically performed long
before any failure actually occurs. Unfortunately, while the node is thus partitioned, the
steady-state runtime performance of the node is reduced. Various factors lead to such a
performance reduction. For example, each physical node's resources may be
underutilized. Although multiple partitions are owned by the same physical node, the
partitions cannot share memory for the buffer pool, package cache etc. This causes
underutilization because it is possible to make better use of a single piece of memory

rather than fragmented pieces of memory. In addition, the interprocess communication

WO 2005/013154 PCT/US2004/024425

for a given workload increases with the number of partitions. For example, an application
that scales to four partitions may not scale to twelve partitions. However, using the pre-

failure partition approach for parallel recovery after failure, 12 partitions may be required.

WO 2005/013154 PCT/US2004/024425

BRIEF DESCRIPTION OF THE DRAWINGS

[0025] The present invention is illustrated by way of example, and not by way of
limitation, in the figures of the accompanying drawings and in which like reference
numerals refer to similar elements and in which:

[0026] FIG. 1 is a block diagram illustrating a cluster that includes two shared disk
subsystems, according to an embodiment of the invention; and

[0027] FIG. 2 is a block diagram of a computer system on which embodiments of the

invention may be implemented.

WO 2005/013154 PCT/US2004/024425

DETAILED DESCRIPTION OF THE INVENTION
[0028] Various techniques are described hereafter for improving the performance of a
shared-nothing database system that includes a shared disk storage system. In the
following description, for the purposes of explanation, numerous specific details are set
forth in order to provide a thorough understanding of the present invention. It will be
apparent, however, that the present invention may be practiced without these specific
details. In other instances, well-known structures and devices are shown in block
diagram form in order to avoid unnecessarily obscuring the present invention.
FUNCTIONAL OVERVIEW
[0029] Various techniques are described hereafter for improving the performance of a
shared-nothing database system in which at least two of the nodes that are running the
shared-nothing database system have shared access to a disk. As dictated by the shared-
nothing architecture of the database system, each piece of data is still owned by only one
node at any given time. However, the fact that at least some of the nodes that are running
the shared-nothing database system have shared access to a disk is exploited to more
efficiently rebalance and recover the shared-nothing database system.
[0030] Specifically, techniques are provided for recovering the data owned by a failed
node using multiple recovery nodes operating in parallel. The data owned by a failed
node is reassigned to recovery nodes that have access to the shared disk on which the data
resides. The recovery logs of the failed node are read by the recovery nodes, or by a
coordinator process that distributes the recovery tasks to the recovery nodes.
EXEMPLARY CLUSTER THAT INCLUDES SHARED DISK SYSTEMS
[0031] FIG. 1 is a block diagram illustrating a cluster 100 upon which embodiments
of the invention may be implemented. Cluster 100 includes five nodes 102, 104, 106, 108
and 110 that are coupled by an interconnect 130 that allows the nodes to communicate
with each other. Cluster 100 includes two disks 150 and 152. Nodes 102, 104 and 106

9.

WO 2005/013154 PCT/US2004/024425

have access to disk 150, and nodes 108 and 110 have access to disk 152. Thus, the
subsystem that includes nodes 102, 104 and 106 and disk 150 constitutes a first shared
disk system, while the subsystem that includes nodes 108 and 110 and disk 152
constitutes a second shared disk system.
[0032] Cluster 100 is an example of a relatively simple system that includes two
shared disk subsystems with no overlapping membership between the shared disk
subsystems. Actual systems may be much more complex than cluster 100, with hundreds
of nodes, hundreds of shared disks, and many-to-many relationships between the nodes
and shared disks. In such a system, a single node that has access to many disks may, for
example, be a member of several distinct shared disk subsystems, where each shared disk
subsystem includes one of the shared disks and all nodes that have access to the shared
disk.

SHARED-NOTHING DATABASE ON SHARED DISK SYSTEM
[0033] For the purpose of illustration, it shall be assumed that a shared-nothing
database system is running on cluster 100, where the database managed by the shared-
nothing database system is stored on disks 150 and 152. Based on the shared-nothing
nature of the database system, the data may be segregated into five groups or partitions
112, 114, 116, 118 and 120. Each of the partitions is assigned to a corresponding node.
The node assigned to a partition is considered to be the exclusive owner of all data that
resides in that partition. In the present example, nodes 102, 104, 106, 108 and 110
respectively own partitions 112, 114, 116, 118 and 120. The partitions 112, 114 and 118
owned by the nodes that have access to disk 150 (nodes 102, 104 and 106) are stored on
disk 150. Similarly, the partitions 118 and 120 owned by the nodes that have access to
disk 152 (nodes 108 and 110) are stored on disk 152.
[0034] As dictated by the shared-nothing nature of the database system running on

cluster 100, any piece of data is owned by at most one node at any given time. In

-10-

WO 2005/013154 PCT/US2004/024425

addition, access to the shared data is coordinated by ﬁmctioﬁ shipping. For example, in
the context of a database system that supports the SQL language, a node that does not
own a particular piece of data may cause an operation to be performed on that data by
forwarding fragments of SQL statements to the node that does own the piece of data.

OWNERSHIP MAP
[0035] To efficiently perform function shipping, all nodes need to know which nodes
own which data. Accordingly, an ownership map is established, where the ownership
map indicates the data-to-node ownership assignments. During runtime, the various
nodes consult the ownership map to route SQL fragments to the correct nodes at run-time.
[0036] According to one embodiment, the data-to-node mapping need not be
determined at compilation time of an SQL (or any other database access language)
statement. Rather, as shall be described in greater detail hereafter, the data-to-node
mapping may be established and revised during runtime. Using the techniques described
hereafter, when the ownership changes from one node that has access to the disk on
which the data resides to another node that has access to the disk on which the data
resides, the ownership change is performed without moving the data from its persistent
location on the disk.

LOCKING

[0037] Locks are structures used to coordinate access to a resource among several
entities that have access to the resource. In the case of a shared-nothing database system,
there is no need for global locking to coordinate accesses to the user data in the shared-
nothing database, since any given piece of data is only owned by a single node.
However, since all of the nodes of the shared-nothing database require access to the
ownership map, some locking may be required to prevent inconsistent updates to the

ownership map.

-11-

WO 2005/013154 PCT/US2004/024425

[0038] According to one embodiment, a two-node locking scheme is used when
ownership of a piece of data is being reassigned from one node (the "old owner") to
another node (the "new owner"). Further, a global locking mechanism may be used to
control access to the metadata associated with the shared-nothing database. Such
metadata may include, for example, the ownership map.
[0039] If ownership of the data is being redistributed for the purpose of parallel
recovery, a locking scheme for the ownership map is not required. Specifically, if the
ownership does not change during run-time, a simple scheme can be used to parallelize
the recovery among survivors. For example, if there are N survivors, the first survivor can
be responsible for recovering all data owned by the dead node which falls into the first
1/N buckets and so on. After the recovery is complete the ownership of all data owned by
the dead node reverts back to a single node.

BUCKET-BASED PARTITIONING
[0040] As mentioned above, the data that is managed by the shared-nothing database
is partitioned, and the data in each partition is exclusively owned by one node. According
to one embodiment, the partitions are established by assigning the data to logical buckets,
and then assigning each of the buckets to a partition. Thus, the data-to-node mapping in
the ownership map includes a data-to-bucket mapping, and a bucket-to-node mapping.
[0041] According to one embodiment, the data-to-bucket mapping is established by
applying a hash function to the name of each data item. Similarly, the bucket-to-node
mapping may be established by applying another hash function to identifiers associated
with the buckets. Alternatively, one or both of the mappings may be established using
range-based partitioning, list partitioning, or by simply enumerating each individual
relationship. For example, one million data items may be mapped to fifty buckets by

splitting the namespace of the data items into fifty ranges. The fifty buckets may then be

-12-

WO 2005/013154 PCT/US2004/024425

mapped to five nodes by storing a record for each bucket that (1) identifies the bucket and
(2) identifies the node currently assigned the bucket.
[0042] The use of buckets significantly reduces the size of the ownership mapping
relative to a mapping in which a separate mapping record was stored for each data item.
Further, in embodiments where there number of buckets exceeds the number of nodes, the
use of buckets makes it relatively easy to reassign ownership to a subset of the data
owned by a given node. For example, a new node may be assigned a single bucket from a
node that is currently assigned ten buckets. Such a reassignment would simply involve
revising the record that indicates the bucket-to-node mapping for that bucket. The data-
to-bucket mapping of the reassigned data would not have to be changed.
[0043] As mentioned above, the data-to-bucket mapping may be established using
any one of a variety of techniques, including but not limited to hash partitioning, range
partitioning or list values. If range based partitioning is used and the number of ranges is
not significantly greater than the number of nodes, then the database server may employ
finer grained (narrower) ranges to achieve the desired number of buckets so long as the
range key used to partition the data items is a value that will not change (e.g. date). If the
range key is a value that could change, then in response to a change to the range key
value for a particular data item, the data item is removed from its old bucket and added to
the bucket that corresponds to the new value of the data item’s range key.
ESTABLISHING THE INITIAL ASSIGNMENT OF OWNERSHIP
[0044] Using the mapping techniques described above, ownership of a single table or
index can be shared among multiple nodes. Initially, the assignment of ownership may be
random. For example, a user may select the key and partitioning technique (e.g. hash,
range, list, etc) for the data-to-bucket mapping, and the partitioning technique for the
bucket-to-node mapping, but need not specify the initial assignment of buckets to nodes.

The database server may then determine the key for the bucket-to-node mapping based on

13-

WO 2005/013154 PCT/US2004/024425

the key for the data-to-bucket mapping, and create the initial bucket-to-node assignments
without regard to the specific data and database objects represented by the buckets.
[0045] For example, if the user chooses to partition the object based on key A, the
database server will use key A to determine the bucket-to-node mapping. In some cases,
the database server can append extra keys or apply a different function (as long as it
preserves the data-to-bucket mapping) to the key(s) used for the data-to-bucket mapping.
For example, if the object is hash partitioned using key A into four data buckets, the
database server could subdivide each of those four buckets into three buckets each (to
allow for flexible assignment of buckets to node) by either applying a hash function on
key B to determine the bucket-to-node mapping, or by simply increasing the number of
hash values to 12. If the hash is a modulo function the Oth, 4th and 8th bucket-to-node
buckets will correspond to the Oth data-to-bucket bucket, the 1st, 5th and 9th bucket-to-
node buckets will correspond to the 1st data-to-bucket bucket etc.

[0046] As another example, if the object is range partitioned on a key A which is of
type DATE, then the data-to-bucket mapping could be specified by using the function
year(date) which returns the year. But the bucket-to-node mapping could be internally
computed by the database server by using the month_and_year(date). Each year partition
is divided into 12 bucket-to-node buckets. This, way, if the database server determines
that a particular year's data is accessed frequently (which will typically be the current
year) it can redistribute those 12 buckets among the other nodes.

[0047] In both examples given above, given a bucket-to-node bucket#, the database
server can uniquely determine the data-to-bucket bucket#. Also in those examples, the
user selects the key and partitioning technique for the data-to-bucket mapping. However,
in alternative embodiments, the user may not select the key and partitioning technique for
the data-to-bucket mapping. Rather, the key and partitioning technique for the data-to-

bucket mapping may also be determined automatically by the database server.

-14-

WO 2005/013154 PCT/US2004/024425

[0048] According to one embodiment, the database server makes the initial bucket-to-
node assignments based on how many buckets should be assigned to each node. For
example, nodes with greater capacity may be assigned more buckets. However, in the
initial assignments, the decision of which particular buckets should be assigned to which
nodes is random.
[0049] In an alternative embodiment, the database server does take into account
which data is represented by a bucket when making the bucket-to-node assignments. For
example, assume that data for a particular table is divided among several buckets. The
database server may intentionally assign all of those buckets to the same node, or
intentionally distribute ownership of those buckets among many nodes. Similarly, the
database server may, in the initial assignment, attempt to assign buckets associated with
tables to the same nodes as buckets associated with indexes for those tables. Conversely,
the database server may attempt to assign buckets associated with tables to different
nodes than the nodes to which buckets associated with indexes for those tables are
assigned.
PARALLEL RECOVERY OF SHARED DATA OWNED BY ONE OR MORE NODES
ACROSS SURVIVING NODES.
[0050] It is possible for one or more nodes of a distributed shared nothing database
system to fail. To ensure the availability of the data that is managed by the shared-
nothing database system, the buckets owned by the nodes that have failed (the “dead
nodes”) must be reassigned to nodes that have not failed. Typically, the bucket-to-node
mapping information will be stored in a database catalog that is located on a shared disk.
By inspecting the database catalog, the non-failed nodes of the shared-nothing database
system can determine the list of partition buckets that were owned by the dead nodes.
[0051] Once the partition buckets owned by dead nodes have been identified, the

partition buckets are redistributed among surviving nodes. Significantly, this

-15-

WO 2005/013154 PCT/US2004/024425

redistribution can take place without moving the underlying data, as long as the surviving
node that is assigned the ownership of a bucket has access to the shared disk that contains
the data that maps to the bucket. For example, assume that node 102 of cluster 100 fails.
If node 102 owned the bucket that corresponds to partition 112, then that bucket can be
reassigned to either node 104 or node 106 without changing the physical location of the
data on disk 150.

[0052] After the reassignment of ownership of the buckets that were previously
owned by the dead nodes, roll-forward and roll-back operations are performed on the
items in those buckets by the surviving nodes. According to one embodiment, the
surviving nodes to which the failed nodes’ buckets are assigned include only those
surviving nodes that have access to the failed node’s redo logs, and the data owned by the
failed node. Alternatively, if the surviving node that performs recovery has access to the
failed node’s data, but not to the failed node’s redo logs, then a coordinator may scan the
redo log and distribute the redo records contained therein based on the bucket for which
the redo was generated.

[0053] According to one embodiment, the nodes that are doing recovery write the
blocks that are being recovered to disk in a particular order to avoid problems.
Specifically, if a large amount of recovery needs to be performed (for example, during
media recovery) the recovering nodes take checkpoints or write the recovered blocks to
the disk. However, when writing the blocks to disk under these circumstances, the
recovery nodes may not be able to perform the writes in any order. For example, if the
redo generated for block A is ahead of the redo generated for block B and blocks A and B
are being recovered by two separate nodes, block B cannot be written ahead of block A,
especially if this means that the checkpoint for the failed node's thread of redo may be
advanced past the redo for block B. To avoid this problem, the recovering nodes may

exchange the earliest dirty recovery block (block for which redo was applied from the

-16-

WO 2005/013154 PCT/US2004/024425

failed node) with each other. A node can write its block if its block is the earliest dirty
recovery block. This way the blocks will be written in order.

[0054] Since several nodes participate in the recovery operation, the recovery
operation is performed faster than the no partitioning approach previously described.
Further, unlike the pre-failure partitioning approach described above, the redistribution of
ownership of the buckets takes place after the failure, so that no run-time penalty is
incurred.

[0055] The techniques described herein for distributing recovery operations to
multiple nodes for parallel recovery operations apply equally to parallel media recovery
of an object owned by a single node. Specifically, when the media containing an object
fails, ownership of portions of the object can be distributed to several nodes for the
duration of the recovery. After recovery has been completed, ownership can be collapsed
back to a single node.

[0056] According to one embodiment to handle nested failures, the database system
keeps track of whether or not a piece of undo has been applied to a block. Tracking the
application of undo is helpful because earlier parts of a transaction which modified
different partitions may have been rolled back, whereas later changes may not have been.
[0057] According to one embodiment, partition bucket numbers are stored in the redo
records. For example, if a redo record indicates a change made to a block that belongs to
a particular bucket, then the bucket number of that bucket is stored within the redo record.
Consequently, when applying redo records, a recovery process can automatically skip
those redo records that indicate partition bucket numbers of buckets that do not require
recovery.

[0058] When applying redo, all recovering nodes can scan the redo logs of the failed
nodes, or a single recovery coordinator can scan the logs and distribute pieces of redo to

the nodes participating in the recovery. In an embodiment where a recovery coordinator

-17-

WO 2005/013154 PCT/US2004/024425

distributes pieces of redo, the redo is distributed based on the partition bucket number.
Thus, the recovery node assigned to recover a particular bucket will receive from the
recovery coordinator the redo for all data items that belong to that bucket.
[0059] It is possible that, during the recovery operation, a particular piece of data will
move from one partition to another. According to one embodiment, an operation that
moves an object from one partition to another is treated as a delete followed by an insert.
Hence there are no ordering dependencies between pieces of redo that belong to different
buckets.

SELECTIVE PARALLELIZATION
[0060] According to one embodiment, only selected portions of the recovery
operation are parallelized. For example, a particular node can be assigned as the recovery
coordinator. During the recovery, the recovery coordinator serially recovers all of the
data that requires recovery until the recovery coordinator encounters a recovery task that
satisfies parallelization criteria. For example, the parallelization criteria may specify that
parallel recovery should be used for objects that exceed a particular size threshold.
Consequently, when the recovery coordinator encounters such an object during the
recovery process, the database server redistributes ownership of the buckets that
correspond to the large object so that several nodes can assist in the parallel recovery of
that object. Upon completion of the specified task, the ownership of the data may be
reassigned back to the recovery coordinator.

IN-TRANSIT BUCKETS

[0061] While the ownership of a bucket is being transferred from one node (the “old
owner”) to another (the “new owner”), the bucket is considered to be “in-transit”. If the
old owner and/or the new owner fails while the bucket is in-transit, additional recovery
steps may be necessary. The additional recovery steps that are required are dictated by

the ownership transfer technique that is used by the database system. If the ownership

-18-

WO 2005/013154 PCT/US2004/024425

transfer technique allows both the old owner and the new owner to have dirty versions of
data items that belong to an in-transit bucket, then recovery may involve (1) using the
cached dirty versions of data items that reside in the surviving node, and (2) merging and
applying the redo logs of the old owner and the new owner. Similarly, if a partition
bucket was in-transit at the time of failure, undo logs generated by multiple nodes may
need to be applied to rollback the data items that belong to the bucket.

DETERMINING WHICH BUCKETS NEED RECOVERY
[0062] When a node fails, the bucket-to-node mapping can be inspected to determine
which buckets belonged to the failed node, and therefore require recovery. According to
one embodiment, a first pass is made through the bucket-to-node mapping to determine
which buckets require recovery. After the first pass, all buckets that do not require
recovery are made immediately available for access. A second pass is then made, during
which recovery operations are performed on the buckets that require recovery. The
recovery performed during the second pass may be accomplished by a single node that is
designated as the owner of all of the data owned by the dead node, or may be distributed
among the surviving nodes using the ownership map.

HARDWARE OVERVIEW

[0063] Figure 2 is a block diagram that illustrates a computer system 200 upon which
an embodiment of the invention may be implemented. Computer system 200 includes a
bus 202 or other communication mechanism for communicating information, and a
processor 204 coupled with bus 202 for processing information. Computer system 200
also includes a main memory 206, such as a random access memory (RAM) or other
dynamic storage device, coupled to bus 202 for storing information and instructions to be
executed by processor 204. Main memory 206 also may be used for storing temporary
variables or other intermediate information during execution of instructions to be

executed by processor 204. Computer system 200 further includes a read only memory

-10-

WO 2005/013154 PCT/US2004/024425

(ROM) 208 or other static storage device coupled to bus 202 for storing static information
and instructions for processor 204. A storage device 210, such as a magnetic disk or
optical disk, is provided and coupled to bus 202 for storing information and instructions.
[0064] Computer system 200 may be coupled via bus 202 to a display 212, such as a
cathode ray tube (CRT), for displaying information to a computer user. An input device
214, including alphanumeric and other keys, is coupled to bus 202 for communicating
information and command selections to processor 204. Another type of user input device
is cursor control 216, such as a mouse, a trackball, or cursor direction keys for
communicating direction information and command selections to processor 204 and for
controlling cursor movement on display 212. This input device typically has two degrees
of freedom in two axes, a first axis (e.g., X) and a second axis (e.g., y), that allows the
device to specify positions in a plane.

[0065] The invention is related to the use of computer system 200 for implementing
the techniques described herein. According to one embodiment of the invention, those
techniques are performed by computer system 200 in response to processor 204 executing
one or more sequences of one or more instructions contained in main memory 206. Such
instructions may be read into main memory 206 from another computer-readable
medium, such as storage device 210. Execution of the sequences of instructions
contained in main memory 206 causes processor 204 to perform the process steps
described herein. In alternative embodiments, hard-wired circuitry may be used in place
of or in combination with software instructions to implement the invention. Thus,
embodiments of the invention are not limited to any specific combination of hardware
circuitry and software.

[0066] The term “computer-readable medium” as used herein refers to any medium
that participates in providing instructions to processor 204 for execution. Such a medium

may take many forms, including but not limited to, non-volatile media, volatile media,

-20-

WO 2005/013154 PCT/US2004/024425

and transmission media. Non-volatile media includes, for example, optical or magnetic
disks, such as storage device 210. Volatile media includes dynamic memory, such as
main memory 206. Transmission media includes coaxial cables, copper wire and fiber
optics, including the wires that comprise bus 202. Transmission media can also take the
form of acoustic or light waves, such as those generated during radio-wave and infra-red
data communications.

[0067] Common forms of computer-readable media include, for example, a floppy
disk, a flexible disk, hard disk, magnetic tape, or any other magnetic medium, a CD-
ROM, any other optical medium, punchcards, papertape, any other physical medium with
patterns of holes, a RAM, a PROM, and EPROM, a FLASH-EPROM, any other memory
chip or cartridge, a carrier wave as described hereinafter, or any other medium from
which a computer can read.

[0068] Various forms of computer readable media may be involved in carrying one or
more sequences of one or more instructions to processor 204 for execution. For example,
the instructions may initially be carried on a magnetic disk of a remote computer. The
remote computer can load the instructions into its dynamic memory and send the
instructions over a telephone line using a modem. A modem local to computer system
200 can receive the data on the telephone line and use an infra-red transmitter to convert
the data to an infra-red signal. An infra-red detector can receive the data carried in the
infra-red signal and appropriate circuitry can place the data on bus 202. Bus 202 carries
the data to main memory 206, from which processor 204 retrieves and executes the
instructions. The instructions received by main memory 206 may optionally be stored on
storage device 210 either before or after execution by processor 204.

[0069] Computer system 200 also includes a communication interface 218 coupled to
bus 202. Communication interface 218 provides a two-way data communication coupling

to a network link 220 that is connected to a local network 222. For example,

21-

WO 2005/013154 PCT/US2004/024425

communication interface 218 may be an integrated services digital network (ISDN) card
or a modem to provide a data communication connection to a corresponding type of
telephone line. As another example, communication interface 218 may be a local area
network (LAN) card to provide a data communication connection to a compatible LAN.
Wireless links may also be implemented. In any such implementation, communication
interface 218 sends and receives electrical, electromagnetic or optical signals that carry
digital data streams representing various types of information.

[0070] Network link 220 typically provides data communication through one or more
networks to other data devices. For example, network link 220 may provide a connection
through local network 222 to a host computer 224 or to data equipment operated by an
Internet Service Provider (ISP) 226. ISP 226 in turn provides data communication
services through the world wide packet data communication network now commonly
feferred to as the “Internet” 228. Local network 222 and Internet 228 both use electrical,
electromagnetic or optical signals that carry digital data streams. The signals through the
various networks and the signals on network link 220 and through communication
interface 218, which carry the digital data to and from computer system 200, are
exemplary forms of carrier waves transporting the information.

[0071] Computer system 200 can send messages and receive data, including program
code, through the network(s), network link 220 and communication interface 218. In the
Internet example, a server 230 might transmit a requested code for an application program
through Internet 228, ISP 226, local network 222 and communication interface 218.
[0072] The received code may be executed by processor 204 as it is received, and/or
stored in storage device 210, or other non-volatile storage for later execution. In this
manner, computer system 200 may obtain application code in the form of a carrier wave.
[0073] In the foregoing specification, embodiments of the invention have been

described with reference to numerous specific details that may vary from implementation

22-

WO 2005/013154 PCT/US2004/024425

to implementation. Thus, the sole and exclusive indicator of what is the invention, and is
intended by the applicants to be the invention, is the set of claims that issue from this
application, in the specific form in which such claims issue, including any subsequent
correction. Any definitions expressly set forth herein for terms contained in such claims
shall govern the meaning of such terms as used in the claims. Hence, no limitation,
element, property, feature, advantage or attribute that is not expressly recited in a claim
should limit the scope of such claim in any way. The specification and drawings are,

accordingly, to be regarded in an illustrative rather than a restrictive sense.

23.

WO 2005/013154 PCT/US2004/024425

CLAIMS

‘What is claimed is:

1 1. A method for managing data, the method comprising the steps of:
2 maintaining a plurality of persistent data items on persistent storage accessible to a
3 plurality of nodes, the persistent data items including a particular data item
4 stored at a particular location on said persistent storage;
5 assigning exclusive ownership of each of the persistent data items to one of the
6 nodes, wherein a particular node of said plurality of nodes is assigned
7 exclusive ownership of said particular data item;
8 when any node wants an operation to be performed that involves said particular
9 data item, the node that desires the operation to be performed ships the
10 operation to the particular node for the particular node to perform the
11 operation on the particular data item as said particular data item is
12 exclusively owned by said particular node;
13 in response to a failure that involves a set of persistent data items exclusively
14 owned by a single node, performing the steps of:

15 assigning, to each of two or more recovery nodes, exclusive ownership of
16 a subset of the set of persistent data items that were involved in the
17 failure; and
18 each recovery node of the two or more recovery nodes performing a
19 recovery operation on the subset of persistent data items that were
20 assigned to the recovery node.

1 2 The method of Claim 1 wherein the failure is a media failure of a persistent

2 storage device that stores said set of persistent data items.

1 3. The of Claim 1 wherein:

24-

WO 2005/013154 PCT/US2004/024425

the failure is a failure of the node that has exclusive ownership of said set of
persistent data items; and

the step of assigning includes assigning, to each of two or more recovery nodes,
exclusive ownership of a subset of the persistent data items that were

exclusively owned by the failed node.

4, The method of Claim 3, wherein:
the two or more recovery nodes include a first recovery node and a second
recovery node; and
a least a portion of the recovery operation performed by the first recovery node on
the subset of data exclusively assigned to the first recovery node is
performed in parallel with at least a portion of the recovery operation
performed by the second recovery node on the subset of data exclusively

assigned to the second recovery node.

5. The method of Claim 3 further comprising:
organizing the plurality of persistent data items into a plurality of buckets; and
establishing a mapping between the plurality of buckets and the plurality of nodes,
wherein each node has exclusive ownership of the data items that belong
to all buckets that map to the node; and

determining which data items need to be recovered based on said mapping.

6. The method of Claim 5 further comprising:
performing a first pass on said mapping to determine which buckets have data
items that need to be recovered;
performing a second pass on said mapping to perform recovery on the data items

that need to be recovered; and

25-

WO 2005/013154 PCT/US2004/024425

after performing the first pass and before completing the second pass, making
available for access the data items that belong to all buckets that do not

have to be recovered.

7. The method of Claim 3 wherein each recovery node of the two or more recovery
nodes performs the recovery operation based on recovery logs, associated with the failed

node, on the persistent storage.

8. The method of Claim 7 further comprising the step of a recovery coordinator
scanning the recovery logs associated with the failed node and distributing recovery

records to the two or more recovery nodes.

9. The method of Claim 7 wherein each of the two or more recovery nodes scans the

recovery logs associated with the failed node.

10. The method of Claim 3 wherein:
the step of each recovery node of the two or more recovery nodes performing a
recovery operation includes applying undo records to blocks; and
the method further comprises the step of tracking which undo records have been

applied.

11. The method of Claim 5 further comprising the step of, prior to the failure, the
failed node storing, within redo records that are generated by the failed node, bucket
numbers that indicate to which buckets the data items associated with the redo records

belong.

12. The method of Claim 3 wherein recovery of the failed node involves various
tasks, the method further comprising the steps of:
a recovery coordinator determining that a first set of one or more tasks required
for recovery of said failed node should be performed serially, and that a

-26-

WO 2005/013154 PCT/US2004/024425

second set of one or more tasks required for recovery of said failed node
should be performed in parallel; and

performing the first set of one or more tasks serially; and

using said two or more recovery nodes to perform said second set of one or more

tasks in parallel.

13. The method of Claim 12 wherein the step of determining that a second set of one
or more tasks required for recovery of said failed node should be performed in parallel is
performed based, at least in part, on the size of one or more objects that need to be

recovered.

14. The method of Claim 12 wherein:

ownership of data items involved in said second set of one or more tasks is passed
from the recovery coordinator to the two or more recovery nodes to allow
said two or more recovery nodes to perform said second set of one or more
tasks; and

after performance of said second set of one or more tasks and before completion
of the recovery of said failed node, ownership of data items involved in
said second set of one or more tasks is passed back to said recovery

coordinator from said two or more recovery nodes.

15. A computer-readable medium carrying one or more sequences of instructions
which, when executed by one or more processors, causes the one or more processors to

perform the method recited in Claim 3.

16. A computer-readable medium carrying one or more sequences of instructions
which, when executed by one or more processors, causes the one or more processors to

perform the method recited in Claim 4.

27-

WO 2005/013154 PCT/US2004/024425

17. A computer-readable medium carrying one or more sequences of instructions
which, when executed by one or more processors, causes the one or more processors to

perform the method recited in Claim 5.

18. A computer-readable medium carrying one or more sequences of instructions
which, when executed by one or more processors, causes the one or more processors to

perform the method recited in Claim 6.

19. A computer-readable medium carrying one or more sequences of instructions
which, when executed by one or more processors, causes the one or more processors to

perform the method recited in Claim 7.

20. A computer-readable medium carrying one or more sequences of instructions
which, when executed by one or more processors, causes the one or more processors to

perform the method recited in Claim 8.

21. A computer-readable medium carrying one or more sequences of instructions
which, when executed by one or more processors, causes the one or more processors to

perform the method recited in Claim 9.

22. A computer-readable medium carrying one or more sequences of instructions
which, when executed by one or more processors, causes the one or more processors to

perform the method recited in Claim 10.

23. A computer-readable medium carrying one or more sequences of instructions
which, when executed by one or more processors, causes the one or more processors to

perform the method recited in Claim 11.

-28-

WO 2005/013154 PCT/US2004/024425

24. A computer-readable medium carrying one or more sequences of instructions
which, when executed by one or more processors, causes the one or more processors to

perform the method recited in Claim 12.

25. A computer-readable medium carrying one or more sequences of instructions
which, when executed by one or more processors, causes the one or more processors to

perform the method recited in Claim 13.

26. A computer-readable medium carrying one or more sequences of instructions
which, when executed by one or more processors, causes the one or more processors to

perform the method recited in Claim 14.

29.

PCT/US2004/024425

WO 2005/013154

TN

021 NOILILYVd

8Ll NOILILHvd

011 3dON

'

2

¢sl MSId

80} 4dON

'

} Ol

7Ll NOLLILYYd

¢l1 NOILILHEvd

901 3AON

0

091 MSId

\ 9L NOILILYVd

0l 3AON

¢0} 3AON

'

'

-

0€l

S

4_0, y315n10

1/2

PCT/US2004/024425

WO 2005/013154

j744

2/2

LSOH
o 0C¢ ulolo.N — “
ec m & 70 | \
YYOMLIN I0VAYILN 70e 7
oo) MHOMEN! NOILYOINNKINOD 40883004d A RENTTY,
| | ¥0S¥NI
| |
[l
_ _
_ _
| S ! —_—
923 _ 702 % N2Y/
_ sng N V| 301A30 LndNI
sl _ _
| f
! |
L3NY3LN | |
I !
L T2 80¢ 90C ! -1
—N\| 7Ie
8e¢ — | 30130 wonaw | 1 L——)1 ¢
(34 | | AY1dSIa
YIANIS | 39v¥ols WOy NIV _

¢ 9Ol

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

