

(19) DANMARK

(10) DK/EP 2135087 T3

(12)

Oversættelse af
europæisk patent

Patent- og
Varemærkestyrelsen

(51) Int.Cl.: **G 01 N 33/74 (2006.01)** **C 07 K 16/26 (2006.01)** **G 01 N 33/577 (2006.01)**
G 01 N 33/68 (2006.01)

(45) Oversættelsen bekendtgjort den: **2016-11-14**

(80) Dato for Den Europæiske Patentmyndigheds
bekendtgørelse om meddelelse af patentet: **2016-09-14**

(86) Europæisk ansøgning nr.: **08736833.8**

(86) Europæisk indleveringsdag: **2008-04-14**

(87) Den europæiske ansøgnings publiceringsdag: **2009-12-23**

(86) International ansøgning nr.: **FI2008050184**

(87) Internationalt publikationsnr.: **WO2008125733**

(30) Prioritet: **2007-04-13 US 911603 P** **2007-04-13 FI 20075251**

(84) Designerede stater: **AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC**
MT NL NO PL PT RO SE SI SK TR

(73) Patenthaver: **Hytest Ltd., Joukahaisenkatu 6, 20520 Turku, Finland**

(72) Opfinder: **TAMM, Natalia, N., Kosmodamianskaya nab. st. 4/22 B, r. 63, Moscow, 115035, Russiske Føderation**
FILATOV, Vladimir, L., Akademika Kapici st. 30, r. 121, Moscow, 117647, Russiske Føderation
KOLOSOVA, Olga, V., Ostrovitianova 9/4, app. 355, Moscow, 117198, Russiske Føderation
KATRUKHA, Alexey, G., Urheilutie 20, FI-21620 Kuusisto, Finland

(74) Fuldmægtig i Danmark: **Plougmann Vingtoft A/S, Rued Langgaards Vej 8, 2300 København S, Danmark**

(54) Benævnelse: **IMMUNOASSAY TIL KVANTIFICERING AF ET USTABILT ANTIGEN VALGT FRA BNP OG PROBNP**

(56) Fremdragne publikationer:
EP-A1- 1 016 867
EP-A1- 1 378 242
WO-A1-2007/056507
WO-A2-2006/088700
WO-A2-2007/138163
KARL J ET AL: "DEVELOPMENT OF A NOVEL, N-TERMINAL-PROBNP (NT-PROBNP) ASSAY WITH A LOW
DETECTION LIMIT", SCANDINAVIAN JOURNAL OF CLINICAL AND LABORATORY
INVESTIGATION.SUPPLEMENT, BLACKWELL SCIENTIFIC PUBLICATIONS, OXFORD, GB, vol. 59, no. SUPPL.
230, 1 January 1999 (1999-01-01), pages 177-181, XP009045882, ISSN: 0085-591X
TERAMURA YUJI ET AL: "Surface plasmon resonance-based highly sensitive immunosensing for brain
natriuretic peptide using nanobeads for signal amplification.", ANALYTICAL BIOCHEMISTRY 15 OCT 2006
LNUKD- PUBMED:16942741, vol. 357, no. 2, 15 October 2006 (2006-10-15), pages 208-215, XP002619051, ISSN:
0003-2697
ALA-KOPSALA MINNA ET AL: "Molecular heterogeneity has a major impact on the measurement of circulating
N-terminal fragments of A- and B-type natriuretic peptides.", CLINICAL CHEMISTRY SEP 2004 LNUKD-

Fortsættes ...

PUBMED:15265819, vol. 50, no. 9, September 2004 (2004-09), pages 1576-1588, XP002619052, ISSN: 0009-9147
MATSUURA HIROAKI ET AL: "Electrochemical enzyme immunoassay of a peptide hormone at picomolar levels.", ANALYTICAL CHEMISTRY 1 JUL 2005 LNKD- PUBMED:15987132, vol. 77, no. 13, 1 July 2005 (2005-07-01), pages 4235-4240, XP002619053, ISSN: 0003-2700
COLLINSON P O ET AL: "Analytical performance of the N terminal pro B type natriuretic peptide (NT-proBNP) assay on the Elecsys 1010 and 2010 analysers.", EUROPEAN JOURNAL OF HEART FAILURE : JOURNAL OF THE WORKING GROUP ON HEART FAILURE OF THE EUROPEAN SOCIETY OF CARDIOLOGY 15 MAR 2004 LNKD- PUBMED:14987590, vol. 6, no. 3, 15 March 2004 (2004-03-15), pages 365-368, XP002619054, ISSN: 1388-9842
SHIMIZU HIROYUKI ET AL: "Characterization of molecular forms of probrain natriuretic peptide in human plasma.", CLINICA CHIMICA ACTA; INTERNATIONAL JOURNAL OF CLINICAL CHEMISTRY AUG 2003 LNKD- PUBMED:12867297, vol. 334, no. 1-2, August 2003 (2003-08), pages 233-239, XP002619055, ISSN: 0009-8981
HAMMERER-LERCHER A. ET AL.: 'Natriuretic Peptides as Markers of Mild Forms of Left Ventricular Dysfunction: Effects of Assays on Diagnostic Performance of Markers' CLINICAL CHEMISTRY vol. 50, no. 7, 2004, pages 1174 - 1183, XP003023510
SEFERIAN R.K. ET AL.: 'The Brain Natriuretic Peptide (BNP) Precursor Is the Major Immunoreactive Form of BNP in Patients with Heart Failure' CLINICAL CHEMISTRY vol. 53, no. 5, 2007, pages 866 - 873, XP001536441
NAGATA S. ET AL.: 'A New Type Sandwich Immunoassay for Microcystin: Production of Monoclonal Antibodies Specific to the Immune Complex Formed by Microcystin and an Anti-microcystin Monoclonal Antibody' NATURAL TOXINS vol. 7, 1999, pages 49 - 55, XP003023511
VOLLAND H. ET AL.: 'Recent developments for SPIE-AI, a new sandwich immunoassay format for very small molecules' JOURNAL OF PHARMACEUTICAL AND BIOMEDICAL ANALYSIS vol. 34, 2004, pages 737 - 752, XP003023512
TAMM NATALIA N ET AL: "Measurement of B-type natriuretic peptide by two assays utilizing antibodies with different epitope specificity.", CLINICAL BIOCHEMISTRY FEB 2011, vol. 44, no. 2-3, February 2011 (2011-02), pages 257-259, ISSN: 1873-2933

DESCRIPTION

Field of the Invention

[0001] The present invention relates to immunoassays, and provides an immunoassay method for detection of unstable antigens. The method is specifically suitable for detection of BNP, proBNP and fragments thereof.

Background of the Invention

[0002] BNP and proBNP are reliable markers of heart failure (HF) widely used in clinical practice. Several types of sandwich immunoassays (conventional assays) utilizing two mono- or polyclonal antibodies, specific to different epitopes of BNP or BNP-fragment of proBNP molecule are described in literature.

[0003] BNP molecule is known as an extremely unstable molecule rapidly losing its immunological activity in water solutions. This loss of activity is usually associated with proteolytic degradation of the peptide. Sandwich immunoassays commonly used for qualitative or quantitative antigen immunodetection utilize two or more antibodies specific to two or more different epitopes. The longer is the distance between the epitopes, the higher is the probability that sites of proteolysis would be located between the epitopes of the antibodies, thus increasing the sensitivity of the assay to proteolytic degradation of the antigen. And *vice versa*, the closer are the epitopes to each other, the smaller is the probability of the proteolytic cleavage of the molecule between the epitopes.

[0004] Immunoassay methods for very small molecules have been described, including the application of so called anti-metatype antibodies. Such methods are disclosed, e.g. for detecting digoxin (Self et al., 1994, Clin. Chem. 40:2035-2041), and angiotensin II (Towbin et al., 1995, J. Immunol. Meth. 181:167-176).

[0005] However, it is not an easy task to apply this type of method to different analytes, since very specific monoclonal antibodies are required in such a method.

[0006] In related art various scientific, and also patent publications exist, disclosing NT-proBNP, proBNP and BNP antibodies and immunoassays.

[0007] Karl et al. (Scand. J. Clin. Lab. Invest., 1999, vol. 59, suppl. 230, p. 177-181) disclose a highly sensitive and specific immunoassay using two antibodies, the first one being specific to the NT-proBNP peptide 1-21 and the second specific to the NT-proBNP peptide 30-38.

[0008] Teramura et al. (Anal. Biochem., 2006, vol 357, p. 208-215) disclose the detection of BNP using a sandwich type immunoassay and using a primary and secondary monoclonal antibody, recognizing BNP amino acids 30-32 and 14-21.

[0009] Ala-Kopsala et al. (Clin. Chem., 2004, vol. 50, p. 1576-1588) disclose fifteen synthetic peptides, spanning the sequence of NT-proBNP, and used as epitopes to raise antibodies.

[0010] Matsuura et al. (Anal. Chem., 2005, vol. 77, p. 4235-4240) disclose an enzyme immunoassay for measurement of BNP, using antibodies directed to the whole BNP sequence.

[0011] Collinson et al., (European J. of Heart Failure, 2004, vol. 6, p. 365-368) describes an immunoassay method for determining NT-proBNP using polyclonal antibodies directed against residues 1-21 and 39-50 of NT-proBNP.

[0012] Shimizu et al., (Clin. Chim. Acta, 2003, vol. 334, p. 233-239) investigate by radioimmunoassay the forms of proBNP in blood, using antibodies against four synthetic proBNP peptides.

[0013] WO 2006/088700 discloses human ring-specific BNP antibodies and immunoassays using said antibodies.

[0014] EP 1 016 867 discloses an immunoassay for determining BNP, using antibodies, which are directed to the C-terminal and the N-terminal fragment of BNP, as well as the ring structure of BNP.

[0015] WO 2007/056507 and WO 2007/138163 were published after the priority date of the present application. Both of them disclose antibodies that are specific for the N-terminal sequence of BNP.

Description of the Invention

[0016] Here we are describing an immunoassay for quantification of BNP and proBNP in human blood. We have named the assay as "unequal sandwich". This assay is applicable to immunodetection of all unstable antigens.

[0017] The immunoassay described in the present application utilizes two different monoclonal antibodies. In detection of BNP or proBNP the first monoclonal antibody (MAb 24C5) is specific to the region (or a part of this region) comprising amino acid residues 11-22 ($_{11}\text{FGRKMDRISSSS}_{22}$) of BNP (which correspond to amino acid residues 87-98 of proBNP) (Fig. 1). The second antibody (namely MAbs Ab-BNP2 and Ab-BNP4), labeled with a signal-producing component, recognizes an immune complex of the first antibody with antigen (BNP, proBNP, or a fragment thereof comprising amino acid residues $_{11}\text{FGRKMDRISSSS}_{22}$ or a part of this sequence comprising at least three amino acid residues of said sequence). Second antibody does not recognize (or recognizes with very low affinity - 10-fold or less) either free antigen or its fragments, or free MAb 24C5. Thus the primary immune complex comprising MAb 24C5 and BNP (or proBNP, or a fragment thereof) serves as an antigen for the second antibody (MAbs Ab-BNP2 and Ab-BNP4).

[0018] Consequently, the general object of the present invention is an immunoassay method for detecting an unstable antigen in a sample, comprising

1. (a) contacting an antigen of interest with a first antibody specific to a first epitope of the antigen molecule, to obtain a first order immune complex,
2. (b) contacting the first order immune complex obtained at step (a) with a second antibody, which recognizes said first order immune complex and is specific to a second epitope formed by the antigen of interest and the first antibody, to obtain a second order immune complex, wherein said second antibody is unable to recognize free antigen or a fragment thereof or free first antibody, or recognizes them with significantly lower affinity - 10-fold or less - than they recognize the first order immune complex, and
3. (c) detecting the second order immune complex formation.

[0019] A specific object of the invention is an immunoassay method for detecting an antigen selected from the group consisting of BNP, proBNP and a fragment thereof in a sample, comprising

1. (a) contacting the antigen with a first antibody specific to the fragment $_{11}\text{FGRKMDRISSSS}_{22}$ of BNP molecule or to a part of this peptide comprising at least three amino acid residues of said sequence, to obtain a first order immune complex,
2. (b) contacting the first order immune complex obtained at step (a) with a second antibody recognizing said first order immune complex, to obtain a second order immune complex, wherein said second antibody is unable to recognize free BNP, proBNP or a fragment thereof or free first antibody, or recognizes them with significantly lower affinity - 10-fold or less - than it recognizes the first order immune complex, and
3. (c) detecting the second order immune complex formation.

[0020] We have succeeded in producing specific monoclonal antibodies applicable in the method of the invention. These antibodies are specific objects of the present invention.

[0021] Unequal sandwich described herein demonstrates extraordinary insusceptibility to proteolytic degradation of the antigen in comparison with the assays utilizing antibodies specific to distantly located epitopes.

[0022] Also such approach could be useful in the cases where the assay is developed for immunodetection of the antigen which is similar to one or more other antigens; has numerous different epitopes on its surface, but has only one (or more, but very limited number) of unique epitopes, that distinguishes that particular antigen from all others.

Brief Description of the Drawings

[0023]

Fig. 1. BNP and pro BNP structures and epitope specificity of MAb 24C5.

MAb 24C5 recognizes fragment of BNP molecule comprising amino acid residues 11-22 and proBNP fragment consisting of amino acid residues 87-98 (marked by dark).

Fig. 2A, 2B and 2C. Antibodies Ab-BNP2 and Ab-BNP4 do not recognize either BNP or proBNP that are not complexed with MAb 24C5.

Eu-labelled MAbs 24C5, Ab-BNP2, Ab-BNP4 (200 ng/well) were incubated in plates coated with:

1. A. BNP 50 ng/well
2. B. proBNP 100 ng/well
3. C. polyclonal anti-BNP antibodies (2 µg/well) preincubated with BNP (0.5 ng/well)

Fig. 3. Antibodies Ab-BNP2 and Ab-BNP4 can recognize immune complex of BNP (or Peptide 11-22) with MAb 24C5

Three-step assay protocol:

First step: plates were precoated with capture MAb 24C5

Second step: After washing the plates were incubated with antigen (BNP or Peptide 11-22);

Third step: After washing the plates were incubated with detection (Eu^{3+} -labeled) antibodies (Ab-BNP2, Ab-BNP4 or 57H3).

After washing enhancement solution was added and the signal was measured.

Fig. 4. Antibodies Ab-BNP2 and Ab-BNP4 can recognize proBNP, which forms immune complex with MAb 24C5

Three-step assay protocol:

First step: Plates were precoated with capture MAb 24C5

Second step: After washing the plates were incubated with proBNP (5 ng/ml)

Third step: After washing the plates were incubated with detection antibodies (Ab-BNP2, Ab-BNP4 or 57H3).

After washing enhancement solution was added and the signal was measured.

Fig. 5. Stability of BNP in normal human plasma.

Synthetic BNP was spiked into pooled normal human plasma (2 ng/ml), incubated at +4°C for different periods of time. Immunological activity was tested in three different assays - one conventional and two unequal sandwiches.

Fig. 6. BNP/proBNP measurements in blood of patients with HF and healthy donors. Plasma samples of 6 patients with heart failure (HF 1 - HF 6) and plasma samples of healthy donors (NP1-NP4) were tested in three assays. Synthetic BNP (Bachem) was used as a calibrator in all assays.

Fig. 7A, 7B and 7C. Calibration curves for two unequal sandwiches (24C5 - Ab-BNP2, 24C5 - Ab-BNP4) and one conventional assay (50E1 - 24C5-Eu). Antigen: synthetic BNP (Bachem).

Experimental

[0024] Remarks: Antibodies labeled with stable Eu-chelate were used in all experiments as detection antibodies. The monoclonal antibodies 24C5, Ab-BNP2, Ab-BNP4, 57H3 and 50E1 used in the experiments are available from Hytest Ltd, Turku, Finland.

Example 1. Antibodies Ab-BNP2 and Ab-BNP4 do not recognize either BNP or proBNP that are not complexed with MAb 24C5 (Fig. 2)

[0025] In the experiment presented in the Fig. 2A and Fig. 2B antigens (BNP and proBNP, respectively) were used for plate coating and Eu-labeled antibodies were tested with the antigen in direct immunoassay. Antibody 24C5 recognizes both forms of

the antigen, whereas MAbs Ab-BNP2 and Ab-BNP4 give no response (signal comparable with background) with any of the two antigens.

[0026] In the experiment presented in Fig. 2C the plates were coated with polyclonal antibodies specific to different epitopes on BNP molecule. On the second step the plates were incubated with BNP and then with Eu-labeled antibodies. Such approach helps to obtain variable orientation of the antigen against plate surface, insuring that orientation of the molecule on the plate surface does not have influence on the experimental results. In this experiment the same results as described above were obtained: MAbs Ab-BNP2 and Ab-BNP4 were not able to recognize the antigen, which is not complexed with MAb 24C5.

Example 2. Antibodies Ab-BNP2 and Ab-BNP4 can recognize BNP and Peptide 11-22, that are forming immune complex with MAb 24C5 (Fig. 3)

[0027] MAb 24C5 is specific to the fragment 11-22 of BNP molecule or to the corresponding region 87-98 of proBNP. To demonstrate that immune complex 24C5 - BNP and 24C5 - peptide 11-22 could be recognized by MAbs Ab-BNP2 and Ab-BNP4 we used MAb 24C5 for plate coating, then incubated the plates with BNP or synthetic peptide corresponding to amino acids 11-22 of BNP sequence (Peptide 11-22). After the immune complex between MAb 24C5 and antigens was formed, the plates were incubated with Eu-labeled antibodies Ab-BNP2, Ab-BNP4 and 57H3, specific to the region 26-32 of the BNP molecule.

[0028] Unequal sandwich recognizes BNP and the peptide almost with the same efficiency. Assay utilizing antibodies 24C5 (coating) - 57H3-Eu does not recognize Peptide 11-22 (signal comparable with the background).

Example 3. Antibodies Ab-BNP2 and Ab-BNP4 can recognize proBNP, which forms immune complex with MAb 24C5 (Fig. 4)

[0029] Unequal sandwich recognizes proBNP with the same efficiency as a conventional assay. We used MAb 24C5 for plate coating and then incubated plates firstly with recombinant proBNP (5 ng/ml) and secondly with Eu-labeled antibodies Ab-BNP2, Ab-BNP4 and 57H3 specific to the region 26-32 of BNP molecule. The signals obtained in the unequal sandwich and conventional immunoassays are comparable. We concluded that new assays could be used for quantitative immunodetection of proBNP.

Example 4. Apparent stability of the antigen (Fig. 5)

[0030] Synthetic BNP (Bachem) was spiked into pooled normal human plasma (2 ng/ml), incubated at +4°C for different periods of time and the immunological activity was tested in three different assays - one conventional and two unequal sandwiches.

[0031] Apparent stability of the antigen, being determined in unequal sandwiches, described here is significantly higher in comparison with the stability determined by the conventional example of conventional assay we used assay, utilizing MAb 50E1 specific to the region 26-32 of BNP molecule and MAb 24C5 specific to the region 11-22 of BNP molecule. About 70% of immunological activity was observed after 24 hours of incubation at +4°C (69,8% and 68% for assays utilizing Ab-BNP2 and Ab-BNP4, respectively) in the case the unequal sandwich was used to determine the immunoreactivity, and only 28% in the case of conventional assay. Six days after the beginning of incubation no immunoreactivity was observed in case of conventional assays, whereas about 1/4 of initial immunoreactivity was observed in the case of unequal sandwiches.

Example 5. BNP/proBNP measurements in blood of heart failure patients (HF patients) and blood of healthy donors (Fig. 6)

[0032] Unequal sandwich, as well as conventional BNP assays are able to detect in human blood both forms of the antigen displaying "BNP immunoreactivity" - i.e. BNP and proBNP. Blood samples from several HF patients and healthy donors were tested in three assays - one conventional, utilizing capture MAb 50E1, specific to the fragment 26-32 of BNP molecule and detection MAb 24C5-Eu and two unequal sandwiches. All assays were calibrated using synthetic BNP. As it follows from Fig. 6, the results of testing in three assays are very similar. In some samples results of testing in conventional assay are lower than in unequal sandwiches. This observation can be explained by the fact that in such samples BNP is partially degraded, but because of the fact that antigen displays better apparent stability in unequal sandwiches the antigen values determined by these assays

are higher than in a conventional assay.

Example 6. Calibration curves (Fig. 7)

[0033] Calibration curves for two unequal sandwiches and one conventional assay with synthetic BNP used as an antigen are presented in Fig. 7 (A, B and C). Both of the unequal sandwiches demonstrate high sensitivity, comparable with the sensitivity of the conventional assay and could be used for precise detection of BNP and proBNP immunoreactivity in human blood.

SEQUENCE LISTING

[0034]

<110> Hytest Ltd.

<120> Immunoassay for quantification of unstable antigens

<130> 46313

<160> 3

<170> PatentIn version 3.3

<210> 1

<211> 32

<212> PRT

<213> Homo sapiens

<400> 1

Ser Pro Lys Met Val Gln Gly Ser Gly Cys Phe Gly Arg Lys Met Asp
1 5 10 15

Arg Ile Ser Ser Ser Gly Leu Gly Cys Lys Val Leu Arg Arg His
20 25 30

<210> 2

<211> 108

<212> PRT

<213> Homo sapiens

<400> 2

His Pro Leu Gly Ser Pro Gly Ser Ala Ser Asp Leu Glu Thr Ser Gly
1 5 10 15

Leu Gln Glu Gln Arg Asn His Leu Gln Gly Lys Leu Ser Glu Leu Gln
20 25 30

Val Glu Gln Thr Ser Leu Glu Pro Leu Gln Glu Ser Pro Arg Pro Thr
35 40 45

Gly Val Trp Lys Ser Arg Glu Val Ala Thr Glu Gly Ile Arg Gly His
50 55 60

Arg Lys Met Val Leu Tyr Thr Leu Arg Ala Pro Arg Ser Pro Lys Met
65 70 75 80

Val Gln Gly Ser Gly Cys Phe Gly Arg Lys Met Asp Arg Ile Ser Ser
85 90 95

Ser Ser Gly Leu Gly Cys Lys Val Leu Arg Arg His
100 105

<210> 3

<211> 12

<212> PRT

<213> Homo sapiens

<400> 3

Phe Gly Arg Lys Met Asp Arg Ile Ser Ser Ser Ser
1 5 10

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- [WO2006088700A \[0013\]](#)
- [EP1016867A \[0014\]](#)
- [WO2007056507A \[0015\]](#)
- [WO2007138163A \[0015\]](#)

Non-patent literature cited in the description

- **SELF et al.**Clin. Chem., 1994, vol. 40, 2035-2041 [\[0004\]](#)
- **TOWBIN et al.**J. Immunol. Meth., 1995, vol. 181, 167-176 [\[0004\]](#)
- **KARL et al.**Scand. J. Clin. Lab. Invest., 1999, vol. 59, 230177-181 [\[0007\]](#)
- **TERAMURA et al.**Anal. Biochem., 2006, vol. 357, 208-215 [\[0008\]](#)
- **ALA-KOPSALA et al.**Clin. Chem., 2004, vol. 50, 1576-1588 [\[0009\]](#)
- **MATSUURA et al.**Anal. Chem., 2005, vol. 77, 4235-4240 [\[0010\]](#)
- **COLLINSON et al.**European J. of Heart Failure, 2004, vol. 6, 365-368 [\[0011\]](#)
- **SHIMIZU et al.**Clin. Chim. Acta, 2003, vol. 334, 233-239 [\[0012\]](#)

Patentkrav

1. Immunoassay-fremgangsmåde til påvisning af et BNP- eller proBNP-protein i en prøve, omfattende

5 (a) bringe proteinet i kontakt med et første antistof der er specifikt for en epitop lokaliseret på fragmentet af BNP- eller proBNP-protein, der har aminosyresekvensen FGRKMDRISSSS, som afbildet i SEQ ID NO:3, for at opnå et første orden immunkompleks,

10 (b) bringe første orden immunkomplekset opnået i trin (a) i kontakt med et andet antistof der genkender det første orden immunkompleks, og er specifikt for en epitop lokaliseret på første orden immunkomplekset, epitopen dannes når det første antistof binder til BNP- eller proBNP-protein eller et fragment deraf bestående af SEQ ID NO:3, for at opnå et anden orden immunkompleks, hvor det andet antistof ikke er i stand til at genkende frit BNP, frit proBNP eller frit første antistof, eller genkender dem med signifikant lavere affinitet – 10 gange eller derunder - end det genkender det første orden immunkompleks, og

15 (c) påvise dannelse af det andet orden immunkompleks,

20 hvor det undersøgte protein har en tilsyneladende øget stabilitet sammenlignet med et protein undersøgt under anvendelse af antistoffer der er specifikt til fjernede lokaliserede epitoper af BNP eller proBNP.

2. Monoklonalt antistof, der er specifikt for en epitop lokaliseret på det første orden immunkompleks som opnået ifølge trin (a) ifølge krav 1, epitopen dannes når det første antistof binder til BNP- eller proBNP-protein eller et fragment deraf bestående af SEQ ID NO:3, hvor det andet antistof genkender det første orden immunkompleks men er ikke i stand til at genkende frit BNP, frit proBNP eller frit første antistof, eller genkender dem med signifikant lavere affinitet - 10 gange eller derunder- end det genkender det første orden immunkompleks.

30 **3.** Immunoassaykit til påvisning af et BNP- eller proBNP-protein i en prøve, omfattende

(a) et første antistof der er specifikt for en epitop lokaliseret på fragmentet af BNP- eller proBNP-protein, der har aminosyresekvensen FGRKMDRISSSS, som skildret i SEQ ID NO:3, antistoffet er i stand til at danne et første orden immunkompleks med proteinet, og

5 (b) et andet antistof, der er specifikt for en epitop lokaliseret på første orden immunkomplekset, epitopen dannes når det første antistof binder til BNP- eller proBNP-protein eller et fragment deraf bestående af SEQ ID NO:3, og er i stand til at danne et andet orden immunkompleks med den første orden immunkompleks, hvor det andet antistof genkender første orden immunkomplekset men er ikke i stand til at genkende frit BNP, frit proBNP eller frit første antistof, eller genkender dem med signifikant lavere affinitet - 10 gange eller derunder- end det genkender det første orden immunkompleks.

10

DRAWINGS

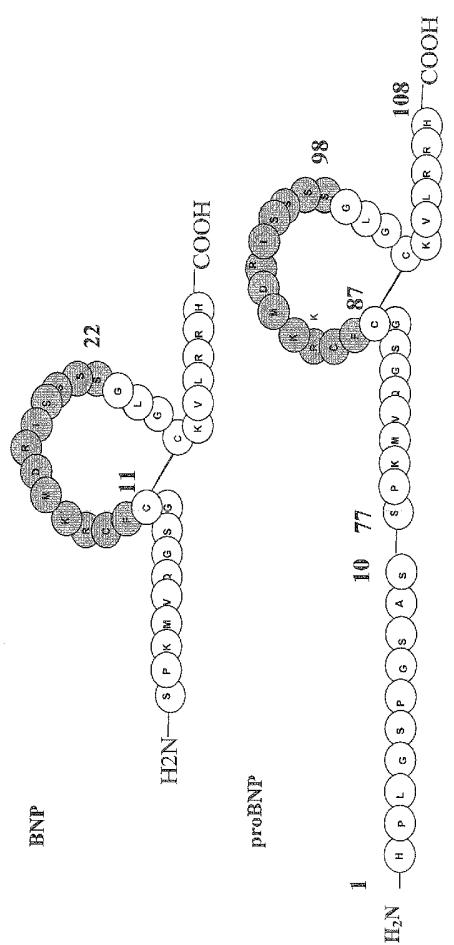


Fig. 1

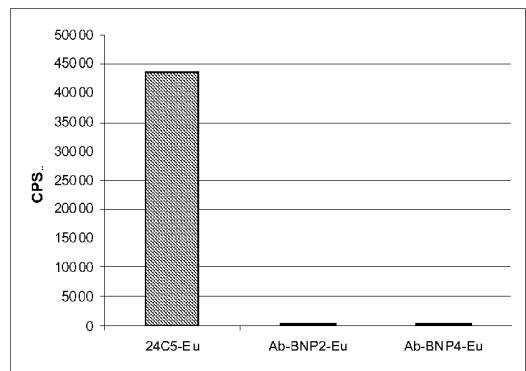


Fig. 2A

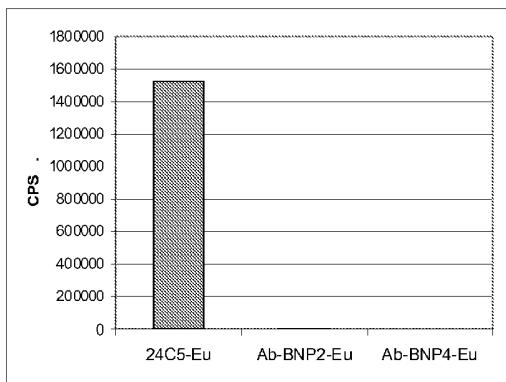


Fig. 2B

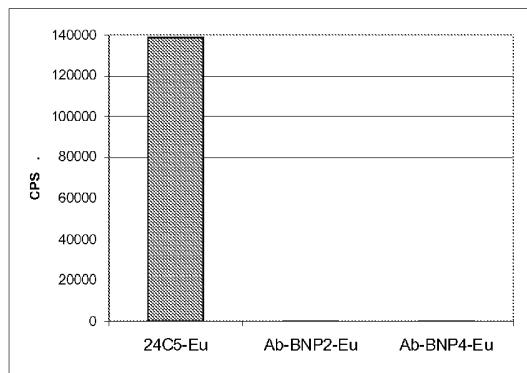


Fig. 2C

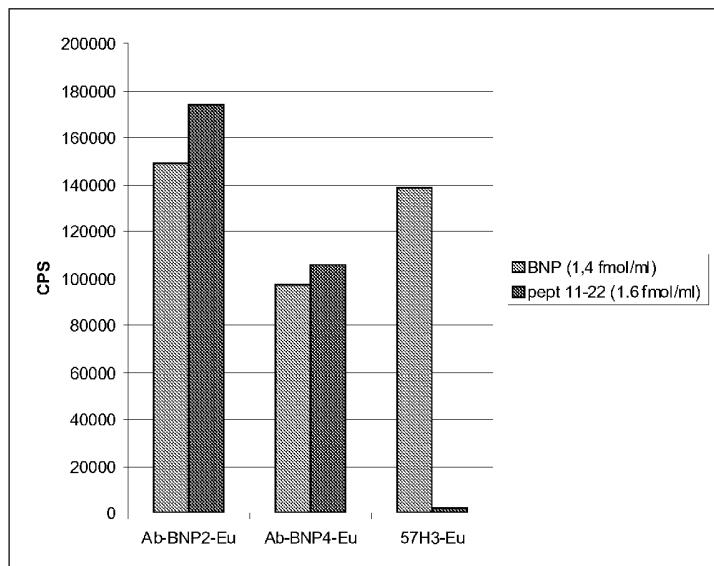


Fig. 3

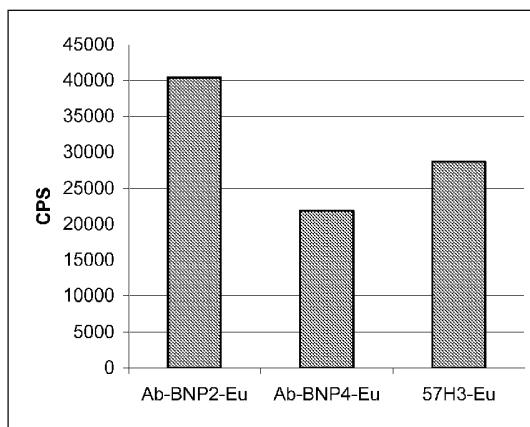


Fig. 4

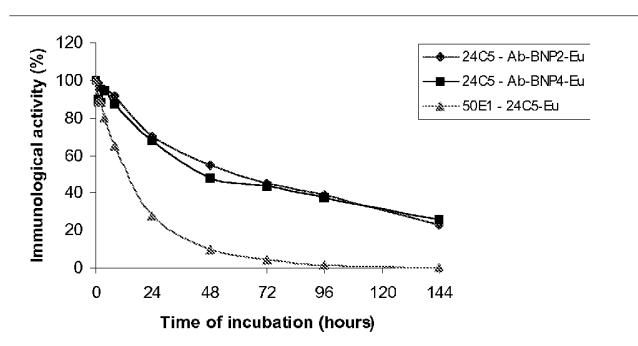


Fig. 5

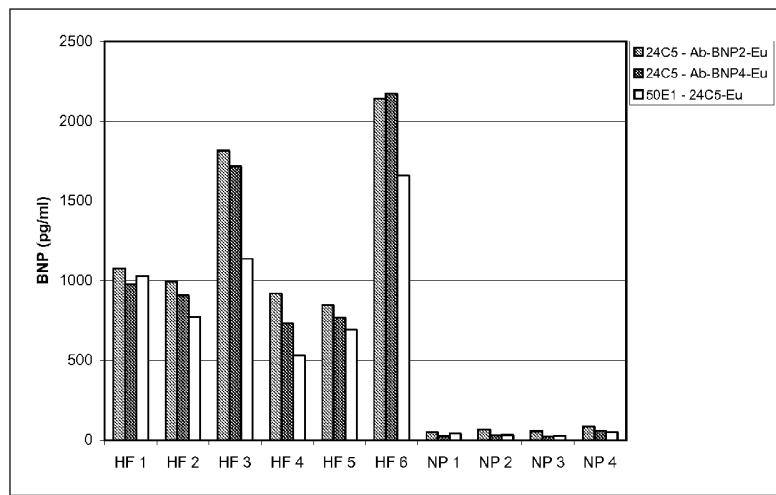


Fig. 6

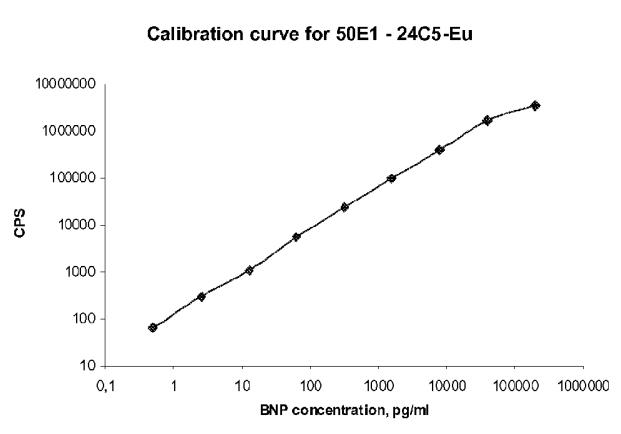


Fig. 7A

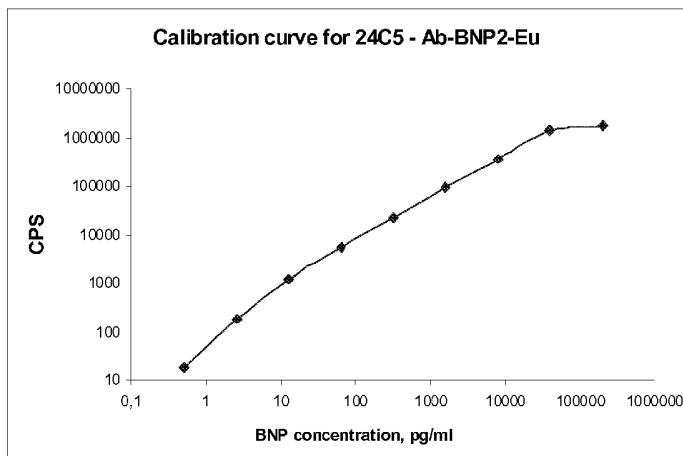


Fig. 7B

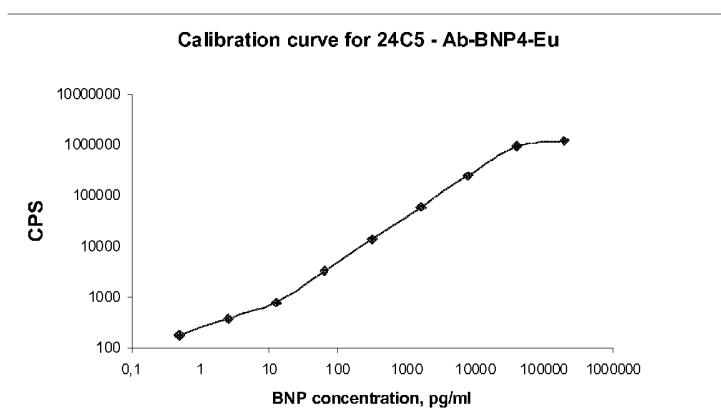


Fig. 7C