a2 United States Patent

Branson et al.

US010754690B2

US 10,754,690 B2
*Aug. 25, 2020

(10) Patent No.:
45) Date of Patent:

(54) RULE-BASED DYNAMIC RESOURCE (2013.01); HO4L 47/70 (2013.01); HO4L 67/10
ADJUSTMENT FOR UPSTREAM AND (2013.01); GOGF 2209/508 (2013.01); Y02B
DOWNSTREAM PROCESSING UNITS IN 70/1425 (2013.01); Y02D 10/22 (2018.01)
EREEI;(;NSE TO A PROCESSING UNIT (58) Field of Classification Search

CPC GOG6F 9/50; GO6F 9/5011; GO6F 9/5016;

(71) Applicant: International Business Machines GOGE 9/5027; GOGE 9/505; GO6F

Corporation, Armonk, NY (US) 2209/508; HO4L 12/5695; HO4L
29/08135; HO4L 43/00; HO4L 67/10;
(72) Inventors: Michael J. Branson, Rochester, MN YO02B 60/142
(US); John M. Santosuosso, Rochester, See application file for complete search history.
MN (US)
(73) Assignee: International Business Machines (56) References Cited
Corporation, Armonk, NY (US)
U.S. PATENT DOCUMENTS
(*) Notice: Subject. to any disclaimer,. the term of this 6745221 BI 6/2004 Ronca
patent is extended or adjusted under 35 7.430.741 B2 9/2008 Ayachitula et al.
U.S.C. 154(b) by 247 days. 7,565,656 B2 7/2009 Yamasaki et al.
. 7,693,995 B2 4/2010 Kudo et al.
This patent is subject to a terminal dis- 7925755 B2 4/2011 Diep et al.
claimer. (Continued)
(21) Appl. No.: 15/826,548
OTHER PUBLICATIONS

(22) Filed: Nov. 29, 2017 Wikipedia, “Distributed Computing”, Jan. 21, 2009, pp. 1-7.

(65) Prior Publication Data
US 2018/0088990 A1l Mar. 29, 2018 Primary Examiner — David J. Huisman

ttorney, ent, or Firm — Martin ssociates,
74) A Y, Ag F Martin & Associ
Related U.S. Application Data LLC; Bret J. Petersen

(63) Continuation of application No. 12/357,984, filed on
Jan. 22, 2009, now Pat. No. 9,880,877. (57) ABSTRACT

(1) Int. Cl. A method dynamically adjusts the resources available to a
GO6F 9/50 (2006.01) processing unit of a distributed computer process executing
HO4L 12911 (2013.01) on a multi-node computer system. The resources for the
HO4L 29/08 (2006.01) processing unit are adjusted based on the data other pro-
HO4L 12/26 (2006.01) cessing units handle or the execution path of code in an

(52) US.CL upstream or downstream processing unit in the distributed
CPC ..o GO6F 9/50 (2013.01); GO6F 9/505 process or application.

(2013.01); GO6F 9/5011 (2013.01); GO6F
9/5016 (2013.01); GO6F 9/5027 (2013.01);
HO4L 29/08135 (2013.01); HO4L 43/00 12 Claims, 6 Drawing Sheets
Data Event Rules 312 -
Code Point Rules 314
Event 410 Action 412

PU-820, gty > 10000

PU-624 +GPU(500%) + Memory (200%)

414 PU-814 -CPU(200%) 416

o

Event §10
PU-620, Line 281

Action 1
PU-624 +CPU(500%) + Memory (200%)

PU-624, Data = video

deo PU-624 +CPU(300%) + Memory (100%)

PU-624, Line 17 PU-624 +CPU(300%) + Memory (100%)

US 10,754,690 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
8,386,995 B2 2/2013 Coleman et al.
8,516,490 B2 8/2013 Branson et al.
9,063,781 B2 6/2015 Branson et al.
9,417,915 B2* 8/2016 Branson GOGF 9/5011

9,880,877 B2* 1/2018 Branson GO6F 9/5011
2002/0016835 Al 2/2002 Gamerman
2006/0224740 Al 10/2006 Sievers-Tostes et al.
2007/0266376 Al* 11/2007 Yimccoovevennn. GO6F 11/3644
717/129
2009/0119673 Al 5/2009 Bubba
2009/0133029 Al 5/2009 Varadarajan et al.

* cited by examiner

U.S. Patent Aug. 25, 2020 Sheet 1 of 6 US 10,754,690 B2

148
-
100 Front-end
& Computer
Service Node
140 64 Racks
Control (65,536 Nodes,
System [_142 131,072 CPUs)
Resource /1 43 130\>
Controller H
Rules 144 Rack
. N
Registry (32 Node Boards)
P 130
Optimizing ||| 145 (
Agent Control System
(, . Network
DB2(Data| | 0
Storage) Functional
(_ Network
152
138 Node Board
13&_‘ (32 Nodes)
Node
2 CPUS) o | > Midplane
E
110 ~ 132
("
¢
00
— | 120
< EI\ Hardware Controller (Ido Chip) 180
112 114 114 < /O Node (1/O Processor)

170

FIG. 1

U.S. Patent Aug. 25, 2020 Sheet 2 of 6 US 10,754,690 B2

Compute Node (I/0O Node)

| 110
Processors (CPU) 210 RAM o1
211 —
ALU 11 Class Routing Table 221
t Processing Unit 299
MMU 212 {Application) ==
Event Detection 223
Mechanism = —
Kernel 224
215

' f (f
!

Bus Adapter 217

218
Collective Network Adapter
(Tree Network)
232
Ethernet JTAG Point To Point
Adap:tzezr6) glave (Torus) Network A
££0 | |£<0 Adapter
A A T T T T ?&QT
TN
240
/“ P \J
152y 150 v X+ X-Y+Y-Z+ Z-
Functional Control N v /
Network System 238
Network

FIG. 2

U.S. Patent Aug. 25, 2020 Sheet 3 of 6 US 10,754,690 B2

Rules Registry 144
Data Event Rules Code Point Rules Other Rules
312 314 316

Data Event Rules 312
Event 410 Action 41
PU-620, gty > 10000 PU-624 +CPU(500%) + Memory (200%)
414 PU-614 -CPU(200%) 416
PU-624, Data = vig?g PU-624 +CPU(300%) + Memory (100%)

Code Point Rules 314

Event 510 Action 51

PU-620, Line 281 PU-624 +CPU(500%) + Memory (200%)

PU-624, Line 17 PU-624 +CPU(300%) + Memory (100%)

FIG. 5

U.S. Patent Aug. 25, 2020 Sheet 4 of 6 US 10,754,690 B2

Rules Registry
Define 144
Optimizing | __—"
Agent
145—"
Interprets
(512 Resource Controller
143
PUF—>
Notifies
Control
Allocation Of
618
Resources 110 Node
Node1 Node2 Node3 Noded4 |~ (8 places)
PU »H PU || PU PU PU
614—715-
Node5 | |yNode6 || | Node7 Nodes
PU PU > PU | PU Pul [N
620500/ s Py

FIG. 6

U.S. Patent Aug. 25, 2020 Sheet 5 of 6 US 10,754,690 B2

70

Monitor Processing Unit Events — 710

712

Code Point
Event?
Y
716
Analyze Data Handled By
Processing Unit
718
No Meets Event
Criteria?

v

Notifiy Resource Controller ~ — 720

!
(oo)
FIG. 7

U.S. Patent Aug. 25, 2020 Sheet 6 of 6 US 10,754,690 B2

Resource Controller (Start) f?o

y

Look Up Actions In Rules Registry
For Event

v

Determine Affected Processing 820
Units

v

Lookup Nodes Hosting Affected 830
Processing Units

v

Reallocate Resources On Nodes
. 840
Per Registry

v

Move Processing Units To A New 850
Node(s)

v
(o)
FIG. 8

—— 810

US 10,754,690 B2

1
RULE-BASED DYNAMIC RESOURCE
ADJUSTMENT FOR UPSTREAM AND
DOWNSTREAM PROCESSING UNITS IN
RESPONSE TO A PROCESSING UNIT
EVENT

BACKGROUND
1. Technical Field

The disclosure and claims herein generally relate to
computer process allocation and distribution on a multi-node
computer system, and more specifically relate to dynamic
resource adjustment of a distributed computer process on a
multi-node computer system.

2. Background Art

Supercomputers and other multi-node computer systems
continue to be developed to tackle sophisticated computing
jobs. One type of multi-node computer system is a massively
parallel computer system. A family of such massively par-
allel computers is being developed by International Business
Machines Corporation (IBM) under the name Blue Gene.
The Blue Gene/L system is a high density, scalable system
in which the current maximum number of compute nodes is
65,536. The Blue Gene/L. node consists of a single ASIC
(application specific integrated circuit) with 2 CPUs and
memory. The full computer is housed in 64 racks or cabinets
with 32 node boards in each rack.

Computer systems such as Blue Gene have a large number
of'nodes, each with its own processor and local memory. The
nodes are connected with several communication networks.
One communication network connects the nodes in a logical
tree network. In the logical tree network, the nodes are
connected to an input-output (I/O) node at the top of the tree.
In Blue Gene, there are 2 compute nodes per node card with
2 processors each. A node board holds 16 node cards and
each rack holds 32 node boards. A node board has slots to
hold 2 I/O cards that each have 2 I/O nodes.

A distributed process is a computer application or pro-
gram or portion of a computer program where one or more
portions of the distributed process are allocated to different
hardware resources. In a distributed process across many
nodes a traditional program can be thought of as an execu-
tion of “processing units” that are dispersed and executed
over multiple nodes. In this type of distributed environment,
one is often unaware of what node a given processing unit
is running. Processing units are often detached from one
another and may be unaware of where other processing units
are running. In this type of distributed environment, adjust-
ing priorities of processing units or adjusting compute
resources is not a simple task. Simply moving compute
resources around from node to node as a reaction to the
current needs or current job priorities is simply inadequate.
For example, in a distributed environment a piece of code or
a processing unit may be executed on behalf of many
different applications or jobs. In some cases, these process-
ing units will have higher priority than others but in many
cases they will not. Furthermore, an application may or may
not have a consistent priority throughout its execution. In
some cases, the priority of the application may be more
appropriately determined by the data that it is handling or
changes in the means and mechanisms needed to carry out
the entire job.

Without an efficient way to allocate resources to process-
ing units in a distributed computer system environment,

10

15

20

25

30

35

40

45

50

55

60

65

2

complex computer systems will continue to suffer from
reduced performance and increased power consumption.

BRIEF SUMMARY

The specification and claims herein are directed to
dynamically adjusting the resources available to a process-
ing unit of a distributed computer process executing on a
multi-node computer system. The resources for the process-
ing unit are adjusted based on the data other processing units
handle or the execution path of code in an upstream or
downstream processing unit in the distributed process or
application.

The description and examples herein are directed to a
massively parallel computer system such as the Blue Gene
architecture, but the claims herein expressly extend to other
parallel computer systems with multiple processors arranged
in a network structure.

The foregoing and other features and advantages will be
apparent from the following more particular description, and
as illustrated in the accompanying drawings.

BRIEF DESCRIPTION OF DRAWINGS

The disclosure will be described in conjunction with the
appended drawings, where like designations denote like
elements, and:

FIG. 1 is a block diagram of a massively parallel com-
puter system;

FIG. 2 is a block diagram of a compute node in a
massively parallel computer system;

FIG. 3 shows a block diagram of a sample rules registry;

FIG. 4 shows examples of data event rules stored in the
rules registry;

FIG. 5 shows examples of code point rules stored in the
rules registry;

FIG. 6 shows a block diagram to illustrate an example of
dynamic resource adjustment of a distributed computer
process on a multi-node computer system;

FIG. 7 is a method flow diagram of dynamic resource
adjustment of a distributed computer process on a multi-
node computer system; and

FIG. 8 is a method flow diagram that illustrates the
resource controller performing dynamic resource adjustment
of a distributed computer process on a multi-node computer
system.

DETAILED DESCRIPTION

The specification and claims herein are directed to
dynamically adjusting the resources available to a process-
ing unit of a distributed computer process executing on a
multi-node computer system. The resources for the process-
ing unit are adjusted based on the data other processing units
handle or the execution path of code in an upstream or
downstream processing unit in the distributed process or
application. The examples herein will be described with
respect to the Blue Gene/lL massively parallel computer
developed by International Business Machines Corporation
(IBM).

FIG. 1 shows a block diagram that represents a massively
parallel computer system 100 such as the Blue Gene/LL
computer system. The Blue Gene/L. system is a scalable
system in which the maximum number of compute nodes is
65,536. Each node 110 has an application specific integrated
circuit (ASIC) 112, also called a Blue Gene/L. compute chip
112. The compute chip incorporates two processors or

US 10,754,690 B2

3

central processor units (CPUs) and is mounted on a node
daughter card 114. The node also typically has 512 mega-
bytes of local memory (not shown). A node board 120
accommodates 32 node daughter cards 114 each having a
node 110. Thus, each node board has 32 nodes, with 2
processors for each node, and the associated memory for
each processor. Arack 130 is a housing that contains 32 node
boards 120. Each of the node boards 120 connect into a
midplane printed circuit board with a midplane connector
134. The midplane circuit board is inside the rack and not
shown in FIG. 1. The midplane 132 includes all the node
boards connected to the midplane printed circuit board and
the nodes in the node boards. The full Blue Gene/L computer
system would be housed in 64 racks 130 or cabinets with 32
node boards 120 in each. The full system would then have
65,536 nodes and 131,072 CPUs (64 racksx32 node boardsx
32 nodesx2 CPUs).

The Blue Gene/l. computer system structure can be
described as a compute node core with an [/O node surface,
where each 1/0 node has an 1/O processor connected to the
service node 140. The service node 140 is connected to the
nodes thorough a control system network 150 and a func-
tional network 152. The functional network is a gigabit
Ethernet network connected to an I/O processor (or Blue
Gene/L link chip) in the I/O node 170 located on a node
board 120 that handles communication from the service
node 160 to a number of nodes. The Blue Gene/L system has
one or more I/O nodes 170 connected to the node board 120.
The /O processors can be configured to communicate with
8, 32 or 64 nodes. The service node 140 uses the control
system network 150 to control connectivity by communi-
cating to link cards on the compute nodes. The connections
to the /O nodes are similar to the connections to the
compute node except the I/O nodes are not connected to the
torus network that interconnects the compute nodes.

Again referring to FIG. 1, the computer system 100
includes a service node 140 that handles the loading of the
nodes with software and controls the operation of the whole
system. The service node 140 is typically a mini computer
system such as an IBM PSERIES server running Linux with
a control console (not shown). The service node 140 is
connected to the racks 130 of compute nodes 110 with a
control system network 150 and a functional network 152.
The control system network provides control, test, and
bring-up infrastructure for the Blue Gene/L. system. The
control system network 150 includes various network inter-
faces that provide the necessary communication for the
massively parallel computer system. The service node 140 is
also connected to one or more front-end computers 148.

The service node 140 communicates through the control
system network 150 dedicated to system management. The
control system network 150 includes a private 100-Mb/s
Ethernet connected to an Ido chip 180 located on a node
board 120 that handles communication from the service
node 160 to a number of nodes. This network is sometime
referred to as the JTAG network since it communicates using
the JTAG protocol. All control, test, and bring-up of the
compute nodes 110 on the node board 120 is governed
through the JTAG port communicating with the service
node.

The service node includes a database 138 (DB2) for local
data storage. The service node further includes a control
system 142 to control the operation of the multi-node
computer system 100. The service node 140 also includes a
resource controller 143 for allocating and scheduling work
processes and data placement on the compute nodes. The

10

15

20

25

30

35

40

45

50

55

60

65

4

resource controller 143 includes a rules registry 144 and an
optimizing agent 145. These are described further below.

FIG. 2 illustrates a block diagram of an exemplary com-
pute node 110 as introduced above. FIG. 2 also represents a
block diagram for an I/O node, which has the same overall
structure as the compute node. A notable difference between
the compute node and the I/O nodes is that the Ethernet
adapter 226 is connected to the control system on the /O
node but is not used in the compute node. The compute node
110 of FIG. 2 includes a plurality of computer processors
210, each with an arithmetic logic unit (ALU) 211 and a
memory management unit (MMU) 212. The processors 210
are connected to random access memory (RAM) 214
through a high-speed memory bus 215. Also connected to
the high-speed memory bus 215 is a bus adapter 217. The
bus adapter 217 connects to an extension bus 218 that
connects to other components of the compute node.

Again referring to FIG. 2, stored in RAM 214 is a class
routing table 221, a processing unit (or application) 222 that
includes an event detection mechanism 223, and an operat-
ing system kernel 224. The class routing table 221 stores
data for routing data packets on the collective network or
tree network as described more fully below. The processing
unit 222 is a user software application, process or job that is
loaded on the node by the control system to perform a
designated task. The application program typically runs in
parallel with application programs running on adjacent
nodes. As used herein, processing unit means an application
or job or a portion of the application or job executing in one
or more nodes of the system. The processing unit includes an
event detection mechanism 223. The event detection mecha-
nism is used to monitor events stored in a rules registry as
described below. The operating system kernel 224 is a
module of computer program instructions and routines for
an application program to access to other resources of the
compute node. The quantity and complexity of tasks to be
performed by an operating system on a compute node in a
massively parallel computer are typically smaller and less
complex than those of an operating system on a typical stand
alone computer. The operating system may therefore be
quite lightweight by comparison with operating systems of
general purpose computers, a pared down version as it were,
or an operating system developed specifically for operations
on a particular massively parallel computer.

The compute node 110 of FIG. 2 includes several com-
munications adapters 226, 228, 230, 232 for implementing
data communications with other nodes of a massively par-
allel computer. Such data communications may be carried
out serially through RS-232 connections, through external
buses such as USB, through data communications networks
such as IP networks, and in other ways as will occur to those
of skill in the art. Communications adapters implement the
hardware level of data communications through which one
computer sends data communications to another computer,
directly or through a network.

The data communications adapters in the example of FIG.
2 include a Gigabit Ethernet adapter 226 that couples
example I/O node 110 for data communications to a Gigabit
Ethernet on the Functional network 152. In Blue Gene, this
communication link is only used on I/O nodes and is not
connected on the compute nodes. Gigabit Ethernet is a
network transmission standard, defined in the IEEE 802.3
standard, that provides a data rate of 1 billion bits per second
(one gigabit). Gigabit Ethernet is a variant of Ethernet that
operates over multimode fiber optic cable, single mode fiber
optic cable, or unshielded twisted pair.

US 10,754,690 B2

5

The data communications adapters in the example of FIG.
2 include a JTAG Slave circuit 228 that couples the compute
node 110 for data communications to a JTAG Master circuit
over a JTAG network or control system network 150. JTAG
is the usual name used for the IEEE 1149.1 standard entitled
Standard Test Access Port and Boundary-Scan Architecture
for test access ports used for testing printed circuit boards
using boundary scan. JTAG boundary scans through JTAG
Slave 228 may efficiently configure processor registers and
memory in compute node 110.

The data communications adapters in the example of FIG.
2 include a Point To Point Network Adapter 230 that couples
the compute node 110 for data communications to a network
238. In Blue Gene, the Point To Point Network is typically
configured as a three-dimensional torus or mesh. Point To
Point Adapter 230 provides data communications in six
directions on three communications axes, X, y, and z,
through six bidirectional links 238: x+, X—, y+, y—, Z+, and
z—. The torus network logically connects the compute nodes
in a lattice like structure that allows each compute node 110
to communicate with its closest 6 neighbors.

The data communications adapters in the example of FIG.
2 include a collective network or tree network adapter 232
that couples the compute node 110 for data communications
to a network 240 configured as a binary tree. This network
is also sometimes referred to as the collective network.
Collective network adapter 232 provides data communica-
tions through three bidirectional links: two links to children
nodes and one link to a parent node (not shown). The
collective network adapter 232 of each node has additional
hardware to support operations on the collective network.

Again referring to FIG. 2, the collective network 240
extends over the compute nodes of the entire Blue Gene
machine, allowing data to be sent from any node to all others
(broadcast), or a subset of nodes. Each node typically has
three links, with one or two links to a child node and a third
connected to a parent node. Arithmetic and logical hardware
is built into the collective network to support integer reduc-
tion operations including min, max, sum, bitwise logical
OR, bitwise logical AND, and bitwise logical XOR. The
collective network is also used for global broadcast of data,
rather than transmitting it around in rings on the torus
network.

The specification and claims herein are directed to
dynamically adjusting the resources available to a process-
ing unit. The resource controller 143 (FIG. 1) adjusts the
resources for a processing unit based on the data another
processing unit handles or the code that executes in an
upstream or downstream processing unit in the distributed
process or application. Data that is being consumed or
produced by a given processing unit is referred herein as
data of the processing unit or data handled by the processing
unit. The processing unit data is analyzed to be used to signal
a shift in resources of upstream and downstream processing
units. Alternatively, the resource controller dynamically
adjusts compute resources based off reaching specific execu-
tion points in a processing unit. In this scenario, a processing
unit reaching a specific point in execution would trigger the
resource controller to automate the movement of resources.
This could be advantageous where a processing unit nor-
mally takes a long time to run a process or method that has
downstream repercussions. For example, if processing unit
A takes a long time for a process B, the resource controller
could affect job workflow of downstream compute nodes by
slowing down processing units upstream of processing unit
A and likewise adjust processing units downstream. The
resource controller can adjust the resources downstream

10

15

20

25

30

35

40

45

50

55

60

65

6

because they will not need to do as much subsequent
processing right away, and it might adjust resources
upstream to slow down future work it might do, both
resulting in more resources available to other jobs or other
parts of the application. This type of adjusting of resources
could free up resources for other running processing units on
different nodes.

As described above, the resource controller 143 (FIG. 1)
adjusts the resources for a processing unit based on the data
another processing unit handles or the code that executes in
an upstream or downstream processing unit. As used herein,
compute resources means hardware resources such as cen-
tral processing unit (CPU) resources, memory, network
resource, or virtual allocation of CPU, memory and network
resources. Compute resources could also be software
resources available to a node. The resource controller adjusts
resources to a processing unit in different ways depending on
the system architecture. The resource controller can adjust
the compute resources by moving other processes on the
same node to other nodes to free up the node’s resources for
the remaining processing unit. In a distributed computing
system with virtual resources, the resource controller can
dedicate more system resources by increasing the virtual
allocation of CPU, memory or network bandwidth as
described in the example below.

FIG. 3 shows a block diagram that represents one specific
implementation of the rules registry 144 introduced in FIG.
1 above. The rules registry 144 includes several different
types of rules that are used by the resource controller to
determine how to handle certain events to dynamically
adjust computer resources of a distributed computer process
on a multi-node computer system. The rules registry 144
shown in FIG. 3 includes data event rules 312, code point
rules 314 and other rules 316. The data event rules 312 and
code point event rules 314 are described further below. The
other rules 316 represent other possible rules that could be
used to allocate resources as described and claimed herein.
The events in the rules registry could be detected by various
means. These various means include an event detection
mechanism 223 as shown in FIG. 2. For example, code point
events could be detected by the event detection mechanism
like a debugger that tracks the execution of the code.
Alternatively, the event detection mechanism 223 could be
code that is generated and placed at the code point that
notifies the resource controller of the detected event. Thus a
user or software tool identifies a code point associated with
arule, and generates code for the event detection mechanism
that is inserted into the executable of the processing unit
(PU) at the appropriate code point. Similarly, for input-
driven rules, the event detection mechanism could monitor
data flowing in and out of the processing unit. Alternatively,
the processing units typically function within an execution
control system or framework which provides each PU with
the ability to know when data has been sent to it. In this case
the event detection mechanism could be additional code that
is generated and placed into the executable of any process-
ing unit that had an input rule defined. This code would be
placed at the point of the PU that handles data input and
output to detect the occurrence of the data event.

FIG. 4 illustrates some examples of data event rules 312.
The data event rules have an event 410 and a corresponding
action 412. Each event preferably specifies a processing unit
identification (ID) and a condition that pertains to data. Each
action 412 preferably specifies a node ID and an action to
adjust compute resources, such as increase CPU or memory
allocation. For example, the first example event 414 is for
processing unit number 620 and the condition is a data

US 10,754,690 B2

7

quantity of greater than 10,000 records. The action 416 for
this data event rule increases CPU by 500% and memory by
200% on processing unit 624, and decreases CPU by 200%
on processing unit 614. The second event 418 is for a
specific data type. Here an event is detected when the type
of data handled by processing unit 624 is video (or a specific
type of video). Similarly, FIG. 5 illustrates code point rules
314. Code point rules also have an event 510 and an action
512 that relate to a specific processing unit. The data in
FIGS. 4 and 5 will be used in the example described with
reference to FIG. 6.

An example will now be described with reference to FIG.
6. The resource controller 143 interprets rules in the rules
registry 144 to determine how to dynamically control the
allocation of compute resources such as for processing units
on the compute nodes 110. The rules registry 144 has a
number of rules as described above. These rules may be set
by a user 610 or by an optimizing agent 145. The optimizing
agent 145 is software that can monitor the performance of
the resource controller and create rules similar to the rules
described above. Processing unit 612 is shown in FIG. 6 to
represent that the resource controller 143 is notified by
processing units of events according to the rules registry
144. When the resource controller receives notification of a
rules event, it controls allocation of compute resources as
dictated by the rule action associated with the event as
described above. Copies of the rules registry or portions of
the rules registry may also be located in RAM 214 on a node
110 as shown in FIG. 2.

Again referring to the Example of FIG. 6, a distributed
application is represented by a series of processing units
(including 614, 620, 624) that are connected by arrows 618
that represent a process flow or a flow of data. The arrows
show the process flow as a path from one processing unit to
the next that make up the distributed process. The first
processing unit 614 in the process flow is located in Nodel
616. The process then continues as indicated by the arrow
618 to the other processing units. In our example, we assume
that processing unit 620 encounters an event 414 (FIG. 4)
and notifies the resource controller 143. The resource con-
troller takes the actions 416 (FIG. 4) as indicated in the rules
registry to increase the CPU by 500% and increase memory
by 200% on the downstream processing unit 624, and
decrease the CPU by 200% on upstream processing unit 614.
A downstream processing unit (PU) is a PU that follows
another PU in the process flow or data flow, and an upstream
PU is a PU that is earlier in the process flow or data flow.

FIG. 7 shows a method 700 for dynamic resource adjust-
ment of a distributed computer process on a multi-node
computer system. The steps in method 700 are preferably
performed by a resource scheduler 143 in the service node
140. The first step is to monitor processing unit events (step
710). If a detected event is a data event (step 712=yes), then
analyze the data handled by the processing unit (step 716)
and determine if the data meets the event criteria (step 718).
If the data does not meet the event criteria (step 718=no)
then return to step 710. If the data does meet the event
criteria (step 718=yes) then notify the resource controller of
the event (step 720). If the detected event is not a data event
(step 712=no) then check for a code event (step 714). If the
detected event is not a code point event (step 714=no), then
return to step 710. If the detected event is a code point event
(step 714=yes), then notify the resource controller of the
event (step 720). The method is then done.

FIG. 8 shows a method 800 performing dynamic resource
adjustment of a distributed computer process on a multi-
node computer system. The steps in method 800 are pref-

10

15

20

25

30

35

40

45

50

55

60

65

8

erably performed by a resource scheduler 143 in the service
node 140 when notified by a resource controller of a detected
event. The first step is to look up the actions in the resource
registry for the event (step 810). Next, determine the affected
processing units (step 820). Next, lookup the nodes hosting
the affected processing units (step 830) and reallocate the
resources on the nodes of the processing units per the actions
indicated in the rules registry (step 840). Where necessary,
move processing units to a new node to reallocate the
resources for a processing unit (step 850). The method is
then done.

An apparatus and method is described herein directed to
dynamically adjusting the resources available to a process-
ing unit of a distributed computer process executing on a
multi-node computer system. One skilled in the art will
appreciate that many variations are possible within the scope
of the claims. Thus, while the disclosure has been particu-
larly shown and described above, it will be understood by
those skilled in the art that these and other changes in form
and details may be made therein without departing from the
spirit and scope of the claims.

The invention claimed is:

1. A multi-node computer system comprising:

a plurality of compute nodes having compute resources;

a plurality of processing units that comprise a distributed
process executing on the plurality of compute nodes
having compute resources;

a rules registry with code point rules and data event rules
that each comprise an action and an event, where a first
action for a code point event indicates an adjustment of
compute resources available to a first processing unit
upon detection of the code point event on a second
processing unit, wherein the second processing unit is
located on a compute node upstream from the first
processing unit;

an event detection mechanism comprising a debugger
executing on the compute node upstream from the first
processing unit that detects the occurrence of the code
point event in the rules registry; and

a resource controller executing on a service node that
dynamically adjusts the compute resources available to
the first processing unit according to the action listed in
the rules registry corresponding to the detected code
point event upon detection of the code point event on
the second processing unit, wherein upon detection of
the code point event the resource controller dynami-
cally increases compute resources available to the first
processing unit.

2. The computer system of claim 1 wherein the compute
resources that are dynamically adjusted are selected from the
group consisting of: central processing unit, memory and
network resources.

3. The computer system of claim 2 wherein upon detec-
tion of a data event for a data event rule, the resource
controller dynamically decreases compute resources avail-
able to a third processing unit located upstream from the
second processing unit.

4. The computer system of claim 1 wherein the second
processing unit is upstream from the first processing unit in
the distributed process.

5. The computer system of claim 1 wherein the rules
registry lists actions and events that include the following:
increase processing unit resources upon detection of a
quantity of input data; decrease processing unit resources
upon detection of a quantity of input data; increase process-
ing unit resources upon detection of a specific type of data;
decrease processing unit resources upon detection of a

US 10,754,690 B2

9

specific type of data; increase computer processing unit
resources upon detection of a code point in a processing unit;
and decrease computer processing unit resources upon
detection of a code point in a processing unit.
6. The computer system of claim 1 wherein the event
detection mechanism comprises code placed in at least one
processing unit of the plurality of processing units to detect
an associated event in the rules registry.
7. A computer-implemented method for allocating com-
puter resources on a multi-node computer system, the
method comprising the steps of:
monitoring a first processing unit and a second processing
unit for events with an event detection mechanism
comprising a debugger executing on a compute node;

analyzing code of the second processing unit to determine
if a code point event meets a code point rule in a rules
registry, wherein the rules registry includes the code
point rule comprising an action with the code point
event, where the action for the code point event indi-
cates an adjustment of compute resources available to
the first processing unit upon detection of the code
point event on the second processing unit, wherein the
second processing unit is located on a compute node
upstream from the first processing unit;

notifying a resource controller executing on a service

node when the code point event occurs; and

the resource controller reallocating compute resources for

the first processing unit located downstream from the
second processing unit by increasing compute
resources for the first processing unit when the code
point event occurs.

15

20

25

10

8. The computer-implemented method of claim 7 wherein
the step of reallocating compute resources comprises the
steps of:

looking up an action in the rules registry for a detected

event;

determining an affected processing unit from the rules

registry;

looking up a node hosting the affected processing unit;

and

reallocating resources on the node hosting the affected

processing unit per actions indicated in the rules reg-
istry.

9. The computer-implemented method of claim 8 further
comprising the step of moving processing units to a new
node to adjust compute resources on the node hosting the
affected processing unit.

10. The computer-implemented method of claim 7
wherein the compute resources that are reallocated are
selected from the group consisting of: computer processing
unit, memory and network resources.

11. The computer-implemented method of claim 7
wherein upon detection of an associated data point event for
a data event rule, the resource controller dynamically
decreases compute resources for a third processing unit
located upstream from the second processing unit.

12. The computer-implemented method of claim 7
wherein the event detection mechanism comprises code
placed in at least one processing unit to detect an associated
event in the rules registry.

#* #* #* #* #*

